Sample records for apolipoprotein-e forms dimers

  1. Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells

    PubMed Central

    Gillard, Baiba K.; Lin, Hu-Yu Alice; Massey, John B.; Pownall, Henry J.

    2009-01-01

    Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport. PMID:19635584

  2. Multiple system atrophy and apolipoprotein E.

    PubMed

    Ogaki, Kotaro; Martens, Yuka A; Heckman, Michael G; Koga, Shunsuke; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Wernick, Anna I; Walton, Ronald L; Soto, Alexandra I; Vargas, Emily R; Nielsen, Henrietta M; Fujioka, Shinsuke; Kanekiyo, Takahisa; Uitti, Ryan J; van Gerpen, Jay A; Cheshire, William P; Wszolek, Zbigniew K; Low, Phillip A; Singer, Wolfgang; Dickson, Dennis W; Bu, Guojun; Ross, Owen A

    2018-04-01

    Dysregulation of the specialized lipid metabolism involved in myelin synthesis and maintenance by oligodendrocytes has been associated with the unique neuropathology of MSA. We hypothesized that apolipoprotein E, which is associated with neurodegeneration, may also play a role in the pathogenesis of MSA. This study evaluated genetic associations of Apolipoprotein E alleles with risk of MSA and α-synuclein pathology, and also examined whether apolipoprotein E isoforms differentially affect α-synuclein uptake in a oligodendrocyte cell. One hundred sixty-eight pathologically confirmed MSA patients, 89 clinically diagnosed MSA patients, and 1,277 control subjects were genotyped for Apolipoprotein E. Human oligodendrocyte cell lines were incubated with α-synuclein and recombinant human apolipoprotein E, with internalized α-synuclein imaged by confocal microscopy and cells analyzed by flow cytometry. No significant association with risk of MSA or was observed for either Apolipoprotein E ɛ2 or ɛ4. α-Synuclein burden was also not associated with Apolipoprotein E alleles in the pathologically confirmed patients. Interestingly, in our cell assays, apolipoprotein E ɛ4 significantly reduced α-synuclein uptake in the oligodendrocytic cell line. Despite differential effects of apolipoprotein E isoforms on α-synuclein uptake in a human oligodendrocytic cell, we did not observe a significant association at the Apolipoprotein E locus with risk of MSA or α-synuclein pathology. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  3. The Activation Domain of the Bovine Papillomavirus E2 Protein Mediates Association of DNA-Bound Dimers to form DNA Loops

    NASA Astrophysics Data System (ADS)

    Knight, Jonathan D.; Li, Rong; Botchan, Michael

    1991-04-01

    The E2 transactivator protein of bovine papillomavirus binds its specific DNA target sequence as a dimer. We have found that E2 dimers, performed in solution independent of DNA, exhibit substantial cooperativity of DNA binding as detected by both nitrocellulose filter retention and footprint analysis techniques. If the binding sites are widely spaced, E2 forms stable DNA loops visible by electron microscopy. When three widely separated binding sites reside on te DNA, E2 condenses the molecule into a bow-tie structure. This implies that each E2 dimer has at least two independent surfaces for multimerization. Two naturally occurring shorter forms of the protein, E2C and D8/E2, which function in vivo as repressors of transcription, do not form such loops. Thus, the looping function of E2 maps to the 161-amino acid activation domain. These results support the looping model of transcription activation by enhancers.

  4. Apolipoprotein E genotype in schizophrenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joober, R.; Lal, S.; Bloom, D.

    We investigated the association between schizophrenia and the allelic polymorphism in the apolipoprotein E (Apo E) gene in 51 schizophrenic patients and 35 controls. The Apo E4 allele was equally represented in the schizophrenic group (16%) and the control group (20%) suggesting no association between schizophrenia and the Apo E4 allele. The apolipoprotein E (Apo E) is a polymorphic (E2, E3, and E4) lipoprotein involved in the transmembrane transport of cholesterol and is thought to play an important role in neuronal growth and in the central nervous system response to injury, particularly in the hippocampal region. Recent findings strongly suggestmore » that the Apo E4 allele is associated with cognitive deficits in normal and pathological aging, e.g., Alzheimer`s disease. 5 refs., 1 tab.« less

  5. Effect of Apolipoprotein E Genotype and Diet on Apolipoprotein E Lipidation and Amyloid Peptides

    PubMed Central

    Hanson, Angela J.; Bayer-Carter, Jennifer L.; Green, Pattie S.; Montine, Thomas J.; Wilkinson, Charles W.; Baker, Laura D.; Watson, G. Stennis; Bonner, Laura M.; Callaghan, Maureen; Leverenz, James B.; Tsai, Elaine; Postupna, Nadia; Zhang, Jing; Lampe, Johanna; Craft, Suzanne

    2013-01-01

    Importance Sporadic Alzheimer disease (AD) is caused in part by decreased clearance of the β-amyloid (Aβ) peptide breakdown products. Lipid-depleted (LD) apolipoproteins are less effective at binding and clearing Aβ, and LD Aβ peptides are more toxic to neurons. However, not much is known about the lipid states of these proteins in human cerebrospinal fluid. Objective To characterize the lipidation states of Aβ peptides and apolipoprotein E in the cerebrospinal fluid in adults with respect to cognitive diagnosis and APOE ε4 allele carrier status and after a dietary intervention. Design Randomized clinical trial. Setting Veterans Affairs Medical Center clinical research unit. Participants Twenty older adults with normal cognition (mean [SD] age, 69 [7] years) and 27 with amnestic mild cognitive impairment (67 [6] years). Interventions Randomization to a diet high in saturated fat content and with a high glycemic index (High diet;45% of energy from fat [>25% saturated fat], 35%-40%fromcarbohydrates with a mean glycemic index >70, and15%-20% from protein) or a diet low in saturated fat content and with a low glycemic index (Low diet; 25% of energy from fat [<7% saturated fat], 55%-60% from carbohydrates with a mean glycemic index <55, and 15%-20% from protein). Main Outcomes and Measures Lipid-depleted Aβ42 and Aβ40 and apolipoprotein E in cerebrospinal fluid. Results Baseline levels of LD Aβ were greater for adults with mild cognitive impairment compared with adults with normal cognition (LD Aβ42, P=.05; LD Aβ40, P=.01).These findings were magnified in adults with mild cognitive impairment and the ε4 allele, who had higher LD apolipoprotein E levels irrespective of cognitive diagnosis (P<.001). The Low diet tended to decrease LD Aβ levels, whereas the High diet increased these fractions (LD Aβ42, P=.01; LD Aβ40, P=.15). Changes in LD Aβ levels with the Low diet negatively correlated with changes in cerebrospinal fluid levels of insulin (LD Aβ42 and

  6. Role of Conserved Proline Residues in Human Apolipoprotein A-IV Structure and Function*

    PubMed Central

    Deng, Xiaodi; Walker, Ryan G.; Morris, Jamie; Davidson, W. Sean; Thompson, Thomas B.

    2015-01-01

    Apolipoprotein (apo)A-IV is a lipid emulsifying protein linked to a range of protective roles in obesity, diabetes, and cardiovascular disease. It exists in several states in plasma including lipid-bound in HDL and chylomicrons and as monomeric and dimeric lipid-free/poor forms. Our recent x-ray crystal structure of the central domain of apoA-IV shows that it adopts an elongated helical structure that dimerizes via two long reciprocating helices. A striking feature is the alignment of conserved proline residues across the dimer interface. We speculated that this plays important roles in the structure of the lipid-free protein and its ability to bind lipid. Here we show that the systematic conversion of these prolines to alanine increased the thermodynamic stability of apoA-IV and its propensity to oligomerize. Despite the structural stabilization, we noted an increase in the ability to bind and reorganize lipids and to promote cholesterol efflux from cells. The novel properties of these mutants allowed us to isolate the first trimeric form of an exchangeable apolipoprotein and characterize it by small-angle x-ray scattering and chemical cross-linking. The results suggest that the reciprocating helix interaction is a common feature of all apoA-IV oligomers. We propose a model of how self-association of apoA-IV can result in spherical lipoprotein particles, a model that may have broader applications to other exchangeable apolipoprotein family members. PMID:25733664

  7. Apolipoprotein E polymorphism and low density lipoprotein (LDL) oxidation in patients with dementia.

    PubMed

    Wehr, Hanna; Bednarska-Makaruk, Małgorzata; Graban, Ałła; Kunicki, Paweł K; Lojkowska, Wanda; Rodo, Maria; Ryglewicz, Danuta

    2003-01-01

    In patients with dementia, 29 diagnosed as probably suffering from Alzheimer's disease and 46 subjects with dementia of vascular origin, and in 41 non demented control subjects LDL oxidation in vitro was compared in carriers of various apolipoprotein E alleles. Restriction isotyping was performed by gene amplification and cleavage with Hhal, LDL oxidation was investigated by determination of conjugated dienes and vitamin E (alpha tocopherol) plasma level was measured by HPLC. In subjects with dementia oxidation of LDL was shown to be higher in carriers of epsilon4 allele as compared with non-carriers of this allele. It was especially observed in the propagation phase, which illustrates oxidation intensity after the exhaustion of the antioxidant reserve in LDL. Vitamin E level did not show differences between carriers of different alleles. It is concluded that the differences in oxidation susceptibility of LDL between demented subjects possessing particular apolipoprotein E forms can result partially from differing antioxidant properties of apolipoprotein E isoforms and, in a substantial degree, from the size and quality of LDL.

  8. Apolipoprotein E-mimetics inhibit neurodegeneration and restore cognitive functions in a transgenic Drosophila model of Alzheimer's disease.

    PubMed

    Sarantseva, Svetlana; Timoshenko, Svetlana; Bolshakova, Olga; Karaseva, Eugenia; Rodin, Dmitry; Schwarzman, Alexander L; Vitek, Michael P

    2009-12-07

    Mutations of the amyloid precursor protein gene (APP) are found in familial forms of Alzheimer's disease (AD) and some lead to the elevated production of amyloid-beta-protein (Abeta). While Abeta has been implicated in the causation of AD, the exact role played by Abeta and its APP precursor are still unclear. In our study, Drosophila melanogaster transgenics were established as a model to analyze AD-like pathology caused by APP overexpression. We demonstrated that age related changes in the levels and pattern of synaptic proteins accompanied progressive neurodegeneration and impairment of cognitive functions in APP transgenic flies, but that these changes may be independent from the generation of Abeta. Using novel peptide mimetics of Apolipoprotein-E, COG112 or COG133 proved to be neuroprotective and significantly improved the learning and memory of APP transgenic flies. The development of neurodegeneration and cognitive deficits was corrected by injections of COG112 or COG133, novel mimetics of apolipoprotein-E (apoE) with neuroprotective activities.

  9. Multiple SNPs Within and Surrounding the Apolipoprotein E Gene Influence Cerebrospinal Fluid Apolipoprotein E Protein Levels

    PubMed Central

    Bekris, Lynn M.; Millard, Steven P.; Galloway, Nichole M.; Vuletic, Simona; Albers, John J.; Li, Ge; Galasko, Douglas R.; DeCarli, Charles; Farlow, Martin R.; Clark, Chris M.; Quinn, Joseph F.; Kaye, Jeffrey A.; Schellenberg, Gerard D.; Tsuang, Debby; Peskind, Elaine R.; Yu, Chang-En

    2010-01-01

    The ε4 allele of the apolipoprotein E gene (APOE) is associated with increased risk and earlier age at onset in late onset Alzheimer’s disease (AD). Other factors, such as expression level of apolipoprotein E protein (apoE), have been postulated to modify the APOE related risk of developing AD. Multiple loci in and outside of APOE are associated with a high risk of AD. The aim of this exploratory hypothesis generating investigation was to determine if some of these loci predict cerebrospinal fluid (CSF) apoE levels in healthy non-demented subjects. CSF apoE levels were measured from healthy non-demented subjects 21–87 years of age (n = 134). Backward regression models were used to evaluate the influence of 21 SNPs, within and surrounding APOE, on CSF apoE levels while taking into account age, gender, APOE ε4 and correlation between SNPs (linkage disequilibrium). APOE ε4 genotype does not predict CSF apoE levels. Three SNPs within the TOMM40 gene, one APOE promoter SNP and two SNPs within distal APOE enhancer elements (ME1 and BCR) predict CSF apoE levels. Further investigation of the genetic influence of these loci on apoE expression levels in the central nervous system is likely to provide new insight into apoE regulation as well as AD pathogenesis. PMID:18430993

  10. Graded-index optical dimer formed by optical force

    DOE PAGES

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria; ...

    2016-05-30

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  11. Graded-index optical dimer formed by optical force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Alireza; Koschny, Thomas; Kafesaki, Maria

    We propose an optical dimer formed from two spherical lenses bound by the pressure that light exerts on matter. With the help of the method of force tracing, we find the required graded-index profiles of the lenses for the existence of the dimer. We study the dynamics of the opto-mechanical interaction of lenses under the illumination of collimated light beams and quantitatively validate the performance of the proposed dimer. We also examine the stability of the dimer due to the lateral misalignments and we show how restoring forces bring the dimer into lateral equilibrium. The dimer can be employed inmore » various practical applications such as optical manipulation, sensing and imaging.« less

  12. Theoretical investigation on the 2e/12c bond and second hyperpolarizability of azaphenalenyl radical dimers: strength and effect of dimerization.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Sun, Shi-Ling; Qiu, Yong-Qing; Zhao, Liang; Su, Zhong-Min

    2013-09-28

    An increasing number of chemists have focused on the investigations of two-electron/multicenter bond (2e/mc) that was first introduced to describe the structure of radical dimers. In this work, the dimerization of two isoelectronic radicals, triazaphenalenyl (TAP) and hexaazaphenalenyl (HAP) has been investigated in theory. Results show TAP2 is a stable dimer with stronger 2e/12c bond and larger interaction energy, while HAP2 is a less stable dimer with larger diradical character. Interestingly, the ultraviolet-visible absorption spectra suggest that the dimerization induces a longer wavelength absorption in visible area, which is dependent on the strength of dimerization. Significantly, the amplitude of second hyperpolarizability (γ(yyyy)) of HAP2 is 1.36 × 10(6) a.u. that is larger than 7.79 × 10(4) a.u. of TAP2 because of the larger diradical character of HAP2. Therefore, the results indicate that the strength of radical dimerization can be effectively detected by comparing the magnitude of third order non-linear optical response, which is beneficial for further theoretical and experimental studies on the properties of complexes formed by radical dimerization.

  13. Comparison of Lipoprotein Electrophoresis and Apolipoprotein E Genotyping in Investigating Dysbetalipoproteinemia.

    PubMed

    Ahmed, Farhan; El-Kadiki, Alia; Gibbons, Stephen

    2017-06-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia.

  14. Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease

    PubMed Central

    Salameh, Therese S; Rhea, Elizabeth M; Hanson, Angela J

    2016-01-01

    An increased risk for Alzheimer's disease is associated with dyslipidemia and insulin resistance. A separate literature shows the genetic risk for developing Alzheimer's disease is strongly correlated to the presence of the E4 isoform of the apolipoprotein E carrier protein. Understanding how apolipoprotein E carrier protein, lipids, amyloid β peptides, glucose, central nervous system insulin, and peripheral insulin interact with one another in Alzheimer's disease is an area of increasing interest. Here, we will review the evidence relating apolipoprotein E carrier protein, lipids, and insulin action to Alzheimer's disease and Aβ peptides and then propose mechanisms as to how these factors might interact with one another to impair cognition and promote Alzheimer's disease. PMID:27470930

  15. Fibulin 5 Forms a Compact Dimer in Physiological Solutions*

    PubMed Central

    Jones, Richard P. O.; Wang, Ming-Chuan; Jowitt, Thomas A.; Ridley, Caroline; Mellody, Kieran T.; Howard, Marjorie; Wang, Tao; Bishop, Paul N.; Lotery, Andrew J.; Kielty, Cay M.; Baldock, Clair; Trump, Dorothy

    2009-01-01

    Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)-rich extracellular matrix protein that is essential for the formation of elastic tissues. Missense mutations in fibulin 5 cause the elastin disorder cutis laxa and have been associated with age-related macular degeneration, a leading cause of blindness. We investigated the structure, hydrodynamics, and oligomerization of fibulin 5 using small angle x-ray scattering, EM, light scattering, circular dichroism, and sedimentation. Compact structures for the monomer were determined by small angle x-ray scattering and EM, and are supported by close agreement between the theoretical sedimentation of the structures and the experimental sedimentation of the monomer in solution. EM showed that monomers associate around a central cavity to form a dimer. Light scattering and equilibrium sedimentation demonstrated that the equilibrium between the monomer and the dimer is dependent upon NaCl and Ca2+ concentrations and that the dimer is dominant under physiological conditions. The dimerization of fragments containing just the cbEGF domains suggests that intermolecular interactions between cbEGFs cause dimerization of fibulin 5. It is possible that fibulin 5 functions as a dimer during elastinogenesis or that dimerization may provide a method for limiting interactions with binding partners such as tropoelastin. PMID:19617354

  16. Combined vitamin C and vitamin E deficiency worsens early atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Babaev, Vladimir R; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F; May, James M

    2010-09-01

    To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis (an inflammatory condition associated with oxidative stress), 4 combinations of vitamin supplementation (low C/low E, low C/high E, high C/low E, and high C/high E) were studied in atherosclerosis-prone apolipoprotein E-deficient mice also unable to synthesize their own vitamin C (gulonolactone oxidase(-/-)); and to evaluate the effect of a more severe depletion of vitamin C alone in a second experiment using gulonolactone oxidase(-/-) mice carrying the hemizygous deletion of SVCT2 (the vitamin C transporter). After 8 weeks of a high-fat diet (16% lard and 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2- to 3-fold in male mice, although only plaque macrophage content was increased in female mice. A more severe deficiency of vitamin C in gulonolactone oxidase(-/-) mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apolipoprotein E(-/-) mice compared with littermates receiving a diet replete in vitamin C, again most clearly in males. Combined deficiencies of vitamins E and C are required to worsen early atherosclerosis in an apolipoprotein E-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete.

  17. Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil.

    PubMed

    Mitter, Sumeet S; Oriá, Reinaldo B; Kvalsund, Michelle P; Pamplona, Paula; Joventino, Emanuella Silva; Mota, Rosa M S; Gonçalves, Davi C; Patrick, Peter D; Guerrant, Richard L; Lima, Aldo A M

    2012-01-01

    Apolipoprotein E4 may benefit children during early periods of life when the body is challenged by infection and nutritional decline. We examined whether apolipoprotein E4 affects intestinal barrier function, improving short-term growth and long-term cognitive outcomes in Brazilian shantytown children. A total of 213 Brazilian shantytown children with below-median height-for-age z-scores (HAZ) received 200,000 IU of retinol (every four months), zinc (40 mg twice weekly), or both for one year, with half of each group receiving glutamine supplementation for 10 days. Height-for-age z-scores, weight-for-age z-scores, weight-for-height z-scores, and lactulose:mannitol ratios were assessed during the initial four months of treatment. An average of four years (range 1.4-6.6) later, the children underwent cognitive testing to evaluate non-verbal intelligence, coding, verbal fluency, verbal learning, and delayed verbal learning. Apolipoprotein E4 carriage was determined by PCR analysis for 144 children. Thirty-seven children were apolipoprotein E4(+), with an allele frequency of 13.9%. Significant associations were found for vitamin A and glutamine with intestinal barrier function. Apolipoprotein E4(+) children receiving glutamine presented significant positive Pearson correlations between the change in height-for-age z-scores over four months and delayed verbal learning, along with correlated changes over the same period in weight-for-age z-scores and weight-for-height z-scores associated with non-verbal intelligence quotients. There was a significant correlation between vitamin A supplementation of apolipoprotein E4(+) children and improved delta lactulose/mannitol. Apolipoprotein E4(-) children, regardless of intervention, exhibited negative Pearson correlations between the change in lactulose-to-mannitol ratio over four months and verbal learning and non-verbal intelligence. During development, apolipoprotein E4 may function concomitantly with gut-tropic nutrients to

  18. Replication initiator protein RepE of mini-F plasmid: functional differentiation between monomers (initiator) and dimers (autogenous repressor).

    PubMed Central

    Ishiai, M; Wada, C; Kawasaki, Y; Yura, T

    1994-01-01

    Replication of mini-F plasmid requires the plasmid-encoded RepE initiator protein and several host factors including DnaJ, DnaK, and GrpE, heat shock proteins of Escherichia coli. The RepE protein plays a crucial role in replication and exhibits two major functions: initiation of replication from the origin, ori2, and autogenous repression of repE transcription. One of the mini-F plasmid mutants that can replicate in the dnaJ-defective host produces an altered RepE (RepE54) with a markedly enhanced initiator activity but little or no repressor activity. RepE54 has been purified from cell extracts primarily in monomeric form, unlike the wild-type RepE that is recovered in dimeric form. Gel-retardation assays revealed that RepE54 monomers bind to ori2 (direct repeats) with a very high efficiency but hardly bind to the repE operator (inverted repeat), in accordance with the properties of RepE54 in vivo. Furthermore, the treatment of wild-type RepE dimers with protein denaturants enhanced their binding to ori2 but reduced binding to the operator: RepE dimers were partially converted to monomers, and the ori2 binding activity was uniquely associated with monomers. These results strongly suggest that RepE monomers represent an active form by binding to ori2 to initiate replication, whereas dimers act as an autogenous repressor by binding to the operator. We propose that RepE is structurally and functionally differentiated and that monomerization of RepE dimers, presumably mediated by heat shock protein(s), activates the initiator function and participates in regulation of mini-F DNA replication. Images PMID:8170998

  19. [Apolipoprotein e polymorphism and cognitive function change of the elderly in a rural area, Korea].

    PubMed

    Kim, Sang Kyu; Hwang, Tae Yoon; Lee, Kyeong Soo; Kang, Pock Soo; Cho, Hee Soon; Bae, Young Kyung

    2009-07-01

    The aim of this study is to examine the cognitive function change related to aging, the incidence of cognitive impairment, and the association between apolipoprotein E polymorphism and cognitive impairment through a follow-up of the elderly with normal cognitive ability at baseline. Two hundred and fifteen subjects aged 65 and over were surveyed in February, 1998 (baseline survey), and their cognitive function was assessed again in 2003 (1st follow-up) and the once again in 2006 (2nd follow-up). Ninety one subjects completed all surveys up through the 2nd follow-up and their cognitive function scores using MMSE-K (Korean Version of the Mini-Mental State Examination) and the distribution of apolipoprotein E allele were analyzed. The cognitive function scores decreased with aging and the difference between baseline and the 2nd follow-up scores of the study increased with the age group. The incidence rate of cognitive impairment through an 8-year follow-up was 38.5% and higher in older age groups. Age was the only significant factor for incidence of cognitive impairment, but there was no significant association between apolipoprotein E genotype and incidence of cognitive impairment. The cognition of the elderly decreased with aging and the association of apolipoprotein E genotype with incidence of cognitive impairment was not significant in this study. To confirm the association between apolipoprotein E polymorphism and incidence of cognitive impairment further studies will be needed.

  20. The E2 Domains of APP and APLP1 Share a Conserved Mode of Dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Lee; Y Xue; J Hulbert

    2011-12-31

    Amyloid precursor protein (APP) is genetically linked to Alzheimer's disease. APP is a type I membrane protein, and its oligomeric structure is potentially important because this property may play a role in its function or affect the processing of the precursor by the secretases to generate amyloid {beta}-peptide. Several independent studies have shown that APP can form dimers in the cell, but how it dimerizes remains controversial. At least three regions of the precursor, including a centrally located and conserved domain called E2, have been proposed to contribute to dimerization. Here we report two new crystal structures of E2, onemore » from APP and the other from APLP1, a mammalian APP homologue. Comparison with an earlier APP structure, which was determined in a different space group, shows that the E2 domains share a conserved and antiparallel mode of dimerization. Biophysical measurements in solution show that heparin binding induces E2 dimerization. The 2.1 {angstrom} resolution electron density map also reveals phosphate ions that are bound to the protein surface. Mutational analysis shows that protein residues interacting with the phosphate ions are also involved in heparin binding. The locations of two of these residues, Arg-369 and His-433, at the dimeric interface suggest a mechanism for heparin-induced protein dimerization.« less

  1. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Hiroshi, E-mail: hirotake@sapmed.ac.jp

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation ofmore » cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.« less

  2. No association between apolipoprotein E or N-acetyltransferase 2 gene polymorphisms and age-related hearing loss.

    PubMed

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil; Payton, Antony

    2015-01-01

    Age-related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N-acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age-related hearing loss and investigate epistasis between these two genes. Candidate gene association study of a continuous phenotype. We investigated haplotype tagging single nucleotide polymorphisms in the N-acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age-related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N-acetyltransferase 2 gene was obtained from existing genome-wide association study data from the Illumina 610-Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. No significant associations (P value, > 0.05) were observed between the N-acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N-acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). We found no evidence to support that either N-acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age-related hearing loss in a cohort of 265 elderly volunteers. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  3. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).

    PubMed

    Poulikakos, Poulikos I; Persaud, Yogindra; Janakiraman, Manickam; Kong, Xiangju; Ng, Charles; Moriceau, Gatien; Shi, Hubing; Atefi, Mohammad; Titz, Bjoern; Gabay, May Tal; Salton, Maayan; Dahlman, Kimberly B; Tadi, Madhavi; Wargo, Jennifer A; Flaherty, Keith T; Kelley, Mark C; Misteli, Tom; Chapman, Paul B; Sosman, Jeffrey A; Graeber, Thomas G; Ribas, Antoni; Lo, Roger S; Rosen, Neal; Solit, David B

    2011-11-23

    Activated RAS promotes dimerization of members of the RAF kinase family. ATP-competitive RAF inhibitors activate ERK signalling by transactivating RAF dimers. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumour-specific inhibition of ERK signalling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbour mutant BRAF(V600E). However, resistance invariably develops. Here, we identify a new resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61-kDa variant form of BRAF(V600E), p61BRAF(V600E), which lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) shows enhanced dimerization in cells with low levels of RAS activation, as compared to full-length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signalling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumours of six of nineteen patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signalling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner.

  4. Rapamycin rescues vascular, metabolic and learning deficits in apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer's disease.

    PubMed

    Lin, Ai-Ling; Jahrling, Jordan B; Zhang, Wei; DeRosa, Nicholas; Bakshi, Vikas; Romero, Peter; Galvan, Veronica; Richardson, Arlan

    2017-01-01

    Apolipoprotein E ɛ4 allele is a common susceptibility gene for late-onset Alzheimer's disease. Brain vascular and metabolic deficits can occur in cognitively normal apolipoprotein E ɛ4 carriers decades before the onset of Alzheimer's disease. The goal of this study was to determine whether early intervention using rapamycin could restore neurovascular and neurometabolic functions, and thus impede pathological progression of Alzheimer's disease-like symptoms in pre-symptomatic Apolipoprotein E ɛ4 transgenic mice. Using in vivo, multimodal neuroimaging, we found that apolipoprotein E ɛ4 mice treated with rapamycin had restored cerebral blood flow, blood-brain barrier integrity and glucose metabolism, compared to age- and gender-matched wild-type controls. The preserved vasculature and metabolism were associated with amelioration of incipient learning deficits. We also found that rapamycin restored the levels of the proinflammatory cyclophilin A in vasculature, which may contribute to the preservation of cerebrovascular function in the apolipoprotein E ɛ4 transgenics. Our results show that rapamycin improves functional outcomes in this mouse model and may have potential as an effective intervention to block progression of vascular, metabolic and early cognitive deficits in human Apolipoprotein E ɛ4 carriers. As rapamycin is FDA-approved and neuroimaging is readily used in humans, the results of the present study may provide the basis for future Alzheimer's disease intervention studies in human subjects. © The Author(s) 2015.

  5. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E)

    PubMed Central

    Poulikakos, Poulikos I.; Persaud, Yogindra; Janakiraman, Manickam; Kong, Xiangju; Ng, Charles; Moriceau, Gatien; Shi, Hubing; Atefi, Mohammad; Titz, Bjoern; Gabay, May Tal; Salton, Maayan; Dahlman, Kimberly B.; Tadi, Madhavi; Wargo, Jennifer A.; Flaherty, Keith T.; Kelley, Mark C.; Misteli, Tom; Chapman, Paul B.; Sosman, Jeffrey A.; Graeber, Thomas G.; Ribas, Antoni; Lo, Roger S.; Rosen, Neal; Solit, David B.

    2011-01-01

    Summary Activated RAS promotes dimerization of members of the RAF kinase family1-3. ATP-competitive RAF inhibitors activate ERK signaling4-7 by transactivating RAF dimers4. In melanomas with mutant BRAF(V600E), levels of RAS activation are low and these drugs bind to BRAF(V600E) monomers and inhibit their activity. This tumor-specific inhibition of ERK signaling results in a broad therapeutic index and RAF inhibitors have remarkable clinical activity in patients with melanomas that harbor mutant BRAF(V600E)8. However, resistance invariably develops. Here, we identify a novel resistance mechanism. We find that a subset of cells resistant to vemurafenib (PLX4032, RG7204) express a 61kd variant form of BRAF(V600E) that lacks exons 4-8, a region that encompasses the RAS-binding domain. p61BRAF(V600E) exhibits enhanced dimerization in cells with low levels of RAS activation, as compared to full length BRAF(V600E). In cells in which p61BRAF(V600E) is expressed endogenously or ectopically, ERK signaling is resistant to the RAF inhibitor. Moreover, a mutation that abolishes the dimerization of p61BRAF(V600E) restores its sensitivity to vemurafenib. Finally, we identified BRAF(V600E) splicing variants lacking the RAS-binding domain in the tumors of six of 19 patients with acquired resistance to vemurafenib. These data support the model that inhibition of ERK signaling by RAF inhibitors is dependent on levels of RAS-GTP too low to support RAF dimerization and identify a novel mechanism of acquired resistance in patients: expression of splicing isoforms of BRAF(V600E) that dimerize in a RAS-independent manner. PMID:22113612

  6. Does Possession of Apolipoprotein E[superscript E]4 Benefit Cognitive Function in Healthy Young Adults?

    ERIC Educational Resources Information Center

    Bunce, David; Anstey, Kaarin J.; Burns, Richard; Christensen, Helen; Easteal, Simon

    2011-01-01

    There is considerable evidence that the apolipoprotein E (APOE)[superscript E]4 allele is associated with cognitive deficits in older persons, and is a risk factor for dementia. However, it has recently been suggested that possession of the [superscript E]4 allele may benefit cognition in early adulthood. We tested this possibility in 5445…

  7. Apolipoprotein E in Temporal Lobe Epilepsy: A Case-Control Study

    PubMed Central

    Kumar, Amit; Tripathi, Manjari; Pandey, Ravindra M.; Ramakrishnan, Lakshmy; Srinivas, M.; Luthra, Kalpana

    2006-01-01

    Purpose: To investigate the relationship of apolipoprotein E (apoE) genotype, plasma levels of apoE and lipids in temporal lobe epilepsy (TLE) patients in Asian Indians. Status of plasma levels of Apo E in epilepsy patients has not been reported till date. Methods: ApoE gene polymorphism was analyzed in 58 patients with temporal lobe epilepsy (TLE) and 57 age and sex approximated controls using Polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). Levels of plasma apoE and lipids were measured using ELISA and enzymatic kits respectively. Results: The distribution of ApoE genotype in epilepsy patients and controls was comparable. Higher levels of plasma ApoE were observed in TLE patients as compared to controls (p = 0.0001). Individuals with plasma levels of apoE > 190 mg/L were at 20 times higher odds (95%CI = 2.46–163.34, p = 0.005), while those with levels of apoE between 150–190 mg/L were at 4.9 times higher odds (95% CI = 1.85–13.9, p = 0.001), to develop TLE. Conclusions: We have observed for the first time, high levels of plasma apoE in epilepsy patients. The findings of this case-control study suggest that apolipoprotein E may play an important role in epilepsy. PMID:17264404

  8. Reduced telomere length in subjects with dementia and diabetes mellitus type 2 is independent of apolipoprotein E4 genotype.

    PubMed

    Kota, Lakshmi Narayanan; Bharath, Srikala; Purushottam, Meera; Paul, Pradip; Sivakumar, Palanimuthu Thangaraju; Varghese, Mathew; Jain, Sanjeev

    2014-12-01

    Apolipoprotein E4 gene is associated with increased risk of dementia with comorbid diabetes mellitus. Both dementia and diabetes mellitus type 2 are independently associated with telomere shortening. We assessed relative telomere length and apolipoprotein E genotype in subjects with dementia (n=70) and cognitively normal control groups (n=55) with and without comorbid diabetes mellitus type 2. Relative telomere length was highest in the control group (Q2=0.91) followed by dementia (Q2=0.48) and dementia with comorbid diabetes mellitus type 2 (Q2=0.39). Apolipoprotein E4 allele frequency was highest in dementia with comorbid diabetes mellitus type 2 (0.26). Apolipoprotein E4 allele was not significantly associated with telomere attrition in both dementia and cognitively normal group irrespective of comorbid diabetes mellitus type 2 (P>0.05). The findings suggest that relative telomere length is unrelated to apolipoprotein E4 genotype in dementia and cognitive normal subjects with or without comorbid diabetes mellitus type 2. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cerebrospinal fluid apolipoprotein E levels in subacute sclerosing panencephalitis.

    PubMed

    Yüksel, Deniz; Ichiyama, Takashi; Yilmaz, Deniz; Anlar, Banu

    2012-04-01

    Neurofibrillary tangles (NFTs) have been shown in 20% of subacute sclerosing panencephalitis (SSPE) cases. NFTs contain paired helical filaments formed by hyperphosphorylated tau. The intraneuronal tau metabolism and the rate of formation of paired helical filaments can be regulated by interactions between tau and isoforms of Apolipoprotein E (Apo E). Tau binds in vitro to Apo E3, interferes with the hyperphosphorylation of tau and may reduce the formation of NFTs. We investigated cerebrospinal fluid (CSF) Apo E levels in SSPE (n=37) and age-matched control (n=38) groups. The median level of total Apo E and Apo E4 were lower in the SSPE than the control group (p<0.001 and p=0.002). On the other hand, median Apo E3 level (0.28±0.23 μg/ml) was higher in the SSPE group (p<0.001). Such elevated levels of ApoE3 might play a role in controlling the formation of NFTs in SSPE. Because NFT-associated neurodegeneration is a slow process, comparison of the long-term clinical course of SSPE cases with high and low Apo E3 levels might provide further understanding or the role of these molecules in this disease, and help the planning of neuroprotective treatment. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. A simple approach for human recombinant apolipoprotein E4 expression and purification.

    PubMed

    Argyri, Letta; Skamnaki, Vassiliki; Stratikos, Efstratios; Chroni, Angeliki

    2011-10-01

    We report a simple expression and purification procedure for the production of recombinant apolipoprotein E4 (apoE4), an important protein for the lipid homeostasis in humans that plays critical roles in the pathogenesis of cardiovascular and neurodegenerative diseases. Our approach is based on the expression of a thioredoxin-apoE4 fusion construct in bacterial cells and subsequent removal of the fused thioredoxin using the highly specific 3C protease, avoiding costly and laborious lipidation-delipidation steps used before. Our approach results in rapid, high-yield production of structurally and functionally competent apoE4 as evidenced by secondary structure measurements, thermal and chemical melting profiles and the kinetic profile of solubilization of dimyristoyl-phosphatidylcholine (DMPC) vesicles. This protocol is appropriate for laboratories with little experience in apolipoprotein biochemistry and will facilitate future studies on the role of apoE4 in the pathogenesis of cardiovascular disease and neurodegenerative diseases, including Alzheimer's disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Members of the DAN family are BMP antagonists that form highly stable noncovalent dimers.

    PubMed

    Kattamuri, Chandramohan; Luedeke, David M; Nolan, Kristof; Rankin, Scott A; Greis, Kenneth D; Zorn, Aaron M; Thompson, Thomas B

    2012-12-14

    Signaling of bone morphogenetic protein (BMP) ligands is antagonized by a number of extracellular proteins, including noggin, follistatin and members of the DAN (differential screening selected gene abberative in neuroblastoma) family. Structural studies on the DAN family member sclerostin (a weak BMP antagonist) have previously revealed that the protein is monomeric and consists of an eight-membered cystine knot motif with a fold similar to transforming growth factor-β ligands. In contrast to sclerostin, certain DAN family antagonists, including protein related to DAN and cerberus (PRDC), have an unpaired cysteine that is thought to function in covalent dimer assembly (analogous to transforming growth factor-β ligands). Through a combination of biophysical and biochemical studies, we determined that PRDC forms biologically active dimers that potently inhibit BMP ligands. Furthermore, we showed that PRDC dimers, surprisingly, are not covalently linked, as mutation of the unpaired cysteine does not inhibit dimer formation or biological activity. We further demonstrated that the noncovalent PRDC dimers are highly stable under both denaturing and reducing conditions. This study was extended to the founding family member DAN, which also forms noncovalent dimers that are highly stable. These results demonstrate that certain DAN family members can form both monomers and noncovalent dimers, implying that biological activity of DAN family members might be linked to their oligomeric state. Published by Elsevier Ltd.

  12. Plasma apolipoprotein E and severity of suicidal behaviour.

    PubMed

    Asellus, Peter; Nordström, Peter; Nordström, Anna-Lena; Jokinen, Jussi

    2016-01-15

    There is evidence for association between low cholesterol levels and suicidal behaviour. Since apolipoprotein E (ApoE) is involved in the cholesterol metabolism in both the periphery and in the central nervous system; it may be of particular interest in the neurobiology of suicidal behaviour. Furthermore, hypothalamic-pituitary-adrenal (HPA) axis function, one of the main biological systems implicated in both suicidal behaviour and early-life adversity, affect ApoE levels. Very few studies have assessed plasma ApoE in relation to suicidal behaviour. The purpose of this study was to investigate levels of ApoE in plasma in relation to the severity of suicidal behaviour and life-time adversity in the form of exposure to interpersonal violence in suicide attempters. A total of 100 suicide attempters (67 women and 33 men) were enroled in the study. Information on earlier suicide attempts and age at onset of suicidal behaviour was gathered using the Karolinska Suicide History Interview. The Karolinska Interpersonal Violence Scale was used to assess exposure to interpersonal violence. Plasma ApoE was measured by immunonephelometry according to accredited routines. Patients with at least one earlier suicide attempt had significantly higher ApoE levels compared to suicide attempters debuting with suicidal behaviour at inclusion in the study. A higher number of earlier suicide attempts was significantly correlated with higher plasma ApoE levels. Age at onset was significantly negatively correlated with ApoE after adjusting for age. ApoE showed a significant positive correlation with exposure to interpersonal violence as a child in male suicide attempters. Our findings indicate that ApoE may be related to stress and trauma and the temporal severity of suicidal behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Specific dietary polyphenols attenuate atherosclerosis in apolipoprotein E-knockout mice by alleviating inflammation and endothelial dysfunction.

    PubMed

    Loke, Wai Mun; Proudfoot, Julie M; Hodgson, Jonathan M; McKinley, Allan J; Hime, Neil; Magat, Maria; Stocker, Roland; Croft, Kevin D

    2010-04-01

    Animal and clinical studies have suggested that polyphenols in fruits, red wine, and tea may delay the development of atherosclerosis through their antioxidant and anti-inflammatory properties. We investigated whether individual dietary polyphenols representing different polyphenolic classes, namely quercetin (flavonol), (-)-epicatechin (flavan-3-ol), theaflavin (dimeric catechin), sesamin (lignan), or chlorogenic acid (phenolic acid), reduce atherosclerotic lesion formation in the apolipoprotein E (ApoE)(-/-) gene-knockout mouse. Quercetin and theaflavin (64-mg/kg body mass daily) significantly attenuated atherosclerotic lesion size in the aortic sinus and thoracic aorta (P<0.05 versus ApoE(-/-) control mice). Quercetin significantly reduced aortic F(2)-isoprostane, vascular superoxide, vascular leukotriene B(4), and plasma-sP-selectin concentrations; and augmented vascular endothelial NO synthase activity, heme oxygenase-1 protein, and urinary nitrate excretion (P<0.05 versus control ApoE(-/-) mice). Theaflavin showed similar, although less extensive, significant effects. Although (-)-epicatechin significantly reduced F(2)-isoprostane, superoxide, and endothelin-1 production (P<0.05 versus control ApoE(-/-) mice), it had no significant effect on lesion size. Sesamin and chlorogenic acid treatments exerted no significant effects. Quercetin, but not (-)-epicatechin, significantly increased the expression of heme oxygenase-1 protein in lesions versus ApoE(-/-) controls. Specific dietary polyphenols, in particular quercetin and theaflavin, may attenuate atherosclerosis in ApoE(-/-) gene-knockout mice by alleviating inflammation, improving NO bioavailability, and inducing heme oxygenase-1. These data suggest that the cardiovascular protection associated with diets rich in fruits, vegetables, and some beverages may in part be the result of flavonoids, such as quercetin.

  14. Apolipoprotein E alleles in Alzheimer`s and Parkinson`s patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poduslo, S.E.; Schwankhaus, J.D.

    1994-09-01

    A number of investigators have found an association between the apolipoprotein E4 allele and Alzheimer`s disease. The E4 allele appears at a higher frequency in late onset familial Alzheimer`s patients. In our studies we obtained blood samples from early and late onset familial and sporadic Alzheimer`s patients and spouses, as well as from Parkinson`s patients. The patients were diagnosed as probable Alzheimer`s patients after a neurological examination, extensive blood work, and a CAT scan. The diagnosis was made according to the NINCDS-ADRDA criteria. The apolipoprotein E4 polymorphism was detected after PCR amplification of genomic DNA, restriction enzyme digestion with Hhal,more » and polyacrylamide gel electrophoresis. Ethidium bromide-stained bands at 91 bp were designated as allele 3, at 83 bp as allele 2, and at 72 bp as allele 4. Of the 84 probable Alzheimer`s patients (all of whom were Caucasian), 47 were heterozygous and 13 were homozygous for the E4 allele. There were 26 early onset patients; 13 were heterozygous and 7 homozygous for the E4 allele. The frequencies for the E4 allele for late onset familial patients was 0.45 and for sporadic patients was 0.37. We analyzed 77 spouses with an average age of 71.9 {plus_minus} 7.4 years as controls, and 15 were heterozygous for the E4 allele for an E4 frequency of 0.097. Of the 53 Parkinson`s patients, 11 had the E4 allele for a frequency of 0.113. Thus our findings support the association of the ApoE4 allele with Alzheimer`s disease.« less

  15. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds

    PubMed Central

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H.; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V.; Zimic, Mirko

    2014-01-01

    Recombinant wild-pyrazinamidase from H37Rv M. tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. PMID:25199451

  16. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids.

    PubMed

    Jackson, Kim G; Wolstencroft, Emma J; Bateman, Paul A; Yaqoob, Parveen; Williams, Christine M

    2005-01-01

    Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Ten normolipidemic men received in random order a mixed meal containing 50 g of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)], or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48, B-100, E, C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S(f)) >400, S(f) 60-400, and S(f) 20-60. Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S(f) > 400 and S(f) 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (S(f) 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (S(f) > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Differences in the composition of S(f) > 400 and S(f) 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.

  17. Is Apolipoprotein E4 an Important Risk Factor for Dementia in Persons with Down Syndrome?

    PubMed

    Rohn, Troy T; McCarty, Katie L; Love, Julia E; Head, Elizabeth

    2014-12-08

    Down syndrome is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Triplication of all or part of human chromosome 21 has been considered as the main cause of Down syndrome. Due to the location of the amyloid precursor protein on chromosome 21, many of the neuropathological features of early-onset Alzheimer's disease including senile plaques and neurofibrillary tangles are also present in Down syndrome patients who are either demented or nondemented. Significant advances in medical treatment have increased longevity in people with Down syndrome resulting in an increased population that may be subjected to many of the same risk factors as those with Alzheimer's disease. It is well established that harboring one or both apolipoprotein E4 alleles greatly increases the risk for Alzheimer's disease. However, whether apolipoprotein E4 contributes to an earlier onset of dementia or increased mortality in Down syndrome patients is still a matter of debate. The purpose of this mini review is to provide an updated assessment on apolipoprotein E4 status and risk potential of developing dementia and mortality associated with Down syndrome.

  18. Studies on the Detection, Expression, Glycosylation, Dimerization, and Ligand Binding Properties of Mouse Siglec-E*

    PubMed Central

    Siddiqui, Shoib; Schwarz, Flavio; Springer, Stevan; Khedri, Zahra; Yu, Hai; Deng, Lingquan; Verhagen, Andrea; Naito-Matsui, Yuko; Jiang, Weiping; Kim, Daniel; Zhou, Jie; Ding, Beibei; Chen, Xi; Varki, Nissi; Varki, Ajit

    2017-01-01

    CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer. PMID:27920204

  19. Expression of lipoprotein receptor and apolipoprotein E genes by perinatal rat lipid-laden pulmonary fibroblasts.

    PubMed

    McGowan, S E; Doro, M M; Jackson, S

    Lipid-laden interstitial fibroblasts (LIFs) are abundant during alveolar septal formation in rats and accumulate droplets of neutral lipids. The mechanisms controlling lipid acquisition by LIFs are incompletely understood and accumulation varies during postnatal development, because lipid droplets are usually a transient phenotype. We hypothesized that plasma lipoproteins may be an important source of lipids and that the cells may alter their acquisition of lipoproteins by changing the expression of lipoprotein receptors and apolipoprotein E. We quantified the accumulation low-density lipoproteins (LDLs) and very-low-density lipoproteins (VLDLs) by LIFs and the expression of LDL and VLDL receptors mRNA and protein at various perinatal ages and found no significant age-related differences. Apolipoprotein E mRNA was maximal at postnatal day 15, whereas immunoreactive apolipoprotein E protein was maximal at gestational day 21, suggesting complex regulation. Our findings indicate that the age-related difference in the lipid droplet contents of LIFs is not primarily related to differences in LDL or VLDL receptor expression. They suggest that changes in the quantities of plasma lipoproteins, which are presented to LIFs in the lung at various perinatal ages, are more likely to be responsible for age-related alterations in lipid droplet size and abundance.

  20. Expression of the very low-density lipoprotein receptor (VLDL-r), an apolipoprotein-E receptor, in the central nervous system and in Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christie, R.H.; Chung, Haeyong; Rebeck, G.W.

    1996-04-01

    The very low density lipoprotein receptor (VLDL-r) is a cell-surface molecule specialized for the internalization of multiple diverse ligands, including apolipoprotein E (apoE)-containing lipoprotein particles, via clathrin-coated pits. Its structure is similar to the low-density lipoprotein receptor (LDL-r), although the two have substantially different systemic distributions and regulatory pathways. The present work examines the distribution of VLDL-r in the central nervous system (CNS) and in relation to senile plaques in Alzheimer disease (AD). VLDL-r is present on resting and activated microglia, particularly those associated with senile plaques (SPs). VLDL-r immunoreactivity is also found in cortical neurons. Two exons of VLDL-rmore » mRNA are differentially spliced in the mature receptor mRNA. One set of splice forms gives rise to receptors containing (or lacking) an extracellular O-linked glycosylation domain near the transmembrane portion of the molecule. The other set of splice forms appears to be brain-specific, and is responsible for the presence or absence of one of the cysteine-rich repeat regions in the binding region of the molecule. Ratios of the receptor variants generated from these splice forms do not differ substantially across different cortical areas or in AD. We hypothesize that VLDL-r might contribute to metabolism of apoE and apoE/A{beta} complexes in the brain. Further characterization of apoE receptors in Alzheimer brain may help lay the groundwork for understanding the role of apoE in the CNS and in the pathophysiology of AD. 43 refs., 5 figs.« less

  1. Anti-infective activity of apolipoprotein domain derived peptides in vitro: identification of novel antimicrobial peptides related to apolipoprotein B with anti-HIV activity

    PubMed Central

    2010-01-01

    Background Previous reports have shown that peptides derived from the apolipoprotein E receptor binding region and the amphipathic α-helical domains of apolipoprotein AI have broad anti-infective activity and antiviral activity respectively. Lipoproteins and viruses share a similar cell biological niche, being of overlapping size and displaying similar interactions with mammalian cells and receptors, which may have led to other antiviral sequences arising within apolipoproteins, in addition to those previously reported. We therefore designed a series of peptides based around either apolipoprotein receptor binding regions, or amphipathic α-helical domains, and tested these for antiviral and antibacterial activity. Results Of the nineteen new peptides tested, seven showed some anti-infective activity, with two of these being derived from two apolipoproteins not previously used to derive anti-infective sequences. Apolipoprotein J (151-170) - based on a predicted amphipathic alpha-helical domain from apolipoprotein J - had measurable anti-HSV1 activity, as did apolipoprotein B (3359-3367) dp (apoBdp), the latter being derived from the LDL receptor binding domain B of apolipoprotein B. The more active peptide - apoBdp - showed similarity to the previously reported apoE derived anti-infective peptide, and further modification of the apoBdp sequence to align the charge distribution more closely to that of apoEdp or to introduce aromatic residues resulted in increased breadth and potency of activity. The most active peptide of this type showed similar potent anti-HIV activity, comparable to that we previously reported for the apoE derived peptide apoEdpL-W. Conclusions These data suggest that further antimicrobial peptides may be obtained using human apolipoprotein sequences, selecting regions with either amphipathic α-helical structure, or those linked to receptor-binding regions. The finding that an amphipathic α-helical region of apolipoprotein J has antiviral

  2. Association of leisure-time physical activity with cognition by apolipoprotein-E genotype in persons aged 60 years and over: the National Health and Nutrition Examination Survey (NHANES-III).

    PubMed

    Obisesan, Thomas O; Umar, Nisser; Paluvoi, Nivedh; Gillum, Richard F

    2012-01-01

    To test the hypothesis that aerobic-related leisure-time physical activity (PA) is associated with better cognitive function and that the effect varies among apolipoprotein E (APOE) genotype groups. Cross-sectional study of persons examined in the Third National Health and Nutrition Examination Survey (NHANES-III; 1988-1994). US noninstitutionalized population. From a sample of 7159, aged ≥60 years, we analyzed data for 1799 older American men and women who had information on PA, a short mental status examination (SMSE), and were genotyped at the apolipoprotein E gene locus. In the initial bivariate analysis, non-ɛ4 carriers and ɛ4-heterozygotes performed better than ɛ4-homozygotes in the 60-69 age group. After controlling for multiple confounders including mobility limitation, PA correlated with a higher SMSE score in non-ɛ4 carriers (P = 0.014), but not in ɛ4 carriers (P = 0.887). At ≥70 years, PA also correlated with higher adjusted SMSE scores in non-ɛ4 carriers (P = 0.02); but this association became nonsignificant after controlling for mobility limitation (P = 0.12). In a nationally representative sample, PA was associated with enhanced cognition, an effect that was differentially influenced by apolipoprotein E genotype. Experimental studies are needed to determine whether or not PA can attenuate cognitive decline.

  3. The dimerization domain in DapE enzymes is required for catalysis.

    PubMed

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  4. Lack of Influence of Apolipoprotein E Status on Cognition or Brain Structure in Professional Fighters

    PubMed Central

    Miller, Justin B.; Rissman, Robert A.; Bernick, Charles B.

    2017-01-01

    Abstract The role of the apolipoprotein e4 allele in moderating cognitive and neuroanatomical degeneration following repeated traumatic brain injury is controversial. Here we sought to establish the presence or absence of such a moderating relationship in a prospective study of active and retired boxers and mixed martial arts fighters. Fighters (n = 193) underwent cognitive evaluations, interviews regarding fight history, MRI of the brain, and genetic testing. We used a series of moderator analyses to test for any relationship of apolipoprotein genotype on structural volumes of brain regions previously established to be smaller in those with the most fight exposure, and on cognitive abilities also established to be sensitive to fight exposure. No moderating relationship was detected in any of the analyses. The results of this study suggest that there is no impact of apolipoprotein genotype on the apparent negative association between exposure to professional fighting and brain structure volume or aspects of cognition. PMID:27245878

  5. Plasma apolipoproteins and physical and cognitive health in very old individuals.

    PubMed

    Muenchhoff, Julia; Song, Fei; Poljak, Anne; Crawford, John D; Mather, Karen A; Kochan, Nicole A; Yang, Zixuan; Trollor, Julian N; Reppermund, Simone; Maston, Kate; Theobald, Adam; Kirchner-Adelhardt, Susanne; Kwok, John B; Richmond, Robyn L; McEvoy, Mark; Attia, John; Schofield, Peter W; Brodaty, Henry; Sachdev, Perminder S

    2017-07-01

    Apolipoproteins play a crucial role in lipid metabolism with implications in cardiovascular disease, obesity, diabetes, Alzheimer's disease, and longevity. We quantified 7 apolipoproteins in plasma in 1067 individuals aged 56-105 using immunoassays and explored relationships with APOE polymorphism ε2/3/4, vascular health, frailty, and cognition. ApoA1, ApoA2, ApoB, ApoC3, ApoE, ApoH, and ApoJ decreased from mid-life, although ApoE and ApoJ had U-shaped trends. Centenarians had the highest ApoE levels and the lowest frequency of APOE ε4 allele relative to younger groups. Apolipoprotein levels trended lower in APOE ε4 homozygotes and heterozygotes compared with noncarriers, with ApoE and ApoJ being significantly lower. Levels of all apolipoproteins except ApoH were higher in females. Sex- and age-related differences were apparent in the association of apolipoproteins with cognitive performance, as only women had significant negative associations of ApoB, ApoE, ApoH, and ApoJ in mid-life, whereas associations at older age were nonsignificant or positive. Our findings suggest levels of some apolipoproteins, especially ApoE, are associated with lifespan and cognitive function in exceptionally long-lived individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Association of apolipoprotein E allele {epsilon}4 with late-onset sporadic Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucotte, G.; David, F.; Berriche, S.

    1994-09-15

    Apolipoprotein E, type {epsilon}4 allele (ApoE {epsilon}4), is associated with late-onset sporadic Alzheimer`s disease (AD) in French patients. The association is highly significant (0.45 AD versus 0.12 controls for {epsilon}4 allele frequencies). These data support the involvement of ApoE {epsilon}4 allele as a very important risk factor for the clinical expression of AD. 22 refs., 1 fig., 3 tabs.

  7. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E

    NASA Astrophysics Data System (ADS)

    Rute Neves, Ana; Fontes Queiroz, Joana; Weksler, Babette; Romero, Ignacio A.; Couraud, Pierre-Olivier; Reis, Salette

    2015-12-01

    Nanotechnology can be an important tool to improve the permeability of some drugs for the blood-brain barrier. In this work we created a new system to enter the brain by functionalizing solid lipid nanoparticles with apolipoprotein E, aiming to enhance their binding to low-density lipoprotein receptors on the blood-brain barrier endothelial cells. Solid lipid nanoparticles were successfully functionalized with apolipoprotein E using two distinct strategies that took advantage of the strong interaction between biotin and avidin. Transmission electron microscopy images revealed spherical nanoparticles, and dynamic light scattering gave a Z-average under 200 nm, a polydispersity index below 0.2, and a zeta potential between -10 mV and -15 mV. The functionalization of solid lipid nanoparticles with apolipoprotein E was demonstrated by infrared spectroscopy and fluorimetric assays. In vitro cytotoxic effects were evaluated by MTT and LDH assays in the human cerebral microvascular endothelial cells (hCMEC/D3) cell line, a human blood-brain barrier model, and revealed no toxicity up to 1.5 mg ml-1 over 4 h of incubation. The brain permeability was evaluated in transwell devices with hCMEC/D3 monolayers, and a 1.5-fold increment in barrier transit was verified for functionalized nanoparticles when compared with non-functionalized ones. The results suggested that these novel apolipoprotein E-functionalized nanoparticles resulted in dynamic stable systems capable of being used for an improved and specialized brain delivery of drugs through the blood-brain barrier.

  8. Biomarkers Associated With the Apolipoprotein E Genotype and Alzheimer Disease

    PubMed Central

    Soares, Holly D.; Potter, William Z.; Pickering, Eve; Kuhn, Max; Immermann, Frederick W.; Shera, David M; Ferm, Mats; Dean, Robert A.; Simon, Adam J.; Swenson, Frank; Siuciak, Judith A.; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J.; Wan, Hong I.; Trojanowski, John Q.; Shaw, Leslie M.

    2013-01-01

    Background A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. Objective To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer’s Disease Neuroimaging Initiative cohort. Design Cohort study. Setting The Biomarkers Consortium Alzheimer’s Disease Plasma Proteomics Project. Participants Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Main Outcome Measures Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Results Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B–type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high Cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Conclusions Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B–type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was

  9. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease.

    PubMed

    Soares, Holly D; Potter, William Z; Pickering, Eve; Kuhn, Max; Immermann, Frederick W; Shera, David M; Ferm, Mats; Dean, Robert A; Simon, Adam J; Swenson, Frank; Siuciak, Judith A; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J; Wan, Hong I; Trojanowski, John Q; Shaw, Leslie M

    2012-10-01

    A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer's Disease Neuroimaging Initiative cohort. Cohort study. The Biomarkers Consortium Alzheimer's Disease Plasma Proteomics Project. Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B-type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B-type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was associated with a unique biochemical profile irrespective of diagnosis, highlighting the importance of

  10. Apolipoprotein E gene polymorphism and gender.

    PubMed

    Kolovou, Genovefa; Damaskos, Dimitris; Anagnostopoulou, Katherine; Cokkinos, Dennis V

    2009-01-01

    Many studies have shown that the prevalence and onset of coronary heart disease (CHD) is sex-dependent. CHD prevalence is lower in women than in men at all ages. Furthermore, women's age of CHD onset seems to be 10 yr later. This is widely attributed to the fact that men have less favorable CHD risk factors (eg, plasma lipid profile) compared to women. Mean levels of protective high density lipoprotein cholesterol are lower, while triglyceride levels are higher in men than in women. It is possible that many of the genes involved in lipid metabolism, such as Apolipoprotein (Apo) E, as well as their polymorphisms, may be expressed in a sexually dimorphic manner. The human Apo E gene is polymorphic, encoding one of 3 common epsilon (epsilon) alleles (epsilon 2, epsilon 3, epsilon 4), with the epsilon 3 allele occurring most frequently (78%) in the Caucasian population. Association studies have shown a protective effect on CHD in epsilon 2 carriers and a harmful effect in epsilon 4 carriers. However, there are conflicting results regarding such allelic effects in respect to gender. This review is focused on the gender-related influence of Apo E polymorphism in respect to plasma lipid levels and the risk of CHD. Additionally, an effort is made to determine if this relation exists and if it can be satisfactorily explained. The studies cited here demonstrate a complex, multifactorial association between these factors, in need of further corroboration in greater population samples.

  11. Role for apolipoprotein E in neurodegeneration and mercury intoxication.

    PubMed

    Arrifano, Gabriela de Paula Fonseca; de Oliveira, Marcus Augusto; Souza-Monteiro, Jose Rogerio; Paraense, Ricardo Oliveira; Ribeiro-Dos-Santos, Andrea; Vieira, Jose Richardo Dos Santos; Silva, Artur Luis da Costa; Macchi, Barbarella de Matos; do Nascimento, Jose Luiz Martins; Burbano, Rommel Mario Rodriguez; Crespo-Lopez, Maria Elena

    2018-01-01

    Mercury intoxication is a serious public health problem and a worldwide concern. The Minamata Convention on Mercury has been signed by 128 countries and endorsed by the World Health Organization with the recommendation of promoting the management of epidemiological information. The Central Nervous System is the main target organ for mercury. Symptoms of intoxication include altered motor coordination, visual and tactile dysfunction and paralysis, caused by neurodegeneration with a key role for oxidative damage. Recently, some studies have demonstrated a correlation between mercury intoxication and isoforms of apolipoprotein E (ApoE). In this review, epidemiological data and hypotheses about the possible molecular mechanisms underlying the association between ApoE and mercury intoxication are assessed. Based on the evidence and the neuropathological changes that the presence of ApoE4 and mercury neurotoxicity have in common, we propose a convergent action of both factors. ApoE4 seems to potentiate the damage caused by mercury. Increased knowledge of this interaction using epidemiological and pre-clinical studies is essential to improve prevention strategies to adequately manage intoxicated patients.

  12. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar tomore » the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.« less

  13. Apolipoprotein E: Risk factor for Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, M.S.; Thibodeau, S.N.; Tangalos, E.G.

    1994-04-01

    The apolipoprotein E gene (APOE) has three common alleles (E2, E3, and E4) that determine six genotypes in the general population. In this study, the authors examined 77 patients with late-onset Alzheimer disease (AD), along with an equal number of age- and sex-matched controls, for an association with the APOE-E4 allele. They show that the frequency of this allele among AD patients was significantly higher than that among the control population (.351 vs. .130, P = .000006). The genotype frequencies also differed between the two groups (P = .0002), with the APOE-E4/E3 genotype being the most common in the ADmore » group and the APOE-E3/E3 being the most common in the control group. In the AD group, homozygosity for E4 was found in nine individuals, whereas none was found in the control group. The odds ratio for AD, when associated with one or two E4 alleles, was 4.6 (95% confidence interval [CI] 1.9-12.3), while the odds ratio for AD, when associated with heterozygosity for APOE-E4, was 3.6 (05% CI 1.5-9.8). Finally, the median age at onset among the AD patients decreased from 83 to 78 to 74 years as the number of APOE-E4 alleles increased from 0 to 1 to 2, respectively (test for trend, P = .001). The data, which are in agreement with recent reports, suggest that the APOE-E4 allele is associated with AD and that this allelic variant may be an important risk factor for susceptibility to AD in the general population. 30 refs., 5 tabs.« less

  14. Method for the Simultaneous Quantitation of Apolipoprotein E Isoforms using Tandem Mass Spectrometry

    PubMed Central

    Wildsmith, Kristin R.; Han, Bomie; Bateman, Randall J.

    2009-01-01

    Using Apolipoprotein E (ApoE) as a model protein, we developed a protein isoform analysis method utilizing Stable Isotope Labeling Tandem Mass Spectrometry (SILT MS). ApoE isoforms are quantitated using the intensities of the b and y ions of the 13C-labeled tryptic isoform-specific peptides versus unlabeled tryptic isoform-specific peptides. The ApoE protein isoform analysis using SILT allows for the simultaneous detection and relative quantitation of different ApoE isoforms from the same sample. This method provides a less biased assessment of ApoE isoforms compared to antibody-dependent methods, and may lead to a better understanding of the biological differences between isoforms. PMID:19653990

  15. Possible Alzheimer’s Disease in an Apolipoprotein E2 Homozygote

    PubMed Central

    Ignatov, Ignat; Belden, Christine; Jacobson, Sandra; Connor, Donald; Sabbagh, Marwan N.

    2010-01-01

    The objective of this study was to describe a case of Alzheimer’s disease in an ApoE ε2/ε2 homozygote. ApoE ε2/ε2 is the rarest of the apolipoprotein E genotypes, representing only 1.4% of the population. There is only one case reported in the literature of a nonagenarian with minimal cognitive changes whose brain showed AD pathology on postmortem study. Here we report an 87-year-old ApoE ε2/ε2 female who meets clinical criteria for Alzheimer’s disease, with confirmation from neuropsychological testing and PET scan. Clinical course is typical for Alzheimer’s disease with decline on the Mini-Mental Status Examination from a score of 25 to 19 over 3.5 years. The patient is currently treated with donepezil and memantine. In conclusion, a clinically confirmed case of Alzheimer’s disease is rare in Apo E2 homozygotes but can occur. PMID:19158419

  16. Antibodies against oxidized LDL and apolipoprotein E polymorphism in demented patients.

    PubMed

    Bednarska-Makaruk, Małgorzata; Rodo, Maria; Graban, Ałła; Lojkowska, Wanda; Bochyńska, Anna; Ryglewicz, Danuta; Wehr, Hanna

    2009-08-15

    In serum of 114 patients with dementia and of 102 controls the level of IG class immunoglobulins directed against oxidized LDL and lipids were determined. In isolated DNA apolipoprotein E gene (APOE) polymorphism was identified. In some individuals very high levels of the antibodies were observed. exceeding the 90 percentile in the investigated group. The prevalence of very high anti-ox LDL antibodies level was significantly more frequent in the carriers of epsilon2 allele and less frequent in the carriers of epsilon4 allele.

  17. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice.

    PubMed

    Dolejší, Eva; Liraz, Ori; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; Michaelson, Daniel M

    2016-02-01

    Apolipoprotein E4 (apoE4) is the most prevalent genetic risk factor for Alzheimer's disease. We utilized apoE4-targeted replacement mice (approved by the Tel Aviv University Animal Care Committee) to investigate whether cholinergic dysfunction, which increases during aging and is a hallmark of Alzheimer's disease, is accentuated by apoE4. This revealed that levels of the pre-synaptic cholinergic marker, vesicular acetylcholine transporter in the hippocampus and the corresponding electrically evoked release of acetylcholine, are similar in 4-month-old apoE4 and apolipoprotein E3 (apoE3) mice. Both parameters decrease with age. This decrease is, however, significantly more pronounced in the apoE4 mice. The levels of cholinacetyltransferase (ChAT), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) were similar in the hippocampus of young apoE4 and apoE3 mice and decreased during aging. For ChAT, this decrease was similar in the apoE4 and apoE3 mice, whereas it was more pronounced in the apoE4 mice, regarding their corresponding AChE and BuChE levels. The level of muscarinic receptors was higher in the apoE4 than in the apoE3 mice at 4 months and increased to similar levels with age. However, the relative representation of the M1 receptor subtype decreased during aging in apoE4 mice. These results demonstrate impairment of the evoked release of acetylcholine in hippocampus by apoE4 in 12-month-old mice but not in 4-month-old mice. The levels of ChAT and the extent of the M2 receptor-mediated autoregulation of ACh release were similar in the adult mice, suggesting that the apoE4-related inhibition of hippocampal ACh release in these mice is not driven by these parameters. Evoked ACh release from hippocampal and cortical slices is similar in 4-month-old apoE4 and apoE3 mice but is specifically and significantly reduced in hippocampus, but not cortex, of 12-month-old apoE4 mice. This effect is accompanied by decreased VAChT levels. These findings show that

  18. The apolipoprotein E/CI/CII gene cluster and late-onset Alzheimer disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Chang-En; Nemens, E.; Olson, J.M.

    1994-04-01

    The chromosome 19 apolipoprotein E/CI/CII gene cluster was examined for evidence of linkage to a familial Alzheimer disease (FAD) locus. The family groups studied were Volga German (VG), early-onset non-VG (ENVG; mean age at onset <60 years), and late-onset families. A genetic association was observed between apolipoprotein E (ApoE) allele E4 and FAD in late-onset families; the E4 allele frequency was .51 in affected subjects, .37 in at-risk subjects, .11 in spouses, and .19 in unrelated controls. The differences between the E4 frequencies in affected subjects versus controls and in at-risk subjects versus controls were highly significant. No association betweenmore » the E4 allele and FAD was observed in the ENVG or VG groups. A statistically significant allelic association between E4 and AD was also observed in a group of unrelated subjects; the E4 frequency was .26 in affected subjects, versus .19 in controls (Z[sub SND] = 2.20, P < .03). Evidence of linkage of ApoE and ApoCII to FAD was examined by maximum-likelihood methods, using three models and assuming autosomal dominant inheritance: (1) age-dependent penetrance, (2) extremely low (1%) penetrance, and (3) age-dependent penetrance corrected for sporadic Alzheimer disease (AD). For ApoCII in late-onset families, results for close linkage were negative, and only small positive lod-score-statistic (Z) values were obtained. For ApoE in late-onset kindreds, positive Z values were obtained when either allele frequencies from controls or allele frequencies from the families were used. When linkage disequilibrium was incorporated into the analysis, the Z values increased. For the ENVG group, results for ApoE and ApoCII were uniformly negative. Affected-pedigree-member analysis gave significant results for the late-onset kindreds, for ApoE, when control allele frequencies were used but not when allele frequencies were derived from the families. 58 refs., 6 tabs.« less

  19. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.

    PubMed

    Liu, Chia-Chen; Liu, Chia-Chan; Kanekiyo, Takahisa; Xu, Huaxi; Bu, Guojun

    2013-02-01

    Apolipoprotein E (Apo-E) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk of cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. Apo-E-lipoproteins bind to several cell-surface receptors to deliver lipids, and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. Apo-E isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on Apo-E in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different Apo-E isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting Apo-E.

  20. Two-electron/24-center (2e/24c) bonding in novel diradical π-dimers.

    PubMed

    Gao, Feng-Wei; Zhong, Rong-Lin; Sun, Shi-Ling; Xu, Hong-Liang; Su, Zhong-Min

    2016-10-26

    A series of diradical π-dimers 2 with interesting pancake-shaped 2e/24c π-π bonding character were designed and investigated based on the famous phenalenyl (PLY) π-dimer with 2e/12c π-π bonding character. The position of stronger interaction between two layers of radicals was found by the Wiberg bond index (WBI) maximum component. Further, the different contributions of the interaction energy were analyzed quantitatively by energy decomposition analysis (EDA). Among these new diradical π-dimers, 2180 has the smallest layer distance and the largest interaction between two layers of radicals. The unusual PLY analogues can provide new insights into the unique features of two-electron/multicenter (2e/mc) π-π bonding.

  1. Effect of dimer dissociation on activity and thermostability of the alpha-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases.

    PubMed

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-10-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. alpha-Glucuronidases are family 67 glycosidases that cleave the alpha-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of alpha-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the alpha-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial alpha-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in alpha-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35 degrees C, compared to 65 degrees C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9 degrees C, was almost identical to that of the wild-type, 73.4 degrees C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure

  2. Effect of Dimer Dissociation on Activity and Thermostability of the α-Glucuronidase from Geobacillus stearothermophilus: Dissecting the Different Oligomeric Forms of Family 67 Glycoside Hydrolases

    PubMed Central

    Shallom, Dalia; Golan, Gali; Shoham, Gil; Shoham, Yuval

    2004-01-01

    The oligomeric organization of enzymes plays an important role in many biological processes, such as allosteric regulation, conformational stability and thermal stability. α-Glucuronidases are family 67 glycosidases that cleave the α-1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid and xylose units as part of an array of hemicellulose-hydrolyzing enzymes. Currently, two crystal structures of α-glucuronidases are available, those from Geobacillus stearothermophilus (AguA) and from Cellvibrio japonicus (GlcA67A). Both enzymes are homodimeric, but surprisingly their dimeric organization is different, raising questions regarding the significance of dimerization for the enzymes' activity and stability. Structural comparison of the two enzymes suggests several elements that are responsible for the different dimerization organization. Phylogenetic analysis shows that the α-glucuronidases AguA and GlcA67A can be classified into two distinct subfamilies of bacterial α-glucuronidases, where the dimer-forming residues of each enzyme are conserved only within its own subfamily. It seems that the different dimeric forms of AguA and GlcA67A represent the two alternative dimeric organizations of these subfamilies. To study the biological significance of the dimerization in α-glucuronidases, we have constructed a monomeric form of AguA by mutating three of its interface residues (W328E, R329T, and R665N). The activity of the monomer was significantly lower than the activity of the wild-type dimeric AguA, and the optimal temperature for activity of the monomer was around 35°C, compared to 65°C of the wild-type enzyme. Nevertheless, the melting temperature of the monomeric protein, 72.9°C, was almost identical to that of the wild-type, 73.4°C. It appears that the dimerization of AguA is essential for efficient catalysis and that the dissociation into monomers results in subtle conformational changes in the structure which indirectly influence the active site region

  3. Involvement of toll-like receptor 2 and 4 in association between dyslipidemia and osteoclast differentiation in apolipoprotein E deficient rat periodontium

    PubMed Central

    2013-01-01

    Background Dyslipidemia increases circulating levels of oxidized low-density lipoprotein (OxLDL) and this may induce alveolar bone loss through toll-like receptor (TLR) 2 and 4. The purpose of this study was to investigate the effects of dyslipidemia on osteoclast differentiation associated with TLR2 and TLR4 in periodontal tissues using a rat dyslipidemia (apolipoprotein E deficient) model. Methods Levels of plasma OxLDL, and the cholesterol and phospholipid profiles in plasma lipoproteins were compared between apolipoprotein E-deficient rats (16-week-old males) and wild-type (control) rats. In the periodontal tissue, we evaluated the changes in TLR2, TLR4, receptor activator of nuclear factor kappa B ligand (RANKL) and tartrate resistant acid phosphatase (TRAP) expression. Results Apolipoprotein E-deficient rats showed higher plasma levels of OxLDL than control rats (p<0.05), with higher plasma levels of total cholesterol (p<0.05) and LDL-cholesterol (p<0.05) and lower plasma levels of high-density lipoprotein cholesterol (p<0.05). Their periodontal tissue also exhibited a higher ratio of RANKL-positive cells and a higher number of TRAP-positive osteoclasts than control rats (p<0.05). Furthermore, periodontal gene expression of TLR2, TLR4 and RANKL was higher in apolipoprotein E-deficient rats than in control rats (p<0.05). Conclusion These findings underscore the important role for TLR2 and TLR4 in mediating the osteoclast differentiation on alveolar bone response to dyslipidemia. PMID:23295061

  4. A dimeric form of a small-sized protein binder exhibits enhanced anti-tumor activity through prolonged blood circulation.

    PubMed

    Kim, Tae Yoon; Seo, Hyo-Deok; Lee, Joong-Jae; Kang, Jung Ae; Kim, Woo Sik; Kim, Hye-Min; Song, Ha-Yeon; Park, Ji Min; Lee, Dong-Eun; Kim, Hak-Sung

    2018-06-10

    Small-sized non-antibody scaffolds have attracted considerable interest as alternatives to immunoglobulin antibodies. However, their short half-life is considered a drawback in the development of therapeutic agents. Here we demonstrate that a homo-dimeric form of a repebody enhances the anti-tumor activity than a monomeric form through prolonged blood circulation. Spytag and spycatcher were genetically fused to the C-terminus of a respective human IL-6-specific repebody, and the resulting two repebody constructs were mixed at an equimolar ratio to produce a homo-dimeric form through interaction between spytag and spycatcher. The homo-dimeric repebody was detected as a single band in the SDS-PAGE analysis with an expected molecular size (78 kDa), showing high stability and homogeneity. The dimeric repebody was shown to simultaneously accommodate two hIL-6 molecules, and its binding affinity for hIL-6 was estimated to be comparable to a monomeric repebody. The serum concentration of the dimeric repebody was observed to be about 5.5 times higher than a monomeric repebody, consequently leading to considerably higher tumor suppression effect in human tumor xenograft mice. The present approach can be effectively used for prolonging the blood half-life of small-sized protein binders, resulting in enhanced therapeutic efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effects of pyrophosphate delivery in a peritoneal dialysis solution on bone tissue of apolipoprotein-E knockout mice with chronic kidney disease.

    PubMed

    Barreto, Fellype C; de Oliveira, Rodrigo B; Benchitrit, Joyce; Louvet, Loïc; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Riser, Bruce L; Massy, Ziad A

    2014-11-01

    Vascular calcification (VC) is a risk factor for cardiovascular mortality in the setting of chronic kidney disease (CKD). Pyrophosphate (PPi), an endogenous molecule that inhibits hydroxyapatite crystal formation, has been shown to prevent the development of VC in animal models of CKD. However, the possibility of harmful effects of exogenous administration of PPi on bone requires further investigation. To this end, we examined by histomorphometry the bone of CKD mice after intraperitoneal PPi administration. After CKD creation or sham surgery, 10-week-old female apolipoprotein-E knockout (apoE(-/-)) mice were randomized to one non-CKD group or 4 CKD groups (n = 10-35/group) treated with placebo or three distinct doses of PPi, and fed with standard diet. Eight weeks later, the animals were killed. Serum and femurs were sampled. Femurs were processed for bone histomorphometry. Placebo-treated CKD mice had significantly higher values of osteoid volume, osteoid surface and bone formation rate than sham-placebo mice with normal renal function. Slightly higher osteoid values were observed in CKD mice in response to very low PPi dose (OV/BV, O.Th and ObS/BS) and, for one parameter measured, to high PPi dose (O.Th), compared to placebo-treated CKD mice. Treatment with PPi did not modify any other structural parameters. Mineral apposition rates, and other parameters of bone formation and resorption were not significantly different among the treated animal groups or control CKD placebo group. In conclusion, PPi does not appear to be deleterious to bone tissue in apoE(-/-) mice with CKD, although a possible stimulatory PPi effect on osteoid formation may be worth further investigation.

  6. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    PubMed Central

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-01-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA. PMID:7884897

  7. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.

    PubMed

    Feng, Y X; Fu, W; Winter, A J; Levin, J G; Rein, A

    1995-04-01

    Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA.

  8. The dimer formed by the periplasmic domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus

    PubMed Central

    Abendroth, Jan; Kreger, Allison C.; Hol, Wim G. J.

    2010-01-01

    The Type 2 Secretion System (T2SS), occurring in many Gram-negative bacteria, is responsible for the transport of a diversity of proteins from the periplasm across the outer membrane into the extracellular space. In Vibrio cholerae, the T2SS secretes several unrelated proteins including the major virulence factor cholera toxin. The T2SS consists of three subassemblies, one of which is the Inner Membrane Complex which contains multiple copies of five proteins, including the bitopic membrane protein EpsL. Here we report the 2.3 Å resolution crystal structure of the periplasmic domain of EpsL (peri-EpsL) from V. parahaemolyticus, which is 56 % identical in sequence to its homolog in V. cholerae. The domain adopts a circular permutation of the “common” ferredoxin fold with two contiguous sub-domains. Remarkably, this permutation has so far only been observed once before: in the periplasmic domain of EpsM (peri-EpsM), another T2SS protein which interacts with EpsL. These two domains are 18 % identical in sequence which may indicate a common evolutionary origin. Both peri-EpsL and peri-EpsM form dimers, but the organization of the subunits in these dimers appears to be entirely different. We have previously shown that the cytoplasmic domain of EpsL is also dimeric and forms a heterotetramer with the first domain of the “secretion ATPase” EpsE. The latter enzyme is most likely hexameric. The possible consequences of the combination of the different symmetries of EpsE and EpsL for the architecture of the T2SS are discussed. PMID:19646531

  9. Serum apolipoprotein E concentration and polymorphism influence serum lipid levels in Chinese Shandong Han population.

    PubMed

    Han, ShuYi; Xu, YiHui; Gao, MeiHua; Wang, YunShan; Wang, Jun; Liu, YanYan; Wang, Min; Zhang, XiaoQian

    2016-12-01

    Apolipoprotein E (ApoE), which has been shown to influence serum lipid parameters, can bind to multiple types of lipids and plays an important role in the metabolism and homeostasis of lipids and lipoproteins. A previous study showed that ApoE concentration significantly affects serum lipid levels independently of ApoE polymorphism. The serum lipid levels were also closely correlated with dietary habits, and Shandong cuisine is famous for its high salt and oil contents, which widely differ among the different areas in China. Therefore, studying the effect of ApoE polymorphism on ApoE concentration and serum lipid levels in Shandong province is very important.A total of 815 subjects including 285 men and 530 women were randomly selected and studied from Jinan, Shandong province. In order to evaluate the association of ApoE polymorphism and serum level on lipid profiles, the ApoE genotypes, as well as levels of fasting serum ApoE and other lipid parameters, were detected in all subjects.The frequency of the ApoE E3 allele was highest (83.1%), while those of E2 and E4 were 9.4% and 7.5%, respectively, which are similar to those in other Asian populations. ApoE2 allele carriers showed significantly increased ApoE levels but lower levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and Apolipoprotein B (ApoB).We found that ApoE level is influenced by ApoE polymorphism in a gene-dependent manner. The ApoE polymorphism showed different influences on serum lipid parameters with increasing age and body mass index (BMI) in our Shandong Han population.

  10. Serum apolipoprotein E concentration and polymorphism influence serum lipid levels in Chinese Shandong Han population

    PubMed Central

    Han, ShuYi; Xu, YiHui; Gao, MeiHua; Wang, YunShan; Wang, Jun; Liu, YanYan; Wang, Min; Zhang, XiaoQian

    2016-01-01

    Abstract Apolipoprotein E (ApoE), which has been shown to influence serum lipid parameters, can bind to multiple types of lipids and plays an important role in the metabolism and homeostasis of lipids and lipoproteins. A previous study showed that ApoE concentration significantly affects serum lipid levels independently of ApoE polymorphism. The serum lipid levels were also closely correlated with dietary habits, and Shandong cuisine is famous for its high salt and oil contents, which widely differ among the different areas in China. Therefore, studying the effect of ApoE polymorphism on ApoE concentration and serum lipid levels in Shandong province is very important. A total of 815 subjects including 285 men and 530 women were randomly selected and studied from Jinan, Shandong province. In order to evaluate the association of ApoE polymorphism and serum level on lipid profiles, the ApoE genotypes, as well as levels of fasting serum ApoE and other lipid parameters, were detected in all subjects. The frequency of the ApoE E3 allele was highest (83.1%), while those of E2 and E4 were 9.4% and 7.5%, respectively, which are similar to those in other Asian populations. ApoE2 allele carriers showed significantly increased ApoE levels but lower levels of serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and Apolipoprotein B (ApoB). We found that ApoE level is influenced by ApoE polymorphism in a gene-dependent manner. The ApoE polymorphism showed different influences on serum lipid parameters with increasing age and body mass index (BMI) in our Shandong Han population. PMID:27977609

  11. The Circularization of Amyloid Fibrils Formed by Apolipoprotein C-II

    PubMed Central

    Hatters, Danny M.; MacRaild, Christopher A.; Daniels, Rob; Gosal, Walraj S.; Thomson, Neil H.; Jones, Jonathan A.; Davis, Jason J.; MacPhee, Cait E.; Dobson, Christopher M.; Howlett, Geoffrey J.

    2003-01-01

    Amyloid fibrils have historically been characterized by diagnostic dye-binding assays, their fibrillar morphology, and a “cross-β” x-ray diffraction pattern. Whereas the latter demonstrates that amyloid fibrils have a common β-sheet core structure, they display a substantial degree of morphological variation. One striking example is the remarkable ability of human apolipoprotein C-II amyloid fibrils to circularize and form closed rings. Here we explore in detail the structure of apoC-II amyloid fibrils using electron microscopy, atomic force microscopy, and x-ray diffraction studies. Our results suggest a model for apoC-II fibrils as ribbons ∼2.1-nm thick and 13-nm wide with a helical repeat distance of 53 nm ± 12 nm. We propose that the ribbons are highly flexible with a persistence length of 36 nm. We use these observed biophysical properties to model the apoC-II amyloid fibrils either as wormlike chains or using a random-walk approach, and confirm that the probability of ring formation is critically dependent on the fibril flexibility. More generally, the ability of apoC-II fibrils to form rings also highlights the degree to which the common cross-β superstructure can, as a function of the protein constituent, give rise to great variation in the physical properties of amyloid fibrils. PMID:14645087

  12. Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy

    PubMed Central

    Liu, Chia-Chen; Kanekiyo, Takahisa; Xu, Huaxi; Bu, Guojun

    2013-01-01

    Apolipoprotein E (ApoE) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk for cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. ApoE–lipoproteins bind to several cell-surface receptors to deliver lipids and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. ApoE isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on ApoE in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different ApoE isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link ApoE4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting ApoE. PMID:23296339

  13. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed

    Darlix, J L; Gabus, C; Allain, B

    1992-12-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein.

  14. Analytical study of avian reticuloendotheliosis virus dimeric RNA generated in vivo and in vitro.

    PubMed Central

    Darlix, J L; Gabus, C; Allain, B

    1992-01-01

    The retroviral genome consists of two identical RNA molecules associated at their 5' ends by a stable structure called the dimer linkage structure. The dimer linkage structure, while maintaining the dimer state of the retroviral genome, might also be involved in packaging and reverse transcription, as well as recombination during proviral DNA synthesis. To study the dimer structure of the retroviral genome and the mechanism of dimerization, we analyzed features of the dimeric genome of reticuloendotheliosis virus (REV) type A and identified elements required for its dimerization. Here we report that the REV dimeric genome extracted from virions and infected cells, as well as that synthesized in vitro, is more resistant to heat denaturation than avian sarcoma and leukemia virus, murine leukemia virus, or human immunodeficiency virus type 1 dimeric RNA. The minimal domain required to form a stable REV RNA dimer in vitro was found to map between positions 268 and 452 (KpnI and SalI sites), thus corresponding to the E encapsidation sequence (J. E. Embretson and H. M. Temin, J. Virol. 61:2675-2683, 1987). In addition, both the 5' and 3' halves of E are necessary in cis for RNA dimerization and the extent of RNA dimerization is influenced by viral sequences flanking E. Rapid and efficient dimerization of REV RNA containing gag sequences in addition to the E sequences and annealing of replication primer tRNA(Pro) to the primer-binding site necessitate the nucleocapsid protein. Images PMID:1331519

  15. Distribution of apolipoprotein E alleles in a Scottish healthy newborn population.

    PubMed

    Becher, J-C; Bell, J E; McIntosh, N; Keeling, J W

    2005-01-01

    The different alleles of the human apolipoprotein E polymorphism, ApoE epsilon2, epsilon3, epsilon4, have important implications for systemic lipid metabolism, immunological function and for the brain in maintenance and in response to injury. Few studies have focussed on their role in early life. The ApoE alleles and genotypes were ascertained in the cord blood of 371 full-term and normal Scottish newborn infants using PCR methodology. The results were compared to previously published data for Scottish adults in late middle age. There was a marginally significant over-representation of epsilon4 and under-representation of epsilon3 alleles in healthy infants as compared with adults. Inspection of the individual genotypes confirms the over-representation of ApoE 4/4 and 2/4 with a reduction in ApoE 2/3 and 3/3 when compared with Scottish adults. Although these results may have occurred by chance, the ApoE epsilon4 allele may confer an increased risk of premature death. Copyright (c) 2005 S. Karger AG, Basel.

  16. Apolipoprotein E and Sex Bias in Cerebrovascular Aging of Men and Mice.

    PubMed

    Finch, Caleb E; Shams, Sara

    2016-09-01

    Alzheimer disease (AD) research has mainly focused on neurodegenerative processes associated with the classic neuropathologic markers of senile plaques and neurofibrillary tangles. Additionally, cerebrovascular contributions to dementia are increasingly recognized, particularly from cerebral small vessel disease (SVD). Remarkably, in AD brains, the apolipoprotein E (ApoE) ɛ4 allele shows male excess for cerebral microbleeds (CMBs), a marker of SVD, which is opposite to the female excess of plaques and tangles. Mouse transgenic models add further complexities to sex-ApoE ɛ4 allele interactions, with female excess of both CMBs and brain amyloid. We conclude that brain aging and AD pathogenesis cannot be understood in humans without addressing major gaps in the extent of sex differences in cerebrovascular pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of thermal sterilization on ferulic, coumaric and cinnamic acids: dimerization and antioxidant activity.

    PubMed

    Arrieta-Baez, Daniel; Dorantes-Álvarez, Lidia; Martinez-Torres, Rocio; Zepeda-Vallejo, Gerardo; Jaramillo-Flores, Maria Eugenia; Ortiz-Moreno, Alicia; Aparicio-Ozores, Gerardo

    2012-10-01

    Some phenolic compounds, such as ferulic acid and p-coumaric acid, exist in the form of free acids, in fruits, rice, corn and other grains. Thermal treatment (121 °C at 15-17 psi) for different times on ferulic, p-coumaric and cinnamic acids as well as equimolar mixtures of these acids was investigated. Ferulic and p-coumaric acids underwent decarboxylation, yielding dimeric products formed through their corresponding radical intermediates, while cinnamic acid was recovered unreacted. High-performance liquid chromatography analysis showed no cross-dimerization when equimolar mixtures of pairs of hydroxycinnamic acids were treated under the same conditions. Dimers were characterized as (E)-4',4″-(but-1-ene-1,3-diyl)bis(2'-methoxyphenol)) (dimer of 4-vinylguaiacol) and (E)-4,4'-(but-1-ene-1,3-diyl)diphenol) (dimer of 4-vinylphenol) by nuclear magnetic resonance and mass spectrometry. Sterilization by thermal processing produced dimers of ferulic and coumaric acid. The antioxidant activity of these dimers was greater than that of the respective hydroxycinnamic acids. These results may be relevant for fruits and grains that contain hydroxycinnamic acids and undergo sterilization processes such as canning. Copyright © 2012 Society of Chemical Industry.

  18. Vitamin E Inhibits Abdominal Aortic Aneurysm Formation in Angiotensin II–Infused Apolipoprotein E–Deficient Mice

    PubMed Central

    Gavrila, Dan; Li, Wei Gen; McCormick, Michael L.; Thomas, Manesh; Daugherty, Alan; Cassis, Lisa A.; Miller, Francis J.; Oberley, Larry W.; Dellsperger, Kevin C.; Weintraub, Neal L.

    2014-01-01

    Background Abdominal aortic aneurysms (AAAs) in humans are associated with locally increased oxidative stress and activity of NADPH oxidase. We investigated the hypothesis that vitamin E, an antioxidant with documented efficacy in mice, can attenuate AAA formation during angiotensin II (Ang II) infusion in apolipoprotein E–deficient mice. Methods and Results Six-month-old male apolipoprotein E–deficient mice were infused with Ang II at 1000 ng/kg per minute for 4 weeks via osmotic minipumps while consuming either a regular diet or a diet enriched with vitamin E (2 IU/g of diet). After 4 weeks, abdominal aortic weight and maximal diameter were determined, and aortic tissues were sectioned and examined using biochemical and histological techniques. Vitamin E attenuated formation of AAA, decreasing maximal aortic diameter by 24% and abdominal aortic weight by 34% (P<0.05, respectively). Importantly, animals treated with vitamin E showed a 44% reduction in the combined end point of fatal+nonfatal aortic rupture (P<0.05). Vitamin E also decreased aortic 8-isoprostane content (a marker of oxidative stress) and reduced both aortic macrophage infiltration and osteopontin expression (P<0.05, respectively). Vitamin E treatment had no significant effect on the extent of aortic root atherosclerosis, activation of matrix metalloproteinases 2 or 9, serum lipid profile, or systolic blood pressure. Conclusions Vitamin E ameliorates AAAs and reduces the combined end point of fatal+nonfatal aortic rupture in this animal model. These findings are consistent with the concept that oxidative stress plays a pivotal role in Ang II–driven AAA formation in hyperlipidemic mice. PMID:15933246

  19. Evolution of magnetization due to asymmetric dimerization: theoretical considerations and application to aberrant oligomers formed by apoSOD1(2SH).

    PubMed

    Sekhar, Ashok; Bain, Alex D; Rumfeldt, Jessica A O; Meiering, Elizabeth M; Kay, Lewis E

    2016-02-17

    A set of coupled differential equations is presented describing the evolution of magnetization due to an exchange reaction whereby a pair of identical monomers form an asymmetric dimer. In their most general form the equations describe a three-site exchange process that reduces to two-site exchange under certain limiting conditions that are discussed. An application to the study of sparsely populated, transiently formed sets of aberrant dimers, symmetric and asymmetric, of superoxide dismutase is presented. Fits of concentration dependent CPMG relaxation dispersion profiles provide measures of the dimer dissociation constants and both on- and off-rates. Dissociation constants on the order of 70 mM are extracted from fits of the data, with dimeric populations of ∼2% and lifetimes of ∼6 and ∼2 ms for the symmetric and asymmetric complexes, respectively. This work emphasizes the important role that NMR relaxation experiments can play in characterizing very weak molecular complexes that remain invisible to most biophysical approaches.

  20. Tubulin Dimer Reversible Dissociation

    PubMed Central

    Schuck, Peter; Sackett, Dan L.

    2016-01-01

    Tubulins are evolutionarily conserved proteins that reversibly polymerize and direct intracellular traffic. Of the tubulin family only αβ-tubulin forms stable dimers. We investigated the monomer-dimer equilibrium of rat brain αβ-tubulin using analytical ultracentrifugation and fluorescence anisotropy, observing tubulin in virtually fully monomeric and dimeric states. Monomeric tubulin was stable for a few hours and exchanged into preformed dimers, demonstrating reversibility of dimer dissociation. Global analysis combining sedimentation velocity and fluorescence anisotropy yielded Kd = 84 (54–123) nm. Dimer dissociation kinetics were measured by analyzing the shape of the sedimentation boundary and by the relaxation of fluorescence anisotropy following rapid dilution of labeled tubulin, yielding koff in the range 10−3–10−2 s−1. Thus, tubulin dimers reversibly dissociate with moderately fast kinetics. Monomer-monomer association is much less sensitive than dimer-dimer association to solution changes (GTP/GDP, urea, and trimethylamine oxide). PMID:26934918

  1. Lipoprotein lipase activity and mass, apolipoprotein C-II mass and polymorphisms of apolipoproteins E and A5 in subjects with prior acute hypertriglyceridaemic pancreatitis

    PubMed Central

    2009-01-01

    Background Severe hypertriglyceridaemia due to chylomicronemia may trigger an acute pancreatitis. However, the basic underlying mechanism is usually not well understood. We decided to analyze some proteins involved in the catabolism of triglyceride-rich lipoproteins in patients with severe hypertriglyceridaemia. Methods Twenty-four survivors of acute hypertriglyceridaemic pancreatitis (cases) and 31 patients with severe hypertriglyceridaemia (controls) were included. Clinical and anthropometrical data, chylomicronaemia, lipoprotein profile, postheparin lipoprotein lipase mass and activity, hepatic lipase activity, apolipoprotein C II and CIII mass, apo E and A5 polymorphisms were assessed. Results Only five cases were found to have LPL mass and activity deficiency, all of them thin and having the first episode in childhood. No cases had apolipoprotein CII deficiency. No significant differences were found between the non-deficient LPL cases and the controls in terms of obesity, diabetes, alcohol consumption, drug therapy, gender distribution, evidence of fasting chylomicronaemia, lipid levels, LPL activity and mass, hepatic lipase activity, CII and CIII mass or apo E polymorphisms. However, the SNP S19W of apo A5 tended to be more prevalent in cases than controls (40% vs. 23%, NS). Conclusion Primary defects in LPL and C-II are rare in survivors of acute hypertriglyceridaemic pancreatitis; lipase activity measurements should be restricted to those having their first episode during chilhood. PMID:19534808

  2. Relationship between the dimerization of thyroglobulin and its ability to form triiodothyronine.

    PubMed

    Citterio, Cintia E; Morishita, Yoshiaki; Dakka, Nada; Veluswamy, Balaji; Arvan, Peter

    2018-03-30

    Thyroglobulin (TG) is the most abundant thyroid gland protein, a dimeric iodoglycoprotein (660 kDa). TG serves as the protein precursor in the synthesis of thyroid hormones tetraiodothyronine (T 4 ) and triiodothyronine (T 3 ). The primary site for T 3 synthesis in TG involves an iodotyrosine acceptor at the antepenultimate Tyr residue (at the extreme carboxyl terminus of the protein). The carboxyl-terminal region of TG comprises a ch olin e sterase- l ike (ChEL) domain followed by a short unique tail sequence. Despite many studies, the monoiodotyrosine donor residue needed for the coupling reaction to create T 3 at this evolutionarily conserved site remains unidentified. In this report, we have utilized a novel, convenient immunoblotting assay to detect T 3 formation after protein iodination in vitro , enabling the study of T 3 formation in recombinant TG secreted from thyrocytes or heterologous cells. With this assay, we confirm the antepenultimate residue of TG as a major T 3 -forming site, but also demonstrate that the side chain of this residue intimately interacts with the same residue in the apposed monomer of the TG dimer. T 3 formation in TG, or the isolated carboxyl-terminal region, is inhibited by mutation of this antepenultimate residue, but we describe the first substitution mutation that actually increases T 3 hormonogenesis by engineering a novel cysteine, 10 residues upstream of the antepenultimate residue, allowing for covalent association of the unique tail sequences, and that helps to bring residues Tyr 2744 from apposed monomers into closer proximity. © 2018 Citterio et al.

  3. Increased bone formation in mice lacking apolipoprotein E.

    PubMed

    Schilling, Arndt F; Schinke, Thorsten; Münch, Christian; Gebauer, Matthias; Niemeier, Andreas; Priemel, Matthias; Streichert, Thomas; Rueger, Johannes M; Amling, Michael

    2005-02-01

    ApoE is a plasma protein that plays a major role in lipoprotein metabolism. Here we describe that ApoE expression is strongly induced on mineralization of primary osteoblast cultures. ApoE-deficient mice display an increased bone formation rate compared with wildtype controls, thereby showing that ApoE has a physiologic function in bone remodeling. Apolipoprotein E (ApoE) is a protein component of lipoproteins and facilitates their clearance from the circulation. This is confirmed by the phenotype of ApoE-deficient mice that have high plasma cholesterol levels and spontaneously develop atherosclerotic lesions. The bone phenotype of these mice has not been analyzed to date, although an association between certain ApoE alleles and BMD has been reported. Primary osteoblasts were isolated from newborn mouse calvariae and mineralized ex vivo. A genome-wide expression analysis was performed during the course of differentiation using the Affymetrix gene chip system. Bones from ApoE-deficient mice and wildtype controls were analyzed using radiography, micro CT imaging, and undecalcified histology. Cellular activities were assessed using dynamic histomorphometry and by measuring urinary collagen degradation products. Lipoprotein uptake assays were performed with (125)I-labeled triglyceride-rich lipoprotein-remnants (TRL-R) using primary osteoblasts from wildtype and ApoE-deficient mice. Serum concentrations of osteocalcin were determined by radioimmunoassay after hydroxyapatite chromatography. ApoE expression is strongly induced on mineralization of primary osteoblast cultures ex vivo. Mice lacking ApoE display a high bone mass phenotype that is caused by an increased bone formation rate, whereas bone resorption is not affected. This phenotype may be explained by a decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin in the serum of ApoE-deficient mice. The specific induction of ApoE gene expression

  4. Determination of Abraham model solute descriptors for the monomeric and dimeric forms of trans-cinnamic acid using measured solubilities from the Open Notebook Science Challenge.

    PubMed

    Bradley, Jean-Claude; Abraham, Michael H; Acree, William E; Lang, Andrew Sid; Beck, Samantha N; Bulger, David A; Clark, Elizabeth A; Condron, Lacey N; Costa, Stephanie T; Curtin, Evan M; Kurtu, Sozit B; Mangir, Mark I; McBride, Matthew J

    2015-01-01

    Calculating Abraham descriptors from solubility values requires that the solute have the same form when dissolved in all solvents. However, carboxylic acids can form dimers when dissolved in non-polar solvents. For such compounds Abraham descriptors can be calculated for both the monomeric and dimeric forms by treating the polar and non-polar systems separately. We illustrate the method of how this can be done by calculating the Abraham descriptors for both the monomeric and dimeric forms of trans-cinnamic acid, the first time that descriptors for a carboxylic acid dimer have been obtained. Abraham descriptors were calculated for the monomeric form of trans-cinnamic acid using experimental solubility measurements in polar solvents from the Open Notebook Science Challenge together with a number of water-solvent partition coefficients from the literature. Similarly, experimental solubility measurements in non-polar solvents were used to determine Abraham descriptors for the trans-cinnamic acid dimer. Abraham descriptors were calculated for both the monomeric and dimeric forms of trans-cinnamic acid. This allows for the prediction of further solubilities of trans-cinnamic acid in both polar and non-polar solvents with an error of about 0.10 log units. Graphical abstractMolar concentration of trans-cinnamic acid in various polar and non-polar solvents.

  5. Peritoneal delivery of sodium pyrophosphate blocks the progression of pre-existing vascular calcification in uremic apolipoprotein-E knockout mice.

    PubMed

    de Oliveira, Rodrigo B; Louvet, Loïc; Riser, Bruce L; Barreto, Fellype C; Benchitrit, Joyce; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Massy, Ziad A

    2015-08-01

    Chronic kidney disease (CKD) is generally associated with disturbances of mineral and bone metabolism. They contribute to the development of vascular calcification (VC), a strong, independent predictor of cardiovascular risk. Pyrophosphate (PPi), an endogenous inhibitor of hydroxyapatite formation, has been shown to slow the progression of VC in uremic animals. Since in patients with CKD treatment is usually initiated for already existing calcifications, we aimed to compare the efficacy of PPi therapy with that of the phosphate binder sevelamer, using a uremic apolipoprotein-E knockout mouse model with advanced VCs. After CKD creation or sham surgery, 12-week-old female mice were randomized to one sham group and four CKD groups (n = 18-19/group). Treatment was initiated 8 weeks after left nephrectomy allowing prior VC development. Uremic groups received either intraperitoneal PPi (high dose, 1.65 mg/kg or low dose, 0.33 mg/kg per day), oral sevelamer (3 % in diet), or placebo treatment for 8 weeks. Both intima and media calcifications worsened with time in placebo-treated CKD mice, based on both quantitative image analysis and biochemical measurements. Progression of calcification between 8 and 16 weeks was entirely halted by PPi treatment, as it was by sevelamer treatment. PPi did not induce consistent bone histomorphometry changes. Finally, the beneficial vascular action of PPi probably involved mechanisms different from that of sevelamer. Further studies are needed to gain more precise insight into underlying mechanisms and to see whether PPi administration may also be useful in patients with CKD and VC.

  6. Energetic Coupling between Ligand Binding and Dimerization in E. coli Phosphoglycerate Mutase

    PubMed Central

    Gardner, Nathan W.; Monroe, Lyman K.; Kihara, Daisuke; Park, Chiwook

    2016-01-01

    Energetic coupling of two molecular events in a protein molecule is ubiquitous in biochemical reactions mediated by proteins, such as catalysis and signal transduction. Here, we investigate energetic coupling between ligand binding and folding of a dimer using a model system that shows three-state equilibrium unfolding in an exceptional quality. The homodimeric E. coli cofactor-dependent phosphoglycerate mutase (dPGM) was found to be stabilized by ATP in a proteome-wide screen, although dPGM does not require or utilize ATP for enzymatic function. We investigated the effect of ATP on the thermodynamic stability of dPGM using equilibrium unfolding. In the absence of ATP, dPGM populates a partially unfolded, monomeric intermediate during equilibrium unfolding. However, addition of 1.0 mM ATP drastically reduces the population of the intermediate by selectively stabilizing the native dimer. Using a computational ligand docking method, we predicted ATP binds to the active site of the enzyme using the triphosphate group. By performing equilibrium unfolding and isothermal titration calorimetry with active-site variants of dPGM, we confirmed that active-site residues are involved in ATP binding. Our findings show that ATP promotes dimerization of the protein by binding to the active site, which is distal from the dimer interface. This cooperativity suggests an energetic coupling between the active-site and the dimer interface. We also propose a structural link to explain how ligand binding to the active site is energetically coupled with dimerization. PMID:26919584

  7. Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit

    PubMed Central

    Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2013-01-01

    Fluorescent probes for the detection of a double-stranded DNA were prepared by labeling a triplex-forming DNA oligonucleotide with a thiazole orange (TO) dimer unit. They belong to ECHO (exciton-controlled hybridization-sensitive fluorescent oligonucleotide) probes which we have previously reported. The excitonic interaction between the two TO molecules was expected to effectively suppress the background fluorescence of the probes. The applicability of the ECHO probes for the detection of double-stranded DNA was confirmed by examining the thermal stability and photophysical and kinetic properties of the DNA triplexes formed by the ECHO probes. PMID:23445822

  8. Amphipathic α-helices in apolipoproteins are crucial to the formation of infectious hepatitis C virus particles.

    PubMed

    Fukuhara, Takasuke; Wada, Masami; Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2014-12-01

    Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.

  9. Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles

    PubMed Central

    Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu

    2014-01-01

    Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly. PMID:25502789

  10. Computational Design of Apolipoprotein E4 Inhibitors for Alzheimer's Disease Therapy from Traditional Chinese Medicine

    PubMed Central

    Huang, Hung-Jin; Chen, Hsin-Yi; Lee, Cheng-Chun

    2014-01-01

    Apolipoprotein E4 (Apo E4) is the major genetic risk factor in the causation of Alzheimer's disease (AD). In this study we utilize virtual screening of the world's largest traditional Chinese medicine (TCM) database and investigate potential compounds for the inhibition of ApoE4. We present the top three TCM candidates: Solapalmitine, Isodesacetyluvaricin, and Budmunchiamine L5 for further investigation. Dynamics analysis and molecular dynamics (MD) simulation were used to simulate protein-ligand complexes for observing the interactions and protein variations. Budmunchiamine L5 did not have the highest score from virtual screening; however, the dynamics pose is similar to the initial docking pose after MD simulation. Trajectory analysis reveals that Budmunchiamine L5 was stable over all simulation times. The migration distance of Budmunchiamine L5 illustrates that docked ligands are not variable from the initial docked site. Interestingly, Arg158 was observed to form H-bonds with Budmunchiamine L5 in the docking pose and MD snapshot, which indicates that the TCM compounds could stably bind to ApoE4. Our results show that Budmunchiamine L5 has good absorption, blood brain barrier (BBB) penetration, and less toxicity according to absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction and could, therefore, be safely used for developing novel ApoE4 inhibitors. PMID:24967370

  11. Genetic variants of apolipoprotein A5 T-1131C and apolipoprotein E common polymorphisms and their relationship to features of metabolic syndrome in adult dyslipidemic patients.

    PubMed

    Novotny, Dalibor; Vaverkova, Helena; Karasek, David; Malina, Pavel

    2014-08-01

    The aim was to evaluate the relationships of the T-1131C (rs662799) polymorphism variants of apolipoprotein A5 (Apo A5) gene and variants of apolipoprotein E (Apo E) gene common polymorphism (rs429358, rs7412) to signs of metabolic syndrome (MetS). We examined 590 asymptomatic dyslipidemic patients divided into MetS+ (n=146) and MetS- (n=444) groups according to criteria of NCEP ATPIII Panel. We evaluated genotype frequencies and differences in MetS features between individual groups. Logistic regression analysis was used for the evaluation of Apo A5/Apo E variants as possible risk factors for MetS. We found no statistical differences between genotype and allele frequencies for both Apo A5 and Apo E polymorphisms between MetS+ and MetS- groups. In all subjects and MetS- group, we confirmed well-known association of the -1131C Apo A5 minor allele with elevated triglycerides (TG, p<0.001). The Apo E gene E2 and E4 variants were associated with higher levels of TG (p<0.01) in comparison to E33 common variant. However, no statistical differences were observed in MetS+ subjects, regardless of significantly higher TG levels in this group. Apo A5/Apo E variant analysis in all dyslipidemic patients revealed significant increase of TG levels in all subgroups in comparison to common -1131T/E3 variant carriers, the most in -1131C/E4 variant subgroup. Logistic regression analysis models showed no association of Apo A5, Apo E and all Apo A5/Apo E variants with metabolic syndrome, even after adjustment for age and sex. Our study refined the role of Apo A5 and Apo E genetic variants in the group of adult dyslipidemic patients. We demonstrate that except of TG, Apo A5 T-1131C (rs662799) and Apo E (rs429358, rs7412) polymorphisms have no remarkable effect on MetS characteristics. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Apolipoprotein e4 Is Associated with More Rapid Decline in Odor Identification than in Odor Threshold or Dementia Rating Scale Scores

    ERIC Educational Resources Information Center

    Calhoun-Haney, R.; Murphy, C.

    2005-01-01

    Individuals with the apolipoprotein E e4 genetic risk factor for Alzheimer's disease (AD) show deficits in olfactory function. The purpose of the present study was to examine longitudinally odor identification (odor ID), odor threshold, picture identification, and global cognitive status in allele positive (e4+) and negative (e4-) persons.…

  13. Apolipoprotein E genotype in matched men and women with coronary heart disease.

    PubMed

    Kolovou, Genovefa D; Anagnostopoulou, Katherine K; Salpea, Klelia D; Panagiotakos, Demosthenes B; Hoursalas, Ioannis S; Cariolou, Marios A; Koniavitou, Katerina; Cokkinos, Dennis V

    2005-01-01

    Apolipoprotein E (apo E) plays an important role in lipid metabolism and its polymorphism may be a risk determinant of coronary heart disease (CHD). Since evidence suggested a gender-specific effect of apo E polymorphism, we studied the influence of gender-specific interaction of the polymorphism on CHD. From a total of 463 Greek Caucasians (314 men and 149 postmenopausal women) with angiographically documented CHD, we selected 79 women (68+/- 9 yr old) and 79 men (66+/- 9 yr old) who were matched for clinical characteristics. Apo E genotyping was performed by PCR and RFLP analysis. Biochemical parameters were also measured. The results were as follows: the E3/3 genotype occurred in 78.5% of the patients, followed by E3/4, E2/3, E2/4, and E4/4 genotypes, which occurred in 9.5%, 9.5%, 1.9%, and 0.6% of the patients, respectively. No significant differences were observed in the apo E allele or apo E genotype distributions between the matched Greek men and women with CHD. The E3/3 men patients were more frequently part of a family with a history of CHD, compared to women (p=0.035).

  14. Plaquette order in a dimerized frustrated spin ladder

    NASA Astrophysics Data System (ADS)

    Shlagman, Ofer; Shimshoni, Efrat

    2014-11-01

    We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.

  15. Structural and biochemical studies on Vibrio cholerae Hsp31 reveals a novel dimeric form and Glutathione-independent Glyoxalase activity

    PubMed Central

    Dey, Sanjay

    2017-01-01

    Vibrio cholerae experiences a highly hostile environment at human intestine which triggers the induction of various heat shock genes. The hchA gene product of V. cholerae O395, referred to a hypothetical intracellular protease/amidase VcHsp31, is one such stress-inducible homodimeric protein. Our current study demonstrates that VcHsp31 is endowed with molecular chaperone, amidopeptidase and robust methylglyoxalase activities. Through site directed mutagenesis coupled with biochemical assays on VcHsp31, we have confirmed the role of residues in the vicinity of the active site towards amidopeptidase and methylglyoxalase activities. VcHsp31 suppresses the aggregation of insulin in vitro in a dose dependent manner. Through crystal structures of VcHsp31 and its mutants, grown at various temperatures, we demonstrate that VcHsp31 acquires two (Type-I and Type-II) dimeric forms. Type-I dimer is similar to EcHsp31 where two VcHsp31 monomers associate in eclipsed manner through several intersubunit hydrogen bonds involving their P-domains. Type-II dimer is a novel dimeric organization, where some of the intersubunit hydrogen bonds are abrogated and each monomer swings out in the opposite directions centering at their P-domains, like twisting of wet cloth. Normal mode analysis (NMA) of Type-I dimer shows similar movement of the individual monomers. Upon swinging, a dimeric surface of ~400Å2, mostly hydrophobic in nature, is uncovered which might bind partially unfolded protein substrates. We propose that, in solution, VcHsp31 remains as an equilibrium mixture of both the dimers. With increase in temperature, transformation to Type-II form having more exposed hydrophobic surface, occurs progressively accounting for the temperature dependent increase of chaperone activity of VcHsp31. PMID:28235098

  16. Apolipoprotein E and mortality in African-Americans and Yoruba.

    PubMed

    Lane, Kathleen A; Gao, Sujuan; Hui, Siu L; Murrell, Jill R; Hall, Kathleen S; Hendrie, Hugh C

    2003-10-01

    The literature on the association between apolipoprotein E (ApoE) and mortality across ethnic and age groups has been inconsistent. No studies have looked at this association in developing countries. We used data from the Indianapolis-Ibadan Dementia study to examine this association between APOE and mortality in 354 African-Americans from Indianapolis and 968 Yoruba from Ibadan, Nigeria. Participants were followed up to 9.5 years for Indianapolis and 8.7 years for Ibadan. Subjects from both sites were divided into 2 groups based upon age at baseline. A Cox proportional hazards regression model adjusting for age at baseline, education, hypertension, smoking history and gender in addition to time-dependent covariates of cancer, diabetes, heart disease, stroke, and dementia was fit for each cohort and age group. Having ApoE epsilon4 alleles significantly increased mortality risk in Indianapolis subjects under age 75 (hazard ratio: 2.00; 95% CI: 1.19-3.35; p = 0.0089). No association was found in Indianapolis subjects 75 and older (hazard ratio: 0.71; 95% CI: 0.45-1.10; p = 0.1238), Ibadan subjects under 75 (hazard ratio: 1.04; 95% CI: 0.78 to 1.40; p = 0.7782), or Ibadan subjects over 75 (hazard ratio: 1.21; 95% CI: 0.83 to 1.75; p = 0.3274).

  17. Apolipoprotein E and mortality in African-Americans and Yoruba

    PubMed Central

    Lane, Kathleen A.; Gao, Sujuan; Hui, Siu L.; Murrell, Jill R.; Hall, Kathleen S.; Hendrie, Hugh C.

    2011-01-01

    The literature on the association between apolipoprotein E (ApoE) and mortality across ethnic and age groups has been inconsistent. No studies have looked at this association in developing countries. We used data from the Indianapolis-Ibadan Dementia study to examine this association between APOE and mortality in 354 African-Americans from Indianapolis and 968 Yoruba from Ibadan, Nigeria. Participants were followed up to 9.5 years for Indianapolis and 8.7 years for Ibadan. Subjects from both sites were divided into 2 groups based upon age at baseline. A Cox proportional hazards regression model adjusting for age at baseline, education, hypertension, smoking history and gender in addition to time-dependent covariates of cancer, diabetes, heart disease, stroke, and dementia was fit for each cohort and age group. Having ApoE ε4 alleles significantly increased mortality risk in Indianapolis subjects under age 75 ( hazard ratio: 2.00; 95% CI: 1.19–3.35; p = 0.0089). No association was found in Indianapolis subjects 75 and older (hazard ratio: 0.71; 95% CI: 0.45–1.10; p = 0.1238), Ibadan subjects under 75 (hazard ratio: 1.04; 95% CI: 0.78 to 1.40; p = 0.7782), or Ibadan subjects over 75 (hazard ratio: 1.21; 95% CI: 0.83 to 1.75; p = 0.3274). PMID:14646029

  18. Targeting nanodisks via a single chain variable antibody--apolipoprotein chimera.

    PubMed

    Iovannisci, David M; Beckstead, Jennifer A; Ryan, Robert O

    2009-02-06

    Nanodisks (ND) are nanometer scale complexes of phospholipid and apolipoprotein that have been shown to function as drug delivery vehicles. ND harboring significant quantities of the antifungal agent, amphotericin B, or the bioactive isoprenoid, all trans retinoic acid, have been generated and characterized. As currently formulated, ND possess limited targeting capability. In this study, we constructed a single chain variable antibody (scFv).apolipoprotein chimera and assessed the ability of this fusion protein to form ND and recognize the antigen to which the scFv is directed. Data obtained revealed that alpha-vimentin scFv.apolipoprotein A-I is functional in ND formation and antigen recognition, opening the door to the use of such chimeras in targeting drug-enriched ND to specific tissues.

  19. Apolipoprotein gene polymorphisms and plasma levels in healthy Tunisians and patients with coronary artery disease

    PubMed Central

    Bahri, Raoudha; Esteban, Esther; Moral, Pedro; Hassine, Mohsen; Hamda, Khaldoun Ben; Chaabani, Hassen

    2008-01-01

    Aim To analyze apolipoprotein gene polymorphisms in the Tunisian population and to check the relation of these polymorphisms and homocysteine, lipid and apolipoprotein levels to the coronary artery disease (CAD). Methods In healthy blood donors and in patients with CAD complicated by myocardial infarction (MI) four apolipoprotein gene polymorphisms [APO (a) PNR, APO E, APO CI and APO CII] were determined and plasma levels of total homocysteine, total cholesterol (TC), triglycerides (TG), HDL-cholesterol (HLD-C) and apolipoproteins (apo A-I, Apo B, Apo E) were measured. Results Analysis of the four apolipoprotein gene polymorphisms shows a relative genetic homogeneity between Tunisian population and those on the other side of Mediterranean basin. Compared to controls, CAD patients have significantly higher main concentrations of TC, TG, LDL-C, apo B and homocysteine, and significantly lower ones of HDL-C, apo A-I and apo E. The four apolipoprotein gene polymorphisms have not showed any significant differences between patients and controls. However, the APO E4 allele appears to be associated to the severity of CAD and to high levels of atherogenic parameters and low level of apo E, which has very likely an anti-atherogenic role. Conclusion Although APO (a) PNR, APO CI and APO CII genes are analyzed in only few populations, they show a frequency distribution, which is not at variance with that of APO E gene and other widely studied genetic markers. In the Tunisian population the APO E 4 appears to be only indirectly involved in the severity of CAD. In the routine practice, in addition of classic parameters, it will be useful to measure the concentration of apo E and that of Homocysteine and if possible to determine the APO E gene polymorphism. PMID:19014618

  20. Apolipoprotein E in the genetics and epidemiology of Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, J.

    1995-10-09

    The role of apolipoprotein E (ApoE) alleles and isoforms in the etiology and pathogenesis of Alzheimer`s disease is discussed. The possibility that ApoE itself is not involved in the disease pathogenesis but is merely in genetic disequilibrium with the real locus is discussed and dismissed. The data showing that the {epsilon}4 allele is associated with an increased risk of developing the disease and with an earlier onset age are reviewed. The data showing that, at least in some circumstances, the {epsilon}2 allele is associated with a decrease in the risk of developing the disease, and with a later onset agemore » are also reviewed. Data from the genetic analysis of other disorders are reviewed and presented, and it is suggested that the genetic data support the notion that the role of ApoE in the etiology of the disease directly relates to {beta}-amyloid deposition and plaque formation. This suggestion is in concordance with the most likely mechanism for the role of P-amyloid precursor protein gene mutations as other risk factors for the disease. 68 refs.« less

  1. High-Fat Diet Changes Hippocampal Apolipoprotein E (ApoE) in a Genotype- and Carbohydrate-Dependent Manner in Mice.

    PubMed

    Lane-Donovan, Courtney; Herz, Joachim

    2016-01-01

    Alzheimer's disease is a currently incurable neurodegenerative disease affecting millions of individuals worldwide. Risk factors for Alzheimer's disease include genetic risk factors, such as possession of ε4 allele of apolipoprotein E (ApoE4) over the risk-neutral ApoE3 allele, and lifestyle risk factors, such as diet and exercise. The intersection of these two sources of disease risk is not well understood. We investigated the impact of diet on ApoE levels by feeding wildtype, ApoE3, and ApoE4 targeted replacement (TR) mice with chow, high-fat, or ketogenic (high-fat, very-low-carbohydrate) diets. We found that high-fat diet affected both plasma and hippocampal levels of ApoE in an isoform-dependent manner, with high-fat diet causing a surprising reduction of hippocampal ApoE levels in ApoE3 TR mice. Conversely, the ketogenic diet had no effect on hippocampal ApoE. Our findings suggest that the use of dietary interventions to slow the progression AD should take ApoE genotype into consideration.

  2. High-Fat Diet Changes Hippocampal Apolipoprotein E (ApoE) in a Genotype- and Carbohydrate-Dependent Manner in Mice

    PubMed Central

    Lane-Donovan, Courtney; Herz, Joachim

    2016-01-01

    Alzheimer’s disease is a currently incurable neurodegenerative disease affecting millions of individuals worldwide. Risk factors for Alzheimer’s disease include genetic risk factors, such as possession of ε4 allele of apolipoprotein E (ApoE4) over the risk-neutral ApoE3 allele, and lifestyle risk factors, such as diet and exercise. The intersection of these two sources of disease risk is not well understood. We investigated the impact of diet on ApoE levels by feeding wildtype, ApoE3, and ApoE4 targeted replacement (TR) mice with chow, high-fat, or ketogenic (high-fat, very-low-carbohydrate) diets. We found that high-fat diet affected both plasma and hippocampal levels of ApoE in an isoform-dependent manner, with high-fat diet causing a surprising reduction of hippocampal ApoE levels in ApoE3 TR mice. Conversely, the ketogenic diet had no effect on hippocampal ApoE. Our findings suggest that the use of dietary interventions to slow the progression AD should take ApoE genotype into consideration. PMID:26828652

  3. Apolipoprotein E polymorphism and lipoprotein levels in a Gulf Arab population in Kuwait: a pilot study.

    PubMed

    Al-Shammari, S; Fatania, H; Al-Radwan, R; Akanji, A O

    2004-01-01

    APOE polymorphism is believed to confer susceptibility to coronary heart disease (CHD) and Alzheimer's disease. It is well known that patterns of APOE polymorphisms differ between populations and ethnic groups, although most of the data available so far have been in whites. We evaluated the frequencies of APOE genotypes and their relationships with serum levels of lipids, lipoproteins and apolipoproteins in two groups of Gulf Arab citizens: a control population of healthy voluntary blood donors (n=106), and a group of patients presenting to the lipid clinic for the first time with combined hyperlipidaemia (CH) (n=41). In both groups, fasting serum total cholesterol (TC), triglycerides (TG), HDL, LDL and apolipoprotein A1 and B levels were measured by routine autoanalyzer methods, and APOE genotyping was performed by validated PCR methods. The lipid and lipoprotein levels were related to the specific APOE allele frequencies. Allele frequencies were 5.7% for *E2, 85.4% for *E3, and 9.0% for *E4 in the healthy blood donor group. An essentially similar pattern was seen in the patients with CH. This APOE allelic distribution conforms to patterns described in Chinese, whites and South Asians. In both the blood donor and CH groups there were no consistent links between specific APOE pattern and serum lipoproteins, as would have been predicted from APO *E2 and APO *E4 frequencies. We conclude that APOE allelic patterns in healthy Kuwaiti blood donors and a smaller group of patients with CH do not satisfactorily predict circulating blood levels of lipids and lipoproteins.

  4. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses.

    PubMed

    Hueging, Kathrin; Weller, Romy; Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W R; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  5. Several Human Liver Cell Expressed Apolipoproteins Complement HCV Virus Production with Varying Efficacy Conferring Differential Specific Infectivity to Released Viruses

    PubMed Central

    Doepke, Mandy; Vieyres, Gabrielle; Todt, Daniel; Wölk, Benno; Vondran, Florian W. R.; Geffers, Robert; Lauber, Chris; Kaderali, Lars; Penin, François; Pietschmann, Thomas

    2015-01-01

    Apolipoprotein E (ApoE), an exchangeable apolipoprotein, is necessary for production of infectious Hepatitis C virus (HCV) particles. However, ApoE is not the only liver-expressed apolipoprotein and the role of other apolipoproteins for production of infectious HCV progeny is incompletely defined. Therefore, we quantified mRNA expression of human apolipoproteins in primary human hepatocytes. Subsequently, cDNAs encoding apolipoproteins were expressed in 293T/miR-122 cells to explore if they complement HCV virus production in cells that are non-permissive due to limiting endogenous levels of human apolipoproteins. Primary human hepatocytes expressed high mRNA levels of ApoA1, A2, C1, C3, E, and H. ApoA4, A5, B, D, F, J, L1, L2, L3, L4, L6, M, and O were expressed at intermediate levels, and C2, C4, and L5 were not detected. All members of the ApoA and ApoC family of lipoproteins complemented HCV virus production in HCV transfected 293T/miR-122 cells, albeit with significantly lower efficacy compared with ApoE. In contrast, ApoD expression did not support production of infectious HCV. Specific infectivity of released particles complemented with ApoA family members was significantly lower compared with ApoE. Moreover, the ratio of extracellular to intracellular infectious virus was significantly higher for ApoE compared to ApoA2 and ApoC3. Since apolipoproteins complementing HCV virus production share amphipathic alpha helices as common structural features we altered the two alpha helices of ApoC1. Helix breaking mutations in both ApoC1 helices impaired virus assembly highlighting a critical role of alpha helices in apolipoproteins supporting HCV assembly. In summary, various liver expressed apolipoproteins with amphipathic alpha helices complement HCV virus production in human non liver cells. Differences in the efficiency of virus assembly, the specific infectivity of released particles, and the ratio between extracellular and intracellular infectivity point to

  6. Apolipoprotein E and presenilin-1 genotypes in Huntington's disease.

    PubMed

    Panas, M; Avramopoulos, D; Karadima, G; Petersen, M B; Vassilopoulos, D

    1999-07-01

    Huntington's disease (HD) is an autosomal dominant degenerative disease of the central nervous system manifested by involuntary movements (chorea), psychiatric manifestations, and cognitive impairment with a variable age at onset. This variability is mainly attributed to genetic factors. The so-called aging genes [e.g., those for apolipoprotein E (APOE) and presenilin-1 (PS-1) have been implicated in determining the age at onset of Alzheimer's disease, a disease sharing common clinical features with HD. In 60 unrelated patients suffering from HD (mean age at onset 40.1 years, range 20-65) we determined number of CAG repeats and the distribution of the APOE alleles (epsilon2, epsilon3, epsilon4) and PS-1 alleles. The results showed that: (a) The age at onset was higher in the group of patients with the epsilon4 allele (51.6 vs. 38.0 P<0.002), (b) The correlation between the age at onset and the number of CAG repeats was strong in patients with the epsilon3/epsilon3 genotype while it was not detected in patients with epsilon3/epsilon4 genotype. (c) No correlation was found between age at onset and PS-1 alleles. In conclusion, APOE seems to be a significant factor influencing the age at onset of Huntington's disease.

  7. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden.

    PubMed

    Trumble, Benjamin C; Stieglitz, Jonathan; Blackwell, Aaron D; Allayee, Hooman; Beheim, Bret; Finch, Caleb E; Gurven, Michael; Kaplan, Hillard

    2017-04-01

    The apolipoprotein E4 (E4) allele is present worldwide, despite its associations with higher risk of cardiovascular morbidity, accelerated cognitive decline during aging, and Alzheimer 's disease (AD). The E4 allele is especially prevalent in some tropical regions with a high parasite burden. Equatorial populations also face a potential dual burden of high E4 prevalence combined with parasitic infections that can also reduce cognitive performance. We examined the interactions of E4, parasite burden, and cognitive performance in a traditional, nonindustrialized population of Amazonian forager-horticulturalists ( N = 372) to test whether E4 protects against cognitive decline in environments with a heavy pathogen burden. Contrary to observations in industrial populations, older adult E4 carriers with high parasite burdens either maintained or showed slight improvements in cognitive performance, whereas non-E4 carriers with a high parasite burden showed reduced cognitive performance. Being an E4 carrier is the strongest risk factor to date of AD and cognitive decline in industrial populations; it is associated with greater cognitive performance in individuals facing a high parasite and pathogen load, suggesting advantages to the E4 allele under certain environmental conditions. The current mismatch between postindustrial hygienic lifestyles and active parasite-rich environs may be critical for understanding genetic risk for cognitive aging.-Trumble, B. C., Stieglitz, J., Blackwell, A. D., Allayee, H., Beheim, B., Finch, C. E., Gurven, M., Kaplan, H. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden. © FASEB.

  8. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden

    PubMed Central

    Trumble, Benjamin C.; Stieglitz, Jonathan; Blackwell, Aaron D.; Allayee, Hooman; Beheim, Bret; Finch, Caleb E.; Gurven, Michael; Kaplan, Hillard

    2017-01-01

    The apolipoprotein E4 (E4) allele is present worldwide, despite its associations with higher risk of cardiovascular morbidity, accelerated cognitive decline during aging, and Alzheimer’s disease (AD). The E4 allele is especially prevalent in some tropical regions with a high parasite burden. Equatorial populations also face a potential dual burden of high E4 prevalence combined with parasitic infections that can also reduce cognitive performance. We examined the interactions of E4, parasite burden, and cognitive performance in a traditional, nonindustrialized population of Amazonian forager-horticulturalists (N = 372) to test whether E4 protects against cognitive decline in environments with a heavy pathogen burden. Contrary to observations in industrial populations, older adult E4 carriers with high parasite burdens either maintained or showed slight improvements in cognitive performance, whereas non-E4 carriers with a high parasite burden showed reduced cognitive performance. Being an E4 carrier is the strongest risk factor to date of AD and cognitive decline in industrial populations; it is associated with greater cognitive performance in individuals facing a high parasite and pathogen load, suggesting advantages to the E4 allele under certain environmental conditions. The current mismatch between postindustrial hygienic lifestyles and active parasite-rich environs may be critical for understanding genetic risk for cognitive aging.—Trumble, B. C., Stieglitz, J., Blackwell, A. D., Allayee, H., Beheim, B., Finch, C. E., Gurven, M., Kaplan, H. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden. PMID:28031319

  9. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.

    PubMed

    Gloss, L M; Simler, B R; Matthews, C R

    2001-10-05

    The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts. Copyright 2001 Academic Press.

  10. D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile

    PubMed Central

    Valleix, Sophie; Verona, Guglielmo; Jourde-Chiche, Noémie; Nédelec, Brigitte; Mangione, P. Patrizia; Bridoux, Frank; Mangé, Alain; Dogan, Ahmet; Goujon, Jean-Michel; Lhomme, Marie; Dauteuille, Carolane; Chabert, Michèle; Porcari, Riccardo; Waudby, Christopher A.; Relini, Annalisa; Talmud, Philippa J.; Kovrov, Oleg; Olivecrona, Gunilla; Stoppini, Monica; Christodoulou, John; Hawkins, Philip N.; Grateau, Gilles; Delpech, Marc; Kontush, Anatol; Gillmore, Julian D.; Kalopissis, Athina D.; Bellotti, Vittorio

    2016-01-01

    Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients. PMID:26790392

  11. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers.

    PubMed

    Comps-Agrar, Laëtitia; Dunshee, Diana Ronai; Eaton, Dan L; Sonoda, Junichiro

    2015-10-02

    Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Packing interface energetics in different crystal forms of the λ Cro dimer.

    PubMed

    Ahlstrom, Logan S; Miyashita, Osamu

    2014-07-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ∼5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. © 2013 Wiley Periodicals, Inc.

  13. Packing Interface Energetics in Different Crystal Forms of the λ Cro Dimer

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2014-01-01

    Variation among crystal structures of the λ Cro dimer highlights conformational flexibility. The structures range from a wild type closed to a mutant fully open conformation, but it is unclear if each represents a stable solution state or if one may be the result of crystal packing. Here we use molecular dynamics (MD) simulation to investigate the energetics of crystal packing interfaces and the influence of site-directed mutagenesis on them, in order to examine the effect of crystal packing on wild type and mutant Cro dimer conformation. Replica exchange MD of mutant Cro in solution shows that the observed conformational differences between the wild type and mutant protein are not the direct consequence of mutation. Instead, simulation of Cro in different crystal environments reveals that mutation affects the stability of crystal forms. Molecular Mechanics Poisson-Boltzmann Surface Area binding energy calculations reveal the detailed energetics of packing interfaces. Packing interfaces can have diverse properties in strength, energetic components, and some are stronger than the biological dimer interface. Further analysis shows that mutation can strengthen packing interfaces by as much as ~5 kcal/mol in either crystal environment. Thus, in the case of Cro, mutation provides an additional energetic contribution during crystal formation that may stabilize a fully open higher energy state. Moreover, the effect of mutation in the lattice can extend to packing interfaces not involving mutation sites. Our results provide insight into possible models for the effect of crystallization on Cro conformational dynamics and emphasize careful consideration of protein crystal structures. PMID:24218107

  14. The distribution of apolipoprotein E alleles in Scottish perinatal deaths

    PubMed Central

    Becher, J‐C; Keeling, J W; McIntosh, N; Wyatt, B; Bell, J

    2006-01-01

    Background The apolipoprotein E (ApoE) polymorphism has been well studied in the adult human population, in part because the e4 allele is a known risk factor for Alzheimer's disease. Little is known of the distribution of ApoE alleles in newborns, and their association with perinatal brain damage has not been investigated. Methods ApoE genotyping was undertaken in a Scottish cohort of perinatal deaths (n = 261), some of whom had prenatal brain damage. The distribution of ApoE alleles in perinatal deaths was compared with that in healthy liveborn infants and in adults in Scotland. Results ApoE e2 was over‐represented in 251 perinatal deaths (13% v 8% in healthy newborns, odds ratio (OR) = 1.63, 95% confidence interval (CI) 1.13 to 2.36 and 13% v 8% in adults, OR = 1.67, 95% CI 1.16 to 2.41), both in liveborn and stillborn perinatal deaths. In contrast, the prevalence of ApoE e4 was raised in healthy liveborn infants (19%) compared with stillbirths (13%, OR = 1.59, 95% CI 1.11 to 2.26) and with adults (15%, OR = 1.35, 95% CI 1.04 to 1.76). However, no correlation was found between ApoE genotype and the presence or absence of perinatal brain damage. Conclusions This study shows a shift in ApoE allelic distribution in early life compared with adults. The raised prevalence of ApoE e2 associated with perinatal death suggests that this allele is detrimental to pregnancy outcome, whereas ApoE e4 may be less so. However, ApoE genotype did not appear to influence the vulnerability for perinatal hypoxic/ischaemic brain damage, in agreement with findings in adult brains and in animal models. PMID:16183800

  15. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p < 0.05). Pathological observations showed that accumulation of cholesterol crystals in the plaque area was greater in the control group compared with the 0.40 % cacao polyphenol group (p < 0.05). Immunochemical staining in the 0.25 and 0.40 % groups showed that expression of the cell adhesion molecules (VCAM-1 and ICAM-1) and production of oxidative stress markers (4-hydroxynonenal, hexanoyl-lysine, and dityrosine) were reduced in cross-sections of the brachiocephalic trunk. These results suggest that cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  16. Dietary Soy Protein Isolate Ameliorates Atherosclerotic Lesions in Apolipoprotein E-Deficient Mice Potentially by Inhibiting Monocyte Chemoattractant Protein-1 Expression

    USDA-ARS?s Scientific Manuscript database

    Soy-based diets reportedly protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of a soy-based diet was addressed using the apolipoprotein E knockout...

  17. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru

    2016-08-07

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

  18. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn; Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polarmore » 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.« less

  19. The Influence of Education and Apolipoprotein ε4 on Mortality in Community-Dwelling Elderly Men and Women.

    PubMed

    Appiah, Duke; Baumgartner, Richard N

    2018-01-01

    We investigated the risk of death in relation to the apolipoprotein ε 4 allele and evaluated how it interacts with education in 504 elderly adults (mean age 73 years, 65.3% women) who were enrolled in 1993 into the New Mexico Aging Process Study. During 9 years of follow-up, apolipoprotein ε 2 appeared to be associated with a lower risk for all-cause mortality (hazard ratio (HR) = 0.73, 95% confidence interval (CI): 0.30-1.71) compared to apolipoprotein ε 3 carriers in models adjusted for age, sociodemographic variables, medical conditions, adiposity, and lifestyle factors. The apolipoprotein ε 4 allele conferred almost a threefold elevated risk of mortality (HR = 2.76, CI: 1.42-5.37). An interaction between education and apolipoprotein e4 ( p =0.027) was observed with the HR of mortality among e4 carriers compared to noncarriers being 1.59 (0.64-3.96) for those with ≥college education; 6.66 (1.90-23.4) for those with some college or trade; and 14.1 (3.03-65.6) for participants with ≤high school education. No significant interaction was identified between apolipoprotein E genotype and cognitive function for mortality risk. These findings suggest that genetic (apolipoprotein ε 4) and environmental (education) factors act interactively to influences survival in the elderly with higher education attenuating the adverse effect of apolipoprotein ε 4 on mortality.

  20. The Influence of Education and Apolipoprotein ε4 on Mortality in Community-Dwelling Elderly Men and Women

    PubMed Central

    Baumgartner, Richard N.

    2018-01-01

    We investigated the risk of death in relation to the apolipoprotein ε4 allele and evaluated how it interacts with education in 504 elderly adults (mean age 73 years, 65.3% women) who were enrolled in 1993 into the New Mexico Aging Process Study. During 9 years of follow-up, apolipoprotein ε2 appeared to be associated with a lower risk for all-cause mortality (hazard ratio (HR) = 0.73, 95% confidence interval (CI): 0.30–1.71) compared to apolipoprotein ε3 carriers in models adjusted for age, sociodemographic variables, medical conditions, adiposity, and lifestyle factors. The apolipoprotein ε4 allele conferred almost a threefold elevated risk of mortality (HR = 2.76, CI: 1.42–5.37). An interaction between education and apolipoprotein e4 (p=0.027) was observed with the HR of mortality among e4 carriers compared to noncarriers being 1.59 (0.64–3.96) for those with ≥college education; 6.66 (1.90–23.4) for those with some college or trade; and 14.1 (3.03–65.6) for participants with ≤high school education. No significant interaction was identified between apolipoprotein E genotype and cognitive function for mortality risk. These findings suggest that genetic (apolipoprotein ε4) and environmental (education) factors act interactively to influences survival in the elderly with higher education attenuating the adverse effect of apolipoprotein ε4 on mortality. PMID:29770230

  1. Salt bridge residues between I-Ak dimer of dimers alpha-chains modulate antigen presentation.

    PubMed

    Yadati, S; Nydam, T; Demian, D; Wade, T K; Gabriel, J L; Barisas, B G; Wade, W F

    1999-03-15

    Class II dimers of dimers are predicted to have functional significance in antigen presentation. The putative contact amino acids of the I-Ak class II dimer of dimers have been identified by molecular modeling based on the DR1 crystal structure (Nydam et al., Int. Immunol. 10, 1237,1998). We have previously reported the role in antigen presentation of dimer of dimers contact amino acids located in the C-terminal domains of the alpha- and beta-chains of class II. Our calculations show that residues Ealpha89 and Ralpha145 in the alpha2-domain form an inter alpha-chain salt bridge between pairs of alphabeta-heterodimers. Other residues, Qalpha92 and Nalpha115, may be involved in close association in that part of the alpha-chain. We investigated the role of these amino acids on class II expression and antigen presentation. Class II composed of an Ealpha89K substituted alpha-chain paired with a wt beta-chain exhibited inhibited antigen presentation and expression of alpha-chain serologic epitopes. In contrast, mutation of Ralpha145E had less affect on antigen presentation and did not affect I-Ak serologic epitopes. Interchanging charges of the salt bridge residues by expressing both Ralpha145E and Ealpha89K on the same chain obviated the large negative effect of the Ealpha89K mutation on antigen presentation but not on the serologic epitopes. Our results are similar for those reported for mutation of DR3's inter-chain salt bridge with the exception that double mutants did not moderate the DR3 defect. Interestingly, the amino acids differences between I-A and DR change the location of the inter-chain salt bridges. In DR1 these residues are located at positions Ealpha88 and Kalpha111; in I-Ak these residues are located at position Ealpha89 and Ralpha145. Inter alpha-chain salt bridges are thus maintained in various class II molecules by amino acids located in different parts of the alpha2-domain. This conservation of structure suggests that considerable functional

  2. Green tea polyphenol epigallocatechin-3-gallate increases atherosclerotic plaque stability in apolipoprotein E-deficient mice fed a high-fat diet.

    PubMed

    Wang, Qiming; Zhang, Jian; Li, Yafei; Shi, Haojie; Wang, Hao; Chen, Bingrui; Wang, Fang; Wang, Zemu; Yang, Zhijian; Wang, Liansheng

    2018-06-04

    Epigallocatechin-3-gallate (EGCG), which is the principal component of green tea, has been shown to prevent the formation of atherosclerosis. However, the effect of EGCG on atherosclerotic plaque stability remains unknown. This study aimed to assess whether EGCG can enhance atherosclerotic plaque stability and to investigate the underlying mechanisms. Apolipoprotein E-deficient mice fed a high-fat diet were injected intraperitoneally with EGCG (10 mg/kg ) for 16 weeks. Cross sections of the brachiocephalic arteries were stained with hematoxylin and eosin (HE) for morphometric analyses or Masson's trichrome for collagen content analyses. Immunohistochemistry was performed to evaluate the percentage of macrophages and smooth muscle cells (SMCs). Protein expression and matrix metalloproteinase (MMP) activity were assayed by Western blot and gelatin zymography, respectively. Serum inflammatory cytokine levels were quantified by enzyme-linked immunosorbent assay. After 16 weeks of feeding the high-fat diet, there was clear atherosclerosis formation in the proximal brachiocephalic artery segments according to HE staining. EGCG treatment significantly increased the thickness of the fibrous cap. In the atherosclerotic plaques of the EGCG group, the relative macrophage content was decreased, whereas the relative SMC and collagen contents were increased. The expression levels of MMP-2, MMP-9 and extracellular matrix metalloproteinase inducer (EMMPRIN) were significantly decreased by EGCG treatment. In addition, EGCG treatment decreased the circulating TNF-a, IL-6, MCP-1 and IFN-γ levels in apolipoprotein E-deficient mice. EGCG promotes atherosclerotic lesion stability in apolipoprotein E-deficient mice. Potentially, these effects are mediated through the inhibition of inflammatory cytokine, MMPs and EMMPRIN expression.

  3. Thyroid hormones upregulate apolipoprotein E gene expression in astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roman, Corina; Fuior, Elena V.; Trusca, Violeta G.

    Apolipoprotein E (apoE), a protein mainly involved in lipid metabolism, is associated with several neurodegenerative disorders including Alzheimer's disease. Despite numerous attempts to elucidate apoE gene regulation in the brain, the exact mechanism is still uncovered. The mechanism of apoE gene regulation in the brain involves the proximal promoter and multienhancers ME.1 and ME.2, which evolved by gene duplication. Herein we questioned whether thyroid hormones and their nuclear receptors have a role in apoE gene regulation in astrocytes. Our data showed that thyroid hormones increase apoE gene expression in HTB14 astrocytes in a dose-dependent manner. This effect can be intermediatedmore » by the thyroid receptor β (TRβ) which is expressed in these cells. In the presence of triiodothyronine (T3) and 9-cis retinoic acid, in astrocytes transfected to overexpress TRβ and retinoid X receptor α (RXRα), apoE promoter was indirectly activated through the interaction with ME.2. To determine the location of TRβ/RXRα binding site on ME.2, we performed DNA pull down assays and found that TRβ/RXRα complex bound to the region 341–488 of ME.2. This result was confirmed by transient transfection experiments in which a series of 5′- and 3′-deletion mutants of ME.2 were used. These data support the existence of a biologically active TRβ binding site starting at 409 in ME.2. In conclusion, our data revealed that ligand-activated TRβ/RXRα heterodimers bind with high efficiency on tissue-specific distal regulatory element ME.2 and thus modulate apoE gene expression in the brain. - Highlights: • T3 induce a dose-dependent increase of apoE expression in astrocytes. • Thyroid hormones activate apoE promoter in a cell specific manner. • Ligand activated TRβ/RXRα bind on the distal regulatory element ME.2 to modulate apoE. • The binding site of TRβ/RXRα heterodimer is located at 409 bp on ME.2.« less

  4. Serum apolipoprotein A2 isoforms in autoimmune pancreatitis.

    PubMed

    Kobayashi, Takashi; Sato, Yu; Nishiumi, Shin; Yagi, Yosuke; Sakai, Arata; Shiomi, Hideyuki; Masuda, Atsuhiro; Okaya, Shinobu; Kutsumi, Hiromu; Yoshida, Masaru; Honda, Kazufumi

    2018-03-11

    Recently, apolipoprotein A2 (apoA2) isoforms have been reported as candidate serum/plasma biomarkers of pancreatic cancer. However, the distribution of apoA2 isoforms in patients with autoimmune pancreatitis (AIP) has not been investigated yet. In this study, we evaluated the distribution of serum apoA2 isoforms; i.e., homodimer apoA2-ATQ/ATQ, heterodimer apoA2-ATQ/AT, and homodimer apoA2-AT/AT, in AIP patients and healthy volunteers (HV) using enzyme-linked immunosorbent assays, and the clinical characteristics and serum levels of each apoA2 isoform in 32 AIP patients and 38 HV were investigated. The calculated apoA2-ATQ/AT levels of the AIP patients were significantly lower than those of the HV, which agreed with results obtained for patients with pancreatic cancer. Interestingly, most of the AIP patients exhibited high levels of apoA2-ATQ along with low levels of apoA2-AT, indicating that the processing of the C-terminal regions of apoA2 dimer was inhibited in the AIP patients. This specific distribution of serum apoA2 isoforms might provide important information about the disease states of AIP patients and aid the differential diagnosis of AIP versus pancreatic cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Apolipoprotein E polymorphism in Southern Iran: E4 allele in the lowest reported amounts.

    PubMed

    Bazrgar, Masood; Karimi, Mehran; Fathzadeh, Mohsen; Senemar, Sara; Peiravian, Farah; Shojaee, Ashraf; Saadat, Mostafa

    2008-12-01

    Apolipoprotein E (apoE) with three major alleles E2, E3 and E4 is one of the critical genes in lipid metabolism. Common apoE alleles are in association with an increase in risk for central nervous and cardiovascular diseases such as Alzheimer's disease, dementia, multiple sclerosis, atherosclerosis, coronary heart disease, hyperlipoproteinemia and stroke. ApoE3 is known as the most frequent allele in all populations, while association of apoE gene polymorphism with reported diseases have mostly been related to other two major alleles especially apoE4. To determine of apoE alleles frequencies in Southern Iran and comparison of those frequencies with other populations. DNA was extracted from the whole blood of 198 healthy unrelated candidates from population of Fars Province, Southern Iran, for apoE genotyping who were checked up by a physician. The frequencies of apoE alleles were compared with other populations by chi(2) test. The frequencies of E2, E3 and E4 were 0.063, 0.886 and 0.051 respectively. These values were similar to those reported from populations of Kuwait, Oman, Lebanon, India, Turkey, Greece, Spain, Sardinia Islands of Italy and two Iranian populations but were different from South of Italy and Caucasians in other Europe regions, American, American-Indian, African, East Asian and Saudi populations (P < 0.05). The frequency of E4 allele as a genetic risk factor for some multifactorial diseases in the population of Southern Iran is in the lowest reported amounts in the world. Iranian population has Caucasoid origin but differs from some Caucasian populations in Europe and America. The results of present study are in agreement with the historical evidences which show admixture of Iranian population with other populations and some studies based on genetic polymorphisms in the population of Southern Iran.

  7. Intracellular formation of "undisruptable" dimers of inducible nitric oxide synthase.

    PubMed

    Kolodziejski, Pawel J; Rashid, Mohammad B; Eissa, N Tony

    2003-11-25

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are "undisruptable" by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo.

  8. Association between iris constitution and apolipoprotein e gene polymorphism in hypertensives.

    PubMed

    Um, Jae-Young; Hwang, Chung-Yeon; Hwang, Woo-Jun; Kang, Sung-Do; Do, Keum-Rok; Cho, Ju-Jang; Cho, Jae-Woon; Kim, Sung-Hoon; Shin, Tae-Yong; Kim, Yun-Kyung; Kim, Hyung-Min; Hong, Seung-Heon

    2004-12-01

    Iridology is a complementary and alternative medicine (CAM) that involves the diagnosis of medical conditions by noting irregularities of the pigmentation in the iris. Iris constitution has a strong familial aggregation and heredity is implicated. Apolipoprotein E (apoE) gene polymorphism is one of the most well-studied genetic markers for vascular diseases, including hypertension. In this study, we investigated the relationship between iris constitution and apoE polymorphism in hypertensives. We classified 87 hypertensives and 79 controls according to iris constitution and determined the apoE genotype of each individual. A significantly higher percentage of individuals with neurogenic constitutions was found in the hypertensive group when compared with the control group (chi(2) = 40.244, p < 0.001). In addition, a neurogenic constitution increased the relative risk for hypertension for subjects with an apo epsilon2 or an epsilon4 allele (chi(2) = 4.086, p = 0.049, odds ratio = 2.633, confidence interval = 1.004-6.905). Our results imply that a neurogenic iris constitution enhances the relative risk for hypertension in subjects with the apo epsilon2 or epsilon4 allele. Furthermore, we attempted to evaluate the efficacy of iris constitutional medicine and to find an association with hypertension.

  9. A HeI photoelectron spectrum of the [Al(CH 3) 3] 2 dimer

    NASA Astrophysics Data System (ADS)

    Wang, Dianxun; Qian, Ximei; Zheng, Shijun; Shi, Yizhong

    1997-10-01

    The HeI photoelectron spectrum (PES) of the [Al(CH 3) 3] 2 dimer is recorded for the first time. To assign the PES bands, an ab initio SCF MO calculation for the dimer has also been performed. The four splitting peaks of the first PE band are respectively designated to electron ionization of the four frontier 8b u, 13a g, 7b g, and 7b u orbitals of the dimer. They originate from the recombination of the two HOMO (5e') of the two monomers in the forming of the dimer. That is to say, during the formation of the dimer from the two monomers, the reduction of molecular symmetry (from the C 3h symmetry of the monomer to the C 2h symmetry of the dimer) leads to the undegeneration of the degenerate orbitals.

  10. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuehai; Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000; Lu, Huixia

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared withmore » C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.« less

  11. Crystal Structures of Apo and Metal-Bound Forms of the UreE Protein from Helicobacter pylori: Role of Multiple Metal Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rong; Munger, Christine; Asinas, Abdalin

    2010-10-22

    The crystal structure of the urease maturation protein UreE from Helicobacter pylori has been determined in its apo form at 2.1 {angstrom} resolution, bound to Cu{sup 2+} at 2.7 {angstrom} resolution, and bound to Ni{sup 2+} at 3.1 {angstrom} resolution. Apo UreE forms dimers, while the metal-bound enzymes are arranged as tetramers that consist of a dimer of dimers associated around the metal ion through coordination by His102 residues from each subunit of the tetramer. Comparison of independent subunits from different crystal forms indicates changes in the relative arrangement of the N- and C-terminal domains in response to metal binding.more » The improved ability of engineered versions of UreE containing hexahistidine sequences at either the N-terminal or C-terminal end to provide Ni{sup 2+} for the final metal sink (urease) is eliminated in the H102A version. Therefore, the ability of the improved Ni{sup 2+}-binding versions to deliver more nickel is likely an effect of an increased local concentration of metal ions that can rapidly replenish transferred ions bound to His102.« less

  12. Analysis of apolipoprotein genes and their involvement in disease response of channel catfish after bacterial infection.

    PubMed

    Yang, Yujia; Fu, Qiang; Zhou, Tao; Li, Yun; Liu, Shikai; Zeng, Qifan; Wang, Xiaozhu; Jin, Yulin; Tian, Changxu; Qin, Zhenkui; Dunham, Rex; Liu, Zhanjiang

    2017-02-01

    Apolipoproteins are protein component of plasma lipoproteins. They exert crucial roles in lipoprotein metabolism and serve as enzyme cofactors, receptor ligands, and lipid transfer carriers in mammals. In teleosts, apolipoproteins are also involved in diverse processes including embryonic and ontogenic development, liver and digestive system organogenesis, and innate immunity. In this study, we identified a set of 19 apolipoprotein genes in channel catfish (Ictalurus punctatus). Phylogenetic analysis and syntenic analysis were conducted to determine their identities and evolutionary relationships. The expression signatures of apolipoproteins in channel catfish were determined in healthy tissues and after infections with two major bacterial pathogens, Edwardsiella ictaluri and Flavobacterium columnare. In healthy channel catfish, most apolipoprotein genes exhibited tissue-specific expression patterns in channel catfish. After ESC and columnaris infections, 5 and 7 apolipoprotein genes were differentially expressed respectively, which presented a pathogen-specific and time-dependent pattern of regulation. After ESC infection, three exchangeable apolipoproteins (apoA-IB, apoC-I, and apoE-B) were suppressed in catfish intestine, while two nonexchangeable apolipoproteins (apoB-A and apoB-B) were slightly up-regulated. After columnaris infection, apoB-B, apoD-B, and apoE-A were significantly down-regulated in catfish gill, while apoF, apoL-IV, apoO-like, and apo-14 kDa showed significantly up-regulation. Taken together, these results suggested that apolipoprotein genes may play significant roles in innate immune responses to bacterial pathogens in channel catfish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Crosslinking Evidence for Motional Constraints within Chemoreceptor Trimers of Dimers

    PubMed Central

    Massazza, Diego A.; Parkinson, John S.; Studdert, Claudia A.

    2011-01-01

    Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In E. coli, chemoreceptors show higher order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer of dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo crosslinking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed crosslinks, whereas reporters lying at different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernable effect on the crosslinking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced crosslinking at most of the reporter sites, indicating that individual dimers may move closer together under this condition. PMID:21174433

  14. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice.

    PubMed

    Souidi, M; Racine, R; Grandcolas, L; Grison, S; Stefani, J; Gourmelon, P; Lestaevel, P

    2012-04-01

    Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear

  15. Neuronal injury-induced expression and release of apolipoprotein E in mixed neuron/glia co-cultures: nuclear factor kappaB inhibitors reduce basal and lesion-induced secretion of apolipoprotein E.

    PubMed

    Petegnief, V; Saura, J; de Gregorio-Rocasolano, N; Paul, S M

    2001-01-01

    In order to better delineate the intracellular signaling pathways underlying glial apolipoprotein E (apoE) expression and release, we have characterized an in vitro model of induction of glial apoE production induced by neuronal death. Exposure of mixed fetal cortical neuron/glia co-cultures to the neurotoxin N-methyl-D-aspartate results in increased apoE expression and release in a time- and concentration-dependent manner. Increased expression of apoE messenger RNA precedes the increase in intracellular apoE, followed by accumulation of the holoprotein in the culture medium. Neuronal injury induced by N-methyl-D-aspartate is accompanied by a reactive astrogliosis as measured by an increase in glial fibrillary acidic protein messenger RNA and protein at 48 and 72h post-lesion, respectively. A similar microgliosis was observed using the microglial marker ED-1. Neuronal injury-induced glial apoE secretion is attenuated by the nuclear factor kappaB inhibitors, aspirin, Bay 11-7082 and MG-132, suggesting that this transcription factor is involved in both constitutive and induced glial apoE expression. The present data show that up-regulation of apoE is an early event in the glial activation triggered by neurodegeneration in vitro and that activation of nuclear factor kappaB directly or indirectly mediates the increase in apoE expression.

  16. Synergistic associations of depression and apolipoprotein E genotype with incidence of dementia.

    PubMed

    Kim, Jae-Min; Stewart, Robert; Kim, Seon-Young; Kim, Sung-Wan; Bae, Kyung-Yeol; Yang, Su-Jin; Shin, Il-Seon; Yoon, Jin-Sang

    2011-09-01

    A cohort study of Japanese-American men suggested interactive effects of depression and apolipoprotein E (APOE) e4 allele on risk of incident dementia. In another sample of East Asian origin, we sought to replicate the findings and to explore individual depressive symptoms where this interaction was most evident. Of 625 Korean community elders without dementia at baseline, 518 (83%) were followed over a 2.4-year period and were clinically assessed for incident dementia. Depression was identified by the Geriatric Mental State Schedule (GMS), and nine individual depressive symptoms relevant to DSM-IV major depressive episode criteria were extracted. APOE genotype was ascertained. Covariates included age, gender, education, and disability. There were synergistic interactions between depression and APOE e4 on incident dementia independent of covariates. This interaction was particularly strong for four depressive symptoms: depressed mood, worthlessness, concentration difficulty, and suicidal ideation. We were able to replicate the previous study, finding that, at least in East Asian origin populations, the APOE e4 allele is a stronger predictor of incident dementia in the presence of depressive syndrome, and particular depressive symptoms. Copyright © 2010 John Wiley & Sons, Ltd.

  17. FAD286, an aldosterone synthase inhibitor, reduced atherosclerosis and inflammation in apolipoprotein E-deficient mice.

    PubMed

    Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo

    2010-09-01

    Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.

  18. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  19. Apolipoprotein E genotyping by multiplex tetra-primer amplification refractory mutation system PCR in single reaction tube.

    PubMed

    Yang, Young Geun; Kim, Jong Yeol; Park, Su Jeong; Kim, Suhng Wook; Jeon, Ok-Hee; Kim, Doo-Sik

    2007-08-31

    Apolipoprotein E (APOE) plays a critical role in lipoprotein metabolism by binding to both low-density lipoprotein and APOE receptors. The APOE gene has three allelic forms, epsilon2, epsilon3, and epsilon4, which encode different isoforms of the APOE protein. In this study, we have developed a new genotyping method for APOE. Our multiplex tetra-primer amplification refractory mutation system (multiplex T-ARMS) polymerase chain reaction (PCR) was performed in a single reaction tube with six primers consisting of two common primers and two specific primers for each of two single nucleotide polymorphism (SNP) sites. We obtained definitive electropherograms that showed three (epsilon2/epsilon2, epsilon3/epsilon3, and epsilon4/epsilon4), four (epsilon2/epsilon3 and epsilon3/epsilon4), and five (epsilon2/epsilon4) amplicons by multiplex T-ARMS PCR in a single reaction tube. Multiplex T-ARMS PCR for APOE genotyping is a simple and accurate method that requires only a single PCR reaction, without any another treatments or expensive instrumentation, to simultaneously identify two sites of single nucleotide polymorphisms.

  20. Apolipoprotein E genetic polymorphism, serum lipoproteins, and breast cancer risk.

    PubMed

    Moysich, K B; Freudenheim, J L; Baker, J A; Ambrosone, C B; Bowman, E D; Schisterman, E F; Vena, J E; Shields, P G

    2000-01-01

    Apolipoprotein E (apoE) is a polymorphic gene involved in lipid metabolism with three common variant alleles (epsilon2, epsilon3, and epsilon4). The epsilon4 allele has been associated with elevated levels of cholesterol as well as greater risk of coronary heart disease and Alzheimer's disease. In this case-control study we examined whether apoE genotype affected the association between serum lipids and breast cancer risk. In a subset of a study in western New York, 260 women with incident, primary breast cancer and 332 community controls were interviewed and provided blood samples. Polymerase chain reaction-restriction fragment length polymorphism analyses of the apoE polymorphism were performed. Participants were classified as apoE2 (epsilon2, epsilon2 or epsilon2, epsilon3), apoE3 (epsilon3, epsilon3), or apoE4 (epsilon4, epsilon4 or epsilon4, epsilon3). No unconditional logistic regression was used to compute adjusted odds ratios (ORs) and 95% confidence intervals (CI). Compared with women with the apoE3 genotype, there were no associations with risk for women with the apoE2 (OR=1.0; 95% CI=0. 91-1.64) or apoE4 genotype (OR=0.97; 95% CI=0.63-1.54). Higher serum levels of total cholesterol, HDL cholesterol, and LDL cholesterol were not associated with risk, either in the total sample or among subgroups of women defined by apoE genotype. Women with the highest serum triglyceride levels had an increase in risk (OR=1.63; 95% CI=1. 03-2.59) compared to women with the lowest levels. This effect was not apparent among women with the apoE2 or apoE3 genotype, but much stronger among women with the apoE4 genotype (OR=4.69; 95% CI=1. 49-14.7). These data suggest that the apoE4 genotype may modify the association between serum triglycerides and breast cancer risk. Copyright 2000 Wiley-Liss, Inc.

  1. Intracellular formation of ”undisruptable” dimers of inducible nitric oxide synthase

    PubMed Central

    Kolodziejski, Pawel J.; Rashid, Mohammad B.; Eissa, N. Tony

    2003-01-01

    Overproduction of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer. Dimerization of iNOS represents a potentially critical target for therapeutic intervention. In this study, we show that intracellular iNOS forms dimers that are ”undisruptable” by boiling, denaturants, or reducing agents. Undisruptable (UD) dimers are clearly distinguishable from the easily dissociated dimers formed by iNOS in vitro. UD dimers do not form in Escherichia coli-expressed iNOS and could not be assembled in vitro, which suggests that an in vivo cellular process is required for their formation. iNOS UD dimers are not affected by intracellular depletion of H4B. However, the mutation of Cys-115 (critical for zinc binding) greatly affects the formation of UD dimers. This study reveals insight into the mechanisms of in vivo iNOS dimer formation. UD dimers represent a class of iNOS dimers that had not been suspected. This unanticipated finding revises our understanding of the mechanisms of iNOS dimerization and lays the groundwork for future studies aimed at modulating iNOS activity in vivo. PMID:14614131

  2. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    PubMed

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  3. Age-Related Effects of the Apolipoprotein E Gene on Brain Function.

    PubMed

    Matura, Silke; Prvulovic, David; Hartmann, Daniel; Scheibe, Monika; Sepanski, Beate; Butz, Marius; Oertel-Knöchel, Viola; Knöchel, Christian; Karakaya, Tarik; Fußer, Fabian; Hattingen, Elke; Pantel, Johannes

    2016-03-16

    The apolipoprotein E (ApoE) ɛ4 allele is a well-established genetic risk factor for sporadic Alzheimer's disease. Some evidence suggests a negative role of the ApoE ɛ4 allele for cognitive performance in late life, while beneficial effects on cognition have been shown in young age. We investigated age-related effects of the ApoE gene on brain function by assessing cognitive performance, as well as functional activation patterns during retrieval of Face-Name pairs in a group of young (n = 50; age 26.4±4.6 years, 25 ɛ4 carriers) and old (n = 40; age 66.1±7.0 years, 20 ɛ4 carriers) participants. A cross-sectional factorial design was used to examine the effects of age, ApoE genotype, and their interaction on both cognitive performance and the blood oxygenation level dependent (BOLD) brain response during retrieval of Face-Name pairs. While there were no genotype-related differences in cognitive performance, we found a significant interaction of age and ApoE genotype on task-related activation bilaterally in anterior cingulate gyrus and superior frontal gyrus, as well as left and right insula. Old age was associated with increased activity in ɛ4 carriers. The increased BOLD response in old ɛ4 carriers during retrieval could indicate a neurocognitive disadvantage associated with the ɛ4 allele with increasing age. Furthermore, recruitment of neuronal resources resulted in enhanced memory performance in young ɛ4 carriers, pointing to a better neurofunctional capacity associated with the ApoE4 genotype in young age.

  4. Independent effects of apolipoprotein AV and apolipoprotein CIII on plasma triglyceride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroukh, Nadine N.; Bauge, Eric; Akiyama, Jennifer

    2003-08-15

    Both the apolipoprotein A5 and C3 genes have repeatedly been shown to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered Both the apolipoprotein A5 and C3 genes have repeatedly been shownmore » to play an important role in determining plasma triglyceride concentrations in humans and mice. In mice, transgenic and knockout experiments indicate that plasma triglyceride levels are negatively and positively correlated with APOA5 and APOC3 expression, respectively. In humans, common polymorphisms in both genes have also been associated with plasma triglyceride concentrations. The evolutionary relationship among these two apolipoprotein genes and their close proximity on human chromosome 11q23 have largely precluded the determination of their relative contribution to altered triglycerides. To overcome these confounding factors and address their relationship, we generated independent lines of mice that either over-expressed (''double transgenic'') or completely lacked (''double knockout'') both apolipoprotein genes. We report that both ''double transgenic'' and ''double knockout'' mice display intermedia tetriglyceride concentrations compared to over-expression or deletion of either gene alone. Furthermore, we find that human ApoAV plasma protein levels in the ''double transgenic'' mice are approximately 500-fold lower than human ApoCIII levels, supporting ApoAV is a potent triglyceride modulator despite its low concentration. Together, these data

  5. Head circumference, apolipoprotein E genotype and cognition in the Bavarian School Sisters Study.

    PubMed

    Perneczky, R; Alexopoulos, P; Wagenpfeil, S; Bickel, H; Kurz, A

    2012-04-01

    The apolipoprotein E (APOE) ɛ4 allele is correlated with an earlier onset of Alzheimer's disease symptoms; larger head circumference has been associated with an individual resilience against cognitive impairment. We explored if larger head circumference attenuates the effect of the APOE ɛ4 allele on cognition in 380 Catholic sisters covering the spectrum from normal cognitive performance to severe dementia. Linear regression analysis, adjusting for risk factors for cognitive decline, revealed that APOE ɛ4 was correlated with worse cognition and that larger head circumference attenuated the negative effect of the ɛ4 allele on cognitive performance. Larger head circumference (i.e. larger brain size) seems to be associated with greater resilience against genetic determinants of cognitive impairment, possibly due to enhanced brain or cognitive reserve. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Apolipoprotein E e4 allele is associated with more rapid motor decline in older persons.

    PubMed

    Buchman, Aron S; Boyle, Patricia A; Wilson, Robert S; Beck, Todd L; Kelly, Jeremiah F; Bennett, David A

    2009-01-01

    We tested the hypothesis that apolipoprotein E allele status predicts the rate of motor decline in the elderly. Eight hundred seventy-six older participants without dementia underwent baseline and annual motor testing for up to 10 years. In a generalized estimating equation controlling for age, sex, and education, motor function declined by about 0.03 U/y. The presence of epsilon4 allele was associated with a 2-fold increase in rate of motor decline epsilon4 allele x time: estimate=-0.027 (SE 0.012, P=0.025)]. The association of epsilon4 allele with motor decline persisted even after controlling for cognitive status, race, body mass index, vascular risk factors, and diseases. Further analyses suggested that the association of epsilon4 with motor decline was for the most part explained by the association between epsilon4 allele and change in muscle strength. These results suggest that the presence of epsilon4 allele is a risk factor for more rapid motor decline in the elderly.

  7. Cigarette smoke exposure promotes arterial thrombosis and vessel remodeling after vascular injury in apolipoprotein E-deficient mice.

    PubMed

    Schroeter, Marco R; Sawalich, Matthias; Humboldt, Tim; Leifheit, Maren; Meurrens, Kris; Berges, An; Xu, Haiyan; Lebrun, Stefan; Wallerath, Thomas; Konstantinides, Stavros; Schleef, Raymond; Schaefer, Katrin

    2008-01-01

    Cigarette smoking is a major risk factor for the development of cardiovascular disease. However, in terms of the vessel wall, the underlying pathomechanisms of cigarette smoking are incompletely understood, partly due to a lack of adequate in vivo models. Apolipoprotein E-deficient mice were exposed to filtered air (sham) or to cigarette mainstream smoke at a total particulate matter (TPM) concentration of 600 microg/l for 1, 2, 3, or 4 h, for 5 days/week. After exposure for 10 +/- 1 weeks, arterial thrombosis and neointima formation at the carotid artery were induced using 10% ferric chloride. Mice exposed to mainstream smoke exhibited shortened time to thrombotic occlusion (p < 0.01) and lower vascular patency rates (p < 0.001). Morphometric and immunohistochemical analysis of neointimal lesions demonstrated that mainstream smoke exposure increased the amount of alpha-actin-positive smooth muscle cells (p < 0.05) and dose-dependently increased the intima-to-media ratio (p < 0.05). Additional analysis of smooth muscle cells in vitro suggested that 10 microg TPM/ml increased cell proliferation without affecting viability or apoptosis, whereas higher concentrations (100 and 500 microg TPM/ml) appeared to be cytotoxic. Taken together, these findings suggest that cigarette smoking promotes arterial thrombosis and modulates the size and composition of neointimal lesions after arterial injury in apolipoprotein E-deficient mice. Copyright 2008 S. Karger AG, Basel.

  8. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer.

    PubMed

    Sanchez, Jacint G; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M; Sundquist, Wesley I; Pornillos, Owen

    2014-02-18

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication.

  9. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer

    PubMed Central

    Sanchez, Jacint G.; Okreglicka, Katarzyna; Chandrasekaran, Viswanathan; Welker, Jordan M.; Sundquist, Wesley I.; Pornillos, Owen

    2014-01-01

    Tripartite motif (TRIM) proteins make up a large family of coiled-coil-containing RING E3 ligases that function in many cellular processes, particularly innate antiviral response pathways. Both dimerization and higher-order assembly are important elements of TRIM protein function, but the atomic details of TRIM tertiary and quaternary structure have not been fully understood. Here, we present crystallographic and biochemical analyses of the TRIM coiled-coil and show that TRIM proteins dimerize by forming interdigitating antiparallel helical hairpins that position the N-terminal catalytic RING domains at opposite ends of the dimer and the C-terminal substrate-binding domains at the center. The dimer core comprises an antiparallel coiled-coil with a distinctive, symmetric pattern of flanking heptad and central hendecad repeats that appear to be conserved across the entire TRIM family. Our studies reveal how the coiled-coil organizes TRIM25 to polyubiquitylate the RIG-I/viral RNA recognition complex and how dimers of the TRIM5α protein are arranged within hexagonal arrays that recognize the HIV-1 capsid lattice and restrict retroviral replication. PMID:24550273

  10. The relationship between obstructive sleep apnea syndrome and apolipoprotein E genetic variants.

    PubMed

    Uyrum, Ebru; Balbay, Oner; Annakkaya, Ali Nihat; Gulec Balbay, Ege; Silan, Fatma; Arbak, Peri

    2015-01-01

    Clinical and epidemiological studies indicate that obstructive sleep apnea syndrome (OSAS) has a strong genetic basis. To investigate the apolipoprotein E (APOE) alleles as a genetic risk factor in OSAS. A total of 73 patients (37 male) were included. All underwent full-night polysomnography and were evaluated for APOE alleles. The mean age was 51 ± 12 years. Forty-two of the patients had OSAS. The APOE3 allele was found in 97.3% (71/73) of the study population. The most common APOE genotype was E3/E3 (55/73, 75.3%). Compared to the individuals with no APOE2 alleles (E3/E3, E3/E4), the individuals with at least one APOE2 allele (E2/E3, E2/E4) had a 9.37-fold greater OSAS risk (OR = 9.37, 95% CI 1.13-77.7, p = 0.019). The individuals with APOE2 alleles (E2/E3, E2/E4) compared to the individuals with only an E3/E3 allele genotype had a 10-fold greater OSAS risk (OR = 10.3, 95% CI 1.24-86.61, p = 0.0308). Compared to the individuals with no APOE4 alleles (E2/E3, E3/E3), the individuals with APOE4 alleles (E2/E4, E3/E4) had a high but insignificant risk for OSAS (OR = 2.9, 95% CI 0.55-15.05, p = 0.286). The individuals with APOE4 alleles (E2/E4, E3/E4) compared to APOE3 alleles (E3/E3) had an increased but insignificant risk for OSAS (OR = 3.62, 95% CI 0.96-19.05, p = 0.127). Specific APOE genotypes are associated with OSAS in a high-risk population.

  11. Ligand regulation of a constitutively dimeric EGF receptor

    NASA Astrophysics Data System (ADS)

    Freed, Daniel M.; Alvarado, Diego; Lemmon, Mark A.

    2015-06-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers.

  12. Apolipoprotein E polymorphisms and postprandial triglyceridemia before and after fenofibrate treatment in the Genetics of Lipid Lowering and Diet Network (GOLDN) Study

    USDA-ARS?s Scientific Manuscript database

    Background: While much is known about the effect of Apolipoprotein E (APOE) alleles on fasting lipid concentrations, less is known about the effect of APOE alleles on postprandial triglyceridemia or the triglyceride response to fenofibrate. Methods and Results: We evaluated the effects of the APOE l...

  13. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA.

    PubMed

    Booth, David S; Cheng, Yifan; Frankel, Alan D

    2014-12-08

    The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.

  14. Hepatitis C Virus Strain-Dependent Usage of Apolipoprotein E Modulates Assembly Efficiency and Specific Infectivity of Secreted Virions.

    PubMed

    Weller, Romy; Hueging, Kathrin; Brown, Richard J P; Todt, Daniel; Joecks, Sebastian; Vondran, Florian W R; Pietschmann, Thomas

    2017-09-15

    Hepatitis C virus (HCV) is extraordinarily diverse and uses entry factors in a strain-specific manner. Virus particles associate with lipoproteins, and apolipoprotein E (ApoE) is critical for HCV assembly and infectivity. However, whether ApoE dependency is common to all HCV genotypes remains unknown. Therefore, we compared the roles of ApoE utilizing 10 virus strains from genotypes 1 through 7. ApoA and ApoC also support HCV assembly, so they may contribute to virus production in a strain-dependent fashion. Transcriptome sequencing (RNA-seq) revealed abundant coexpression of ApoE, ApoB, ApoA1, ApoA2, ApoC1, ApoC2, and ApoC3 in primary hepatocytes and in Huh-7.5 cells. Virus production was examined in Huh-7.5 cells with and without ApoE expression and in 293T cells where individual apolipoproteins (ApoE1, -E2, -E3, -A1, -A2, -C1, and -C3) were provided in trans All strains were strictly ApoE dependent. However, ApoE involvement in virus production was strain and cell type specific, because some HCV strains poorly produced infectious virus in ApoE-expressing 293T cells and because ApoE knockout differentially affected virus production of HCV strains in Huh-7.5 cells. ApoE allelic isoforms (ApoE2, -E3, and -E4) complemented virus production of HCV strains to comparable degrees. All tested strains assembled infectious progeny with ApoE in preference to other exchangeable apolipoproteins (ApoA1, -A2, -C1, and -C3). The specific infectivity of HCV particles was similar for 293T- and Huh-7.5-derived particles for most strains; however, it differed by more than 100-fold in some viruses. Collectively, this study reveals strain-dependent and host cell-dependent use of ApoE during HCV assembly. These differences relate to the efficacy of virus production and also to the properties of released virus particles and therefore govern viral fitness at the level of assembly and cell entry. IMPORTANCE Chronic HCV infections are a major cause of liver disease. HCV is highly variable

  15. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer.

    PubMed

    Bhattarai, Nisha; Gc, Jeevan B; Gerstman, Bernard S; Stahelin, Robert V; Chapagain, Prem P

    2017-04-26

    Filovirus infections cause hemorrhagic fever in humans and non-human primates that often results in high fatality rates. The Marburg virus is a lipid-enveloped virus from the Filoviridae family and is closely related to the Ebola virus. The viral matrix layer underneath the lipid envelope is formed by the matrix protein VP40 (VP40), which is also involved in other functions during the viral life-cycle. As in the Ebola virus VP40 (eVP40), the recently determined X-ray crystal structure of the Marburg virus VP40 (mVP40) features loops containing cationic residues that form a lipid binding basic patch. However, the mVP40 basic patch is significantly flatter with a more extended surface than in eVP40, suggesting the possibility of differences in the plasma membrane interactions and phospholipid specificity between the VP40 dimers. In this paper, we report on molecular dynamics simulations that investigate the roles of various residues and lipid types in PM association as well as the conformational changes of the mVP40 dimer facilitated by membrane association. We compared the structural changes of the mVP40 dimer with the mVP40 dimer in both lipid free and membrane associated conditions. Despite the significant structural differences in the crystal structure, the Marburg VP40 dimer is found to adopt a configuration very similar to the Ebola VP40 dimer after associating with the membrane. This conformational rearrangement upon lipid binding allows Marburg VP40 to localize and stabilize at the membrane surface in a manner similar to the Ebola VP40 dimer. Consideration of the structural information in its lipid-interacting condition may be important in targeting mVP40 for novel drugs to inhibit viral budding from the plasma membrane.

  16. Apolipoprotein E modifies the CNS response to injury via a histamine-mediated pathway.

    PubMed

    Mace, Brian E; Wang, Haichen; Lynch, John R; Moss, Jason; Sullivan, Patrick; Colton, Heidi; Morgan, Kevin; Renauld, Jean-Christophe; Laskowitz, Daniel T

    2007-04-01

    Recent evidence demonstrates that apolipoprotein E (apoE) influences the central nervous system (CNS) response to both acute and chronic injury. To address the mechanisms by which apoE influences neurological disease, we examined differential gene expression in the brains of apoE transgenic mice after closed head injury. Apart from confirming the knockout of apoE, the largest differential gene expression occurred for the interleukin-9 receptor (IL-9R), which was > 100-fold up-regulated in apoE-deficient versus wild-type mice. We observed a similar pattern of posttraumatic IL-9R up-regulation in APOE4 targeted replacement mice as compared with their APOE3 counterparts. This difference in gene expression was associated with increased neuronal protein expression of IL-9R in E4 animals compared with E3 as demonstrated by immunohistochemistry. The consequence of IL-9R binding in mast cells is the induction of proliferation and differentiation. This indirectly favors degranulation and release of histamine and inflammatory mediators, which have previously been demonstrated to exacerbate secondary neuronal injury. We found that apoE-deficient animals had increased levels of systemic histamine after injury and that pre-treatment with antihistamines improved functional outcomes in apoE-deficient but not wild-type animals after head injury. These results suggest that apoE modifies secondary neuronal injury caused by histamine release and are consistent with previous observations that apoE affects the CNS inflammatory response in an isoform-specific manner.

  17. Oligomeric protein complexes of apolipoproteins stabilize the internal fluid environment of organism in redfins of the Tribolodon genus [Pisces; Cypriniformes, Cyprinidae].

    PubMed

    Andreeva, Alla M; Serebryakova, Marina V; Lamash, Nina E

    2017-06-01

    One of the most important functions of plasma proteins in vertebrates is their participation in osmotic homeostasis in the organism. Modern concepts about plasma proteins and their capillary filtration are based on a model of large monomeric proteins that are able to penetrate the interstitial space. At the same time, it was revealed that a considerable amount of oligomeric complexes are present in the low-molecular-weight (LM) protein fraction in the extracellular fluids of fishes. The functions of these complexes are unknown. In the present study, we investigated the LM-fraction proteins in the plasma and interstitial fluid (IF) of redfins of the genus Tribolodon. This fish alternatively spends parts of its life cycle in saline and fresh waters. We identified the protein Wap65, serpins and apolipoproteins in this fraction. By combining the methods of 2D-E under native and denaturing conditions with MALDI, we demonstrated that only apolipoproteins formed complexes. We showed that serum apolipoproteins (АроА-I, Аро-14) were present in the form of homooligomeric complexes that were dissociated with the release of monomeric forms of proteins in the course of capillary filtration to IF. Dissociation of homooligomers is not directly correlated with the change in salinity but is correlated with seasonal dynamics. We found that there was a significant decrease in the total protein concentration in IF relative to plasma. Therefore, we suggested that dissociation of homooligomeric complexes from various apolipoproteins supports the isoosmoticity of extracellular fluids relative to capillary wall stabilization through a fluid medium in fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A structural mechanism for dimeric to tetrameric oligomer conversion in Halomonas sp. nucleoside diphosphate kinase

    PubMed Central

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Tamada, Taro; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2012-01-01

    Nucleoside diphosphate kinase (NDK) is known to form homotetramers or homohexamers. To clarify the oligomer state of NDK from moderately halophilic Halomonas sp. 593 (HaNDK), the oligomeric state of HaNDK was characterized by light scattering followed by X-ray crystallography. The molecular weight of HaNDK is 33,660, and the X-ray crystal structure determination to 2.3 and 2.7 Å resolution showed a dimer form which was confirmed in the different space groups of R3 and C2 with an independent packing arrangement. This is the first structural evidence that HaNDK forms a dimeric assembly. Moreover, the inferred molecular mass of a mutant HaNDK (E134A) indicated 62.1–65.3 kDa, and the oligomerization state was investigated by X-ray crystallography to 2.3 and 2.5 Å resolution with space groups of P21 and C2. The assembly form of the E134A mutant HaNDK was identified as a Type I tetramer as found in Myxococcus NDK. The structural comparison between the wild-type and E134A mutant HaNDKs suggests that the change from dimer to tetramer is due to the removal of negative charge repulsion caused by the E134 in the wild-type HaNDK. The higher ordered association of proteins usually contributes to an increase in thermal stability and substrate affinity. The change in the assembly form by a minimum mutation may be an effective way for NDK to acquire molecular characteristics suited to various circumstances. PMID:22275000

  19. Apolipoprotein E genotypes do not influence the age of onset in Huntington's disease

    PubMed Central

    Saft, C; Andrich, J; Brune, N; Gencik, M; Kraus, P; Przuntek, H; Epplen, J

    2004-01-01

    Objective: The ε4 allele of the apolipoprotein E (ApoE) gene has been defined as a critical factor for early onset neurodegeneration in Pick's, Parkinson's, and Alzheimer's disease. Unexpectedly, the ε4 allele appeared to delay the age of onset in Huntington's disease (HD) patients. Furthermore, sex specific effects were reported on earlier age of onset due to the ApoE ε2ε3 genotype in males with HD. The age of onset of HD is known to be negatively correlated with increasing lengths of pathogenetic CAG expansions in the huntingtin gene. Methods: In order to examine the effects of CAG block lengths, we have correlated ApoE genotypes with the age of onset in 145 patients symptomatic for HD with psychiatric and somatic symptoms (depression, psychosis, dementia, choreic, and other movement disorders) harbouring only modestly expanded huntingtin alleles (41–45 CAGs). Results: The negative correlation between age of onset and CAG block length was established in our HD cohort. Statistically significant effects of the ε4 allele were not obvious regarding clinical characteristics including age of onset, nor were any sex differences for the ε2ε3 genotype observed. Conclusion: The ApoE genotype does not affect the course of HD significantly. PMID:15548484

  20. A facile method for isolation of recombinant human apolipoprotein A-I from E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikon, Nikita; Shearer, Jennifer; Liu, Jianfang

    Apolipoprotein (apo) A-I is the major protein component of high-density lipoprotein (HDL) and plays key roles in the Reverse Cholesterol Transport pathway. In the past decade, reconstituted HDL (rHDL) has been employed as a therapeutic agent for treatment of atherosclerosis. The ability of rHDL to promote cholesterol efflux from peripheral cells has been documented to reduce the size of atherosclerotic plaque lesions. However, development of apoA-I rHDL-based therapeutics for human use requires a cost effective process to generate an apoA-I product that meets “Good Manufacturing Practice” standards. Methods available for production and isolation of unmodified recombinant human apoA-I at scalemore » are cumbersome, laborious and complex. To overcome this obstacle, a streamlined two-step procedure has been devised for isolation of recombinant untagged human apoA-I from E. coli that takes advantage of its ability to re-fold to a native conformation following denaturation. Heat treatment of a sonicated E. coli supernatant fraction induced precipitation of a large proportion of host cell proteins (HCP), yielding apoA-I as the major soluble protein. Reversed-phase HPLC of this material permitted recovery of apoA-I largely free of HCP and endotoxin. In conclusion, purified apoA-I possessed α-helix secondary structure, formed rHDL upon incubation with phospholipid and efficiently promoted cholesterol efflux from cholesterol loaded J774 macrophages.« less

  1. A facile method for isolation of recombinant human apolipoprotein A-I from E. coli

    DOE PAGES

    Ikon, Nikita; Shearer, Jennifer; Liu, Jianfang; ...

    2017-03-20

    Apolipoprotein (apo) A-I is the major protein component of high-density lipoprotein (HDL) and plays key roles in the Reverse Cholesterol Transport pathway. In the past decade, reconstituted HDL (rHDL) has been employed as a therapeutic agent for treatment of atherosclerosis. The ability of rHDL to promote cholesterol efflux from peripheral cells has been documented to reduce the size of atherosclerotic plaque lesions. However, development of apoA-I rHDL-based therapeutics for human use requires a cost effective process to generate an apoA-I product that meets “Good Manufacturing Practice” standards. Methods available for production and isolation of unmodified recombinant human apoA-I at scalemore » are cumbersome, laborious and complex. To overcome this obstacle, a streamlined two-step procedure has been devised for isolation of recombinant untagged human apoA-I from E. coli that takes advantage of its ability to re-fold to a native conformation following denaturation. Heat treatment of a sonicated E. coli supernatant fraction induced precipitation of a large proportion of host cell proteins (HCP), yielding apoA-I as the major soluble protein. Reversed-phase HPLC of this material permitted recovery of apoA-I largely free of HCP and endotoxin. In conclusion, purified apoA-I possessed α-helix secondary structure, formed rHDL upon incubation with phospholipid and efficiently promoted cholesterol efflux from cholesterol loaded J774 macrophages.« less

  2. Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles*S⃞

    PubMed Central

    Cappuccio, Jenny A.; Blanchette, Craig D.; Sulchek, Todd A.; Arroyo, Erin S.; Kralj, Joel M.; Hinz, Angela K.; Kuhn, Edward A.; Chromy, Brett A.; Segelke, Brent W.; Rothschild, Kenneth J.; Fletcher, Julia E.; Katzen, Federico; Peterson, Todd C.; Kudlicki, Wieslaw A.; Bench, Graham; Hoeprich, Paul D.; Coleman, Matthew A.

    2008-01-01

    Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies. PMID:18603642

  3. Dimeric Structure of the Blue Light Sensor Protein Photozipper in the Active State.

    PubMed

    Ozeki, Kohei; Tsukuno, Hiroyuki; Nagashima, Hiroki; Hisatomi, Osamu; Mino, Hiroyuki

    2018-02-06

    The light oxygen voltage-sensing (LOV) domain plays a crucial role in blue light (BL) sensing in plants and microorganisms. LOV domains are usually associated with the effector domains and regulate the activities of effector domains in a BL-dependent manner. Photozipper (PZ) is monomeric in the dark state. BL induces reversible dimerization of PZ and subsequently increases its affinity for the target DNA sequence. In this study, we report the analyses of PZ by pulsed electron-electron double resonance (PELDOR). The neutral flavin radical was formed by BL illumination in the presence of dithiothreitol in the LOV-C254S (without the bZIP domain) and PZ-C254S mutants, where the cysteine residue responsible for adduct formation was replaced with serine. The magnetic dipole interactions of 3 MHz between the neutral radicals were detected in both LOV-C254S and PZ-C254S, indicating that these mutants are dimeric in the radical state. The PELDOR simulation showed that the distance between the radical pair is close to that estimated from the dimeric crystal structure in the "light state" [Heintz, U., and Schlichting, I. (2016) eLife 5, e11860], suggesting that in the radical state, LOV domains in PZ-C254S form a dimer similar to that of LOV-C254S, which lacks the bZIP domain.

  4. Apolipoprotein E genotype and LRP1 polymorphisms in patients with different clinical types of metachromatic leukodystrophy.

    PubMed

    Ługowska, Agnieszka; Musielak, Małgorzata; Jamroz, Ewa; Pyrkosz, Antoni; Kmieć, Tomasz; Tylki-Szymańska, Anna; Bednarska-Makaruk, Małgorzata

    2013-09-10

    Metachromatic leukodystrophy (MLD) is a severe, neurodegenerative, metabolic disease which is caused by deficient activity of arylsulfatase A (ARSA). Sulfatides and other substrates of ARSA are stored in central and peripheral nervous systems, and in some other organs. Accumulated sulfatides are especially toxic to oligodendrocytes and Schwann cells leading to progressive demyelination. The kind of apolipoprotein E (apoE) isoform is of essential significance for the modulation of sulfatide quantity in the brain as apoE4 contains more sulfatides than apoE3. Taking into consideration the fact that apoE4 leads to the loss of sulfatides in CSF of Alzheimer's disease patients, we examined if apoE isoforms display any impact on clinical outcome in patients with different forms of MLD in whom sulfatides accumulate. The significant association of age at the onset of MLD symptoms with APOE ε2/ε3/ε4 and LRP1 c.766C>T polymorphisms was shown in multivariate stepwise regression analysis, in which other factors known to affect age at onset of the disease, i.e. clinical type of MLD, family connection of the patient and sex were also analyzed. As expected, the clinical type of MLD explained about 80% of the variance of the dependent variable. The impact of both polymorphisms on age of onset of the disease was considerably lower: 2.0% in the case of APOE polymorphism and 1.0% in the case of LRP1 polymorphism. Thus, the clinical outcome in MLD patients is related principally to the genotype of the ARSA gene, while the polymorphisms in the APOE and LRP1 genes are only slightly modifying factors. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Genes determining the severity of cerebral palsy: the role of single nucleotide polymorphisms on the amount and structure of apolipoprotein E

    PubMed Central

    Lien, Espen; Andersen, Guro; Bao, Yongde; Gordish-Dressman, Heather; Skranes, Jon S.; Blackman, James A.; Vik, Torstein

    2015-01-01

    Aim ApolipoproteinE (apoE) influences repair and other processes in the brain and the apoE4 variant is a risk factor for Alzheimer's disease and for prolonged recovery following traumatic brain injury. We previously reported that specific single nucleotide polymorphisms in the APOE or TOMM40 genes affecting the structure and production of apoE were associated with epilepsy, more impaired hand function and gastrostomy tube feeding in children with cerebral palsy (CP). This study explored how various combinations of the same polymorphisms may affect these clinical manifestations. Methods Successful DNA analyses of APOE and TOMM40 were carried out on 227 children. The CP Register of Norway provided details of gross and fine motor function, epilepsy and gastrostomy tube feeding. Possible associations between these clinical manifestations and various combinations of the APOEε2, ε3 or ε4 alleles and of the rs59007384 polymorphism in the TOMM40 gene were explored. Results Epilepsy, impaired fine motor function and gastrostomy tube feeding were less common in children carrying the combination of rs59007384 GG and APOEε2 or ε3 than in children with other combinations. Conclusion Our findings suggest that specific combinations of genes influence the structure and production of apoE differently and affect the clinical manifestations of CP. PMID:25703783

  6. Hsp70 Forms Antiparallel Dimers Stabilized by Post-translational Modifications to Position Clients for Transfer to Hsp90

    PubMed Central

    Morgner, Nina; Schmidt, Carla; Beilsten-Edmands, Victoria; Ebong, Ima-obong; Patel, Nisha A.; Clerico, Eugenia M.; Kirschke, Elaine; Daturpalli, Soumya; Jackson, Sophie E.; Agard, David; Robinson, Carol V.

    2015-01-01

    Summary Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90. PMID:25921532

  7. Kinetics and structural features of dimeric glutamine-dependent bacterial NAD+ synthetases suggest evolutionary adaptation to available metabolites.

    PubMed

    Santos, Adrian Richard Schenberger; Gerhardt, Edileusa Cristina Marques; Moure, Vivian Rotuno; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Diamanti, Riccardo; Högbom, Martin; Huergo, Luciano Fernandes

    2018-05-11

    NADH (NAD + ) and its reduced form NADH serve as cofactors for a variety of oxidoreductases that participate in many metabolic pathways. NAD + also is used as substrate by ADP-ribosyl transferases and by sirtuins. NAD + biosynthesis is one of the most fundamental biochemical pathways in nature, and the ubiquitous NAD + synthetase (NadE) catalyzes the final step in this biosynthetic route. Two different classes of NadE have been described to date: dimeric single-domain ammonium-dependent NadE NH3 and octameric glutamine-dependent NadE Gln , and the presence of multiple NadE isoforms is relatively common in prokaryotes. Here, we identified a novel dimeric group of NadE Gln in bacteria. Substrate preferences and structural analyses suggested that dimeric NadE Gln enzymes may constitute evolutionary intermediates between dimeric NadE NH3 and octameric NadE Gln The characterization of additional NadE isoforms in the diazotrophic bacterium Azospirillum brasilense along with the determination of intracellular glutamine levels in response to an ammonium shock led us to propose a model in which these different NadE isoforms became active accordingly to the availability of nitrogen. These data may explain the selective pressures that support the coexistence of multiple isoforms of NadE in some prokaryotes. © 2018 Santos et al.

  8. Domain-Swapped Dimers of Intracellular Lipid-Binding Proteins: Evidence for Ordered Folding Intermediates.

    PubMed

    Assar, Zahra; Nossoni, Zahra; Wang, Wenjing; Santos, Elizabeth M; Kramer, Kevin; McCornack, Colin; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-09-06

    Human Cellular Retinol Binding Protein II (hCRBPII), a member of the intracellular lipid-binding protein family, is a monomeric protein responsible for the intracellular transport of retinol and retinal. Herein we report that hCRBPII forms an extensive domain-swapped dimer during bacterial expression. The domain-swapped region encompasses almost half of the protein. The dimer represents a novel structural architecture with the mouths of the two binding cavities facing each other, producing a new binding cavity that spans the length of the protein complex. Although wild-type hCRBPII forms the dimer, the propensity for dimerization can be substantially increased via mutation at Tyr60. The monomeric form of the wild-type protein represents the thermodynamically more stable species, making the domain-swapped dimer a kinetically trapped entity. Hypothetically, the wild-type protein has evolved to minimize dimerization of the folding intermediate through a critical hydrogen bond (Tyr60-Glu72) that disfavors the dimeric form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Apolipoprotein E genotypes associated with Alzheimer disease and concomitant stroke.

    PubMed

    Fekih-Mrissa, Najiba; Klai, Sarra; Mrad, Meriem; Mansour, Malek; Zaouali, Jamel; Gritli, Nasreddine; Mrissa, Ridha

    2014-04-01

    The ɛ4 allele of the apolipoprotein E (APOE) gene is a well-characterized genetic risk factor for Alzheimer disease (AD). The association between stroke and a higher risk for AD has also been reported. Our study sought to determine the relationship between the APOE gene and AD and the comorbid risk of stroke. The subjects of this study consisted of 48 patients with AD and 48 members of a control group. All subjects were genotyped for APOE. The results clearly show a significant increased risk of AD in carriers of the APOE ε3/ε4 genotype (P = .003, odds ratio [OR] = 4.1) or ε4 allele (P = .001, OR = 4.2). The risk for stroke in AD patients was also increased for carriers of the APOE ε3/ε4 genotype (P = .02, OR = 9.0) and for carriers of the APOE ε4 allele (P = .004, OR = 5.5). The present study is the first to establish a relationship between APOE ε4 and concomitant AD and stroke in the Tunisian population. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. Scavenger receptor function of mouse Fcγ receptor III contributes to progression of atherosclerosis in apolipoprotein E hyperlipidemic mice.

    PubMed

    Zhu, Xinmei; Ng, Hang Pong; Lai, Yen-Chun; Craigo, Jodi K; Nagilla, Pruthvi S; Raghani, Pooja; Nagarajan, Shanmugam

    2014-09-01

    Recent studies showed loss of CD36 or scavenger receptor-AI/II (SR-A) does not ameliorate atherosclerosis in a hyperlipidemic mouse model, suggesting receptors other than CD36 and SR-A may also contribute to atherosclerosis. In this report, we show that apolipoprotein E (apoE)-CD16 double knockout (DKO; apoE-CD16 DKO) mice have reduced atherosclerotic lesions compared with apoE knockout mice. In vivo and in vitro foam cell analyses showed apoE-CD16 DKO macrophages accumulated less neutral lipids. Reduced foam cell formation in apoE-CD16 DKO mice is not due to change in expression of CD36, SR-A, and LOX-1. This led to a hypothesis that CD16 may have scavenger receptor activity. We presented evidence that a soluble form of recombinant mouse CD16 (sCD16) bound to malondialdehyde-modified low-density lipoprotein (MDALDL), and this binding is blocked by molar excess of MDA- modified BSA and anti-MDA mAbs, suggesting CD16 specifically recognizes MDA epitopes. Interestingly, sCD16 inhibited MDALDL binding to macrophage cell line, as well as soluble forms of recombinant mouse CD36, SR-A, and LOX-1, indicating CD16 can cross-block MDALDL binding to other scavenger receptors. Anti-CD16 mAb inhibited immune complex binding to sCD16, whereas it partially inhibited MDALDL binding to sCD16, suggesting MDALDL binding site may be in close proximity to the immune complex binding site in CD16. Loss of CD16 expression resulted in reduced levels of MDALDL-induced proinflammatory cytokine expression. Finally, CD16-deficient macrophages showed reduced MDALDL-induced Syk phosphorylation. Collectively, our findings suggest scavenger receptor activity of CD16 may, in part, contribute to the progression of atherosclerosis. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy.

    PubMed

    Shing, Cecilia M; Fassett, Robert G; Peake, Jonathan M; Coombes, Jeff S

    2014-12-01

    Inflammation and endothelial dysfunction contribute to cardiovascular disease, prevalent in chronic kidney disease (CKD). Antioxidant supplements such as tocopherols may reduce inflammation and atherosclerosis. This study aimed to investigate the effect of tocopherol supplementation on vascular function, aortic plaque formation, and inflammation in apolipoprotein E(-/-) mice with 5/6 nephrectomy as a model of combined cardiovascular and kidney disease. Nephrectomized mice were assigned to a normal chow diet group (normal chow), a group receiving 1000 mg/kg diet of α-tocopherol supplementation or a group receiving 1000 mg/kg diet mixed-tocopherol (60% γ-tocopherol). Following 12 weeks, in vitro aortic endothelial-independent relaxation was enhanced with both α-tocopherol and mixed-tocopherol (P < 0.05), while mixed-tocopherol enhanced aortic contraction at noradrenaline concentrations of 3 × 10(-7) M to 3 × 10(-5) M (P < 0.05), when compared to normal chow. Supplementation with α- and mixed-tocopherol reduced systemic concentrations of IL-6 (P < 0.001 and P < 0.001, respectively) and IL-10 (P < 0.05 and P < 0.001, respectively), while α-tocopherol also reduced MCP-1 (P < 0.05) and tumor necrosis factor (TNF)-α (P < 0.05). Aortic sinus plaque area was significantly reduced with α-tocopherol supplementation when compared to normal chow (P < 0.01). Tocopherol supplementation favorably influenced vascular function and cytokine profile, while it was also effective in reducing atherosclerosis in the apolipoprotein E(-/-) mouse with CKD. © 2014 John Wiley & Sons Ltd.

  12. Nonreplication of an Association of Apolipoprotein E2 With Sinistrality

    PubMed Central

    Piper, Brian J.; Yasen, Alia L.; Taylor, Amy E.; Ruiz, Jonatan R.; Gaynor, J. William; Dayger, Catherine A.; Gonzalez-Gross, Marcela; Kwon, Oh D.; Nilsson, Lars-Göran; Day, Ian N. M.; Raber, Jacob; Miller, Jeremy K.

    2013-01-01

    A recent report found that left-handed adolescents were over three-fold more likely to have an Apolipoprotein (APOE) ε2 allele. This study was unable to replicate this association in young-adults (N=166). A meta-analysis of nine other datasets (N = 360 to 7,559, Power > 0.999) including that of National Alzheimer’s Coordinating Center also failed to find an over-representation of ε2 among left-handers indicating that this earlier outcome was most likely a statistical artifact. PMID:22721421

  13. Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice.

    PubMed

    Campbell, Arezoo; Araujo, Jesus A; Li, Huihui; Sioutas, Constantinos; Kleinman, Michael

    2009-08-01

    Exposure to air particulate matter (PM) present in urban environments have been shown to induce systemic prooxidant and proinflammatory effects in apolipoprotein E knockout (ApoE-/-) mice and proinflammatory central nervous system (CNS) effects in BALB/c mice. We hypothesize that ApoE-/- mice would exhibit a greater propensity to develop PM-induced CNS effects due to their greater susceptibility to CNS inflammation. We studied the brains of ApoE-/- mice exposed in a previous study to concentrated air particles of different sizes (fine vs. ultrafine) or filtered-air to evaluate the effect of PM exposure on the development of CNS proinflammatory effects in a genetically susceptible background. This was important because, although the use of nano-sized materials opens an exciting potential for their use as diagnostic or therapeutic tools, not much is known about the possible CNS toxicity of these particles. Neuroinflammation has been shown to exacerbate progression of neurodegeneration. Since the onset and progression of idiopathic forms of neurodegenerative disorders are likely to be multifactorial and involve gene-environment interactions, we determined the possibility of particles in ambient air pollution to enhance neuroinflammation. Our results indicate that in the brain, there was significant modulation in the activation of the transcription factors NF-kappaB and AP-1 after exposure to the ultrafine fractions. Levels of two pro-inflammatory cytokines (TNF-alpha and IL-1alpha) were also increased in the brain of exposed animals and this was independent of the size fraction of PM. Since inflammatory processes have been shown to contribute to the pathology associated with neurodegenerative diseases, it will be important to further evaluate the role ambient particles may play in the potentiation of existing CNS damage and progression of neurodegenerative disorders.

  14. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E – Deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinmetz, Martin, E-mail: martin.steinmetz@ukb.uni-bonn.de; Internal Medicine II, University Hospital Bonn, 53105 Bonn; Ponnuswamy, Padmapriya

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10{sup 7} OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lowermore » IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E − deficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  15. Atherosclerosis and leukocyte-endothelial adhesive interactions are increased following acute myocardial infarction in apolipoprotein E deficient mice.

    PubMed

    Wright, Andrew P; Öhman, Miina K; Hayasaki, Takanori; Luo, Wei; Russo, Hana M; Guo, Chiao; Eitzman, Daniel T

    2010-10-01

    To determine the effect of myocardial infarction (MI) on progression of atherosclerosis in apolipoprotein E deficient (ApoE-/-) mice. MI was induced following left anterior descending coronary artery (LAD) ligation in wild-type (WT) (n=9) and ApoE-/- (n=25) mice. Compared to sham-operated animals, MI mice demonstrated increased intravascular leukocyte rolling and firm adhesion by intravital microscopy, reflecting enhanced systemic leukocyte-endothelial interactions. To determine if MI was associated with accelerated atherogenesis, LAD ligation was performed in ApoE-/- mice. Six weeks following surgery, atherosclerosis was quantitated throughout the arterial tree by microdissection and Oil-Red-O staining. There was 1.6-fold greater atherosclerotic burden present in ApoE-/- MI mice compared to sham-operated mice. Acute MI accelerates atherogenesis in mice. These results may be related to the increased risk of recurrent ischemic coronary events following MI in humans. Published by Elsevier Ireland Ltd.

  16. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Significance for etiological theories of Alzheimer's disease.

    PubMed

    Harrington, C R; Louwagie, J; Rossau, R; Vanmechelen, E; Perry, R H; Perry, E K; Xuereb, J H; Roth, M; Wischik, C M

    1994-12-01

    Alzheimer's disease (AD) is associated with an increased frequency of the apolipoprotein E type epsilon 4 allele. To address both the disease and the allele specificity of this association, we have examined the apolipoprotein E allele distribution in 255 elderly persons including those with autopsy-confirmed AD, senile dementia of the Lewy body type (SDLT), vascular dementia, Parkinson's disease (PD) or Huntington's disease and in nondemented controls either with or without coronary complications. The epsilon 4 allele frequency was increased in SDLT (0.365) and AD (0.328) as compared with controls (0.147), PD (0.098), or Huntington's chorea (0.171). Coronary disease and vascular dementia were associated with marginally higher epsilon 4 allele frequencies than in controls. In PD, amyloid beta-protein accumulated to a greater extent in those cases possessing an epsilon 4 allele than in those without. Those PD cases with dementia were not distinguished from either controls or PD cases without dementia, whether tested biochemically or by apolipoprotein E genotype. It is the comparison of the results in AD and SDLT that yielded the most significant findings. There was a 1.8-fold excess of amyloid beta-protein in AD as compared with controls, and the levels in SDLT were intermediate between those in AD and controls. In contrast, AD was discriminated from both controls and SDLT by the substantial accumulation of paired helical filament tau and phosphorylated tau (both increased more than 20-fold as compared with controls). SDLT was nevertheless characterized by an increased epsilon 4 allele frequency in the absence of significant tau pathology (at least 10-fold less than that in AD). These findings indicate that tau processing is more specifically associated with AD than is amyloid beta-protein accumulation and that presence of the epsilon 4 allele is not an etiological factor that accounts for tau pathology.

  17. Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Significance for etiological theories of Alzheimer's disease.

    PubMed Central

    Harrington, C. R.; Louwagie, J.; Rossau, R.; Vanmechelen, E.; Perry, R. H.; Perry, E. K.; Xuereb, J. H.; Roth, M.; Wischik, C. M.

    1994-01-01

    Alzheimer's disease (AD) is associated with an increased frequency of the apolipoprotein E type epsilon 4 allele. To address both the disease and the allele specificity of this association, we have examined the apolipoprotein E allele distribution in 255 elderly persons including those with autopsy-confirmed AD, senile dementia of the Lewy body type (SDLT), vascular dementia, Parkinson's disease (PD) or Huntington's disease and in nondemented controls either with or without coronary complications. The epsilon 4 allele frequency was increased in SDLT (0.365) and AD (0.328) as compared with controls (0.147), PD (0.098), or Huntington's chorea (0.171). Coronary disease and vascular dementia were associated with marginally higher epsilon 4 allele frequencies than in controls. In PD, amyloid beta-protein accumulated to a greater extent in those cases possessing an epsilon 4 allele than in those without. Those PD cases with dementia were not distinguished from either controls or PD cases without dementia, whether tested biochemically or by apolipoprotein E genotype. It is the comparison of the results in AD and SDLT that yielded the most significant findings. There was a 1.8-fold excess of amyloid beta-protein in AD as compared with controls, and the levels in SDLT were intermediate between those in AD and controls. In contrast, AD was discriminated from both controls and SDLT by the substantial accumulation of paired helical filament tau and phosphorylated tau (both increased more than 20-fold as compared with controls). SDLT was nevertheless characterized by an increased epsilon 4 allele frequency in the absence of significant tau pathology (at least 10-fold less than that in AD). These findings indicate that tau processing is more specifically associated with AD than is amyloid beta-protein accumulation and that presence of the epsilon 4 allele is not an etiological factor that accounts for tau pathology. PMID:7992850

  18. Cerebral protein kinase C and its mRNA level in apolipoprotein E-deficient mice.

    PubMed

    Hung, M C; Hayase, K; Yoshida, R; Sato, M; Imaizumi, K

    2001-08-10

    It is known that protein kinase C (PKC) activity may be one of the fundamental cellular changes associated with memory function. Apolipoprotein E (apoE) deficiency causes cholinergic deficits and memory impairment. ApoE-deficient mouse has been employed as a serviceable model for studying the relation between apoE and the memory deficit induced by cholinergic impairment. Brain-fatty acid binding protein (b-FABP) might be functional during development of the nervous system. Peroxisome proliferator-activated receptor (PPAR) is involved in the early change in lipid metabolism. We investigated the alterations not only in cerebral PKC activity, but also in the gene expressions of PKC-beta, brain-FABP and PPAR-alpha in apoE-deficient mice. The results showed that there was a lower cerebral membrane-bound PKC activity in the apoE-deficient mice than in its wild type strain (C57BL/6). But there were no significant differences in cytosolic PKC activity. PKC-beta, b-FABP and PPAR-alpha mRNA expressions in cerebrum were lowered in apoE-deficient mice. These findings may be involved in the dysfunction of the brain neurotransmission system in apoE-deficient mouse. Alternatively, these results also suggest that cerebral apoE plays an important role in brain PKC activation by maintaining an appropriate expression of b-FABP and PPAR-alpha mRNAs.

  19. High-resolution Crystal Structure of Dimeric VP40 From Sudan ebolavirus.

    PubMed

    Clifton, Matthew C; Bruhn, Jessica F; Atkins, Kateri; Webb, Terry L; Baydo, Ruth O; Raymond, Amy; Lorimer, Donald D; Edwards, Thomas E; Myler, Peter J; Saphire, Erica Ollmann

    2015-10-01

    Ebolaviruses cause severe hemorrhagic fever. Central to the Ebola life cycle is the matrix protein VP40, which oligomerizes and drives viral budding. Here we present the crystal structure of the Sudan virus (SUDV) matrix protein. This structure is higher resolution (1.6 Å) than previously achievable. Despite differences in the protein purification, we find that it still forms a stable dimer in solution, as was noted for other Ebola VP40s. Although the N-terminal domain interface by which VP40 dimerizes is conserved between Ebola virus and SUDV, the C-terminal domain interface by which VP40 dimers may further assemble is significantly smaller in this SUDV assembly. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals.

    PubMed

    Song, Fei; Poljak, Anne; Crawford, John; Kochan, Nicole A; Wen, Wei; Cameron, Barbara; Lux, Ora; Brodaty, Henry; Mather, Karen; Smythe, George A; Sachdev, Perminder S

    2012-01-01

    Apolipoproteins have recently been implicated in the etiology of Alzheimer's disease (AD). In particular, Apolipoprotein J (ApoJ or clusterin) has been proposed as a biomarker of the disease at the pre-dementia stage. We examined a group of apolipoproteins, including ApoA1, ApoA2, ApoB, ApoC3, ApoE, ApoH and ApoJ, in the plasma of a longitudinal community based cohort. 664 subjects (257 with Mild Cognitive Impairment [MCI] and 407 with normal cognition), mean age 78 years, from the Sydney Memory and Aging Study (MAS) were followed up over two years. Plasma apolipoprotein levels at baseline (Wave 1) were measured using a multiplex bead fluorescence immunoassay technique. At Wave 1, MCI subjects had lower levels of ApoA1, ApoA2 and ApoH, and higher levels of ApoE and ApoJ, and a higher ApoB/ApoA1 ratio. Carriers of the apolipoprotein E ε4 allele had significantly lower levels of plasma ApoE, ApoC3 and ApoH and a significantly higher level of ApoB. Global cognitive scores were correlated positively with ApoH and negatively with ApoJ levels. ApoJ and ApoE levels were correlated negatively with grey matter volume and positively with cerebrospinal fluid (CSF) volume on MRI. Lower ApoA1, ApoA2 and ApoH levels, and higher ApoB/ApoA1 ratio, increased the risk of cognitive decline over two years in cognitively normal individuals. ApoA1 was the most significant predictor of decline. These associations remained after statistically controlling for lipid profile. Higher ApoJ levels predicted white matter atrophy over two years. Elderly individuals with MCI have abnormal apolipoprotein levels, which are related to cognitive function and volumetric MRI measures cross-sectionally and are predictive of cognitive impairment in cognitively normal subjects. ApoA1, ApoH and ApoJ are potential plasma biomarkers of cognitive decline in non-demented elderly individuals.

  1. Plasma Apolipoprotein Levels Are Associated with Cognitive Status and Decline in a Community Cohort of Older Individuals

    PubMed Central

    Song, Fei; Poljak, Anne; Crawford, John; Kochan, Nicole A.; Wen, Wei; Cameron, Barbara; Lux, Ora; Brodaty, Henry; Mather, Karen; Smythe, George A.; Sachdev, Perminder S.

    2012-01-01

    Objectives Apolipoproteins have recently been implicated in the etiology of Alzheimer’s disease (AD). In particular, Apolipoprotein J (ApoJ or clusterin) has been proposed as a biomarker of the disease at the pre-dementia stage. We examined a group of apolipoproteins, including ApoA1, ApoA2, ApoB, ApoC3, ApoE, ApoH and ApoJ, in the plasma of a longitudinal community based cohort. Methods 664 subjects (257 with Mild Cognitive Impairment [MCI] and 407 with normal cognition), mean age 78 years, from the Sydney Memory and Aging Study (MAS) were followed up over two years. Plasma apolipoprotein levels at baseline (Wave 1) were measured using a multiplex bead fluorescence immunoassay technique. Results At Wave 1, MCI subjects had lower levels of ApoA1, ApoA2 and ApoH, and higher levels of ApoE and ApoJ, and a higher ApoB/ApoA1 ratio. Carriers of the apolipoprotein E ε4 allele had significantly lower levels of plasma ApoE, ApoC3 and ApoH and a significantly higher level of ApoB. Global cognitive scores were correlated positively with ApoH and negatively with ApoJ levels. ApoJ and ApoE levels were correlated negatively with grey matter volume and positively with cerebrospinal fluid (CSF) volume on MRI. Lower ApoA1, ApoA2 and ApoH levels, and higher ApoB/ApoA1 ratio, increased the risk of cognitive decline over two years in cognitively normal individuals. ApoA1 was the most significant predictor of decline. These associations remained after statistically controlling for lipid profile. Higher ApoJ levels predicted white matter atrophy over two years. Conclusions Elderly individuals with MCI have abnormal apolipoprotein levels, which are related to cognitive function and volumetric MRI measures cross-sectionally and are predictive of cognitive impairment in cognitively normal subjects. ApoA1, ApoH and ApoJ are potential plasma biomarkers of cognitive decline in non-demented elderly individuals. PMID:22701550

  2. Polymorphisms of apolipoprotein E and angiotensin-converting enzyme genes and carotid atherosclerosis in heavy drinkers.

    PubMed

    Bednarska-Makaruk, Małgorzata; Rodo, Maria; Markuszewski, Cezary; Rozenfeld, Anna; Swiderska, Malgorzata; Habrat, Bogusław; Wehr, Hanna

    2005-01-01

    To investigate the influence of apolipoprotein E (APOE) and angiotensin-converting enzyme (ACE) gene polymorphisms on carotid artery atherosclerosis in alcoholism. Polymorphism of both genes was identified by DNA analysis in 130 male alcohol-dependent patients. Intima-media thickness (IMT) was measured ultrasonographically. Multivariate regression analysis showed that of all the known risk factors the greatest impact on carotid atherosclerosis in alcoholics was exerted by age, hypertension, LDL cholesterol and fasting plasma glucose levels. Subjects carrying the APO E epsilon4 allele were more liable to develop atherosclerotic changes in carotid arteries compared with subjects with the epsilon3/3 genotype, which showed statistical significance in patients under 50 years of age. No association was shown between ACE I/D polymorphism and carotid atherosclerosis. APO E polymorphism can increase the risk of carotid atherosclerosis development in an alcoholic subject. The association of the APO E epsilon4 allele with carotid atherosclerosis was significant in younger patients. Since the elevated carotid IMT is considered to be a good marker of increased risk of generalized atherosclerosis the consequences could involve both cardiac and cerebrovascular events.

  3. Reduced Apolipoprotein Glycosylation in Patients with the Metabolic Syndrome

    PubMed Central

    Savinova, Olga V.; Fillaus, Kristi; Jing, Linhong; Harris, William S.; Shearer, Gregory C.

    2014-01-01

    Objective The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls. Methods Very low density (VLDL), intermediate/low density (IDL/LDL, hereafter LDL), and high density lipoproteins (HDL) fractions were isolated from plasma of 56 metabolic syndrome subjects and from 14 age-sex matched healthy volunteers. The apolipoprotein content of fractions was analyzed by one-dimensional (1D) gel electrophoresis with confirmation by a combination of mass spectrometry and biochemical assays. Results Metabolic syndrome patients differed from healthy controls in the following ways: (1) total plasma - apoA1 was lower, whereas apoB, apoC2, apoC3, and apoE were higher; (2) VLDL - apoB, apoC3, and apoE were increased; (3) LDL - apoC3 was increased, (4) HDL -associated constitutive serum amyloid A protein (SAA4) was reduced (p<0.05 vs. controls for all). In patients with metabolic syndrome, the most extensively glycosylated (di-sialylated) isoform of apoC3 was reduced in VLDL, LDL, and HDL fractions by 17%, 30%, and 25%, respectively (p<0.01 vs. controls for all). Similarly, the glycosylated isoform of apoE was reduced in VLDL, LDL, and HDL fractions by 15%, 26%, and 37% (p<0.01 vs. controls for all). Finally, glycosylated isoform of SAA4 in HDL fraction was 42% lower in patients with metabolic syndrome compared with controls (p<0.001). Conclusions Patients with metabolic syndrome displayed several changes in plasma apolipoprotein composition consistent with hypertriglyceridemia and low HDL cholesterol levels. Reduced glycosylation of apoC3, apoE and SAA4 are novel findings, the pathophysiological consequences of which remain to be determined. PMID:25118169

  4. Apolipoprotein B variant derived from rat intestine.

    PubMed Central

    Krishnaiah, K V; Walker, L F; Borensztajn, J; Schonfeld, G; Getz, G S

    1980-01-01

    A variant of apolipoprotein B has been observed in the lymph lipoproteins [chylomicrons, very low density lipoproteins (VLDL), and low density lipoproteins (LDL)] of rats, in the plasma VLDL of fed rats, and in the plasma VLDL and LDL of rats fed a high-fat, high-cholesterol diet. It is the sole apolipoprotein B in the chylomicrons and VLDL of lymph. It differs from the apolipoprotein B of normal plasma LDL in its immunological properties and in its apparent molecular weight from electrophoresis on 3.5% NaDodSO4/polyacrylamide gel. Images PMID:6933436

  5. Apolipoproteins regulate the kinetics of endothelial lipase-mediated hydrolysis of phospholipids in reconstituted high-density lipoproteins.

    PubMed

    Caiazza, Daniela; Jahangiri, Anisa; Rader, Daniel J; Marchadier, Dawn; Rye, Kerry-Anne

    2004-09-21

    Endothelial lipase (EL) is a newly identified member of the triglyceride lipase gene family that hydrolyzes high-density lipoprotein (HDL) phospholipids. This study investigates the ability of the major apolipoproteins of rHDL to regulate the kinetics of EL-mediated phospholipid hydrolysis in well-characterized, homogeneous preparations of spherical rHDL. The rHDL contained either apoA-I as the only apolipoprotein, (A-I)rHDL, apoA-II as the only apolipoprotein, (A-II)rHDL, or apoA-I as well as apoA-II, (A-I/A-II)rHDL. The rHDL were comparable in terms of size and lipid composition and contained cholesteryl esters (CE) as their sole core lipid. Phospholipid hydrolysis was quantitated as the mass of nonesterified fatty acids (NEFA) released from the rHDL during incubation with EL. The V(max) of phospholipid hydrolysis for (A-I/A-II)rHDL [391.9 +/- 12.9 nmol of NEFA formed (mL of EL)(-1) h(-1)] was greater than (A-I)rHDL [152.8 +/- 4.7 nmol of NEFA formed (mL of EL)(-1) h(-1)]. The energy of activation (E(a)) for the hydrolysis reactions was calculated to be 52.1 and 34.8 kJ mol(-1) for (A-I)rHDL and (A-I/A-II)rHDL, respectively. Minimal phospholipid hydrolysis was observed for the (A-II)rHDL. Kinetic analysis showed that EL has a higher affinity for the phospholipids in (A-I)rHDL [K(m)(app) = 0.10 +/- 0.01 mM] than in (A-I/A-II)rHDL [K(m)(app) = 0.27 +/- 0.03 mM]. Furthermore, (A-I)rHDL is a competitive inhibitor of the EL-mediated phospholipid hydrolysis of (A-I/A-II)rHDL. These results establish that apolipoproteins are major determinants of the kinetics of EL-mediated phospholipid hydrolysis in rHDL.

  6. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  7. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.

    PubMed

    Li, Qi; Zhang, Meixiang; Shen, Danyu; Liu, Tingli; Chen, Yanyu; Zhou, Jian-Min; Dou, Daolong

    2016-05-31

    Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63.

  8. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  9. Population genetics of apolipoprotein A-4, E, and H polymorphisms in Yanomami Indians of northwestern Brazil: associations with lipids, lipoproteins, and carbohydrate metabolism.

    PubMed

    Crews, D E; Kamboh, M I; Mancilha-Carvalho, J J; Kottke, B

    1993-04-01

    Using isoelectric focusing and immunoblotting techniques, we screened 96 serum samples from Yanomami Indians of northwestern Brazil to determine structural variation at three apolipoprotein loci: A4, E, and H. The APO-H locus, which is commonly polymorphic in white and black samples, was found to be monomorphic. At the APO-E locus only two alleles, APOE*3 and APOE*4, rather than the three-allele polymorphism commonly seen in Caucasians, was observed. At the APO-A4 locus no example of the APOA4*2 allele, found in Caucasians, was detected. However, the frequency of the less common APOA4*4 allele was above what has been observed in any other population. We investigated the impact of genetic variation at both polymorphic loci on quantitative differences in lipids, apolipoproteins, serum glucose, glycated hemoglobin, and uric acid. Contrary to the cholesterol-elevating effect of APOE*4 reported elsewhere, in both univariate analyses and after adjustments for age, sex, weight, and height, APOE*4 was associated with about a 4% lower mean serum cholesterol. Only after adjustment was this association statistically significant. The APOE*4 allele was significantly associated with unadjusted APO-A1 and APO-E levels but not with any other dependent variable; associations with adjusted APO-A1, APO-C2, and uric acid also approached standard levels of statistical significance (p < or = 0.05). In univariate analyses the APOA4*4 allele was significantly associated with APO-B, serum glucose, percent glycated hemoglobin, and uric acid, but no significant associations were observed after dependent variables were adjusted for age, sex, weight, and height. These results support the notion that apolipoprotein distributions and their associations with lipid and carbohydrate metabolism show ethnic variability.

  10. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2 (TREM2)*

    PubMed Central

    Atagi, Yuka; Liu, Chia-Chen; Painter, Meghan M.; Chen, Xiao-Fen; Verbeeck, Christophe; Zheng, Honghua; Li, Xia; Rademakers, Rosa; Kang, Silvia S.; Xu, Huaxi; Younkin, Steven; Das, Pritam; Fryer, John D.; Bu, Guojun

    2015-01-01

    Several heterozygous missense mutations in the triggering receptor expressed on myeloid cells 2 (TREM2) have recently been linked to risk for a number of neurological disorders including Alzheimer disease (AD), Parkinson disease, and frontotemporal dementia. These discoveries have re-ignited interest in the role of neuroinflammation in the pathogenesis of neurodegenerative diseases. TREM2 is highly expressed in microglia, the resident immune cells of the central nervous system. Along with its adaptor protein, DAP12, TREM2 regulates inflammatory cytokine release and phagocytosis of apoptotic neurons. Here, we report apolipoprotein E (apoE) as a novel ligand for TREM2. Using a biochemical assay, we demonstrated high-affinity binding of apoE to human TREM2. The functional significance of this binding was highlighted by increased phagocytosis of apoE-bound apoptotic N2a cells by primary microglia in a manner that depends on TREM2 expression. Moreover, when the AD-associated TREM2-R47H mutant was used in biochemical assays, apoE binding was vastly reduced. Our data demonstrate that apoE-TREM2 interaction in microglia plays critical roles in modulating phagocytosis of apoE-bound apoptotic neurons and establish a critical link between two proteins whose genes are strongly linked to the risk for AD. PMID:26374899

  11. Association of apolipoprotein E polymorphism with type 2 diabetes mellitus in a Saudi population.

    PubMed

    Alharbi, Khalid Khalaf; Khan, Imran Ali; Syed, Rabbani

    2014-09-01

    Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disorder characterized by persistent hyperglycemia. It is considered to be a major risk factor for obesity and cardiovascular diseases. The cause of T2DM is likely due to a complex interaction between genetic and environmental factors. Apolipoprotein E (ApoE) gene plays a key role in lipid metabolism. The aim of this contemporary study was to investigate the ApoE polymorphism in a Saudi population with T2DM subjects. Two common single-nucleotide polymorphisms, that is, rs429358 and rs7412, in the ApoE gene were genotyped by TaqMan assay in T2DM patients (n=438) and controls (n=460). The results of the present study indicate that ApoE polymorphism was significantly associated with T2DM in a Saudi population with the ɛ2 and ɛ4 alleles (p=0.0001). We found statistically significant difference in the genotype distribution between T2DM patients and controls [for E4/E4: OR, 4.39 (95% CI: 2.16-8.92); p=0.0001]. A significant difference was observed in the lipid profile parameters, like triglycerides, low-density lipoprotein, and ApoE alleles (p=0.0001). Further studies are carried out in a Saudi population with different diseases to confirm the risk allele. In conclusion, our study results suggest that ApoE variants constitute risk markers of T2DM in a Saudi population.

  12. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations.

    PubMed

    Casolo, S; Tantardini, G F; Martinazzo, R

    2016-07-14

    We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.

  13. Effects of apolipoprotein E genotype on cortical neuropathology in senile dementia of the Lewy body and Alzheimer's disease.

    PubMed

    Benjamin, R; Leake, A; Ince, P G; Perry, R H; McKeith, I G; Edwardson, J A; Morris, C M

    1995-12-01

    Apolipoprotein E (APO E) genotypes were determined in a UK population of neuropathologically confirmed control cases, and in cases of Lewy body dementia (SDLT) and late onset Alzheimer's disease (AD). APO E epsilon 4 allele frequency was significantly elevated in both SDLT and AD groups with a concomitant reduction in the APO E epsilon 3 allele frequency. The epsilon 2 allele frequency in the AD group was only 25% of the control population, though because of the relatively small sample size this reduction was not significant; the epsilon 2 allele frequency in the SDLT group was normal. No significant association was found between senile plaque density and neurofibrillary tangle density in the neocortex and APO E allele dose in either SDLT or AD. Although the possession of APO E epsilon 4 is associated with an increased risk of developing SDLT and AD, actual APO E genotype does not appear to affect the burden of pathology.

  14. Apolipoprotein E Polymorphism and Left Ventricular Failure in Beta-Thalassemia: A Multivariate Meta-Analysis.

    PubMed

    Dimou, Niki L; Pantavou, Katerina G; Bagos, Pantelis G

    2017-09-01

    Apolipoprotein E (ApoE) is potentially a genetic risk factor for the development of left ventricular failure (LVF), the main cause of death in beta-thalassemia homozygotes. In the present study, we synthesize the results of independent studies examining the effect of ApoE on LVF development in thalassemic patients through a meta-analytic approach. However, all studies report more than one outcome, as patients are classified into three groups according to the severity of the symptoms and the genetic polymorphism. Thus, a multivariate meta-analytic method that addresses simultaneously multiple exposures and multiple comparison groups was developed. Four individual studies were included in the meta-analysis involving 613 beta-thalassemic patients and 664 controls. The proposed method that takes into account the correlation of log odds ratios (log(ORs)), revealed a statistically significant overall association (P-value  =  0.009), mainly attributed to the contrast of E4 versus E3 allele for patients with evidence (OR: 2.32, 95% CI: 1.19, 4.53) or patients with clinical and echocardiographic findings (OR: 3.34, 95% CI: 1.78, 6.26) of LVF. This study suggests that E4 is a genetic risk factor for LVF in beta-thalassemia major. The presented multivariate approach can be applied in several fields of research. © 2017 John Wiley & Sons Ltd/University College London.

  15. Apolipoprotein E gene polymorphism and Alzheimer's disease in Chinese population: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Liu, Mengying; Bian, Chen; Zhang, Jiqiang; Wen, Feng

    2014-03-01

    The relationship between Apolipoprotein E (ApoE) genotype and the risk of Alzheimer's disease (AD) is relatively well established in Caucasians, but less established in other ethnicities. To examine the association between ApoE polymorphism and the onset of AD in Chinese population, we searched the commonly used electronic databases between January 2000 and November 2013 for relevant studies. Total 20 studies, including 1576 cases and 1741 controls, were retrieved. The results showed statistically significant positive association between risk factor ɛ4 allele carriers and AD in Chinese population (OR = 3.93, 95% CI = 3.37-4.58, P < 0.00001). Genotype ApoE ɛ4/ɛ4 and ɛ4/ɛ3 have statistically significant association with AD as well (ɛ4/ɛ4: OR = 11.76, 95% CI = 6.38-21.47, P < 0.00001; ɛ4/ɛ3: OR = 3.08, 95% CI = 2.57-3.69, P < 0.00001). Furthermore, the frequency of the ApoE ɛ3 is lower in AD than that in the health controls, and the difference of ɛ3 allele is also statistically significant (OR = 0.42, 95% CI = 0.37-0.47, P < 0.00001). No significant heterogeneity was observed among all studies. This meta-analysis suggests that the subject with at least one ApoE ɛ4 allele has higher risk suffering from AD than controls in Chinese population. The results also provide a support for the protection effect of ApoE ɛ3 allele in developing AD.

  16. Quantitation of apolipoprotein epsilon gene expression by competitive polymerase chain reaction in a patient with familial apolipoprotein E deficiency.

    PubMed

    Dobmeyer, J M; Rexin, M; Dobmeyer, T S; Klein, S A; Rossol, R; Feussner, G

    1998-06-22

    A simple method of obtaining semiquantitative and reliable data on apolipoprotein (apo) sigma gene expression is described. We detected apo sigma specific sequences by reverse transcription (rT)-PCR. For quantitative measurement, an apo sigma DNA standard was produced allowing the development of a competitive PCR-method. The efficiency of RNA extraction and cDNA synthesis was controlled by quantitation of a housekeeping gene (glyceraldehyde-3-phosphatedehydrogenase, G3PDH) in separate reactions. To imitate a defined induction of apo sigma gene expression, serial twofold dilutions of total RNA were reversely transcribed and the respective cDNAs used to perform a competitive apo sigma and G3PDH PCR. The change in apo sigma cDNA and G3PDH cDNA was 1.7-2.3-fold with an expected value of 2.0-fold. Standard deviations in three independently performed experiments were within a range of < 15% of the mean, indicating low intra-assay variation and high reproducibility. To illustrate this method, apo sigma gene expression was measured in a patient with complete lack of functional active apo E in comparison to healthy controls. The method presented here might be valuable in assessment of apo sigma gene expression in human disease.

  17. Identification, expression and function of apolipoprotein E in annual fish Nothobranchius guentheri: implication for an aging marker.

    PubMed

    Wang, Xia; Shang, Xiaomei; Luan, Jing; Zhang, Shicui

    2014-06-01

    Apolipoprotein E (apoE) is a lipid-associated protein present in both plasma and in central nervous system. Variation in apoE gene has been reported to be associated with longevity in humans as well as with aged diseases such as atherosclerosis, Alzheimer's disease, and Parkinson's disease. However, information regarding the function and structure-activity relationship of apoE in lower vertebrates is rather limited. In this study we show that the apoE gene from the annual fish Nothobranchius guentheri, NapoE, encodes a protein of 262 amino acids, which shares common structural features characteristic of mammalian apoE. We also show that like human apoE, recombinant NapoE is able to inhibit LDL oxidation, and it is the N-terminal domain of NapoE with lysine or arginine residues that plays a key role in inhibition of LDL oxidation. NapoE is predominantly expressed in the liver of N. guentheri, consistent with that in mammalian species. More importantly, we demonstrate an age-dependent down-regulation of NapoE gene, rendering it a suitable biomarker of aging. This lays a foundation for further study of the role of apoE in the aging process of fish.

  18. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    PubMed

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Differential action of glucocorticoids on apolipoprotein E gene expression in macrophages and hepatocytes

    PubMed Central

    Trusca, Violeta Georgeta; Fuior, Elena Valeria; Fenyo, Ioana Madalina; Kardassis, Dimitris; Simionescu, Maya

    2017-01-01

    Apolipoprotein E (apoE) has anti-atherosclerotic properties, being involved in the transport and clearance of cholesterol-rich lipoproteins as well as in cholesterol efflux from cells. We hypothesized that glucocorticoids may exert anti-inflammatory properties by increasing the level of macrophage-derived apoE. Our data showed that glucocorticoids increased apoE expression in macrophages in vitro as well as in vivo. Dexamethasone increased ~6 fold apoE mRNA levels in cultured peritoneal macrophages and RAW 264.7 cells. Administered to C57BL/6J mice, dexamethasone induced a two-fold increase in apoE expression in peritoneal macrophages. By contrast, glucocorticoids did not influence apoE expression in hepatocytes, in vitro and in vivo. Moreover, dexamethasone enhanced apoE promoter transcriptional activity in RAW 264.7 macrophages, but not in HepG2 cells, as tested by transient transfections. Analysis of apoE proximal promoter deletion mutants, complemented by protein-DNA interaction assays demonstrated the functionality of a putative glucocorticoid receptors (GR) binding site predicted by in silico analysis in the -111/-104 region of the human apoE promoter. In hepatocytes, GR can bind to their specific site within apoE promoter but are not able to modulate the gene expression. The modulatory blockade in hepatocytes is a consequence of partial involvement of transcription factors and other signaling molecules activated through MEK1/2 and PLA2/PLC pathways. In conclusion, our study indicates that glucocorticoids (1) differentially target apoE gene expression; (2) induce a significant increase in apoE level specifically in macrophages. The local increase of apoE gene expression in macrophages at the level of the atheromatous plaque may have therapeutic implications in atherosclerosis. PMID:28355284

  20. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress

    PubMed Central

    Topolska-Woś, Agnieszka M.; Shell, Steven M.; Kilańczyk, Ewa; Szczepanowski, Roman H.; Chazin, Walter J.; Filipek, Anna

    2015-01-01

    CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.—Topolska-Woś, A. M., Shell, S. M., Kilańczyk, E., Szczepanowski, R. H., Chazin, W. J., Filipek, A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. PMID:25609429

  1. Supplementation with tocotrienol-rich fraction alters the plasma levels of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor from young and old individuals.

    PubMed

    Heng, Eng Chee; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Abdul Hamid, Noor Aini; Hamid, Zalina; Wan Ngah, Wan Zurinah

    2013-10-01

    Tocotrienol possess beneficial effects not exhibited by tocopherol. In vitro studies using animal models have suggested that these effects are caused via modulation of gene and protein expression. However, human supplementation studies using tocotrienol-rich isomers are limited. This study aims to identify plasma proteins that changed in expression following tocotrienol-rich fraction (TRF) supplementation within two different age groups. Subjects were divided into two age groups-32 ± 2 (young) and 52 ± 2 (old) years old. Four subjects from each group were assigned with TRF (78% tocotrienol and 22% tocopherol, 150 mg/day) or placebo capsules for 6 months. Fasting plasma were obtained at 0, 3, and 6 months. Plasma tocopherol and tocotrienol levels were determined. Plasma proteome was resolved by 2DE, and differentially expressed proteins identified by MS. The expressions of three proteins were validated by Western blotting. Six months of TRF supplementation significantly increased plasma levels of tocopherols and tocotrienols. Proteins identified as being differentially expressed were related to cholesterol homeostasis, acute-phase response, protease inhibitor, and immune response. The expressions of Apolipoprotein A-I precursor, Apolipoprotein E precursor, and C-reactive protein precursor were validated. The old groups showed more proteins changing in expression. TRF appears to not only affect plasma levels of tocopherols and tocotrienols, but also the levels of plasma proteins. The identity of these proteins may provide insights into how TRF exerts its beneficial effects. They may also be potentially developed into biomarkers for the study of the effects and effectiveness of TRF supplementation.

  2. Identification of a Chrysanthemic Ester as an Apolipoprotein E Inducer in Astrocytes

    PubMed Central

    Zhao, Wenchen; Shimizu, Yoko; Pfeifer, Tom A.; Tak, Jun-Hyung; Isman, Murray B.; Van den Hoven, Bernard; Duggan, Mark E.; Wood, Michael W.; Wellington, Cheryl L.

    2016-01-01

    The apolipoprotein E (APOE) gene is the most highly associated susceptibility locus for late onset Alzheimer’s Disease (AD), and augmenting the beneficial physiological functions of apoE is a proposed therapeutic strategy. In a high throughput phenotypic screen for small molecules that enhance apoE secretion from human CCF-STTG1 astrocytoma cells, we show the chrysanthemic ester 82879 robustly increases expressed apoE up to 9.4-fold and secreted apoE up to 6-fold and is associated with increased total cholesterol in conditioned media. Compound 82879 is unique as structural analogues, including pyrethroid esters, show no effect on apoE expression or secretion. 82879 also stimulates liver x receptor (LXR) target genes including ATP binding cassette A1 (ABCA1), LXRα and inducible degrader of low density lipoprotein receptor (IDOL) at both mRNA and protein levels. In particular, the lipid transporter ABCA1 was increased by up to 10.6-fold upon 82879 treatment. The findings from CCF-STTG1 cells were confirmed in primary human astrocytes from three donors, where increased apoE and ABCA1 was observed along with elevated secretion of high-density lipoprotein (HDL)-like apoE particles. Nuclear receptor transactivation assays revealed modest direct LXR agonism by compound 82879, yet 10 μM of 82879 significantly upregulated apoE mRNA in mouse embryonic fibroblasts (MEFs) depleted of both LXRα and LXRβ, demonstrating that 82879 can also induce apoE expression independent of LXR transactivation. By contrast, deletion of LXRs in MEFs completely blocked mRNA changes in ABCA1 even at 10 μM of 82879, indicating the ability of 82879 to stimulate ABCA1 expression is entirely dependent on LXR transactivation. Taken together, compound 82879 is a novel chrysanthemic ester capable of modulating apoE secretion as well as apoE-associated lipid metabolic pathways in astrocytes, which is structurally and mechanistically distinct from known LXR agonists. PMID:27598782

  3. Apolipoprotein B and E genetic polymorphisms in the Cayapa Indians of Ecuador.

    PubMed

    Scacchi, R; Corbo, R M; Rickards, O; Mantuano, E; Guevara, A; De Stefano, G F

    1997-06-01

    Three DNA polymorphisms (XbaI, EcoRI, and Ins/Del) of the apolipoprotein B (APOB) gene and the CfoI polymorphism of the APOE gene were investigated in a sample of 96 Cayapa Indians from Ecuador. The frequencies of the X+ (0.182), R+ (1.000), and Del alleles (0.432) at the three APOB sites were found to be higher than and to differ significantly from those reported for East Asians. No comparisons could be made between the Cayapa and other native Americans because of the lack of data on these sites. We observed in our sample that, like native American populations but unlike East Asians, the APOE allele frequencies were characterized by the absence of the APOE*2 allele and by a high frequency of the APOE*4 allele (0.280). Besides a probable drift effect, the high APOE*4 value was tentatively attributed to an effect of selection. Because this allele enhances the absorption of cholesterol by the intestine, it could confer an advantage to carriers in an unfavorable environment (i.e., diet poor in cholesterol).

  4. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet

    PubMed Central

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-01-01

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model. PMID:19638223

  5. Protonated nanostructured aluminosilicate (NSAS) reduces plasma cholesterol concentrations and atherosclerotic lesions in Apolipoprotein E deficient mice fed a high cholesterol and high fat diet.

    PubMed

    Sivak, Olena; Darlington, Jerry; Gershkovich, Pavel; Constantinides, Panayiotis P; Wasan, Kishor M

    2009-07-28

    The aim of this work was to assess the effect of chronic administration of protonated nanostructured aluminosilicate (NSAS) on the plasma cholesterol levels and development of atherosclerotic lesions in Apolipoprotein (ApoE) deficient mice fed a high cholesterol and high fat diet. Apolipoprotein E (ApoE) deficient mice were divided into the following treatment groups: protonated NSAS 1.4% (w/w), untreated control and 2% (w/w) stigmastanol mixed with high-cholesterol/high-fat diet. Animals were treated for 12 weeks, blood samples were withdrawn every 4 weeks for determination of plasma cholesterol and triglyceride levels. At the end of the study the aortic roots were harvested for assessment of atherosclerotic lesions. NSAS at 1.4% (w/w) and stigmastanol at 2% (w/w) treatment groups showed significant decreases in plasma cholesterol concentrations at all time points relative to the control animals. The lesion sum area in 1.4% (w/w) NSAS and 2% (w/w) stigmastanol groups were significantly less from the control animals. In conclusion, in this study, the effectiveness of chronic administration of protonated NSAS material in the reduction of plasma cholesterol levels and decrease in development of atherosclerotic lesions was demonstrated in Apo-E deficient mice model.

  6. Photodissociable dimer reduction products of 2-thiopyrimidine derivatives.

    PubMed Central

    Wrona, M; Giziewicz, J; Shugar, D

    1975-01-01

    Both 4,6-dimethyl-2-thipyrimidine and its 1-methyl derivative undergo polarographic reduction in aqueous medium, via a 1e/1H+ reduction to a free radical which rapidly dimerizes to products isolates and identified as 4,4'-bis-(4,6-dimethyl-3,4-dihydropyrimidin-2-thione) and the corresponding 1-methyl dimer. The dimers may be oxidized electrolytically to regenerate the parent monomers. Both dimers also undergo photodissociation to quantitatively regenerate the parent monomers, in high quantum yield, 0.23 and 0.35 M/Einstein. The correlation between electrochemical and photochemical reductions of 2-thiopyrimidines are discussed, as well as the significance of the dimer photodissociation reactions in relation to nucleic acid photochemistry. PMID:28516

  7. EDEM1 targets misfolded HLA-B27 dimers for endoplasmic reticulum associated degradation

    PubMed Central

    Guiliano, David B.; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J.; Campbell, Elaine C.; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J.; Kellam, Paul; Hebert, Daniel N.; Gould, Keith; Powis, Simon J.; Antoniou, Antony N.

    2015-01-01

    Objective HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We wanted to define the role of the UPR induced ER associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. Methods HeLa cell lines expressing only two copies of a carboxy terminally Sv5 tagged HLA-B27 were generated. The ER stress induced EDEM1 protein was over expressed by transfection and dimer levels monitored by immunoblotting. EDEM1, the UPR associated transcription factor XBP-1, the E3 ubiquitin ligase HRD1, the degradation associated derlin 1 and 2 proteins were inhibited by either short hairpin RNA or dominant negative mutants. The UPR associated ERAD of HLA-B27 was confirmed using ER stress inducing pharamacological agents in kinetic and pulse chase assays. Results We demonstrate that UPR induced machinery can target HLA-B27 dimers, and that dimer formation can be controlled by alterations to expression levels of components of the UPR induced ERAD pathway. HLA-B27 dimers and misfolded MHC class I monomeric molecules were detected bound to EDEM1, with overexpression of EDEM1 inhibiting HLA-B27 dimer formation. EDEM1 inhibition resulted in upregulation of HLA-B27 dimers, whilst UPR induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1 and derlin1/2. Conclusion The UPR ERAD pathway as described here can dispose of HLA-B27 dimers and presents a potential novel therapeutic target for the modulation of HLA-B27 associated inflammatory disease. PMID:25132672

  8. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    PubMed

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Tor forms a dimer through an N-terminal helical solenoid with a complex topology

    NASA Astrophysics Data System (ADS)

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M.; Williams, Roger L.

    2016-04-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended `railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  10. Fluxional σ-Bonds of the 2,5,8-Trimethylphenalenyl Dimer: Direct Observation of the Sixfold σ-Bond Shift via a π-Dimer.

    PubMed

    Uchida, Kazuyuki; Mou, Zhongyu; Kertesz, Miklos; Kubo, Takashi

    2016-04-06

    Direct evidence for σ-bond fluxionality in a phenalenyl σ-dimer was successfully obtained by a detailed investigation of the solution-state dynamics of 2,5,8-trimethylphenalenyl (TMPLY) using both experimental and theoretical approaches. TMPLY formed three diamagnetic dimers, namely, the σ-dimer (RR/SS), σ-dimer (RS), and π-dimer, which were fully characterized by (1)H NMR spectroscopy and electronic absorption measurements. The experimental findings gave the first quantitative insights into the essential preference of these competitive and unusual dimerization modes. The spectroscopic analyses suggested that the σ-dimer (RR/SS) is the most stable in terms of energy, whereas the others are metastable; the energy differences between these three isomers are less than 1 kcal mol(-1). Furthermore, the intriguing dynamics of the TMPLY dimers in the solution state were fully revealed by means of (1)H-(1)H exchange spectroscopy (EXSY) measurements and variable-temperature (1)H NMR studies. Surprisingly, the σ-dimer (RR/SS) demonstrated a sixfold σ-bond shift between the six sets of α-carbon pairs. This unusual σ-bond fluxionality is ascribed to the presence of a direct interconversion pathway between the σ-dimer (RR/SS) and the π-dimer, which was unambiguously corroborated by the EXSY measurements. The proposed mechanism of the sixfold σ-bond shift based on the experimental findings was well-supported by theoretical calculations.

  11. Specificity determinants in the interaction of apolipoprotein(a) kringles with tetranectin and LDL.

    PubMed

    Caterer, Nigel R; Graversen, Jonas H; Jacobsen, Christian; Moestrup, Søren K; Sigurskjold, Bent W; Etzerodt, Michael; Thøgersen, Hans C

    2002-11-01

    Lipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin. In this study recombinant KIV(2), KIV(7) and KIV(10) derived from apolipoprotein(a) were produced in E. coli and the binding to tetranectin and low density lipoprotein was examined. Only KIV(10) bound to tetranectin and binding was similar to that of plasminogen kringle 4 to tetranectin. Only KIV(7) bound to LDL. In order to identify the residues responsible for the difference in specificity between KIV(7) and KIV(10), a number of surface-exposed residues located around the lysine binding clefts were exchanged. Ligand binding analysis of these derivatives showed that Y62, and to a minor extent W32 and E56, of KIV(7) are important for LDL binding to KIV(7), whereas R32 and D56 of KIV(10) are required for tetranectin binding of KIV(10).

  12. D-dimer test

    MedlinePlus

    ... vein thrombosis - D-dimer; Pulmonary embolism - D-dimer; Blood clot to the lungs - D-dimer ... dimer test if you are showing symptoms of blood clots, such as: Swelling, pain, warmth, and changes in ...

  13. Composition, structure and substrate properties of reconstituted discoidal HDL with apolipoprotein A-I and cholesteryl ester

    NASA Astrophysics Data System (ADS)

    Dergunov, Alexander D.; Shabrova, Elena V.; Dobretsov, Gennady E.

    2010-03-01

    To investigate the influence of lipid unsaturation and neutral lipid on the maturation of high density lipoproteins, the discoidal complexes of apoA-I, phosphatidylcholine and cholesteryl ester (CE) were prepared. Saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated palmitoyllinoleoylphosphatidylcholine (PLPC), palmitoyloleoylphosphatidylcholine (POPC), and fluorescent probe cholesteryl 1-pyrenedecanoate (CPD) that forms in a diffusion- and concentration-dependent manner short-lived dimer of unexcited and excited molecules (excimer) were used. The apoA-I/DPPC/CPD complexes were heterogeneous by size, composition and probe location. CPD molecules incorporated more efficiently into larger complexes and accumulated in a central part of the discs. The apoA-I/POPC(PLPC)/CPD were also heterogeneous, however, probe molecules distributed preferentially into smaller complexes and accumulated at disc periphery. The kinetics of CPD transfer by recombinant cholesteryl ester transfer protein (CETP) to human plasma LDL is well described by two-exponential decay, the fast component with a shorter transfer time being more populated in PLPC compared to DPPC complexes. The presence of CE molecules in discoidal HDL results in particle heterogeneity. ApoA-I influences the CETP activity modulating the properties of apolipoprotein-phospholipid interface. This may include CE molecules accumulation in the boundary lipid in unsaturated phosphatidylcholine and cluster formation in the bulk bilayer in saturated phosphatidylcholine.

  14. Amyloid mediates the association of apolipoprotein E e4 allele to cognitive function in older people

    PubMed Central

    Bennett, D; Schneider, J; Wilson, R; Bienias, J; Berry-Kravis, E; Arnold, S

    2005-01-01

    Background: The neurobiological changes underlying the association of the apolipoprotein E (APOE) e4 allele with level of cognition are poorly understood. Objective: To test the hypothesis that amyloid load can account for (mediate) the association of the APOE e4 allele with level of cognition assessed proximate to death. Methods: There were 44 subjects with clinically diagnosed Alzheimer's disease and 50 without dementia, who had participated in the Religious Orders Study. They underwent determination of APOE allele status, had comprehensive cognitive testing in the last year of life, and brain autopsy at death. The percentage area of cortex occupied by amyloid beta and the density of tau positive neurofibrillary tangles were quantified from six brain regions and averaged to yield summary measures of amyloid load and neurofibrillary tangles. Multiple regression analyses were used to examine whether amyloid load could account for the effect of allele status on level of cognition, controlling for age, sex, and education. Results: Possession of at least one APOE e4 allele was associated with lower level of cognitive function proximate to death (p = 0.04). The effect of the e4 allele was reduced by nearly 60% and was no longer significant after controlling for the effect of amyloid load, whereas there was a robust inverse association between amyloid and cognition (p = 0.001). Because prior work had suggested that neurofibrillary tangles could account for the association of amyloid on cognition, we next examined whether amyloid could account for the effect of allele status on tangles. In a series of regression analyses, e4 was associated with density of tangles (p = 0.002), but the effect of the e4 allele was reduced by more than 50% and was no longer significant after controlling for the effect of amyloid load. Conclusion: These findings are consistent with a sequence of events whereby the e4 allele works through amyloid deposition and subsequent tangle formation to

  15. Structural insights into the intertwined dimer of fyn SH2.

    PubMed

    Huculeci, Radu; Garcia-Pino, Abel; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico

    2015-12-01

    Src homology 2 domains are interaction modules dedicated to the recognition of phosphotyrosine sites incorporated in numerous proteins found in intracellular signaling pathways. Here we provide for the first time structural insight into the dimerization of Fyn SH2 both in solution and in crystalline conditions, providing novel crystal structures of both the dimer and peptide-bound structures of Fyn SH2. Using nuclear magnetic resonance chemical shift analysis, we show how the peptide is able to eradicate the dimerization, leading to monomeric SH2 in its bound state. Furthermore, we show that Fyn SH2's dimer form differs from other SH2 dimers reported earlier. Interestingly, the Fyn dimer can be used to construct a completed dimer model of Fyn without any steric clashes. Together these results extend our understanding of SH2 dimerization, giving structural details, on one hand, and suggesting a possible physiological relevance of such behavior, on the other hand. © 2015 The Protein Society.

  16. Association of different biomarkers of renal function with D-dimer levels in patients with type 1 diabetes mellitus (renal biomarkers and D-dimer in diabetes).

    PubMed

    Domingueti, Caroline Pereira; Fóscolo, Rodrigo Bastos; Dusse, Luci Maria S; Reis, Janice Sepúlveda; Carvalho, Maria das Graças; Gomes, Karina Braga; Fernandes, Ana Paula

    2018-02-01

    Objective This study aimed to evaluate the association between different renal biomarkers with D-Dimer levels in diabetes mellitus (DM1) patients group classified as: low D-Dimer levels (< 318 ng/mL), which included first and second D-Dimer tertiles, and high D-Dimer levels (≥ 318 ng/mL), which included third D-Dimer tertile. Materials and methods D-Dimer and cystatin C were measured by ELISA. Creatinine and urea were determined by enzymatic method. Estimated glomerular filtration rate (eGFR) was calculated using CKD-EPI equation. Albuminuria was assessed by immunoturbidimetry. Presence of renal disease was evaluated using each renal biomarker: creatinine, urea, cystatin C, eGFR and albuminuria. Bivariate logistic regression analysis was performed to assess which renal biomarkers are associated with high D-Dimer levels and odds ratio was calculated. After, multivariate logistic regression analysis was performed to assess which renal biomarkers are associated with high D-Dimer levels (after adjusting for sex and age) and odds ratio was calculated. Results Cystatin C presented a better association [OR of 9.8 (3.8-25.5)] with high D-Dimer levels than albuminuria, creatinine, eGFR and urea [OR of 5.3 (2.2-12.9), 8.4 (2.5-25.4), 9.1 (2.6-31.4) and 3.5 (1.4-8.4), respectively] after adjusting for sex and age. All biomarkers showed a good association with D-Dimer levels, and consequently, with hypercoagulability status, and cystatin C showed the best association among them. Conclusion Therefore, cystatin C might be useful to detect patients with incipient diabetic kidney disease that present an increased risk of cardiovascular disease, contributing to an early adoption of reno and cardioprotective therapies.

  17. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  18. Antisense apolipoprotein B therapy: where do we stand?

    PubMed

    Akdim, Fatima; Stroes, Erik S G; Kastelein, John J P

    2007-08-01

    Antisense oligonucleotides are novel therapeutic agents that reduce the number of specific mRNAs available for translation of the encoded protein. ISIS 301012 is an antisense oligonucleotide developed to reduce the hepatic synthesis of apolipoprotein B-100. Apolipoprotein B-100 is made in the liver, and antisense oligonucleotides preferentially distribute to that organ, so antisense apolipoprotein B-100 may have potential as an efficacious lipid-lowering agent. Recently, in healthy volunteers and in mild dyslipidaemic patients, this strategy as monotherapy or in conjunction with statins has shown unparalleled efficacy in reducing apolipoprotein B-100 and LDL-cholesterol. Tolerance for this novel therapy is encouraging and safety concerns currently only relate to mild injection-site reactions and rare liver-function test abnormalities. It should be noted, however, that these safety results were obtained in relatively few individuals. ISIS 301012 has initially shown promising results in experimental animal models, and in clinical trials in humans. Besides the effect of reducing apolipoprotein B-100 and LDL-cholesterol, this compound also significantly lowers plasma triglycerides. Safety concerns related to the drug include increased liver-function tests. To date no evidence of hepatic steatosis has been reported. Nonetheless, clinical trials of longer duration are required to demonstrate further safety.

  19. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    PubMed

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-11

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12.

  20. Quantum dimer model for the pseudogap metal

    PubMed Central

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-01-01

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S=1/2, charge +e fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments. PMID:26195771

  1. Glycine transporter dimers: evidence for occurrence in the plasma membrane.

    PubMed

    Bartholomäus, Ingo; Milan-Lobo, Laura; Nicke, Annette; Dutertre, Sébastien; Hastrup, Hanne; Jha, Alok; Gether, Ulrik; Sitte, Harald H; Betz, Heinrich; Eulenburg, Volker

    2008-04-18

    Different Na(+)/Cl(-)-dependent neurotransmitter transporters of the SLC6a family have been shown to form dimers or oligomers in both intracellular compartments and at the cell surface. In contrast, the glycine transporters (GlyTs) GlyT1 and -2 have been reported to exist as monomers in the plasma membrane based on hydrodynamic and native gel electrophoretic studies. Here, we used cysteine substitution and oxidative cross-linking to show that of GlyT1 and GlyT2 also form dimeric complexes within the plasma membrane. GlyT oligomerization at the cell surface was confirmed for both GlyT1 and GlyT2 by fluorescence resonance energy transfer microscopy. Endoglycosidase treatment and surface biotinylation further revealed that complex-glycosylated GlyTs form dimers located at the cell surface. Furthermore, substitution of tryptophan 469 of GlyT2 by an arginine generated a transporter deficient in dimerization that was retained intracellulary. Based on these results and GlyT structures modeled by using the crystal structure of the bacterial homolog LeuT(Aa), as a template, residues located within the extracellular loop 3 and at the beginning of transmembrane domain 6 are proposed to contribute to the dimerization interface of GlyTs.

  2. MspA Nanopores from Subunit Dimers

    PubMed Central

    Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael

    2012-01-01

    Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID

  3. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1.

    PubMed

    Berry, Robert E; Yang, Fei; Shokhireva, Tatiana K; Amoia, Angela M; Garrett, Sarah A; Goren, Allena M; Korte, Stephanie R; Zhang, Hongjun; Weichsel, Andrzej; Montfort, William R; Walker, F Ann

    2015-01-20

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.

  4. Dimerization of Nitrophorin 4 at Low pH and Comparison to the K1A Mutant of Nitrophorin 1

    PubMed Central

    2015-01-01

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer–dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and 1H{15N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The “closed loop” form of the A–B and G–H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer. PMID:25489673

  5. Dimerization of Nitrophorin 4 at Low pH and Comparison to the K1A Mutant of Nitrophorin 1

    DOE PAGES

    Berry, Robert E.; Yang, Fei; Shokhireva, Tatiana K.; ...

    2014-12-09

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a K d of ~8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer–dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0more » and 1H{ 15N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The “closed loop” form of the A–B and G–H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. Lastly, the homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.« less

  6. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4

    PubMed Central

    Kranz, Franziska

    2016-01-01

    G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment. PMID:27812115

  7. In situ AFM imaging of apolipoprotein A-I directly derived from plasma HDL.

    PubMed

    Gan, Chaoye; Wang, Zhexuan; Chen, Yong

    2017-04-01

    The major apolipoproteins of plasma lipoproteins play vital roles in the structural integrity and physiological functions of lipoproteins. More than ten structural models of apolipoprotein A-I (apoA-I), the major apolipoprotein of high-density lipoprotein (HDL), have been developed successively. In these models, apoA-I was supposed to organize in a ring-shaped form. To date, however, there is no direct evidence under physiological condition. Here, atomic force microscopy (AFM) was used to in situ visualize the organization of apoA-I, which was exposed via depletion of the lipid component of plasma HDL pre-immobilized on functionalized mica sheets. For the first time, the ring-shaped coarse structure and three detailed structures (crescent-shaped, gapped "O"-shaped, and parentheses-shaped structures, respectively) of apoA-I in plasma HDL, which have the ability of binding scavenger receptors, were directly observed and quantitatively measured by AFM. The three detailed structures probably represent the different extents to which the lipid component of HDL was depleted. Data on lipid depletion of HDL may provide clues to understand lipid insertion of HDL. These data provide important information for the understanding of the structure/maturation of plasma HDL. Moreover, they suggest a powerful method for directly visualizing the major apolipoproteins of plasma lipoproteins or the protein component of lipoprotein-like lipid-protein complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High serum apolipoprotein E determines hypertriglyceridemic dyslipidemias, coronary disease and apoA-I dysfunctionality.

    PubMed

    Onat, Altan; Can, Günay; Ornek, Ender; Ayhan, Erkan; Erginel-Ünaltuna, Nihan; Murat, Sani N

    2013-01-01

    The relevance of serum apolipoprotein E (apoE) levels to two hypertriglyceridemic dyslipidemias has not been clarified. We explored, in a cross-sectional (and short-term prospective) evaluation, the independent relationship of serum apoE to the atherogenic dyslipidemia, hypertriglyceridemia with elevated apoB (HtgB) and to apoA-I dysfunctionality, previously shown in Turkish adults to be independent of apoE genotype. Serum apoE concentrations were measured by immunonephelometry in 1,127 middle-aged adults. In multivariable regression analysis, apoE concentrations showed log-linear associations with apoB and apoA-I levels, waist circumference, independent of C-reactive protein (CRP), homeostatic model assessment (HOMA) index and other confounders. The likelihood of atherogenic dyslipidemia and of HtgB roughly tripled per 1-SD increment in apoE concentrations, additively to apoE genotype, HOMA, apoA-I, CRP concentrations and waist circumference; yet apoA-I, protective against atherogenic dyslipidemia, appeared to promote HtgB, a finding consistent with apoA-I dysfunctionality in this setting. Each 1-SD increment in the apoE level was moreover, associated in both genders with MetS (at OR 1.5), after adjustment for sex, age, apoB, apoA-I and CRP, or for apoE genotypes. Circulating apoE predicted in both genders age-adjusted prevalent and incident coronary heart disease (CHD), independent of apoE genotype and CRP (OR 1.32 [95 % CI 1.11; 1.58]). To conclude, in a general population prone to MetS, elevated apoE concentrations are strongly linked to HtgB and atherogenic dyslipidemia, irrespective of apoE genotype, are associated with MetS and CHD. Excess apoE reflects pro-inflammatory state and likely autoimmune activation.

  9. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    PubMed

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. 99mTc-labeling of HYNIC-conjugated cyclic RGDfK dimer and tetramer using EDDA as coligand.

    PubMed

    Wang, Jianjun; Kim, Young-Seung; Liu, Shuang

    2008-03-01

    In this study, EDDA (ethylenediamine- N, N'-diacetic acid) was used as the coligand for 99mTc-labeling of cyclic RGDfK conjugates: HYNIC-dimer (HYNIC = 6-hydrazinonicotinamide; dimer = E[c(RGDfK)]2) and HYNIC-tetramer (tetramer = E{E[c(RGDfK)]2}2). First, HYNIC-dimer was allowed to react with 99mTcO4 (-) in the presence of excess tricine and stannous chloride to form the intermediate complex [99mTc(HYNIC-dimer)(tricine)2], which was then allowed to react with EDDA to afford [99mTc(HYNIC-dimer)(EDDA)] with high yield (>90%) and high specific activity ( approximately 8.0 Ci/micromol). Under the same radiolabeling conditions, the yield for [99mTc(HYNIC-tetramer)(EDDA)] was always <65%. The results from a mixed-ligand experiment show that there is only one EDDA bonding to the 99mTc-HYNIC core in [99mTc(HYNIC-dimer)(EDDA)]. The athymic nude mice bearing subcutaneous U87MG human glioma xenografts were used to evaluate the impact of EDDA coligand on the biodistribution characteristics and excretion kinetics of the 99mTc-labeled HYNIC-dimer and HYNIC-tetramer. Surprisingly, [99mTc(HYNIC-dimer)(EDDA)] and [99mTc(HYNIC-tetramer)(EDDA)] had almost identical tumor uptake over the 2 h period. The use of EDDA as coligand to replace tricine/TPPTS (TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) did not significantly change the uptake of the 99mTc-labeled HYNIC-dimer in noncancerous organs, such as the liver, kidneys, and lungs; but it did result in a significantly lower kidney uptake for the 99mTc-labeled HYNIC-tetramer due to faster renal excretion. It was also found that the radiotracer tumor uptake decreases in a linear fashion as the tumor size increases. The smaller the tumors are, the higher the tumor uptake is regardless of the identity of radiotracer.

  11. β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis

    PubMed Central

    Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen

    2016-01-01

    Objective HDL and its apolipoproteins protect against atherosclerotic disease partly by removing excess cholesterol from macrophage foam cells. But the underlying mechanisms of cholesterol clearance are still not well defined. We investigated roles of vesicle trafficking of coatomer β-COP in delivering cholesterol to the cell surface during apoA-1 and apoE-mediated lipid efflux from fibroblasts and THP-1 macrophages. Methods shRNA knockout, confocal and electron microscopy and biochemical analysis were used to investigate the roles of β-COP in apolipoprotein-mediated cholesterol efflux in fibroblasts and THP-1 macrophages. Results We showed that β-COP knockdown by lentiviral shRNA resulted in reduced apoA-1-mediated cholesterol efflux, while increased cholesterol accumulation and formation of larger vesicles were observed in THP-1 macrophages by laser scanning confocal microscopy. Immunogold electron microscopy showed that β-COP appeared on the membrane protrusion complexes and colocalized with apoA-1 or apoE during cholesterol efflux. This was associated with releasing heterogeneous sizes of small particles into the culture media of THP-1 macrophage. Western blotting also showed that apoA-1 promotes β-COP translocation to the cell membrane and secretion into culture media, in which a total of 17 proteins were identified by proteomics. Moreover, β-COP exclusively associated with human plasma HDL fractions. Conclusion ApoA-1 and apoE promoted transport vesicles consisting of β-COP and other candidate proteins to exocytose cholesterol, forming the protrusion complexes on cell surface, which were then released from the cell membrane as small particles to media. PMID:26986486

  12. Structural Determinants Underlying Constitutive Dimerization of Unoccupied Human Follitropin Receptors

    PubMed Central

    Guan, Rongbin; Wu, Xueqing; Feng, Xiuyan; Zhang, Meilin; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr110 in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269–277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr110 to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr110 of the ECD. PMID:19800402

  13. Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins.

    PubMed

    Kudlacek, Stephan T; Premkumar, Lakshmanane; Metz, Stefan W; Tripathy, Ashutosh; Bobkov, Andrey A; Payne, Alexander Matthew; Graham, Stephen; Brackbill, James A; Miley, Michael J; de Silva, Aravinda M; Kuhlman, Brian

    2018-06-08

    The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 μm at 25 °C to 50 μm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine. © 2018 Kudlacek et al.

  14. Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis.

    PubMed

    Centa, Monica; Prokopec, Kajsa E; Garimella, Manasa G; Habir, Katrin; Hofste, Lisa; Stark, Julian M; Dahdah, Albert; Tibbit, Chris A; Polyzos, Konstantinos A; Gisterå, Anton; Johansson, Daniel K; Maeda, Nobuyo N; Hansson, Göran K; Ketelhuth, Daniel F J; Coquet, Jonathan M; Binder, Christoph J; Karlsson, Mikael C I; Malin, Stephen

    2018-06-07

    Dyslipidemia is a component of the metabolic syndrome, an established risk factor for atherosclerotic cardiovascular disease, and is also observed in various autoimmune and chronic inflammatory conditions. However, there are limited opportunities to study the impact of acquired dyslipidemia on cardiovascular and immune pathology. We designed a model system that allows for the conversion to a state of acute hyperlipidemia in adult life, so that the consequences of such a transition could be observed, through conditionally deleting APOE (apolipoprotein E) in the adult mouse. The transition to hypercholesterolemia was accompanied by adaptive immune responses, including the expansion of T lymphocyte helper cell 1, T follicular helper cell, and T regulatory subsets and the formation of germinal centers. Unlike steady-state Apoe -deficientmice, abrupt loss of APOE induced rapid production of antibodies recognizing rheumatoid disease autoantigens. Genetic ablation of the germinal center reduced both autoimmunity and atherosclerosis, indicating that the immune response that follows loss of APOE is independent of atherosclerosis but nevertheless promotes plaque development. Our findings suggest that immune activation in response to hyperlipidemia could contribute to a wide range of inflammatory autoimmune diseases, including atherosclerosis. © 2018 American Heart Association, Inc.

  15. The role of apolipoprotein E (rs7412 and rs429358) in age-related macular degeneration.

    PubMed

    Liutkeviciene, Rasa; Vilkeviciute, Alvita; Smalinskiene, Alina; Tamosiunas, Abdonas; Petkeviciene, Janina; Zaliuniene, Dalia; Lesauskaite, Vaiva

    2018-05-31

    Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in the developed countries. The main pathological change in AMD is the formation of drusen containing 40% of lipids, dominated by esterified cholesterol (EC) and phosphatidylcholine (PC), and protein. Haplotype ε4 of apolipoprotein E (ApoE) acts as a ligand for the low-density lipoprotein receptor and is involved in the maintenance and repair of neuronal cell membranes. This study aimed to evaluate the association of AMD with ApoE gene polymorphism variants (rs7412 and rs429358). A total of 2133 subjects were enrolled in our research. The study group comprised patients with early AMD (n = 413) and exudative AMD (n = 307), and the control group enrolled randomly selected persons (n = 1413). The genotyping of ApoE (rs7412 and rs429358) was performed using the real-time polymerase chain reaction (PCR) method. Statistical analysis revealed that ApoE 4/2 genotype was less frequently observed in in older patients with exudative AMD compared to older healthy controls (0.4% vs. 4.0%, p = 0.003). Our data demonstrated that ApoE 4/2 genotype was less frequently observed in old patients (65 years and more) with exudative AMD compared to old healthy controls. It leads to hypothesis on the protective effect of ApoE 4/2 to develop AMD in the elderly.

  16. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro.

    PubMed Central

    Bieth, E; Gabus, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far is an RNA dimer where two identical RNA subunits are joined at their 5' ends by a structure named dimer linkage structure (DLS). Since the precise location and structure of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analysed the dimerization process of Rous sarcoma virus (RSV) RNA. For this purpose we set up an in vitro model for RSV RNA dimerization. Using this model RSV RNA was shown to form dimeric molecules and this dimerization process was greatly activated by nucleocapsid protein (NCp12) of RSV. Furthermore, RSV RNA dimerization was performed in the presence of complementary 5'32P-DNA oligomers in order to probe the monomer and dimer forms of RSV RNA. Data indicated that the DLS of RSV RNA probably maps between positions 544-564 from the 5' end. In an attempt to define sequences needed for the dimerization of RSV RNA, deletion mutageneses were generated in the 5' 600 nt. The results showed that the dimer promoting sequences probably are located within positions 208-270 and 400-600 from the 5' end and hence possibly encompassing the cis-acting elements needed for the specific encapsidation of RSV genomic RNA. Also it is reported that synthesis of the polyprotein precursor Pr76gag is inhibited upon dimerization of RSV RNA. These results suggest that dimerization and encapsidation of genome length RSV RNA might be linked in the course of virion formation since they appear to be under the control of the same cis elements, E and DLS, and the trans-acting factor nucleocapsid protein NCp12. Images PMID:2155394

  17. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration.

  18. Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells

    PubMed Central

    RAINA, DEEPAK; AHMAD, REHAN; RAJABI, HASAN; PANCHAMOORTHY, GOVIND; KHARBANDA, SURENDER; KUFE, DONALD

    2012-01-01

    The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas and contributes to the malignant phenotype. The MUC1-C transmembrane subunit contains a CQC motif in the cytoplasmic domain that has been implicated in the formation of dimers and in its oncogenic function. The present study demonstrates that MUC1-C forms dimers in human breast and lung cancer cells. MUC1-C dimerization was detectable in the cytoplasm and was independent of MUC1-N, the N-terminal mucin subunit that extends outside the cell. We show that the MUC1-C cytoplasmic domain forms dimers in vitro that are disrupted by reducing agents. Moreover, dimerization of the MUC1-C subunit in cancer cells was blocked by reducing agents and increased by oxidative stress, supporting involvement of the CQC motif in forming disulfide bonds. In support of these observations, mutation of the MUC1-C CQC motif to AQA completely blocked MUC1-C dimerization. Importantly, this study was performed with MUC1-C devoid of fluorescent proteins, such as GFP, CFP and YFP. In this regard, we show that GFP, CFP and YFP themselves form dimers that are readily detectable with cross-linking agents. The present results further demonstrate that a cell-penetrating peptide that targets the MUC1-C CQC cysteines blocks MUC1-C dimerization in cancer cells. These findings provide definitive evidence that: i) the MUC1-C cytoplasmic domain cysteines are necessary and sufficient for MUC1-C dimerization, and ii) these CQC motif cysteines represent an Achilles’ heel for targeting MUC1-C function. PMID:22200620

  19. Apolipoprotein E gene polymorphism and total serum cholesterol level in Iranian population.

    PubMed

    Bazzaz, J T; Nazari, M; Nazem, H; Amiri, P; Fakhrzadeh, H; Heshmat, R; Abbaszadeh, S; Amoli, M M

    2010-01-01

    Apolipoprotein E (APOE) is known as a major regulator of blood lipid levels in humans. A number of APOE gene allelic variants have been reported including E2, E3 and E4. Recent studies suggested a role for APOE in obesity and increased Body Mass Index (BMI) and plasma lipid levels in obese children. The aim of this study was to examine the association between APOE genetic variants and the BMI and lipid profile in an Iranian cohort. Samples were obtained from subjects who participated in a study based on the WHO-designed MONICA (multinational monitoring of trends and determinants in cardiovascular disease) study for coronary artery disease risk assessment in Zone 17 of Tehran. The study was approved by the local ethical committee. Informed consent was obtained from all subjects included in this study. Subjects (n=320) were recruited. The level of triglyceride (TG) and total serum cholesterol was tested for all subjects in this study. Genotyping for APOE was carried using polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP)technique. Levels of significance were determined using contingency tables by either Chi-square or Fisher exact analysis using the STATA (v8) software. The analysis of regression and significance of differences for level of cholesterol and TG was established by one-way analysis of variance followed by Dunnett post hoc multiple comparison tests using SPSS software Version 11.5. The frequency of allele E2 was significantly higher in patients with total serum cholesterol level <200 mg/dl (P 0.01 OR 2.1 95% CI 1.1-4.2). The association found in this study between allele E2 and lower total cholesterol level had been reported in previous studies. We have also observed that the frequency of genotype E2/E3 and E2/E4 was significantly higher in patients with normal total serum cholesterol level compared to patients with abnormal cholesterol (P=0.003 OR 2.4 95% CI; 1.3-4.6). Our data needs to be repeated in a larger population with

  20. Apolipoprotein E polymorphism in elderly Japanese-Brazilian immigrants does not explain the reduced cardiovascular risk factor incidence.

    PubMed

    Terra, N; Moriguchi, Y; Bittencourt, L; Trois, R S; Piccoli, J E C; Cruz, I B M

    2011-09-09

    Study of immigrant populations may contribute to a better understanding of the epidemiology of diseases associated with the aging process. We examined the prevalence of cardiovascular risk factors, including apolipoprotein E (ApoE) polymorphism, in elderly subjects who were born in Japan, migrated to South Brazil and have lived in that region for over 40 years, versus a group of elderly, locally born Brazilians living in the same region. These Japanese subjects came to Brazil after World War II (1950-1960) from several Japanese cities, mainly Nagasaki, Kumamoto and Hokkaido. Among 1007 subjects genotyped for ApoE polymorphism, we selected 540 elderly subjects (>60 years old), consisting of 270 Japanese-Brazilians and 270 Brazilians of European ancestry from Rio Grande do Sul State (Gaucha population). The Japanese-Brazilian group had significantly lower prevalences of obesity, type 2 diabetes mellitus, dyslipidemia, and metabolic syndrome than did the Gaucho population group. ApoE polymorphism frequencies were similar in the two groups. The differences in cardiovascular risk factors observed in the two populations cannot be explained by ApoE polymorphism; they could be related to conservation of Japanese lifestyle habits, such as diet.

  1. Magnetic and superconducting competition within the Hubbard dimer. Exact solution

    NASA Astrophysics Data System (ADS)

    Matlak, M.; Somska, T.; Grabiec, B.

    2005-02-01

    We express the Hubbard dimer Hamiltonian in the second quantization with theuse of the Hubbard and spin operators. We consider the case of positive and negative U. We decompose the resulting Hamiltonian into several parts collecting all the terms belonging to the same energy level. Such a decomposition visualizes explicitely all intrinsic interactions competing together and deeply hidden in the original form of the dimer Hamiltonian. Among them are competitive ferromagnetic and antiferromagnetic interactions. There are also hopping terms present which describe Cooper pairs hopping between sites 1 and 2 with positive and negative coupling constants (similar as in Kulik-Pedan, Penson-Kolb models). We show that the competition between intrinsic interactions strongly depends on the model parametrs and the averaged occupation number of electrons n [0, 4] resulting in different regimes of the model (as e.g. t-J model regime, etc.).

  2. Frequencies of apolipoprotein E alleles in depressed patients undergoing hemodialysis--a case-control study.

    PubMed

    Su, Yan-yan; Zhang, Yun-fang; Yang, Shen; Wang, Jie-lin; Hua, Bao-jun; Luo, Jie; Wang, Qi; Zeng, De-wang; Lin, Yan-qun; Li, Hong-yan

    2015-06-01

    To explore the relation between the frequencies of apolipoprotein E (ApoE) alleles and the occurrence of depression in patients undergoing hemodialysis in a Chinese population. We examined the ApoE alleles in a sample of 288 subjects: 72 patients with depression under hemodialysis, 74 patients without depression under hemodialysis, 75 patients with depression under nondialytic treatment and 67 patients without depression under nondialytic treatment. The depression state was assessed using the Center for Epidemiological Studies Depression (CES-D) scale. Associations between the occurrence of depression and the frequencies of ApoE alleles were examined using multinomial logistic regression models with adjustment of relevant covariates. Information about sociodemographics, clinical data, vascular risk factors and cognitive function was also collected and evaluated. The frequencies of ApoE-ɛ2 were significantly different between depressed and non-depressed patients irrespective of dialysis (p < 0.05), but no significant difference was found in the frequencies of ApoE-ɛ4 (p > 0.05). Serum ApoE levels were significantly different between depressed and non-depressed patients in the whole sample (p < 0.05). Multinomial logistic regression models showed significant association between the frequency of ApoE-ɛ2 and the occurrence of depression in the Chinese population after control of relevant covariates, including age, sex, educational level, history of smoking and drinking, vascular risk factors and cognitive function. No association between the frequency of ApoE-ɛ4 and the occurrence of depression was found in patients undergoing hemodialysis. Further research is needed to find out if ApoE-ɛ2 acts as a protective factor in Chinese dialysis population since it might decrease the prevalence of depression and delay the onset age.

  3. Rotational spectra of propargyl alcohol dimer: A dimer bound with three different types of hydrogen bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, Devendra; Arunan, E., E-mail: arunan@ipc.iisc.ernet.in

    2014-10-28

    Pure rotational spectra of the propargyl alcohol dimer and its three deuterium isotopologues have been observed in the 4 to 13 GHz range using a pulsed-nozzle Fourier transform microwave spectrometer. For the parent dimer, a total of 51 transitions could be observed and fitted within experimental uncertainty. For two mono-substituted and one bi-substituted deuterium isotopologues, a total of 14, 17, and 19 transitions were observed, respectively. The observed rotational constants for the parent dimer [A = 2321.8335(4) MHz, B = 1150.4774(2) MHz, and C = 1124.8898(2) MHz] are close to those of the most stable structure predicted by ab initiomore » calculations. Spectra of the three deuterated isotopologues and Kraitchman analysis positively confirm this structure. Geometrical parameters and “Atoms in Molecules” analysis on the observed structure reveal that the two propargyl alcohol units in the dimer are bound by three different types of hydrogen bonds: O–H⋯O, O–H⋯π, and C–H⋯π. To the best of our knowledge, propargyl alcohol seems to be the smallest molecule forming a homodimer with three different points of contact.« less

  4. Effects of the Absence of Apolipoprotein E on Lipoproteins, Neurocognitive Function, and Retinal Function

    PubMed Central

    Mak, Angel C. Y.; Pullinger, Clive R.; Tang, Ling Fung; Wong, Jinny S.; Deo, Rahul C.; Schwarz, Jean-Marc; Gugliucci, Alejandro; Movsesyan, Irina; Ishida, Brian Y.; Chu, Catherine; Poon, Annie; Kim, Phillip; Stock, Eveline O.; Schaefer, Ernst J.; Asztalos, Bela F.; Castellano, Joseph M.; Wyss-Coray, Tony; Duncan, Jacque L.; Miller, Bruce L.; Kane, John P.; Kwok, Pui-Yan; Malloy, Mary J.

    2016-01-01

    IMPORTANCE The identification of a patient with a rare form of severe dysbetalipoproteinemia allowed the study of the consequences of total absence of apolipoprotein E (apoE). OBJECTIVES To discover the molecular basis of this rare disorder and to determine the effects of complete absence of apoE on neurocognitive and visual function and on lipoprotein metabolism. DESIGN, SETTING, AND PARTICIPANTS Whole-exome sequencing was performed on the patient’s DNA. He underwent detailed neurological and visual function testing and lipoprotein analysis. Lipoprotein analysis was also performed in the Cardiovascular Research Institute, University of California, San Francisco, on blood samples from the proband’s mother, wife, 2 daughters, and normolipidemic control participants. MAIN OUTCOME MEASURES Whole-exome sequencing, lipoprotein analysis, and neurocognitive function. RESULTS The patient was homozygous for an ablative APOE frameshift mutation (c.291del, p.E97fs). No other mutations likely to contribute to the phenotype were discovered, with the possible exception of two, in ABCC2 (p.I670T) and LIPC (p.G137R). Despite complete absence of apoE, he had normal vision, exhibited normal cognitive, neurological, and retinal function, had normal findings on brain magnetic resonance imaging, and had normal cerebrospinal fluid levels of β-amyloid and tau proteins. He had no significant symptoms of cardiovascular disease except a suggestion of myocardial ischemia on treadmill testing and mild atherosclerosis noted on carotid ultrasonography. He had exceptionally high cholesterol content (760 mg/dL; to convert to millimoles per liter, multiply by 0.0259) and a high cholesterol to triglycerides ratio (1.52) in very low-density lipoproteins with elevated levels of small-diameter high-density lipoproteins, including high levels of prebeta-1 high-density lipoprotein. Intermediate-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins contained elevated apo

  5. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less

  6. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. © 2016 Wiley Periodicals, Inc.

  7. Cognitive function and apolipoprotein E in very old adults: findings from the Nun Study.

    PubMed

    Riley, K P; Snowdon, D A; Saunders, A M; Roses, A D; Mortimer, J A; Nanayakkara, N

    2000-03-01

    The epsilon4 allele of apolipoprotein E (APOE) has been associated with Alzheimer' s disease and with milder forms of cognitive impairment. We investigated the possibility that the absence of the epsilon4 allele may predict the maintenance of high cognitive function among very old individuals. Our data are from the Nun Study, a longitudinal study of aging and Alzheimer's disease in 678 Catholic sisters. All sisters participate in annual functional exams that include the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery of cognitive tests. High cognitive function was defined as intact scores on five of the CERAD tests. A total of 241 participants aged 75 to 98 met this criterion at the first exam. Findings showed that 62% of the 241 participants maintained intact scores on the five CERAD tests throughout their participation in the study. Life table analyses indicated that those without the APOE epsilon4 allele spent more time with intact cognitive function than those with the epsilon4 allele (p = .007). Cox regression analyses indicated that those without the epsilon4 allele had half the risk of losing their intact status during the study when compared with those with the epsilon4 allele (p < .01). Our findings suggest that the APOE epsilon4 allele may be included among the variables that predict high cognitive function in cognitively intact, very old adults. Although the presence or absence of the epsilon4 allele is known to be related to the risk of dementia, it also appears to be related to maintaining high levels of cognitive function in old age.

  8. Overall conformation of covalently stabilized domain-swapped dimer of human cystatin C in solution

    NASA Astrophysics Data System (ADS)

    Murawska, Magdalena; Szymańska, Aneta; Grubb, Anders; Kozak, Maciej

    2017-11-01

    Human cystatin C (HCC), a small protein, plays a crucial role in inhibition of cysteine proteases. The most common structural form of human cystatin C in crystals is a dimer, which has been evidenced both for the native protein and its mutants. In these structures, HCC dimers were formed through the mechanism of domain swapping. The structure of the monomeric form of human cystatin C was determined for V57N mutant and the mutant with the engineered disulfide bond (L47C)-(G69C) (known as stab1-HCC). On the basis of stab1-HCC, a number of covalently stabilized oligomers, including also dimers have been obtained. The aim of this study was to analyze the structure of the covalently stabilized dimer HCC in solution by the small angle X-ray scattering (SAXS) technique and synchrotron radiation. Experimental data confirmed that in solution this protein forms a dimer, which is characterized by the radius of gyration RG = 3.1 nm and maximum intramolecular distance Dmax = 10.3 nm. Using the ab initio method and program DAMMIN, we propose a low resolution structure of stabilized covalently cystatin C in solution. Stab-HCC dimer adopts in solution an elongated conformation, which is well reconstructed by the ab initio model.

  9. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated thatmore » LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.« less

  10. Endothelin-1 overexpression exacerbates atherosclerosis and induces aortic aneurysms in apolipoprotein E knockout mice.

    PubMed

    Li, Melissa W; Mian, Muhammad Oneeb Rehman; Barhoumi, Tlili; Rehman, Asia; Mann, Koren; Paradis, Pierre; Schiffrin, Ernesto L

    2013-10-01

    Endothelin (ET)-1 plays a role in vascular reactive oxygen species production and inflammation. ET-1 has been implicated in human atherosclerosis and abdominal aortic aneurysm (AAA) development. ET-1 overexpression exacerbates high-fat diet-induced atherosclerosis in apolipoprotein E(-/-) (Apoe(-/-)) mice. ET-1-induced reactive oxygen species and inflammation may contribute to atherosclerosis progression and AAA development. Eight-week-old male wild-type mice, transgenic mice overexpressing ET-1 selectively in endothelium (eET-1), Apoe(-/-) mice, and eET-1/Apoe(-/-) mice were fed high-fat diet for 8 weeks. eET-1/Apoe(-/-) had a 45% reduction in plasma high-density lipoprotein (P<0.05) and presented ≥ 2-fold more aortic atherosclerotic lesions compared with Apoe(-/-) (P<0.01). AAAs were detected only in eET-1/Apoe(-/-) (8/21; P<0.05). Reactive oxygen species production was increased ≥ 2-fold in perivascular fat, media, or atherosclerotic lesions in the ascending aorta and AAAs of eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). Monocyte/macrophage infiltration was enhanced ≥ 2.5-fold in perivascular fat of ascending aorta and AAAs in eET-1/Apoe(-/-) compared with Apoe(-/-) (P<0.05). CD4(+) T cells were detected almost exclusively in perivascular fat (3/6) and atherosclerotic lesions (5/6) in ascending aorta of eET-1/Apoe(-/-) (P<0.05). The percentage of spleen proinflammatory Ly-6C(hi) monocytes was enhanced 26% by ET-1 overexpression in Apoe(-/-) (P<0.05), and matrix metalloproteinase-2 was increased 2-fold in plaques of eET-1/Apoe(-/-) (P<0.05) compared with Apoe(-/-). ET-1 plays a role in progression of atherosclerosis and AAA formation by decreasing high-density lipoprotein, and increasing oxidative stress, inflammatory cell infiltration, and matrix metalloproteinase-2 in perivascular fat, vascular wall, and atherosclerotic lesions.

  11. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    PubMed Central

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  12. Dimerization of tetracationic porphyrins: ionic strength dependence.

    PubMed

    Dixon, D W; Steullet, V

    1998-02-01

    Cationic porphyrins are under study in a number of contexts including their interaction with biological targets, as possible therapeutic agents and as building blocks for molecular devices such as molecular photodiodes and solar cells. Many cationic porphyrins dimerize readily in aqueous solution. Dimerization in turn can control the properties of the porphyrin as well as its binding to its target. The propensity of a porphyrin to dimerize in aqueous solution can be estimated by recording the optical spectrum of the solution as a function of the concentration of added salt. Analysis of the data in terms of the Debye-Hückel formalism gives an estimate of the extent of dimerization as a function of ionic strength. Data for TMPyP4 [meso-tetrakis(4-N-methylpyridinium)porphyrin] and its butyl and octyl homologs; TMAP [meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin]; T theta PP [meso-tetrakis[4-N-[(3-(trimethyl-ammonio)propyl)oxy]phenyl]porphyrin] and the ferrocenyl porphyrin P3Fc are discussed. Dimerization may affect binding of the cationic porphyrins to their targets, e.g., DNA.

  13. Dimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2014-04-01

    carboxylic acids and dimers. The results support the formation of the high-molecular weight dimers through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimers formed in the gas phase may explain increased particle number concentration as a result of homogenous nucleation. Since three of these dimers (i.e. pinyl-diaterpenyl dimer (MW 358), pinyl-diaterebyl dimer (MW 344) and pinonyl-pinyl dimer (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimers observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility dimers result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  14. Apolipoprotein E polymorphisms in Japanese patients with polypoidal choroidal vasculopathy and exudative age-related macular degeneration.

    PubMed

    Gotoh, Norimoto; Kuroiwa, Sachiko; Kikuchi, Takanobu; Arai, Jun; Arai, Satoko; Yoshida, Noriko; Yoshimura, Nagahisa

    2004-10-01

    To study the genotypes, allelic frequencies, and polymorphisms of apolipoprotein E (Apo E) in unrelated Japanese patients with polypoidal choroidal vasculopathy (PCV) or exudative age-related macular degeneration (AMD) and control subjects without macular degeneration. Cross-sectional study. Blood samples from 225 subjects older than 50 years were used. The 225 subjects included 58 patients with PCV, 85 with AMD, and 82 without macular degeneration. Coding exons of the Apo E gene were amplified by polymerase chain reaction, and the DNA sequences were determined by direct sequencing with an automated sequencer. Apo E epsilon3/epsilon3 was the most frequent genotype with a prevalence of 79.3% in PCV patients, 76.5% in AMD patients, and 67.1% in the control subjects. However, the differences in the percentages were not statistically significant among the three groups. The most frequently found allele in the three groups was epsilon3. Patients with PCV and AMD were less likely to have epsilon2 and epsilon4 than the control subjects, but the differences were not statistically significant. Five minor Apo E single nucleotide polymorphisms, including epsilon5 and epsilon7, were found. Japanese patients with PCV and AMD were less likely to have epsilon2 and epsilon4 polymorphisms, but the differences from the normals were not statistically significant for the Apo E genotypes and allelic frequencies.

  15. Apolipoprotein E Polymorphism and Colorectal Neoplasm: Results from a Meta-Analysis

    PubMed Central

    Tian, Yun; Wang, Jirong; Ye, Ying; Sun, Liqun; Fan, Yingrui; Wang, Li; Li, Juan; Wang, Zhaoxia; Wang, Keming

    2014-01-01

    To investigate the relationship of Apolipoprotein E (APOE) gene polymorphism to colorectal neoplasia (CRN), we performed a systematic review and meta-analysis. Eligible studies were identified through a systematic literature review from PubMed, EMBASE, and the Science Citation Index up to February 2014. A combined analysis was performed, followed by a subgroup analyses stratified by the study design. We used data collected from 8 prospective studies involving respectively a total of 9243 participants and 4310 CRN cases which including 438 patients with colorectal adenoma (CRA), and 3873 patients with colorectal carcinoma (CRC). The pooled data from this meta-analysis indicated there was no significant association between APOE polymorphism and CRN (ε2: P = 0.51, OR 1.04 95% CI 0.93 to 1.16; ε4: P = 0.72, OR 0.98 95% CI 0.90 to 1.07). Interestingly, subgroup analysis demonstrated there was a significant decreased risk for proximal CRN in patients with APOE ε4 (P = 0.0007, OR 0.52 95% CI 0.35 to 0.76). Data showed no significant association between APOE genotype and overall CRN. However, compared with those carry APOE ε3 alleles, persons with APOE ε4 genotype have significant decreased risk suffering from proximal CRN but not from distal CRN. PMID:25029444

  16. Lipoprotein metabolism in Japanese centenarians: effects of apolipoprotein E polymorphism and nutritional status.

    PubMed

    Arai, Y; Hirose, N; Nakazawa, S; Yamamura, K; Shimizu, K; Takayama, M; Ebihara, Y; Osono, Y; Homma, S

    2001-11-01

    To assess the complex interaction of apolipoprotein (apo) E polymorphisms and environmental factors on lipoprotein profile in centenarians. Cross-sectional analysis. Tokyo metropolitan area. Seventy-five centenarians and 73 healthy older volunteers (mean age 63.1 +/- 10.0) living in the Tokyo metropolitan area. Plasma lipids and lipoproteins, cholesteryl ester transfer protein mass, apo E phenotype, body mass index, nutritional indices (serum albumin, prealbumin, transferrin), dietary intake, inflammation markers (C-reactive protein (CRP), interleukin-6 (IL-6)), activities of daily living, and cognitive function. In comparison with older people, the centenarians had low concentrations of total and low-density lipoprotein cholesterol (LDL-C) and a relative predominance of high-density lipoprotein 2 cholesterol. No environmental factor, except the number of apo E epsilon2 alleles, was a significant determinant of LDL-C and apo B, suggesting that the low apo B-containing lipoprotein in centenarians may be attributable to a genetic cause. Centenarians had elevated levels of lipoprotein (a) and decreased high-density lipoprotein cholesterol (HDL-C), which seem to be an unfavorable lipoprotein profile. Lower levels of HDL-C in the centenarians were associated with decreased serum albumin, elevated CRP and IL-6 levels, and cognitive impairment, suggesting that HDL-C could be a sensitive marker for frailty and comorbidity in the oldest old. Low levels of apo B-containing lipoproteins attributable to a genetic cause may be advantageous for longevity. Lipoprotein profiles in centenarians were consistently related to the subjects' nutritional status, inflammation markers, and apo E polymorphisms. The results provide evidence for the importance of maintaining nutritional status in the very old.

  17. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice

    PubMed Central

    Yamamoto, Suguru; Zuo, Yiqin; Ma, Ji; Yancey, Patricia G.; Hunley, Tracy E.; Motojima, Masaru; Fogo, Agnes B.; Linton, MacRae F.; Fazio, Sergio; Ichikawa, Iekuni

    2011-01-01

    Background. Accelerated atherosclerosis and increased cardiovascular events are not only more common in chronic kidney disease (CKD) but are more resistant to therapeutic interventions effective in the general population. The oral charcoal adsorbent, AST-120, currently used to delay start of dialysis, reduces circulating and tissue uremic toxins, which may contribute to vasculopathy, including atherosclerosis. We, therefore, investigated whether AST-120 affects CKD-induced atherosclerosis. Methods. Apolipoprotein E-deficient mice, a model of atherosclerosis, underwent uninephrectomy, subtotal nephrectomy or sham operation at 8 weeks of age and were treated with AST-120 after renal ablation. Atherosclerosis and its characteristics were assessed at 25 weeks of age. Results. Uninephrectomy and subtotal nephrectomised mice had significantly increased acceleration of atherosclerosis. AST-120 treatment dramatically reduced the atherosclerotic burden in mice with kidney damage, while there was no beneficial effect in sham-operated mice. The benefit was independent of blood pressure, serum total cholesterol or creatinine clearance. AST-120 significantly decreased necrotic areas and lessened aortic deposition of the uremic toxin indoxyl sulfate without affecting lesional macrophage or collagen content. Furthermore, AST-120 lessened aortic expression of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-1β messenger RNA. Conclusions. AST-120 lessens the extent of atherosclerosis induced by kidney injury and alters lesion characteristics in apolipoprotein E-deficient mice, resulting in plaques with a more stable phenotype with less necrosis and reduced inflammation. PMID:21245127

  18. Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation.

    PubMed

    Pavankumar, Asalapuram R; Kayathri, Rajarathinam; Murugan, Natarajan A; Zhang, Qiong; Srivastava, Vaibhav; Okoli, Chuka; Bulone, Vincent; Rajarao, Gunaratna K; Ågren, Hans

    2014-01-01

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  19. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis

    PubMed Central

    2013-01-01

    Background The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer’s disease. The link between apolipoprotein E (apoE) and Alzheimer’s disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer’s disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes. Results We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4. Conclusions We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse

  20. The advantages of haplotype analysis of the promoter region of the human apolipoprotein E gene.

    PubMed

    McLaughlin, D P; Sharma, A; McGinley, A; Samra, G S

    2001-12-15

    Polymorphisms in the regulatory region of the human apolipoprotein E gene (gene, APOE; protein, apoE) have been implicated in Alzheimer's disease. Here we describe in detail the advantages of a simple method for haplotype analysis of this region (at -491 and -427 bases relative to the transcription start site of the gene). The promoter region of the APOE gene was amplified by polymerase chain reaction (PCR) and this fragment was then used as a template for PCR with "nested" primers to generate a 228-bp product incorporating both the -491 and the -427 loci. PCR products were then digested with DraI and AluI together and subjected to polyacrylamide gel electrophoresis. The distinct pattern of bands appearing on the gel was then used to ascribe [-491,-427] haplotypes to each subject, from which -491 and -427 genotypes were inferred. -491 and -427 genotypes were also confirmed by digestion with DraI alone or AluI alone. Haplotype analysis was successful in all 20 samples analyzed and was 100% consistent with genotyping. We suggest that this is a reliable, time-saving method that the will be useful in large-scale APOE promoter genotyping studies. (c)2001 Elsevier Science.

  1. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface.

    PubMed Central

    Iino, R; Koyama, I; Kusumi, A

    2001-01-01

    Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443

  2. Apolipoprotein E Genotype-Dependent Paradoxical Short-Term Effects of {sup 56}Fe Irradiation on the Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, Gwendolen E.; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR; Villasana, Laura

    2012-11-01

    Purpose: In humans, apolipoprotein E (apoE) is encoded by three major alleles ({epsilon}2, {epsilon}3, and {epsilon}4) and, compared to apoE3, apoE4 increases the risk of developing Alzheimer disease and cognitive impairments following various environmental challenges. Exposure to irradiation, including that of {sup 56}Fe, during space missions poses a significant risk to the central nervous system, and apoE isoform might modulate this risk. Methods and Materials: We investigated whether apoE isoform modulates hippocampus-dependent cognitive performance starting 2 weeks after {sup 56}Fe irradiation. Changes in reactive oxygen species (ROS) can affect cognition and are induced by irradiation. Therefore, after cognitive testing, wemore » assessed hippocampal ROS levels in ex vivo brain slices, using the ROS-sensitive fluorescent probe, dihydroethidium (DHE). Brain levels of 3-nitrotyrosine (3-NT), CuZn superoxide dismutase (CuZnSOD), extracellular SOD, and apoE were assessed using Western blotting analysis. Results: In the water maze, spatial memory retention was impaired by irradiation in apoE2 and apoE4 mice but enhanced by irradiation in apoE3 mice. Irradiation reduced DHE-oxidation levels in the enclosed blade of the dentate gyrus and levels of 3-NT and CuZnSOD in apoE2 but not apoE3 or apoE4 mice. Finally, irradiation increased apoE levels in apoE3 but not apoE2 or apoE4 mice. Conclusions: The short-term effects of {sup 56}Fe irradiation on hippocampal ROS levels and hippocampus-dependent spatial memory retention are apoE isoform-dependent.« less

  3. Context-Dependent Associations Between Variation in Risk of Ischemic Heart Disease and Variation in the 5′ Promoter Region of the Apolipoprotein E Gene in Danish Women

    PubMed Central

    Stengård, Jari H.; Dyson, Greg; Frikke-Schmidt, Ruth; Tybjærg-Hansen, Anne; Nordestgaard, Borge G.; Sing, Charles F.

    2010-01-01

    Objective Variations in the noncoding single-nucleotide polymorphisms (SNPs) at positions 560 and 832 in the 5′ promoter region of the apolipoprotein E gene define genotypes that distinguish between high and low concentrations of plasma total and high-density lipoprotein cholesterol and triglycerides. We addressed whether these genotypes improve the prediction of ischemic heart disease (IHD) in subsamples of individuals defined by traditional risk factors and the genotypes defined by the ε2, ε3, and ε4 alleles in exon 4 of the apolipoprotein E gene. Methods and Results In a sample of 3686 female and 2772 male participants of the Copenhagen City Heart Study who were free of IHD events, 576 individuals (257 women, 7.0% and 319 men, 11.5%) were diagnosed as having developed IHD in 6.5 years of follow-up. Using a stepwise Patient Rule-Induction Method modeling strategy that acknowledges the complex pathobiology of IHD, we identified a subsample of 764 elderly women (≥65 years) with hypertriglyceridemia who had a history of smoking, a history of hypertension, or a history of both in which the A560T832/A560T832 and A560T832/A560G832 5′ 2-SNP genotypes had a higher cumulative incidence of IHD (172/1000) compared to the incidence of 70/1000 in the total sample of women. Conclusions Our study validates that 5′ apolipoprotein E genotypes improve the prediction of IHD and documents that the improvement is greatest in a subset defined by a particular combination of traditional risk factors in Copenhagen City Heart Study female participants. We discuss the use of these genotypes in medical risk assessment of IHD in the population represented by the Copenhagen City Heart Study. PMID:20160192

  4. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-02-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation.

  5. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA.

    PubMed Central

    Prats, A C; Roy, C; Wang, P A; Erard, M; Housset, V; Gabus, C; Paoletti, C; Darlix, J L

    1990-01-01

    The genetic material of all retroviruses examined so far consists of two identical RNA molecules joined at their 5' ends by the dimer linkage structure (DLS). Since the precise location of the DLS as well as the mechanism and role(s) of RNA dimerization remain unclear, we analyzed the dimerization process of Moloney murine leukemia virus (MoMuLV) genomic RNA. For this purpose we derived an in vitro model for RNA dimerization. By using this model, murine leukemia virus RNA was shown to form dimeric molecules. Deletion mutagenesis in the 620-nucleotide leader of MoMuLV RNA showed that the dimer promoting sequences are located within the encapsidation element Psi between positions 215 and 420. Furthermore, hybridization assays in which DNA oligomers were used to probe monomer and dimer forms of MoMuLV RNA indicated that the DLS probably maps between positions 280 and 330 from the RNA 5' end. Also, retroviral nucleocapsid protein was shown to catalyze dimerization of MoMuLV RNA and to be tightly bound to genomic dimer RNA in virions. These results suggest that MoMuLV RNA dimerization and encapsidation are probably controlled by the same cis element, Psi, and trans-acting factor, nucleocapsid protein, and thus might be linked during virion formation. Images PMID:2153242

  6. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  7. Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e-12c bond and large NLO responses.

    PubMed

    Zhong, Rong-Lin; Zhang, Ji; Muhammad, Shabbir; Hu, Yang-Yang; Xu, Hong-Liang; Su, Zhong-Min

    2011-10-10

    On the basis of the famous staggered biphenalenyl diradical π dimer 1, the eclipsed biphenalenyl (1a), with no centrosymmetry, was obtained by rotating a layer of 1 by 60° around its central axis. Furthermore, the central carbon atoms of 1 and 1a were substituted by boron and nitrogen atoms to form 2 and 2a with a novel 2e-12c bond. We found that the novel 2e-12c bond is formed by the electron pair of the occupied orbital of the phenalenyl monomer substituted by the nitrogen atom and the unoccupied orbital of the phenalenyl monomer substituted by the boron atom. As a result of the novel 2e-12c bond, 2 and 2a exhibit a fascinating interlayer charge-transfer transition character, which results in a significant difference in the dipole moments (Δμ) between the ground state and the crucial excited state. The values of Δμ for 2 and 2a are 6.4315 and 6.9253 Debye, clearly larger than the values of 0 and 0.0015 Debye for 1 and 1a. Significantly, the boron/nitrogen substitution effect can greatly enhance the first hyperpolarizabilities (β(0) ) of 2 and 2a with a novel 2e-12c bond compared with 1 and 1a with a traditional 2e-12c bond: 0 and 19 a.u. for 1 and 1a are much lower than 3516 and 12272 a.u. for 2 and 2a. Furthermore, the interaction energies (E(int) )of 2 and 2a are larger than those of 1 and 1a, which could be considered as a signature of reliability for the newly designed dimers. Our present work will be beneficial for further theoretical and experimental studies on the properties of molecules with the novel 2e-12c bond. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Higher Blood Vitamin C Levels are Associated with Reduction of Apolipoprotein E E4-related Risks of Cognitive Decline in Women: The Nakajima Study.

    PubMed

    Noguchi-Shinohara, Moeko; Abe, Chiemi; Yuki-Nozaki, Sohshi; Dohmoto, Chiaki; Mori, Ayaka; Hayashi, Koji; Shibata, Syutaro; Ikeda, Yoshihisa; Sakai, Kenji; Iwasa, Kazuo; Yokogawa, Masami; Ishimiya, Mai; Nakamura, Hiroyuki; Yokoji, Hidehiro; Komai, Kiyonobu; Nakamura, Hiroyuki; Yamada, Masahito

    2018-05-11

    Antioxidants like vitamins C and E may minimize the risk for Alzheimer's disease. We examined whether vitamins C and E modify the apolipoprotein E (APOE) E4-related risks for developing cognitive decline. We conducted a population-based prospective study including Japanese residents aged 65 years from Nakajima, Japan. The participants received an evaluation of cognitive function and underwent blood tests including tests for vitamins C and E levels and APOE phenotypes. The APOE E4-by-gender-by-vitamin C or E interactions on developing cognitive decline were analyzed. Of 606 participants with normal cognitive function determined using a baseline survey (2007-2008), 349 completed the follow up survey between 2014 and 2016. In women with APOE E4, significantly reduced risk for cognitive decline was observed for the highest blood vitamin C concentration tertile [multivariate OR 0.10 (95% CI 0.01-0.93)] compared with the lowest tertile. In men without APOE E4, significantly reduced risk for cognitive decline was observed for the highest blood vitamin E concentration tertile [multivariate OR 0.19 (0.05-0.74)] as compared with the lowest tertile. Our results demonstrate significant beneficial effects of vitamins C and E in reducing the risk of cognitive decline in women with APOE E4 and men without APOE E4, respectively.

  9. Frequencies of apolipoprotein E polymorphism in a healthy Kurdish population from Kermanshah, Iran.

    PubMed

    Vaisi-Raygani, Asad; Kharrazi, Hadi; Rahimi, Zohreh; Pourmotabbed, Tayebeh

    2007-10-01

    The molecular polymorphism displayed by apolipoprotein E (APOE) has been listed as a risk factor for susceptibility to various disorders, such as those associated with lipid metabolism, arteriosclerosis, coronary artery disease (CAD), and Alzheimer disease. To evaluate the role of APOE genotypes as risk factors for Alzheimer disease, CAD, and atherosclerosis in the Kurdish population of Kermanshah, Iran, we studied the frequencies of APOE alleles *2, *3, and *4 and genotypes in 914 healthy Kurdish subjects (514 men and 400 women). The highest frequency of APOE in the Kurdish population was found for APOE*3 (87.87%). The APOE*2 and APOE*4 allele frequencies were 6.66% and 5.45%, respectively. Distribution of APOE genotypes and alleles was not significantly different between male and female subjects (p > 0.05). Interestingly, the order of the frequency of APOE alleles (*3-->*2-->*4) in the Kurdish population was quite different from that reported for most populations in the world (*3-->*4-->*2). The findings of the present study can be used to identify individuals with high risk of CAD and atherosclerosis and suggest a preventive measure to reduce their susceptibility.

  10. Analytical expressions for the correlation function of a hard sphere dimer fluid

    NASA Astrophysics Data System (ADS)

    Kim, Soonho; Chang, Jaeeon; Kim, Hwayong

    A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.

  11. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., processing, preparing, treating, packaging, transporting, or holding food, subject to the provisions of this... paperboard. (c) The alkyl ketene dimers may be used in the form of an aqueous emulsion which may contain...

  12. Antiplasmodial dimeric chalcone derivatives from the roots of Uvaria siamensis.

    PubMed

    Salae, Abdul-Wahab; Chairerk, Orapan; Sukkoet, Piyanut; Chairat, Therdsak; Prawat, Uma; Tuntiwachwuttikul, Pittaya; Chalermglin, Piya; Ruchirawat, Somsak

    2017-03-01

    Four dimeric chalcone derivatives, 8″,9″-dihydrowelwitschin H, uvarins A-C, a naphthalene derivative, 2-hydroxy-3-methoxy-6-(4'- hydroxyphenyl)naphthalene, and the known dimeric chalcones, dependensin and welwitschin E, flavonoids, a cyclohexane oxide derivative, an aromatic aldehyde were isolated from the roots of Uvaria siamensis (Annonaceae). The structures of the compounds were elucidated by spectroscopic analysis, as well as by comparison with literature data. The isolated compounds with a sufficient amount for biological assays were evaluated for their antimalarial, antimycobacterial, and cytotoxic activities. The dimeric chalcones 8″,9″-dihydrowelwitschin H, uvarins B and C, dependensin and welwitschin E showed strong antiplasmodial activity with IC 50 values of 3.10, 3.02, 3.09, 4.21 and 3.99 μg/mL, respectively. A possible biosynthesis pathway of the dimeric chalcones is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk

    PubMed Central

    Morton, Allyson M.; Koch, Manja; Mendivil, Carlos O.; Furtado, Jeremy D.; Tjønneland, Anne; Overvad, Kim; Wang, Liyun; Jensen, Majken K.; Sacks, Frank M.

    2018-01-01

    BACKGROUND. Subspecies of HDL contain apolipoprotein E (apoE) and/or apoCIII. Both proteins have properties that could affect HDL metabolism. The relation between HDL metabolism and risk of coronary heart disease (CHD) is not well understood. METHODS. Eighteen participants were given a bolus infusion of [D3]L-leucine to label endogenous proteins on HDL. HDL was separated into subspecies containing apoE and/or apoCIII and then into 4 sizes. Metabolic rates for apoA-I in HDL subspecies and sizes were determined by interactive modeling. The concentrations of apoE in HDL that contain or lack apoCIII were measured in a prospective study in Denmark including 1,949 incident CHD cases during 9 years. RESULTS. HDL containing apoE but not apoCIII is disproportionately secreted into the circulation, actively expands while circulating, and is quickly cleared. These are key metabolic steps in reverse cholesterol transport, which may protect against atherosclerosis. ApoCIII on HDL strongly attenuates these metabolic actions of HDL apoE. In the epidemiological study, the relation between HDL apoE concentration and CHD significantly differed depending on whether apoCIII was present. HDL apoE was associated significantly with lower risk of CHD only in the HDL subspecies lacking apoCIII. CONCLUSIONS. ApoE and apoCIII on HDL interact to affect metabolism and CHD. ApoE promotes metabolic steps in reverse cholesterol transport and is associated with lower risk of CHD. ApoCIII, when coexisting with apoE on HDL, abolishes these benefits. Therefore, differences in metabolism of HDL subspecies pertaining to reverse cholesterol transport are reflected in differences in association with CHD. TRIAL REGISTRATION. Clinicaltrials.gov NCT01399632. FUNDING. This work was supported by NIH grant R01HL095964 to FMS and by a grant to the Harvard Clinical and Translational Science Center (8UL1TR0001750) from the National Center for Advancing Translational Science. PMID:29467335

  14. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  15. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  16. Apolipoprotein E Genotype in Very Preterm Neonates with Intrauterine Growth Restriction: An Analysis of the German Neonatal Network Cohort.

    PubMed

    Norda, Stephen; Rausch, Tanja K; Orlikowsky, Thorsten; Hütten, Matthias; Schulz, Sören; Göpel, Wolfgang; Pecks, Ulrich

    2017-01-01

    Aim. Cord blood of intrauterine growth restricted (IUGR) neonates displays lipid changes towards atherosclerotic profiles. Apolipoprotein E (ApoE) and its isoforms (e2, e3, and e4) are involved in the regulation of lipid metabolism. Specifically, ApoE e4 has been associated with atherosclerotic diseases, while e2 has a favorable effect. We therefore hypothesized that ApoE e4 haplotype is frequently observed in IUGR neonates and contributes to impaired fetal growth and the association of IUGR with cardiovascular and metabolic diseases later in life. Methods. A cohort of 4885 preterm infants (≥22+0 and <32+0 weeks of gestation and birth weight below 1500 g) from the GNN study cohort was analyzed. Neonates were categorized into subgroups of <3rd, 3rd-10th, and >10th birth weight percentile. Analysis of the single nucleotides rs429358 and rs7412, identifying the ApoE genotype, was carried out using TaqMan® SNP genotyping assays. The proportional odds model was used to assess data. Results. No association was found between genotype and birth weight percentiles in each of the subgroups. Conclusion. ApoE genotype and low birth weight depict two distinct risk factors for cardiovascular disease without being directly associated.

  17. Metal membrane with dimer slots as a universal polarizer

    NASA Astrophysics Data System (ADS)

    Zhukovsky, Sergej; Zalkovskij, Maksim; Malureanu, Radu; Kremers, Christian; Chigrin, Dmitry; Tang, Peter T.; Jepsen, Peter U.; Lavrinenko, Andrei V.

    2014-03-01

    In this work, we show theoretically and confirm experimentally that thin metal membranes patterned with an array of slot dimers (or their Babinet analogue with metal rods) can function as a versatile spectral and polarization filter. We present a detailed covariant multipole theory for the electromagnetic response of an arbitrary dimer based on the Green functions approach. The theory confirms that a great variety of polarization properties, such as birefringence, chirality and elliptical dichroism, can be achieved in a metal layer with such slot-dimer patterning (i.e. in a metasurface). Optical properties of the metasurface can be extensively tuned by varying the geometry (shape and dimensions) of the dimer, for example, by adjusting the sizes and mutual placement of the slots (e.g. inter-slot distance and alignment angle). Three basic shapes of dimers are analyzed: II-shaped (parallel slots), V-shaped, and T-shaped. These particular shapes of dimers are found to be sensitive to variations of the slots lengths and orientation of elements. Theoretical results are well supported by full-wave three-dimensional simulations. Our findings were verified experimentally on the metal membranes fabricated using UV lithography with subsequent Ni growth. Such metasurfaces were characterized using time-domain THz spectroscopy. The samples exhibit pronounced optical activity (500 degrees per wavelength) and high transmission: even though the slots cover only 4.3 % of the total membrane area the amplitude transmission reaches 0.67 at the resonance frequency 0.56 THz.

  18. Electrochemical, spectral, and computational studies of metalloporphyrin dimers formed by cation complexation of crown ether cavities.

    PubMed

    Chitta, Raghu; Rogers, Lisa M; Wanklyn, Amber; Karr, Paul A; Kahol, Pawan K; Zandler, Melvin E; D'Souza, Francis

    2004-11-01

    The effect on the electrochemical oxidation and reduction potentials of 5,10,15,20-tetrakis(benzo-15-crown-5)porphyrin (TCP) and its metal derivatives (MTCP; M = Mg(II), VO(IV), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Ag(II)) upon potassium ion induced dimerization of the porphyrins was systematically performed in benzonitrile containing 0.1 M (TBA)ClO(4) by differential pulse voltammetry technique. The HOMO--LUMO energy level diagram constructed from the electrochemical data revealed destabilization of the HOMO level and stabilization of the LUMO level upon dimer formation while such a perturbation was larger for the HOMO level than the LUMO level. The geometry and electronic structure of a representative ZnTCP and its dimer, K(4)(ZnTCP)(2), were evaluated by the ab initio B3LYP method utilizing a mixed basis set of 3-21G(*) for Zn, K, O, and N and STO-3G for C and H. The inter-porphyrin ring distance of the dimer calculated from the optimized geometry agreed with the spectroscopically determined one, and the calculated HOMO and LUMO frontier orbitals revealed delocalization on both of the porphyrins rings. The metal-metal distances calculated from the triplet ESR spectra of the K(+) induced porphyrin dimers bearing paramagnetic metal ions in the cavity followed the trend Cu--Cu < VO--VO < Ag--Ag. However, the spectral shifts resulting from the exciton coupling of the interacting porphyrin pi-systems revealed no specific trend with respect to the metal ion in the porphyrin cavity. Additionally, linear trends in the electrochemically measured HOMO--LUMO gap and the energy corresponding to the most intense visible band of both MTCP and K(4)(MTCP)(2) were observed. A reduced HOMO--LUMO gap predicted for the dimer by B3LYP/(3-21G(), STO-3G) calculations was confirmed by the results of optical absorption and electrochemical studies.

  19. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice.

    PubMed

    Lu, Junyan; Xiang, Guangda; Liu, Min; Mei, Wen; Xiang, Lin; Dong, Jing

    2015-12-01

    The circulating irisin increases energy expenditure and improves insulin resistance in mice and humans. The improvement of insulin resistance ameliorates atherosclerosis. Therefore, we hypothesized that irisin alleviates atherosclerosis in diabetes. Endothelial function was measured by acetylcholine-induced endothelium-dependent vasodilation using aortic rings in apolipoprotein E-Null (apoE(-/-)) streptozotocin-induced diabetic mice. Atherosclerotic lesion was evaluated by plaque area and inflammatory response in aortas. In addition, the endothelium-protective effects of irisin were also further investigated in primary human umbilical vein endothelial cells (HUVECs) in vitro. The in vivo experiments showed that irisin treatment significantly improved endothelial dysfunction, decreased endothelial apoptosis, and predominantly decreased atherosclerotic plaque area of both en face and cross sections when compared with normal saline-treated diabetic mice. Moreover, the infiltrating macrophages and T lymphocytes within plaque and the mRNA expression levels of inflammatory cytokines in aortas were also significantly reduced by irisin treatment in mice. The in vitro experiments revealed that irisin inhibited high glucose-induced apoptosis, oxidative stress and increased antioxidant enzymes expression in HUVECs, and pretreatment with LY294002, l-NAME, AMPK-siRNA or eNOS-siRNA, attenuated the protection of irisin on HUVECs apoptosis induced by high glucose. In addition, the in vivo and in vitro experiments showed that irisin increased the phosphorylation of AMPK, Akt and eNOS in aortas and cultured HUVECs. The present study indicates that systemic administration of irisin may be protected against endothelial injury and ameliorated atherosclerosis in apoE(-/-) diabetic mice. The endothelium-protective action of irisin was through activation of AMPK-PI3K-Akt-eNOS signaling pathway. Irisin could be therapeutic for atherosclerotic vascular diseases in diabetes. Copyright

  20. Neutral dipole-dipole dimers: A new field in science

    NASA Astrophysics Data System (ADS)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate

  1. The effect of chromium picolinate on serum cholesterol and apolipoprotein fractions in human subjects.

    PubMed Central

    Press, R. I.; Geller, J.; Evans, G. W.

    1990-01-01

    Chromium has been implicated as a cofactor in the maintenance of normal lipid and carbohydrate metabolism. A deficiency of chromium results from diets low in biologically available chromium. Picolinic acid, a metabolite of tryptophan, forms stable complexes with transitional metal ions, which results in an improved bioavailability of the metal ion chromium. To determine whether or not chromium picolinate is effective in humans, 28 volunteer subjects were given either chromium tripicolinate (3.8 micromol [200 micrograms] chromium) or a placebo daily for 42 days in a double-blind crossover study. A 14-day period off capsules was used between treatments. Levels of total cholesterol, low-density lipoprotein (LDL) cholesterol, and apolipoprotein B, the principal protein of the LDL fraction, decreased significantly while the subjects were ingesting chromium picolinate. The concentration of apolipoprotein A-I, the principal protein of the high-density lipoprotein (HDL) fraction, increased substantially during treatment with chromium picolinate. The HDL-cholesterol level was elevated slightly but not significantly during ingestion of chromium picolinate. Only apolipoprotein B, of the variables measured, was altered significantly during supplementation with the placebo. These observations show that chromium picolinate is efficacious in lowering blood lipids in humans. PMID:2408233

  2. Collagen induces activation of DDR1 through lateral dimer association and phosphorylation between dimers

    PubMed Central

    Juskaite, Victoria; Corcoran, David S; Leitinger, Birgit

    2017-01-01

    The collagen-binding receptor tyrosine kinase DDR1 (discoidin domain receptor 1) is a drug target for a wide range of human diseases, but the molecular mechanism of DDR1 activation is poorly defined. Here we co-expressed different types of signalling-incompetent DDR1 mutants (‘receiver’) with functional DDR1 (‘donor’) and demonstrate phosphorylation of receiver DDR1 by donor DDR1 in response to collagen. Making use of enforced covalent DDR1 dimerisation, which does not affect receptor function, we show that receiver dimers are phosphorylated in trans by the donor; this process requires the kinase activity of the donor but not that of the receiver. The receiver ectodomain is not required, but phosphorylation in trans is abolished by mutation of the transmembrane domain. Finally, we show that mutant DDR1 that cannot bind collagen is recruited into DDR1 signalling clusters. Our results support an activation mechanism whereby collagen induces lateral association of DDR1 dimers and phosphorylation between dimers. DOI: http://dx.doi.org/10.7554/eLife.25716.001 PMID:28590245

  3. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  4. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, Christine; Phuong, Nguyen Minh; Adam, Günter; Van Sung, Tran

    2003-10-01

    From the leaves of Xylopia vielana (Annonaceae) two dimeric guaianes named vielanins D and E were isolated and structurally elucidated by mass and NMR spectroscopy. Vielanin D and E consist of bridged ring systems formally representing the Diels-Alder products from the hypothetical guaiane-type monomers. Due to a hemiketal function at C-8' both compounds occurred as epimeric mixtures.

  5. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com; Lu, Xiang-Yang; Sun, Zhi-Liang

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effectivemore » concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.« less

  6. The two-state dimer receptor model: a general model for receptor dimers.

    PubMed

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  7. Detectability of Noble Gases in Jovian Atmospheres Utilizing Dimer Spectral Structures

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Min, Y.; Kim, Y.; Lee, Y.; Trafton, L.; Miller, S.; McKellar, A. R. W.

    1997-07-01

    The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window (Kim et al. 1995; Trafton et al. 1997) suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres, it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if adequate S/N is obtained. However, these dimer structures should be much weaker than the nearby hydrogen-hydrogen features because noble gases are expected to be minor constituents of these atmospheres. We will discuss the detectability of these dimers based on laboratory measurements (McKellar, 1994; 1996), and current technology of infrared observations.

  8. The aggregation paths and products of Aβ42 dimers are distinct from Aβ42 monomer

    PubMed Central

    O'Malley, Tiernan T.; Witbold, William M.; Linse, Sara; Walsh, Dominic M.

    2017-01-01

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be SDS-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated from Aβ monomer, consist primarily of Aβ42 and resist denaturation by powerful chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in only one of two different ways - either by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then applied a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by Aβ monomer. These results suggest that Aβ dimers allow the formation of soluble aggregates akin to those in aqueous extracts of AD brain. Thus it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates. PMID:27750419

  9. PP032. Apolipoprotein profiling in umbilical cord blood of intrauterine growth restricted (IUGR) neonates.

    PubMed

    Pecks, Ulrich; Wölter, Manja; Borchers, Christoph; Smith, Derek; Maass, Nicolai; Glocker, Michael; Rath, Werner

    2013-04-01

    Fetal umbilical cord HDL concentration is lower in IUGR neonates as compared to gestational age matched controls (CTRL). The causes by now are unknown. A full apolipoprotein analysis of cord blood might help in understanding the changes in lipid metabolism seen in IUGR. To characterize cord blood apolipoprotein profile of IUGR neonates. Serum of venous umbilical cord blood (15 IUGR vs. 15 CTRL) was analyzed by Multiple Reaction Monitoring (MRM). 15 different known apolipoproteins were profiled. HDL and LDL were measured by colorimetric methods in fetal cord blood and their corresponding mothers. Fetal HDL (p<0.0001), ApoC1 (p<0.0001), and ApoE (p=0.0001) levels were lower in IUGR as compared to CTRL. Fetal HDL levels were positive correlated to ApoE, ApoC1, and ApoA2 (r=0.79, r=0.74, r=0.56). Fetal LDL levels were positive correlated to ApoB, ApoE, ApoA2, and ApoC3 (r=0.74, r=0.67, r=0.57, r=0.55). Maternal LDL concentrations correlated positive to fetal ApoC1, ApoC2, and LCAT-concentration (r=0.54, r=0.52, r=0.52). The results underlines the relevance of ApoE in fetal development. Moreover, we speculate that maternal lipid profile has an impact on fetal lipid metabolisms as evidenced by the association of maternal LDL levels and fetal ApoC1, ApoC2, and LCAT concentrations. This observation requires further confirmation and is worth to be analyzed since it provides a mechanistic link for therapeutic options. Copyright © 2013. Published by Elsevier B.V.

  10. Conformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein.

    PubMed

    Zhang, J Z; Ng, M H; Xia, N S; Lau, S H; Che, X Y; Chau, T N; Lai, S T; Im, S W

    2001-06-01

    A 23 kDa peptide locating to amino acid residues 394 to 604 of the major Hepatitis E Virus (HEV) structural protein was expressed in E. coli. This peptide was found to interact naturally with one another to form homodimers and it was recognized strongly and commonly in its dimeric form by HEV reactive human sera. The antigenic activity associated with the dimeric form was abrogated when the dimer was dissociated into monomer and the activity was reconstituted after the monomer was re-associated into dimer again. The dimeric form of the peptide elicited a vigorous antibody response in experimental animals and the resulting antisera were found to cross-react against HEV, effecting an efficient immune capture of the virus. These results attributed the antigenic activity associated with the dimeric form of the peptide to conformational antigenic determinants generated as a result of interaction between the peptide molecules. It is suggested that some of these antigenic determinants may be expressed by the HEV capsid and raised the possibility of this bacterially expressed peptide as an HEV vaccine candidate. Copyright 2001 Wiley-Liss, Inc.

  11. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization.

    PubMed

    Fossé, P; Motté, N; Roumier, A; Gabus, C; Muriaux, D; Darlix, J L; Paoletti, J

    1996-12-24

    Retroviral genomes consist of two identical RNA molecules joined noncovalently near their 5'-ends. Recently, two models have been proposed for RNA dimer formation on the basis of results obtained in vitro with human immunodeficiency virus type 1 RNA and Moloney murine leukemia virus RNA. It was first proposed that viral RNA dimerizes by forming an interstrand quadruple helix with purine tetrads. The second model postulates that RNA dimerization is initiated by a loop-loop interaction between the two RNA molecules. In order to better characterize the dimerization process of retroviral genomic RNA, we analyzed the in vitro dimerization of avian sarcoma-leukosis virus (ASLV) RNA using different transcripts. We determined the requirements for heterodimer formation, the thermal dissociation of RNA dimers, and the influence of antisense DNA oligonucleotides on dimer formation. Our results strongly suggest that purine tetrads are not involved in dimer formation. Data show that an autocomplementary sequence located upstream from the splice donor site and within a major packaging signal plays a crucial role in ASLV RNA dimer formation in vitro. This sequence is able to form a stem-loop structure, and phylogenetic analysis reveals that it is conserved in 28 different avian sarcoma and leukosis viruses. These results suggest that dimerization of ASLV RNA is initiated by a loop-loop interaction between two RNA molecules and provide an additional argument for the ubiquity of the dimerization process via loop-loop interaction.

  12. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    PubMed

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Guo, Shoudong; Tian, Hua; Dong, Rongrong; Yang, Nana; Zhang, Ying; Yao, Shutong; Li, Yongjun; Zhou, Yawei; Si, Yanhong; Qin, Shucun

    2016-08-01

    Previous studies investigating the correlation between plasma sialic acid and the severity of atherosclerosis present conflicting results. In atherosclerosis patients, plasma levels of N-acetylneuraminic acid (NANA) are increased; however, the underlying mechanisms have not yet been clarified. We assume the increased NANA level may be a compensatory mechanism due to oxidative stress and/or inflammation. The aim of this study is to investigate whether supplementation of NANA could attenuate the progression of atherosclerosis. Exogenous NANA was used to determine its effect on apolipoprotein E-deficient (apoE(-/-)) mice taking natural quercetin as a positive control. The effect of NANA on lipid lowering, antioxidant activity and anti-inflammation was investigated by methods of molecular biology. 1) NANA administration decreased 18.9% of the atherosclerotic plaque formation in the aorta and 26.7% of the lipid deposition in the liver of high-fat diet apoE(-/-) mice; 2) notably, NANA treatment reduced 62.6% of the triglyceride by improving lipoprotein lipase activity; 3) NANA lowered 17.5% of the plasma total cholesterol by up-regulating reverse cholesterol transport (RCT)-related protein expression such as ATP-binding cassette transporter (ABC) G1 and ABCG5 in liver or small intestine; 4) NANA administration notably decreased oxidative stress by increasing antioxidant enzymes activity and protein expression of paraoxonase 1 and 2; 5) NANA markedly reduced tumour necrosis factor-α and intercellular adhesion molecule-1 expression in aorta and liver. NANA exhibited triglyceride lowering, anti-oxidation, and RCT promoting activities, and therefore NANA supplementation may be a new strategy for prevention and treatment of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Biophysical Analysis of Apolipoprotein E3 Variants Linked with Development of Type III Hyperlipoproteinemia

    PubMed Central

    Georgiadou, Dimitra; Chroni, Angeliki; Vezeridis, Alexander; Zannis, Vassilis I.; Stratikos, Efstratios

    2011-01-01

    Background Apolipoprotein E (apoE) is a major protein of the lipoprotein transport system that plays important roles in lipid homeostasis and protection from atherosclerosis. ApoE is characterized by structural plasticity and thermodynamic instability and can undergo significant structural rearrangements as part of its biological function. Mutations in the 136–150 region of the N-terminal domain of apoE, reduce its low density lipoprotein (LDL) receptor binding capacity and have been linked with lipoprotein disorders, such as type III hyperlipoproteinemia (HLP) in humans. However, the LDL-receptor binding defects for these apoE variants do not correlate well with the severity of dyslipidemia, indicating that these variants may carry additional properties that contribute to their pathogenic potential. Methodology/Principal Findings In this study we examined whether three type III HLP predisposing apoE3 variants, namely R136S, R145C and K146E affect the biophysical properties of the protein. Circular dichroism (CD) spectroscopy revealed that these mutations do not significantly alter the secondary structure of the protein. Thermal and chemical unfolding analysis revealed small thermodynamic alterations in each variant compared to wild-type apoE3, as well as effects in the reversibility of the unfolding transition. All variants were able to remodel multillamelar 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) vesicles, but R136S and R145C had reduced kinetics. Dynamic light scattering analysis indicated that the variant R136S exists in a higher-order oligomerization state in solution. Finally, 1-anilinonaphthalene-8-sulfonic acid (ANS) binding suggested that the variant R145C exposes a larger amount of hydrophobic surface to the solvent. Conclusions/Significance Overall, our findings suggest that single amino acid changes in the functionally important region 136–150 of apoE3 can affect the molecule's stability and conformation in solution and may underlie

  15. Effect of base sequence on the DNA cross-linking properties of pyrrolobenzodiazepine (PBD) dimers

    PubMed Central

    Rahman, Khondaker M.; James, Colin H.; Thurston, David E.

    2011-01-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) dimers are synthetic sequence-selective DNA minor-groove cross-linking agents that possess two electrophilic imine moieties (or their equivalent) capable of forming covalent aminal linkages with guanine C2-NH2 functionalities. The PBD dimer SJG-136, which has a C8–O–(CH2)3–O–C8′′ central linker joining the two PBD moieties, is currently undergoing phase II clinical trials and current research is focused on developing analogues of SJG-136 with different linker lengths and substitution patterns. Using a reversed-phase ion pair HPLC/MS method to evaluate interaction with oligonucleotides of varying length and sequence, we recently reported (JACS, 2009, 131, 13 756) that SJG-136 can form three different types of adducts: inter- and intrastrand cross-linked adducts, and mono-alkylated adducts. These studies have now been extended to include PBD dimers with a longer central linker (C8–O–(CH2)5–O–C8′), demonstrating that the type and distribution of adducts appear to depend on (i) the length of the C8/C8′-linker connecting the two PBD units, (ii) the positioning of the two reactive guanine bases on the same or opposite strands, and (iii) their separation (i.e. the number of base pairs, usually ATs, between them). Based on these data, a set of rules are emerging that can be used to predict the DNA–interaction behaviour of a PBD dimer of particular C8–C8′ linker length towards a given DNA sequence. These observations suggest that it may be possible to design PBD dimers to target specific DNA sequences. PMID:21427082

  16. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-04

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation.

  17. Prospective associations of exercise and depressive symptoms in older adults: the role of apolipoprotein E4.

    PubMed

    Ku, Po-Wen; Steptoe, Andrew; Chen, Li-Jung

    2017-07-01

    Exercise is associated with reduced risk of depressive symptoms at older ages, while recent work suggests that the apolipoprotein E type 4 allele (APOE-e4) may increase risk. There are no studies of whether APOE-e4 moderates the relationship between exercise and later life depressive symptoms. This study aimed to explore whether the prospective associations between exercise and subsequent depressive symptoms were distinct between APOE-e4 carriers and non-carriers using nationwide data. Data from 639 participants (mean age = 66.14, SD = 7.26) in 2000 with 6 years of follow-up were studied. Depressive symptoms were assessed using the Center for Epidemiologic Studies-Depression Scale. Exercise and the APOE genotype were also assessed at baseline. Negative binomial regression models were conducted to examine the combined effects of exercise and APOE-e4 status on subsequent depressive symptoms when controlling for baseline depressive symptoms and other covariates. Sensitivity analyses to test for confounding, reverse causality, and attrition were conducted. Among APOE-e4 carriers, there was no significant difference in depressive symptoms between high active and low active groups. In contrast, high active APOE-e4 non-carriers had fewer depressive symptoms than low active APOE-e4 non-carriers. The beneficial effect of exercise on depressive symptoms is restricted to APOE-e4 non-carriers. Sensitivity analyses provided further support for the robustness of these findings. This is the first prospective study investigating whether APOE-e4 moderates the association between exercise and depressive symptoms. It proposes that genetic variation in APOE may influence the effect of exercise on depressive symptoms.

  18. Moderate alcohol use and apolipoprotein E-4 (ApoE-4): Independent effects on cognitive outcomes in later life.

    PubMed

    Herring, Danielle; Paulson, Daniel

    2018-05-01

    Substantive past research suggests that moderate alcohol use confers beneficial health outcomes. The study of moderate alcohol use and cognition has produced variable findings. The primary goal was to examine the relationship between alcohol use and cognitive aging over time (Experiment 1), in a demographically representative, longitudinal survey of older adults. Experiment 2 examined the hypothesis that apolipoprotein E-4 (ApoE-4) would moderate the relationship between moderate drinking and performance on cognitive domains. The sample was drawn from the Aging, Demographics, and Memory Study (ADAMS) supplement of the Health and Retirement Study (HRS) and included 856 participants over age 65 in 2001. Follow-up data were from 2002, 2006, and 2008. Alcohol use was measured via self-report. Control variables included gender, age, race, number of years of education, medical burden (total number of medical diseases), and marital status. Results of Experiment 1 indicated that moderate alcohol use was significantly associated with better baseline functioning across cognitive measures (p ≤ .05), but had no significant effect on rate of change over time across cognitive domains. Results of Experiment 2 indicated that while ApoE-4 carriage did not moderate the relationship between alcohol use and cognitive performance, generally, both ApoE-4 and moderate alcohol use were significant predictors of cognitive performance. Overall, findings from this study support past findings that moderate alcohol use is associated with better cognitive functioning among community-dwelling older adults, and these relative benefits appear to persist throughout later life. However, the role of individual differences on manifestation of benefit remain very poorly understood. Future research should further examine the respective roles of demographic differences associated with cognitive aging, genetic moderators, and the influence of social interaction.

  19. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M., E-mail: spotheim@cnrs-orleans.fr

    2009-08-21

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro {gamma}-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucinemore » residues of the tetramerization domain.« less

  20. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  1. Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain.

    PubMed

    Alemany, Regina; Navarro, María A; Vögler, Oliver; Perona, Javier S; Osada, Jesús; Ruiz-Gutiérrez, Valentina

    2010-01-01

    Atherosclerosis contributes to disruption of neuronal signaling pathways by producing lipid-dependent modifications of brain plasma membranes, neuroinflammation and oxidative stress. We investigated whether long-term (11 weeks) consumption of refined- (ROO) and pomace- (POO) olive oil modulated the fatty acid composition and the levels of membrane signaling proteins in the brain of apolipoprotein E (apoE) knockout (KO) mice, an animal model of atherosclerosis. Both of these oils are rich in bioactive molecules with anti-inflammatory and antioxidant effects. ROO and POO long-term consumption increased the proportion of monounsaturated fatty acids (MUFAs), particularly of oleic acid, while reducing the level of the saturated fatty acids (SFAs) palmitic and stearic acid. As a result, the MUFA:SFA ratio was higher in apoE KO mice brain fed with ROO and POO. Furthermore, both oils reduced the level of arachidonic and eicosapentaenoic acid, suggesting a decrease in the generation of pro- and anti-inflammatory eicosanoids. Finally, ROO and POO induced an increase in the density of membrane proteins implicated in both the Galphas/PKA and Galphaq/PLCbeta1/PKCalpha signaling pathways. The combined effects of long-term ROO and POO consumption on fatty acid composition and the level of signaling proteins involved in PKA and PKC activation, suggest positive effects on neuroinflammation and brain function in apoE KO mice brain, and convert these oils into promising functional foods in diseases involving apoE deficiency.

  2. G-Quadruplex Induction by the Hairpin Pyrrole-Imidazole Polyamide Dimer.

    PubMed

    Obata, Shunsuke; Asamitsu, Sefan; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2018-02-06

    The G-quadruplex (G4) is one type of higher-order structure of nucleic acids and is thought to play important roles in various biological events such as regulation of transcription and inhibition of DNA replication. Pyrrole-imidazole polyamides (PIPs) are programmable small molecules that can sequence-specifically bind with high affinity to the minor groove of double-stranded DNA (dsDNA). Herein, we designed head-to-head hairpin PIP dimers and their target dsDNA in a model G4-forming sequence. Using an electrophoresis mobility shift assay and transcription arrest assay, we found that PIP dimers could induce the structural change to G4 DNA from dsDNA through the recognition by one PIP dimer molecule of two duplex-binding sites flanking both ends of the G4-forming sequence. This induction ability was dependent on linker length. This is the first study to induce G4 formation using PIPs, which are known to be dsDNA binders. The results reported here suggest that selective G4 induction in native sequences may be achieved with PIP dimers by applying the same design strategy.

  3. Fiber optic D dimer biosensor

    DOEpatents

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  4. Fiber optic D dimer biosensor

    DOEpatents

    Glass, R.S.; Grant, S.A.

    1999-08-17

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  5. Apolipoprotein E receptor 2 Gene Polymorphisms Associated with Dyslipidemia among Thai Population.

    PubMed

    Thongket, Polphet; Rattanathanawan, Kankanit; Seesom, Weeranuch; Sukhumsirichart, Wasana

    2015-10-01

    Dyslipidemia is an abnormal amount of lipids and/or lipoproteins in the blood. It is a major risk factor of coronary heart disease and atherosclerosis. This study investigated two single nucleotide polymorphisms (SNPs) in the apolipoprotein E receptor 2 (ApoER2) gene in association with risk of dyslipidemia in the Thai patients. Four hundred blood samples including dyslipidemia patient (200) and unrelated normal control (200) were included in this study. Serum lipids were examined. DNAs were extracted and genotyped by using polymerase chain reaction (PCR) followed by high-resolution melting (HRM) analysis. The differences in genotype distribution between patient and normal control were assessed by Chi-square test of the SPSS software version 11.5. The data analysis revealed that two SNPs (rs3737984 and rs2297660) in ApoER2 gene had significant association with dyslipidemia. The rs3 737984 showed significant association at p-value = 0.001, in which A alleles informed the decreased risk of dyslipidemia [odds ratio and 95% CI of A allele, 0.42 (0.28-0.65)]. In contrast, the rs2297660 exhibited strongest association with an increase risk ofdyslipidemia [p-value = 0.001, odds ratio and 95% CI for theA allele was 2.38 (1.49-3.80)]. The rs2297660 may be used as biomarker for the risk of dyslipidemia in Thai ethnic.

  6. Spectrin tetramer-dimer equilibrium and the stability of erythrocyte membrane skeletons

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Chun; Palek, Jiri

    1980-06-01

    The inner side of the red-cell membrane is laminated by a two-dimensional network of membrane proteins which include spectrin, actin and some other components1-4. After extraction of lipids and integral proteins from the membrane, this membrane skeleton can be visualized as a ball-shaped network consisting of twisted fibres1-4 and globular protrusions4; however, the assembly of the individual proteins in the membrane skeleton is not well understood. Spectrin can be eluted from the membrane in the form of dimers and tetramers5-8. Electron microscopic study with low-angle shadowing technique shows that spectrin dimers are two parallel strands of twisted fibres presumably representing bands 1 and 2 of spectrin9. Spectrin tetramers presumably formed by head-to-head associations of two dimers are twice as long9. In solution, the spectrin dimer-tetramer equilibrium depends on temperature and salt concentration7,8; however, it is not known whether the same equilibrium exists in the membrane and whether it affects the physical properties of the membrane, such as its structural stability and deformability. We now demonstrate that spectrin dimers and tetramers are in a reversible equilibrium in the membrane and that in physiological conditions this equilibrium favours spectrin tetramers. Furthermore, we show that transformation of spectrin tetramers to dimers, as induced by ghost incubation in hypotonic conditions, diminishes the structural stability of the Triton-insoluble membrane skeletons.

  7. Asymptotics of the monomer-dimer model on two-dimensional semi-infinite lattices

    NASA Astrophysics Data System (ADS)

    Kong, Yong

    2007-05-01

    By using the asymptotic theory of Pemantle and Wilson [R. Pemantle and M. C. Wilson, J. Comb. Theory, Ser. AJCBTA70097-316510.1006/jcta.2001.3201 97, 129 (2002)], asymptotic expansions of the free energy of the monomer-dimer model on two-dimensional semi-infinite ∞×n lattices in terms of dimer density are obtained for small values of n , at both high- and low-dimer-density limits. In the high-dimer-density limit, the theoretical results confirm the dependence of the free energy on the parity of n , a result obtained previously by computational methods by Y. Kong [Y. Kong, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.061102 74, 061102 (2006); Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.73.016106 73, 016106 (2006);Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.74.011102 74, 011102 (2006)]. In the low-dimer-density limit, the free energy on a cylinder ∞×n lattice strip has exactly the same first n terms in the series expansion as that of an infinite ∞×∞ lattice.

  8. Molecular basis for increased risk for late-onset Alzheimer disease due to the naturally occurring L28P mutation in apolipoprotein E4.

    PubMed

    Argyri, Letta; Dafnis, Ioannis; Theodossiou, Theodossis A; Gantz, Donald; Stratikos, Efstratios; Chroni, Angeliki

    2014-05-02

    The apolipoprotein (apo) E4 isoform has consistently emerged as a susceptibility factor for late-onset Alzheimer disease (AD), although the exact mechanism is not clear. A rare apoE4 mutant, apoE4[L28P] Pittsburgh, burdens carriers with an added risk for late-onset AD and may be a useful tool for gaining insights into the role of apoE4 in disease pathogenesis. Toward this end, we evaluated the effect of the L28P mutation on the structural and functional properties of apoE4. ApoE4[L28P] was found to have significantly perturbed thermodynamic properties, to have reduced helical content, and to expose a larger portion of the hydrophobic surface to the solvent. Furthermore, this mutant is thermodynamically destabilized and more prone to proteolysis. When interacting with lipids, apoE4[L28P] formed populations of lipoprotein particles with structural defects. The structural perturbations brought about by the mutation were accompanied by aberrant functions associated with the pathogenesis of AD. Specifically, apoE4[L28P] promoted the cellular uptake of extracellular amyloid β peptide 42 (Aβ42) by human neuroblastoma SK-N-SH cells as well as by primary mouse neuronal cells and led to increased formation of intracellular reactive oxygen species that persisted for at least 24 h. Furthermore, lipoprotein particles containing apoE4[L28P] induced intracellular reactive oxygen species formation and reduced SK-N-SH cell viability. Overall, our findings suggest that the L28P mutation leads to significant structural and conformational perturbations in apoE4 and can induce functional defects associated with neuronal Aβ42 accumulation and oxidative stress. We propose that these structural and functional changes underlie the observed added risk for AD development in carriers of apoE4[L28P].

  9. Angiotensin Converting Enzyme Inhibitors and Alzheimer Disease in the Presence of the Apolipoprotein E4 Allele

    PubMed Central

    Qiu, Wendy Wei Qiao; Lai, Angela; Mon, Timothy; Mwamburi, Mkaya; Taylor, Warren; Rosenzweig, James; Kowall, Neil; Stern, Robert; Zhu, Haihao; Steffens, David C.

    2013-01-01

    Objective The effect of angiotensin converting enzyme (ACE) inhibitors on Alzheimer disease (AD) remains unclear, with conflicting results reported. We studied the interaction of the Apolipoprotein E (ApoE) genotype and ACE inhibitors on AD. Methods This was a cross-sectional study of homebound elderly with an AD diagnosis and documentation of medications taken. ApoE genotype was determined. Results A total of 355 subjects with status on ApoE alleles and cognitive diagnoses were studied. The average age (mean ± SD) of this population was 73.3 ± 8.3 years old, and 73% were female. Cross-sectionally, there was no difference in the number of AD cases between ApoE4 carriers and ApoE4 non-carriers or between ACE inhibitor users and non-users in the homebound elderly. ApoE4 carriers treated with ACE inhibitors, however, had more diagnoses of AD compared with those who did not have the treatment (28% versus 6%, p = 0.01) or ApoE4 non-carriers treated with an ACE inhibitor (28% versus 10%, p = 0.03). ACE inhibitor use was associated with AD diagnosis only in the presence of an E4 allele. Using multivariate logistic regression analysis, we found that in diagnosed AD cases there was a significant interaction between ApoE4 and ACE inhibitor use (odds ratio: 20.85; 95% confidence interval: 3.08–140.95; p = 0.002) after adjusting for age, sex, ethnicity, and education. Conclusion The effects of ACE inhibitors on AD may be different depending on ApoE genotype. A prospective study is needed to determine whether ACE inhibitor use accelerates or poorly delays AD development in ApoE4 carriers compared with ApoE4 non-carriers. PMID:23567418

  10. Angiotensin converting enzyme inhibitors and Alzheimer disease in the presence of the apolipoprotein E4 allele.

    PubMed

    Qiu, Wendy Wei Qiao; Lai, Angela; Mon, Timothy; Mwamburi, Mkaya; Taylor, Warren; Rosenzweig, James; Kowall, Neil; Stern, Robert; Zhu, Haihao; Steffens, David C

    2014-02-01

    The effect of angiotensin converting enzyme (ACE) inhibitors on Alzheimer disease (AD) remains unclear, with conflicting results reported. We studied the interaction of the Apolipoprotein E (ApoE) genotype and ACE inhibitors on AD. This was a cross-sectional study of homebound elderly with an AD diagnosis and documentation of medications taken. ApoE genotype was determined. A total of 355 subjects with status on ApoE alleles and cognitive diagnoses were studied. The average age (mean ± SD) of this population was 73.3 ± 8.3 years old, and 73% were female. Cross-sectionally, there was no difference in the number of AD cases between ApoE4 carriers and ApoE4 non-carriers or between ACE inhibitor users and non-users in the homebound elderly. ApoE4 carriers treated with ACE inhibitors, however, had more diagnoses of AD compared with those who did not have the treatment (28% versus 6%, p = 0.01) or ApoE4 non-carriers treated with an ACE inhibitor (28% versus 10%, p = 0.03). ACE inhibitor use was associated with AD diagnosis only in the presence of an E4 allele. Using multivariate logistic regression analysis, we found that in diagnosed AD cases there was a significant interaction between ApoE4 and ACE inhibitor use (odds ratio: 20.85; 95% confidence interval: 3.08-140.95; p = 0.002) after adjusting for age, sex, ethnicity, and education. The effects of ACE inhibitors on AD may be different depending on ApoE genotype. A prospective study is needed to determine whether ACE inhibitor use accelerates or poorly delays AD development in ApoE4 carriers compared with ApoE4 non-carriers. Copyright © 2014. Published by Elsevier Inc.

  11. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling.

    PubMed

    Qiu, Yue; Ogawa, Haruo; Miyagi, Masaru; Misono, Kunio S

    2004-02-13

    The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.

  12. Synthesis, kinetic studies and molecular modeling of novel tacrine dimers as cholinesterase inhibitors.

    PubMed

    de Aquino, Roney Anderson Nascimento; Modolo, Luzia Valentina; Alves, Rosemeire Brondi; de Fátima, Ângelo

    2013-12-28

    This study presents the synthesis of 15 new tacrine dimers as well as the Ki and IC50 results, studies of the kinetic mechanism, and molecular docking analysis of the dimers in relation to the cholinesterases hAChE, hBChE, EeAChE and eqBChE. In addition to spectroscopic characterization, X-ray structure determination was performed for two of the new compounds. These new dimers were found to be mixed nanomolar inhibitors of the evaluated targets with a broad and significant selectivity profile, and these properties are dependent on both the type of the linker and the volume of the hydroacridine alicyclic ring. The results indicate that the aromatic linkers play a significant role in generating specific interactions with the half-gorge region of the catalytic center. Thus, these types of linkers can positively modulate the electronic properties of the tacrine dimers studied with an improvement of their cholinesterase inhibition activity.

  13. Serum concentrations of cholesterol, apolipoprotein A-I and apolipoprotein B in a total of 1694 meat-eaters, fish-eaters, vegetarians and vegans.

    PubMed

    Bradbury, K E; Crowe, F L; Appleby, P N; Schmidt, J A; Travis, R C; Key, T J

    2014-02-01

    The objective of this study was to describe serum lipid concentrations, including apolipoproteins A-I and B, in different diet groups. A cross-sectional analysis of a sample of 424 meat-eaters, 425 fish-eaters, 423 vegetarians and 422 vegans, matched on sex and age, from the European Prospective Investigation into Cancer and Nutrition-Oxford cohort. Serum concentrations of total, and high-density lipoprotein (HDL) cholesterol, as well as apolipoproteins A-I and B were measured, and serum non-HDL cholesterol was calculated. Vegans had the lowest body mass index (BMI) and the highest and lowest intakes of polyunsaturated and saturated fat, respectively. After adjustment for age, alcohol and physical activity, compared with meat-eaters, fish-eaters and vegetarians, serum concentrations of total and non-HDL cholesterol and apolipoprotein B were significantly lower in vegans. Serum apolipoprotein A-I concentrations did not differ between the diet groups. In males, the mean serum total cholesterol concentration was 0.87 mmol/l lower in vegans than in meat-eaters; after further adjustment for BMI this difference was 0.76 mmol/l. In females, the difference in total cholesterol between these two groups was 0.6 mmol/l, and after further adjustment for BMI was 0.55 mmol/l. [corrected]. In this study, which included a large number of vegans, serum total cholesterol and apolipoprotein B concentrations were lower in vegans compared with meat-eaters, fish-eaters and vegetarians. A small proportion of the observed differences in serum lipid concentrations was explained by differences in BMI, but a large proportion is most likely due to diet.

  14. D-dimer concentration outliers are not rare in at-term pregnant women.

    PubMed

    Wang, Yu; Gao, Jie; Du, Juan

    2016-06-01

    To determine the D-dimer levels in pregnant women at term and the differences between pregnant women with different D-dimer levels. The plasma D-dimer concentrations in pregnant women at term were identified in a cross-sectional study. The clinical indicators that are potentially relevant to D-dimer levels were compared between the pregnant women with different D-dimer levels (i.e., normal, mildly increased, and severely increased). There were always some D-dimer concentration outliers in the pregnant women at term regardless of the presence or absence of complications, and there were no significant differences in maternal age, gestational age, gravidity, parity, blood count, blood coagulation, or liver function between the pregnant women with different D-dimer levels. D-dimer levels may vary significantly during pregnancy for unknown reasons. This variation, particularly in pregnant women at term, might lead to questionable diagnostic information regarding coagulation. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Study of DNA Origami Dimerization and Dimer Dissociation Dynamics and of the Factors that Limit Dimerization.

    PubMed

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Popov, Mary; Khara, Dinesh C; Nir, Eyal

    2018-06-01

    Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single-molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the "sticky end" and "weaving welding" attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self-dimerization of the origami monomers, likely via blunt-end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Serum concentrations of cholesterol, apolipoprotein A-I, and apolipoprotein B in a total of 1 694 meat-eaters, fish-eaters, vegetarians, and vegans

    PubMed Central

    Bradbury, Kathryn E; Crowe, Francesca L; Appleby, Paul N; Schmidt, Julie A; Travis, Ruth C; Key, Timothy J

    2013-01-01

    BACKGROUND The objective of this study was to describe serum lipid concentrations, including apolipoproteins A-I and B, in different diet groups. METHODS A cross-sectional analysis of a sample of 424 meat-eaters, 425 fish-eaters, 423 vegetarians, and 422 vegans, matched on sex and age, from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Oxford cohort. Serum concentrations of total, and HDL cholesterol, as well as apolipoproteins A-I and B were measured, and serum non-HDL cholesterol was calculated. RESULTS Vegans had the lowest BMI, and the highest and lowest intakes of polyunsaturated and saturated fat, respectively. After adjustment for age, alcohol and physical activity, compared to meat-eaters, fish-eaters and vegetarians, serum concentrations of total and non-HDL cholesterol, and apolipoprotein B were significantly lower in vegans. Serum apolipoprotein A-I concentrations did not differ between the diet groups. In males, the mean serum total cholesterol concentration was 0.87 nmol/L lower in vegans than in meat-eaters; after further adjustment for BMI this difference was 0.76 nmol/L. In females, the difference in total cholesterol between these two groups was 0.60 nmol/L, and after further adjustment for BMI was 0.55 nmol/L. CONCLUSIONS In this study, which included a large number of vegans, serum total cholesterol and apolipoprotein B concentrations were lower in vegans compared to meat-eaters, fish-eaters and vegetarians. A small proportion of the observed differences in serum lipid concentrations was explained by differences in BMI, but a large proportion is most likely due to diet. PMID:24346473

  17. Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus.

    PubMed

    Tucakov, Anna Katharina; Yavuz, Sabine; Schürmann, Eva-Maria; Mischler, Manjula; Klingebeil, Anne; Meyers, Gregor

    2018-01-01

    The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein E rns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked E rns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked E rns homodimers. In transient expression studies E rns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt E rns . Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and E rns dimerization.

  18. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  19. Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp.

    PubMed

    Purohit, Anirban; England, Jennifer K; Douma, Lauren G; Tondnevis, Farzaneh; Bloom, Linda B; Levitus, Marcia

    2017-08-22

    Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Preferential recognition of undisruptable dimers of inducible nitric oxide synthase by a monoclonal antibody directed against an N-terminal epitope.

    PubMed

    Mazumdar, Tuhina; Eissa, N Tony

    2005-02-15

    Overproduction of NO by inducible NO synthase (iNOS) has been implicated in the pathogenesis of many diseases. iNOS is active only as a homodimer in which the subunits align in a head-to-head manner, with the N-terminal oxygenase domains forming the dimer interface and a zinc metal center stabilizing the dimer. Thus, dimerization represents a critical locus for therapeutic interventions for regulation of NO synthesis. We have recently shown that intracellular iNOS forms dimers that are "undisruptable (UD)" by heat, SDS, strong denaturants, and/or reducing agents. Our data further suggest that the zinc metal center plays a role in forming and/or stabilizing iNOS undisruptable dimers (UD-dimers). In this study, we show that a mAb directed against a unique epitope at the oxygenase domain of human iNOS preferentially recognizes UD-dimers. This observation has implications for the mechanism of formation and regulation of dimer formation of iNOS. Our data suggest that UD-dimers of iNOS, in spite of SDS-PAGE denaturation, still maintain features of the quaternary structure of iNOS particularly at its N-terminal end and including head-to-head contact of the oxygenase domains.

  1. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    PubMed Central

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  2. Association of apolipoprotein E polymorphism with myocardial infarction in Greek patients with coronary artery disease.

    PubMed

    Kolovou, Genovefa; Yiannakouris, Nikos; Hatzivassiliou, Marilena; Malakos, John; Daskalova, Deliana; Hatzigeorgiou, George; Cariolou, Marios A; Cokkinos, Dennis V

    2002-01-01

    Studies in several populations have indicated that genetic variation at the apolipoprotein E (apoE) structural locus influences the risk of coronary artery disease (CAD) and myocardial infarction (MI). This study aimed at investigating whether apoE polymorphism has an allelic and/or genotypic impact on the risk of MI in Greek patients with CAD. We compared apoE gene polymorphism in a group of patients with angiographically confirmed CAD but not MI [CAD/MI (-)-group, n = 143] and a group of age and sex-matched CAD patients who had experienced a non-fatal Ml [CAD/MI (+)-group, n = 124]. The patients were also compared with a group of healthy younger individuals (n = 240) with no family history of CAD. The apoE genotype distribution differed significantly between the two groups of CAD patients (p = 0.02). The epsilon2 allele was 5.3-fold less frequent in the CAD/ MI (+)-group compared with the CAD/MI (-)-group (1.2% vs. 6.3%, p = 0.01). The frequency of the epsilon2 allele in healthy subjects was 8.1%, which is 6.8-fold higher than in CAD/MI (+)-patients (p = 0.001) and twice as high compared with all CAD patients (p = 0.02). No differences in epsilon4 allele frequencies were observed between CAD/MI (+)- and CAD/MI (-)-patients (10.9% vs. 9.8%), or between patients with CAD and healthy subjects (10.3% vs. 10.2%). In summary, the epsilon4 allele was not found to be associated with an increased risk for CAD or MI. In contrast, a negative association of the epsilon2 allele with Ml was observed among Greek patients with CAD.

  3. Glycolaldehyde Formation via the Dimerization of the Formyl Radical

    NASA Astrophysics Data System (ADS)

    Woods, Paul M.; Slater, Ben; Raza, Zamaan; Viti, Serena; Brown, Wendy A.; Burke, Daren J.

    2013-11-01

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  4. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas, E-mail: thomas.grewal@sydney.edu.au

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tertmore » adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not

  5. Factors Associated with D-Dimer Levels in HIV-Infected Individuals

    PubMed Central

    Borges, Álvaro H.; O’Connor, Jemma L.; Phillips, Andrew N.; Baker, Jason V.; Vjecha, Michael J.; Losso, Marcelo H.; Klinker, Hartwig; Lopardo, Gustavo; Williams, Ian; Lundgren, Jens D.

    2014-01-01

    Background Higher plasma D-dimer levels are strong predictors of mortality in HIV+ individuals. The factors associated with D-dimer levels during HIV infection, however, remain poorly understood. Methods In this cross-sectional study, participants in three randomized controlled trials with measured D-dimer levels were included (N = 9,848). Factors associated with D-dimer were identified by linear regression. Covariates investigated were: age, gender, race, body mass index, nadir and baseline CD4+ count, plasma HIV RNA levels, markers of inflammation (C-reactive protein [CRP], interleukin-6 [IL-6]), antiretroviral therapy (ART) use, ART regimens, co-morbidities (hepatitis B/C, diabetes mellitus, prior cardiovascular disease), smoking, renal function (estimated glomerular filtration rate [eGFR] and cystatin C) and cholesterol. Results Women from all age groups had higher D-dimer levels than men, though a steeper increase of D-dimer with age occurred in men. Hepatitis B/C co-infection was the only co-morbidity associated with higher D-dimer levels. In this subgroup, the degree of hepatic fibrosis, as demonstrated by higher hyaluronic acid levels, but not viral load of hepatitis viruses, was positively correlated with D-dimer. Other factors independently associated with higher D-dimer levels were black race, higher plasma HIV RNA levels, being off ART at baseline, and increased levels of CRP, IL-6 and cystatin C. In contrast, higher baseline CD4+ counts and higher high-density lipoprotein cholesterol were negatively correlated with D-dimer levels. Conclusions D-dimer levels increase with age in HIV+ men, but are already elevated in women at an early age due to reasons other than a higher burden of concomitant diseases. In hepatitis B/C co-infected individuals, hepatic fibrosis, but not hepatitis viral load, was associated with higher D-dimer levels. PMID:24626096

  6. High Molecular Weight Dimer Esters in α-Pinene Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Cui, Tianqu; Zhang, Haofei; Gold, Avram; Glasius, Marianne; Surratt, Jason D.

    2014-05-01

    Monoterpenes, such as α-pinene, constitute an important group of biogenic volatile organic compounds (BVOC). Once emitted into the atmosphere α-pinene is removed by oxidization by the hydroxyl radical (OH), reactions with ozone (O3), and with nitrate radicals (NO3) resulting in the formation of first-generation oxidation products, such as semi-volatile carboxylic acids. In addition, higher molecular weight dimer esters originating from the oxidation of α-pinene have been observed in both laboratory-generated and ambient secondary organic aerosols (SOA). While recent studies suggest that the dimers are formed through esterification between carboxylic acids in the particle phase, the formation mechanism of the dimer esters is still ambiguous. In this work, we present the results of a series of smog chamber experiments to assess the formation of dimer esters formed from the oxidation of α-pinene. Experiments were conducted in the University of North Carolina (UNC) dual outdoor smog chamber facility to investigate the effect of oxidant species (OH versus O3), relative humidity (RH), and seed aerosol acidity in order to obtain a better understanding of the conditions leading to the formation of the dimer esters and how these parameters may affect the formation and chemical composition of SOA. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), and a total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12 % of the total α-pinene SOA mass.

  7. Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2).

    PubMed

    Stachowicz, Aneta; Olszanecki, Rafał; Suski, Maciej; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Adamek, Dariusz; Korbut, Ryszard

    2017-02-17

    The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE -/- ) mice upon treatment with Alda-1-a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE -/- mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE -/- mice. Importantly, prolonged treatment of apoE -/- mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.

  8. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer.

    PubMed

    Blackwell, Daniel J; Zak, Taylor J; Robia, Seth L

    2016-09-20

    The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Apolipoprotein E (APOE) ε4 and episodic memory decline in Alzheimer's disease: A review.

    PubMed

    El Haj, Mohamad; Antoine, Pascal; Amouyel, Philippe; Lambert, Jean-Charles; Pasquier, Florence; Kapogiannis, Dimitrios

    2016-05-01

    A growing body of research has examined the relationship between episodic memory decline, the cognitive hallmark of Alzheimer's disease (AD), and the presence of Apolipoprotein E ε4 (APOE ε4) allele, a major genetic risk factor for the disease. Our review attempts to summarize and critically evaluate this literature. We performed a systematic search for studies assessing episodic memory in AD patients who were genotyped for APOE ε4 and identified fourteen papers. Although most of these papers reported significant relationships between APOE ε4 and episodic memory decline in AD, some papers did not confirm this relationship. Our review links this controversy to the conflicting literature about the effects of APOE ε4 on general cognitive functioning in AD. We identify several shortcoming and limitations of the research on the relationship between APOE ε4 and episodic memory in AD, such as small sample sizes, non-representative populations, lack of comparison of early-onset vs. late-onset disease, and lack of comparison among different genotypes that include APOE ε4 (i.e., zero, one, or two ε4 alleles). Another major shortcoming of the reviewed literature was the lack of comprehensive evaluation of episodic memory decline, since episodic memory was solely evaluated with regard to encoding and retrieval, omitting evaluation of core episodic features that decline in AD, such as context recall (e.g., how, where, and when an episodic event has occurred) and subjective experience of remembering (e.g., reliving, emotion and feeling during episodic recollection). Future research taking these limitations into consideration could illuminate the nature of the relationship between APOE ε4 and episodic memory decline in AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Apolipoprotein E and Alzheimer disease: Genotype-specific risks by age and sex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickeboeller, H.; Babron, M.C.; Clerget-Darpoux, F.

    1997-02-01

    The distribution of apolipoprotein E (APOE) genotypes as a function of age and sex has been examined in a French population of 417 Alzheimer disease (AD) patients and 1,030 control subjects. When compared to the APOE {epsilon}3 allele, an increased risk associated with the APOE {epsilon}4 allele (odds ratio [OR] [{epsilon}4] = 2.7 with 95% confidence interval [CI] = 2.0-3.6; P < .001) and a protective effect of the APOE {epsilon}2 allele (OR[{epsilon}2] = 0.5 with 95% CI = 0.3-0.98; P = .012) were retrieved. An effect of the {epsilon}4 allele dosage on susceptibility was confirmed (OR[{epsilon}4/{epsilon}4] vs. the {epsilon}3/{epsilon}3more » genotype = 11.2 [95% CI = 4.0-31.6]; OR[{epsilon}3/{epsilon}4] vs. the {epsilon}3/{epsilon}3 genotype = 2.2 [95% Cl = 1.5-3.5]). The frequency of the {epsilon}4 allele was lower in male cases than in female cases, but, since a similar difference was found in controls, this does not lead to a difference in OR between sex. ORs for the {epsilon}4 allele versus the {epsilon}3 allele, OR({epsilon}4), were not equal in all age classes: OR({epsilon}4) in the extreme groups with onset at < 60 years or > 79 years were significantly lower than those from the age groups 60-79 years. In {epsilon}3/{epsilon}4 individuals, sex-specific lifetime risk estimates by age 85 years (i.e., sex-specific penetrances by age 85 years) were 0.14 (95% CI 0.04-0.30) for men and 0.17 (95% CI 0.09-0.28) for women. 53 refs., 1 fig., 3 tabs.« less

  11. Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    PubMed Central

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus. PMID:16707664

  12. Analysis of hepatitis C virus RNA dimerization and core-RNA interactions.

    PubMed

    Ivanyi-Nagy, Roland; Kanevsky, Igor; Gabus, Caroline; Lavergne, Jean-Pierre; Ficheux, Damien; Penin, François; Fossé, Philippe; Darlix, Jean-Luc

    2006-01-01

    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3'-untranslated region (3'-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623-2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3'-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus.

  13. Omapatrilat, a dual angiotensin-converting enzyme and neutral endopeptidase inhibitor, prevents fatty streak deposit in apolipoprotein E-deficient mice.

    PubMed

    Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F

    2001-04-01

    Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.

  14. Alignment and Imaging of the CS2 Dimer Inside Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Pickering, James D.; Shepperson, Benjamin; Hübschmann, Bjarke A. K.; Thorning, Frederik; Stapelfeldt, Henrik

    2018-03-01

    The carbon disulphide (CS2) dimer is formed inside He nanodroplets and identified using fs laser-induced Coulomb explosion, by observing the CS2+ ion recoil velocity. It is then shown that a 160 ps moderately intense laser pulse can align the dimer in advantageous spatial orientations which allow us to determine the cross-shaped structure of the dimer by analysis of the correlations between the emission angles of the nascent CS2+ and S+ ions, following the explosion process. Our method will enable fs time-resolved structural imaging of weakly bound molecular complexes during conformational isomerization, including formation of exciplexes.

  15. Evidence for apolipoprotein E {epsilon}4 association in early-onset Alzheimer`s patients with late-onset relatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Tur, J.; Delacourte, A.; Chartier-Harlin, M.C.

    1995-12-18

    Recently several reports have extended the apolipoprotein E (APOE) {epsilon}4 association found in late-onset Alzheimer`s disease (LOAD) patients to early-onset (EO) AD patients. We have studied this question in a large population of 119 EOAD patients (onset {<=}60 years) in which family history was carefully assessed and in 109 controls. We show that the APOE {epsilon}A allele frequency is increased only in the subset of patients who belong to families where LOAD secondary cases are present. Our sampling scheme permits us to demonstrate that, for an individual, bearing at least one {epsilon}4 allele increases both the risk of AD beforemore » age 60 and the probability of belonging to a family with late-onset affected subjects. Our results suggest that a subset of EOAD cases shares a common determinism with LOAD cases. 19 refs., 3 tabs.« less

  16. Vancomycin: ligand recognition, dimerization and super-complex formation.

    PubMed

    Jia, ZhiGuang; O'Mara, Megan L; Zuegg, Johannes; Cooper, Matthew A; Mark, Alan E

    2013-03-01

    The antibiotic vancomycin targets lipid II, blocking cell wall synthesis in Gram-positive bacteria. Despite extensive study, questions remain regarding how it recognizes its primary ligand and what is the most biologically relevant form of vancomycin. In this study, molecular dynamics simulation techniques have been used to examine the process of ligand binding and dimerization of vancomycin. Starting from one or more vancomycin monomers in solution, together with different peptide ligands derived from lipid II, the simulations predict the structures of the ligated monomeric and dimeric complexes to within 0.1 nm rmsd of the structures determined experimentally. The simulations reproduce the conformation transitions observed by NMR and suggest that proposed differences between the crystal structure and the solution structure are an artifact of the way the NMR data has been interpreted in terms of a structural model. The spontaneous formation of both back-to-back and face-to-face dimers was observed in the simulations. This has allowed a detailed analysis of the origin of the cooperatively between ligand binding and dimerization and suggests that the formation of face-to-face dimers could be functionally significant. The work also highlights the possible role of structural water in stabilizing the vancomycin ligand complex and its role in the manifestation of vancomycin resistance. © 2013 The Authors Journal compilation © 2013 FEBS.

  17. The complete sequence and structural analysis of human apolipoprotein B-100: relationship between apoB-100 and apoB-48 forms.

    PubMed Central

    Cladaras, C; Hadzopoulou-Cladaras, M; Nolte, R T; Atkinson, D; Zannis, V I

    1986-01-01

    We have isolated and sequenced overlapping cDNA clones covering the entire sequence of human apolipoprotein B-100 (apoB-100). DNA sequence analysis and determination of the mRNA transcription initiation site by S1 nuclease mapping showed that the apoB mRNA consists of 14,112 nucleotides including the 5' and 3' untranslated regions which are 128 and 301 nucleotides respectively. The DNA-derived protein sequence shows that apoB-100 is 513,000 daltons and contains 4560 amino acids including a 24-amino-acid-long signal peptide. The mol. wt of apoB-100 implies that there is one apoB molecule per LDL particle. Computer analysis of the predicted secondary structure of the protein showed that some of the potential alpha helical and beta sheet structures are amphipathic, whereas others have non-amphipathic neutral to apolar character. These latter regions may contribute to the formation of the lipid-binding domains of apoB-100. The protein contains 25 cysteines and 20 potential N-glycosylation sites. The majority of cysteines are distributed in the amino terminal portion of the protein. Four of the potential glycosylation sites are in predicted beta turn structures and may represent true glycosylation positions. ApoB lacks the tandem repeats which are characteristic of other apolipoproteins. The mean hydrophobicity the mean value of H1 and helical hydrophobic moment the mean value of microH profiles of apoB showed the presence of several potential helical regions with strong polar character and high hydrophobic moment. The region with the highest hydrophobic moment, between amino acid residues 3352 and 3369, contains five closely spaced, positively charged residues, and has sequence homology to the LDL receptor binding site of apoE. This region is flanked by three neighbouring regions with positively charged amino acids and high hydrophobic moment that are located between residues 3174 and 3681. One or more of these closely spaced apoB sequences may be involved in the

  18. Evidence for major gene inheritance of Alzheimer disease in families of patients with and without Apolipoprotein E {epsilon}4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, V.S.; Auerbach, S.A.; Farrer, L.A.

    1996-09-01

    Apolipoprotein E (APOE) genotype is the single most important determinant to the common form of Alzheimer disease (AD) yet identified. Several studies show that family history of AD is not entirely accounted for by APOE genotype. Also, there is evidence for an interaction between APOE genotype and gender. We carried out a complex segregation analysis in 636 nuclear families of consecutively ascertained and rigorously diagnosed probands in the Multi-Institutional Research in Alzheimer Genetic Epidemiology study in order to derive models of disease transmission which account for the influences of APOE genotype of the proband and gender. In the total groupmore » of families, models postulating sporadic occurrence, no major gene effect, random environmental transmission, and Mendelian inheritance were rejected. Transmission of AD in families of probands with at least one {epsilon}4 allele best fit a dominant model. Moreover, single gene inheritance best explained clustering of the disorder in families of probands lacking E4, but a more complex genetic model or multiple genetic models may ultimately account for risk in this group of families. Our results also suggest that susceptibility to AD differs between men and women regardless of the proband`s APOE status. Assuming a dominant model, AD appears to be completely penetrant in women, whereas only 62%-65% of men with predisposing genotypes develop AD. However, parameter estimates from the arbitrary major gene model suggests that AD is expressed dominantly in women and additively in men. These observations, taken together with epidemiologic data, are consistent with the hypothesis of an interaction between genes and other biological factors affecting disease susceptibility. 76 refs., 4 tabs.« less

  19. Guaiane dimers from Xylopia vielana.

    PubMed

    Kamperdick, C; Phuong, N M; Van Sung, T; Adam, G

    2001-02-01

    From the leaves of Xylopia vielana (Annonaceae) the three dimeric guaianes vielanin A-C were isolated and structurally elucidated by mass and NMR spectroscopy as 1-3. The structure of 1 contains a bridged ring system formed probably via a Diels-Alder reaction of two different guaiane monomers. Compounds 2 and 3 represent symmetric cyclobutanes formally generated from two equal guaiane moieties by [2 + 2] cycloaddition.

  20. Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics

    PubMed Central

    Motta, Stefano

    2018-01-01

    Hypoxia inducible factors (HIFs) are transcription factors belonging to the basic helix−loop−helix PER-ARNT-SIM (bHLH-PAS) protein family with a role in sensing oxygen levels in the cell. Under hypoxia, the HIF-α degradation pathway is blocked and dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT) makes HIF-α transcriptionally active. Due to the common hypoxic environment of tumors, inhibition of this mechanism by destabilization of HIF-α:ARNT dimerization has been proposed as a promising therapeutic strategy. Following the discovery of a druggable cavity within the PAS-B domain of HIF-2α, research efforts have been directed to identify artificial ligands that can impair heterodimerization. Although the crystallographic structures of the HIF-2α:ARNT complex have elucidated the dimer architecture and the 0X3-inhibitor placement within the HIF-2α PAS-B, unveiling the inhibition mechanism requires investigation of how ligand-induced perturbations could dynamically propagate through the structure and affect dimerization. To this end, we compared evolutionary features, intrinsic dynamics and energetic properties of the dimerization interfaces of HIF-2α:ARNT in both the apo and holo forms. Residue conservation analysis highlighted inter-domain connecting elements that have a role in dimerization. Analysis of domain contributions to the dimerization energy demonstrated the importance of bHLH and PAS-A of both partners and of HIF-2α PAS-B domain in dimer stabilization. Among quaternary structure oscillations revealed by Molecular Dynamics simulations, the hinge-bending motion of the ARNT PAS-B domain around the flexible PAS-A/PAS-B linker supports a general model for ARNT dimerization in different heterodimers. Comparison of the HIF-2α:ARNT dynamics in the apo and 0X3-bound forms indicated a model of inhibition where the HIF-2α-PAS-B interfaces are destabilised as a result of water-bridged ligand-protein interactions and these local

  1. Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice.

    PubMed

    Andrews-Zwilling, Yaisa; Bien-Ly, Nga; Xu, Qin; Li, Gang; Bernardo, Aubrey; Yoon, Seo Yeon; Zwilling, Daniel; Yan, Tonya Xue; Chen, Ligong; Huang, Yadong

    2010-10-13

    Apolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice. Treating apoE4-KI mice with daily peritoneal injections of the GABA(A) receptor potentiator pentobarbital at 20 mg/kg for 4 weeks rescued the learning and memory deficits. In neurotoxic apoE4 fragment transgenic mice, hilar GABAergic interneuron loss was even more pronounced and also correlated with the extent of learning and memory deficits. Neurodegeneration and tauopathy occurred earliest in hilar interneurons in apoE4 fragment transgenic mice; eliminating endogenous Tau prevented hilar GABAergic interneuron loss and the learning and memory deficits. The GABA(A) receptor antagonist picrotoxin abolished this rescue, while pentobarbital rescued learning deficits in the presence of endogenous Tau. Thus, apoE4 causes age- and Tau-dependent impairment of hilar GABAergic interneurons, leading to learning and memory deficits in mice. Consequently, reducing Tau and enhancing GABA signaling are potential strategies to treat or prevent apoE4-related Alzheimer's disease.

  2. Dynamics and kinetics of reversible homo-molecular dimerization of polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mao, Qian; Ren, Yihua; Luo, K. H.; van Duin, Adri C. T.

    2017-12-01

    Physical dimerization of polycyclic aromatic hydrocarbons (PAHs) has been investigated via molecular dynamics (MD) simulation with the ReaxFF reactive force field that is developed to bridge the gap between the quantum mechanism and classical MD. Dynamics and kinetics of homo-molecular PAH collision under different temperatures, impact parameters, and orientations are studied at an atomic level, which is of great value to understand and model the PAH dimerization. In the collision process, the enhancement factors of homo-molecular dimerizations are quantified and found to be larger at lower temperatures or with smaller PAH instead of size independent. Within the capture radius, the lifetime of the formed PAH dimer decreases as the impact parameter increases. Temperature and PAH characteristic dependent forward and reverse rate constants of homo-molecular PAH dimerization are derived from MD simulations, on the basis of which a reversible model is developed. This model can predict the tendency of PAH dimerization as validated by pyrene dimerization experiments [H. Sabbah et al., J. Phys. Chem. Lett. 1(19), 2962 (2010)]. Results from this study indicate that the physical dimerization cannot be an important source under the typical flame temperatures and PAH concentrations, which implies a more significant role played by the chemical route.

  3. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer.

    PubMed

    Yasuda, Tatsuki; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M M

    2017-04-01

    DJ-1 is a causative gene for familial Parkinson's disease (PD). Loss-of-function of DJ-1 protein is suggested to contribute to the onset of PD, but the causes of DJ-1 dysfunction remain insufficiently elucidated. In this study, we found that the SDS-resistant irreversible dimer of DJ-1 protein was formed in human dopaminergic neuroblastoma SH-SY5Y cells when the cells were exposed to massive superoxide inducers such as paraquat and diquat. The dimer was also formed in vitro by superoxide in PQ redox cycling system and hydroxyl radical produced in Fenton reaction. We, thus, found a novel phenomenon that free radicals directly affect DJ-1 to form SDS-resistant dimers. Moreover, the formation of the SDS-resistant dimer impaired anti-oxidative stress activity of DJ-1 both in cell viability assay and H 2 O 2 -elimination assay in vitro. Similar SDS-resistant dimers were steadily formed with several mutants of DJ-1 found in familial PD patients. These findings suggest that DJ-1 is impaired due to the formation of SDS-resistant dimer when the protein is directly attacked by free radicals yielded by external and internal stresses and that the DJ-1 impairment is one of the causes of sporadic PD.

  4. Postnatal chlorpyrifos exposure and apolipoprotein E (APOE) genotype differentially affect cholinergic expression and developmental parameters in transgenic mice.

    PubMed

    Basaure, Pia; Guardia-Escote, Laia; Cabré, Maria; Peris-Sampedro, Fiona; Sánchez-Santed, Fernando; Domingo, José L; Colomina, Maria Teresa

    2018-05-03

    Chlorpyrifos (CPF) is one of the most commonly used organophosphate pesticides in the world. Our previous results described that apolipoprotein E (APOE) polymorphisms are a source of individual differences in susceptibility to CPF. The aim of this study was to assess the physical and biochemical effects of postnatal exposure to CPF in the apoE targeted replacement mouse model. Mice were exposed to CPF at 0 or 1 mg/kg/day from postnatal day 10-15. Physical development, plasma and forebrain cholinesterase (ChE) activity and gene expression in liver and forebrain were evaluated. CPF exposure delays physical maturation and decreases the expression of choline acetyltransferase, α4-subunit and the α7 receptor. CPF decreases the expression of vesicular acetylcholine transporter (VAChT) mRNA in the forebrain only in apoE3 mice. The expression of paraoxonase-2 in the forebrain was also influenced by APOE genotype and CPF. Differences between genotypes were observed in litter size, ChE activity, expression of butyrylcholinesterase and paraoxonase-1 in liver and variants of acetylcholinesterase, VAChT and the α7 receptor in the forebrain. These results support that there are different vulnerabilities to postnatal CPF exposure according to the APOE polymorphism, which in turn affects the cholinergic system and defenses to oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Apolipoprotein E genotyping in the Malay, Chinese and Indian ethnic groups in Malaysia-a study on the distribution of the different apoE alleles and genotypes.

    PubMed

    Seet, Wan Tai; Mary Anne, Tan Jin Ai; Yen, Tan Si

    2004-02-01

    Apolipoprotein E (apoE) is encoded by a polymorphic gene located on chromosome 19. The three common apoE alleles are epsilon2, epsilon3 and epsilon4. We studied the frequencies of the apoE alleles and genotypes in the three ethnic groups-Malay, Chinese and Indian-in Malaysia using DNA amplification followed by agarose gel electrophoresis. EDTA blood was collected and DNA was extracted using proteinase K-SDS digestion and purified by phenol-chloroform extraction. The apoE gene sequence was amplified using the PCR and apoE genotyping was performed by restriction enzyme digestion with HhaI. Genotyping of the apoE gene produces six genotypes-E2/E2, E2/E3, E3/E3, E2/E4, E3/E4 and E4/E4. The most common apoE genotype in the Malays, Chinese and Indians studied was E3/E3, thus the most common apoE allele was epsilon3. The three common apoE genotypes were E3/E3 followed by E3/E4 and E2/E3, except in the Indians where E2/E3 was not detected. The three apoE alleles were confirmed in the Malays, Chinese and Indians except for the epsilon2 allele which was absent in the Indians. The combined frequency of the apoE alleles in the Malays, Chinese and Indians was 0.058, 0.829 and 0.114 for epsilon2, epsilon3 and epsilon4, respectively.

  6. Vitamin E Secretion by Caco-2 Monolayers to APOA1, but Not to HDL, Is Vitamer Selective12

    PubMed Central

    Nicod, Nathalie; Parker, Robert S.

    2013-01-01

    The aim of this study was to characterize the pathways of basolateral secretion of common dietary tocopherols from polarized Caco-2 monolayers, a model of intestinal absorption. Given differences in structure and physical properties, we hypothesized that secretion may differ between different forms of vitamin E, thus potentially contribute to the selectivity seen in vivo. Monolayers were incubated apically and simultaneously with 10 μmol/L α-, γ-, and δ-tocopherol (1:1:1) in lipid micelles. Treatment with the microsomal triglyceride transfer protein inhibitor BMS201038 revealed that the triglyceride-rich particle secretory pathway (apolipoprotein B–dependent pathway) accounted for ∼80% of total tocopherol secretion, without selectivity among the three forms of vitamin E. Apolipoprotein B–independent secretion of tocopherols (and cholesterol) was greatly enhanced by the liver X receptor agonist T0901317. T0901317 induced ATP-binding cassette transporter A1 (ABCA1) protein expression and basolateral secretion of tocopherols to apolipoprotein A1. ABCA1-dependent secretion demonstrated vitamer selectivity such that efficiency of secretion of α- and γ-tocopherols exceeded that of δ-tocopherol. Basal addition of HDL stimulated vitamin E secretion but without selectivity among the three forms, whereas LDL had no effect. Basal addition of scavenger receptor class B member I (SR-BI) blocking antibody, which inhibits the interaction between SR-BI and HDL, increased basal accumulation of all tocopherols, demonstrating a role for SR-BI in cellular re-uptake of secreted vitamin E. These findings demonstrated that vitamin E and cholesterol utilize common pathways of secretion and that secretion via the ABCA1 pathway favors certain forms of vitamin E. PMID:23946344

  7. Making Structural Sense of Dimerization Interfaces of Delta Opioid Receptor Homodimers†

    PubMed Central

    2011-01-01

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed “4” dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed “4/5” dimer) in an explicit lipid−water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer. PMID:21261298

  8. Making structural sense of dimerization interfaces of delta opioid receptor homodimers.

    PubMed

    Johnston, Jennifer M; Aburi, Mahalaxmi; Provasi, Davide; Bortolato, Andrea; Urizar, Eneko; Lambert, Nevin A; Javitch, Jonathan A; Filizola, Marta

    2011-03-15

    Opioid receptors, like other members of the G protein-coupled receptor (GPCR) family, have been shown to associate to form dimers and/or oligomers at the plasma membrane. Whether this association is stable or transient is not known. Recent compelling evidence suggests that at least some GPCRs rapidly associate and dissociate. We have recently calculated binding affinities from free energy estimates to predict transient association between mouse delta opioid receptor (DOR) protomers at a symmetric interface involving the fourth transmembrane (TM4) helix (herein termed "4" dimer). Here we present disulfide cross-linking experiments with DOR constructs with cysteines substituted at the extracellular ends of TM4 or TM5 that confirm the formation of DOR complexes involving these helices. Our results are consistent with the involvement of TM4 and/or TM5 at the DOR homodimer interface, but possibly with differing association propensities. Coarse-grained (CG) well-tempered metadynamics simulations of two different dimeric arrangements of DOR involving TM4 alone or with TM5 (herein termed "4/5" dimer) in an explicit lipid-water environment confirmed the presence of two structurally and energetically similar configurations of the 4 dimer, as previously assessed by umbrella sampling calculations, and revealed a single energetic minimum of the 4/5 dimer. Additional CG umbrella sampling simulations of the 4/5 dimer indicated that the strength of association between DOR protomers varies depending on the protein region at the interface, with the 4 dimer being more stable than the 4/5 dimer.

  9. Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain.

    PubMed

    Bianchetti, Laurent; Wassmer, Bianca; Defosset, Audrey; Smertina, Anna; Tiberti, Marion L; Stote, Roland H; Dejaegere, Annick

    2018-04-30

    Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research. Copyright © 2018. Published by Elsevier B.V.

  10. Insight into the evolution of nidovirus endoribonuclease based on the finding that Nsp15 from porcine deltacoronavirus functions as a dimer.

    PubMed

    Zheng, Anjun; Shi, Yuejun; Shen, Zhou; Wang, Gang; Shi, Jiale; Xiong, Qiqi; Fang, Liurong; Xiao, Shaobo; Fu, Zhen F; Peng, Guiqing

    2018-06-10

    Nidovirus endoribonucleases (NendoUs) include Nsp15 from coronaviruses and Nsp11 from arteriviruses, both of which have been reported to participate in the viral replication process and in the evasion of the host immune system. Results from a previous study of coronaviruses SARS-CoV, HCoV-229E and MHV Nsp15 indicate that it mainly forms a functional hexamer, whereas Nsp11 from the arterivirus PRRSV is a dimer. Here, we found that porcine deltacoronavirus (PDCoV) Nsp15 primarily exists as dimers and monomers in vitro. Biological experiments reveal that a PDCoV Nsp15 mutant lacking the first 27 amino acids of the N-terminal domain (NTD, Asn-1-Asn-27) forms more monomers and displays decreased enzymatic activity, indicating that this region is important for its dimerization. Moreover, multiple sequence alignments and three-dimensional structural analysis indicated that the C-terminal region (His-251-Val-261) of PDCoV Nsp15 is 10 amino acids shorter and forms a shorter loop than that formed by the equivalent sequence (Gln-259-Phe-279) of SARS-CoV Nsp15. This result may explain why PDCoV Nsp15 failed to form hexamers. We speculate that NendoUs may have originated from XendoU endoribonucleases (XendoUs) forming monomers in eukaryotic cells and that NendoU from arterivirus gained ability to form dimers and that the coronavirus variants then evolved the capacity to assemble into hexamers. We further propose that PDCoV Nsp15 may be an intermediate in this evolutionary process. Our findings provide a theoretical basis for improving our understanding of NendoU evolution and offer useful clues for designing drugs and vaccines against nidoviruses. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  12. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    PubMed Central

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-01-01

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process. Images PMID:1645868

  13. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1).

    PubMed

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W; Prestegard, James H

    2016-09-16

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC'C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Apolipoprotein E4 serum concentration for increased sensitivity and specificity of diagnosis of drug treated Alzheimer's disease patients vs. drug treated parkinson's disease patients vs. age-matched normal controls.

    PubMed

    Goldknopf, Ira L; Park, Helen R; Sabbagh, Marwan

    2012-12-01

    from drug treated Parkinson's disease (DTPD) patients and age matched normal controls (collectively not-DTAD, DTAD Sensitivity 87.2%, Not-DTAD Specificity 87.2). Moreover, when the patients and controls were stratified into carriers or non-carriers of Alzheimer's high risk Apolipoprotein E 4 allele and/or the Apolipoprotein E4 protein, the DTAD, DTPD and control Apo E4 (+) profiles were more divergent from one another than the corresponding Apo E4 (-) profiles. Multivariate stepwise linear discriminant analysis selected 17 of the 58 biomarkers as optimal and complimentary for distinguishing Apo E4 (+) DTAD patients from Apo E4 (+) DTPD and Apo E4 (+) controls (collectively Apo E4 (+) not-DTAD, DTAD Sensitivity 100%, not-DTAD Specificity 100%) and 22 of the 58 biomarkers for distinguishing Apo E4 (-) DTAD patients from Apo E4 (-) DTPD and Apo E4 (-) controls (collectively Apo E4 (-) not-DTAD, DTAD Sensitivity 94.4%, not- DTAD Specificity 94.4%). Only 6 of the selected proteins were common to both the Apo E4 (+) and the Apo E4 (-) discriminant functions. Recombining of the results of Apo E4 (+) and Apo E4 (-) discriminations provided overall sensitivity for total DTAD of 97.4% and specificity for total not-DTAD of 95.7%. These results can form the basis of a blood test for differential diagnosis of Alzheimer's disease patients already under treatment (DTAD) by anti dementia drugs, including donepezil, rivastigmine, memantine HCl, or a combination thereof. Also, the profile differences and the rise in specificity and sensitivity obtained by handling the Apo E4 (+) and Apo E4 (-) groups separately supports the concept that they are different patient and control populations in terms of the "normal" physiology, the pathophysiology of disease, and the response to drug treatment. Taking that into account enables increased sensitivity and specificity of differential diagnosis of Alzheimer's disease.

  15. Bioluminescence Resonance Energy Transfer Studies Reveal Constitutive Dimerization of the Human Lutropin Receptor and a Lack of Correlation between Receptor Activation and the Propensity for Dimerization*

    PubMed Central

    Guan, Rongbin; Feng, Xiuyan; Wu, Xueqing; Zhang, Meilin; Zhang, Xuesen; Hébert, Terence E.; Segaloff, Deborah L.

    2009-01-01

    Previous studies from our laboratory using co-immunoprecipitation techniques suggested that the human lutropin receptor (hLHR) constitutively self-associates into dimers/oligomers and that agonist treatment of cells either increased hLHR dimerization/oligomerization and/or stabilized hLHR dimers/oligomers to detergent solubilization (Tao, Y. X., Johnson, N. B., and Segaloff, D. L. (2004) J. Biol. Chem. 279, 5904–5914). In this study, bioluminescence resonance energy transfer (BRET2) analyses confirmed that the hLHR constitutively self-associates in living cells. After subcellular fractionation, hLHR dimers/oligomers were detected in both the plasma membrane and endoplasmic reticulum (ER). Further evidence supporting the constitutive formation of hLHR dimer/oligomers in the ER is provided by data showing homodimerization of misfolded hLHR mutants that are retained in the ER. These mutants, when co-expressed with wild-type receptor, are shown by BRET2 to heterodimerize, accounting for their dominant-negative effects on cell surface receptor expression. Hormone desorption assays using intact cells demonstrate allosterism between hLHR protomers, indicating functional cell surface hLHR dimers. However, quantitative BRET2 analyses in intact cells indicate a lack of effect of agonist on the propensity of the hLHR to dimerize. Using purified plasma membranes, human chorionic gonadotropin was similarly observed to have no effect on the BRET2 signal. An examination of the propensity for constitutively active and signaling inactive hLHR mutants to dimerize further showed no correlation between dimerization and the activation state of the hLHR. Taken altogether, our data suggest that hLHR dimers/oligomers are formed early in the biosynthetic pathway in the ER, are constitutively expressed on the plasma membrane, and are not affected by the activation state of the hLHR. PMID:19147490

  16. Allelic association but only weak evidence for linkage to the apolipoprotein E locus in late-onset Swedish Alzheimer families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Forsell, C.; Lilius, L.

    1996-05-31

    An association between the {epsilon}4 allele of the apolipoprotein E gene (APOE) and late-onset Alzheimer`s disease (AD) was recently demonstrated. In order to confirm the association and to gauge the ability of standard genetic linkage methods to identify susceptibility genes, we investigated 15 Swedish late-onset AD families. We found an association of familial AD to the APOE {epsilon}4 allele (P = 0.01) but no indication of linkage to the APOE region using 2-point linkage analysis, and only weak evidence using the affected pedigree-member (APM) method. Our results confirm an APOE {epsilon}4 association with late-onset familial AD and indicate that susceptibilitymore » genes can easily be missed when using standard lod score and APM genetic linkage analysis. 19 refs., 1 fig., 4 tabs.« less

  17. Differential Stability of Dimeric and Monomeric Cytochrome c Oxidase Exposed to Elevated Hydrostatic Pressure†

    PubMed Central

    Staničová, Jana; Sedlák, Erik; Musatov, Andrej; Robinson, Neal C.

    2007-01-01

    Detergent-solubilized dimeric and monomeric cytochrome c oxidase (CcO) have significantly different quaternary stability when exposed to 2−3 kbar of hydrostatic pressure. Dimeric, dodecyl maltoside-solubilized cytochrome c oxidase is very resistant to elevated hydrostatic pressure with almost no perturbation of its quaternary structure or functional activity after release of pressure. In contrast to the stability of dimeric CcO, 3 kbar of hydrostatic pressure triggers multiple structural and functional alterations within monomeric cytochrome c oxidase. The perturbations are either irreversible or slowly reversible since they persist after the release of high pressure. Therefore, standard biochemical analytical procedures could be used to quantify the pressure-induced changes after the release of hydrostatic pressure. The electron transport activity of monomeric cytochrome c oxidase decreases by as much as 60% after exposure to 3 kbar of hydrostatic pressure. The irreversible loss of activity occurs in a time- and pressure-dependent manner. Coincident with the activity loss is a sequential dissociation of four subunits as detected by sedimentation velocity, high-performance ion-exchange chromatography, and reversed-phase and SDS–PAGE subunit analysis. Subunits VIa and VIb are the first to dissociate followed by subunits III and VIIa. Removal of subunits VIa and VIb prior to pressurization makes the resulting 11-subunit form of CcO even more sensitive to elevated hydrostatic pressure than monomeric CcO containing all 13 subunits. However, dimeric CcO, in which the association of VIa and VIb is stabilized, is not susceptible to pressure-induced inactivation. We conclude that dissociation of subunit III and/or VIIa must be responsible for pressure-induced inactivation of CcO since VIa and VIb can be removed from monomeric CcO without significant activity loss. These results are the first to clearly demonstrate an important structural role for the dimeric form of

  18. Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und Rückfaltung aus Fragmenten

    NASA Astrophysics Data System (ADS)

    Küster, Frank

    2002-11-01

    Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quartärstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminosäuresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabhängige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschränkt und bilden eine gemeinsame strukturelle Domäne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der natürliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests für Erbsenlektin durchgeführt und seine Faltung, Stabilität und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung für Stabilität und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilität gegenüber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten können und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichtsübergang, und es ist nicht möglich, die thermodynamische Stabilität zu bestimmen. Die Stabilität und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind für beide Proteine gleich. Darüber hinaus konnte gezeigt werden, dass auch unter

  19. Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein(E)-deficient mice.

    PubMed

    Jiang, F; Jones, G T; Dusting, G J

    2007-11-01

    Oxidative stress may be involved in the development of abdominal aortic aneurysms (AAAs). Previous studies indicate that antioxidants protect against AAA formation during chronic angiotensin (Ang) II infusion in apolipoprotein E-deficient (ApoE(0)) mice. We here examine if these protective effects also occurred in aged ApoE(0) mice. Male ApoE(0) mice (50-60 weeks) were randomly divided into 4 groups: saline, Ang II (1000 ng kg(-1) min(-1) for 4 weeks), Ang II plus antioxidants (0.1% vitamin E in food plus 0.1% vitamin C in drinking water), and Ang II plus losartan (30 mg kg(-1) day(-1)). Exogenous Ang II increased systolic blood pressure by 40 mmHg and resulted in the formation of pseudoaneurysms (rupture and extramural haematoma) in the abdominal aorta in 50% of animals. True aneurysmal dilatation was rarely observed. Antioxidants decreased systemic oxidative stress (plasma malondialdehyde), but had only minor effects on aortic rupture, relative to the complete prevention by losartan. Immunohistochemistry revealed strong matrix metalloproteinase-9 (MMP-9) expression in atherosclerotic plaques and at the sites of rupture. Antioxidants did not affect tumour necrosis factor-alpha-stimulated MMP-9 release from U937 cells. In addition, antioxidants had little effects on Ang II-induced renal dysfunction. In contrast to previous findings in younger mice, antioxidants had only minor effects on Ang II-induced aortic rupture in aged mice. Our results demonstrate that the pathological features of the aneurysmal remodelling induced by Ang II in old ApoE(0) mice are distinct from those of human AAA.

  20. Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice.

    PubMed

    Bentzon, Jacob F; Sondergaard, Claus S; Kassem, Moustapha; Falk, Erling

    2007-10-30

    Signs of preceding episodes of plaque rupture and smooth muscle cell (SMC)-mediated healing are common in atherosclerotic plaques, but the source of the healing SMCs is unknown. Recent studies suggest that activated platelets adhering to sites of injury recruit neointimal SMCs from circulating bone marrow-derived progenitor cells. Here, we analyzed the contribution of this mechanism to plaque healing after spontaneous and mechanical plaque disruption in apolipoprotein E knockout (apoE-/-) mice. To determine the origin of SMCs after spontaneous plaque disruption, irradiated 18-month-old apoE-/- mice were reconstituted with bone marrow cells from enhanced green fluorescent protein (eGFP) transgenic apoE-/- mice and examined when they died up to 9 months later. Plaque hemorrhage, indicating previous plaque disruption, was widely present, but no bone marrow-derived eGFP+ SMCs were detected. To examine the origin of healing SMCs in a model that recapitulates more features of human plaque rupture and healing, we developed a mechanical technique that produced consistent plaque disruption, superimposed thrombosis, and SMC-mediated plaque healing in apoE-/- mice. Mechanical plaque disruption was produced in irradiated apoE-/- mice reconstituted with eGFP+ apoE-/- bone marrow cells and in carotid bifurcations cross-grafted between apoE-/- and eGFP+ apoE-/- mice. Apart from few non-graft-derived SMCs near the anastomosis site in 1 transplanted carotid bifurcation, no SMCs originating from outside the local arterial segment were detected in healed plaques. Healing SMCs after atherosclerotic plaque disruption are derived entirely from the local arterial wall and not circulating progenitor cells in apoE-/- mice.

  1. Hsa-miR-1587 G-quadruplex formation and dimerization induced by NH4+, molecular crowding environment and jatrorrhizine derivatives.

    PubMed

    Tan, Wei; Yi, Long; Zhu, Zhentao; Zhang, Lulu; Zhou, Jiang; Yuan, Gu

    2018-03-01

    A guanine-rich human mature microRNA, miR-1587, was discovered to form stable intramolecular G-quadruplexes in the presence of K + , Na + and low concentration of NH 4 + (25mM) by electrospray ionization mass spectrometry (ESI-MS) combined with circular dichroism (CD) spectroscopy. Furthermore, under high concentration of NH 4 + (100mM) or molecular crowding environments, miR-1587 formed a dimeric G-quadruplex through 3'-to-3' stacking of two monomeric G-quadruplex subunits with one ammonium ion sandwiched between the interfaces. Specifically, two synthesized jatrorrhizine derivatives with terminal amine groups could also induce the dimerization of miR-1587 G-quadruplex and formed 1:1 and 2:1 complexes with the dimeric G-quadruplex. In contrast, jatrorrhizine could bind with the dimeric miR-1587 G-quadruplex, but could not induce dimerization of miR-1587 G-quadruplex. These results provide a new strategy to regulate the functions of miR-1587 through induction of G-quadruplex formation and dimerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sigma- versus Pi-Dimerization Modes of Triangulene.

    PubMed

    Mou, Zhongyu; Kertesz, Miklos

    2018-04-20

    We show that the diradicaloid triangulene, a graphene nano-flake molecule, can aggregate in a variety of dimerization modes. We found by density functional theory modeling a number of triangulene dimers including six doubly bonded σ-dimers in addition to the previously reported six pancake bonded π-dimer isomers. The σ-dimers display a wide range of stabilities: the interaction energy of the most stable σ-dimer is -25.17 kcal mol -1 . Besides the doubly bonded σ-dimers with closed shell ground states, we also found an open-shell singly σ-bonded diradicaloid dimer. We found an interesting isomerization route between a doubly bonded σ-dimer, a singly bonded σ-dimer with a low-lying triplet state and two π-bonded dimers with low-lying quintet states. Derivatives of triangulene, trioxo-triangulenes (TOTs) have been previously characterized experimentally. Here, we show the reasons why so far only the π-dimer but not the σ-dimer was experimentally observed for all TOTs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form.

    PubMed Central

    Sikorav, J L; Duval, N; Anselmet, A; Bon, S; Krejci, E; Legay, C; Osterlund, M; Reimund, B; Massoulié, J

    1988-01-01

    In this paper, we show the existence of alternative splicing in the 3' region of the coding sequence of Torpedo acetylcholinesterase (AChE). We describe two cDNA structures which both diverge from the previously described coding sequence of the catalytic subunit of asymmetric (A) forms (Schumacher et al., 1986; Sikorav et al., 1987). They both contain a coding sequence followed by a non-coding sequence and a poly(A) stretch. Both of these structures were shown to exist in poly(A)+ RNAs, by S1 mapping experiments. The divergent region encoded by the first sequence corresponds to the precursor of the globular dimeric form (G2a), since it contains the expected C-terminal amino acids, Ala-Cys. These amino acids are followed by a 29 amino acid extension which contains a hydrophobic segment and must be replaced by a glycolipid in the mature protein. Analyses of intact G2a AChE showed that the common domain of the protein contains intersubunit disulphide bonds. The divergent region of the second type of cDNA consists of an adjacent genomic sequence, which is removed as an intron in A and Ga mRNAs, but may encode a distinct, less abundant catalytic subunit. The structures of the cDNA clones indicate that they are derived from minor mRNAs, shorter than the three major transcripts which have been described previously (14.5, 10.5 and 5.5 kb). Oligonucleotide probes specific for the asymmetric and globular terminal regions hybridize with the three major transcripts, indicating that their size is determined by 3'-untranslated regions which are not related to the differential splicing leading to A and Ga forms. Images PMID:3181125

  4. The pathogenic implication of abnormal interaction between apolipoprotein E isoforms, amyloid-beta peptides, and sulfatides in Alzheimer's disease.

    PubMed

    Han, Xianlin

    2010-06-01

    Alzheimer's disease (AD) is the most common cause of dementia in the aging population. Prior work has shown that the epsilon4 allele of apolipoprotein E (apoE4) is a major risk factor for "sporadic" AD, which accounts for >99% of AD cases without a defined underlying mechanism. Recently, we have demonstrated that sulfatides are substantially and specifically depleted at the very early stage of AD. To identify the mechanism(s) of sulfatide loss concurrent with AD onset, we have found that: (1) sulfatides are specifically associated with apoE-associated particles in cerebrospinal fluid (CSF); (2) apoE modulates cellular sulfatide levels; and (3) the modulation of sulfatide content is apoE isoform dependent. These findings not only lead to identification of the potential mechanisms underlying sulfatide depletion at the earliest stages of AD but also serve as mechanistic links to explain the genetic association of apoE4 with AD. Moreover, our recent studies further demonstrated that (1) apoE mediates sulfatide depletion in amyloid-beta precursor protein transgenic mice; (2) sulfatides enhance amyloid beta (Abeta) peptides binding to apoE-associated particles; (3) Abeta42 content notably correlates with sulfatide content in CSF; (4) sulfatides markedly enhance the uptake of Abeta peptides; and (5) abnormal sulfatide-facilitated Abeta uptake results in the accumulation of Abeta in lysosomes. Collectively, our studies clearly provide a link between apoE, Abeta, and sulfatides in AD and establish a foundation for the development of effective therapeutic interventions for AD.

  5. The “Beta-Clasp” model of apolipoprotein A-I - a lipid-free solution structure determined by electron paramagnetic resonance spectroscopy

    PubMed Central

    Lagerstedt, Jens O.; Budamagunta, Madhu S.; Liu, Grace S.; DeValle, Nicole C.; Voss, John C.; Oda, Michael N.

    2012-01-01

    Apolipoprotein A-I (apoA-I) is the major protein component of high density lipoproteins (HDL) and plays a central role in cholesterol metabolism. The lipid-free / lipid-poor form of apoA-I is the preferred substrate for the ATP-binding cassette transporter A1 (ABCA1). The interaction of apoA-I with ABCA1 leads to the formation of cholesterol laden high density lipoprotein (HDL) particles, a key step in reverse cholesterol transport and the maintenance of cholesterol homeostasis. Knowledge of the structure of lipid-free apoA-I is essential to understanding its critical interaction with ABCA1 and the molecular mechanisms underlying HDL biogenesis. We therefore examined the structure of lipid-free apoA-I by electron paramagnetic resonance spectroscopy (EPR). Through site directed spin label EPR, we mapped the secondary structure of apoA-I and identified sites of spin coupling as residues 26, 44, 64, 167, 217 and 226. We capitalize on the fact that lipid-free apoA-I self-associates in an anti-parallel manner in solution. We employed these sites of spin coupling to define the central plane in the dimeric apoA-I complex. Applying both the constraints of dipolar coupling with the EPR-derived pattern of solvent accessibility, we assembled the secondary structure into a tertiary context, providing a solution structure for lipid-free apoA-I. PMID:22245143

  6. Relationship between the efficacy of rivastigmine and apolipoprotein E (epsilon4) in patients with mild to moderately severe Alzheimer disease.

    PubMed

    Blesa, Rafael; Aguilar, Miquel; Casanova, Jordi Peña; Boada, Mercé; Martínez, Sergi; Alom, Jordi; de la Hoz, Carlos Hernández; Sancho, Jerónimo; Fernández, Oscar; Gil-Neciga, Eulogio; Massó, Jose Félix Martí

    2006-01-01

    Alzheimer disease is the most common form of dementia in Western countries and the leading cause of disability in the over-65 population. Apolipoprotein E (APOE) is a multifunctional protein implied in lipid metabolism and neurobiology. Polymorphisms of the APOE gene have been associated with a variety of medical disorders, from arteriosclerosis to AD. A high frequency of the APOE epsilon4 allele has been found in patients with AD and they seem to have a higher risk of developing the disease. Various authors have suggested a possible relationship between the efficacy of cholinesterase inhibitors and the presence of the APOE epsilon4 allele. The purpose of the present study was to compare prospectively the efficacy of rivastigmine in patients with mild to moderately severe AD presenting different polymorphisms of the APOE gene on chromosome 19 and to determine if there was a difference in the response to rivastigmine treatment in AD patients with the APOE epsilon4 allele (heterozygous or homozygous) versus patients who had other forms of APOE, such as epsilon2 and epsilon3. This was an open-label, nonrandomized, multicenter study in patients over 50 years of age diagnosed with mild to moderately severe AD. The results of the analysis of this study indicate that the presence of at least one APOE epsilon4 allele does not determine a difference in the response to treatment with rivastigmine. The data indicate that knowledge of the patient's genotype is not necessary for treatment with rivastigmine. It would be interesting in the future to analyze the interaction between these 2 factors using other available anticholinesterase drugs.

  7. Interatomic relaxation processes induced in neon dimers by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Stumpf, V.; Gokhberg, K.; Zhang, X. C.; Xu, S.; Li, B.; Shen, L. L.; Zhu, X. L.; Feng, W. T.; Zhang, S. F.; Zhao, D. M.; Ma, X.

    2018-01-01

    We report an experimental observation of the interatomic Coulombic decay (ICD) and radiative charge-transfer (RCT) processes in a Ne dimer (e ,2 e ) following a 380-eV electron impact. By detecting the N e+-N e+ cation pair and one of the emitted electrons in coincidence, the fingerprint of the ICD process initiated by the inner-valence ionization of Ne is obtained. Furthermore, the experimental results and ab initio calculations together unambiguously confirm the occurrence of the RCT process, and we show that most of the low-energy electrons produced in ionization of the Ne dimers are due to the ICD, which strongly suggests the importance of the ICD in causing radiation damage in a biological medium.

  8. Primary and Secondary Dimer Interfaces of the FGFR3 Transmembrane Domain: Characterization via Multiscale Molecular Dynamics Simulations

    PubMed Central

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A.; Chetwynd, Alan; Sansom, Mark S.P.

    2016-01-01

    Receptor tyrosine kinases are single pass membrane proteins which form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. The fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position relative of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface which is more highly populated in heterodimer and mutant configurations which may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer so as to enable interactions of the arginine sidechain with lipid head group phosphates. PMID:24397339

  9. Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae.

    PubMed

    Romero, Patricia; López, Rubens; García, Ernesto

    2007-06-15

    LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues. The translation product of the lytA gene is the low-activity E-form of LytA (a monomer), which can be "converted" (activated) in vitro by choline into the fully active C-form at low temperature. The C-form is a homodimer with a boomerang-like shape. To study the structural requirements for the monomer-to-dimer modification and to clarify whether "conversion" is synonymous with dimerization, the biochemical consequences of replacing four key amino acid residues of ChBR6 and ChBR7 (the repeats involved in dimer formation) were determined. The results obtained with a collection of 21 mutated NAM-amidases indicate that Ile-315 is a key amino acid residue in both LytA activity and folding. Amino acids with a marginal position in the solenoid structure of the ChBM were of minor influence in dimer stability; neither the size, polarity, nor aromatic nature of the replacement amino acids affected LytA activity. In contrast, truncated proteins were drastically impaired in their activity and conversion capacity. The results indicate that dimerization and conversion are different processes, but they do not answer the questions of whether conversion can only be achieved after a dimer formation step.

  10. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake.

    PubMed

    Otis, Jessica P; Zeituni, Erin M; Thierer, James H; Anderson, Jennifer L; Brown, Alexandria C; Boehm, Erica D; Cerchione, Derek M; Ceasrine, Alexis M; Avraham-Davidi, Inbal; Tempelhof, Hanoch; Yaniv, Karina; Farber, Steven A

    2015-03-01

    Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and

  11. The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer.

    PubMed

    O'Malley, Tiernan T; Witbold, William M; Linse, Sara; Walsh, Dominic M

    2016-11-08

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated the Aβ monomer, consist primarily of Aβ42, and resist denaturation by chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in two ways: by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then used a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by the Aβ monomer. The results suggest that the cross-links disfavor fibril formation from Aβ dimers, thereby enhancing the concentration of soluble aggregates akin to those in aqueous extracts of AD brain. Thus, it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates.

  12. Structure and catalytic activation of the TRIM23 RING E3 ubiquitin ligase: DAWIDZIAK et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawidziak, Daria M.; Sanchez, Jacint G.; Wagner, Jonathan M.

    Tripartite motif (TRIM) proteins comprise a large family of RING-type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled-coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher-order oligomerization of the basal coiled-coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.

  13. Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae

    PubMed Central

    Ono, Chikako; Shiokawa, Mai; Mori, Hiroyuki; Uemura, Kentaro; Yamamoto, Satomi; Okamoto, Toru; Suzuki, Ryosuke; Yoshii, Kentaro; Kurosu, Takeshi; Igarashi, Manabu; Aoki, Hiroshi; Sakoda, Yoshihiro

    2017-01-01

    Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene. PMID:28644867

  14. Photochemical dimerization of organic compounds

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.; Muedas, Cesar A.; Ferguson, Richard R.

    1992-01-01

    At least one of selectivity and reaction rate of photosensitized vapor phase dimerizations, including dehydrodimerizations, hydrodimerizations and cross-dimerizations of saturated and unsaturated organic compounds is improved by conducting the dimerization in the presence of hydrogen or nitrous oxide.

  15. Nuclear uptake of an amino-terminal fragment of apolipoprotein E4 promotes cell death and localizes within microglia of the Alzheimer's disease brain.

    PubMed

    Love, Julia E; Day, Ryan J; Gause, Justin W; Brown, Raquel J; Pu, Xinzhu; Theis, Dustin I; Caraway, Chad A; Poon, Wayne W; Rahman, Abir A; Morrison, Brad E; Rohn, Troy T

    2017-01-01

    Although harboring the apolipoprotein E4 ( APOE4 ) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.

  16. Rosuvastatin reduces atherosclerotic lesions and promotes progenitor cell mobilisation and recruitment in apolipoprotein E knockout mice.

    PubMed

    Schroeter, Marco R; Humboldt, Tim; Schäfer, Katrin; Konstantinides, Stavros

    2009-07-01

    Statins enhance incorporation of bone marrow-derived cells into experimental neointimal lesions. However, the contribution of progenitor cells to progression of spontaneous atherosclerotic plaques, and the possible modulatory role of statins in this process, remain poorly understood. We compared the effects of rosuvastatin (1 and 10mg/kg BW) and pravastatin (10mg/kg) on progenitor cell mobilisation, recruitment into atherosclerotic plaques, and lesion growth. Statins were administered over 8 weeks to apolipoprotein E knockout mice on atherogenic diet. In addition, mice were lethally irradiated, followed by transplantation of bone marrow from LacZ transgenic mice. Rosuvastatin reduced lesion area and intima-to-media ratio at the brachiocephalic artery compared to vehicle, while both parameters were not significantly altered by pravastatin. Rosuvastatin also augmented endothelialisation (P<0.05) and reduced the smooth muscle cells (SMC) content (P=0.042) of lesions. Numbers of c-kit, sca-1 and flk-1, sca-1 double-positive progenitor cells were significantly increased in rosuvastatin compared to control-treated mice, both in the bone marrow and the peripheral blood. Similarly, the number of spleen-derived acLDL, lectin double-positive progenitor cells (P=0.001) and colony-forming units (P=0.0104) was significantly increased in mice treated with rosuvastatin compared to vehicle alone. In the bone marrow, increased Akt and p42/44 MAP kinase phosphorylation and upregulated SDF1alpha mRNA expression were observed. Importantly, rosuvastatin treatment also increased the plasma levels of c-kit ligand (P=0.003), and the number of c-kit-positive cells within atherosclerotic lesions (P=0.041). Our findings suggest that rosuvastatin reduces the size of atherosclerotic plaques, and this effect appears to involve progenitor cell mobilisation and recruitment into vascular lesions.

  17. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novak, Walter R. P.; Bhattacharyya, Basudeb; Grilley, Daniel P.

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interfacemore » is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.« less

  18. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  19. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice.

    PubMed

    Huang, Ying; Wang, Jinfeng; Quan, Guihua; Wang, Xiaojun; Yang, Longfei; Zhong, Lili

    2014-12-01

    The objective of this study was to investigate the effect of Lactobacillus acidophilus ATCC 4356 on the development of atherosclerosis in apolipoprotein E-knockout (ApoE(-/-)) mice. Eight-week-old ApoE(-/-) mice were fed a Western diet with or without L. acidophilus ATCC 4356 daily for 16 weeks. L. acidophilus ATCC 4356 protected ApoE(-/-) mice from atherosclerosis by reducing their plasma cholesterol levels from 923 ± 44 to 581 ± 18 mg/dl, likely via a marked decrease in cholesterol absorption caused by modulation of Niemann-Pick C1-like 1 (NPC1L1). In addition, suppression of cholesterol absorption induced reverse cholesterol transport (RCT) in macrophages through the peroxisome proliferator-activated receptor/liver X receptor (PPAR/LXR) pathway. Fecal lactobacillus and bifidobacterium counts were significantly (P < 0.05) higher in the L. acidophilus ATCC 4356 treatment groups than in the control groups. Furthermore, L. acidophilus ATCC 4356 was detected in the rat small intestine, colon, and feces during the feeding trial. The bacterial levels remained high even after the administration of lactic acid bacteria had been stopped for 2 weeks. These results suggest that administration of L. acidophilus ATCC 4356 can protect against atherosclerosis through the inhibition of intestinal cholesterol absorption. Therefore, L. acidophilus ATCC 4356 may be a potential therapeutic material for preventing the progression of atherosclerosis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Interaction between dimer interface residues of native and mutated SOD1 protein: a theoretical study.

    PubMed

    Keerthana, S P; Kolandaivel, P

    2015-04-01

    Cu-Zn superoxide dismutase 1 (SOD1) is a highly conserved bimetallic protein enzyme, used for the scavenging the superoxide radicals (O2 (-)) produced due to aerobic metabolism in the mitochondrial respiratory chain. Over 100 mutations have been identified and found to be in the homodimeric structure of SOD1. The enzyme has to be maintained in its dimeric state for the structural stability and enzymatic activity. From our investigation, we found that the mutations apart from the dimer interface residues are found to affect the dimer stability of protein and hence enhancing the aggregation and misfolding tendency of mutated protein. The homodimeric state of SOD1 is found to be held together by the non-covalent interactions. The molecular dynamics simulation has been used to study the hydrogen bond interactions between the dimer interface residues of the monomers in native and mutated forms of SOD1 in apo- and holo-states. The results obtained by this analysis reveal the fact that the loss of hydrogen bond interactions between the monomers of the dimer is responsible for the reduced stability of the apo- and holo-mutant forms of SOD1. The conformers with dimer interface residues in native and mutated protein obtained by the molecular dynamics simulation is subjected to quantum mechanical study using M052X/6-31G(d) level of theory. The charge transfer between N-H···O interactions in the dimer interface residues were studied. The weak interaction between the monomers of the dimer accounts for the reduced dimerization and enhanced deformation energy in the mutated SOD1 protein.

  1. Inhalation exposure of gas-metal arc stainless steel welding fume increased atherosclerotic lesions in apolipoprotein E knockout mice.

    PubMed

    Erdely, Aaron; Hulderman, Tracy; Salmen-Muniz, Rebecca; Liston, Angie; Zeidler-Erdely, Patti C; Chen, Bean T; Stone, Samuel; Frazer, David G; Antonini, James M; Simeonova, Petia P

    2011-07-04

    Epidemiological studies suggest that welding, a process which generates an aerosol of inhalable gases and metal rich particulates, increases the risk for cardiovascular disease. In this study we analyzed systemic inflammation and atherosclerotic lesions following gas metal arc-stainless steel (GMA-SS) welding fume exposure. Apolipoprotein E knockout (apoE(-/-)) mice, fed a Western diet, were exposed to GMA-SS at 40mg/m(3) for 3h/day for ten days (∼8.26μg daily alveolar deposition). Mice were sacrificed two weeks after exposure and serum chemistry, serum protein profiling and aortic lesion area were determined. There were no significant changes in serum total cholesterol, triglycerides or alanine aminotransferase. Serum levels of uric acid, a potent antioxidant, were decreased perhaps suggesting a reduced capacity to combat systemic oxidative stress. Inflammatory serum proteins interleukin 1 beta (IL-1β) and monocyte chemoattractant protein 3 (MCP-3) were increased two weeks after GMA-SS exposure. Analysis of atherosclerotic plaques showed an increase in lesion area as the result of GMA-SS exposure. In conclusion, GMA-SS exposure showed evidence of systemic inflammation and increased plaque progression in apoE(-/-) mice. These results complement epidemiological and functional human studies that suggest welding may result in adverse cardiovascular effects. Published by Elsevier Ireland Ltd.

  2. Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor

    NASA Astrophysics Data System (ADS)

    Wijeratne, Sithara S.; Li, Jingqiang; Yeh, Hui-Chun; Nolasco, Leticia; Zhou, Zhou; Bergeron, Angela; Frey, Eric W.; Moake, Joel L.; Dong, Jing-fei; Kiang, Ching-Hwa

    2016-01-01

    Von Willebrand factor (VWF) multimers are large adhesive proteins that are essential to the initiation of hemostatic plugs at sites of vascular injury. The binding of VWF multimers to platelets, as well as VWF proteolysis, is regulated by shear stresses that alter VWF multimeric conformation. We used single molecule manipulation with atomic force microscopy (AFM) to investigate the effect of high fluid shear stress on soluble dimeric and multimeric forms of VWF. VWF dimers are the smallest unit that polymerizes to construct large VWF multimers. The resistance to mechanical unfolding with or without exposure to shear stress was used to evaluate VWF conformational forms. Our data indicate that, unlike recombinant VWF multimers (RVWF), recombinant dimeric VWF (RDVWF) unfolding force is not altered by high shear stress (100 dynes/cm2 for 3 min at 37°C ). We conclude that under the shear conditions used (100 dynes/cm2 for 3 min at 37°C ) , VWF dimers do not self-associate into a conformation analogous to that attained by sheared large VWF multimers.

  3. Molecular Simulation Uncovers the Conformational Space of the λ Cro Dimer in Solution

    PubMed Central

    Ahlstrom, Logan S.; Miyashita, Osamu

    2011-01-01

    The significant variation among solved structures of the λ Cro dimer suggests its flexibility. However, contacts in the crystal lattice could have stabilized a conformation which is unrepresentative of its dominant solution form. Here we report on the conformational space of the Cro dimer in solution using replica exchange molecular dynamics in explicit solvent. The simulated ensemble shows remarkable correlation with available x-ray structures. Network analysis and a free energy surface reveal the predominance of closed and semi-open dimers, with a modest barrier separating these two states. The fully open conformation lies higher in free energy, indicating that it requires stabilization by DNA or crystal contacts. Most NMR models are found to be unstable conformations in solution. Intersubunit salt bridging between Arg4 and Glu53 during simulation stabilizes closed conformations. Because a semi-open state is among the low-energy conformations sampled in simulation, we propose that Cro-DNA binding may not entail a large conformational change relative to the dominant dimer forms in solution. PMID:22098751

  4. Structural features of the KPI domain control APP dimerization, trafficking, and processing.

    PubMed

    Ben Khalifa, Naouel; Tyteca, Donatienne; Marinangeli, Claudia; Depuydt, Mathieu; Collet, Jean-François; Courtoy, Pierre J; Renauld, Jean-Christophe; Constantinescu, Stefan; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2012-02-01

    The two major isoforms of human APP, APP695 and APP751, differ by the presence of a Kunitz-type protease inhibitor (KPI) domain in the extracellular region. APP processing and function is thought to be regulated by homodimerization. We used bimolecular fluorescence complementation (BiFC) to study dimerization of different APP isoforms and mutants. APP751 was found to form significantly more homodimers than APP695. Mutation of dimerization motifs in the TM domain did not affect fluorescence complementation, but native folding of KPI is critical for APP751 homodimerization. APP751 and APP695 dimers were mostly localized at steady state in the Golgi region, suggesting that most of the APP751 and 695 dimers are in the secretory pathway. Mutation of the KPI led to the retention of the APP homodimers in the endoplasmic reticulum. We finally showed that APP751 is more efficiently processed through the nonamyloidogenic pathway than APP695. These findings provide new insight on the particular role of KPI domain in APP dimerization. The correlation observed between dimerization, subcellular localization, and processing suggests that dimerization acts as an efficient regulator of APP trafficking in the secretory compartments that has major consequences on its processing.

  5. Phylogeny and expression patterns of two apolipoprotein E genes in the flatfish Senegalese sole.

    PubMed

    Roman-Padilla, Javier; Rodríguez-Rúa, Ana; Carballo, Carlos; Manchado, Manuel; Hachero-Cruzado, Ismael

    2018-02-15

    The apolipoprotein E (ApoE) is a key component of several lipoproteins involved in lipid homeostasis. In this study, two cDNA sequences encoding ApoE (referred to as apoEa and apoEb) were characterized in the flatfish Solea senegalensis. The predicted peptides contained conserved structural blocks related with their capacity for lipid binding and lipoprotein receptor interaction. At genomic level, both genes contained five exons and four introns and they were organized into two tandem arrays with apoA-IV gene copies. The phylogenetic analysis clearly separated them into two well-supported clusters that matched with their organization in the genome of teleosts. Whole-mount in situ hybridization located the apoEa signal in the yolk syncytial layer (YSL) of lecitothrophic larval stages (0dph) and in the anterior intestine of exotrophic larvae and benthic fish. In the case of apoEb, hybridization signals were located in the YSL, tail bud, eyes and mouth at 0dph and in the otic vesicle, hindbrain, eyes, pharynx, mouth, heart and intestine at 1dph. In exotrophic larvae, apoEb was ubiquitously expressed in several tissues such as taste buds, brain, mouth, nostril, gills, intestine, liver and around the neuromasts and eyes. Quantification of mRNA levels in pools of whole larvae confirmed distinct expression patterns with a significant reduction of apoEa and an increase of apoEb mRNA levels throughout larval development. Moreover, only apoEa transcripts increased in response to food supply suggesting that this paralog mostly participates in the absorption and transport of dietary lipids and the apoEb in the redistribution of endogenous lipids as well as in neural tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes.

    PubMed

    Zaragoza, Katrin; Bégay, Valérie; Schuetz, Anja; Heinemann, Udo; Leutz, Achim

    2010-05-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.

  7. Atorvastatin Upregulates the Expression of miR-126 in Apolipoprotein E-knockout Mice with Carotid Atherosclerotic Plaque.

    PubMed

    Pan, Xudong; Hou, Rongyao; Ma, Aijun; Wang, Ting; Wu, Mei; Zhu, Xiaoyan; Yang, Shaonan; Xiao, Xing

    2017-01-01

    Carotid atherosclerosis (AS) is a chronic inflammatory disease of the carotid arterial wall, which is very important in terms of the occurrence of cerebral vascular accidents. Studies have demonstrated that microRNAs (miRNAs) and their target genes are involved in the formation of atherosclerosis and that atorvastatin might reduce atherosclerotic plaques by regulating the expression of miRNAs. However, the related mechanism is not yet known. In this study, we first investigated the effects of atorvastatin on miR-126 and its target gene, i.e., vascular cell adhesion molecule-1 (VCAM-1) in apolipoprotein E-knockout (ApoE-/-) mice with carotid atherosclerotic plaque in vivo. We compared the expressions of miR-126 and VCAM-1 between the control, atherosclerotic model and atorvastatin treatment groups of ApoE-/- mice using RT-PCR and Western blot. We found the miR-126 expression was significantly down-regulated, and the VCAM-1 expression was significantly up-regulated in the atherosclerotic model group, which accelerated the progression of atherosclerosis in the ApoE-/- mice. These results following atorvastatin treatment indicated that miR-126 expression was significantly up-regulated, VCAM-1 expression was significantly down-regulated and atherosclerotic lesions were reduced. The present results might explain the mechanism by which miR-126 is involved in the formation of atherosclerosis in vivo. Our study first indicated that atorvastatin might exert its anti-inflammatory effects in atherosclerosis by regulating the expressions of miR-126 and VCAM-1 in vivo.

  8. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA

    PubMed Central

    Berke, Ian C; Modis, Yorgo

    2012-01-01

    Melanoma differentiation-associated gene-5 (MDA5) detects viral double-stranded RNA in the cytoplasm. RNA binding induces MDA5 to activate the signalling adaptor MAVS through interactions between the caspase recruitment domains (CARDs) of the two proteins. The molecular mechanism of MDA5 signalling is not well understood. Here, we show that MDA5 cooperatively binds short RNA ligands as a dimer with a 16–18-basepair footprint. A crystal structure of the MDA5 helicase-insert domain demonstrates an evolutionary relationship with the archaeal Hef helicases. In X-ray solution structures, the CARDs in unliganded MDA5 are flexible, and RNA binds on one side of an asymmetric MDA5 dimer, bridging the two subunits. On longer RNA, full-length and CARD-deleted MDA5 constructs assemble into ATP-sensitive filaments. We propose a signalling model in which the CARDs on MDA5–RNA filaments nucleate the assembly of MAVS filaments with the same polymeric geometry. PMID:22314235

  9. A fast and cost-effective method for apolipoprotein E isotyping as an alternative to APOE genotyping for patient screening and stratification.

    PubMed

    Calero, Olga; García-Albert, Luis; Rodríguez-Martín, Andrés; Veiga, Sergio; Calero, Miguel

    2018-04-13

    Apolipoprotein E (apoE) is a 34 kDa glycoprotein involved in lipid metabolism. The human APOE gene encodes for three different apoE protein isoforms: E2, E3 and E4. The interest in apoE isoforms is high for epidemiological research, patient stratification and identification of those at increased risk for clinical trials and prevention. The isoform apoE4 is associated with increased risk for coronary heart and Alzheimer's diseases. This paper describes a method for specifically detecting the apoE4 isoform from biological fluids by taking advantage of the capacity of apoE to bind "specifically" to polystyrene surfaces as capture and a specific anti-apoE4 monoclonal antibody as reporter. Our results indicate that the apoE-polystyrene binding interaction is highly stable, resistant to detergents and acid and basic washes. The methodology here described is accurate, easily implementable, fast and cost-effective. Although at present, our technique is unable to discriminate homozygous APOE ε4/ε4 from APOE ε3/ε4 and ε2/ε4 heterozygous, it opens new avenues for the development of inexpensive, yet effective, tests for the detection of apoE4 for patients' stratification. Preliminary results indicated that this methodology is also adaptable into turbidimetric platforms, which make it a good candidate for clinical implementation through its translation to the clinical analysis routine.

  10. Sildenafil restores endothelial function in the apolipoprotein E knockout mouse

    PubMed Central

    2013-01-01

    Background Atherosclerosis is an inflammatory process of the arterial walls and is initiated by endothelial dysfunction accompanied by an imbalance in the production of reactive oxygen species (ROS) and nitric oxide (NO). Sildenafil, a selective phosphodiesterase-5 (PDE5) inhibitor used for erectile dysfunction, exerts its cardiovascular effects by enhancing the effects of NO. The aim of this study was to investigate the influence of sildenafil on endothelial function and atherosclerosis progression in apolipoprotein E knockout (apoE−/−) mice. Methods ApoE−/− mice treated with sildenafil (Viagra®, 40 mg/kg/day, for 3 weeks, by oral gavage) were compared to the untreated apoE−/− and the wild-type (WT) mice. Aortic rings were used to evaluate the relaxation responses to acetylcholine (ACh) in all of the groups. In a separate set of experiments, the roles of NO and ROS in the relaxation response to ACh were evaluated by incubating the aortic rings with L-NAME (NO synthase inhibitor) or apocynin (NADPH oxidase inhibitor). In addition, the atherosclerotic lesions were quantified and superoxide production was assessed. Results Sildenafil restored the vasodilator response to acetylcholine (ACh) in the aortic rings of the apoE−/− mice. Treatment with L-NAME abolished the vasodilator responses to ACh in all three groups of mice and revealed an augmented participation of NO in the endothelium-dependent vasodilation in the sildenafil-treated animals. The normalized endothelial function in sildenafil-treated apoE−/− mice was unaffected by apocynin highlighting the low levels of ROS production in these animals. Moreover, morphological analysis showed that sildenafil treatment caused approximately a 40% decrease in plaque deposition in the aorta. Conclusion This is the first study demonstrating the beneficial effects of chronic treatment with sildenafil on endothelial dysfunction and atherosclerosis in a model of spontaneous hypercholesterolemia. These data

  11. Effects of high-fat, low-cholesterol diets on hepatic lipid peroxidation and antioxidants in apolipoprotein E-deficient mice.

    PubMed

    Ferré, N; Camps, J; Paul, A; Cabré, M; Calleja, L; Osada, J; Joven, J

    2001-02-01

    The present study describes the effects of several high-fat low-cholesterol antiatherogenic diets on the hepatic lipid peroxidation and hepatic antioxidant systems in apolipoprotein E-deficient mice. Eighty mice were distributed into five groups and fed with regular mouse chow or chow supplemented with coconut, palm, olive and sunflower seed oils. After ten weeks, they were sacrificed and the livers were removed so that lipid peroxidation and alpha-tocopherol concentrations, and superoxide dismutase, glutathione peroxidase and glutathione reductase activities could be measured. The size of the atherosclerotic lesions in the aortas was also measured. Results showed that the diets supplemented with olive oil, palm oil or sunflower seed oil significantly decreased the size of the lesion. However, there was an association between those mice that were on diets supplemented with palm or coconut oils and a significant increase in hepatic lipid peroxidation. This association was not found in animals fed with olive or sunflower seed oils, the diets with the highest content of vitamin E. The dietary content of vitamin E was significantly correlated (r = 0.98; p < 0.05) with the hepatic concentration of this compound. Our study suggests that the high content of vitamin E in olive oil or sunflower seed oil may protect from the undesirable hepatotoxic effects of high-fat diets in apo E-deficient mice and that this should be taken into account when these diets are used to prevent atherosclerosis.

  12. No effect of C-reactive protein on early atherosclerosis development in apolipoprotein E*3-leiden/human C-reactive protein transgenic mice.

    PubMed

    Trion, A; de Maat, M P M; Jukema, J W; van der Laarse, A; Maas, M C; Offerman, E H; Havekes, L M; Szalai, A J; Princen, H M G; Emeis, J J

    2005-08-01

    C-reactive protein (CRP) has been associated with risk of cardiovascular disease. It is not clear whether CRP is causally involved in the development of atherosclerosis. Mouse CRP is not expressed at high levels under normal conditions and increases in concentration only several-fold during an acute phase response. Because the dynamic range of human CRP is much larger, apolipoprotein E*3-Leiden (E3L) transgenic mice carrying the human CRP gene offer a unique model to study the role(s) of CRP in atherosclerosis development. Atherosclerosis development was studied in 15 male and 15 female E3L/CRP mice; E3L transgenic littermates were used as controls. The mice were fed a hypercholesterolemic diet to induce atherosclerosis development. Cholesterol exposure did not differ between E3L/CRP and E3L mice. Plasma CRP levels were on average 10.2+/-6.5 mg/L in male E3L/CRP mice, 0.2+/-0.1 mg/L in female E3L/CRP mice, and undetectable in E3L mice. Quantification of atherosclerosis showed that lesion area in E3L/CRP mice was not different from that in E3L mice. This study demonstrates that mildly elevated levels of CRP in plasma do not contribute to the development of early atherosclerosis in hypercholesterolemic E3L/CRP mice.

  13. Stabilization of a tetrameric malate dehydrogenase by introduction of a disulfide bridge at the dimer-dimer interface.

    PubMed

    Bjørk, Alexandra; Dalhus, Bjørn; Mantzilas, Dimitrios; Eijsink, Vincent G H; Sirevåg, Reidun

    2003-12-05

    Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.

  14. Atom-dimer scattering in a heteronuclear mixture with a finite intraspecies scattering length

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Zhang, Peng

    2018-04-01

    We study the three-body problem of two ultracold identical bosonic atoms (denoted by B ) and one extra atom (denoted by X ), where the scattering length aB X between each bosonic atom and atom X is resonantly large and positive. We calculate the scattering length aad between one bosonic atom and the shallow dimer formed by the other bosonic atom and atom X , and investigate the effect induced by the interaction between the two bosonic atoms. We find that even if this interaction is weak (i.e., the corresponding scattering length aB B is of the same order of the van der Waals length rvdW or even smaller), it can still induce a significant effect for the atom-dimer scattering length aad. Explicitly, an atom-dimer scattering resonance can always occur when the value of aB B varies in the region with | aB B|≲ rvdW . As a result, both the sign and the absolute value of aad, as well as the behavior of the aad-aB X function, depends sensitively on the exact value of aB B. Our results show that, for a good quantitative theory, the intraspecies interaction is required to be taken into account for this heteronuclear system, even if this interaction is weak.

  15. Enhanced capillary electrophoretic screening of Alzheimer based on direct apolipoprotein E genotyping and one-step multiplex PCR.

    PubMed

    Woo, Nain; Kim, Su-Kang; Sun, Yucheng; Kang, Seong Ho

    2018-01-01

    Human apolipoprotein E (ApoE) is associated with high cholesterol levels, coronary artery disease, and especially Alzheimer's disease. In this study, we developed an ApoE genotyping and one-step multiplex polymerase chain reaction (PCR) based-capillary electrophoresis (CE) method for the enhanced diagnosis of Alzheimer's. The primer mixture of ApoE genes enabled the performance of direct one-step multiplex PCR from whole blood without DNA purification. The combination of direct ApoE genotyping and one-step multiplex PCR minimized the risk of DNA loss or contamination due to the process of DNA purification. All amplified PCR products with different DNA lengths (112-, 253-, 308-, 444-, and 514-bp DNA) of the ApoE genes were analyzed within 2min by an extended voltage programming (VP)-based CE under the optimal conditions. The extended VP-based CE method was at least 120-180 times faster than conventional slab gel electrophoresis methods In particular, all amplified DNA fragments were detected in less than 10 PCR cycles using a laser-induced fluorescence detector. The detection limits of the ApoE genes were 6.4-62.0pM, which were approximately 100-100,000 times more sensitive than previous Alzheimer's diagnosis methods In addition, the combined one-step multiplex PCR and extended VP-based CE method was also successfully applied to the analysis of ApoE genotypes in Alzheimer's patients and normal samples and confirmed the distribution probability of allele frequencies. This combination of direct one-step multiplex PCR and an extended VP-based CE method should increase the diagnostic reliability of Alzheimer's with high sensitivity and short analysis time even with direct use of whole blood. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ultraviolet spectrum and chemical reactivity of the ClO dimer

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Tschuikow-Roux, E.

    1990-01-01

    The ClO dimer was prepared by photolysis (wavelength greater than 300 nm) of Cl2/Cl2O or Cl2/O3 mixtures or by photolysis of Cl2O alone. Temperatures were in the range 195-217 K, and experiments were carried out both in the gas phase and in the cryogenic solvents CF4, CO2, and N2O. Dimer cross sections in the range 190-400 nm are reported both in the gas phase and in the solvents. Results indicate that ClOOCl is the only dimer structure formed as a stable product. Upper limits of 1 x 10 to the -19th and 1 x 10 to the -20th cu cm/s are placed on the reactions of ClOOCl with O3 and with itself, respectively.

  17. Electronic and mechanical characteristics of stacked dimer molecular junctions.

    PubMed

    Magyarkuti, András; Adak, Olgun; Halbritter, Andras; Venkataraman, Latha

    2018-02-15

    Break-junction measurements are typically aimed at characterizing electronic properties of single molecules bound between two metal electrodes. Although these measurements have provided structure-function relationships for such devices, there is little work that studies the impact of molecule-molecule interactions on junction characteristics. Here, we use a scanning tunneling microscope based break-junction technique to study pi-stacked dimer junctions formed with two amine-terminated conjugated molecules. We show that the conductance, force and flicker noise of such dimers differ dramatically when compared with the corresponding monomer junctions and discuss the implications of these results on intra- and inter-molecular charge transport.

  18. Molecular evidence of stereo-specific lactoferrin dimers in solution.

    PubMed

    Persson, Björn A; Lund, Mikael; Forsman, Jan; Chatterton, Dereck E W; Akesson, Torbjörn

    2010-10-01

    Gathering experimental evidence suggests that bovine as well as human lactoferrin self-associate in aqueous solution. Still, a molecular level explanation is unavailable. Using force field based molecular modeling of the protein-protein interaction free energy we demonstrate (1) that lactoferrin forms highly stereo-specific dimers at neutral pH and (2) that the self-association is driven by a high charge complementarity across the contact surface of the proteins. Our theoretical predictions of dimer formation are verified by electrophoretic mobility and N-terminal sequence analysis on bovine lactoferrin. 2010 Elsevier B.V. All rights reserved.

  19. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  20. Human plasma lipid modulation in schistosomiasis mansoni depends on apolipoprotein E polymorphism.

    PubMed

    Martins da Fonseca, Caíque Silveira; Pimenta Filho, Adenor Almeida; dos Santos, Bianka Santana; da Silva, César Augusto; Domingues, Ana Lúcia Coutinho; Owen, James Stuart; Lima, Vera Lúcia de Menezes

    2014-01-01

    Schistosomiasis mansoni is a parasitic liver disease, which causes several metabolic disturbances. Here, we evaluate the influence of Apolipoprotein E (APOE) gene polymorphism, a known modulator of lipid metabolism, on plasma lipid levels in patients with hepatosplenic schistosomiasis. Blood samples were used for APOE genotyping and to measure total cholesterol (TC), LDL-C, HDL-C and triglycerides. Schistosomiasis patients had reduced TC, LDL-C and triglycerides (25%, 38% and 32% lower, respectively; P<0.0001) compared to control individuals, whereas HDL-C was increased (10% higher; P = 0.0136). Frequency of the common alleles, ε2, ε3 and ε4, was similar (P = 0.3568) between controls (n = 108) and patients (n = 84), implying that APOE genotype did not affect susceptibility to the advanced stage of schistosomiasis. Nevertheless, while patient TC and LDL-C levels were significantly reduced for each allele (except TC in ε2 patients), changes in HDL-C and triglycerides were noted only for the less common ε2 and ε4 alleles. The most striking finding, however, was that accepted regulation of plasma lipid levels by APOE genotype was disrupted by schistosomiasis. Thus, while ε2 controls had higher TC and LDL-C than ε3 carriers, these parameters were lower in ε2 versus ε3 patients. Similarly, the inverse relationship of TG levels in controls (ε2>ε3>ε4) was absent in patients (ε2 or ε4>ε3), and the increase in HDL-C of ε2 or ε4 patients compared to ε3 patients was not seen in the control groups. We confirm that human schistosomiasis causes dyslipidemia and report for the first time that certain changes in plasma lipid and lipoprotein levels depend on APOE gene polymorphism. Importantly, we also concluded that S. mansoni disrupts the expected regulation of plasma lipids by the different ApoE isoforms. This finding suggests ways to identify new metabolic pathways affected by schistosomiasis and also potential molecular targets to treat

  1. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed Central

    Hoggett, J G; Kellett, G L

    1992-01-01

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity. Images Fig. 1. PMID:1445216

  2. Kinetics of the monomer-dimer reaction of yeast hexokinase PI.

    PubMed

    Hoggett, J G; Kellett, G L

    1992-10-15

    Kinetic studies of the glucose-dependent monomer-dimer reaction of yeast hexokinase PI at pH 8.0 in the presence of 0.1 M-KCl have been carried out using the fluorescence temperature-jump technique. A slow-relaxation effect was observed which was attributed from its dependence on enzyme concentration to the monomer-dimer reaction; the reciprocal relaxation times tau-1 varied from 3 s-1 at low concentrations of glucose to 42 s-1 at saturating concentrations. Rate constants for association (kass.) and dissociation (kdiss.) were determined as a function of glucose concentration using values of the equilibrium association constant of the monomer-dimer reaction derived from sedimentation ultracentrifugation studies under similar conditions, and also from the dependence of tau-2 on enzyme concentration. kass. was almost independent of glucose concentration and its value (2 x 10(5) M-1.s-1) was close to that expected for a diffusion-controlled process. The influence of glucose on the monomer-dimer reaction is entirely due to effects on kdiss., which increases from 0.21 s-1 in the absence of glucose to 25 s-1 at saturating concentrations. The monomer and dimer forms of hexokinase have different affinities and Km values for glucose, and the results reported here imply that there may be a significant lag in the response of the monomer-dimer reaction to changes in glucose concentrations in vivo with consequent hysteretic effects on the hexokinase activity.

  3. Dimer esters in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2013-12-01

    -pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  4. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    PubMed Central

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  5. Structure of the dimerization domain of DiGeorge Critical Region 8

    PubMed Central

    Senturia, Rachel; Faller, Michael; Yin, Sheng; Loo, Joseph A; Cascio, Duilio; Sawaya, Michael R; Hwang, Daniel; Clubb, Robert T; Guo, Feng

    2010-01-01

    Maturation of microRNAs (miRNAs, ∼22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298–352) at 1.7 Å resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis. PMID:20506313

  6. Proteomic Profile of Unstable Atheroma Plaque: Increased Neutrophil Defensin 1, Clusterin, and Apolipoprotein E Levels in Carotid Secretome.

    PubMed

    Aragonès, Gemma; Auguet, Teresa; Guiu-Jurado, Esther; Berlanga, Alba; Curriu, Marta; Martinez, Salomé; Alibalic, Ajla; Aguilar, Carmen; Hernández, Esteban; Camara, María-Luisa; Canela, Núria; Herrero, Pol; Ruyra, Xavier; Martín-Paredero, Vicente; Richart, Cristóbal

    2016-03-04

    Because of the clinical significance of carotid atherosclerosis, the search for novel biomarkers has become a priority. The aim of the present study was to compare the protein secretion profile of the carotid atherosclerotic plaque (CAP, n = 12) and nonatherosclerotic mammary artery (MA, n = 10) secretomes. We used a nontargeted proteomic approach that incorporated tandem immunoaffinity depletion, iTRAQ labeling, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 162 proteins were quantified, of which 25 showed statistically significant differences in secretome levels between carotid atherosclerotic plaque and nondiseased mammary artery. We found increased levels of neutrophil defensin 1, apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein in CAP secretomes. Results were validated by ELISA assays. Also, differentially secreted proteins are involved in pathways such as focal adhesion and leukocyte transendothelial migration. In conclusion, this study provides a subset of identified proteins that are differently expressed in secretomes of clinical significance.

  7. Structure of an electric double layer containing a 2:2 valency dimer electrolyte

    DOE PAGES

    Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...

    2014-12-05

    In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less

  8. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy.

    PubMed

    Chadda, R; Robertson, J L

    2016-01-01

    Dimerization of membrane protein interfaces occurs during membrane protein folding and cell receptor signaling. Here, we summarize a method that allows for measurement of equilibrium dimerization reactions of membrane proteins in lipid bilayers, by measuring the Poisson distribution of subunit capture into liposomes by single-molecule photobleaching analysis. This strategy is grounded in the fact that given a comparable labeling efficiency, monomeric or dimeric forms of a membrane protein will give rise to distinctly different photobleaching probability distributions. These methods have been used to verify the dimer stoichiometry of the Fluc F - ion channel and the dimerization equilibrium constant of the ClC-ec1 Cl - /H + antiporter in lipid bilayers. This approach can be applied to any membrane protein system provided it can be purified, fluorescently labeled in a quantitative manner, and verified to be correctly folded by functional assays, even if the structure is not yet known. © 2016 Elsevier Inc. All rights reserved.

  9. Apolipoprotein E4 Allele and Gait Performance in Mild Cognitive Impairment: Results From the Gait and Brain Study.

    PubMed

    Sakurai, Ryota; Montero-Odasso, Manuel

    2017-11-09

    The apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance. Fifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities. Baseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up. In this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. One-pot synthesis of high molecular weight synthetic heteroprotein dimers driven by charge complementarity electrostatic interactions.

    PubMed

    Hvasanov, David; Nam, Ekaterina V; Peterson, Joshua R; Pornsaksit, Dithepon; Wiedenmann, Jörg; Marquis, Christopher P; Thordarson, Pall

    2014-10-17

    Despite the importance of protein dimers and dimerization in biology, the formation of protein dimers through synthetic covalent chemistry has not found widespread use. In the case of maleimide-cysteine-based dimerization of proteins, we show here that when the proteins have the same charge, dimerization appears to be inherently difficult with yields around 1% or less, regardless of the nature of the spacer used or whether homo- or heteroprotein dimers are targeted. In contrast, if the proteins have opposing (complementary) charges, the formation of heteroprotein dimers proceeds much more readily, and in the case of one high molecular weight (>80 kDa) synthetic dimer between cytochrome c and bovine serum albumin, a 30% yield of the purified, isolated dimer was achieved. This represents at least a 30-fold increase in yield for protein dimers formed from proteins with complementary charges, compared to when the proteins have the same charge, under otherwise similar conditions. These results illustrate the role of ionic supramolecular interactions in controlling the reactivity of proteins toward bis-functionalized spacers. The strategy here for effective synthetic dimerization of proteins could be very useful for developing novel approaches to study the important role of protein-protein interactions in chemical biology.

  11. Deficiency of cyclin-dependent kinase inhibitors p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apolipoprotein E-deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyuerek, Levent M.; Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goeteborg, SE-405 30; Boehm, Manfred

    2010-05-28

    Cyclin-dependent kinase inhibitors, p21{sup Cip1} and p27{sup Kip1}, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21{sup Cip1} or p27{sup Kip1} in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE{sup -/-} aortae, both apoE{sup -/-}/p21{sup -/-} and apoE{sup -/-}/p27{sup -/-} aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27{sup Kip1} accelerated plaque formation significantly more than p21{sup -/-} in apoE{sup -/-} mice. This increased plaque formation was in parallel with increased intima/mediamore » area ratios. Deficiency of p21{sup Cip1} and p27{sup Kip1} accelerates atherogenesis in apoE{sup -/-} mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.« less

  12. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  13. Dimerization of the keto tautomer of acetohydroxamic acid—infrared matrix isolation and theoretical study

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena; Mielke, Zofia

    2005-05-01

    Dimerization of the keto tautomer of acetohydroxamic acid has been studied using FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-31+G(d,p) calculations. Analysis of CH 3CONHOH/Ar matrix spectra indicates formation of two dimers in which two intramolecular CO···H sbnd ON bonds within two interacting acetohydroxamic acid molecules are retained. A chain dimer I is stabilized by the intermolecular CO···H sbnd N hydrogen bond, whereas the cyclic dimer II is stabilized by two intermolecular N sbnd H···O(H)N bonds. Twelve vibrations were identified for dimer I and six vibrations for dimer II; the observed frequency shifts show a good agreement with the calculated ones for the structures I and II. Both dimers have comparable binding energies ( ΔEZPECPI, II = -7.02, -6.34 kcal mol -1) being less stable than calculated structures III and IV ( ΔEZPECPIII, IV = -9.50, -8.87 kcal mol -1) in which one or two intramolecular hydrogen bonds are disrupted. In the most stable 10-membered cyclic dimer III, two intermolecular CO···H sbnd ON hydrogen bonds are formed at expense of intramolecular hydrogen bonds of the same type. The formation of the less stable (AHA) 2 dimers in the studied matrixes indicates that the formation of (AHA) 2 is kinetically and not thermodynamically controlled.

  14. Endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 1 targets misfolded HLA-B27 dimers for endoplasmic reticulum-associated degradation.

    PubMed

    Guiliano, David B; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J; Campbell, Elaine C; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J; Kellam, Paul; Hebert, Daniel N; Gould, Keith G; Powis, Simon J; Antoniou, Antony N

    2014-11-01

    HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). This study was undertaken to define the role of the UPR-induced ER-associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. HeLa cell lines expressing only 2 copies of a carboxy-terminally Sv5-tagged HLA-B27 were generated. The ER stress-induced protein ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) was overexpressed by transfection, and dimer levels were monitored by immunoblotting. EDEM1, the UPR-associated transcription factor X-box binding protein 1 (XBP-1), the E3 ubiquitin ligase hydroxymethylglutaryl-coenzyme A reductase degradation 1 (HRD1), and the degradation-associated proteins derlin 1 and derlin 2 were inhibited using either short hairpin RNA or dominant-negative mutants. The UPR-associated ERAD of HLA-B27 was confirmed using ER stress-inducing pharamacologic agents in kinetic and pulse chase assays. We demonstrated that UPR-induced machinery can target HLA-B27 dimers and that dimer formation can be controlled by alterations to expression levels of components of the UPR-induced ERAD pathway. HLA-B27 dimers and misfolded major histocompatibility complex class I monomeric molecules bound to EDEM1 were detected, and overexpression of EDEM1 led to inhibition of HLA-B27 dimer formation. EDEM1 inhibition resulted in up-regulation of HLA-B27 dimers, while UPR-induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1, and derlins 1 and 2. The present findings indicate that the UPR ERAD pathway can dispose of HLA-B27 dimers, thus presenting a potential novel therapeutic target for modulation of HLA-B27-associated inflammatory disease. Copyright © 2014 by the American College of Rheumatology.

  15. Apolipoprotein E polymorphisms and severity of cerebral palsy: a cross-sectional study in 255 children in Norway

    PubMed Central

    LIEN, ESPEN; ANDERSEN, GURO L; BAO, YONGDE; GORDISH-DRESSMAN, HEATHER; SKRANES, JON S; VIK, TORSTEIN; BLACKMAN, JAMES A

    2012-01-01

    Aim The aim of this study was to examine whether the presence of the apolipoprotein E (ApoE) allele APOEε4 is associated with less severe manifestations of cerebral palsy (CP), consistent with the suggested beneficial effect of this allele on neurodevelopment in children. Method ApoE genotyping was performed on buccal epithelial cells from 255 children (141 males 114 females; mean age 12y, SD 2y 3mo, range 9–17y) recorded in the Cerebral Palsy Register of Norway. The main outcome measure of CP severity was the Gross Motor Function Classification System (GMFCS). Secondary outcome measures were fine motor function, epilepsy, and the need for gastrostomy tube feeding (GTF). Results There was no association between the APOEε4 genotype and GMFCS levels (odds ratio [OR] 1.15; 95% confidence interval [CI] 0.66–1.99). However, the APOEε4 genotype was more often present among children with epilepsy (OR 2.2; 95% CI 1.1–4.2) and/or receiving GTF (OR 2.7; 95% CI 1.1–6.6). Among children with unilateral CP, the presence of APOEε4 was associated with more severe fine motor impairment (OR 2.6; 95% CI 1.3–6.9). Interpretation Our main hypothesis that APOEε4 would have a protective effect on neurodevelopment was not supported. Instead, subgroup analyses suggested an adverse effect of the APOEε4 genotype on the developing brain after injury. PMID:23384326

  16. Actin-induced dimerization of palladin promotes actin-bundling

    PubMed Central

    Vattepu, Ravi; Yadav, Rahul; Beck, Moriah R

    2015-01-01

    A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics. PMID:25307943

  17. Structure and stability of the N-hydroxyurea dimer: Post-Hartree-Fock quantum mechanical study

    NASA Astrophysics Data System (ADS)

    Jabalameli, Ali; Venkatraman, Ramaiyer; Nowek, Andrzej; Sullivan, Richard H.

    2000-10-01

    The potential energy surface (PES) search of the N-hydroxyurea dimer was searched with second-order Møller-Plesset perturbation theory (MP2) and the 6-31G(d,p) basis set. Eight local minimum energy structures have been found. Four of them have relatively strong (ΔE˜-10 to -13 kcal/mol) intermolecular interactions and the others are moderately strongly interacting species (ΔE˜-3 to -7 kcal/mol). Final estimation of interaction energies was performed using the larger 6-311G(df,pd) and 6-311G(2df,2pd) basis sets. The predicted interaction energies are ΔE=-14.26 kcal/mol and -3.43 kcal/mol for the strongest and the weakest interacting forms of the studied complex, respectively, at the MP2/6-311G(2df,2pd)//MP2/6-31G(d,p) level of theory. The self-consistent field (SCF) interaction energy decomposition indicates the important influence of the deformation term magnitude on ΔE(SCF). The calculated electron correlation contribution to ΔE(MP2) depends on the geometry of the system and varies from -0.5 to -5 kcal/mol. The estimated influence of water on the stability (free energy of hydration) of N-hydroxyurea dimers using the self-consistent isodensity polarized continuum (SCI-PCM) model of solvation varies from ˜-11 kcal/mol to ˜-21 kcal/mol. The forms predicted to be more strongly interacting species in gas phase are less influenced by hydration than the more weakly interacting ones.

  18. mRNA Molecules Containing Murine Leukemia Virus Packaging Signals Are Encapsidated as Dimers

    PubMed Central

    Hibbert, Catherine S.; Mirro, Jane; Rein, Alan

    2004-01-01

    Prior work by others has shown that insertion of ψ (i.e., leader) sequences from the Moloney murine leukemia virus (MLV) genome into the 3′ untranslated region of a nonviral mRNA leads to the specific encapsidation of this RNA in MLV particles. We now report that these RNAs are, like genomic RNAs, encapsidated as dimers. These dimers have the same thermostability as MLV genomic RNA dimers; like them, these dimers are more stable if isolated from mature virions than from immature virions. We characterized encapsidated mRNAs containing deletions or truncations of MLV ψ or with ψ sequences from MLV-related acute transforming viruses. The results indicate that the dimeric linkage in genomic RNA can be completely attributed to the ψ region of the genome. While this conclusion agrees with earlier electron microscopic studies on mature MLV dimers, it is the first evidence as to the site of the linkage in immature dimers for any retrovirus. Since the Ψ+ mRNA is not encapsidated as well as genomic RNA, it is only present in a minority of virions. The fact that it is nevertheless dimeric argues strongly that two of these molecules are packaged into particles together. We also found that the kissing loop is unnecessary for this coencapsidation or for the stability of mature dimers but makes a major contribution to the stability of immature dimers. Our results are consistent with the hypothesis that the packaging signal involves a dimeric structure in which the RNAs are joined by intermolecular interactions between GACG loops. PMID:15452213

  19. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers

    DOE PAGES

    Olek, Anna T.; Rayon, Catherine; Makowski, Lee; ...

    2014-07-10

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice ( Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain,more » elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less

  20. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.

    PubMed

    Olek, Anna T; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; Himmel, Michael E; Bolin, Jeffrey T; Carpita, Nicholas C

    2014-07-01

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. © 2014 American Society of Plant Biologists. All rights reserved.

  1. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.

    PubMed

    Iwamoto, Masako; Kono, Misaki; Kawamoto, Daisuke; Tomoyori, Hiroko; Sato, Masao; Imaizumi, Katsumi

    2002-01-01

    Walnut oil (WO) is a good source of alpha-linolenic acid. We compared the effects of WO and high-linoleic safflower oil (HLSO) on the serum lipid level and atherosclerosis development in male and female apolipoprotein (apo) E-deficient mice. The WO diet resulted in a higher level of serum cholesterol than with HLSO. Female mice fed on the WO diet had a greater lesion area in the aortic root than did those on the HLSO diet. There was no diet-dependent difference in the level of cholesterol and its oxidation products in the abdominal and thoracic aorta. These results suggest that the unpleasant effects of the WO diet on apo E-deficient mice may be attributable to alpha-linolenic acid.

  2. Binding symmetry of extracellular divalent cations to conduction pore studied using tandem dimers of a CNG channel.

    PubMed

    Kwon, Ryuk-Jun; Ha, Tal Soo; Kim, Wonjae; Park, Chul-Seung

    2002-11-08

    Cyclic nucleotide-gated (CNG) channels are composed of the tetramer of alpha-subunit alone or alpha- and beta-subunits. The alpha-subunits of these channels have a conserved glutamate (Glu) residue within the pore-forming region and the residue determines the selectivity as well as the affinity for the extracellular divalent cations. Using the high-affinity mutant (E363D) of bovine retinal CNG channel in which the Glu at position 363 was replaced to Asp, we constructed tandem dimers and investigated the binding characteristics of divalent cations to the site. The gating and permeation characteristics of individual homomeric tandem dimers are indistinguishable to those of homo-tetramers formed by parental monomers. The heteromeric tandem dimers showed the binding affinity for Sr(2+) identical to the geometric mean of the affinities for two parent channels, indicating the energy additive and thus the simultaneous interaction. On the other hand, the binding affinity for Mg(2+) followed the harmonic mean of those parent channels indicating that Mg(2+) interacts more strongly with the subunit bearing Asp residue at the position. Thus the results strongly suggest that the Glu363 residues in the CNG channel pore be flexible enough to adapt different binding symmetries for different divalent cations. Moreover, the simultaneous interaction between the four Glu residues and Sr(2+) provides an important structural constraint to the CNG channel outer vestibule of unknown structure.

  3. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization.

    PubMed

    Hameed, Uzma; Price, Ian; Ikram-Ul-Haq; Ke, Ailong; Wilson, David B; Mirza, Osman

    2017-10-01

    Thermostable α-amylases have many industrial applications and are therefore continuously explored from novel sources. We present the characterization of a novel putative α-amylase gene product (Tp-AmyS) cloned from Thermotoga petrophila. The purified recombinant enzyme is highly thermostable and able to hydrolyze starch into dextrin between 90 and 100°C, with optimum activity at 98°C and pH8.5. The activity increased in the presence of Rb 1+ , K 1+ and Ca 2+ ions, whereas other ions inhibited activity. The crystal structure of Tp-AmyS at 1.7Å resolution showed common features of the GH-13 family, however was apparently found to be a dimer. Several residues from one monomer interacted with a docked acarbose, an inhibitor of Tp-AmyS, in the other monomer, suggesting catalytic cooperativity within the dimer. The most striking feature of the dimer was that it resembled the dimerization of salivary amylase from a previous crystal structure, and thus could be a functional feature of some amylases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Elastic and viscous properties of the nematic dimer CB7CB

    NASA Astrophysics Data System (ADS)

    Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.

    2017-12-01

    We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.

  5. Two new dimeric naphthoquinones with neuraminidase inhibitory activity from Lithospermum erythrorhizon.

    PubMed

    Yang, Yanqin; Zhao, Dapeng; Yuan, Kailong; Zhou, Guojun; Wang, Yu; Xiao, Yanmeng; Wang, Chenxu; Xu, Jingwei; Yang, Wei

    2015-01-01

    The crude methanol extract of roots of Lithospermum erythrorhizon was subjected to successive chromatographic fractionation which afforded two new dimeric naphthoquinone derivatives shikometabolin E (2) and shikometabolin F (3) as well as one known compound shikometabolin A (1). The structures of compounds 1-3 were elucidated by using UV, MS, 1D and 2D NMR spectroscopic analysis. The two new dimeric naphthoquinone derivatives showed significant neuraminidase inhibitory activities.

  6. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission

    PubMed Central

    Lees, Jonathan P. B.; Manlandro, Cara Marie; Picton, Lora K.; Ebie Tan, Alexandra Z.; Casares, Salvador; Flanagan, John M.; Fleming, Karen G.; Hill, R. Blake

    2012-01-01

    Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide-like repeat (TPR) protein whose role in assembly of the fission machinery remains obscure. Two non-functional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild type Fis1. A72P also disrupts dimerization of non-functional variants indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is non-functional in fission consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR containing proteins may reversibly self-associate. PMID:22789569

  7. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    NASA Astrophysics Data System (ADS)

    Xiao, Weizhan; Hu, Yongjun; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi

    2015-01-01

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH) ṡ H+ (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH2O ṡ (C2H5OH)H+ (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH) ṡ (CH3)+ (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C2H5OH) ṡ H+ and CH2O ṡ (C2H5OH)H+ have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  8. Designer interface peptide grafts target estrogen receptor alpha dimerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K., E-mail: pbiswas@tougaloo.edu

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization.more » Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  9. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE PAGES

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...

    2015-06-03

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  10. Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu

    Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less

  11. Intricate Crystal Structure of Dihydrolipoamide Dehydrogenase (E3) with its Binding Protein: Multiple Copies, Dynamic and Static Disorders

    NASA Technical Reports Server (NTRS)

    Makal, A.; Hong, Y. S.; Potter, R.; Vettaikkorumakankauv, A. K.; Korotchkina, L. G.; Patel, M. S.; Ciszak, E.

    2004-01-01

    Human E3 and binding protein E3BP are two components of the pyruvate dehydrogenase complex. Crystallization of E3 with 221-amino acid fragment of E3BP (E3BPdd) led to crystals that diffracted to a resolution of 2.6 Angstroms. Structure determination involved molecular replacement using a dimer of E3 homolog as a search model and de novo building of the E3BPdd peptide. Solution was achieved by inclusion of one E3 dimer at a time, followed by refinement until five E3 dimers were located. This complete content of E3 provided electron density maps suitable for tracing nine peptide chains of E3BPdd, eight of them being identified with partial occupancies. Final content of the asymmetric unit consists of five E3 dimers, each binding one E3BPdd molecule. In four of these molecular complexes, E3BPdd is in static disorder resulting in E3BPdd binding to either one or the other monomer of the E3 dimer. However, E3BPdd of the fifth E3 dimer forms specific contacts that lock it at one monomer. In addition to this static disorder, E3BPdd reveals high mobility in the limited space of the crystal lattice. Support from NIH and NASA.

  12. Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility.

    PubMed

    Speer, David; Eichhorn, Ralf; Evstigneev, Mykhaylo; Reimann, Peter

    2012-06-01

    We consider two coupled particles moving along a periodic substrate potential with negligible inertia effects (overdamped limit). Even when the particles are identical and the substrate spatially symmetric, a sinusoidal external driving of appropriate amplitude and frequency may lead to spontaneous symmetry breaking in the form of a permanent directed motion of the dimer. Thermal noise restores ergodicity and thus zero net velocity, but entails arbitrarily fast diffusion of the dimer for sufficiently weak noise. Moreover, upon application of a static bias force, the dimer exhibits a motion opposite to that force (absolute negative mobility). The key requirement for all these effects is a nonconvex interaction potential of the two particles.

  13. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones.

    PubMed

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Wagner, Sylvia; Büchel, Claudia; von Briesen, Hagen; Kreuter, Jörg

    2009-07-01

    The blood-brain barrier (BBB) represents a considerable obstacle to brain entry of the majority of drugs and thus severely restricts the therapy of many serious CNS diseases including brain tumours, brain HIV, Alzheimer and other neurodegenerative diseases. The use of nanoparticles coated with polysorbate 80 or with attached apolipoprotein E has enabled the delivery of drugs across the BBB. However, the mechanism of this enhanced transport is still not fully understood. In this present study, human serum albumin nanoparticles, with covalently bound apolipoprotein E (Apo E) as a targetor as well as without apolipoprotein E, were manufactured and injected intravenously into SV 129 mice. The animals were sacrificed after 15 and 30 min, and their brains were examined by transmission electron microscopy. Only the nanoparticles with covalently bound apolipoprotein E were detected in brain capillary endothelial cells and neurones, whereas no uptake into the brain was detectable with nanoparticles without apolipoprotein E. We have also demonstrated uptake of the albumin/ApoE nanoparticles into mouse endothelial (b.End3) cells in vitro and their intracellular localisation. These findings indicate that nanoparticles with covalently bound apolipoprotein E are taken up into the cerebral endothelium by an endocytic mechanism followed by transcytosis into brain parenchyma.

  14. Hawthorn fruit attenuates atherosclerosis by improving the hypolipidemic and antioxidant activities in apolipoprotein e-deficient mice.

    PubMed

    Zhang, Yuying; Zhang, Liang; Geng, Yue; Geng, Yunhong

    2014-01-01

    The protective effects of hawthorn fruit against atherosclerosis and the potential underlying mechanisms of this fruit in improving the hypolipidemic and antioxidant activities were investigated in apolipoprotein E-deficient(apoE(-/-)) mice. ApoE(-/-) mice were divided into a control group(n=10) and hawthorn fruit group(n=10). The mean size of the lesions in the aortic root was assessed, and the serum glucose levels, insulin levels, lipid profiles, total antioxidant capacity(T-AOC) and superoxide dismutase(SOD) and glutathione peroxidase(GSH-PX) activities were measured. The mRNA levels of hepatic genes related to lipid metabolism and antioxidant enzymes were examined. The hawthorn fruit group mice developed significantly decreased(p<0.05) atherosclerotic lesions. The levels of serum lipids decreased significantly(p<0.05) and the levels of cholesterol/triglycerides, including very-low-density lipoprotein(VLDL) and low-density lipoprotein(LDL), decreased in the hawthorn fruit group. The hawthorn fruit mice exhibited significantly increased T-AOC values and SOD and GSH-PX activities(p<0.05). The hepatic fatty acid synthase(FAS) and sterol regulatory element binding protein-1c(SREBP-1c) mRNA levels were reduced by 42%(p<0.05) and 23% p<0.05) in the mice fed the hawthorn fruit diet compared with that observed in the mice fed a standard diet. However, the hepatic hydroxymethylglutaryl CoA reductase(HMG-CoAR) mRNA levels showed no significant differences between the two groups. The mRNA expression levels of the antioxidant enzymes(SOD1, SOD2, Gpx3) were higher(p<0.05) in the livers of the hawthorn fruit diet mice compared with those observed in the control mice. Hawthorn fruit exerts a protective effect against atherosclerosis in apoE(-/-) mice by improving the hypolipidemic and antioxidant activities.

  15. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  16. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  17. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction.

    PubMed

    Feilen, Lukas P; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer's disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling.

  18. Fe65-PTB2 Dimerization Mimics Fe65-APP Interaction

    PubMed Central

    Feilen, Lukas P.; Haubrich, Kevin; Strecker, Paul; Probst, Sabine; Eggert, Simone; Stier, Gunter; Sinning, Irmgard; Konietzko, Uwe; Kins, Stefan; Simon, Bernd; Wild, Klemens

    2017-01-01

    Physiological function and pathology of the Alzheimer’s disease causing amyloid precursor protein (APP) are correlated with its cytosolic adaptor Fe65 encompassing a WW and two phosphotyrosine-binding domains (PTBs). The C-terminal Fe65-PTB2 binds a large portion of the APP intracellular domain (AICD) including the GYENPTY internalization sequence fingerprint. AICD binding to Fe65-PTB2 opens an intra-molecular interaction causing a structural change and altering Fe65 activity. Here we show that in the absence of the AICD, Fe65-PTB2 forms a homodimer in solution and determine its crystal structure at 2.6 Å resolution. Dimerization involves the unwinding of a C-terminal α-helix that mimics binding of the AICD internalization sequence, thus shielding the hydrophobic binding pocket. Specific dimer formation is validated by nuclear magnetic resonance (NMR) techniques and cell-based analyses reveal that Fe65-PTB2 together with the WW domain are necessary and sufficient for dimerization. Together, our data demonstrate that Fe65 dimerizes via its APP interaction site, suggesting that besides intra- also intermolecular interactions between Fe65 molecules contribute to homeostatic regulation of APP mediated signaling. PMID:28553201

  19. Tautomerization and Dimerization of 6,13-Disubstituted Derivatives of Pentacene.

    PubMed

    Garcia-Borràs, Marc; Konishi, Akihito; Waterloo, Andreas; Liang, Yong; Cao, Yang; Hetzer, Constantin; Lehnherr, Dan; Hampel, Frank; Houk, Kendall N; Tykwinski, Rik R

    2017-05-02

    Two new 6,13-disubstituted pentacene derivatives, 1 c and 1 d, with alkyl and triisopropylsilylethynyl substitution have been synthesized and characterized experimentally and computationally. The alkyl substituted 1 c and 1 d represent the first 6-alkyl-substituted pentacene derivative where the fully aromatic species dominates over the corresponding tautomer. Indeed, no tautomerization product is found for either 1 c or 1 d upon heating or in the presence of catalytic amounts of acid. On the other hand, an unexpected dimer (3 c) is formed from 1 c. A plausible mechanism for this new dimerization process of the 6-methyl-substituted pentacene derivative 1 c is proposed, which involves first a bimolecular hydrogen atom transfer followed by an intramolecular [4+2] Diels-Alder cycloaddition. In the case of 6-butyl substitution, neither tautomerization nor dimerization is observed. Computations support the proposed 1 c dehydrodimerization pathway, explain why 1 d does not dimerize, and show the importance of the nature of the group at C-13 in controlling the relative stability of 6-alkyl-substituted pentacene tautomers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Lys-Trp cation-π interaction mediates the dimerization and function of the chloride intracellular channel protein 1 transmembrane domain.

    PubMed

    Peter, Bradley; Polyansky, Anton A; Fanucchi, Sylvia; Dirr, Heini W

    2014-01-14

    Chloride intracellular channel protein 1 (CLIC1) is a dual-state protein that can exist either as a soluble monomer or in an integral membrane form. The oligomerization of the transmembrane domain (TMD) remains speculative despite it being implicated in pore formation. The extent to which electrostatic and van der Waals interactions drive folding and association of the dimorphic TMD is unknown and is complicated by the requirement of interactions favorable in both aqueous and membrane environments. Here we report a putative Lys37-Trp35 cation-π interaction and show that it stabilizes the dimeric form of the CLIC1 TMD in membranes. A synthetic 30-mer peptide comprising a K37M TMD mutant was examined in 2,2,2-trifluoroethanol, sodium dodecyl sulfate micelles, and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes using far-ultraviolet (UV) circular dichroism, fluorescence, and UV absorbance spectroscopy. Our data suggest that Lys37 is not implicated in the folding, stability, or membrane insertion of the TMD peptide. However, removal of this residue impairs the formation of dimers and higher-order oligomers. This is accompanied by a 30-fold loss of chloride influx activity, suggesting that dimerization modulates the rate of chloride conductance. We propose that, within membranes, individual TMD helices associate via a Lys37-mediated cation-π interaction to form active dimers. The latter findings are also supported by results of modeling a putative TMD dimer conformation in which Lys37 and Trp35 form cation-π pairs at the dimer interface. Dimeric helix bundles may then associate to form fully active ion channels. Thus, within a membrane-like environment, aromatic interactions involving a polar lysine side chain provide a thermodynamic driving force for helix-helix association.

  1. D-dimer test for excluding the diagnosis of pulmonary embolism.

    PubMed

    Crawford, Fay; Andras, Alina; Welch, Karen; Sheares, Karen; Keeling, David; Chappell, Francesca M

    2016-08-05

    Pulmonary embolism (PE) can occur when a thrombus (blood clot) travels through the veins and lodges in the arteries of the lungs, producing an obstruction. People who are thought to be at risk include those with cancer, people who have had a recent surgical procedure or have experienced long periods of immobilisation and women who are pregnant. The clinical presentation can vary, but unexplained respiratory symptoms such as difficulty breathing, chest pain and an increased respiratory rate are common.D-dimers are fragments of protein released into the circulation when a blood clot breaks down as a result of normal body processes or with use of prescribed fibrinolytic medication. The D-dimer test is a laboratory assay currently used to rule out the presence of high D-dimer plasma levels and, by association, venous thromboembolism (VTE). D-dimer tests are rapid, simple and inexpensive and can prevent the high costs associated with expensive diagnostic tests. To investigate the ability of the D-dimer test to rule out a diagnosis of acute PE in patients treated in hospital outpatient and accident and emergency (A&E) settings who have had a pre-test probability (PTP) of PE determined according to a clinical prediction rule (CPR), by estimating the accuracy of the test according to estimates of sensitivity and specificity. The review focuses on those patients who are not already established on anticoagulation at the time of study recruitment. We searched 13 databases from conception until December 2013. We cross-checked the reference lists of relevant studies. Two review authors independently applied exclusion criteria to full papers and resolved disagreements by discussion.We included cross-sectional studies of D-dimer in which ventilation/perfusion (V/Q) scintigraphy, computerised tomography pulmonary angiography (CTPA), selective pulmonary angiography and magnetic resonance pulmonary angiography (MRPA) were used as the reference standard.• Adults who were managed in

  2. The dimerization equilibrium of a ClC Cl−/H+ antiporter in lipid bilayers

    PubMed Central

    Chadda, Rahul; Krishnamani, Venkatramanan; Mersch, Kacey; Wong, Jason; Brimberry, Marley; Chadda, Ankita; Kolmakova-Partensky, Ludmila; Friedman, Larry J; Gelles, Jeff; Robertson, Janice L

    2016-01-01

    Interactions between membrane protein interfaces in lipid bilayers play an important role in membrane protein folding but quantification of the strength of these interactions has been challenging. Studying dimerization of ClC-type transporters offers a new approach to the problem, as individual subunits adopt a stable and functionally verifiable fold that constrains the system to two states – monomer or dimer. Here, we use single-molecule photobleaching analysis to measure the probability of ClC-ec1 subunit capture into liposomes during extrusion of large, multilamellar membranes. The capture statistics describe a monomer to dimer transition that is dependent on the subunit/lipid mole fraction density and follows an equilibrium dimerization isotherm. This allows for the measurement of the free energy of ClC-ec1 dimerization in lipid bilayers, revealing that it is one of the strongest membrane protein complexes measured so far, and introduces it as new type of dimerization model to investigate the physical forces that drive membrane protein association in membranes. DOI: http://dx.doi.org/10.7554/eLife.17438.001 PMID:27484630

  3. Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution.

    PubMed Central

    Chang, B S; Beauvais, R M; Arakawa, T; Narhi, L O; Dong, A; Aparisio, D I; Carpenter, J F

    1996-01-01

    The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the

  4. Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells.

    PubMed

    Nakamura, Toshiyuki; Watanabe, Atsushi; Fujino, Takahiro; Hosono, Takashi; Michikawa, Makoto

    2009-08-20

    Apolipoprotein E allele epsilon4 (apoE4) is a strong risk factor for developing Alzheimer's disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1-272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction. To clarify the molecular mechanism, we carried out experiments to identify intracellular apoE-binding molecules and their functions in modulating mitochondria function. Here, we found that apoE4 binds to ubiquinol cytochrome c reductase core protein 2 (UQCRC2) and cytochrome C1, both of which are components of mitochondrial respiratory complex III, and cytochrome c oxidase subunit 4 isoform 1 (COX IV 1), which is a component of complex IV, in Neuro-2a cells. Interestingly, these proteins associated with apoE4(1-272) more strongly than intact apoE4(1-299). Further analysis showed that in Neuro-2a cells expressing apoE4(1-272), the enzymatic activities of mitochondrial respiratory complexes III and IV were significantly lower than those in Neuro-2a cells expressing apoE4(1-299). ApoE4(1-272) fragment expressed in Neuro2a cells is associated with mitochondrial proteins, UQCRC2 and cytochrome C1, which are component of respiratory complex III, and with COX IV 1, which is a member of complex IV. Overexpression of apoE4(1-272) fragment impairs activities of complex III and IV. These results suggest that the C-terminal-truncated fragment of apoE4 binds to mitochondrial complexes and affects their activities, and thereby leading to neurodegeneration.

  5. Associations between apolipoprotein E genotypes and serum levels of glucose, cholesterol, and triglycerides in a cognitively normal aging Han Chinese population.

    PubMed

    Tao, Qing-Qing; Chen, Yan; Liu, Zhi-Jun; Sun, Yi-Min; Yang, Ping; Lu, Shen-Ji; Xu, Miao; Dong, Qin-Yun; Yang, Jia-Jun; Wu, Zhi-Ying

    2014-01-01

    To determine the associations between apolipoprotein E (APOE) genotypes and serum levels of glucose, total cholesterol, and triglycerides in a cognitively normal aging Han Chinese population. There were 1,003 cognitively normal aging subjects included in this study. APOE genotypes were analyzed and biochemical parameters were tested. All the subjects were divided into three groups according to APOE genotypes: (1) E2/2 or E2/3 (APOE E2); (2) E3/3 (APOE E3); and (3) E2/4, E3/4, or E4/4 (APOE E4). Correlations of serum levels of glucose, total cholesterol, and triglycerides with APOE genotypes were assessed. E2, E3, and E4 allele frequencies were found to be 6.2%, 82.1%, and 11.7%, respectively. Serum levels of total cholesterol were higher in the APOE E4 group (P<0.05). A higher level of total cholesterol was associated with the E4 allele (adjusted odds ratio 1.689, 95% confidence interval 1.223-2.334, P<0.01). However, no association was found between APOE status and serum levels of glucose (adjusted odds ratio 0.981, 95% confidence interval 0.720-1.336, P=0.903) or total triglycerides (adjusted odds ratio 1.042, 95% confidence interval 0.759-1.429, P=0.800). A higher serum level of total cholesterol was significantly correlated with APOE E4 status in a cognitively normal, nondiabetic aging population. However, there was no correlation between APOE genotypes and serum levels of glucose or total triglycerides.

  6. Heavier Group 13 Metal(I) Heterocycles Stabilized by Sterically Demanding Diiminophosphinates: A Structurally Characterized Monomer-Dimer Pair For Gallium.

    PubMed

    Hawley, Andrew L; Ohlin, C André; Fohlmeister, Lea; Stasch, Andreas

    2017-01-05

    We have synthesized and characterized the monomeric diiminophosphinate-stabilized Group 13 metal(I) complexes [ Dip LE:], Dip L=Ph 2 P(NDip) 2 , Dip=2,6-iPr 2 C 6 H 3 ; E=Ga (1), In (2) and Tl (3). In addition, we structurally characterized the dimeric complex [( Dip LGa) 2 ], 1 2 . Similar synthetic attempts using Mes L=Ph 2 P(NMes) 2 , Mes=2,4,6-Me 3 C 6 H 2 afforded product mixtures from which the mixed oxidation state species [( Mes L) 3 Ga 4 I 3 ] 4 was isolated. [ Dip LGa:] 1 is converted with dry air to the gallium(III) oxide species [( Dip LGaO) 2 ] 5. Density Functional Theory studies on [ Dip LE:] and [( Dip LE) 2 ], E=Al-Tl, shed light on the bonding in these compounds and show that the newly formed E-E bonding interactions can be described as weak single σ-bond with no significant π-bonding contribution for E=Al, Ga. A large contribution to the dimer binding enthalpies results from London dispersion forces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance.

    PubMed

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-03-18

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem-haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer.

  8. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance

    PubMed Central

    Kabe, Yasuaki; Nakane, Takanori; Koike, Ikko; Yamamoto, Tatsuya; Sugiura, Yuki; Harada, Erisa; Sugase, Kenji; Shimamura, Tatsuro; Ohmura, Mitsuyo; Muraoka, Kazumi; Yamamoto, Ayumi; Uchida, Takeshi; Iwata, So; Yamaguchi, Yuki; Krayukhina, Elena; Noda, Masanori; Handa, Hiroshi; Ishimori, Koichiro; Uchiyama, Susumu; Kobayashi, Takuya; Suematsu, Makoto

    2016-01-01

    Progesterone-receptor membrane component 1 (PGRMC1/Sigma-2 receptor) is a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450 to regulate cancer proliferation and chemoresistance; its structural basis remains unknown. Here crystallographic analyses of the PGRMC1 cytosolic domain at 1.95 Å resolution reveal that it forms a stable dimer through stacking interactions of two protruding haem molecules. The haem iron is five-coordinated by Tyr113, and the open surface of the haem mediates dimerization. Carbon monoxide (CO) interferes with PGRMC1 dimerization by binding to the sixth coordination site of the haem. Haem-mediated PGRMC1 dimerization is required for interactions with EGFR and cytochromes P450, cancer proliferation and chemoresistance against anti-cancer drugs; these events are attenuated by either CO or haem deprivation in cancer cells. This study demonstrates protein dimerization via haem–haem stacking, which has not been seen in eukaryotes, and provides insights into its functional significance in cancer. PMID:26988023

  9. Comparison of clinical probability-adjusted D-dimer and age-adjusted D-dimer interpretation to exclude venous thromboembolism.

    PubMed

    Takach Lapner, Sarah; Julian, Jim A; Linkins, Lori-Ann; Bates, Shannon; Kearon, Clive

    2017-10-05

    Two new strategies for interpreting D-dimer results have been proposed: i) using a progressively higher D-dimer threshold with increasing age (age-adjusted strategy) and ii) using a D-dimer threshold in patients with low clinical probability that is twice the threshold used in patients with moderate clinical probability (clinical probability-adjusted strategy). Our objective was to compare the diagnostic accuracy of age-adjusted and clinical probability-adjusted D-dimer interpretation in patients with a low or moderate clinical probability of venous thromboembolism (VTE). We performed a retrospective analysis of clinical data and blood samples from two prospective studies. We compared the negative predictive value (NPV) for VTE, and the proportion of patients with a negative D-dimer result, using two D-dimer interpretation strategies: the age-adjusted strategy, which uses a progressively higher D-dimer threshold with increasing age over 50 years (age in years × 10 µg/L FEU); and the clinical probability-adjusted strategy which uses a D-dimer threshold of 1000 µg/L FEU in patients with low clinical probability and 500 µg/L FEU in patients with moderate clinical probability. A total of 1649 outpatients with low or moderate clinical probability for a first suspected deep vein thrombosis or pulmonary embolism were included. The NPV of both the clinical probability-adjusted strategy (99.7 %) and the age-adjusted strategy (99.6 %) were similar. However, the proportion of patients with a negative result was greater with the clinical probability-adjusted strategy (56.1 % vs, 50.9 %; difference 5.2 %; 95 % CI 3.5 % to 6.8 %). These findings suggest that clinical probability-adjusted D-dimer interpretation is a better way of interpreting D-dimer results compared to age-adjusted interpretation.

  10. Primary and secondary dimer interfaces of the fibroblast growth factor receptor 3 transmembrane domain: characterization via multiscale molecular dynamics simulations.

    PubMed

    Reddy, Tyler; Manrique, Santiago; Buyan, Amanda; Hall, Benjamin A; Chetwynd, Alan; Sansom, Mark S P

    2014-01-21

    Receptor tyrosine kinases are single-pass membrane proteins that form dimers within the membrane. The interactions of their transmembrane domains (TMDs) play a key role in dimerization and signaling. Fibroblast growth factor receptor 3 (FGFR3) is of interest as a G380R mutation in its TMD is the underlying cause of ~99% of the cases of achondroplasia, the most common form of human dwarfism. The structural consequences of this mutation remain uncertain: the mutation shifts the position of the TMD relative to the lipid bilayer but does not alter the association free energy. We have combined coarse-grained and all-atom molecular dynamics simulations to study the dimerization of wild-type, heterodimer, and mutant FGFR3 TMDs. The simulations reveal that the helices pack together in the dimer to form a flexible interface. The primary packing mode is mediated by a Gx3G motif. There is also a secondary dimer interface that is more highly populated in heterodimer and mutant configurations that may feature in the molecular mechanism of pathology. Both coarse-grained and atomistic simulations reveal a significant shift of the G380R mutant dimer TMD relative to the bilayer to allow interactions of the arginine side chain with lipid headgroup phosphates.

  11. Macrophage-specific Up-regulation of Apolipoprotein E Gene Expression by STAT1 Is Achieved via Long Range Genomic Interactions*

    PubMed Central

    Trusca, Violeta Georgeta; Fuior, Elena Valeria; Florea, Irina Cristina; Kardassis, Dimitris; Simionescu, Maya; Gafencu, Anca Violeta

    2011-01-01

    In atherogenesis, macrophage-derived apolipoprotein E (apoE) has an athero-protective role by a mechanism that is not fully understood. We investigated the regulatory mechanisms involved in the modulation of apoE expression in macrophages. The experiments showed that the promoters of all genes of the apoE/apoCI/apoCIV/apoCII gene cluster are enhanced by multienhancer 2 (ME.2), a regulatory region that is located 15.9 kb downstream of the apoE gene. ME.2 interacts with the apoE promoter in a macrophage-specific manner. Transient transfections in RAW 264.7 macrophages showed that the activity of ME.2 was strongly decreased by deletion of either 87 bp from the 5′ end or 131 bp from the 3′ end. We determined that the minimal fragment of this promoter that can be activated by ME.2 is the proximal −100/+73 region. The analysis of the deletion mutants of ME.2 revealed the importance of the 5′ end of ME.2 in apoE promoter transactivation. Chromatin conformational capture assays demonstrated that both ME.2 and ME.1 physically interacted with the apoE promoter in macrophages. Our data showed that phorbol 12-myristate 13-acetate-induced differentiation of macrophages is accompanied by a robust induction of apoE and STAT1 expression. In macrophages (but not in hepatocytes), STAT1 up-regulated apoE gene expression via ME.2. The STAT1 binding site was located in the 174–182 region of ME.2. In conclusion, the specificity of the interactions between the two multienhancers (ME.1 and ME.2) and the apoE promoter indicates that these distal regulatory elements play an important role in the modulation of apoE gene expression in a cell-specific manner. PMID:21372127

  12. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification.

    PubMed

    Osipov, Alexey V; Kasheverov, Igor E; Makarova, Yana V; Starkov, Vladislav G; Vorontsova, Olga V; Ziganshin, Rustam Kh; Andreeva, Tatyana V; Serebryakova, Marina V; Benoit, Audrey; Hogg, Ronald C; Bertrand, Daniel; Tsetlin, Victor I; Utkin, Yuri N

    2008-05-23

    Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.

  13. Dimer covering and percolation frustration.

    PubMed

    Haji-Akbari, Amir; Haji-Akbari, Nasim; Ziff, Robert M

    2015-09-01

    Covering a graph or a lattice with nonoverlapping dimers is a problem that has received considerable interest in areas, such as discrete mathematics, statistical physics, chemistry, and materials science. Yet, the problem of percolation on dimer-covered lattices has received little attention. In particular, percolation on lattices that are fully covered by nonoverlapping dimers has not evidently been considered. Here, we propose a procedure for generating random dimer coverings of a given lattice. We then compute the bond percolation threshold on random and ordered coverings of the square and the triangular lattices on the remaining bonds connecting the dimers. We obtain p_{c}=0.367713(2) and p_{c}=0.235340(1) for random coverings of the square and the triangular lattices, respectively. We observe that the percolation frustration induced as a result of dimer covering is larger in the low-coordination-number square lattice. There is also no relationship between the existence of long-range order in a covering of the square lattice and its percolation threshold. In particular, an ordered covering of the square lattice, denoted by shifted covering in this paper, has an unusually low percolation threshold and is topologically identical to the triangular lattice. This is in contrast to the other ordered dimer coverings considered in this paper, which have higher percolation thresholds than the random covering. In the case of the triangular lattice, the percolation thresholds of the ordered and random coverings are very close, suggesting the lack of sensitivity of the percolation threshold to microscopic details of the covering in highly coordinated networks.

  14. How different is the borazine-acetylene dimer from the benzene-acetylene dimer? A matrix isolation infrared and ab initio quantum chemical study

    NASA Astrophysics Data System (ADS)

    Verma, Kanupriya; Viswanathan, K. S.; Majumder, Moumita; Sathyamurthy, N.

    2017-11-01

    The 1:1 dimer of borazine-acetylene has been studied for the first time, both experimentally and computationally. The borazine-acetylene dimer was trapped in Ar and N2 matrices, and studied using infrared spectroscopy. Our experiments clearly revealed two isomers of the borazine-acetylene complex, one in which the N-H of borazine interacted with the carbon of acetylene, and another in which the C-H of acetylene formed a hydrogen bond with a nitrogen atom of borazine. The formation of both isomers in the matrix was evidenced by shifts in the vibrational frequencies of the appropriate modes. Reassuringly, the experimental observations were corroborated by our computations using the second-order Møller-Plesset perturbation theoretic method and coupled-cluster singles, doubles and perturbative triples method in conjunction with different Dunning basis sets, which indicated both these isomers to be stable minima, with the N-HṡṡṡC complex being the global minimum. Atoms-in-molecules and energy decomposition analysis were also carried out for the different isomers of the dimer. These studies reveal that replacing the three C-C linkages in benzene with three B-N linkages in borazine modifies the interaction in the dimer sufficiently, to result in a different potential energy landscape for the borazine-acetylene system when compared with the benzene-acetylene system.

  15. Tailor Made Synthesis of T-Shaped and π-STACKED Dimers in the Gas Phase: Concept for Efficient Drug Design and Material Synthesis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Das, Aloke

    2013-06-01

    Non-covalent interactions play a key role in governing the specific functional structures of biomolecules as well as materials. Thus molecular level understanding of these intermolecular interactions can help in efficient drug design and material synthesis. It has been found from X-ray crystallography that pure hydrocarbon solids (i.e. benzene, hexaflurobenzene) have mostly slanted T-shaped (herringbone) packing arrangement whereas mixed solid hydrocarbon crystals (i.e. solid formed from mixtures of benzene and hexafluorobenzene) exhibit preferentially parallel displaced (PD) π-stacked arrangement. Gas phase spectroscopy of the dimeric complexes of the building blocks of solid pure benzene and mixed benzene-hexafluorobenzene adducts exhibit similar structural motifs observed in the corresponding crystal strcutures. In this talk, I will discuss about the jet-cooled dimeric complexes of indole with hexafluorobenzene and p-xylene in the gas phase using Resonant two photon ionzation and IR-UV double resonance spectroscopy combined with quantum chemistry calculations. In stead of studying benzene...p-xylene and benzene...hexafluorobenzene dimers, we have studied corresponding indole complexes because N-H group is much more sensitive IR probe compared to C-H group. We have observed that indole...hexafluorobenzene dimer has parallel displaced (PD) π-stacked structure whereas indole...p-xylene has slanted T-shaped structure. We have shown here selective switching of dimeric structure from T-shaped to π-stacked by changing the substituent from electron donating (-CH3) to electron withdrawing group (fluorine) in one of the complexing partners. Thus, our results demonstrate that efficient engineering of the non-covalent interactions can lead to efficient drug design and material synthesis.

  16. [Prevalence of Variants in the Apolipoprotein E (APOE) Gene in a General Population of Adults from an Urban Area of Medellin (Antioquia)].

    PubMed

    Arango Viana, Juan Carlos; Valencia, Ana Victoria; Páez, Ana Lucía; Montoya Gómez, Nilton; Palacio, Carlos; Arbeláez, María Patricia; Bedoya Berrío, Gabriel; García Valencia, Jenny

    2014-01-01

    To determine the allelic and genotype frequencies of apolipoproteine E (APOE) gene in a representative sample of the adult population of Medellin in 2010. A representative sample of the adult population of Medellin, was obtained by means of a multi-stage, stratified, conglomerate based sampling method. APOE genotyping was carried out on each of the participants. The sampling design was taken into consideration for the frequencies and association analysis. The frequencies of the APOE alleles E2, E3 and E4 were 3.9, 92.0 and 4.1%, respectively. The frequencies of the different APOE genotypes were as follows: 2/2, 0.2%; 2/3, 6.8%; 2/4, 0.6%; 3/3, 85.0%; 3/4, 7.2%, and 4/4, 0.3%. The allelic and genotype frequencies of APOE in an adult population of Medellin did not differ substantially from other series reported in South America. These data are important to determine the real impact of APOE on the population risk of several psychiatric diseases. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    NASA Astrophysics Data System (ADS)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  18. Formic acid dimers in a nitrogen matrix

    NASA Astrophysics Data System (ADS)

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-01

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (˜11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  19. Formic acid dimers in a nitrogen matrix.

    PubMed

    Lopes, Susy; Fausto, Rui; Khriachtchev, Leonid

    2018-01-21

    Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.

  20. P2Y receptors and atherosclerosis in apolipoprotein E-deficient mice

    PubMed Central

    Guns, Pieter-Jan DF; Hendrickx, Jan; Van Assche, Tim; Fransen, Paul; Bult, Hidde

    2010-01-01

    Background and purpose: P2Y nucleotide receptors are involved in the regulation of vascular tone, smooth muscle cell (SMC) proliferation and inflammatory responses. The present study investigated whether they are involved in atherosclerosis. Experimental approach: mRNA of P2Y receptors was quantified (RT-PCR) in atherosclerotic and plaque-free aorta segments of apolipoprotein E-deficient (apoE–/–) mice. Macrophage activation was assessed in J774 macrophages, and effects of non-selective purinoceptor antagonists on atherosclerosis were evaluated in cholesterol-fed apoE–/– mice. Key results: P2Y6 receptor mRNA was consistently elevated in segments with atherosclerosis, whereas P2Y2 receptor expression remained unchanged. Expression of P2Y1 or P2Y4 receptor mRNA was low or undetectable, and not influenced by atherosclerosis. P2Y6 mRNA expression was higher in cultured J774 macrophages than in cultured aortic SMCs. Furthermore, immunohistochemical staining of plaques demonstrated P2Y6-positive macrophages, but few SMCs, suggesting that macrophage recruitment accounted for the increase in P2Y6 receptor mRNA during atherosclerosis. In contrast to ATP, the P2Y6-selective agonist UDP increased mRNA expression and activity of inducible nitric oxide synthase and interleukin-6 in J774 macrophages; this effect was blocked by suramin (100–300 µM) or pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS, 10–30 µM). Finally, 4-week treatment of cholesterol-fed apoE–/– mice with suramin or PPADS (50 and 25 mg·kg−1·day−1 respectively) reduced plaque size, without changing plaque composition (relative SMC and macrophage content) or cell replication. Conclusions and implications: These results suggest involvement of nucleotide receptors, particularly P2Y6 receptors, during atherosclerosis, and warrant further research with selective purinoceptor antagonists or P2Y6 receptor-deficient mice. PMID:20050854

  1. Apolipoprotein E-epsilon 4 allele and familial risk in Alzheimer's disease.

    PubMed

    Li, G; Silverman, J M; Altstiel, L D; Haroutunian, V; Perl, D P; Purohit, D; Birstein, S; Lantz, M; Mohs, R C; Davis, K L

    1996-01-01

    Recent studies have found an association between presence of apolipoprotein E (APOE) epsilon 4 allele and Alzheimer's disease (AD). The present study compared the cumulative risk of primary progressive dementia (PPD) in relatives of AD probands carrying at least one copy of the epsilon 4 allele with the relatives of AD probands not carrying epsilon 4 and with relatives of non-demented controls. Our aim was to determine whether the familial aggregation of PPD in relatives of AD probands is primarily due to those carrying epsilon 4. Seventy-seven neuropathologically diagnosed AD patients were obtained as probands through our Alzheimer's Disease Research Center Brain Bank. AD probands were genotyped for APOE. As a comparison group, 198 non-demented probands were also included. Through family informants, demographic and diagnostic data were collected on 382 first-degree relatives (age > or = 45 years) of AD probands and 848 relatives of the controls. We found that the cumulative risk of PPD in both relatives of AD probands with and without the epsilon 4 allele was significantly higher than that in the relatives of non-demented controls. However, the increased risk in the relatives of AD probands with the epsilon 4 allele was marginally, but not significantly, lower than the risk in the relatives of probands without epsilon 4. A greater likelihood of death by heart diseases over developing PPD in relatives of AD probands with epsilon 4 (3.1-fold increase) was found compared to relatives of probands without epsilon 4 (1.7-fold increase), especially prior to age 70, although the difference was not statistically significant. The increased familial risk for PPD in the relatives of AD probands with the APOE-epsilon 4 allele relative to controls suggests that familial factors in addition to APOE-epsilon 4 are risk factors for AD. Differential censorship from increased mortality of heart diseases may have prevented a higher incidence of PPD among the relatives of probands with

  2. Molecular cloning and characterization of the promoter region of the porcine apolipoprotein E gene.

    PubMed

    Xia, Jihan; Hu, Bingjun; Mu, Yulian; Xin, Leilei; Yang, Shulin; Li, Kui

    2014-05-01

    Apolipoprotein E (APOE), a component of lipoproteins plays an important role in the transport and metabolism of cholesterol, and is associated with hyperlipoproteinemia and Alzheimer's disease. In order to further understand the characterization of APOE gene, the promoter of APOE gene of Landrace pigs was analyzed in the present study. The genomic structure and amino acid sequence in pigs were analyzed and found to share high similarity in those of human but low similarity in promoter region. Real-time PCR revealed the APOE gene expression pattern of pigs in diverse tissues. The highest expression level was observed in liver, relatively low expression in other tissues, especially in stomach and muscle. Furthermore, the promoter expressing in Hepa 1-6 was significantly better at driving luciferase expression compared with C2C12 cell. After analysis of porcine APOE gene promoter regions, potential transcription factor binding sites were predicted and two GC signals, a TATA box were indicated. Results of promoter activity analysis indicated that one of potential regulatory elements was located in the region -669 to -259, which was essential for a high expression of the APOE gene. Promoter mutation and deletion analysis further suggested that the C/EBPA binding site within the APOE promoter was responsible for the regulation of APOE transcription. Electrophoretic mobility shift assays also showed the binding site of the transcription factor C/EBPA. This study advances our knowledge of the promoter of the porcine APOE gene.

  3. Lipid and apolipoproteins (ApoAI, ApoB, Apo CIII, ApoE) disturbance in hemodialysis (HD) and renal transplant (Tx) patients.

    PubMed

    Janicki, Krzysztof; Solski, Janusz; Janicka, Lucyna; Kimak, Elzbieta; Bednarek-Skublewska, Anna; Stettner, Seweryn; Molas, Grzegorz

    2004-01-01

    The aim of the study was to evaluate the serum lipid and apolipoprotein profiles among patients after renal transplantation (Tx) and to compare them with the profiles obtained for permanently hemodialysed patients (HD). The investigations were performed at 15 Tx, 40 HD patients and the control group of 40 healthy subjects. There were significantly increased TG, ApoAIII, ApoE, TC/ HDL-C, ApoCIII non B, ApoCIII:B and decreased HDL-C, ApoAI, HDL-C/ApoAI, ApoAI/ApoCIII, ApoB/ApoCIII ratios comparing HD patients to the control group. There were increased TG, ApoCIII, ApoCIII non B, ApoB/ApoCIII ratios and decreased ApoAI/ApoCIII ratios in Tx patients as compared to the control subjects. Moreover, there were significantly higher HDL, ApoAI, HDL/ApoAI, ApoCIII non B and lower ApoE, ApoE/ApoB, ApoCIII:B ratios in Tx patients as compared to these of HD patients. Significant inverse correlation of the time which passed from executed Tx and ApoCIII:B ratio (r = -0.67; p < 0.01) at renal transplant patients were observed, which means the diminished risk of development of atherosclerosis.

  4. Topological edge states and impurities: Manifestation in the local static and dynamical characteristics of dimerized quantum chains

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2018-04-01

    Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.

  5. D-dimers (DD) in CVST.

    PubMed

    Wang, Hui Fang; Pu, Chuan Qiang; Yin, Xi; Tian, Cheng Lin; Chen, Ting; Guo, Jun Hong; Shi, Qiang

    2017-06-01

    We were interested in further confirming whether D-dimers (DD) are indeed elevated in cerebral venous sinus thrombosis (CVST) as reported in those studies. CVST patients who had a plasma D-dimer test (139 cases) were included and divided into two groups: elevated D-dimer group (EDG) (>0.5 μg/mL; 65 cases) and normal D-dimer group (NDG) (≤0.5 μg/mL; 74 cases). The two groups were compared in terms of demographic data, clinical manifestation, laboratory and imaging data, using inferential statistical methods. The chi-squared and Fisher exact test showed that, compared to the NDG (74 cases), patients with elevated D-dimer levels were more likely to have a shorter symptom duration (SD) (30 ± 83.9 versus 90 ± 58.9 d, p = 0.003), more risk factors (75.4% versus 52.7%, p = 0.006), higher multiple venous sinus involvement (75.4% versus 59.5%, p = 0.037), increased fibrinogen (43.1% versus 18.9%, p = 0.037) and higher levels of blood glucose (18.3% versus 11%, p = 0.037). According to correlation analyses, D-dimer levels were positively correlated with number of venous sinuses involvement (NVS) (r = 0.321, p = 0.009) in the EDG. Multivariate logistic regression analysis showed that SD (OR, 0.025; 95% CI, 1.324-6.043; p = 0.000), NVS (OR, 1.573; 95% CI, 1.15-2.151; p = 0.005) and risk factors (OR, 3.321; 95% CI, 1.451-7.564; p = 0.004) were significantly different between the two groups. D-dimer is elevated in patients with acute/subacute CVST.

  6. Nucleosome accessibility governed by the dimer/tetramer interface

    PubMed Central

    Böhm, Vera; Hieb, Aaron R.; Andrews, Andrew J.; Gansen, Alexander; Rocker, Andrea; Tóth, Katalin; Luger, Karolin; Langowski, Jörg

    2011-01-01

    Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate structural state before H2A–H2B dimer release, which is characterized by an increased distance between H2B and the nucleosomal dyad. This suggests that the first step in nucleosome disassembly is the opening of the (H3–H4)2 tetramer/(H2A–H2B) dimer interface, followed by H2A–H2B dimer release from the DNA and, lastly, (H3–H4)2 tetramer removal. We estimate that the open intermediate state is populated at 0.2–3% under physiological conditions. This finding could have significant in vivo implications for factor-mediated histone removal and exchange, as well as for regulating DNA accessibility to the transcription and replication machinery. PMID:21177647

  7. New salts of amino acids with dimeric cations

    NASA Astrophysics Data System (ADS)

    Ghazaryan, V. V.; Fleck, M.; Petrosyan, A. M.

    2010-10-01

    Among salts of amino acids there are compounds with the composition 2A..HX, which consist of dimeric A...A+ cations with short symmetric or asymmetric hydrogen bonds between zwitter-ionic and protonated moieties. These species are materials liable to undergo phase transitions or possess interesting nonlinear optical properties. Here, we report the preparation of 20 new salts with dimeric cations from aqueous solutions, including compounds of glycine, betaine, β- alanine, L-alanine, L-phenylalanine, L-threonine, L-valine, L-leucine and L-proline, with BF4-, ClO4-, Cl-, Br-, HSeO3-, and HC2O4-; as anions. The prepared salts are characterized by IR and Raman spectroscopy. Some of them are grown in form of good quality single crystals, which allowed the determination of their crystal structure.

  8. Centrosymmetric dimer of quinuclidine betaine and squaric acid complex

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Katrusiak, A.; Szafran, M.

    2012-12-01

    The complex of squaric acid (3,4-dihydroxy-3-cyclobuten-1,2-dion, H2SQ) with quinuclidine betaine (1-carboxymethyl-1-azabicyclo[2.2.2]octane inner salt, QNB), 1, has been characterized by single-crystal X-ray analysis, FTIR and NMR spectroscopies and by DFT calculations. In the crystal of 1, monoclinic space group P21/n, one proton from H2SQ is transferred to QNB. QNBH+ and HSQ- are linked together by a Osbnd H⋯O hydrogen bond of 2.553(2) Å. Two such QNBH+·HSQ- complexes form a centrosymmetric dimer bridged by two Osbnd H⋯O bonds of 2.536(2) Å. The FTIR spectrum is consistent with the X-ray results. The structures of monomer QNBH+·HSQ- (1a) and dimer [QNB·H2SQ]2 (2) have been optimized at the B3LYP/6-311++G(d,p) level of theory. Isolated dimer 2 optimized back to a molecular aggregate of H2SQ and QNB. The calculated frequencies for the optimized structure of dimer 2 have been used to explain the frequencies of the experimental FTIR spectrum. The interpretation of 1H and 13C NMR spectra has been based on the calculated GIAO/B3LYP/6-311++G(d,p) magnetic isotropic shielding constants for monomer 1a.

  9. A new D-dimer cutoff in bedridden hospitalized elderly patients.

    PubMed

    Granziera, Serena; Rechichi, Alfonsina; De Rui, Marina; De Carlo, Paola; Bertozzo, Giulia; Marigo, Lucia; Nante, Giovanni; Manzato, Enzo

    2013-03-01

    Asymptomatic deep vein thrombosis (DVT) and pulmonary embolism are leading causes of morbidity following the hospitalization of elderly people. The diagnosis of DVT is supported by the D-dimer laboratory assay. The concentration of D-dimer increases in patients with DVT, but may be high in other conditions too (i.e. cancer, infections and inflammation). Old age coincides with a physiological increase in D-dimer values, and that is why D-dimer assay in the elderly is characteristically highly sensitive but scarcely specific. The aim of our study was to explore the reliability of different D-dimer cutoffs for the diagnosis of asymptomatic DVT in a population of bedridden hospitalized elderly patients. We studied 199 patients who were a mean 86.3 ± 6.7 years old. All participants underwent lower limb Doppler ultrasound (DUS) and D-dimer venous blood sampling on admission. In our cohort, the usual cutoff proved highly sensitive (100%), but its specificity was very poor (20.1%). To find a higher cutoff that could improve the method's specificity, we analyzed our data using a receiver operating characteristic curve analysis. The resulting D-dimer cutoff of 492 μg/l enabled us to retain the same sensitivity while improving the test's specificity to 39.1%, with a consequent improvement in its positive predictive value and accuracy. In addition to improving the method's reliability, this result may be helpful in clinical practice, in both medical wards and nursing homes. By adopting a cutoff of 492 μg/l, clinicians could significantly increase the proportion of older patients in whom DVT can be safely ruled out, reducing referrals for DUS and administration of heparin, with consequent clinical, practical and economic advantages.

  10. Study of structural stability and damaging effect on membrane for four Aβ42 dimers

    PubMed Central

    Feng, Wei; Lei, Huimin; Si, Jiarui; Zhang, Tao

    2017-01-01

    Increasing evidence shows that Aβ oligomers are key pathogenic molecules in Alzheimer’s disease. Among Aβ oligomers, dimer is the smallest aggregate and toxic unit. Therefore, understanding its structural and dynamic properties is quite useful to prevent the formation and toxicity of the Aβ oligomers. In this study, we performed molecular dynamic simulations on four Aβ42 dimers, 2NCb, CNNC, NCNC and NCCN, within the hydrated DPPC membrane. Four Aβ42 dimers differ in the arrangements of two Aβ42 peptides. This study aims to investigate the impact of aggregation pattern of two Aβ peptides on the structural stability of the Aβ42 dimer and its disruption to the biological membrane. The MD results demonstrate that the NCCN, CNNC and NCNC have the larger structural fluctuation at the N-terminus of Aβ42 peptide, where the β-strand structure converts into the coil structure. The loss of the N-terminal β-strand further impairs the aggregate ability of Aβ42 dimer. In addition, inserting Aβ42 dimer into the membrane can considerably decrease the average APL of DPPC membrane. Moreover this decrease effect is largely dependent on the distance to the location of Aβ42 dimer and its secondary structure forms. Based on the results, the 2NCb is considered as a stable dimeric unit for aggregating the larger Aβ42 oligomer, and has a potent ability to disrupt the membrane. PMID:28594887

  11. Coordination-Driven Dimerization of Zinc Chlorophyll Derivatives Possessing a Dialkylamino Group.

    PubMed

    Watanabe, Hiroaki; Kamatani, Yusuke; Tamiaki, Hitoshi

    2017-04-04

    Zinc chlorophyll derivatives Zn-1-3 possessing a tertiary amino group at the C3 1 position have been synthesized through reductive amination of methyl pyropheophorbide-d obtained from naturally occurring chlorophyll-a. In a dilute CH 2 Cl 2 solution as well as in a dilute 10 %(v/v) CH 2 Cl 2 /hexane solution, Zn-1 possessing a dimethylamino group at the C3 1 position showed red-shifted UV/Vis absorption and intensified exciton-coupling circular dichroism (CD) spectra at room temperature owing to its dimer formation via coordination to the central zinc by the 3 1 -N atom of the dimethylamino group. However, Zn-2/3 bearing 3 1 -ethylmethylamino/diethylamino groups did not. The difference was dependent on the steric factor of the substituents in the tertiary amino group, where an increase of the carbon numbers on the N atom reduced the intermolecular N⋅⋅⋅Zn coordination. UV/Vis, CD, and 1 H NMR spectroscopic analyses including DOSY measurements revealed that Zn-1 formed closed-type dimers via an opened dimer by single-to-double axial coordination with an increase in concentration and a temperature decrease in CH 2 Cl 2 , while Zn-2/3 gave open and flexible dimers in a concentrated CH 2 Cl 2 solution at low temperature. The supramolecular closed dimer structures of Zn-1 were estimated by molecular modelling calculations, which showed these structures were promising models for the chlorophyll dimer in a photosynthetic reaction center. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Angiotensin Converting Enzyme Inhibitors and the Reduced Risk of Alzheimer’s Disease in the Absence of Apolipoprotein E4 Allele

    PubMed Central

    Qiu, Wei Qiao; Mwamburi, Mkaya; Besser, Lilah M.; Zhu, Haihao; Li, Huajie; Wallack, Max; Phillips, Leslie; Qiao, Liyan; Budson, Andrew E.; Stern, Robert; Kowall, Neil

    2014-01-01

    Our cross-sectional study showed that the interaction between apolipoprotein E4 (ApoE4) and angiotensin converting enzyme (ACE) inhibitors was associated with Alzheimer’s disease (AD). The aim of this longitudinal study was to differentiate whether ACE inhibitors accelerate or reduce the risk of AD in the context of ApoE alleles. Using the longitudinal data from the National Alzheimer’s Coordinating Center (NACC) with ApoE genotyping and documentation of ACE inhibitors use, we found that in the absence of ApoE4, subjects who had been taking central ACE inhibitor use (χ2 test: 21% versus 27%, p = 0.0002) or peripheral ACE inhibitor use (χ2 test: 13% versus 27%, p < 0.0001) had lower incidence of AD compared with those who had not been taking an ACE inhibitor. In contrast, in the presence of ApoE4, there was no such association between ACE inhibitor use and the risk of AD. After adjusting for the confounders, central ACE inhibitor use (OR = 0.68, 95% CI = 0.55, 0.83, p = 0.0002) or peripheral ACE inhibitor use (OR = 0.33, 95% CI = 0.33, 0.68, p < 0.0001) still remained inversely associated with a risk of developing AD in ApoE4 non-carriers. In conclusion, ACE inhibitors, especially peripherally acting ones, were associated with a reduced risk of AD in the absence of ApoE4, but had no such effect in those carrying the ApoE4 allele. A double-blind clinical trial should be considered to determine the effect of ACE inhibitors on prevention of AD in the context of ApoE genotype. PMID:23948883

  13. Protein sequence analysis, cloning, and expression of flammutoxin, a pore-forming cytolysin from Flammulina velutipes. Maturation of dimeric precursor to monomeric active form by carboxyl-terminal truncation.

    PubMed

    Tomita, Toshio; Mizumachi, Yoshihiro; Chong, Kang; Ogawa, Kanako; Konishi, Norihide; Sugawara-Tomita, Noriko; Dohmae, Naoshi; Hashimoto, Yohichi; Takio, Koji

    2004-12-24

    Flammutoxin (FTX), a 31-kDa pore-forming cytolysin from Flammulina velutipes, is specifically expressed during the fruiting body formation. We cloned and expressed the cDNA encoding a 272-residue protein with an identical N-terminal sequence with that of FTX but failed to obtain hemolytically active protein. This, together with the presence of multiple FTX family proteins in the mushroom, prompted us to determine the complete primary structure of FTX by protein sequence analysis. The N-terminal 72 and C-terminal 107 residues were sequenced by Edman degradation of the fragments generated from the alkylated FTX by enzymatic digestions with Achromobacter protease I or Staphylococcus aureus V8 protease and by chemical cleavages with CNBr, hydroxylamine, or 1% formic acid. The central part of FTX was sequenced with a surface-adhesive 7-kDa fragment, which was generated by a tryptic digestion of FTX and recovered by rinsing the wall of a test tube with 6 M guanidine HCl. The 7-kDa peptide was cleaved with 12 M HCl, thermolysin, or S. aureus V8 protease to produce smaller peptides for sequence analysis. As a result, FTX consisted of 251 residues, and protein and nucleotide sequences were in accord except for the lack of the initial Met and the C-terminal 20 residues in protein. Recombinant FTX (rFTX) with or without the C-terminal 20 residues (rFTX271 or rFTX251, respectively) was prepared to study the maturation process of FTX. Like natural FTX, rFTX251 existed as a monomer in solution and assembled into an SDS-stable, ring-shaped pore complex on human erythrocytes, causing hemolysis. In contrast, rFTX271, existing as a dimer in solution, bound to the cells but failed to form pore complex. The dimeric rFTX271 was converted to hemolytically active monomers upon the cleavage between Lys(251) and Met(252) by trypsin.

  14. Screening for familial hypercholesterolaemia by measurement of apolipoproteins in capillary blood.

    PubMed Central

    Skovby, F; Micic, S; Jepsen, B; Larsen, S O; Hansen, B; Tegllund, L; Pedersen, B N

    1991-01-01

    A total of 3025 families with schoolchildren aged 6-8 years were offered pilot screening for familial hypercholesterolaemia by measurement of the concentrations of apolipoproteins A-1 and B in the children's capillary blood and by analysis of their family histories of early ischaemic heart disease. The concentrations of the apolipoproteins were determined by double rocket immunoelectrophoresis of an eluate of blood spotted on filter paper. Results were available from 2085 children. Because their B:A-1 ratio was above the 97.5 centile and their concentration of B was above the 99th centile, 54 children (2.6%) were selected to have their apolipoprotein concentrations reassessed. The 17 children (0.8%) whose values were persistently above the chosen cut off points, and all of their available first and second degree relatives, had fasting determinations of serum lipid concentrations carried out. Raised serum concentrations of low density lipoprotein cholesterol and an autosomal dominant pattern of hypercholesterolaemia were found in 12 children and 10 families, respectively, suggesting a higher incidence of familial hypercholesterolaemia than the reported 1:500. Further investigations among family members disclosed hypercholesterolaemia in 29 relatives. A family history of early ischaemic heart disease was elicited by questionnaire, and was positive in only five of the 12 schoolchildren with hypercholesterolaemia. We conclude that analysis of apolipoproteins from capillary blood spotted on filter paper is suitable for screening for familial hypercholesterolaemia, and that this method is more efficient than screening based on family history. PMID:1863097

  15. Cold-active alkaline phosphatase is irreversibly transformed into an inactive dimer by low urea concentrations.

    PubMed

    Hjörleifsson, Jens Guðmundur; Ásgeirsson, Bjarni

    2016-07-01

    Alkaline phosphatase is a homodimeric metallo-hydrolase where both Zn(2+) and Mg(2+) are important for catalysis and stability. Cold-adapted alkaline phosphatase variants have high activity at low temperatures and lower thermal stability compared with variants from mesophilic hosts. The instability, and thus inactivation, could be due to loose association of the dimers and/or loosely bound Mg(2)(+) in the active site, but this has not been studied in detail for the cold-adapted variants. Here, we focus on using the intrinsic fluorescence of Trp in alkaline phosphatase from the marine bacterium Vibrio splendidus (VAP) to probe for dimerization. Trp→Phe substitutions showed that two out of the five native Trp residues contributed mostly to the fluorescence emission. One residue, 15Å away from the active site (W460) and highly solvent excluded, was phosphorescent and had a distant role in substrate binding. An additional Trp residue was introduced to the dimer interface to act as a possible probe for dimerization. Urea denaturation curves indicated that an inactive dimer intermediate, structurally equivalent to the native state, was formed before dimer dissociation took place. This is the first example of the transition of a native dimer to an inactive dimer intermediate for alkaline phosphatase without using mutagenesis, ligands, or competitive inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Adsorption of alkali and alkaline earth metal atoms and dimers on monolayer germanium carbide

    NASA Astrophysics Data System (ADS)

    Gökçe, Aytaç Gürhan; Ersan, Fatih

    2017-01-01

    First-principles plane wave calculations have been performed to study the adsorption of alkali and alkaline earth metals on monolayer germanium carbide (GeC). We found that the favourable adsorption sites on GeC sheet for single alkali and alkaline earth adatoms are generally different from graphene or germanene. Among them, Mg, Na and their dimers have weakly bounded to GeC due to their closed valence electron shells, so they may have high mobility on GeC. Two different levels of adatom coverage (? and ?) have been investigated and we concluded that different electronic structures and magnetic moments for both coverages owing to alkali and alkaline earth atoms have long range electrostatic interactions. Lithium atom prefers to adsorbed on hollow site similar to other group-IV monolayers and the adsorption results in metallisation of GeC instead of semiconducting behaviour. Na and K adsorption can induce 1 ? total magnetic moment on GeC structures and they have shown semiconductor property which may have potential use in spintronic devices. We also showed that alkali or alkaline earth metal atoms can form dimer on GeC sheet. Calculated adsorption energies suggest that clustering of alkali and alkaline earth atoms is energetically favourable. All dimer adsorbed GeC systems have nonmagnetic semiconductor property with varying band gaps from 0.391 to 1.311 eV which are very suitable values for various device applications.

  17. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zuo, Pengfei; Zuo, Zhi; Zheng, Yueyue; Wang, Xin; Zhou, Qianxing; Chen, Long; Ma, Genshan

    2017-01-01

    Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque. PMID:28959204

  18. Endotoxin contamination of apolipoprotein A-I: effect on macrophage proliferation--a cautionary tale.

    PubMed

    Jin, Xueting; Xu, Qing; Champion, Keith; Kruth, Howard S

    2015-05-01

    This technical report addresses the problem of endotoxin contamination of apolipoprotein reagents. Using a bromodeoxyuridine incorporation cell proliferation assay, we observed that human plasma ApoA-I as low as 1 μg/ml resulted in a >90% inhibition in macrophage proliferation. However, not all ApoA-I from different sources showed this effect. We considered the possibility that endotoxin contamination of the apolipoproteins contributed to the differential inhibition of macrophage cell proliferation. Endotoxin alone very potently inhibited macrophage proliferation (0.1 ng/ml inhibited macrophage proliferation>90%). Measurement of endotoxin levels in the apolipoprotein products, including an analysis of free versus total endotoxin, the latter which included endotoxin that was masked due to binding to protein, suggested that free endotoxin mediated inhibition of macrophage proliferation. Despite the use of an advanced endotoxin removal procedure and agents commonly used to inhibit endotoxin action, the potency of endotoxin precluded successful elimination of endotoxin effect. Our findings show that endotoxin contamination can significantly influence apparent apolipoprotein-mediated cell effects (or effects of any other biological products), especially when these products are tested on highly endotoxin-sensitive cells, such as macrophages. Published by Elsevier Ireland Ltd.

  19. Association of apolipoprotein E gene polymorphism with ischemic stroke involving large-vessel disease and its relation to serum lipid levels.

    PubMed

    Saidi, Sarra; Slamia, Lamia B; Ammou, Sofyan B; Mahjoub, Touhami; Almawi, Wassim Y

    2007-01-01

    A relationship between apolipoprotein E (Apo E) genotype and stroke was previously suggested, but with inconsistent results. We investigated the relationships among serum lipid levels, Apo E alleles and genotypes, and stroke risk factors in 216 stroke patients and 282 age- and sex-matched controls. Fasting blood samples were collected for total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride level determination and for genomic DNA extraction. Apo was genotyped by polymerase chain reaction-restriction fragment length polymorphism (Cfo I) analysis. Increasing levels of total cholesterol, LDL-C, HDL-C, and triglycerides were associated with elevated stroke risk and was more pronounced in Apo E4-carrying subjects than in E3- and/or E2-carrying subjects. Apo 3 was significantly lower (0.546 vs 0.736; P < .001), whereas Apo 4 was higher in the stroke patients (0.370 vs 0.181; P < .001); Apo 2 was present at low but comparable frequencies. The prevalence of E3/E3 was lower and that of E4-containing phenotypes (E3/E4 and homozygous E4/E4) was higher in the stroke patients. The prevalence of the E4-containing phenotypes were significantly higher in ischemic versus hemorrhagic (P < .001) and in small-vessel versus large-vessel stroke cases (P < .001), and was associated with increased need for statin drugs (P = .040). Logistic regression models, after adjusting for potentially confounding variables including lipid profile, age, and sex, showed an significant association of apo 4 genotype with risk of stroke (P = .033). Our findings indicate that Apo 4 is an independent risk factor associated with an altered lipid profile in this study population.

  20. Association of apolipoprotein E gene polymorphisms with blood lipids and their interaction with dietary factors.

    PubMed

    Shatwan, Israa M; Winther, Kristian Hillert; Ellahi, Basma; Elwood, Peter; Ben-Shlomo, Yoav; Givens, Ian; Rayman, Margaret P; Lovegrove, Julie A; Vimaleswaran, Karani S

    2018-04-30

    Several candidate genes have been identified in relation to lipid metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) gene polymorphisms are major sources of genetically determined variation in lipid concentrations. This study investigated the association of two single nucleotide polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these SNPs with dietary factors. The population studied for this investigation included 660 individuals from the Prevention of Cancer by Intervention with Selenium (PRECISE) study who supplied baseline data. The findings of the PRECISE study were further replicated using 1238 individuals from the Caerphilly Prospective cohort (CaPS). Dietary intake was assessed using a validated food-frequency questionnaire (FFQ) in PRECISE and a validated semi-quantitative FFQ in the CaPS. Interaction analyses were performed by including the interaction term in the linear regression model adjusted for age, body mass index, sex and country. There was no association between dietary factors and blood lipids after Bonferroni correction and adjustment for confounding factors in either cohort. In the PRECISE study, after correction for multiple testing, there was a statistically significant association of the APOE haplotype (rs7412 and rs429358; E2, E3, and E4) and APOE tagSNP rs445925 with total cholesterol (P = 4 × 10 - 4 and P = 0.003, respectively). Carriers of the E2 allele had lower total cholesterol concentration (5.54 ± 0.97 mmol/L) than those with the E3 (5.98 ± 1.05 mmol/L) (P = 0.001) and E4 (6.09 ± 1.06 mmol/L) (P = 2 × 10 - 4 ) alleles. The association of APOE haplotype (E2, E3, and E4) and APOE SNP rs445925 with total cholesterol (P = 2 × 10 - 6 and P = 3 × 10 - 4 , respectively) was further replicated in the CaPS. Additionally, significant

  1. The Role of Water in the Stability of Wild Type and Mutant Insulin Dimers.

    PubMed

    Raghunathan, Shampa; El Hage, Krystel; Desmond, Jasmine; Zhang, Lixian; Meuwly, Markus

    2018-06-19

    Insulin dimerization and aggregation play important roles in the endogenous delivery of the hormone. One of the important residues at the insulin dimer interface is Phe B24 which is an invariant aromatic anchor that packs towards its own monomer inside a hydrophobic cavity formed by Val B12 , Leu B15 , Tyr B16 , Cys B19 and Tyr B26 . Using molecular dynamics and free energy simulations in explicit solvent, the structural and dynamical consequences of mutations of Phe at position B24 to Gly, Ala, and d-Ala and the des-PheB25 variant are quantified. Consistent with experiments it is found that the Gly and Ala modifications lead to insulin dimers with reduced stability by 4 and 5 kcal/mol from thermodynamic integration and 4 and 8 kcal/mol from results using MM-GBSA, respectively. Given the experimental difficulties to quantify the thermodynamic stability of modified insulin dimers, such computations provide a valuable complement. Interestingly, the Gly-mutant exists as a strongly and a weakly interacting dimer. Analysis of the molecular dynamics simulations shows that this can be explained by water molecules that replace direct monomer-monomer H-bonding contacts at the dimerization interface involving residues B24 to B26. It is concluded that such solvent molecules play an essential role and must be included in future insulin dimerization studies.

  2. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays.

    PubMed

    Haglin, Elizabeth R; Yang, Wen; Briegel, Ariane; Thompson, Lynmarie K

    2017-11-07

    Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.

  3. EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling*

    PubMed Central

    Singh, Deo R.; Ahmed, Fozia; King, Christopher; Gupta, Nisha; Salotto, Matt; Pasquale, Elena B.; Hristova, Kalina

    2015-01-01

    The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression. PMID:26363067

  4. Dimerization of BTas is required for the transactivational activity of bovine foamy virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan Juan; Qiao Wentao; Xu Fengwen

    2008-06-20

    The BTas protein of bovine foamy virus (BFV) is a 249-amino-acid nuclear regulatory protein which transactivates viral gene expression directed by the long terminal repeat promoter (LTR) and the internal promoter (IP). Here, we demonstrate the BTas protein forms a dimeric complex in mammalian cells by using mammalian two hybrid systems and cross-linking assay. Functional analyses with deletion mutants reveal that the region of 46-62aa is essential for dimer formation. Furthermore, our results show that deleting the dimerization region of BTas did not affect the localization of BTas, but that it did result in the loss of its transactivational activitymore » on the LTR and IP. Furthermore, BTas ({delta}46-62aa) retained binding ability to the LTR and IP similar to that of the wild-type BTas. These data suggest the dimerization region is necessary for the transactivational function of BTas and is crucial to the replication of BFV.« less

  5. Association between apolipoprotein E genotype, serum lipids, and colorectal cancer in Brazilian individuals.

    PubMed

    Souza, D R S; Nakazone, M A; Pinhel, M A S; Alvares, R M; Monaco, A C; Pinheiro, A; Barros, C F D C; Cury, P M; Cunrath, G S; Netinho, J G

    2009-05-01

    We evaluated genetic variants of apolipoprotein E (APOE HhaI) and their association with serum lipids in colorectal cancer (CRC), together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412) and APOE*4 (rs429358) were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the epsilon4/epsilon4 genotype (6%) was present only in controls. The patients had reduced levels (mean +/- SD) of total cholesterol and low-density lipoprotein cholesterol fraction (180.4 +/- 49.5 and 116.1 +/- 43.1 mg/dL, respectively) compared to controls (204.2 +/- 55.6, P = 0.135 and 134.7 +/- 50.8 mg/dL; P = 0.330, respectively) indicating that they were not statistically significant after the Bonferroni correction. The APOE*4 allele was associated with lower levels of total cholesterol, low- and high-density lipoprotein cholesterol fraction and increased levels of very low-density lipoprotein cholesterol fraction and triglycerides only among patients (P = 0.014). There was a positive correlation between the altered lipid profile and increased body mass indexes in both groups (P < 0.010). Moreover, a higher rate of hypertension and overweight was observed in controls (P < 0.002). In conclusion, the presence of the epsilon4/epsilon4 genotype only in controls may be due to a protective effect against CRC. Lower lipid profile values among patients, even those on lipid-rich diets associated with the APOE*4 allele, suggest alterations in the lipid synthesis and metabolism pathways in CRC.

  6. Quercetin Represses Apolipoprotein B Expression by Inhibiting the Transcriptional Activity of C/EBPβ

    PubMed Central

    Inoue, Jun; Sato, Ryuichiro

    2015-01-01

    Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5′-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes. PMID:25875015

  7. Ortho and para hydrogen dimers on G/SiC(0001): combined STM and DFT study.

    PubMed

    Merino, P; Švec, M; Martínez, J I; Mutombo, P; Gonzalez, C; Martín-Gago, J A; de Andres, P L; Jelinek, P

    2015-01-01

    The hydrogen (H) dimer structures formed upon room-temperature H adsorption on single layer graphene (SLG) grown on SiC(0001) are addressed using a combined theoretical-experimental approach. Our study includes density functional theory (DFT) calculations for the full (6√3 × 6√3)R30° unit cell of the SLG/SiC(0001) substrate and atomically resolved scanning tunneling microscopy images determining simultaneously the graphene lattice and the internal structure of the H adsorbates. We show that H atoms normally group in chemisorbed coupled structures of different sizes and orientations. We make an atomic scale determination of the most stable experimental geometries, the small dimers and ellipsoid-shaped features, and we assign them to hydrogen adsorbed in para dimers and ortho dimers configuration, respectively, through comparison with the theory.

  8. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    PubMed

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. Copyright 2002 Elsevier Science Ltd.

  9. Apolipoprotein E4 (1–272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells

    PubMed Central

    Nakamura, Toshiyuki; Watanabe, Atsushi; Fujino, Takahiro; Hosono, Takashi; Michikawa, Makoto

    2009-01-01

    Background Apolipoprotein E allele ε4 (apoE4) is a strong risk factor for developing Alzheimer's disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1–272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction. Results To clarify the molecular mechanism, we carried out experiments to identify intracellular apoE-binding molecules and their functions in modulating mitochondria function. Here, we found that apoE4 binds to ubiquinol cytochrome c reductase core protein 2 (UQCRC2) and cytochrome C1, both of which are components of mitochondrial respiratory complex III, and cytochrome c oxidase subunit 4 isoform 1 (COX IV 1), which is a component of complex IV, in Neuro-2a cells. Interestingly, these proteins associated with apoE4(1–272) more strongly than intact apoE4(1–299). Further analysis showed that in Neuro-2a cells expressing apoE4(1–272), the enzymatic activities of mitochondrial respiratory complexes III and IV were significantly lower than those in Neuro-2a cells expressing apoE4(1–299). Conclusion ApoE4(1–272) fragment expressed in Neuro2a cells is associated with mitochondrial proteins, UQCRC2 and cytochrome C1, which are component of respiratory complex III, and with COX IV 1, which is a member of complex IV. Overexpression of apoE4(1–272) fragment impairs activities of complex III and IV. These results suggest that the C-terminal-truncated fragment of apoE4 binds to mitochondrial complexes and affects their activities, and thereby leading to neurodegeneration. PMID:19695092

  10. Retinoic Acid Isomers Facilitate Apolipoprotein E Production and Lipidation in Astrocytes through the Retinoid X Receptor/Retinoic Acid Receptor Pathway*

    PubMed Central

    Zhao, Jing; Fu, Yuan; Liu, Chia-Chen; Shinohara, Mitsuru; Nielsen, Henrietta M.; Dong, Qiang; Kanekiyo, Takahisa; Bu, Guojun

    2014-01-01

    Apolipoprotein E (apoE) is the major cholesterol transport protein in the brain. Among the three human APOE alleles (APOE2, APOE3, and APOE4), APOE4 is the strongest genetic risk factor for late-onset Alzheimer disease (AD). The accumulation of amyloid-β (Aβ) is a central event in AD pathogenesis. Increasing evidence demonstrates that apoE isoforms differentially regulate AD-related pathways through both Aβ-dependent and -independent mechanisms; therefore, modulating apoE secretion, lipidation, and function might be an attractive approach for AD therapy. We performed a drug screen for compounds that modulate apoE production in immortalized astrocytes derived from apoE3-targeted replacement mice. Here, we report that retinoic acid (RA) isomers, including all-trans-RA, 9-cis-RA, and 13-cis-RA, significantly increase apoE secretion to ∼4-fold of control through retinoid X receptor (RXR) and RA receptor. These effects on modulating apoE are comparable with the effects recently reported for the RXR agonist bexarotene. Furthermore, all of these compounds increased the expression of the cholesterol transporter ABCA1 and ABCG1 levels and decreased cellular uptake of Aβ in an apoE-dependent manner. Both bexarotene and 9-cis-RA promote the lipidation status of apoE, in which 9-cis-RA promotes a stronger effect and exhibits less cytotoxicity compared with bexarotene. Importantly, we showed that oral administration of bexarotene and 9-cis-RA significantly increases apoE, ABCA1, and ABCG1 levels in mouse brains. Taken together, our results demonstrate that RXR/RA receptor agonists, including several RA isomers, are effective modulators of apoE secretion and lipidation and may be explored as potential drugs for AD therapy. PMID:24599963

  11. Crystal Structure of the Minimalist Max-E47 Protein Chimera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.

    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47more » dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.« less

  12. Periodic table of 3d-metal dimers and their ions.

    PubMed

    Gutsev, G L; Mochena, M D; Jena, P; Bauschlicher, C W; Partridge, H

    2004-10-08

    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (r(e),omega(e),D(o)) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by +/-1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N(1)+N(2) or mid R:N(1)-N(2)mid R:, where N(1) and N(2) are the numbers of unpaired 3d electrons in the 3d(n)4s(1) occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear 3d-metal and ScX (X=Ti-Zn) dimers allows one to construct "periodic" tables of all 3d-metal dimers along with their singly charged ions.

  13. Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Hamley, I. W.; Reza, M.; Ruokolainen, J.

    2014-11-01

    The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly ``nanodisc'' structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.

  14. Association of apolipoprotein E polymorphism with blood lipids and maximal oxygen uptake in the sedentary state and after exercise training in the HERITAGE family study.

    PubMed

    Leon, Arthur S; Togashi, Kenji; Rankinen, Tuomo; Després, Jean-Piérre; Rao, D C; Skinner, James S; Wilmore, Jack H; Bouchard, Claude

    2004-01-01

    The relationship of apolipoprotein E (apo E) genotypes to plasma lipid and maximal oxygen uptake (Vo(2max)) was studied in the sedentary state and after a supervised exercise training program in black and white men and women. At baseline, the apo E 2/3 genotype was associated with the lowest, and apo E 3/4 and E4/4 with the highest low-density liporpotein (LDL) cholesterol and apo B levels in men and women of both races, while female (not male) carriers of apo E3 had higher high-density lipoprotein (HDL) cholesterol levels than carriers of other genotypes. Very-low-density lipoprotein (VLDL) cholesterol and triglyceride levels were significantly higher in carriers of both apo E2 and apo E4 in white men only. Racial and sex differences were noted in lipid responses to exercise training across genotypes with a significantly greater increase in HDL cholesterol observed only in white female carriers of apo E 2/3 and E3/3, as compared to apo E4/4. Apo E polymorphism was not found to be associated with Vo(2max) levels either in the sedentary state nor the Vo(2max) response to exercise training, contrary to previous reports.

  15. Solitary waves in dimer binary collision model

    NASA Astrophysics Data System (ADS)

    Ahsan, Zaid; Jayaprakash, K. R.

    2017-01-01

    Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.

  16. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response

    PubMed Central

    Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter

    2015-01-01

    The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.07314.001 PMID:25875391

  17. Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K

    NASA Astrophysics Data System (ADS)

    Jag, M.; Cetina, M.; Lous, R. S.; Grimm, R.; Levinsen, J.; Petrov, D. S.

    2016-12-01

    We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our 40K-6Li system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.

  18. High-speed atomic force microscopy reveals structural dynamics of α -synuclein monomers and dimers

    NASA Astrophysics Data System (ADS)

    Zhang, Yuliang; Hashemi, Mohtadin; Lv, Zhengjian; Williams, Benfeard; Popov, Konstantin I.; Dokholyan, Nikolay V.; Lyubchenko, Yuri L.

    2018-03-01

    α-Synuclein (α-syn) is the major component of the intraneuronal inclusions called Lewy bodies, which are the pathological hallmark of Parkinson's disease. α-Syn is capable of self-assembly into many different species, such as soluble oligomers and fibrils. Even though attempts to resolve the structures of the protein have been made, detailed understanding about the structures and their relationship with the different aggregation steps is lacking, which is of interest to provide insights into the pathogenic mechanism of Parkinson's disease. Here we report the structural flexibility of α-syn monomers and dimers in an aqueous solution environment as probed by single-molecule time-lapse high-speed AFM. In addition, we present the molecular basis for the structural transitions using discrete molecular dynamics (DMD) simulations. α-Syn monomers assume a globular conformation, which is capable of forming tail-like protrusions over dozens of seconds. Importantly, a globular monomer can adopt fully extended conformations. Dimers, on the other hand, are less dynamic and show a dumbbell conformation that experiences morphological changes over time. DMD simulations revealed that the α-syn monomer consists of several tightly packed small helices. The tail-like protrusions are also helical with a small β-sheet, acting as a "hinge". Monomers within dimers have a large interfacial interaction area and are stabilized by interactions in the non-amyloid central (NAC) regions. Furthermore, the dimer NAC-region of each α-syn monomer forms a β-rich segment. Moreover, NAC-regions are located in the hydrophobic core of the dimer.

  19. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    PubMed

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model

  20. The Reach of Linear Protein-DNA Dimerizers

    PubMed Central

    Stafford, Ryan L.; Dervan, Peter B.

    2008-01-01

    A protein-DNA dimerizer constructed from a DNA-binding pyrrole-imidazole polyamide and the peptide FYPWMK facilitates binding of the natural transcription factor Exd to an adjacent DNA site. Previous dimerizers have been constructed with the peptide attached to an internal pyrrole monomer in an overall branched oligomer. Linear oligomers constructed by attaching the peptide to the polyamide C-terminus expand the range of protein-DNA dimerization to six additional DNA sites. Replacing the FYPWMK hexapeptide with a WM dipeptide, which was previously functional in branched compounds, does not lead to a functional linear dimerizer. Instead, inserting an additional lysine generates a minimal, linear WMK tripeptide conjugate that maintains the activity of the larger FYPWMK dimerizers in a single DNA-binding site orientation. These studies provide insight into the importance of linker length and composition, binding site spacing and orientation, and the protein-binding domain content that are important for the optimization of protein DNA-dimerizers suitable for biological experiments. PMID:17949089