Science.gov

Sample records for apollo moon mission

  1. The Moon: What Have the Apollo Missions Taught Us? Part II: The View from Apollo.

    ERIC Educational Resources Information Center

    McKeever, S. W. S.

    1980-01-01

    Summarizes scientific findings resulting from the Apollo missions, including lunar rocks and soil, age determination, and the moon's interior, evolution, and origin. Indicates experiments for future lunar research. (SK)

  2. Apollo 17 Mission Report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  3. Preserving the Science Legacy from the Apollo Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Todd, N. S.; Evans, C. A.; Zeigler, R. A.; Lehnert, K. A.

    2015-12-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples—among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples. Even today, 100s of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Today's research includes advances in our understanding of lunar volatiles, lunar formation and evolution, and the origin of evolved lunar lithologies. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished. We have initiated several new efforts to rescue some of the early Apollo data, including unpublished analytical data. We are scanning NASA documentation that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical database called Moon DB. To populate this database, we are working with prominent lunar PIs to organize and transcribe years of both published and unpublished data. Other initiatives include micro-CT scanning of complex lunar samples to document their interior structure (e.g. clasts, vesicles); linking high-resolution scans of Apollo

  4. Preserving the Science Legacy from the Apollo Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Evans, Cindy; Zeigler, Ryan; Lehnert, Kerstin; Todd, Nancy; Blumenfeld, Erika

    2015-01-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples-among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples. Even today, 100s of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Today's research includes advances in our understanding of lunar volatiles, lunar formation and evolution, and the origin of evolved lunar lithologies. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished. We have initiated several new efforts to rescue some of the early Apollo data, including unpublished analytical data. We are scanning NASA documentation that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical database called Moon DB. To populate this database, we are working with prominent lunar PIs to organize and transcribe years of both published and unpublished data. Other initiatives include micro-CT scanning of complex lunar samples to document their interior structure (e.g. clasts, vesicles); linking high-resolution scans of Apollo

  5. Rescue and Preservation of Sample Data from the Apollo Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Todd, Nancy S.; Zeigler, Ryan A.; Evans, Cindy A.; Lehnert, Kerstin

    2016-01-01

    Six Apollo missions landed on the Moon from 1969-72, returning to Earth 382 kg of lunar rock, soil, and core samples. These samples are among the best documented and preserved samples on Earth that have supported a robust research program for 45 years. From mission planning through sample collection, preliminary examination, and subsequent research, strict protocols and procedures are followed for handling and allocating Apollo subsamples, resulting in the production of vast amounts of documentation. Even today, hundreds of samples are allocated for research each year, building on the science foundation laid down by the early Apollo sample studies and combining new data from today's instrumentation, lunar remote sensing missions and lunar meteorites. Much sample information is available to researchers at curator.jsc.nasa.gov. Decades of analyses on lunar samples are published in LPSC proceedings volumes and other peer-reviewed journals, and tabulated in lunar sample compendia entries. However, for much of the 1969-1995 period, the processing documentation, individual and consortia analyses, and unpublished results exist only in analog forms or primitive digital formats that are either inaccessible or at risk of being lost forever because critical data from early investigators remain unpublished.

  6. Apollo 11 Moon Landing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  7. Apollo 11 Mission Commemorated

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-07-01

    On 24 July 1969, 4 days after Apollo 11 Mission Commander Neil Armstrong and Lunar Module Eagle Pilot Eugene “Buzz” Aldrin had become the first people to walk on the Moon, they and Apollo 11 Command Module Pilot Michael Collins peered through a window of the Mobile Quarantine Facility on board the U.S.S. Hornet following splashdown of the command module in the central Pacific as U.S. President Richard Nixon told them, “This is the greatest week in the history of the world since the creation.” Forty years later, the Apollo 11 crew and other Apollo-era astronauts gathered at several events in Washington, D. C., to commemorate and reflect on the Apollo program, that mission, and the future of manned spaceflight. “I don’t know what the greatest week in history is,” Aldrin told Eos. “But it was certainly a pioneering opening the door. With the door open when we touched down on the Moon, that was what enabled humans to put many more footprints on the surface of the Moon.”

  8. Apollo 15 Mission Report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  9. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Astrophysics Data System (ADS)

    Dawson, M. D.; Todd, N. S.; Lofgren, G. E.

    2011-03-01

    The Google Moon Apollo Lunar Sample Data Integration project enhances the Apollo mission data available on Google Moon and provides an interactive research and learning tool for the Apollo lunar rock sample collection.

  10. How Apollo Flew to the Moon

    NASA Astrophysics Data System (ADS)

    Watkins, Nick

    2009-10-01

    Eos readers who were even young children in the summer of 1969 probably will remember the first Moon landing vividly. If, like myself, they went on to develop a lifelong interest in manned spaceflight, they will have read many accounts in the intervening years, as diverse as Norman Mailer's, Andrew Chaikin's, and the first-person reminiscences of NASA astronaut Michael Collins. The prospect of another book about the Moon landing at first may seem uninspiring, and I confess this was my original reaction to the prospect of reading this book. Additionally, in the intervening 40 years since Apollo 11, there have been some superb films including For All Mankind (1989) and In the Shadow of the Moon (2006). The Internet has brought new possibilities for space documentation. The best known Web site on the Apollo missions is the Apollo Lunar Surface Journal, which now is hosted by NASA at http://www.hq.nasa.gov/alsj/. The Web site includes commentary from all of the surviving Moon walkers. Scottish space enthusiast W. David Woods created the companion Apollo Flight Journal, found at http://history.nasa.gov/afj//, which focuses on how the missions actually got to the Moon and back. Now Woods has distilled the information into the book How Apollo Flew to the Moon.

  11. Apollo 8, Man Around the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This pamphlet presents a series of photographs depicting the story of the Apollo 8 mission around the moon and includes a brief description as well as quotes from the astronauts. The photographs show scenes of the astronauts training, the Saturn V rocket, pre-flight preparation, blast off, the earth from space, the lunar surface, the earth-based…

  12. Apollo Expeditions to the Moon

    NASA Technical Reports Server (NTRS)

    Cortright, E. M. (Editor)

    1975-01-01

    The Apollo program is described from the planning stages through Apollo 17. The organization of the program is discussed along with the development of the spacecraft and related technology. The objectives and accomplishments of each mission are emphasized along with personal accounts of the major figures involved. Other topics discussed include: ground support systems and astronaut selection.

  13. Integration of Apollo Lunar Sample Data into Google Moon

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  14. Apollo astronaut supports return to the Moon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    Nearly 40 years after the Apollo 17 Moon launch on 7 December 1972, former NASA astronaut Harrison Schmitt said there is "no question" that the Moon is still worth going to, "whether you think about the science of the Moon or the resources of the Moon, or its relationship to accelerating our progress toward Mars." Schmitt, a geologist and the lunar module pilot for that final Apollo mission, was speaking at a 6 December news briefing about lunar science at the AGU Fall Meeting. "By going back to the Moon, you accelerate your ability to go anywhere else," Schmitt said, because of the ability to gain experience on a solar system body just a 3-day journey from Earth; test new hardware and navigation and communication techniques; and utilize lunar resources such as water, hydrogen, methane, and helium-3. He said lunar missions also would be a way "to develop new generations of people who know how to work in deep space. The people who know how to work [there] are my age, if not older, and we need young people to get that kind of experience." Schmitt, 77, said that a particularly interesting single location to explore would be the Aitken Basin at the Moon's south pole, where a crater may have reached into the Moon's upper mantle. He also said a longer duration exploration program might be able to explore multiple sites.

  15. Apollo 8 Mission Report

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Postflight analysis of Apollo 8 mission. Apollo 8 was the second manned flight in the program and the first manned lunar orbit mission. The crew were Frank Borman, Commander; James A. Lovell, Command Module Pilot; and William A. Anders, Lunar Module Pilot. The Apollo 8 space vehicle was launched on time from Kennedy Space Center, Florida, at 7:51:00 AM, EST, on December 21, 1968. Following a nominal boost phase, the spacecraft and S-IVB combination was inserted - into a parking orbit of 98 by 103 nautical miles. After a post-insertion checkout of spacecraft systems, the 319-second translunar injection maneuver was initiated at 2:50:37 by reignition of the S-IVB engine.

  16. Apollo 16 Mission Report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  17. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  18. Apollo 13 Mission Report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The Apollo 13 mission, planned as a lunar landing in the Fra Mauro area, was aborted because of an abrupt loss of service module cryogenic oxygen associated with a fire in one of the two tanks at approximately 56 hours. The lunar module provided the necessary support to sustain a minimum operational condition for a safe return to earth. A circumlunar profile was executed as the most efficient means of earth return, with the lunar module providing power and life support until transfer to the command module just prior to entry. Although the mission was unsuccessful as planned, a lunar flyby and several scientific experiments were completed.

  19. Working on the moon: The Apollo experience

    SciTech Connect

    Jones, E.M.

    1989-01-01

    The successful completion of any scientific or engineering project on the Moon will depend, in part, on human ability to do useful work under lunar conditions. In making informed decisions about such things as the use of humans rather than robots for specific tasks, the scheduling of valuable human time, and the design and selection of equipment and tools, good use can be made of the existing experience base. During the six completed landing missions, Apollo lunar surface crews conducted 160 astronaut-hours of extra-vehicular activities (EVAs) and also spent a similar sum of waking hours working in the cramped confines of the Lunar Module. The first three missions were primarily proof-tests of flight hardware and procedures. The ability to land equipment and consumables was very modest but, despite stay times of no more than 32 hours, the crews of Apollos 11, 12, and 14 were able to test their mobility and their capability of doing useful work outside the spacecraft. For the last three missions, thanks to LM modifications which enabled landings with significant amounts of cargo, stay times more than doubled to three days. The crews were able to use Lunar Rovers to conduct extensive local exploration and to travel up to 10 kilometers away from their immediate landing sites. During these final missions, the astronauts spent enough time doing work of sufficient complexity that their experience should be of use in the formulation early-stage lunar base operating plans. 2 refs.

  20. Moon Rock Presented to Smithsonian Institute by Apollo 11 Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 11 astronauts, (left to right) Edwin E. Aldrin Jr., Lunar Module pilot; Michael Collins, Command Module pilot; and Neil A. Armstrong, commander, are showing a two-pound Moon rock to Frank Taylor, director of the Smithsonian Institute in Washington D.C. The rock was picked up from the Moon's surface during the Extra Vehicular Activity (EVA) of Aldrin and Armstrong following man's first Moon landing and was was presented to the Institute for display in the Art and Industries Building. The Apollo 11 mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  1. On the Moon with Apollo 15, A Guidebook to Hadley Rille and the Apennine Mountains.

    ERIC Educational Resources Information Center

    Simmons, Gene

    The booklet, published before the Apollo 15 mission, gives a timeline for the mission; describes and illustrates the physiography of the landing site; and describes and illustrates each lunar surface scientific experiment. Separate timelines are included for all traverses (the traverses are the Moon walks and, for Apollo 15, the Moon rides in the…

  2. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    NASA Technical Reports Server (NTRS)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  3. Activity in Mission Control Center during Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overal view of activity in the Mission Operations Control Room in the Mission Control Center, bldg 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity was being televised from the surface of the Moon.

  4. Cameras on the moon with Apollos 15 and 16.

    NASA Technical Reports Server (NTRS)

    Page, T.

    1972-01-01

    Description of the cameras used for photography and television by Apollo 15 and 16 missions, covering a hand-held Hasselblad camera for black and white panoramic views at locations visited by the astronauts, a special stereoscopic camera designed by astronomer Tom Gold, a 16-mm movie camera used on the Apollo 15 and 16 Rovers, and several TV cameras. Details are given on the far-UV camera/spectrograph of the Apollo 16 mission. An electronographic camera converts UV light to electrons which are ejected by a KBr layer at the focus of an f/1 Schmidt camera and darken photographic films much more efficiently than far-UV. The astronomical activity of the Apollo 16 astronauts on the moon, using this equipment, is discussed.

  5. Apollo 17: One giant step toward understanding the tectonic evolution of the Moon

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.

    1992-01-01

    Our present understanding of the tectonic history of the Moon has been shaped in large measure by the Apollo Program, and particularly the Apollo 17 Mission. I attempt to summarize some of the interpretations that have emerged since Apollo 17, focusing on some of the problems and uncertainties that remain to stimulate future exploration of the Moon. The topics covered include: (1) Taurus-Littrow Valley; (2) origin of mare ridges; and (3) nature and timing of tectonic rille formation.

  6. Prime crew photographed during Apollo 7 mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter M. Schirra Jr., Apollo 7 commander, is photographed during the Apollo 7 mission (1582); Astronaut Donn F. Eisele, Apollo 7 command module pilot, is photographed during the mission (1583); Astronaut Walter Cunningham, Apollo 7 lunar module pilot, is photographed during mission (1584).

  7. Prime crew photographed during Apollo 7 mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Walter M. Schirra Jr., Apollo 7 commander, is photographed during the Apollo 7 mission (1582); Astronaut Donn F. Eisele, Apollo 7 command module pilot, is phtographed during the mission (1583); Astronaut Walter Cunningham, Apollo 7 lunar module pilot, is photographed during mission (1584).

  8. Bonus: Apollo's Amazing Mission and Spin-Offs from Space.

    ERIC Educational Resources Information Center

    Learning, 1994

    1994-01-01

    Two posters examine the 1969 Apollo moon mission. The first tracks the stages and path of the mission, suggesting that students create their own diagrams or models. The second presents a puzzle that helps student understand how many items developed for the mission are useful to today's everyday life. (SM)

  9. Apollo Soyuz, mission evaluation report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz mission was the first manned space flight to be conducted jointly by two nations - the United States and the Union of Soviet Socialist Republics. The primary purpose of the mission was to test systems for rendezvous and docking of manned spacecraft that would be suitable for use as a standard international system, and to demonstrate crew transfer between spacecraft. The secondary purpose was to conduct a program of scientific and applications experimentation. With minor modifications, the Apollo and Soyuz spacecraft were like those flown on previous missions. However, a new module was built specifically for this mission - the docking module. It served as an airlock for crew transfer and as a structural base for the docking mechanism that interfaced with a similar mechanism on the Soyuz orbital module. The postflight evaluation of the performance of the docking system and docking module, as well as the overall performance of the Apollo spacecraft and experiments is presented. In addition, the mission is evaluated from the viewpoints of the flight crew, ground support operations, and biomedical operations. Descriptions of the docking mechanism, docking module, crew equipment and experiment hardware are given.

  10. Managing the Moon Program: Lessons Learned from Project Apollo

    NASA Technical Reports Server (NTRS)

    1999-01-01

    There have been many detailed historical studies of the process of deciding on and executing the Apollo lunar landing during the 1960s and early 1970s. From the announcement of President John F Kennedy on May 25, 1961, of his decision to land an American on the Moon by the end of the decade, through the first lunar landing on July 20, 1969, on to the last of six successful Moon landings with Apollo 17 in December 1972, NASA carried out Project Apollo with enthusiasm and aplomb. While there have been many studies recounting the history of Apollo, at the time of the 30th anniversary of the first lunar landing by Apollo 11, it seems appropriate to revisit the process of large-scale technological management as it related to the lunar mission. Consequently, the NASA History Office has chosen to publish this monograph containing the recollections of key partcipants in the management process. The collective oral history presented here was recorded in 1989 at the Johnson Space Center's Gilruth Recreation Center in Houston, Texas. It includes the recollections of key participants in Apollo's administration, addressing issues such as communication between field centers, the prioritization of technological goals, and the delegation of responsibility. The following people participated: George E. Muller, Owen W. Morris, Maxime A. Faget, Robert R. Gilruth, Christopher C. Kraft, and Howard W. (Bill) Tindall. The valuable perspectives of these individuals deepen and expand our understanding of this important historical event. This is the 14th in a series of special studies prepared by the NASA History Office. The Monographs in Aerospace History series is designed to provide a wide variety of investigations relative to the history of aeronautics and space. These publications are intended to be tightly focused in terms of subject, relatively short in length, and reproduced in an inexpensive format to allow timely and broad dissemination to researchers in aerospace history.

  11. Apollo scientific exploration of the moon

    NASA Technical Reports Server (NTRS)

    Compton, W. D.

    1987-01-01

    The fundamental dichotomy of space exploration, unmanned versus manned projects, is discussed from an historical perspective. The integration of science into Apollo operations is examined with attention given to landing sites, extending the missions, and crew selection. A Science Working Group composed of scientists and Manned Spacecraft Center flight planners was formed in an attempt to produce the most scientific information possible within those operational limits that were considered absolutely inviolable.

  12. Correction to “Apollo 11 Mission Commemorated”

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-08-01

    In the 28 July 2009 issue of Eos (90(30), 258), a date was incorrect in the news item entitled “Apollo 11 Mission Commemorated.” NASA astronaut Eugene Cernan was referring to the 1970s, not the 1960s, in talking about his expectation of when humans would be back on the Moon. Eos regrets this error.

  13. Apollo 16 astronauts in Apollo Command Module Mission Simulator

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Thomas K. Mattingly II, command module pilot of the Apollo 16 lunar landing mission, participates in extravehicular activity (EVA) training in bldg 5 at the Manned Spacecraft Center (MSC). In the right background is Astronaut Charles M. Duke Jr., lunar module pilot. They are inside the Apollo Command Module Mission Simulator (31046); Mattingly (right foreground) and Duke (right backgroung) in the Apollo Command Module Mission Simulator for EVA simulation and training. Astronaut John W. Young, commander, can be seen in the left background (31047).

  14. The 2012 Moon and Mars Analog Mission

    NASA Technical Reports Server (NTRS)

    Graham, Lee

    2014-01-01

    The 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed on Mauna Kea volcano in Hawaii in July 2012. The investigations were conducted on the southeast flank of the Mauna Kea volcano at an elevation of approximately 11,500 ft. This area is known as "Apollo Valley" and is in an adjacent valley to the Very Large Baseline Array dish antenna.

  15. Structure of the moon. [Apollo seismic data

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Dainty, A. M.; Solomon, S. C.; Anderson, K. R.

    1974-01-01

    Seismic data fron the four stations of the Apollo passive seismic network have been analyzed to obtain the velocity structure of the moon. Analysis of body wave phases from artificial impacts of known impact time and position yields a crustal section. In the Mare Cognitum region the crust is about 60 km thick and is layered. In the 20-km-thick upper layer, velocity gradients are high and microcracks may play an important role. The 40-km-thick lower layer has a nearly constant 6.8-km/sec velocity. There may be a thin high-velocity layer present beneath the crust. The determination of seismic velocities in the lunar mantle is attempted by using natural impacts and deep moonquakes. The simplest model that can be proposed for the mantle consists of a 'lithosphere' overlying an 'asthenosphere'.

  16. Apollo Soyuz Mission: 5-Day Report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Apollo Soyuz Test Project mission objectives and technical investigations are summarized. Topics discussed include: spacecraft and crew systems performance; joint flight activities; scientific and applications experiments; in-flight demonstrations; biomedical considerations; and mission support performance.

  17. A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Moon

    NASA Astrophysics Data System (ADS)

    Anderson, Lindsay Kathleen

    With the current push to return to planetary exploration it is important to consider what science will be performed on such missions and how it is to be performed. This study considered three hand tools used for geologic sampling during the Apollo missions to determine whether handle redesigns guided by NASA-STD-3001 improved the performance of the tools. The tools of interest were the large adjustable scoop, the rake, and the 32-inch tongs, selected for relevance and usability in the test location. The three tools with their original and modified handle diameters were tested with two subjects wearing the NDX-1 Planetary Suit and performed within the regolith bin operated by Swamp Works at Kennedy Space Center. The effects of the tool modifications on task performance did not conclusively demonstrate improvement. However, a methodology was developed that may prove beneficial in future tests using larger sample sizes.

  18. MoonNEXT: A European Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    MoonNEXT is a mission currently being studied, under the direction of the European Space Agency, whose launch is foreseen between 2015 and 2018. MoonNEXT is intended to prepare the way for future exploration activities on the Moon, while addressing key science questions. Exploration Objectives The primary goal for the MoonNEXT mission is to demonstrate autonomous soft precision landing with hazard avoidance; a key capability for future exploration missions. The nominal landing site is at the South Pole of the Moon, at the edge of the Aitken basin and in the region of Shackleton crater, which has been identified as an optimal location for a future human outpost by the NASA lunar architecture team [1]. This landing site selection ensures a valuable contribution by MoonNEXT to the Global Exploration Strategy [2]. MoonNEXT will also prepare for future lunar exploration activities by characterising the environment at the lunar surface. The potentially hazardous radiation environment will me monitored while a dedicated instrument package will investigate the levitation and mobility of lunar dust. Experience on Apollo demonstrated the potentially hazardous effects of dust for surface operations and human activities and so an understanding of these processes is important for the future. Life sciences investigations will be carried out into the effects of the lunar environment (including radiation, gravity and illumination conditions) on a man made ecosystem analogous to future life support systems. In doing so MoonNEXT will demonstrate the first extraterrestrial man made ecosystem and develop valuable expertise for future missions. Geological and geochemical investigations will explore the possibilities for In Situ Resource Utilisation (ISRU), which will be essential for long term human habitation on the Moon and is of particular importance at the proposed landing site, given its potential as a future habitat location. Science Objectives In addition to providing extensive

  19. Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Compton, William David

    1988-01-01

    This book is a narrative account of the development of the science program for the Apollo lunar landing missions. It focuses on the interaction between scientific interests and operational considerations in such matters as landing site selection and training of crews, quarantine and back contamination control, and presentation of results from scientific investigations. Scientific exploration of the moon on later flights, Apollo 12 through Apollo 17 is emphasized.

  20. After Apollo - Fission origin of the moon. [from planets

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1973-01-01

    The present work maintains that the Apollo moon data substantiate the fission theory of the origin of the moon. It has been objected to this theory that prior to fission, the total mass and angular momentum of the earth-moon system would have to be greater than the present total of the earth and the moon, which would imply that angular momentum must have been lost since the fission. The present work states that this loss of momentum can be accounted for by the subsequent boiling off of a large amount of the original lunar mass. This would also mean that the moon ought to be greatly impoverished in volatiles, which it, indeed, is according to Apollo data. It is suggested that at one time the solar system was a binary star, namely, the sun and Jupiter. Successive fissions of Jupiter would have created other planets, which themselves could undergo fission, producing satellites.

  1. Apollo program flight summary report: Apollo missions AS-201 through Apollo 16, revision 11

    NASA Technical Reports Server (NTRS)

    Holcomb, J. K.

    1972-01-01

    A summary of the Apollo flights from AS-201 through Apollo 16 is presented. The following subjects are discussed for each flight: (1) mission primary objectives, (2) principle objectives of the launch vehicle and spacecraft, (3) secondary objectives of the launch vehicle and spacecraft, (4) unusual features of the mission, (5) general information on the spacecraft and launch vehicle, (6) space vehicle and pre-launch data, and (7) recovery data.

  2. Pristine moon rocks - Apollo 17 anorthosites

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.

    1991-01-01

    New chemical analyses and petrographic descriptions for 10 previously unanalyzed Apollo 17 rock samples are provided. Attention is focused on several that appear to be pristine. All samples were analyzed in INAA using a procedure based on that of Kallemeyn et al. (1989). One sample was found to be unambiguously pristine, and is the first pristine ferroan-anorthositic suite (FAS) sample from Apollo 17. It exhibits extremely low-mg(asterisk) mafic silicates, coupled with relatively sodic plagioclase. It has an unusually high augite/low-Ca pyroxene ratio and contains incompatible trace elements at levels unprecedentedly high compared to FAS anorthosites from the Apollo 14, 15, 16 sites. It is inferred that 74114.5, and Apollo 17 anorthosites in general, formed at a relatively late stage in the evolution of the primordial magmasphere.

  3. Emblem of the Apollo 17 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is the Official emblem of the Apollo 17 lunar landing mission which will be flown by Astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt. The insignia is dominated by the image of Apollo, the Greek sun god. Suspended in space behind the head of Apollo is an American eagle of contemporary design, the red bars of the eagle's wing represent the bars in the U.S. flag; the three white stars symbolize the three astronaut crewmen. The background is deep blue space and within it are the Moon, the planet Saturn and a spiral galaxy or nebula. The Moon is partially overlaid by the eagle's wing suggesting that this is a celestial body that man has visited and in that sense conquered. The thrust of the eagle and the gaze of Apollo to the right and toward Saturn and the galaxy is meant to imply that man's goals in space will someday include the planets and perhaps the stars. The colors of the emblem are red, white and blue, the colors of our flag; with the addition of gold, to

  4. Biocore experiment. [Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Bailey, O. T.; Benton, E. V.; Cruty, M. R.; Harrison, G. A.; Haymaker, W.; Humason, G.; Leon, H. A.; Lindberg, R. L.; Look, B. C.; Lushbaugh, C. C.

    1973-01-01

    The Apollo 17 biological cosmic ray experiment to determine the effect of heavy cosmic ray particles on the brain and eyes is reported. The pocket mouse was selected as the biological specimen for the experiment. The radiation monitors, animal autopsy and animal processing are described, and the radiation effects on the scalp, retina, and viscera are analyzed.

  5. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.; Carson, John M., III

    2017-01-01

    On December 11, 1972, Apollo 17 marked the last controlled U.S. lunar landing and was followed by an absence of methodical in-situ investigation of the lunar surface. The Moon Age and Regolith Explorer (MARE) proposal provides scientific measurement of the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau and the first post-Apollo U.S. soft lunar landing. It includes the first demonstration of a crew survivability-enhancing autonomous hazard detection and avoidance system. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  6. After Apollo: Fission Origin of the Moon

    ERIC Educational Resources Information Center

    O'Keefe, John A.

    1973-01-01

    Presents current ideas about the fission process of the Moon, including loss of mass. Saturnian rings, center of the Moon, binary stars, and uniformitarianism. Indicates that planetary formation may be best explained as a destructive, rather than a constructive process. (CC)

  7. View of activity in Mission Control Center during Apollo 15 lunar landing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An overall, wide-angle lens view of activity in the Mission Operations Control Room in the Mission Control Center during the landing of the Apollo 15 Lunar Module (LM) on the Moon. The LM 'Falcon' touched down on the lunar surface at ground elapsed time of 104 hours 42 minutes 29 seconds.

  8. Moon Exploration from "apollo" Magnetic and Gravity Field Data

    NASA Astrophysics Data System (ADS)

    Kharitonov, Andrey

    Recently, the great value is given to various researches of the Moon, as nearest nature satellite of the Earth, because there is preparation for forthcoming starts on the Moon of the American, European, Russian, Chinese, Indian new Orbiters and Landers. Designing of International Lu-nar bases is planned also. Therefore, in the near future the series of the questions connected with placing of International Lunar bases which coordinates substantially should to be connected with heterogeneity of the internal structure of the Moon can become especially interesting. If in the Moon it will be possible to find large congestions of water ice and those chemical elements which stocks in the Earth are limited this area of the Moon can become perspective for Inter-national Lunar bases. To solve a question of research of the deep structure of the Moon in the locations of International Lunar bases, competently, without excessive expenses for start new various under the form of the Lunar orbit of automatic space vehicles (polar, equatorial, inclined to the rotation axis) and their altitude of flight, which also not always were connected with investigation programs of measured fields (video observation, radio-frequency sounding, mag-netic, gravity), is possible if already from the available information of space vehicles APOLLO, SMART1, KAGUYA, LCROSS, LRO, CHANDRAYAAN-1, CHANG'E-1 it will be possible to analyse simultaneously some various fields, at different altitudes of measuring over the surface (20-300 km) of the Moon. The experimental data of the radial component magnetic field and gravity field the Moon measured at different altitudes, in its equatorial part have been analysed for the research of the deep structure of the Moon. This data has been received as a result of start of space vehicles -APOLLO-15 and APOLLO-16 (USA), and also the Russian space vehicles "LUNOHOD". Authors had been used the data of a magnetic field of the Moon at flight altitude 160, 100, 75, 30, 0 km

  9. Apollo 13 Astronaut Fred Haise and Apollo 13 Mission Patch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Astronaut Fred Haise Jr. of Biloxi, Miss., views his Apollo 13 mission patch, the flight on which he served in 1970, in a StenniSphere display donated to NASA by the American Needlepoint Guild. The exhibit is on permanent display at StenniSphere, the visitor center at John C. Stennis Space Center. In its first year of operation, more than 251,000 visitors representing over 40 countries have viewed the 123 hand-stitched patches in the exhibit. Forty-two guild members from 20 states made the trip to StenniSphere for the opening of the exhibit, one of the most popular at StenniSphere.

  10. Apollo 11 Celebration at Mission Control

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA and Manned Spacecraft Center (MSC) officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Office of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ.

  11. Geologic Traverse Planning for Apollo Missions

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    2012-01-01

    The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.

  12. Two of Apollo 17 crewmen join in commemoration of their lunar landing mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Two of the three Apollo 17 crewmen join in commemoration of their historic lunar landing mission of one year ago by presenting the flight controllers in Mission Control Center (MSC) the U.S. flag which flew with them to the Moon. Astronauts Eugene A. Cernan, center, Apollo 17 commander, and Harrison H. Schmitt, right, lunar module pilot, are shown with Eugene F. Kranz, who accepted the flag on behalf of all the flight controllers during special ceremonies in the Mission Operations Control Room (MOCR) of MCC during the third manned Skylab mission. Kranz is Chief of the Flight Control Division of the Flight Operations Directorate at JSC.

  13. Apollo A-7L Spacesuit Tests and Certification, and Apollo 7 Through 14 Missions Experience

    NASA Technical Reports Server (NTRS)

    McBarron, James W., II

    2015-01-01

    As a result of his 50 years of experience and research, Jim McBarron shared his significant knowledge about Apollo A-7L spacesuit certification testing and Apollo 7 through 14 missions' spacesuit details.

  14. Astronaut Alan Bean deploys ALSEP during first Apollo 12 EVA on moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, Apollo 12 lunar module pilot, deploys components of the Apollo Lunar Surface Experiments Package (ALSEP) during the first Apollo 12 extravehicular activity (EVA) on the moon. The photo was made by Astronaut Charles Conrad Jr., Apollo 12 commander, using a 70mm handheld Haselblad camera modified for lunar surface usage.

  15. Towards a Selenographic Information System: Apollo 15 Mission Digitization

    NASA Astrophysics Data System (ADS)

    Votava, J. E.; Petro, N. E.

    2012-12-01

    The Apollo missions represent some of the most technically complex and extensively documented explorations ever endeavored by mankind. The surface experiments performed and the lunar samples collected in-situ have helped form our understanding of the Moon's geologic history and the history of our Solar System. Unfortunately, a complication exists in the analysis and accessibility of these large volumes of lunar data and historical Apollo Era documents due to their multiple formats and disconnected web and print locations. Described here is a project to modernize, spatially reference, and link the lunar data into a comprehensive SELENOGRAPHIC INFORMATION SYSTEM, starting with the Apollo 15 mission. Like its terrestrial counter-parts, Geographic Information System (GIS) programs, such as ArcGIS, allow for easy integration, access, analysis, and display of large amounts of spatially-related data. Documentation in this new database includes surface photographs, panoramas, samples and their laboratory studies (major element and rare earth element weight percents), planned and actual vehicle traverses, and field notes. Using high-resolution (<0.25 m/pixel) images from the Lunar Reconnaissance Orbiter Camera (LROC) the rover (LRV) tracks and astronaut surface activities, along with field sketches from the Apollo 15 Preliminary Science Report (Swann, 1972), were digitized and mapped in ArcMap. Point features were created for each documented sample within the Lunar Sample Compendium (Meyer, 2010) and hyperlinked to the appropriate Compendium file (.PDF) at the stable archive site: http://curator.jsc.nasa.gov/lunar/compendium.cfm. Historical Apollo Era photographs and assembled panoramas were included as point features at each station that have been hyperlinked to the Apollo Lunar Surface Journal (ALSJ) online image library. The database has been set up to allow for the easy display of spatial variation of select attributes between samples. Attributes of interest that have

  16. Endocrine Laboratory Results Apollo Missions 14 and 15

    NASA Technical Reports Server (NTRS)

    Leach, C. S.

    1972-01-01

    Endocrine/metabolic responses to space flight have been measured on the crewmen of Apollo missions 14 and 15. There were significant biochemical changes in the crewmen of both missions immediately postflight. However, the Apollo 15 mission results differed from Apollo 14 and preflight shown by a normal to increased urine volume with slight increases in antidiuretic hormone. Although Apollo 15 was the first mission in which the exchangeable potassium measurement was made (a decrease), results from other missions were indicative of similar conclusions.

  17. In This Decade, Mission to the Moon.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The development and accomplishments of the National Aeronautics and Space Administration (NASA) from its inception in 1958 to the final preparations for the Apollo 11 mission in 1969 are traced in this brochure. A brief account of the successes of projects Mercury, Gemini, and Apollo is presented and many color photographs and drawings of the…

  18. Review of measurements of dust movements on the Moon during Apollo

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.

    2011-11-01

    This is the first review of 3 Apollo experiments, which made the only direct measurements of dust on the lunar surface: (i) minimalist matchbox-sized 270 g Dust Detector Experiments (DDEs) of Apollo 11, 12, 14 and 15, produced 30 million Lunar Day measurements 21 July 1969-30 September, 1977; (ii) Thermal Degradation Samples (TDS) of Apollo 14, sprinkled with dust, photographed, taken back to Earth into quarantine and lost; and (iii) the 7.5 kg Lunar Ejecta and Meteoroids (LEAM) experiment of Apollo 17, whose original tapes and plots are lost. LEAM, designed to measure rare impacts of cosmic dust, registered scores of events each lunation most frequently around sunrise and sunset. LEAM data are accepted as caused by heavily-charged particles of lunar dust at speeds of <100 m/s, stimulating theoretical models of transporting lunar dust and adding significant motivation for returning to the Moon. New analyses here show some raw data are sporadic bursts of 1, 2, 3 or more events within time bubbles smaller than 0.6 s, not predicted by theoretical dust models but consistent with noise bits caused by electromagnetic interference (EMI) from switching of large currents in the Apollo 17 Lunar Surface Experiment Package (ALSEP), as occurred in pre-flight LEAM-acceptance tests. On the Moon switching is most common around sunrise and sunset in a dozen heavy-duty heaters essential for operational survival during 350 h of lunar night temperatures of minus 170 °C. Another four otherwise unexplained features of LEAM data are consistent with the "noise bits" hypothesis. Discoveries with DDE and TDS reported in 1970 and 1971, though overlooked, and extensive DDE discoveries in 2009 revealed strengths of adhesive and cohesive forces of lunar dust. Rocket exhaust gases during Lunar Module (LM) ascent caused dust and debris to (i) contaminate instruments 17 m distant (Apollo 11) as expected, and (ii) unexpectedly cleanse Apollo hardware 130 m (Apollo 12) and 180 m (Apollo 14) from LM

  19. Apollo 13 emblem

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This is the insignia of the Apollo 13 lunar landing mission. Represented in the Apollo 13 emblem is Apollo, the sun god of Greek mythology, symbolizing how the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means 'From the Moon, Knowledge'.

  20. Moon Age and Regolith Explorer (MARE) Mission Design and Performance

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Lee, David E.

    2016-01-01

    The moon’s surface last saw a controlled landing from a U.S. spacecraft on December 11, 1972 with Apollo 17. Since that time, there has been an absence of methodical in-situ investigation of the lunar surface. In addition to the scientific value of measuring the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau, the Moon Age and Regolith Explorer (MARE) proposal provides the first U.S. soft lunar landing since the Apollo Program and the first ever robotic soft lunar landing employing an autonomous hazard detection and avoidance system, a system that promises to enhance crew safety and survivability during a manned lunar (or other) landing. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.

  1. Apollo experience report: The application of a computerized visualization capability to lunar missions

    NASA Technical Reports Server (NTRS)

    Hyle, C. T.; Lunde, A. N.

    1972-01-01

    The development of a computerized capability to depict views from the Apollo spacecraft during a lunar mission was undertaken before the Apollo 8 mission. Such views were considered valuable because of the difficulties in visualizing the complex geometry of the Earth, Moon, Sun, and spacecraft. Such visualization capability originally was desired for spacecraft attitude verification and contingency situations. Improvements were added for later Apollo flights, and results were adopted for several real time and preflight applications. Some specific applications have included crewmember and ground control personnel familiarization, nominal and contingency mission planning, definition of secondary attitude checks for all major thrust maneuvers, and preflight star selection for navigation and for platform alinement. The use of this computerized visualization capability should prove valuable for any future space program as an aid to understanding the geometrical relationships between the spacecraft and the celestial surroundings.

  2. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. The Apollo 13 spacecraft, with Astronauts James Lovell, John Swigert, and Fred Haise aboard splashed down in the South Pacific at 12:07:44 p.m., April 17, 1970.

  3. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.

  4. Sunrise-driven movements of dust on the Moon: Apollo 12 Ground-truth measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian J.; Hollick, Monique

    2015-12-01

    The first sunrise after Apollo 12 astronauts left the Moon caused dust storms across the site where rocket exhausts had disrupted about 2000 kg of smooth fine dust. The next few sunrises started progressively weaker dust storms, and the Eastern horizon brightened, adding to direct sunlight for half an hour. These Ground truth measurements were made 100 cm above the surface by the 270 g Apollo 12 Dust Detector Experiment we invented in 1966. Dust deposited on the horizontal solar cell during two lunar days after the first sunrise was almost 30% of the total it then measured over 6 years. The vertical east-facing solar cell measured horizon brightening on 14 of the first 17 lunations, with none detected on the following 61 Lunar Days. Based on over 2 million such measurements we propose a new qualitative model of sunrise-driven transport of individual dust particles freed by Apollo 12 activities from strong particle-to-particle cohesive forces. Each sunrise caused sudden surface charging which, during the first few hours, freshly mobilised and lofted the dust remaining free, microscopically smoothing the disrupted local areas. Evidence of reliability of measurements includes consistency among all 6 sensors in measurements throughout an eclipse. We caution Google Lunar XPrize competitors and others planning missions to the Moon and large airless asteroids that, after a spacecraft lands, dust hazards may occur after each of the first few sunrises. Mechanical problems in its first such period stranded Chinese lunar rover Yutu in 2014, although we would not claim yet that the causes were dust. On the other hand, sunrise-driven microscopic smoothing of disturbed areas may offer regular natural mitigations of dust consequences of mining lunar resources and reduce fears that many expeditions might cause excessive fine dust globally around the Moon.

  5. Endocrine, electrolyte, and fluid volume changes associated with Apollo missions

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Alexander, W. C.; Johnson, P. C.

    1975-01-01

    The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.

  6. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of Mission Control Center, bldg 30, during the splashdown of the Apollo 13 spacecraft. The large screen in front the front of the room shows the spacecraft with its parachutes deployed as it heads for splashdown in the Pacific Ocean. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970.

  7. View of Mission Control Center during the Apollo 13 liftoff

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Sigurd A. Sjoberg, Director of Flight Operations at Manned Spacecraft Center (MSC), views the Apollo 13 liftoff from a console in the MSC Mission Control Center, bldg 30. Apollo 13 lifted off at 1:13 p.m., April 11, 1970 (34627); Astronaut Thomas F. Mattingly II, who was scheduled as a prime crewman for the Apollo 13 mission but was replaced in the final hours when it was discovered he had been exposed to measles, watches the liftoff phase of the mission. He is seated at a console in the Mission Control Center's Mission Operations Control Room. Scientist-Astronaut Joseph P. Kerwin, a spacecraft communicator for the mission, looks on at right (34628).

  8. Apollo 11 Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On 16 July 1969, American astronauts Neil Armstrong, Edwin 'Buzz' Aldrin, and Michael Collins lifted off from Cape Canaveral, Fla., in the mammoth-sized Saturn V rocket on their way to the moon during the Apollo 11 mission. Cmdr. Armstrong and pilot Aldrin landed the spacecraft, Eagle, on the moon's Sea of Tranquillity. Apollo 11 booster stages were tested at Stennis Space Center.

  9. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  10. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Astrophysics Data System (ADS)

    Graham, L. D.; Morris, R. V.; Graff, T. G.; Yingst, R. A.; ten Kate, I. L.; Glavin, D. P.; Hedlund, M.; Malespin, C. A.; Mumm, E.

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “ Apollo Valley.”

  11. Apollo 14 and 15 missions: Intermittent steerable antenna operation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An attempt was made to determine the cause of antenna tracking interruptions during Apollo 14 and Apollo 15 missions prior to powered descent, and after ascent from the lunar surface but before rendezvous. Probable causes examined include: (1) amplitude modulation on the uplink radio frequency carrier, (2) noise capacitively or inductively coupled into the track error line, and (3) hardware problems resulting in tracking loop instabilities. It was determined that amplitude modulation caused the antenna oscillations. The corrective procedures taken are given.

  12. Apollo 14 mission food preparation unit leakage

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A bubble of water collected on the delivery probe of the food preparation unit after hot water was dispensed by the Apollo 14 crew. Postflight tests showed that dimensional interference between the cylinder and the piston at hot water temperatures produced the apparent leak by causing erratic and slow stroke time of the valve assembly.

  13. Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Dalrymple, G. Brent

    1992-01-01

    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.

  14. View of Mission Control Center during Apollo 13 splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Dr. Thomas O. Paine (center), NASA Administrator, and other NASA Officials joined others in applauding the successful splashdown of the Apollo 13 crewmen. Others among the large crowd in the Mission Operations Control Room of the Mission Control Center, Manned Spacecraft Center (MSC) at the time of recovery were U.S. Air Force Lt. Gen. Samuel C. Phillips (extreme left), who formerly served as Apollo program Director, Office of Manned Space Flight, NASA Headquarters; Dr. Charles A. Berry (third from left), Director, Medical Research and Operations Directorate, MSC; and Dr. George M. Low, Associate NASA Administrator.

  15. Stennis engineer part of LCROSS moon mission

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  16. Lunar interior as seen by seismology: from Apollo to future missions

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Kobayashi, Naoki; Garcia, Raphael; Weber, Renee; Johnson, Catherine; Gagnepain-Beyneix, Jeannine

    2012-07-01

    About 40 years ago, the Apollo missions deployed a network of 4 passive seismometers on the Moon, at landing sites 12, 14, 15 and 16. A seismometer was also deployed on Apollo 11 and a gravimeter on Apollo 17 landing sites. Although this network stopped its operation in 1977, the analysis of the data is surprisingly still ongoing and has led to the determination of major radial features in the lunar interior, including the recent discovery of core phases in 2011 by Weber et al and Garcia et all, 2011. We review in this presentation the general results of these seismic analyses, from the subsurface near the landing sites to the core. Special focus is given to the crustal structure, both in term of thickness and lateral variation and to the core structure, in term of radius, core state, temperature and composition. We also discuss the existence of possible discontinuities in the mantle, proposed by some early seismic models but challenged by others and interpreted as the possible limit of an early magma ocean. We finally present the perspectives of future missions, first with the SELENE2 mission, which is expected to deploy a new generation of very broad band seismometer followed by other projects proposed either in Europe or the USA. By using the expected sensitivity of the seismometers considered for these mission, we conclude by presenting the potential challenges, science objectives and discoveries of this future step in the seismic exploration of our satellite.

  17. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  18. View of Mission Control Center celebrating conclusion of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).

  19. Gold replica of olive branch left on moons surface by Apollo 11

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A gold replica of an olive branch, the traditional symbol of peace, which was left on the Moon's surface by the Apollo 11 crew members. Astronaut Neil A. Armstrong, commander, was in charge of placing the replica (less than half a foot in length) on the Moon. The gesture represents a fresh wish for peace for all mankind. astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  20. Mission Control Center at conclusion of Apollo 15 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An overall view of activity in the Mission Operations Control Room in the Mission Control Center at the conclusion of the Apollo 15 lunar landing mission. The television monitor in the right background shows the welcome ceremonies aboard the prime recovery ship, U.S.S. Okinawa, in the mid-Pacific Ocean.

  1. Apollo 17

    NASA Technical Reports Server (NTRS)

    Garrett, David

    1972-01-01

    This is the Press Kit that was given to the various media outlets that were interested in covering the Apollo 17 mission. It includes information about the moon, lunar science, concentrating on the planned mission. The kit includes information about the flight, and the trajectory, planned orbit insertion maneuvers, the extravehicular mission events, a comparison with the Apollo 16, a map of the lunar surface, and the surface activity, information about the Taurus-Littrow landing site, the planned science experiments, the power source for the experiment package and diagrams of some of the instrumentation that was used to perform the experiments.

  2. Apollo-Soyuz US-USSR joint mission results

    NASA Technical Reports Server (NTRS)

    Bean, A. L.; Evans, R. E.

    1975-01-01

    The technical and nontechnical objectives of the Apollo-Soyuz mission are briefly considered. The mission demonstrated that Americans and Russians can work together to perform a very complex operation, including rendezvous in space, docking, and the conduction of joint experiments. Certain difficulties which had to be overcome were partly related to differences concerning the role of the astronaut in the basic alignment and docking procedures for space vehicles. Attention is also given to the experiments conducted during the mission and the approach used to overcome the language barrier.

  3. Astronaut John Young during final suiting operations for Apollo 10 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A technician attaches hose from test stand to spacesuit of Astronaut John W. Young, Apollo 10 command module pilot, during final suiting operations for the Apollo 10 lunar orbit mission. Another technician makes adjustment behind Young.

  4. MSFC Skylab Apollo Telescope Mount experiment systems mission evaluation

    NASA Technical Reports Server (NTRS)

    White, A. F., Jr.

    1974-01-01

    A detailed evaluation is presented of the Skylab Apollo Telescope Mount experiments performance throughout the eight and one-half month Skylab Mission. Descriptions and the objectives of each instrument are included. The anomalies experienced, the causes, and corrective actions taken are discussed. Conclusions, based on evaluation of the performance of each instrument, are presented. Examples of the scientific data obtained, as well as a discussion of the quality and quantity of the data, are presented.

  5. Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.

    2011-01-01

    The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility

  6. Juvenile water in the Moon's interior: new constraints from Apollo 15 lunar volcanic glasses

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.; Saal, A. E.; van Orman, J. A.; Rutherford, M. J.

    2010-12-01

    The presence of magmatic water in lunar volcanic glasses (LVGs) [1] requires a re-evaluation of conventional wisdom that the Moon was thoroughly dehydrated following its formation via giant impact. The LVGs are the most primitive melts erupted on the surface of the Moon, and their post-eruptive degassing and thermal histories are exceedingly simple. The presence of water and chlorine in these magmas indicates the presence of a deep volatile-bearing mantle source within the Moon. New volatile abundance data were obtained for over 200 individual lunar glasses, contained in three samples recovered by the Apollo 15 mission (15426,32; 15426,138 and 15427) with eruption ages of 3.35 to 3.65 Ga; H2O and D/H ratios were measured by SIMS. Yellow-brown volcanic glasses contain the highest concentrations of H2O (up to 70 ppm) which is two times higher than our previous measurements, while green glasses contain smaller amounts of water (4 - 17 ppm H2O). D/H ratios range from +180‰ to +5400‰ and are inversely correlated with water contents. The presence of tritium in lunar samples [2] requires the presence of a cosmogenic component of volatile isotopes from interactions with solar and galactic cosmic rays [3]. After correction for cosmogenic contributions, our data exhibit a systematic negative correlation of δD with water content. The systematic nature of the data correlation, and the heterogeneous H2O concentrations and D/H data, indicate that hydrogen isotopes were fractionated in these lunar magmas by kinetic degassing during eruption. The average δD of the five highest-H2O glasses is +340‰ (+180‰/-240‰); this δD range overlaps the range of carbonaceous chondrites and terrestrial water. Furthermore, it is very likely that the original pre-eruptive δD value of these lunar magmas was significantly lower, and that kinetic D/H fractionation has resulted in preferential loss of H during magmatic degassing. As a result, we conclude that juvenile magmatic water in

  7. ESA SMART-1 Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.; Racca, Giuseppe D.; Marini, Andrea; Grande, Manuel; Huovelin, Juhani; Josset, Jean-Luc; Keller, Horst Uwe; Nathues, Andreas; Koschny, Detlef; Malkki, Ansi

    SMART-1 is the first of ESA’s Small Missions for Advanced Research and Technology. Its objective is to demonstrate Primary Solar Electric Propulsion for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The 370 kg spacecraft is to be launched in summer 2003 as Ariane-5 auxiliary passenger and after a 15 month cruise is to orbit the Moon for 6 months with possible extension. SMART-1 will carry out observations during the cruise and in lunar orbit with a science and technology payload (19 kg total mass): a miniaturised high-resolution camera (AMIE) a near-infrared point-spectrometer (SIR) for lunar mineralogy a very compact X-ray spectrometer (D-CIXS) mapping surface elemental composition a Deep Space Communication experiment (KaTE) a radio-science investigations (RSIS) a Laser-Link Experiment an On Board Autonomous Navigation experiment (OBAN) and plasma sensors (SPEDE). SMART-1 will study accretional and bombardment processes that led to the formation of rocky planets and the origin and evolution of the Earth-Moon system. Its science investigations include studies of the chemical composition of the Moon of geophysical processes (volcanism tectonics cratering erosion deposition of ices and volatiles) for comparative planetology and the preparation for future lunar and planetary exploration.

  8. The impact history of the Moon: implications of new high-resolution U-Pb analyses of Apollo impact breccias

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Nemchin, Alexander A.; Thiessen, Fiona; Bellucci, Jeremy J.; Whitehouse, Martin J.

    2015-04-01

    Constraining the impact history of the Moon is a key priority, both for lunar science [1] and also for our understanding of how this fundamental geologic processes [2] has affected the evolution of planets in the inner solar system. The Apollo impact breccia samples provide the most direct way of dating impact events on the Moon. Numerous studies have dated samples from the Apollo landing sites by multiple different methods with varying degrees of precision [3]. This has led to an ongoing debates regarding the presence of a period of intense meteoritic bombardment (e.g. [4-8]). In this study we present high precision U-Pb analyses of Ca-phosphates in a variety of Apollo impact breccias. These data allow us to resolve the signatures of multiple different impact events in samples collected by the Apollo 12, 14 and 17 missions. In particular, the potential identification of three significant impact events between the period of ~3915-3940 Ma, is indicative of a high rate of meteorite impacts at this point in lunar history. A more fundamental problem with interpretations of Apollo breccia ages is that the samples originate from the lunar regolith and do not represent samples of actual bedrock exposures. As such, although improvements in analytical precision may allow us to continue identifying new impact signatures, the proposed links between these signatures and particular impact features remain highly speculative. This is a problem that will only be truly addressed with a more focused campaign of lunar exploration. Most importantly, this would include the acquisition of samples from below the lunar regolith, which could be confidently attributed to particular bedrock formations and provide a degree of geologic context that has been largely absent from studies of lunar geology to date. References: [1] National Research Council (2007) The scientific context for exploration of the Moon, National Academies Press. [2] Melosh H. J. (1989) Impact Cratering: A Geologic

  9. Log of Apollo 11.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The major events of the first manned moon landing mission, Apollo 11, are presented in chronological order from launch time until arrival of the astronauts aboard the U.S.S. Hornet. The log is descriptive, non-technical, and includes numerous color photographs of the astronauts on the moon. (PR)

  10. View of Medical Support Room in Mission Control Center during Apollo 16

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Dr. J.F. Zieglschmid, M.D., Mission Operations Control Room (MOCR) White Team Surgeon, is seated in the Medical Support Room in the Mission Control Center as he monitors crew biomedical data being received from the Apollo 16 spacecraft on the third day of the Apollo 16 lunar landing mission.

  11. MSFC Flight Mission Directive Apollo-Saturn 205 Mission

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The purpose of this directive is to provide, under one cover, coordinated direction for the AS-205 Space Vehicle Flight. Within this document, mission objectives are specified, vehicle configuration is described and referenced, flight trajectories, data acquisition requirements, instrumentation requirements, and detailed documentation requirements necessary to meet launch vehicle mission objectives are defined and/or referenced.

  12. Artists concept of Apollo 11 Astronaut Neil Armstrong on the moon

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A Grumman Aircraft Engineering Corporation artist's concept depicting mankind's first walk on another celestianl body. Here, Astronaut Neil Armstrong, Apollo 11 commander, is making his first step onto the surface of the moon. In the background is the Earth, some 240,000 miles away. Armstrong. They are continuing their postflight debriefings. The three astronauts will be released from quarantine on August 11, 1969. Donald K. Slayton (right), MSC Director of Flight Crew Operations; and Lloyd Reeder, training coordinator.

  13. Apollo 12 magnetometer: measurement of a steady magnetic field on the surface of the moon.

    PubMed

    Dyal, P; Parkin, C W; Sonett, C P

    1970-08-21

    The Apollo 12 magnetometer has measured a steady magnetic field of 36 +/- 5 gammas on the lunar surface. Surface gradient measurements and data from a lunar orbiting satellite indicate that this steady field is localized rather than global in its extent. These data suggest that the source is a large, magnetized body which acquired a field during an epoch in which the inducing field was much stronger than any that presently exists at the moon.

  14. View of silicon disc to be left on moon by Apollo 11 astronauts

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Closeup view of the one and one-half inch silicon disc which will be left on the moon by the Apollo 11 astronauts. The disc bears meassages of goodwill from heads of state of many nations. The process used to make this wafer is the same as that used to manufacture integrated circuits for electronic equipment. The Kennedy half-dollar illustrates the relative size of the memorial disc.

  15. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-12-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary COSPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  16. Apollo 13

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Overall view of the Mission Operations Control Room in the Mission Control Center at the Manned Spacecraft Center, during the fourth television transmission from the Apollo 13 spacecraft while enroute to the Moon. Eugene F. Kranz (foreground, back to camera), one of four Apollo 13 Flight Directors, views the large screen at front of MOCR. Astronaut Fred W. Haise Jr., lunar module pilot, is seen on the screen. The fourth television transmission from the Apollo 13 mission was on the evening of April 13, 1970. Shortly after the transmission ended and during a routine proceedure that required the crew to flip a switch that stirred one of the cryogenic liquid oxygen tanks, an explosion occurred that ended any hope of a lunar landing and jeopordized the lives of the three crew members.

  17. SELENE: The Moon-Orbiting Observatory Mission

    NASA Astrophysics Data System (ADS)

    Mizutani, H.; Kato, M.; Sasaki, S.; Iijima, Y.; Tanaka, K.; Takizawa, Y.

    The Moon-orbiting SELENE (Selenological and Engineering Explorer) mission is prepared in Japan for lunar science and technology development. The launch target has been changed from 2005 to 2006 because of the launch failure of H2A rocket in 2003. The spacecraft consists of a main orbiting satellite at about 100 km altitude in the polar orbit and two sub-satellites in the elliptical orbits. The scientific objectives of the mission are; 1) study of the origin and evolution of the Moon, 2) in-situ measurement of the lunar environment, and 3) observation of the solar-terrestrial plasma environment. SELENE carries the instruments for scientific investigation, including mapping of lunar topography and surface composition, measurement of the gravity and magnetic fields, and observation of lunar and solar-terrestrial plasma environment. The total mass of scientific payload is about 300 kg. The mission period will be 1 year. If extra fuel is available, the mission will be extended in a lower orbit around 50 km. The elemental abundances are measured by x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical abundance is characterized by a multi-band imager. The mineralogical composition is identified by a spectral profiler which is a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. A magnetometer and an electron reflectometer provides data on the lunar surface magnetic field. Doppler tracking of the orbiter via the sub-satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two sub-satellites are used to conduct differential VLBI observation from the ground stations. The lunar environment of high energy particles

  18. Estimates of the moon's geometry using lunar orbiter imagery and Apollo laser altimeter data

    NASA Technical Reports Server (NTRS)

    Jones, R. L.

    1973-01-01

    Selenographic coordinates for about 6000 lunar points identified on the Lunar Orbiter photographs are tabulated and have been combined with those lunar radii derived from the Apollo 15 laser altimeter data. These coordinates were used to derive that triaxial ellipsoid which best fits the moon's irregular surface. Fits were obtaind for different constraints on both the axial orientations and the displacement of the center of the ellipsoid. The semiaxes for the unconstrained ellipsoid were a = 1737.6 km, b = 1735.6 km, and c = 1735.0 km which correspond to a mean radius of about 1736.1 km. These axes were found to be nearly parallel to the moon's principal axes of inertia, and the origin was displaced about 2.0 km from the moon's center of gravity in a direction away from the earth and to the south of the lunar equator.

  19. Direct active measurements of movements of lunar dust: Rocket exhausts and natural effects contaminating and cleansing Apollo hardware on the Moon in 1969

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian

    2009-05-01

    Dust is the Number 1 environmental hazard on the Moon, yet its movements and adhesive properties are little understood. Matchbox-sized, 270-gram Dust Detector Experiments (DDEs) measured contrasting effects triggered by rocket exhausts of Lunar Modules (LM) after deployment 17 m and 130 m from Apollo 11 and 12 LMs. Apollo 11 Lunar Seismometer was contaminated, overheated and terminated after 21 days operation. Apollo 12 hardware was splashed with collateral lunar dust during deployment. DDE horizontal solar cell was cleansed of nominally 0.3 mg cm-2 dust by 80% promptly at LM ascent and totally within 7 minutes. A vertical cell facing East was half-cleaned promptly then totally over hundreds of hours. Each cell cooled slightly. For the first time lunar electrostatic adhesive forces on smooth silicon were directly measured by comparison with lunar gravity. Analyses imply this adhesive force weakens as solar angle of incidence decreases. If valid, future lunar astronauts may have greater problems with dust adhesion in the middle half of the day than faced by Apollo missions in early morning. A sunproof shed may provide dust-free working environments on the Moon. Low-cost laboratory tests with DDEs and simulated lunar dust can use DDE benchmark lunar data quickly, optimising theoretical modelling and planning of future lunar expeditions, human and robotic.

  20. Petrologic constraints on the origin of the Moon: Evidence from Apollo 14

    SciTech Connect

    Shervais, J.W.; Taylor, L.A.

    1984-01-01

    The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). It is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.

  1. Official emblam of Apollo 11, the first scheduled lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Official emblam of Apollo 11, the first scheduled lunar landing mission. It depicts and eagle descending toward the lunar surface with an olive branch, symbolizing America's peaceful mission in space.

  2. In Situ Biological Contamination Studies of the Moon: Implications for Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Williams, David R.; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moan, and future human exploration of Mars and other destinations, including possibly asteroids. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require careful operations, and that all systems be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there a different planetary protection category for human missions, although preliminary C SPAR policy guidelines for human missions to Mars have been developed. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future: Mars surface exploration plans for a human mission to Mars.

  3. Using Technology to Better Characterize the Apollo Sample Suite: A Retroactive PET Analysis and Potential Model for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.

    2015-01-01

    From 1969-1972 the Apollo missions collected 382 kg of lunar samples from six distinct locations on the Moon. Studies of the Apollo sample suite have shaped our understanding of the formation and early evolution of the Earth-Moon system, and have had important implications for studies of the other terrestrial planets (e.g., through the calibration of the crater counting record) and even the outer planets (e.g., the Nice model of the dynamical evolution of the Solar System). Despite nearly 50 years of detailed research on Apollo samples, scientists are still developing new theories about the origin and evolution of the Moon. Three areas of active research are: (1) the abundance of water (and other volatiles) in the lunar mantle, (2) the timing of the formation of the Moon and the duration of lunar magma ocean crystallization, (3) the formation of evolved lunar lithologies (e.g., granites) and implications for tertiary crustal processes on the Moon. In order to fully understand these (and many other) theories about the Moon, scientists need access to "new" lunar samples, particularly new plutonic samples. Over 100 lunar meteorites have been identified over the past 30 years, and the study of these samples has greatly aided in our understanding of the Moon. However, terrestrial alteration and the lack of geologic context limit what can be learned from the lunar meteorites. Although no "new" large plutonic samples (i.e., hand-samples) remain to be discovered in the Apollo sample collection, there are many large polymict breccias in the Apollo collection containing relatively large (approximately 1 cm or larger) previously identified plutonic clasts, as well as a large number of unclassified lithic clasts. In addition, new, previously unidentified plutonic clasts are potentially discoverable within these breccias. The question becomes how to non-destructively locate and identify new lithic clasts of interest while minimizing the contamination and physical degradation of

  4. MSFC Skylab Apollo Telescope Mount thermal control system mission evaluation

    NASA Technical Reports Server (NTRS)

    Hueter, U.

    1974-01-01

    The Skylab Saturn Workshop Assembly was designed to expand the knowledge of manned earth orbital operations and accomplish a multitude of scientific experiments. The Apollo Telescope Mount (ATM), a module of the Skylab Saturn Workshop Assembly, was the first manned solar observatory to successfully observe, monitor, and record the structure and behavior of the sun outside the earth's atmosphere. The ATM contained eight solar telescopes that recorded solar phenomena in X-ray, ultraviolet, white light, and hydrogen alpha regions of the electromagnetic spectrum. In addition, the ATM contained the Saturn Workshop Assembly's pointing and attitude control system, a data and communication system, and a solar array/rechargeable battery power system. This document presents the overall ATM thermal design philosophy, premission and mission support activity, and the mission thermal evaluation. Emphasis is placed on premission planning and orbital performance with particular attention on problems encountered during the mission. ATM thermal performance was satisfactory throughout the mission. Although several anomalies occurred, no failure was directly attributable to a deficiency in the thermal design.

  5. Surface electrical properties experiment. [for Taurus-Littrow region of the moon on Apollo 17

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1974-01-01

    The Surface Electrical Properties Experiment (SEP) was flown to the moon in December 1972 on Apollo 17 and used to explore a portion of the Taurus-Littrow region. SEP used a relatively new technique, termed radio frequency interferometry (RFI). Electromagnetic waves were radiated from two orthogonal, horizontal electric dipole antennas on the surface of the moon at frequencies of 1, 2, 4, 8, 16, and 32 Mhz. The field strength of the EM waves was measured as a function of distance with a receiver mounted on the Lunar Roving Vehicle and using three orthogonal, electrically small, loops. The interference pattern produced by the waves that travelled above the moon's surface and those that travelled below the surface was recorded on magnetic tape. The tape was returned to earth for analysis and interpretation. Several reprints, preprints, and an initial draft of the first publication of the SEP results are included. These documents provide a rather complete account of the details of the theory of the RFI technique, of the terrestrial tests of the technique, and of the present state of our interpretation of the Apollo 17 data.

  6. Mare glasses from Apollo 17 - Constraints on the moon's bulk composition

    NASA Technical Reports Server (NTRS)

    Delano, J. W.; Lindsley, D. H.

    1983-01-01

    Two previously unreported varieties of mare volcanic glass have been discovered in Apollo 17 samples. Twenty-three chemical types of volcanic glass have now been analyzed from the six Apollo landing sites. These volcanic glasses, which may be samples of primary magmas derived from the differentiated lunar mantle, define two linear arrays that seem to reflect regional, if not global, regularities among the source regions of these melts. Additional systematics among these glasses have been used to estimate the bulk composition of the moon. The results suggest that the refractory lithophile elements are present at abundances of 1.7 x chondrites. The silicate portion of the moon appears to have a major-element composition similar to a volatile (Si, Na, K)-depleted, earth's upper mantle. The theory involving an earth-fission origin of the moon can be tested further through trace element analyses on the volcanic glasses, and through determination of the N/Ar-36 ratio and noble gas isotopes from primordial lunar gas trapped within vesicles associated with mare volcanic glass.

  7. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    NASA Astrophysics Data System (ADS)

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-06-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA's LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological 'features of interest'. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and parameters therein to interrogate and reduce the Moon Zoo crater location and size dataset against a validated expert survey. We chose the Apollo 17 region as a test area since it offers a broad range of cratered terrains, including secondary-rich areas, older maria, and uplands. The assessment involved parallel testing in three key areas: (1) filtering of data to remove problematic mark-ups; (2) clustering methods of multiple notations per crater; and (3) derivation of alternative crater degradation indices, based on the statistical variability of multiple notations and the smoothness of local image structures. We compared different combinations of methods and parameters and assessed correlations between resulting crater summaries and the expert census. We derived the optimal data reduction steps and settings of the existing Moon Zoo crater data to agree with the expert census. Further, the regolith depth and crater degradation states derived from the data are also found to be in broad agreement with other estimates for the Apollo 17 region. Our study supports the validity of this citizen science project but also recommends improvements in key elements of the data acquisition planning and production.

  8. Forward Contamination of the Moon and Mars: Implications for Future Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2004-01-01

    NASA and ESA have outlined new visions for solar system exploration that will include a series of lunar robotic missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under COSPAR's current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft. Nonetheless, future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  9. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust

  10. Sedimentology of clastic rocks returned from the moon by Apollo 15.

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.

    1972-01-01

    A petrographic study of eleven samples of clastic rock returned from the moon by Apollo 15 suggests that two lithologies are present. The distinction between the two lithologies is based on the glass content of the rock matrices and the morphology of the detrital particles. Group I rocks have abundant, glass-rich, porous matrices and glass particles with morphologies comparable to those of glass particles in the lunar soil. The group I rocks were probably formed by welding or sintering of surficial soil deposits by impact-generated base surges of limited extent. Group II rocks have an essentially mineralic matrix and have an abundance of rounded mineral grains. Sample 15455 is the only Apollo 15 sample assigned to this group. In its general textural features, sample 15455 is comparable with the group II rocks from the Fra Mauro Formation at the Apollo 14 site. Textural features such as shock modification and rounding of mineral grains suggest that this sample is the product of a large-scale impact-generated base surge which possibly resulted from the Imbrian event.

  11. The Apollo Program and Lunar Science

    ERIC Educational Resources Information Center

    Kuiper, Gerard P.

    1973-01-01

    Discusses the history of the Vanguard project and the findings in Ranger records and Apollo missions, including lunar topography, gravity anomalies, figure, and chemistry. Presented are speculative remarks on the research of the origin of the Moon. (CC)

  12. Apollo 8's Christmas Eve 1968 Message

    NASA Video Gallery

    Apollo 8, the first manned mission to the moon, entered lunar orbit on Christmas Eve, Dec. 24, 1968. That evening, the astronauts--Commander Frank Borman, Command Module Pilot Jim Lovell, and Lunar...

  13. Apollo 12 mission report: Descent, propulsion system final flight evaluation (supplement 5)

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Barrows, R. L.

    1972-01-01

    The results are presented of the postflight analysis of the Descent propulsion system (DPS) performance during the Apollo 12 Mission. The primary objective of the analysis was to determine the steady-state performance of the DPS during the descent phase of the manned lunar landing. This is a supplement ot the Apollo 12 Mission Report. In addition to further analysis of the DPS, this report brings together information from other reports and memorandums analyzing specific anomalies and performance in order to present a comprehensive description of the DPS operation during the Apollo 12 Mission.

  14. Robotics and telepresence for moon missions

    NASA Technical Reports Server (NTRS)

    Sallaberger, Christian

    1994-01-01

    An integrated moon program has often been proposed as a logical next step for today's space efforts. In the context of preparing for the possibility of launching a moon program, the European Space Agency is currently conducting an internal study effort which is focusing on the assessment of key technologies. Current thinking has this moon program organized into four phases. Phase 1 will deal with lunar resource exploration. The goal would be to produce a complete chemical inventory of the moon, including oxygen, water, other volatiles, carbon, silicon, and other resources. Phase 2 will establish a permanent robotic presence on the moon via a number of landers and surface rovers. Phase 3 will extend the second phase and concentrate on the use and exploitation of local lunar resources. Phase 4 will be the establishment of a first human outpost. Some preliminary work such as the building of the outpost and the installation of scientific equipment will be done by unmanned systems before a human crew is sent to the moon.

  15. On Eagle's Wings: The Parkes Observatory's Support of the Apollo 11 Mission

    NASA Astrophysics Data System (ADS)

    Sarkissian, John M.

    At 12:56 p.m., on Monday 21 July 1969 (AEST), six hundred million people witnessed Neil Armstrong's historic first steps on the Moon through television pictures transmitted to Earth from the lunar module, Eagle. Three tracking stations were receiving the signals simultaneously. They were the CSIRO's Parkes Radio Telescope, the Honeysuckle Creek tracking station near Canberra, and NASA's Goldstone station in California. During the first nine minutes of the broadcast, NASA alternated between the signals being received by the three stations. When they switched to the Parkes pictures, they were of such superior quality that NASA remained with them for the rest of the 2½-hour moonwalk. The television pictures from Parkes were received under extremely trying and dangerous conditions. A violent squall struck the telescope on the day of the historic moonwalk. The telescope was buffeted by strong winds that swayed the support tower and threatened the integrity of the telescope structure. Fortunately, cool heads prevailed and as Aldrin activated the TV camera, the Moon rose into the field-of-view of the Parkes telescope. This report endeavours to explain the circumstances of the Parkes Observatory's support of the Apollo 11 mission, and how it came to be involved in the historic enterprise.

  16. Backup Crew of the first manned Apollo mission practice water egress

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Backup crew for Apollo/Saturn Mission 204, the first manned Apollo space flight, onboard the NASA Motor Vessel Retriever during water egress training activity in the Gulf of Mexico. Left to right, are Astronauts James A. McDivitt, Russell L. Schwickart, and David R. Scott.

  17. Return to the Moon: Lunar robotic science missions

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.

    1992-01-01

    There are two important aspects of the Moon and its materials which must be addressed in preparation for a manned return to the Moon and establishment of a lunar base. These involve its geologic science and resource utilization. Knowledge of the Moon forms the basis for interpretations of the planetary science of the terrestrial planets and their satellites; and there are numerous exciting explorations into the geologic science of the Moon to be conducted using orbiter and lander missions. In addition, the rocks and minerals and soils of the Moon will be the basic raw materials for a lunar outpost; and the In-Situ Resource Utilization (ISRU) of lunar materials must be considered in detail before any manned return to the Moon. Both of these fields -- planetary science and resource assessment -- will necessitate the collection of considerable amounts of new data, only obtainable from lunar-orbit remote sensing and robotic landers. For over fifteen years, there have been a considerable number of workshops, meetings, etc. with their subsequent 'white papers' which have detailed plans for a return to the Moon. The Lunar Observer mission, although grandiose, seems to have been too expensive for the austere budgets of the last several years. However, the tens of thousands of man-hours that have gone into 'brainstorming' and production of plans and reports have provided the precursor material for today's missions. It has been only since last year (1991) that realistic optimism for lunar orbiters and soft landers has come forth. Plans are for 1995 and 1996 'Early Robotic Missions' to the Moon, with the collection of data necessary for answering several of the major problems in lunar science, as well as for resource and site evaluation, in preparation for soft landers and a manned-presence on the Moon.

  18. Future lunar missions and investigation of dusty plasma processes on the Moon

    NASA Astrophysics Data System (ADS)

    Popel, Sergey I.; Zelenyi, Lev M.; Zelenyi

    2013-08-01

    From the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to ``horizon glow'' and ``streamers'' above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.

  19. Apollo

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Construction of the Lunar Landing Research Facility. Work is on the cross-member beam. James Hansen noted that 'it was conceived in 1962 by engineer Donald Hewes and built under the careful direction of his quiet but ingenious division chief, W. Hewitt Phillips, this gigantic facility designed to develop techniques for landing the rocket-powered LEM on the moon's surface.'(p. 373) Hansen further reports Hewitt Phillips' account of the construction: '*Since we knew that the moon's gravity is one-sixth that of the Earth's, we needed to support five-sixths of the vehicle's weight to simulate the actual conditions on the moon.' Perhaps, some practical method could be devised to lower the apparent weight of a mock-up LEM to its lunar equivalent by a method of suspension using vertical cables attached to a traveling bridge crane. From this basic notion, the design evolved. A huge gantry structure was built that would dominate Langley's landscape for years to come. Phillips and Hewes wanted the supporting gantry to be even taller, but because of the heavy military air traffic from adjacent Langley AFB, the structure was limited to 200 feet. The completed facility, however, stood 240 feet 6 inches, excluding the top warning lights and antennae.' (p. 374) From A.W. Vigil, 'Piloted Space-Flight Simulation at Langley Research Center,' Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. 'Ground-based simulators are not very satisfactory for studying the problems associated with the final phases of landing. This is due primarily to the fact that the visual scene cannot be simulated with sufficient realism. For this reason it is preferable to go to some sort of flight-test simulator which can provide real-life visual cues. One research facility designed to study the final phases of lunar landing is in operation at Langley. ... The facility is an overhead crane structure about 250 feet tall and 400

  20. Portrait of Astronaut Neil A. Armstrong, commander of Apollo 11 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of Astronaut Neil A. Armstrong, commander of the Apollo 11 Lunar Landing mission in his space suit, with his helmet on the table in front of him. Behind him is a large photograph of the lunar surface.

  1. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room of the Mission Control Center (MCC). Seated at consoles, from left to right, are Astronaut Donald K. Slayton, Director of Flight Crew Operations; Astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and Astronaut John W. Young, commander of the Apollo 13 back-up crew. Standing, left to right, are Astronaut Tom K. Mattingly, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and Astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell in their spacecraft.

  2. Mission to the Moon: Europe's priorities for the scientific exploration and utilisation of the Moon

    NASA Astrophysics Data System (ADS)

    Battrick, Bruce; Barron, C.

    1992-06-01

    A study to determine Europe's potential role in the future exploration and utilization of the Moon is presented. To establish the scientific justifications the Lunar Study Steering Group (LSSG) was established reflecting all scientific disciplines benefitting from a lunar base (Moon studies, astronomy, fusion, life sciences, etc.). Scientific issues were divided into three main areas: science of the Moon, including all investigations concerning the Moon as a planetary body; science from the Moon, using the Moon as a platform and therefore including observatories in the broadest sense; science on the Moon, including not only questions relating to human activities in space, but also the development of artificial ecosystems beyond the Earth. Science of the Moon focuses on geographical, geochemical and geological observations of the Earth-Moon system. Science from the Moon takes advantage of the stable lunar ground, its atmosphere free sky and, on the far side, its radio quiet environment. The Moon provides an attractive platform for the observation and study of the Universe. Two techniques that can make unique cause of the lunar platform are ultraviolet to submillimeter interferometric imaging, and very low frequency astronomy. One of the goals of life sciences studies (Science on the Moon) is obviously to provide the prerequisite information for establishing a manned lunar base. This includes studies of human physiology under reduced gravity, radiation protection and life support systems, and feasibility studies based on existing hardware. The overall recommendations are essentially to set up specific study teams for those fields judged to be the most promising for Europe, with the aim of providing more detailed scientific and technological specifications. It is also suggested that the scope of the overall study activities be expanded in order to derive mission scenarios for a viable ESA lunar exploration program and to consider economic, legal and policy matters

  3. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NASA Astrophysics Data System (ADS)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; ten Kate, Inge L.; Russell, Patrick

    2015-05-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Four separate science investigations were integrated in a Martian analog environment with initial science operations planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred during the initial planning sessions and as the analog mission progressed. We review here the overall program of the investigation into the origin of the valley including preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering, and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “Apollo Valley”.

  4. NASA's J-2X Engine Builds on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Snoddy, Jimmy R.

    2006-01-01

    In January 2006, NASA streamlined its U.S. Vision for Space Exploration hardware development approach for replacing the Space Shuttle after it is retired in 2010. The revised CLV upper stage will use the J-2X engine, a derivative of NASA s Apollo Program Saturn V s S-II and S-IVB main propulsion, which will also serve as the Earth Departure Stage (EDS) engine. This paper gives details of how the J- 2X engine effort mitigates risk by building on the Apollo Program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. It is well documented that propulsion is historically a high-risk area. NASA s risk reduction strategy for the J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development efforts. In addition, NASA and its industry partner, Rocketdyne, which originally built the J-2, have tapped into their extensive databases and are applying lessons conveyed firsthand by Apollo-era veterans of America s first round of Moon missions in the 1960s and 1970s. NASA s development approach for the J-2X engine includes early requirements definition and management; designing-in lessons learned from the 5-2 heritage programs; initiating long-lead procurement items before Preliminary Desi& Review; incorporating design features for anticipated EDS requirements; identifying facilities for sea-level and altitude testing; and starting ground support equipment and logistics planning at an early stage. Other risk reduction strategies include utilizing a proven gas generator cycle with recent development experience; utilizing existing turbomachinery ; applying current and recent main combustion chamber (Integrated Powerhead Demonstrator) and channel wall nozzle (COBRA) advances; and performing rigorous development, qualification, and certification testing of the engine system

  5. Magnetism and the interior of the moon. [measured at Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.

  6. Apollo 14 mission report. Supplement 7: Inflight demonstrations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Experiments performed on board the Apollo 14 are reviewed. These include a liquid transfer demonstration during the transearth coast, electrophoresis separation, a composite casting demonstration, and a heat flow and convection demonstration.

  7. Activity Book. Celebrate Apollo 11.

    ERIC Educational Resources Information Center

    Barchert, Linda; And Others

    1994-01-01

    An activity book helps students learn about the 1969 Apollo 11 mission to the moon as they get a sense of the mission's impact on their lives. The activities enhance understanding of science, math, social studies, and language arts. A teacher's page offers information on books, magazines, computer materials, and special resources. (SM)

  8. Apollo 11: 20th Anniversary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Apollo 11 Mission which culminated in the first manned lunar landing on July 20, 1969 is recounted. Historical footage of preparation, takeoff, stage separation, the Eagle Lunar Lander, and the moon walk accompany astronauts Michael Collins, Buzz Aldrin, and Neil Armstrong giving their recollections of the mission.

  9. Characterization of Apollo Regolith by X-Ray and Electron Microbeam Techniques: An Analog for Future Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2015-01-01

    The Apollo missions collected 382 kg of rock and regolith from the Moon; approximately 1/3 of the sample mass collected was regolith. Lunar regolith consists of well mixed rocks, minerals, and glasses less than 1-centimeter n size. The majority of most surface regolith samples were sieved into less than 1, 1-2, 2-4, and 4-10- millimiter size fractions; a portion of most samples was re-served unsieved. The initial characterization and classification of most Apollo regolith particles was done primarily by binocular microscopy. Optical classification of regolith is difficult because (1) the finest fraction of the regolith coats and obscures the textures of the larger particles, and (b) not all lithologies or minerals are uniquely identifiable optically. In recent years, we have begun to use more modern x-ray beam techniques [1-3], coupled with high resolution 3D optical imaging techniques [4] to characterize Apollo and meteorite samples as part of the curation process. These techniques, particularly in concert with SEM imaging of less than 1-millimeter regolith grain mounts, allow for the rapid characterization of the components within a regolith.

  10. Benefits and technology readiness for using cryogenic instead of storable propellants for return mission from Moon

    NASA Technical Reports Server (NTRS)

    Plachta, David W.

    1992-01-01

    Cryogenic requirements are examined for new missions to the moon. A comparison is made with previous moon landings and a technology assessment investigates the new requirements for such missions. All of the material is presented in viewgraph format.

  11. High Leverage Space Transportation System Technologies for Human Exploration Missions to the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1996-01-01

    The feasibility of returning humans to the Moon by 2004, the 35th anniversary of the Apollo 11 landing, is examined assuming the use of existing launch vehicles (the Space Shuttle and Titan 4B), a near term, advanced technology space transportation system, and extraterrestrial propellant--specifically 'lunar-derived' liquid oxygen or LUNOX. The lunar transportation system (LTS) elements consist of an expendable, nuclear thermal rocket (NTR)-powered translunar injection (TLI) stage and a combination lunar lander/Earth return vehicle (LERV) using cryogenic liquid oxygen and hydrogen (LOX/LH2) chemical propulsion. The 'wet' LERV, carrying a crew of 2, is configured to fit within the Shuttle orbiter cargo bay and requires only modest assembly in low Earth orbit. After Earth orbit rendezvous and docking of the LERV with the Titan 4B-launched NTR TLI stage, the initial mass in low Earth orbit (IMLEO) is approx. 40 t. To maximize mission performance at minimum mass, the LERV carries no return LOX but uses approx. 7 t of LUNOX to 'reoxidize' itself for a 'direct return' flight to Earth followed by an 'Apollo-style' capsule recovery. Without LUNOX, mission capability is constrained and the total LTS mass approaches the combined Shuttle-Titan 4B IMLEO limit of approx. 45 t even with enhanced NTR and chemical engine performance. Key technologies are discussed, lunar mission scenarios described, and LTS vehicle designs and characteristics are presented. Mission versatility provided by using a small 'all LH2' NTR engine or a 'LOX-augmented' derivative, either individually or in clusters, for outer planet robotic orbiter, small Mars cargo, lunar 'commuter', and human Mars exploration class missions is also briefly discussed.

  12. In Situ Biological Contamination Studies of the Moon: Implications for Future Planetary Protection and Life Detection Missions

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Dworkin, Jason P.; Lupisella, Mark; Kminek, Gerhard; Rummel, John D.

    2010-01-01

    NASA and ESA have outlined visions for solar system exploration that will include a series of lunar robotic precursor missions to prepare for, and support a human return to the Moon, and future human exploration of Mars and other destinations. One of the guiding principles for exploration is to pursue compelling scientific questions about the origin and evolution of life. The search for life on objects such as Mars will require that all spacecraft and instrumentation be sufficiently cleaned and sterilized prior to launch to ensure that the scientific integrity of extraterrestrial samples is not jeopardized by terrestrial organic contamination. Under the Committee on Space Research's (COSPAR's) current planetary protection policy for the Moon, no sterilization procedures are required for outbound lunar spacecraft, nor is there yet a planetary protection category for human missions. Future in situ investigations of a variety of locations on the Moon by highly sensitive instruments designed to search for biologically derived organic compounds would help assess the contamination of the Moon by lunar spacecraft. These studies could also provide valuable "ground truth" data for Mars sample return missions and help define planetary protection requirements for future Mars bound spacecraft carrying life detection experiments. In addition, studies of the impact of terrestrial contamination of the lunar surface by the Apollo astronauts could provide valuable data to help refine future Mars surface exploration plans for a human mission to Mars.

  13. Apollo A-7L Spacesuit Development for Apollo 7 Through 14 Missions

    NASA Technical Reports Server (NTRS)

    McBarron, James W., II

    2015-01-01

    Jim McBarron has over 50 years of experience with NASA spacesuit development and operations as well as the U.S. Air Force pressure suit. As a result of his experience and research, he shared his significant knowledge about early Apollo spacesuit development, A-7L suit requirements, and design details.

  14. Apollo

    Integrated Risk Information System (IRIS)

    Apollo ; CASRN 74115 - 24 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  15. Moon: possible nature of the body that produced the imbrian basin, from the composition of apollo 14 samples.

    PubMed

    Ganapathy, R; Laul, J C; Morgan, J W; Anders, E

    1972-01-07

    Soils from the Apollo 14 site contain nearly three times as much meteoritic material as soils from the Apollo 11, Apollo 12, and Luna 16 sites. Part of this material consists of the ubiquitous micrometeorite component, of primitive (carbonaceous-chondrite-like) composition. The remainder, seen most conspicuously in coarse glass and norite fragments, has a decidedly fractionated composition, with volatile elements less than one-tenth as abundant as siderophiles. This material seems to be debris of the Cyprus-sized planetesimal that produced the Imbrian basin. Compositionally this planetesimal has no exact counterpart among known meteorite classes, though group IVA irons come close. It also resembles the initial composition of the earth as postulated by the two-component model. Apparently the Imbrian planetesimal was an Earth satellite swept up by the moon during tidal recession or capture, or an asteroid deflected by Mars into terrestrial space.

  16. President Richard Nixon visits MSC to award Apollo 13 Mission Operations team

    NASA Technical Reports Server (NTRS)

    1970-01-01

    President Richard M. Nixon introduces Sigurd A. Sjoberg (far right), Director of Flight Operations at Manned Spacecraft Center (MSC), and the four Apollo 13 Flight Directors during the Presidnet's post-mission visit to MSC. The Flight Directors are (l.-r.) Glynn S. Lunney, Eugene A. Kranz, Gerald D. Griffin and Milton L. Windler. Dr. Thomas O. Paine, NASA Administrator, is seated at left. President Nixon was on the site to present the Presidential Medal of Freedom -- the nation's highest civilian honor -- to the Apollo 13 Mission Operations Team (35600); A wide-angle, overall view of the large crowd that was on hand to see President Richard M. Nixon present the Presidnetial Medal of Freedom to the Apollo 13 Mission Operations Team. A temporary speaker's platform was erected beside bldg 1 for the occasion (35601).

  17. Apollo experience report: Evolution of the rendezvous-maneuver plan for the lunar-landing missions

    NASA Technical Reports Server (NTRS)

    Alexander, J. D.; Becker, R. W.

    1973-01-01

    The evolution of the nominal rendezvous-maneuver plan for the lunar landing missions is presented along with a summary of the significant development for the lunar module abort and rescue plan. A general discussion of the rendezvous dispersion analysis that was conducted in support of both the nominal and contingency rendezvous planning is included. Emphasis is placed on the technical developments from the early 1960's through the Apollo 15 mission (July to August 1971), but pertinent organizational factors also are discussed briefly. Recommendations for rendezvous planning for future programs relative to Apollo experience also are included.

  18. Science Operations For Esa's Smart-1 Mission To The Moon

    NASA Astrophysics Data System (ADS)

    Almeida, M.; Foing, B.; Heather, D.; Marini, A.; Lumb, R.; Racca, G.

    The primary objective of the European Space Agency's SMART-1 mission to the Moon is to test and validate a new electric propulsion engine for potential use on other larger ESA Cornerstone missions. However, the SMART-1 spacecraft will also carry a number of scientific instruments and experiments for use en-route to and in orbit about the Moon. SMART-1's major operational constraint is that it will be only contacted twice per week. As a result, there will be a stronger emphasis on mid-term planning, and the spacecraft will be operated using a large list of telecommands sent during the communication windows. This approach leads to a higher probability of there being resource and/or instruments conflicts. To eliminate these, two software tools were developed: the Experiment Planning System (EPS), and the Project Test Bed (PTB). These tools will also allow us to predict the lunar coverage of the scien- tific instruments, and to simulate target selections.

  19. Is There Water on the Moon? NASA's LCROSS Mission

    NASA Technical Reports Server (NTRS)

    Noneman, Steven

    2007-01-01

    NASA is preparing for its return to the moon with the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. This secondary payload spacecraft will travel with the Lunar Reconnaissance Orbiter (LRO) satellite to the Moon on the same Atlas-V 401 Centaur rocket launched from Cape Canaveral Air Force Station, Florida. The LCROSS mission will robotically seek to determine the presence of water ice at the Moon's South Pole. The 1000kg Secondary Payload budget is efficiently used to provide a highly modular and reconfigurable LCROSS Spacecraft with extensive heritage to accurately guide the expended Centaur into the crater. Upon separation, LCROSS flies through the impact plume, telemetering real-time images and characterizing water ice in the plume with infrared cameras and spectrometers. LCROSS then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory. This presentation contains a reference to video animation of the LCROSS mission that will be covered separately.

  20. Apollo 16 mission. Holes in canopy of main parachute

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The occurrence of an anomaly during the Apollo 16 flight is discussed. The canopy of one of the recovered main parachutes had numerous small burn holes. An analysis of events following main parachute deployment which could cause the anomaly is presented. It is concluded that the burn holes in the parachute were the result of oxidizer being expelled when the plus-yaw engines were fired as the spacecraft was in the final phase of descent.

  1. Status of esa smart-1 mission to the moon

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Racca, G. R.; Marini, A.; SMART-1 Technology Working Team

    2003-04-01

    SMART-1 is the first in the programme of ESA’s Small Missions for Advanced Research and Technology . Its objective is to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The spacecraft has been readied for launch in spring 2003 as an Ariane-5 auxiliary passenger. After a cruise with primary SEP, the SMART-1 mission is to orbit the Moon for a nominal period of six months, with possible extension. The spacecraft will carry out a complete programme of scientific observations during the cruise and in lunar orbit. SMART-1's science payload, with a total mass of some 19 kg, features many innovative instruments and advanced technologies. A miniaturised high-resolution camera (AMIE) for lunar surface imaging, a near-infrared point-spectrometer (SIR) for lunar mineralogy investigation, and a very compact X-ray spectrometer (D-CIXS) with a new type of detector and micro-collimator which will provide fluorescence spectroscopy and imagery of the Moon's surface elemental composition. The payload also includes an experiment (KaTE) aimed at demonstrating deep-space telemetry and telecommand communications in the X and Ka-bands, a radio-science experiment (RSIS), a deep space optical link (Laser-Link Experiment), using the ESA Optical Ground station in Tenerife, and the validation of a system of autonomous navigation SMART-1 lunar science investigations include studies of the chemical (OBAN) based on image processing. SMART-1 lunar science investigations include studies of the chemical composition and evolution of the Moon, of geophysical processes (volcanism, tectonics, cratering, erosion, deposition of ices and volatiles) for comparative planetology, and high resolution studies in preparation for future steps of lunar exploration. The mission could address several topics such as the accretional processes that led to the formation of planets, and the origin of the

  2. Apollo: A Retrospective Analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    2004-01-01

    The program to land an American on the Moon and return safely to Earth in the 1960s has been called by some observers a defining event of the twentieth century. Pulitzer Prize-winning historian Arthur M. Schlesinger, Jr., even suggested that when Americans two centuries hence study the twentieth century, they will view the Apollo lunar landing as the critical event of the century. While that conclusion might be premature, there can be little doubt but that the flight of Apollo 11 in particular and the overall Apollo program in general was a high point in humanity s quest to explore the universe beyond Earth. Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  3. Field Trip to the Moon

    ERIC Educational Resources Information Center

    Lowman, Paul D., Jr.

    2004-01-01

    This article focuses on the geology of a single area of the Moon, the Imbrium Basin, and shows how geologists have combined basic geologic principles with evidence collected by the Apollo missions to learn more about the history of the Moon as a whole. In this article, the author discusses lunar geology teaching tips and mapping the Imbrium Basin…

  4. Radish plant exposed to lunar material collected on the Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The leaves of this radish plant were rubbed with lunar material colleted on the Apollo 12 lunar landing mission in experiments conducted in the Manned Spacecraft Center's Lunar Receiving Laboratory. The plant was exposed to the material 30 days before this photograph was made. Evidently no ill effects resulted from contact with the lunar soil.

  5. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. Astronaut Edward H. White II rides life raft in the foreground. Astronaut Roger B. Chaffee sits in hatch of the boilerplate model of the spacecraft. Astronaut Virgil I. Grissom, third member of the crew, waits inside the spacecraft.

  6. Moon Express: Lander Capabilities and Initial Payload and Mission

    NASA Astrophysics Data System (ADS)

    Spudis, P.; Richards, R.; Burns, J. O.

    2013-12-01

    Moon Express Inc. is developing a common lander design to support the commercial delivery of a wide variety of possible payloads to the lunar surface. Significant recent progress has been made on lander design and configuration and a straw man mission concept has been designed to return significant new scientific and resource utilization data from the first mission. The Moon Express lander is derived from designs tested at NASA Ames Research Center over the past decade. The MX-1 version is designed to deliver 26 kg of payload to the lunar surface, with no global restrictions on landing site. The MX-2 lander can carry a payload of 400 kg and can deliver an upper stage (designed for missions that require Earth-return, such as sample retrieval) or a robotic rover. The Moon Express lander is powered by a specially designed engine capable of being operated in either monoprop or biprop mode. The concept for the first mission is a visit to a regional pyroclastic deposit on the lunar near side. We have focused on the Rima Bode dark mantle deposits (east of crater Copernicus, around 13 N, 4 W). These deposits are mature, having been exposed to solar wind for at least 3 Ga, and have high Ti content, suggesting high concentrations of implanted hydrogen. Smooth areas near the vent suggest that the ash beds are several tens of meters thick. The projected payload includes an imaging system to document the geological setting of the landing area, an APX instrument to provide major element composition of the regolith and a neutron spectrometer to measure the bulk hydrogen composition of the regolith at the landing site. Additionally, inclusion of a next generation laser retroreflector would markedly improve measurements of lunar librations and thus, constrain the dimensions of both the liquid and solid inner cores of the Moon, as well as provide tests of General Relativity. Conops are simple, with measurements of the surface composition commencing immediately upon landing. APX

  7. Impact landing ends SMART-1 mission to the Moon

    NASA Astrophysics Data System (ADS)

    2006-09-01

    SMART-1 scientists, engineers and space operations experts witnessed the final moments of the spacecraft’s life in the night between Saturday 2 and Sunday 3 September at ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany. The confirmation of the impact reached ESOC at 07:42:22 CEST (05:42:22 UT) when ESA’s New Norcia ground station in Australia suddenly lost radio contact with the spacecraft. SMART-1 ended its journey in the Lake of Excellence, in the point situated at 34.4º South latitude and 46.2º West longitude. The SMART-1 impact took place on the near side of the Moon, in a dark area just near the terminator (the line separating the day side from the night side), at a “grazing” angle of about one degree and a speed of about 2 kilometres per second. The impact time and location was planned to favour observations of the impact event from telescopes on Earth, and was achieved by a series of orbit manoeuvres and corrections performed during the course of summer 2006, the last of which was on 1 September. Professional and amateur ground observers all around the world - from South Africa to the Canary Islands, South America, the continental United States, Hawaii, and many other locations - were watching before and during the small SMART-1 impact, hoping to spot the faint impact flash and to obtain information about the impact dynamics and about the lunar surface excavated by the spacecraft. The quality of the data and images gathered from the ground observatories - a tribute to the end of the SMART-1 mission and a possible additional contribution to lunar science - will be assessed in the days to come. For the last 16 months and until its final orbits, SMART-1 has been studying the Moon, gathering data about the morphology and mineralogical composition of the surface in visible, infrared and X-ray light. “The legacy left by the huge wealth of SMART-1 data, to be analysed in the months and years to come, is a precious contribution to

  8. Chandrayaan-2: India's First Soft-landing Mission to Moon

    NASA Astrophysics Data System (ADS)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.

    2012-07-01

    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries

  9. Apollo Soyuz test project, USA-USSR. [mission plan of spacecraft docking

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The mission plan of the docking of a United States Apollo and a Soviet Union Soyuz spacecraft in Earth orbit to test compatible rendezvous and docking equipment and procedures is presented. Space experiments conducted jointly by the astronauts and cosmonauts during the joint phase of the mission as well as experiments performed solely by the U.S. astronauts and spread over the nine day span of the flight are included. Biographies of the astronauts and cosmonauts are given.

  10. Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.

  11. Performance of the CSM RCS during the AS 506/CSM 107/LM 5 mission (Apollo 11)

    NASA Technical Reports Server (NTRS)

    Lingle, W. N.; Jenkins, L. W.; Vaughan, C. A.

    1969-01-01

    The Apollo 11 service module and the command module (CM) reaction control system performed satisfactorily throughout the mission. Two anomalies which occurred were an inadvertent isolation valve closure during command and service module/Saturn S4B/lunar module separation and a failure of a CM thruster to respond to automatic commands. The isolation valves were later opened by the crew and remained open during the remainder of the mission. The cause of the closure was determined to be the shock loads generated during separation. The CM engine malfunction was caused by a faulty terminal board connector. All system parameters were normal during the mission, and all mission requirements were satisfied.

  12. Project: Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The 12-day Apollo 15 mission, scheduled for launch on July 26 to carry out the fourth United States manned exploration of the Moon, will: Double the time and extend tenfold the range of lunar surface exploration as compared with earlier missions; Deploy the third in a network of automatic scientific stations; Conduct a new group of experiments in lunar orbit; and Return to Earth a variety of lunar rock and soil samples. Scientists expect the results will greatly increase man's knowledge both of the Moon's history and composition and of the evolution and dynamic interaction of the Sun-Earth system. This is so because the dry, airless, lifeless Moon still bears records of solar radiation and the early years of solar system history that have been erased from Earth. Observations of current lunar events also may increase understanding of similar processes on Earth, such as earthquakes. The Apollo 15 Lunar module will make its descent over the Apennine peaks, one of the highest mountain ranges on the Moon, to land near the rim of the canyon-like Hadley Rille. From this Hadley-Apennine lunar base, between the mountain range and the rille, Commander David R. Scott and Lunar Module Pilot James B. Irwin will explore several kilometers from the lunar module, driving an electric-powered lunar roving vehicle for the first time on the Moon. Scott and Irwin will leave the lunar module for three exploration periods to emplace scientific experiments on the lunar surface and to make detailed geologic investigations of formations in the Apennine foothills, along the Hadley Rille rim, and to other geologic structures. The three previous manned landings were made by Apollo 11 at Tranquillity Base, Apollo 12 in the Ocean of Storms and Apollo 14 at Fra Mauro.

  13. A mission to Mercury and a mission to the moons of Mars

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  14. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  15. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As

  16. Jupiter Icy Moons Explorer: mission status after the Definition Phase

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Sarri, Giuseppe; Wahlund, Jan-Erik; Witasse, Olivier

    2015-04-01

    JUpiter ICy moons Explorer (JUICE), the ESA first large-class mission within the Cosmic Vision Program 2015-2025, was adopted in November 2014. The mission will perform detailed investigations of Jupiter and its system with particular emphasis on Ganymede as a planetary body and potential habitat. The overarching theme for JUICE is: The emergence of habitable worlds around gas giants. At Ganymede, the mission will characterize in detail the ocean layers; provide topographical, geological and compositional mapping of the surface; study the physical properties of the icy crusts; characterize the internal mass distribution, investigate the exosphere; study Ganymede's intrinsic magnetic field and its interactions with the Jovian magnetosphere. For Europa, the focus will be on the non-ice chemistry, understanding the formation of surface features and subsurface sounding of the icy crust over recently active regions. Callisto will be explored as a witness of the early solar system. JUICE will perform a multidisciplinary investigation of the Jupiter system as an archetype for gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions will be elucidated. JUICE will study the moons' interactions with the magnetosphere, gravitational coupling and long-term tidal evolution of the Galilean satellites. JUICE highly capable scientific payload includes 10 state-of-the-art instruments onboard the spacecraft plus one experiment that uses the spacecraft telecommunication system with ground-based radio telescopes. The remote sensing package includes a high-resolution multi-band visible imager (JANUS) and spectro-imaging capabilities from the

  17. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  18. Apollo experience report: Mission evaluation team postflight documentation

    NASA Technical Reports Server (NTRS)

    Dodson, J. W.; Cordiner, D. H.

    1975-01-01

    The various postflight reports prepared by the mission evaluation team, including the final mission evaluation report, report supplements, anomaly reports, and the 5-day mission report, are described. The procedures for preparing each report from the inputs of the various disciplines are explained, and the general method of reporting postflight results is discussed. Recommendations for postflight documentation in future space programs are included. The official requirements for postflight documentation and a typical example of an anomaly report are provided as appendixes.

  19. A Simulated Geochemical Rover Mission to the Taurus-Littrow Valley of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Haskin, Larry A.; Jolliff, Bradley L.

    1995-01-01

    We test the effectiveness of using an alpha backscatter, alpha-proton, X ray spectrometer on a remotely operated rover to analyze soils and provide geologically useful information about the Moon during a simulated mission to a hypothetical site resembling the Apollo 17 landing site. On the mission, 100 soil samples are "analyzed" for major elements at moderate analytical precision (e.g., typical relative sample standard deviation from counting statistics: Si[11%], Al[18%], Fe[6%], Mg[20%], Ca[5%]). Simulated compositions of soils are generated by combining compositions of components representing the major lithologies occurring at the site in known proportions. Simulated analyses are generated by degrading the simulated compositions according to the expected analytical precision of the analyzer. Compositions obtained from the simulated analyses are modeled by least squares mass balance as mixtures of the components, and the relative proportions of those components as predicted by the model are compared with the actual proportions used to generate the simulated composition. Boundary conditions of the modeling exercise are that all important lithologic components of the regolith are known and are represented by model components, and that the compositions of these components are well known. The effect of having the capability of determining one incompatible element at moderate precision (25%) is compared with the effect of the lack of this capability. We discuss likely limitations and ambiguities that would be encountered, but conclude that much of our knowledge about the Apollo 17 site (based on the return samples) regarding the distribution and relative abundances of lithologies in the regolith could be obtained. This success requires, however, that at least one incompatible element be determined.

  20. A Simulated Geochemical Rover Mission to the Taurus-Littrow Valley of the Moon

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.; Haskin, Larry A.; Jolliff, Bradley L.

    1995-07-01

    We test the effectiveness of using an alpha backscatter, alpha-proton, X ray spectrometer on a remotely operated rover to analyze soils and provide geologically useful information about the Moon during a simulated mission to a hypothetical site resembling the Apollo 17 landing site. On the mission, 100 soil samples are "analyzed" for major elements at moderate analytical precision (e.g., typical relative sample standard deviation from counting statistics: Si[11%], Al[18%], Fe[6%], Mg[20%], Ca[5%]). Simulated compositions of soils are generated by combining compositions of components representing the major lithologies occurring at the site in known proportions. Simulated analyses are generated by degrading the simulated compositions according to the expected analytical precision of the analyzer. Compositions obtained from the simulated analyses are modeled by least squares mass balance as mixtures of the components, and the relative proportions of those components as predicted by the model are compared with the actual proportions used to generate the simulated composition. Boundary conditions of the modeling exercise are that all important lithologic components of the regolith are known and are represented by model components, and that the compositions of these components are well known. The effect of having the capability of determining one incompatible element at moderate precision (25%) is compared with the effect of the lack of this capability. We discuss likely limitations and ambiguities that would be encountered, but conclude that much of our knowledge about the Apollo 17 site (based on the return samples) regarding the distribution and relative abundances of lithologies in the regolith could be obtained. This success requires, however, that at least one incompatible element be determined.

  1. Dynamical modelling of the Galilean moons for the JUICE mission

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Lainey, V.; Gurvits, L. I.; Visser, P. N. A. M.

    2016-12-01

    Radio tracking and astrometric data obtained by the JUICE mission, using the PRIDE, 3GM and JANUS instruments, will allow the dynamics of the Galilean moons to be measured to unprecedented accuracy. As a result, the dynamical models used for creating ephemerides from these data will most likely require the inclusion of various heretofore neglected physical effects. To determine which effects will need to be included, we perform a sensitivity analysis of the influence on the dynamics of the system for a wide array of gravitational, tidal and rotational characteristics of the system. We estimate the dynamics of the Galilean moons with a given perturbation turned off, using ideal three-dimensional measurements of the satellites' positions generated with these perturbations turned on. In doing so, we assess the capabilities of the nominal dynamical model to absorb the influence of this perturbations. We analyze the dynamical behaviour over a period of five years, and limit our analysis to effects that may be observable from JUICE radio tracking and optical astrometry data. Our simulations comprise a short-period (5 years) sensitivity analysis of the dynamics of the moons, and not a simulation of the tracking data inversion for JUICE. Our analysis indicates that the nominal dynamical model of the Galilean satellites can very efficiently absorb the influence of the current uncertainties in most of the physical parameters of the Jovian system, to a level where these uncertainties will not be influential for JUICE-derived ephemerides. An important exception is the influence of tidal dissipation: the k2 / Q of Io will be clearly observable by JUICE tracking data, which will be strongly correlated with the weaker effect of Jupiter's k2 / Q . The dissipation inside Europa may also be weakly constrained by JUICE tracking data. Without improvements in the Jovian gravity field from the Juno mission, the estimation of Jupiter zonal gravity field coefficients at degrees 2, 3 and 5

  2. Training Space Surgeons for Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Pool, S. L.; McSwain, N.

    2004-01-01

    Over a period of 4 years, several working groups reviewed the provisions for medical care in low earth orbit and for future flights such as to the Moon and Mars. More than 60 medical experts representing a wide variety of clinical backgrounds participated in the working groups. They concluded that NASA medical training for long-duration missions, while critical to success, is currently aimed at short-term skill retention. They noted that several studies have shown that skills and knowledge deteriorate rapidly in the absence of adequate sustainment training. American Heart Association studies have shown that typically less than twenty-five percent of learned skills remain after 6 to 8 months. In addition to identifying the current training deficiencies, the working groups identified additional skill and knowledge sets required for missions to the Moon and Mars and curricula were developed to address inadequacies. Space medicine care providers may be categorized into 4 types based on health care responsibilities and level of education required. The first 2 types are currently recognized positions within the flight crew: crew medical officers and astronaut-physician. The crew medical officer (CMO), a non-medically trained astronaut crewmember, is given limited emergency medical technician-like training to provide medical care on orbit. Many of hidher duties are carried out under the direction of a ground-based flight surgeon in mission control. Second is the astronaut- physician whose primary focus is on mission specialist duties and training, and who has very limited ability to maintain medical proficiency. Two new categories are recommended to complete the 4 types of care providers primarily to address the needs of those who will travel to the Moon and Mars. Physician astronaut - a physician, who in addition to being a mission specialist, will be required to maintain and enhance hidher medical proficiency while serving as an astronaut. Space surgeon - a physician

  3. Lost moon, saved lives: using the movie Apollo 13 as a video primer in behavioral skills for simulation trainees and instructors.

    PubMed

    Halamek, Louis P

    2010-10-01

    Behavioral skills such as effective communication, teamwork, and leadership are critically important to successful outcomes in patient care, especially in resuscitation situations where correct decisions must be made rapidly. However, historically, these important skills have rarely been specifically addressed in learning programs directed at healthcare professionals. Not only have most healthcare professionals had little or no formal education and training in applying behavioral skills to their patient care activities but also many of those serving as instructors and content experts for training programs have few resources available that clearly illustrate what these skills are and how they may be used in the context of real clinical situations. This represents a serious shortcoming in the education and training of healthcare professionals and stands in distinct contrast to other industries.Aerospace, similar to other high-consequence industries, has a long history of the use of simulation to improve human performance and reduce risk: astronauts and the engineers in Mission Control spend hundreds of hours in simulated flight in preparation for every mission. The value of time spent in the simulator was clearly illustrated during the flight of Apollo 13, the third mission to land men on the moon. The Apollo 13 crew had to overcome a number of life-threatening technical and medical problems, and it was their simulation-based training that allowed them to display the teamwork, ingenuity, and determination needed to return to earth safely.The movie Apollo 13 depicts in a highly realistic manner the events that occurred during the flight, including the actions of the crew in space and those in Mission Control in Houston. Three scenes from this movie are described in this article; each serves as a useful example for healthcare professionals of the importance of simulation-based learning and the application of behavioral skills to successful resolution of crises. This

  4. Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koji; Yamada, Ryuhei; Kikuchi, Fuyuhiko; Kamata, Shunichi; Ishihara, Yoshiaki; Iwata, Takahiro; Hanada, Hideo; Sasaki, Sho

    2015-09-01

    The internal structure of the Moon is important for discussions on its origin and evolution. However, the deep structure of the Moon is still debated due to the absence of comprehensive seismic data. This study explores lunar interior models by complementing Apollo seismic travel time data with selenodetic data which have recently been improved by Gravity Recovery and Interior Laboratory (GRAIL) and Lunar Laser Ranging (LLR). The observed data can be explained by models including a deep-seated zone with a low velocity (S wave velocity = 2.9 ± 0.5 km/s) and a low viscosity (˜3 × 1016 Pa s). The thickness of this zone above the core-mantle boundary is larger than 170 km, showing a negative correlation with the radius of the fluid outer core. The inferred density of the lowermost mantle suggests a high TiO2 content (>11 wt.%) which prefers a mantle overturn scenario.

  5. Apollo 13 Mission: Cryogenic Oxygen Tank 2 Anomaly Report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    There were two investigative aspects associated with the loss of the cryogenic oxygen tank pressure during the Apollo 13 flight. First, what was the cause of the flight failure of cryogenic oxygen tank 2. Second, what possible contributing factors during the ground history of the tank could have led to the ultimate failure in flight. The first flight indication of a problem occurred when the quantity measurement in the tank went full scale about 9 hours before the incident. This condition in itself could not have contributed to ignition in the tank, since the energy in the circuit is restricted to about 7 milli-joules. Data from the electrical system provided the second indication of a problem when the fans in tank 2 were activated to reduce any stratification which might have been present in the supercritical oxygen in the tank. Several short-circuits were detected and have been isolated to the fan circuits of tank 2. The first short-circuit could have contained as much as 160 joules of energy, which is within the current-protection level of the fan circuits. Tests have shown that two orders of magnitude less energy than this is sufficient to ignite the polytetrafluoroethylene insulation on the fan circuits in the tank. Consequently, the evidence indicates that the insulation on the fan wiring was ignited by the energy in the short-circuit.

  6. Thermophysical modeling of Didymos' moon for the Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Pelivan, Ivanka; Drube, Line; Kührt, Ekkehard; Helbert, Jörn; Biele, Jens; Maibaum, Michael; Cozzoni, Barbara; Lommatsch, Valentina

    2017-04-01

    Although typically less resolved through observations, the secondary in a binary system of asteroids is an interesting target for space missions such as the Asteroid Impact Mission. Estimates of the surface temperature distribution are important for mission design. Based on known, assumed and derived physical properties, a thermophysical model of the smaller body in the 65803 Didymos system is established. Because of the unknown thermal inertia, a parameter study has been carried out for a thermal inertia range of Γ = 50 -1000 J m-2 K-1 s-1/2. Results are presented for the minimum and maximum values of this range and a likely value of Γ = 500 J m-2 K-1 s-1/2. The parameter study extends from the unshadowed to the eclipsed case where shadowing through the primary is simulated in a simplified manner assuming that the orbit of the moon lies in the equatorial plane of the primary with its z-axis normal to this plane. Results from this study are used to investigate performance for instruments foreseen for the Asteroid Impact Mission. Preliminary results are obtained for the signal-to-noise ratio of a proposed thermal infrared imager. Furthermore, MASCOT-2 Lander thermal survivability has been investigated for several possible landing sites and specific settings.

  7. Apollo Science

    ERIC Educational Resources Information Center

    Biggar, G. M.

    1973-01-01

    Summarizes the scientific activities of the Apollo program, including findings from analyses of the returned lunar sample. Descriptions are made concerning the possible origin of the moon and the formation of the lunar surface. (CC)

  8. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2007-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  9. The Effects of Lunar Dust on EVA Systems During the Apollo Missions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2005-01-01

    Mission documents from the six Apollo missions that landed on the lunar surface have been studied in order to catalog the effects of lunar dust on Extra-Vehicular Activity (EVA) systems, primarily the Apollo surface space suit. It was found that the effects could be sorted into nine categories: vision obscuration, false instrument readings, dust coating and contamination, loss of traction, clogging of mechanisms, abrasion, thermal control problems, seal failures, and inhalation and irritation. Although simple dust mitigation measures were sufficient to mitigate some of the problems (i.e., loss of traction) it was found that these measures were ineffective to mitigate many of the more serious problems (i.e., clogging, abrasion, diminished heat rejection). The severity of the dust problems were consistently underestimated by ground tests, indicating a need to develop better simulation facilities and procedures.

  10. JUICE: A European Mission to Jupiter and its Icy Moons

    NASA Astrophysics Data System (ADS)

    Grasset, Olivier; Witasse, Olivier; Barabash, Stas; Brandt, Pontus; Bruzzone, Lorenzo; Bunce, Emma; Cecconi, Baptiste; Cavalié, Thibault; Cimo, Giuseppe; Coustenis, Athena; Cremonese, Gabriele; Dougherty, Michele; Fletcher, Leigh N.; Gladstone, Randy; Gurvits, Leonid; Hartogh, Paul; Hoffmann, Holger; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Kasaba, Yasumasa; Kaspi, Yohai; Krupp, Norbert; Langevin, Yves; Mueller-Wodarg, Ingo; Palumbo, Pasquale; Piccioni, Giuseppe; Plaut, Jeffrey; Poulet, Francois; Roatsch, Thomas; Retherford, Kurt D.; Rothkaehl, Hanna; Stevenson, David J.; Tosi, Federico; Van Hoolst, Tim; Wahlund, Jan-Erik; Wurz, Peter; Altobelli, Nicolas; Accomazzo, A.; Boutonnet, Arnaud; Erd, Christian; Vallat, Claire

    2016-10-01

    JUICE - JUpiter ICy moons Explorer - is the first large mission in the ESA Cosmic Vision programme [1]. The implementation phase started in July 2015. JUICE will arrive at Jupiter in October 2029, and will spend 3 years characterizing the Jovian system, the planet itself, its giant magnetosphere, and the giant icy moons: Ganymede, Callisto and Europa. JUICE will then orbit Ganymede.The first goal of JUICE is to explore the habitable zone around Jupiter [2]. Ganymede is a high-priority target because it provides a unique laboratory for analyzing the nature, evolution and habitability of icy worlds, including the characteristics of subsurface oceans, and because it possesses unique magnetic fields and plasma interactions with the environment. On Europa, the focus will be on recently active zones, where the composition, surface and subsurface features (including putative water reservoirs) will be characterized. Callisto will be explored as a witness of the early Solar System.JUICE will also explore the Jupiter system as an archetype of gas giants. The circulation, meteorology, chemistry and structure of the Jovian atmosphere will be studied from the cloud tops to the thermosphere and ionosphere. JUICE will investigate the 3D properties of the magnetodisc, and study the coupling processes within the magnetosphere, ionosphere and thermosphere. The mission also focuses on characterizing the processes that influence surface and space environments of the moons.The payload consists of 10 instruments plus a ground-based experiment (PRIDE) to better constrain the S/C position. A remote sensing package includes imaging (JANUS) and spectral-imaging capabilities from UV to sub-mm wavelengths (UVS, MAJIS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the moons, and a radio science experiment (3GM) to probe the atmospheres and to determine the gravity fields. The in situ package comprises a suite to study plasma and

  11. Overview of a Preliminary Destination Mission Concept for a Human Orbital Mission to the Martial Moons

    NASA Technical Reports Server (NTRS)

    Mazanek, D. D.; Abell, P. A.; Antol, J.; Barbee, B. W.; Beaty, D. W.; Bass, D. S.; Castillo-Rogez, J. C.; Coan, D. A.; Colaprete, A.; Daugherty, K. J.; Drake, B. G.; Earle, K. D.; Graham, L. D.; Hembree, R. M.; Hoffman, S. J.; Jefferies, S. A.; Lupisella, M. L.; Reeves, David M.

    2012-01-01

    The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.

  12. Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  13. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission practice water egress procedures with full scale boilerplate model of their spacecraft. In the water at right is Astronaut Edward H. White (foreground) and Astronaut Roger B. Chaffee. In raft near the spacecraft is Astronaut Virgil I. Grissom. NASA swimmers are in the water to assist in the practice session that took place at Ellington AFB, near the Manned Spacecraft Center, Houston.

  14. Saturn 5 Launch Vehicle Flight Evaluation Report-AS-512 Apollo 17 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An evaluation of the launch vehicle and lunar roving vehicle performance for the Apollo 17 flight is presented. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective action. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  15. Crew of the first manned Apollo mission practice water egress procedures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Prime crew for the first manned Apollo mission relax in a life raft during water egress training in the Gulf of Mexico with a full scale boilerplate model of their spacecraft. Left to right, are Astronauts Roger B. Chaffee, pilot, Virgil I. Grissom, command pilot, and Edward H. White II (facing camera), senior pilot. In background is the 'Duchess', a yacht owned by La Porte businessman Paul Barkley and provided by him as a press boat for newsmen covering the training.

  16. U.S.S. Hornet crewmen greeted by crew of Apollo 12 lunar landing mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S.S. Hornet crewmen are greeted by the crew of the Apollo 12 lunar landing mission as the three astronauts are transfered from a U.S. Navy helicopter to a Mobile Quarantine Facility (MQF) aboard the prime recovery vessel. Charles Conrad Jr., right, commander; Richard F. Gordon Jr., command module pilot, left front; and Alan L. Bean, lunar module pilot splashed down safely at 2:58 p.m., November 24, 1969.

  17. Report of the Terrestrial Bodies Science Working Group. Volume 4: The moon. [lunar polar orbiter mission

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Duke, M. B.; Hubbard, N.; Johnson, T. V.; Malin, M. C.; Minear, J.

    1977-01-01

    A rationale for furture exploration of the moon is given. Topics discussed include the objectives of the lunar polar orbiter mission, the mission profile, and general characteristics of the spacraft to be used.

  18. Mars Moons Prospector Mission with CubeSats

    NASA Astrophysics Data System (ADS)

    Udrea, Bogdan; Nayak, Mikey; Allen, Brett; Bourke, Justin; Casariego, Gabriela; Gosselin, Steven; Hiester, Evan; Maier, Margaret; Melchert, Jeanmarie; Patel, Chitrang; Reis, Leslie; Smith, Gregory; Snow, Travis; Williams, Sarah; Franquiz, Francsico

    2015-04-01

    The preliminary design of a low-cost Discovery class mission for prospecting Mars moons Phobos and Deimos is undertaken as capstone senior design class in spacecraft design. The mission design is centred on a mothership that carries a dozen of 12U CubeSats, each of 22x22x34cm in size and 24kg in mass. The mothership is equipped with a set of instruments for the investigation of regolith samples, similar to those with identical functions on the Curiosity and the Mars 2020 rovers. The mothership also serves as a telecommunication hub with Earth. Six of the CubeSats have the role of touching down and picking up soil samples for delivery to the mothership for analysis and the six have the role of visually inspecting the moon at close proximity in visible and near and mid infrared light and deploying instruments on the surface of the moons. A suite of miniaturized instruments are investigated for deployment on the CubeSats. The CubeSats are designed to dock with the mothership to be refueled and they heavily leverage the design of the ARAPAIMA (www.eraucubesat.org) proximity operations 6U CubeSat currently in development at ERAU for the Air Force University Nanosatellite Program. The concept of operations envisions the launch of the mothership as a primary payload on a Mars transfer trajectory. After performing a Mars capture maneuver the mothership undertakes autonomous aerobraking to achieve a highly elliptic orbit with the apoapsis at Deimos altitude of 23,460km. Further maneuvering places the mothership in a relative orbit about Deimos from which the CubeSats are deployed. Once the investigation of Deimos is completed the mothership retrieves its CubeSats and maneuver to achieve a relative orbit about Phobos. An investigation similar to that of Deimos is performed. If the mass margins allow it then an extended mission will attempt to confirm the presence of a dust ring between Phobos and Deimos and conduct multi-point atmospheric investigations with supplemental 3U

  19. APOLLO 8: Birth of a Machine (Pt 2/2)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Part 2 of the clip 'Birth of a machine'. This clip reveals the origins of the major components of the mission. From the film documentary 'APOLLO 8:'Debrief': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) APOLLO 8: First manned Saturn V flight with Frank Borman, James A. Lovell, Jr., and william A. Anders. First manned lunar orbit mission; provided a close-up look at the moon during 10 lunar orbits. Mission Duration 147hrs 0m 42s

  20. The Mission Transcript Collection: U.S. Human Spaceflight Missions from Mercury Redstone 3 to Apollo 17

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aboard every U.S. piloted spacecraft, from Mercury through Apollo, NASA installed tape recorders that captured nearly every word spoken by the astronauts during their history-making flights into space. For the first time ever, NASA has digitally scanned all of the transcripts made from both the onboard tapes and those tape recordings made on the ground from the air-to-ground transmissions and placed them on this two CD-ROM set. Gathered in this special collection are 80 transcripts totaling nearly 45,000 pages of text that cover every US human spaceflight from the first human Mercury mission through the last lunar landing flight of Apollo 17. Users of this CD will note that the quantity and type of transcripts made for each mission vary. For example, the Mercury flights each had one transcript whereas the Gemini missions produced several. Starting with the Gemini flights, NASA produced a Public Affairs Office (PAO) commentary version, as well as at least one "technical" air-to-ground transcript version, per mission. Most of the Apollo missions produced four transcripts per flight. These included the onboard voice data recorder transcripts made from the Data Storage Equipment (DSE) on the Command Module (CM), and the Data Storage Electronics Assembly (DSEA) onboard the Lunar Module (LM), in addition to the PAO commentary and air-to-ground technical transcripts. The CD set includes an index listing each transcript file by name. Some of the transcripts include a detailed explanation of their contents and how they were made. Also included in this collection is a listing of all the original air-to-ground audiotapes housed in NASA's archives from which many of these transcripts were made. We hope you find this collection of transcripts interesting and useful.

  1. Tether-mission design for multiple flybys of moon Europa

    NASA Astrophysics Data System (ADS)

    Sanmartin, J. R. S.; Charro, M. C.; Sanchez-Arriaga, G. S. A.; Sanchez-Torres, A. S. T.

    2015-10-01

    A tether mission to carry out multiple flybys of Jovian moon Europa is here presented. There is general agreement on elliptic-orbit flybys of Europa resulting in cost to attain given scientific goals lower than if actually orbiting the moon, tethers being naturally fit to fly-by rather than orbit moons1. The present mission is similar in this respect to the Clipper mission considered by NASA, the basic difference lying in location of periapsis, due to different emphasis on mission-challenge metrics. Clipper minimizes damaging radiation-dose by avoiding the Jupiter neighborhood and its very harsh environment; periapsis would be at Europa, apoapsis as far as moon Callisto. As in all past outer-planet missions, Clipper faces, however, critical power and propulsion needs. On the other hand, tethers can provide both propulsion and power, but must reach near the planet to find high plasma density and magnetic field values, leading to high induced tether current, and Lorentz drag and power. The bottom line is a strong radiation dose under the very intense Radiation Belts of Jupiter. Mission design focuses on limiting dose. Perijove would be near Jupiter, at about 1.2-1.3 Jovian radius, apojove about moon Ganymede, corresponding to 1:1 resonance with Europa, so as to keep dose down: setting apojove at Europa, for convenient parallel flybys, would require two perijove passes per flyby (the Ganymede apojove, resulting in high eccentricity, about 0.86, is also less requiring on tether operations). Mission is designed to attain reductions in eccentricity per perijove pass as high as Δe ≈ - 0.04. Due the low gravity-gradient, tether spinning is necessary to keep it straight, plasma contactors placed at both ends taking active turns at being cathodic. Efficiency of capture of the incoming S/C by the tether is gauged by the ratio of S/C mass to tether mass; efficiency is higher for higher tape-tether length and lower thickness and perijove. Low tether bowing due to the Lorentz

  2. Collaboration on SEP Missions to the Moon and Small Bodies

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.

    1997-01-01

    In response to the Discovery announcement of opportunity a team consisting of TRW Lewis Research Center, JPL and UCLA with scientific co-investigators from government and University laboratories have proposed to fly the first planetary solar electric propulsion (SEP) mission. Diana is designed to carry an X-ray and gamma ray spectrometer, and imaging spectrometer, a framing camera, a laser altimer an ion spectrometer and a magnetometer. In order to obtain lunar gravity data from the far side of the moon a relay satellite is placed into high polar orbit about the moon to relay the Doppler-shifted telemetry to Earth. Diana will spend two months in a 700 km polar orbit obtaining mineralogical data from a full spectral map of the lunar surface, and then spend a year in a 100 km (or below) polar orbit mapping the lunar elemental composition, its topography, gravity field, ions from its atmosphere and its permanent and induced magnetic fields. After the low altitude mapping phase the ion thrusters propel the spacecraft out of the lunar sphere of influence and onto a heloioscentric trajectory to rendezvous with dormant comet Wilson-Harrington. The ground truth provided by the returned lunar samples to validate the remote sensing instruments for lunar studies will also serve to validate the Wilson-Harrington observations since the same instruments will be used at both bodies.

  3. LUNETTE - A Discovery Class Mission to the Moon to Establish a Geophysical Network

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Banerdt, W. B.; Alkalai, L.

    2009-12-01

    Lunette is a Discovery mission concept that is designed to deliver three landed geophysical packages (“nodes”) to widely spaced (3000-5000 km) locations on the lunar surface. This mission will provide detailed information on the interior of the Moon through seismic, thermal, electromagnetic, and precision laser ranging measurements, and will substantially address the lunar interior science objectives set out in “The Scientific Context for the Exploration of the Moon” (NRC, 2008) and ”The Final Report for the International Lunar Network Anchor Nodes Science Definition Team” (NASA, 2009). Each node will contain: a very broad band seismometer that is at least an order of magnitude more sensitive over a wider frequency band than the seismometers used during Apollo; a heat flow probe, delivered via a self-penetrating “mole” device; a low-frequency electromagnetic sounding instrument, which will measure the electromagnetic properties of the outermost few hundred km of the Moon; and a corner-cube laser retroreflector for lunar laser ranging. These instruments will provide an enormous advance in our knowledge of the structure and processes of the lunar interior over that provided by Apollo-era data, allowing insights into the earliest history of the formation and evolution of the Moon. The instruments that comprise the individual nodes are all optimized for low power operation and this mission will not rely on a radioisotope power supply. Improvements in solar energy and battery technology, along with an Event Timer Module which allows the lander to shut down its electronics for most of the lunar night, enables a solar/battery mission architecture with continuous instrument operation and a two-year nominal lifetime. The instruments have a combined mass of <12 kg, and the dry mass of each lander will be on the order of 100 kg, including solar panels, batteries, and communications. The most power hungry instrument is the heat flow “mole”, which requires

  4. Apollo 17: At Taurus Littrow

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1973-01-01

    A summation, with color illustrations, is presented on the Apollo 17 mission. The height, weight, and thrust specifications are given on the launch vehicle. Presentations are given on: the night launch; earth to moon ascent; separation and descent; EVA, the sixth lunar surface expedition; ascent from Taurus-Littrow; the America to Challenger rendezvous; return, reentry, and recovery; the scientific results of the mission; background information on the astronauts; and the future projects.

  5. Recovered Apollo-Era Saturn V F-1 Engines Arrive at Cape Canaveral

    NASA Video Gallery

    Two F-1 engines that powered the first stage of the Saturn V rockets that lifted NASA’s Apollo missions to the moon were recovered from the Atlantic Ocean March 20, 2013 by Jeff Bezos, the founde...

  6. Code-Name: Spider, Flight of Apollo 9.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Apollo 9, an earth orbiting mission during which the Lunar Module was first tested in space flight in preparation for the eventual moon landing missions, is the subject of this pamphlet. Many color photographs and diagrams of the Lunar Module and flight activities are included with a brief description of the mission. (PR)

  7. Apollo 12 Pacific Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  8. Constraints on the formation age and evolution of the Moon from 142Nd-143Nd systematics of Apollo 12 basalts

    NASA Astrophysics Data System (ADS)

    McLeod, Claire L.; Brandon, Alan D.; Armytage, Rosalind M. G.

    2014-06-01

    The Moon likely formed as a result of a giant impact between proto-Earth and another large body. The timing of this event and the subsequent lunar differentiation timescales are actively debated. New high-precision Nd isotope data of Apollo mare basalts are used to evaluate the Low-Ti, High-Ti and KREEP mantle source reservoirs within the context of lunar formation and evolution. The resulting models are assessed using both reported 146Sm half-lives (68 and 103 Myr). The linear relationship defined by 142Nd-143Nd systematics does not represent multi-component mixing and is interpreted as an isochron recording a mantle closure age for the Sm-Nd system in the Moon. Using a chondritic source model with present day μ142Nd of -7.3, the mare basalt mantle source reservoirs closed at 4.45-09+10 Ga (t Sm146=68 Myr) or 4.39-14+16 Ga (t Sm146=103 Myr). In a superchondritic, 2-stage evolution model with present day μNd142 of 0, mantle source closure ages are constrained to 4.41-08+10 (t Sm146=68 Myr) or 4.34-14+15 Ga (t Sm146=103 Myr). The lunar mantle source reservoir closure ages <4.5 Ga may be reconciled by 3 potential scenarios. First, the Moon formed later than currently favored models indicate, such that the lunar mantle closure age is near or at the time of lunar formation. Second, the Moon formed ca. 4.55 to 4.47 Ga and small amounts of residual melts were sustained within a crystallizing lunar magma ocean (LMO) for up to ca. 200 Myr from tidal heating or asymmetric LMO evolution. Third, the LMO crystallized rapidly after early Moon formation. Thus the Sm-Nd mantle closure age represents a later resetting of isotope systematics. This may have resulted from a global wide remelting event. While current Earth-Moon formation constraints cannot exclusively advocate or dismiss any of these models, the fact that U-Pb ages and Hf isotopes for Jack Hills zircons from Australia are best explained by an Earth that re-equilibrated at 4.4 Ga or earlier following the Moon

  9. The SMART-1 Mission: Photometric Studies of the Moon with the AMIE Camera

    NASA Astrophysics Data System (ADS)

    Shkuratov, Yu. G.; Kreslavsky, M. A.; Stankevich, D. G.; Kaydash, V. G.; Pinet, P.; Shevchenko, V. V.; Foing, B. H.; Josset, J.-L.

    2003-07-01

    We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 μm) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.

  10. LAPIS - LAnder Package Impacting a Seismometer - A Proposal for a Semi-Hard Lander Mission to the Moon

    NASA Astrophysics Data System (ADS)

    Lange, C.

    2009-04-01

    With an increased interest on the moon within the last years, at least with several missions in orbit or under development (SELENE/Japan, Chang'e/China, Chandrayaan/India and others), there is a strong demand within the German science community to participate in this initiative, building-up a national competence regarding lunar exploration. For this purpose, a Phase-0 analysis for a small lunar semi-hard landing scenario has been performed at DLR to foster future lunar exploration missions. This study's scope was to work out a more detailed insight into the design drivers and challenges and their impact on mass and cost budgets for such a mission. LAPIS has been dedicated to the investigation of the seismic activities of the moon, additionally to some other geophysical in-situ measurements at the lunar surface. In fact, the current status of the knowledge and understanding of lunar seismic activities leads to a range of open questions which have not been answered so far by the various Apollo missions in the past and could now possibly be answered by the studied LAPIS mission. Among these are the properties of the lunar core, the origin of deep and shallow moonquakes and the occurrence of micro-meteoroids. Therefore, as proposed first for LAPIS on the LEO mission, a payload of a short period micro-seismometer, based on European and American predevelopments, has been suggested. A staged mission scenario will be described, using a 2-module spacecraft with a propulsion part and a landing part, the so called LAPIS-PROP and LAPIS-LAND. In this scenario, the LAPIS-PROP module will do the cruise, until the spacecraft reaches an altitude of 100 m above the moon, after which the landing module will separate and continue to the actual semi-hard landing, which is based on deformable structures. Further technical details, e.g. considering the subsystem technologies, have been addressed within the performed study. These especially critical and uniquely challenging issues, such

  11. Early Impacts on the Moon: Crystallization Ages of Apollo 16 Melt Breccias

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Shih, C.-Y.; Nyquist, L. E.; Bogard, D. D.; Taylor, L. A.

    2007-01-01

    A better understanding of the early impact history of the terrestrial planets has been identified one of the highest priority science goals for solar system exploration. Crystallization ages of impact melt breccias from the Apollo 16 site in the central nearside lunar highlands show a pronounced clustering of ages from 3.75-3.95 Ga, with several impact events being recognized by the association of textural groups and distinct ages. Here we present new geochemical and petrologic data for Apollo 16 crystalline breccia 67955 that document a much older impact event with an age of 4.2 Ga.

  12. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    NASA Astrophysics Data System (ADS)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  13. Pressurized Rover for Moon and Mars Surface Missions

    NASA Astrophysics Data System (ADS)

    Imhof, Barbara; Ransom, Stephen; Mohanty, Susmita; Özdemir, Kürsad; Häuplik-Meusburger, Sandra; Frischauf, Norbert; Hoheneder, Waltraut; Waclavicek, René

    The work described in this paper was done under ESA and Thales Alenia Space contract in the frame of the Analysis of Surface Architecture for European Space Exploration -Element Design. Future manned space missions to the Moon or to Mars will require a vehicle for transporting astronauts in a controlled and protected environment and in relative comfort during surface traverses of these planetary bodies. The vehicle that will be needed is a pressurized rover which serves the astronauts as a habitat, a refuge and a research laboratory/workshop. A number of basic issues influencing the design of such a rover, e.g. habitability, human-machine interfaces, safety, dust mitigation, interplanetary contamination and radiation protection, have been analysed in detail. The results of these analyses were subsequently used in an investigation of various designs for a rover suitable for surface exploration, from which a single concept was developed that satisfied scientific requirements as well as environmental requirements encoun-tered during surface exploration of the Moon and Mars. This concept was named in memory of the late Sir Arthur C. Clark RAMA (Rover for Advanced Mission Applications, Rover for Advanced Moon Applications, Rover for Advanced Mars Applications) The concept design of the pressurized rover meets the scientific and operational requirements defined during the course of the Surface Architecture Study. It is designed for surface missions with a crew of two or three lasting up to approximately 40 days, its source of energy, a liquid hydrogen/liquid oxygen fuel cell, allowing it to be driven and operated during the day as well as the night. Guidance, navigation and obstacle avoidance systems are foreseen as standard equipment to allow it to travel safely over rough terrain at all times of the day. The rover allows extra-vehicular activity and a remote manipulator is provided to recover surface samples, to deploy surface instruments and equipment and, in general

  14. Pulmonary function evaluation during the Skylab and Apollo-Soyuz missions.

    PubMed

    Sawin, C F; Nicogossian, A E; Rummel, J A; Michel, E L

    1976-02-01

    Previous experience during Apollo postflight exercise testing indicated no major changes in pulmonary function. Pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic normal gravity environments, but no previous study has reported on men exposed to an environment that was both normoxic at 258 torr total pressure and at null gravity as encountered in Skylab. Forced vital capacity (FVC) was measured during the preflight and postflight periods of the Skylab 2 mission. Inflight measurements of vital capacity (VC) were obtained during the last 2 weeks of the second manned mission (Skylab 3). More detailed pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination (RV), closing volume (CV), VC, FVC and its derivatives. In addition, VC was measured in flight at regular intervals during the Skylab 4 mission. Vital capacity was decreased slightly (-10%) in flight in all Skylab 4 crewmen. No major preflight-to-postflight changes were observed. The Apollo-Soyuz Test Project (ASTP) crewmen were studied using equipment and procedures similar to those employed during Skylab 4. Postflight evaluation of the ASTP crewmen was complicated by their inadvertent exposure to nitrogen tetroxide gas fumes upon reentry.

  15. Pulmonary function evaluation during the Skylab and Apollo-Soyuz missions

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Nicogossian, A. E.; Rummel, J. A.; Michel, E. L.

    1976-01-01

    Previous experience during Apollo postflight exercise testing indicated no major changes in pulmonary function. Pulmonary function has been studied in detail following exposure to hypoxic and hyperoxic normal gravity environments, but no previous study has reported on men exposed to an environment that was both normoxic at 258 torr total pressure and at null gravity as encountered in Skylab. Forced vital capacity (FVC) was measured during the preflight and postflight periods of the Skylab 2 mission. Inflight measurements of vital capacity (VC) were obtained during the last 2 weeks of the second manned mission (Skylab 3). More detailed pulmonary function screening was accomplished during the Skylab 4 mission. The primary measurements made during Skylab 4 testing included residual volume determination (RV), closing volume (CV), VC, FVC and its derivatives. In addition, VC was measured in flight at regular intervals during the Skylab 4 mission. Vital capacity was decreased slightly (-10%) in flight in all Skylab 4 crewmen. No major preflight-to-postflight changes were observed. The Apollo-Soyuz Test Project (ASTP) crewmen were studied using equipment and procedures similar to those employed during Skylab 4. Postflight evaluation of the ASTP crewmen was complicated by their inadvertent exposure to nitrogen tetroxide gas fumes upon reentry.

  16. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  17. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    NASA Technical Reports Server (NTRS)

    Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young

    2006-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  18. On the Moon with Apollo 16. A Guidebook to the Descartes Region.

    ERIC Educational Resources Information Center

    Simmons, Gene

    The Apollo 16 guidebook describes and illustrates (with artist concepts) the physical appearance of the lunar region visited. Maps show the planned traverses (trips on the lunar surface via Lunar Rover); the plans for scientific experiments are described in depth; and timelines for all activities are included. A section on "The Crew" is…

  19. On the moon with Apollo 15: A guidebook to Hadley Rille and the Apennine Mountains

    NASA Technical Reports Server (NTRS)

    Simmons, G.

    1971-01-01

    Information is given in simple terms of the Apollo 15 lunar exploration and scientific equipment, to be used in conjunction with other material shown over commercial TV. The EVAs of the astronauts on the surface are divided into experiments and traverses. The landing site and experimental equipment are described, and life sketches are given of the crew.

  20. Relativistic time corrections for Apollo 12 and Apollo 13

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1972-01-01

    Results are presented of computer calculations on the relativistic time corrections relative to a ground-based clock of on-board clock readings for a lunar mission, using simple Newtonian gravitational potentials of earth and moon and based on actual trajectory data for Apollo 12 and Apollo 13. Although the second order Doppler effect and the gravitational red shift give rise to corrections of opposite sign, the net accumulated time corrections, namely a gain of 560 (+ or - 1.5) microseconds for Apollo 12 and gain of 326 (+ or - 1.3) microseconds for Apollo 13, are still large enough that with present day atomic frequency standards, such as the rubidium clock, they can be measured with an accuracy of about + or - 0.5 percent.

  1. View of Mission Control Center during the Apollo 13 oxygen cell failure

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Mrs. Mary Haise receives an explanation of the revised flight plan of the Apollo 13 mission from Astronaut Gerald P. Carr in the Viewing Room of Mission Control Center, bldg 30, Manned Spacecraft Center (MSC). Her husband, Astronaut Fred W. Haise Jr., was joining the fellow crew members in making corrections in their spacecraft following discovery of an oxygen cell failure several hours earlier (34900); Dr. Charles A. Berry, Director of Medical Research and Operations Directorate at MSC, converses with Mrs. Marilyn Lovell in the Viewing Room of Mission Control Center. Mrs. Lovell's husband, Astronaut James A. Lovell Jr., was busily making corrections inside the spacecraft following discovery of an oxygen cell failure several hours earlier (34901).

  2. APOLLO 8: Birth of a Machine (pt 1/2)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    This clip shows the launch of APOLLO 8: The 'Birth of a Machine' and begins to reveal the origin of its components. From the film documentary 'APOLLO 8:'Debrief'': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) First manned Saturn V flight with Frank Borman, James A. Lovell, Jr.,and william A. Anders. First manned lunar orbit mission; provided a close-up look at the moon during 10 lunar orbits. Mission Duration 147hrs. 0 min. 42s.

  3. Regolith maturation on the earth and the moon with an example from Apollo 15

    NASA Technical Reports Server (NTRS)

    Basu, A.; Griffiths, S. A.; Mckay, D. S.; Nace, G.

    1982-01-01

    Petrographic data on twelve Apollo 15 surface samples and on twelve samples from the double drive tube 15010/011 are presented in the form of triangular AML (agglutinate-monomineralic fragments-lithic fragments) plots. The triangular AML plots for different grain sizes show smoothly varying contour lines only for the solids derived mainly from mare basalts. These contour lines are interpreted as lines of isomaturity. The AML plots with isomature contours are somewhat similar to QFR (quartz-feldspar-rock fragments) triangular plots used for terrestrial clastic sediments. Both kinds of plots are sensitive to maturity and both may be used to predict evolution paths. Soils from predominantly highland areas and from other mixed terrains at Apollo 15 sites do not make smooth contours on AML diagrams. By analogy with QFR diagrams, the lack of smooth contours may be due to mixed source rock families, or to recent mixing, or both.

  4. Apollo 14 mission report. Supplement 5: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The performance of the LM-8 descent propulsion system during the Apollo 14 mission was evaluated and found to be satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted l sigma uncertainty. The engine performance corrected to standard inlet conditions for the FTP portion of the burn at 43 seconds after ignition was as follows: thrust, 9802, lbf; specific impulse, 304.1 sec; and propellant mixture ratio, 1603. These values are + or - 0.8, -0.06, and + or - 0.3 percent different respectively, from the values reported from engine acceptance tests and were within specification limits.

  5. Saturn 5 Launch Vehicle Flight Evaluation Report, AS-510, Apollo 15 Mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 15 flight is presented. The performance of the launch vehicle, spacecraft, and lunar roving vehicle are discussed. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are tabulated.

  6. Apollo 11 Facts Project [Pre-Launch Activities and Launch

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The crewmembers of Apollo 11, Commander Neil A. Armstrong, Command Module Pilot Michael Collins, and Lunar Module Pilot Edwin E. Aldrin, Jr., are seen during various stages of preparation for the launch of Apollo 11, including suitup, breakfast, and boarding the spacecraft. They are also seen during mission training, including preparation for extravehicular activity on the surface of the Moon. The launch of Apollo 11 is shown. The ground support crew is also seen as they wait for the spacecraft to approach the Moon.

  7. Apollo Director Phillips Monitors Apollo 11 Pre-Launch Activities

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the Kennedy Space Flight Center (KSC) control room, Apollo Program Director Lieutenant General Samuel C. Phillips monitors pre-launch activities for Apollo 11. The Apollo 11 mission, the first lunar landing mission, launched from the KSC in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  8. MoonKAM - Education and Public Outreach for NASA's GRAIL Mission

    NASA Astrophysics Data System (ADS)

    Flammer, K. R.; Ride, S.

    2010-12-01

    In September 2011, NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission will launch twin spacecraft in tandem orbits around the Moon to measure its gravity in unprecedented detail. The mission will answer key questions about the Moon's internal structure and give scientists a better understanding of how our solar system formed. The spacecraft will send back information during a three-month “science phase” of the mission from March through May of 2012. As the GRAIL satellites orbit the Moon gathering scientific data, they will also be taking images of the lunar surface. Each satellite will carry four cameras dedicated to MoonKAM (Moon Knowledge Acquired by Middle School Students), GRAIL’s signature Education and Public Outreach (E/PO) program. Middle-school students across the country will be able to request and analyze photos of craters, highlands, maria and other lunar features. The MoonKAM images and supporting educational materials will be available for public access on the MoonKAM website, www.GRAILMoonKAM.com. During the MoonKAM mission, we estimate that approximately 4000 middle schools nationwide will take over 20,000 lunar images. An essential part of the MoonKAM E/PO effort is Student Collaboration. Over the course of our E/PO effort, from FY 2009 through 2013, the Student Collaboration Team, UCSD undergraduate students will work directly with GRAIL scientists and engineers to build and operate the system that links middle school classrooms nationwide to the MoonKAM cameras on the GRAIL satellites. We estimate GRAIL MoonKAM will engage approximately 100 undergraduates students over the duration of this effort, giving them direct hands-on experience with a NASA mission and thereby contributing to the development of the STEM workforce.

  9. Mini-SAR: An Imaging Radar for the Chandrayaan-1 Mission to the Moon

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Bussey, Ben; Lichtenberg, Chris; Marinelli, Bill; Nozette, Stewart

    2005-01-01

    The debate on the presence of ice at the poles of the Moon continues. We will fly a small imaging radar on the Indian Chandrayaan mission to the Moon, to be launched in September, 2007. Mini-SAR will map the scattering properties of the lunar poles, determining the presence and extent of polar ice.

  10. Origin of the moon: New data from old rocks

    NASA Technical Reports Server (NTRS)

    French, B. M.

    1972-01-01

    Knowledge of the moon is reviewed, particularly that obtained from Apollo 11 and 12 samples, to provide a framework for the geological results from the Apollo 15 mission. The three main theories that have resulted from the Apollo data are briefly discussed, and a review of modern lunar exploration is presented. The knowledge acquired from the Apollo missions is summarized and includes: (1) The rocks of the maria are from 3.3 to 3.7 billion years old, and the highlands are probably 4.6 billion years old. (2) Only small moonquakes are detected, and these appear related to tidal stresses produced by moon swings in its orbit. (3) The moon has a very weak magnetic field. (4) The moon was once hot enough to melt its interior.

  11. Astronaut David Scott simulates use of Apollo 15 Lunar Surface Drill at KSC

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut David R. Scott, commander of the Apollo 15 lunar landing mission, simulates use of the Apollo 15 Lunar Surface Drill (ALSD) at Kennedy Space Center (KSC), Florida. Scott's fellow moon-exploring crewman, Astronaut James Irwin, can be seen in the background near Lunar Roving Vehicle (LRV) trainer.

  12. Mineralogy of Apollo 15415 ?genesis rock' - Source of anorthosite on moon.

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1971-01-01

    Results of electron microprobe analyses of plagioclase points and pyroxene grains of Apollo 15415 ?genesis rock.' It is pointed out that no evidence of cumulate textures has yet appeared to support suggestions of extensive crystal-liquid differentiation producing an anorthositic crust or a lunar crust composed of a mixture of plagioclase-rich rock, basalts and minor ultramafic material, which require that plagioclase crystals float in a basaltic liquid. The plagioclase in 15415 does not show cumulate texture either. It is noted that it remains to be seen whether rock 15415 is correctly named the ?genesis rock.'

  13. PDS Lunar Data Node Restoration of Apollo In-Situ Surface Data

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Lowman, Paul D.; Taylor, Patrick T.

    2010-01-01

    The Apollo missions between 1969 and 1972 deployed scientific instruments on the Moon's surface which made in-situ measurements of the lunar environment. Apollo II had the short-term Early Apollo Surface Experiments Package (EASEP) and Apollos 12, 14, 15, 16, and 17 each set up an Apollo Lunar Surface Experiments Package (ALSEP). Each ALSEP package contained a different suite of instruments which took measurements and radioed the results back to Earth over periods from 5 to 7 years until they were turned off on 30 September 1977. To this day the ALSEP data remain the only long-term in-situ information on the Moon's surface environment. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. We will report on progress made since last year and plans for future data restorations.

  14. Stationkeeping of the First Earth-Moon Libration Orbiters: The ARTEMIS Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Woodard, Mark; Cosgrove, D.

    2011-01-01

    Libration point orbits near collinear locations are inherently unstable and must be controlled. For Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) Earth-Moon Lissajous orbit operations, stationkeeping is challenging because of short time scales, large orbital eccentricity of the secondary, and solar gravitational and radiation pressure perturbations. ARTEMIS is the first NASA mission continuously controlled at both Earth-Moon L1 and L2 locations and uses a balance of optimization, spacecraft implementation and constraints, and multi-body dynamics. Stationkeeping results are compared to pre-mission research including mode directions.

  15. Trajectory Design for MoonRise: A Proposed Lunar South Pole Aitken Basin Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Parker, Jeffrey S.; McElrath, Timothy P.; Anderson, Rodney L.; Sweetser, Theodore H.

    2015-03-01

    This paper presents the mission design for the proposed MoonRise New Frontiers mission: a lunar far side lander and return vehicle, with an accompanying communication satellite. Both vehicles are launched together, but fly separate low-energy transfers to the Moon. The communication satellite enters lunar orbit immediately upon arrival at the Moon, whereas the lander enters a staging orbit about the lunar Lagrange points. The lander descends and touches down on the surface 17 days after the communication satellite enters orbit. The lander remains on the surface for nearly two weeks before lifting off and returning to Earth via a low-energy return.

  16. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  17. Some things we can infer about the Moon from the Composition of the Apollo 16 Regolith

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1997-01-01

    Characteristics of the regolith of Cayley plains as sampled at the Apollo 16 lunar landing site are reviewed and new compositional data are presented for samples of less than 1 mm fines ('soils') and 1-2 mm regolith particles. As a means of determining which of the many primary (igneous) and secondary (crystalline breccias) lithologic components that have been identified in the soil are volumetrically important and providing an estimate of their relative abundances, more than 3 x 10(exp 6) combinations of components representing nearly every lithology that has been observed in the Apollo 16 regolith were systematically tested to determine which combinations best account for the composition of the soils. Conclusions drawn from the modeling include the following. At the site, mature soil from the Cayley plains consists of 64.5% +/- 2.7% components representing 'prebasin' materials: anorthosites, feldspathic breccias, and a small amount (2.6% +/- 1.5% of total soil) of nonmare, mafic plutonic rocks, mostly gabbronorites. On average, these components are highly feldspathic, with average concentrations of 3l-32% Al2O3 and 2-3% FeO and a molar Mg/(Mg+Fe) ratio of O.68. The remaining 36% of the regolith is syn- and postbasin material: 28.8% +/- 2.4% mafic impact-melt breccias (MIMBS, i.e., 'LKFM' and 'VHA basalts') created at the time of basin formation, 6.0% +/- 1.4% mare-derived material (impact and volcanic glass, crystalline basalt) with an average TiO2 concentration of 2.4%, and 1% postbasin meteoritic material. The MIMBs are the principal (80-90%) carrier of incompatible trace elements (rare earths, Th, etc.) and the carrier of about one-half of the siderophile elements and elements associated with mafic mineral phases (Fe, Mg, Mn, Cr, Sc). Most (71 %) of the Fe in the present regolith derives from syn- and postbasin sources (MIMBS, mare-derived material, and meteorites). Thus, although the bulk composition of the Apollo 16 regolith is nominally that of noritic

  18. Seismometer reading viewed in ALSEP Room in Misson Control during Apollo 17

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The seismometer readings from the impact made by the Apollo 17 Saturn S-IVB stage when it struck the lunar surface are viewed in the ALSEP Room in the Misson Control Center at Houston by Dr. Maurice Ewing, professor of geophysics of the Universtiy of Texas at Galveston. The seismic tracings are from sensings made by seismometers of Apollo Lunar Surface Experiments Packages left on the Moon during earlier Apollo lunar landing missions.

  19. APOLLO 15: Commander Scott on those who gave all

    NASA Technical Reports Server (NTRS)

    1974-01-01

    APOLLO 15: A demonstration of a classic experiment. From the film documentary 'APOLLO 15: 'The mountains of the Moon'', part of a documentary series on the APOLLO missions made in the early '70's and narrated by Burgess Meredith. APOLO 15: Fourth manned lunar landing with David R. Scott, Alfred M. Worden, and James B. Irwin. Landed at Hadley rilleon July 30, 1971;performed EVA with Lunar Roving Vehicle; deployed experiments. P& F Subsattelite spring-launched from SM in lunar orbit. Mission Duration 295 hrs 11 min 53sec

  20. High-performing simulations of the space radiation environment for the International Space Station and Apollo Missions

    NASA Astrophysics Data System (ADS)

    Lund, Matthew Lawrence

    The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements

  1. Workshop on Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Taylor, G. J. (Editor); Warren, P. H. (Editor)

    1989-01-01

    Lunar rocks provide material for analyzing lunar history and now new evaluation procedures are available for discovering new information from the Fra Mauro highlands rocks, which are different from any other lunar samples. These and other topics were discussed at this workshop, including a new evaluation of the nature and history of KREEP, granite, and other evolved lunar rock types, and ultimately a fresh evaluation of the transition of the moon from its early anorthosite-forming period to its later stages of KREEPy, granitic, and mare magmatism. The summary of presentations and discussion is based on notes taken by the respective summarizers during the workshop.

  2. Apollo 11: The Twentieth Year

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Live footage shows the Apollo 11 crew, Commander Neil A. Armstrong, Lunar Module Pilot Edwin E. Aldrin, Jr., and Command Module Pilot Michael Collins, preparing for their mission. The crewmembers are seen getting their medical examinations, suiting up, and walking out to the Astro-van. Scenes include a brief view of the Launch Control Center (LCC), ignition, liftoff, and shell and engine skirt separation. The most important images are those of the moon landing and astronauts walk on the moon. Also shown are the parachute landing of the shuttle and the celebration of the world.

  3. Exploring the Moon at the Microscale: Analysis of Apollo Samples with the Multispectral Microscopic Imager (MMI)

    NASA Astrophysics Data System (ADS)

    Nunez, J. I.; Farmer, J. D.; Sellar, R. G.; Allen, C.

    2009-12-01

    The Multispectral Microscopic Imager (MMI), similar to a geologist’s handlens, creates multispectral, microscale reflectance images of geological samples, in which each image pixel is comprised of a VNIR spectrum. This enables the discrimination of a wide variety of rock-forming minerals, especially Fe- and Mg-bearing phases, within a microtextural framework. The MMI composite images provide crucial geologic and contextual information: 1) for the in-situ analysis of rocks and soils to support hypothesis-driven, field-based exploration; 2) to guide sub-sampling of geologic materials for return to laboratories on Earth; and 3) in support of astronaut investigations during EVAs, or in a lunar base laboratory. To assess the value of the MMI as a tool for lunar exploration, we used a field-portable, tripod-mounted version of the MMI to image 18 lunar rocks and four soils, from a reference suite spanning the full compositional range found in the Apollo collection, housed in the Lunar Experiment Laboratory at NASA’s Johnson Space Center. The MMI composite images faithfully resolved the microtextural features of samples, while the application of ENVI-based spectral end-member mapping faithfully revealed the distribution of Fe-bearing mineral phases (olivine, pyroxene and magnetite), along with plagioclase feldspars within samples, over a broad range of lithologies and grain sizes (figure 1). The MMI composite images also revealed secondary mineral phases, glasses, and effects of space weathering in samples, where present. Our MMI-based petrogenetic interpretations compared favorably with thin section-based descriptions published in the literature, revealing the value of MMI images for astronaut and rover-mediated lunar exploration. We present our latest results from these analyses and their application to future lunar exploration. Figure 1. Multispectral images of Apollo sample 14321,88. Left: R = 635 nm; G = 525 nm; B = 470 nm. Right: R = 1450 nm; G = 975 nm; B = 525

  4. Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2015-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).

  5. Mission requirements CSM-111/DM-2 Apollo/Soyuz test project

    NASA Technical Reports Server (NTRS)

    Blackmer, S. M.

    1974-01-01

    Test systems are developed for rendezvous and docking of manned spacecraft and stations that are suitable for use as a standard international system. This includes the rendezvous and docking of Apollo and Soyuz spacecraft, and crew transfer. The conduct of the mission will include: (1) testing of compatible rendezvous systems in orbit; (2) testing of universal docking assemblies; (3) verifying the techniques for transfer of cosmonauts and astronauts; (4) performing certain activities by U.S.A. and U.S.S.R. crews in joint flight; and (5) gaining of experience in conducting joint flights by U.S.A. and U.S.S.R. spacecraft, including, in case of necessity, rendering aid in emergency situations.

  6. Measurements of heavy solar wind and higher energy solar particles during the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Walker, R. M.; Zinner, E.; Maurette, M.

    1973-01-01

    The lunar surface cosmic ray experiment, consisting of sets of mica, glass, plastic, and metal foil detectors, was successfully deployed on the Apollo 17 mission. One set of detectors was exposed directly to sunlight and another set was placed in shade. Preliminary scanning of the mica detectors shows the expected registration of heavy solar wind ions in the sample exposed directly to the sun. The initial results indicate a depletion of very-heavy solar wind ions. The effect is probably not real but is caused by scanning inefficiencies. Despite the lack of any pronounced solar activity, energetic heavy particles with energies extending to 1 MeV/nucleon were observed. Equal track densities of approximately 6000 tracks/cm sq 0.5 microns in length were measured in mica samples exposed in both sunlight and shade.

  7. Study of spin-orbit, inner dynamics and topography of the moon: lunar missions applications

    NASA Astrophysics Data System (ADS)

    Barkin, Yu.; Gusev, A.; Nefed'Ev, Yu.; Petrova, N.; Rizvanov, N.

    At present days, the Moon has become the targets of several space missions and focus the attention of researchers in Astronomy and Planetology. The main scientific objectives of Kazan-Moscow Lunar Project lay in subject of main purpose of planed Lunar missions (SMART, Lunar-A, SELENE and others): to investigate and describe particularities of orbital-rotational and inner dynamics of Moon as composite deformable celestial body, to suggest more effective model, analytical description, numerical approach and programs for lunar mission for more exact and effective determinations of gravitational field parameters, parameters of resonant Moon librations, parameters of its inner and surface structure. More exact data about gravitational field, figure, physical fields will be obtained from this mission and will give new possibility for new dynamical studies. For effective using of expected large data set preliminary studies of different possible phenomena and structures must be realized with more details than earlier.

  8. South Pole-Aitken Sample Return Mission: Collecting Mare Basalts from the Far Side of the Moon

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.; Lucey, P. G.

    2003-01-01

    We consider the probability that a sample mission to a site within the South Pole-Aitken Basin (SPA) would return basaltic material. A sample mission to the SPA would be the first opportunity to sample basalts from the far side of the Moon. The near side basalts are more abundant in terms of volume and area than their far-side counterparts (16:1), and the basalt deposits within SPA represent approx. 28% of the total basalt surface area on the far side. Sampling far-side basalts is of particular importance because as partial melts of the mantle, they could have derived from a mantle that is mineralogically and chemically different than determined for the nearside, as would be expected if the magma ocean solidified earlier on the far side. For example, evidence to support the existence of high-Th basalts like those that appear to be common on the nearside in the Procellarum KREEP Terrane has been found. Although SPA is the deepest basin on the Moon, it is not extensively filled with mare basalt, as might be expected if similar amounts of partial melting occurred in the mantle below SPA as for basins on the near side. These observations may mean that mantle beneath the far-side crust is lower in Th and other heat producing elements than the nearside. One proposed location for a sample-return landing site is 60 S, 160 W. This site was suggested to maximize the science return with respect to sampling crustal material and SPA impact melt, however, basaltic samples would undoubtedly occur there. On the basis of Apollo samples, we should expect that basaltic materials would be found in the vicinity of any landing site within SPA, even if located away from mare deposits. For example, the Apollo 16 mission landed in an ancient highlands region 250-300 km away from the nearest mare-highlands boundary yet it still contains a small component of basaltic samples (20 lithic fragments ranging is size from <1 to .01 cm). A soil sample from the floor of SPA will likely contain an

  9. LIRAS mission for lunar exploration by microwave interferometric radiometer: Moon's subsurface characterization, emission model and numerical simulator

    NASA Astrophysics Data System (ADS)

    Pompili, Sara; Silvio Marzano, Frank; Di Carlofelice, Alessandro; Montopoli, Mario; Talone, Marco; Crapolicchio, Raffaele; L'Abbate, Michelangelo; Varchetta, Silvio; Tognolatti, Piero

    2013-04-01

    The "Lunar Interferometric Radiometer by Aperture Synthesis" (LIRAS) mission is promoted by the Italian Space Agency and is currently in feasibility phase. LIRAS' satellite will orbit around the Moon at a height of 100 km, with a revisiting time period lower than 1 lunar month and will be equipped with: a synthetic aperture radiometer for subsurface sounding purposes, working at 1 and 3 GHz, and a real aperture radiometer for near-surface probing, working at 12 and 24 GHz. The L-band payload, representing a novel concept for lunar exploration, is designed as a Y-shaped thinned array with three arms less than 2.5 m long. The main LIRAS objectives are high-resolution mapping and vertical sounding of the Moon subsurface by applying the advantages of the antenna aperture synthesis technique to a multi-frequency microwave passive payload. The mission is specifically designed to achieve spatial resolutions less than 10 km at surface and to retrieve thermo-morphological properties of the Moon subsurface within 5 m of depth. Among LIRAS products are: lunar near-surface brightness temperature, subsurface brightness temperature gross profile, subsurface regolith thickness, density and average thermal conductivity, detection index of possible subsurface discontinuities (e.g. ice presence). The following study involves the preliminary design of the LIRAS payload and the electromagnetic and thermal characterization of the lunar subsoil through the implementation of a simulator for reproducing the LIRAS measurements in response to observations of the Moon surface and subsurface layers. Lunar physical data, collected after the Apollo missions, and LIRAS instrument parameters are taken as input for the abovementioned simulator, called "LIRAS End-to-end Performance Simulator" (LEPS) and obtained by adapting the SMOS End-to-end Performance Simulator to the different instrumental, orbital, and geophysical LIRAS characteristics. LEPS completely simulates the behavior of the satellite

  10. Apollo 1 Fire

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Officially designated Apollo/Saturn 204, but more commonly known as Apollo 1, this close-up view of the interior of the Command Module shows the effects of the intense heat of the flash fire which killed the prime crew during a routine training exercise. While strapped into their seats inside the Command Module atop the giant Saturn V Moon rocket, a faulty electrical switch created a spark which ignited the pure oxygen environment. The speed and intensity of the fire quickly exhausted the oxygen supply inside the crew cabin. Unable to deploy the hatch due to its cumbersome design and lack of breathable oxygen, the crew lost consciousness and perished. They were: astronauts Virgil I. 'Gus' Grissom, (the second American to fly into space) Edward H. White II, (the first American to 'walk' in space) and Roger B. Chaffee, (a 'rookie' on his first space mission).

  11. Mission to the Moon: An ESA study on future exploration

    NASA Technical Reports Server (NTRS)

    Chicarro, A. F.

    1993-01-01

    The increasing worldwide interest in the continuation of lunar exploration has convinced ESA to carry out an investigation of the motivations to return to the Moon to establish a permanent or a semi-permanent manned lunar base. This study also considers the possible role Europe could play in the future exploration and possible utilization of the Moon. The study concentrated in this first phase mainly on scientific questions, leaving technological issues such as transportation, the role of humans, infrastructure, and policy matters to a later phase. It only partially considered questions relating to the exploitation of lunar resources and the impact of human activities on science.

  12. Apollo 17 mission Report. Supplement 6: Calibration results for gamma ray spectrometer sodium iodide crystal

    NASA Technical Reports Server (NTRS)

    Dyer, C.; Trombka, J. I.

    1975-01-01

    A major difficulty in medium energy gamma-ray remote sensing spectroscopy and astronomy measurements was the high rate of unwanted background resulting from the following major sources: (1) prompt secondary gamma-rays produced by cosmic-ray interactions in satellite materials; (2) direct charged-particle counts; (3) radioactivity induced in the detector materials by cosmic-ray and trapped protons; (4) radioactivity induced in detector materials by the planetary (e.g., earth or moon) albedo neutron flux; (5) radioactivity induced in the detector materials by the interaction of secondary neutrons produced throughout the spacecraft by cosmic-ray and trapped proton interactions; (6) radioactivity induced in spacecraft materials by the mechanisms outlined in 3, 4, and 5; and (7) natural radioactivity in spacecraft and detector materials. The purpose of this experiment was to obtain information on effects 3, 4, and 5, and from this information start developing calculational methods for predicting the background induced in the crystal detector in order to correct the Apollo gamma-ray spectrometer data for this interference.

  13. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA Administrator Charles Bolden (left) presents the Ambassador of Exploration Award (an encased moon rock) to Biloxi native and Apollo 13 astronaut Fred Haise Jr. (right) for his contributions to space exploration. During a Dec. 2 ceremony at Gorenflo elementary School in Biloxi, Miss., Bolden praised Haise for his overall space career and his performance on the Apollo 13 mission that was crippled two days after launch. Haise and fellow crewmembers nursed the spacecraft on a perilous trip back to Earth. 'The historic Apollo 13 mission was as dramatic as any Hollywood production,' Bolden said. 'When an explosion crippled his command module, Fred and his crewmates, Jim Lovell and Jack Swigert, guided their spacecraft around the moon and back to a successful splashdown in the Pacific Ocean - all while the world held its breath. While Fred didn't have the chance to walk on the moon, the cool courage and concentration in the face of crisis is among NASA's most enduring legacies.'

  14. View of lunar surface taken from Apollo 8 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This Apollo 8 photograph is a view looking south toward the lunar horizon. The bright-rayed crater in the foreground is located at approximately 30 degrees south latitude and 110 degrees east longitude on the farside of the moon. This is another example of a bright-rayed crater which the astronauts photographed during the mission. This type of feature readily stands out in the Apollo 8 photographs because it was photographed at a high sun angle.

  15. Active moon: evidences from Chandrayaan-1 and the proposed Indian missions

    NASA Astrophysics Data System (ADS)

    Bhandari, Narendra; Srivastava, Neeraj

    2014-12-01

    Chandrayaan-1, the polar Lunar orbiter mission of Indian Space Research Organization, successfully carried out study of Moon's environment and surface processes for a period of about nine months during 2008-2009. The results obtained by the mission established (i) A tenuous but active hydrosphere (ii) Volcanically active and geologically dynamic Moon and (iii) Global melting of Moon's surface regions and formation of magma ocean early in the history of Moon. Chandrayaan-1 was equipped with a dozen instruments, including an impact probe, which housed three additional instruments. The results obtained by four instruments viz. Chandra's Altitudinal Composition Explorer, Moon Mineral Mapper (M3), Solar Wind Monitor and Synthetic Aperture Radar gave an insight into an active hydrosphere, with several complex processes operating between lunar surface and its environment. These inferences are based on identification of H, OH, H2O, CO2, Ar etc. in the lunar atmosphere. There are indications that several young (~2 to100 Ma) volcanic regions are present on the Moon as shown by integrated studies using Terrain Mapping Camera and M3 of Chandrayaan-1 and data from other contemporary missions i.e. Kaguya and Lunar Reconnaissance Orbiter. These data establish that Moon has a dynamic and probably still active interior, in contrast to the generally accepted concept of dormant and quiet Moon. Discovery of Mg spinel anorthosites and finding of kilometer sized crystalline anorthosite exposures by M3 support the formation of global magma ocean on Moon and differentiation early in its evolutionary history. Furthermore, X-ray Spectrometer data showed anorthositic terrain with composition, high in Al, poor in Ca and low in Mg, Fe and Ti in a nearside southern highland region. This mission provided excellent opportunity for multilateral international cooperation and collaboration in instrumentation and observation in which a dozen countries participated and contributed to the success of

  16. APOLLO 16 ASTRONAUTS JOHN YOUNG AND CHARLES DUKE EXAMINE FAR ULTRAVIOLET CAMERA

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Apollo 16 Lunar Module Pilot Charles M. Duke, Jr., left and Mission Commander John W. Young examine Far Ultraviolet Camera they will take to the Moon in March. They will measure the universe's ultraviolet spectrum. They will be launched to the Moon no earlier than March 17, 1972, with Command Module Pilot Thomas K. Mattingly, II.

  17. Lunar surface radioactivity - Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments.

    NASA Technical Reports Server (NTRS)

    Metzger, A. E.; Trombka, J. I.; Peterson, L. E.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Gamma-ray spectrometers on the Apollo 15 and Apollo 16 missions have been used to map the moon's radioactivity over 20 percent of its surface. The highest levels of natural radioactivity are found in Mare Imbrium and Oceanus Procellarum with contrastingly lower enhancements in the eastern maria. The ratio of potassium to uranium is higher on the far side than on the near side, although it is everywhere lower than commonly found on the earth.

  18. (abstract) A Solar Electric Propulsion Mission to the Moon and Beyond!

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Pieters, C. M.; Konopliv, A.; Metzger, A.; Sercel, J.; Hickman, M.; Palac, D.; Sykes, M.

    1994-01-01

    The technological development of solar electric propulsion has advanced significantly over the last few years. Mission planners are now seriously studying which missions would benefit most from solar electric propulsion (SEP) and NASA's Solar System Exploration Division is contributing funding to ground and space qualification tests. In response to the impending release of NASA's Announcement of Opportunity for Discovery class planetary missions, we have undertaken a pre-Phase A study of a SEP mission to the Moon. This mission will not only return a wealth of new scientific data but will open up a whole new era of planetary exploration.

  19. Moon

    Atmospheric Science Data Center

    2013-04-19

    article title:  MISR Views the Moon     View Larger Image On ... instruments to look at deep space and the waxing gibbous Moon. The purpose of this acrobatic feat is to assist in the calibration of ...

  20. Eclipses by the Earth and by the Moon as Constraints on the AXAF Mission

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    1998-01-01

    The Advanced X-ray Astrophysics Facility (AXAF) is scheduled for launch on September 1, 1998, on a mission lasting ten years. During this time AXAF will be subject to eclipses by the Earth and the Moon. Eclipses by the Earth will occur during regular 'seasons' six months apart. AXAF requires that none last longer than 120 minutes, and this constrains the orbit orientation. Eclipses by the Moon occur infrequently, but may pose serious operational problems. The AXAF perigee altitude can be chosen, once the other initial conditions are known, so that objectionable Moon-eclipses can be avoided by targeting the final burn.

  1. Supporting Crewed Missions using LiAISON Navigation in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Leonard, Jason M.

    Crewed navigation in certain regions of the Earth-Moon system provides a unique challenge due to the unstable dynamics and observation geometry relative to standard Earth-based tracking systems. The focus of this thesis is to advance the understanding of navigation precision in the Earth-Moon system, analyzing the observability of navigation data types frequently used to navigate spacecraft, and to provide a better understanding of the influence of a crewed vehicle disturbance model for future manned missions in the Earth-Moon system. In this research, a baseline for navigation performance of a spacecraft in a Lagrange point orbit in the Earth-Moon system is analyzed. Using operational ARTEMIS tracking data, an overlap analysis of the reconstructed ARTEMIS trajectory states is conducted. This analysis provides insight into the navigation precision of a spacecraft traversing a Lissajous orbit about the Earth-Moon L1 point. While the ARTEMIS analysis provides insight into the navigation precision using ground based tracking methods, an examination of the benefits of introducing Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is investigated. This examination provides insight into the benefits and disadvantages of LiAISON range and range-rate measurements for trajectories in the Earth-Moon system. In addition to the characterization of navigation precision for spacecraft in the Earth-Moon system, an analysis of the uncertainty propagation for noisy crewed vehicles and quiet robotic spacecraft is given. Insight is provided on the characteristics of uncertainty propagation and how it is correlated to the instability of the Lagrange point orbit. A crewed vehicle disturbance model is provided based on either Gaussian or Poisson assumptions. The natural tendency for the uncertainty distribution in a Lagrange point orbit is to align with the unstable manifold after a certain period of propagation. This behavior is influenced directly by the unstable

  2. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  3. The Apollo 17 Lunar Surface Journal

    SciTech Connect

    Jones, E.M.

    1995-08-01

    The material included in the Apollo 17 Lunar Surface Journal has been assembled so that an uninitiated reader can understand, in some detail, what happened during Apollo 17 and why and what was learned, particularly about living and working on the Moon. At its heart, the Journal consists a corrected mission transcript which is interwoven with commentary by the crew and by Journal Editor -- commentary which, we hope, will make the rich detail of Apollo 17 accessible to a wide audience. To make the Journal even more accessible, this CD-ROM publication contains virtually all of the Apollo 17 audio, a significant fraction of the photographs and a selection of drawings, maps, video clips, and background documents.

  4. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    NASA Astrophysics Data System (ADS)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission

  5. Return to the Moon: NASA's LCROSS AND LRO Missions

    NASA Technical Reports Server (NTRS)

    Morales, Lester

    2012-01-01

    NASA s goals include objectives for robotic and human spaceflight: a) Implement a sustained and affordable human and robotic program to explore the solar system and beyond; b) Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations; c) A lunar outpost is envisioned. Site Considerations: 1) General accessibility of landing site (orbital mechanics) 2) Landing site safety 3) Mobility 4) Mars analog 5) Power 6) Communications 7) Geologic diversity 8) ISRU considerations

  6. Apollo 7 - Press Kit

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Contents include the following: General release. Mission objectives. Mission description. Flight plan. Alternate missions. Experiments. Abort model. Spacecraft structure system. The Saturn 1B launch vehicle. Flight sequence. Launch preparations. Mission control center-Houston. Manned space flight network. Photographic equipment. Apollo 7 crew. Apollo 7 test program.

  7. Assessing the Dangers of Moon Dust

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2007-01-01

    This viewgraph presentation reviews the sources, problems and some solutions to dust on the moon. While there appeared to be no long term effects from Lunar Dust in Apollo astronauts, the future lunar missions will be longer in duration, and therefore more problems may present themselves. Some of the se problems are reviewed, and plans to deal with them are reviewed.

  8. Astronaut John Young during final suiting operations for Apollo 10 mission

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut John W. Young, Apollo 10 command module pilot, jokes with Donald K. Slayton (standing left), Director of Flight Crew Operations, Manned Spacecraft Center, during Apollo 10 suiting up operations. On couch in background is Astronaut Eugene A. Cernan, lunar module pilot.

  9. Apollo 1 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portrait of the Apollo 1 prime crew for first manned Apollo space flight. From left to right are: Edward H. White II, Virgil I. 'Gus' Grissom, and Roger B. Chaffee. On January 27, 1967 at 5:31 p.m. CST (6:31 local time) during a routine simulated launch test onboard the Apollo Saturn V Moon rocket, an electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished.

  10. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Developed by the Marshall Space Flight Center (MSFC), the Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  11. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  12. Apollo 11 Launched Via Saturn V Rocket

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  13. MELISSA: a potential experiment for a precursor mission to the Moon.

    PubMed

    Lasseur, C h; Verstraete, W; Gros, J B; Dubertret, G; Rogalla, F

    1996-01-01

    MELISSA (Micro-Ecological Life Support System Alternative) has been conceived as a micro-organism based ecosystem intended as a tool for developing the technology for a future artificial ecosystem for long term space missions, as for example a lunar base. The driving element of MELISSA is the recovering of edible biomass from waste, CO2, and minerals with the use of sun light as energy source. In this publication, we focus our attention on the potential applications of MELISSA for a precursor mission to the Moon. We begin by a short review of the requirements for bioregenerative Life Support. We recall the concept of MELISSA and the theoretical and technical approaches of the study. We present the main results obtained since the beginning of this activity and taking into account the requirements of a mission to the Moon we propose a preliminary experiment based on the C cycle of the MELISSA loop.

  14. Farside explorer: unique science from a mission to the farside of the moon

    NASA Astrophysics Data System (ADS)

    Mimoun, David; Wieczorek, Mark A.; Alkalai, Leon; Banerdt, W. Bruce; Baratoux, David; Bougeret, Jean-Louis; Bouley, Sylvain; Cecconi, Baptiste; Falcke, Heino; Flohrer, Joachim; Garcia, Raphael F.; Grimm, Robert; Grott, Matthias; Gurvits, Leonid; Jaumann, Ralf; Johnson, Catherine L.; Knapmeyer, Martin; Kobayashi, Naoki; Konovalenko, Alexander; Lawrence, David; Feuvre, Mathieu Le; Lognonné, Philippe; Neal, Clive; Oberst, Jürgen; Olsen, Nils; Röttgering, Huub; Spohn, Tilman; Vennerstrom, Susanne; Woan, Graham; Zarka, Philippe

    2012-04-01

    Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar-powered landers and a science/telecommunications relay satellite to be placed in a halo orbit about the Earth-Moon L2 Lagrange point. One lander would explore the largest and oldest recognized impact basin in the Solar System— the South Pole-Aitken basin—and the other would investigate the primordial highlands crust. Radio astronomy, geophysical, and geochemical instruments would be deployed on the surface, and the relay satellite would continuously monitor the surface for impact events.

  15. Dignitaries Await Apollo 11 Lift Off

    NASA Technical Reports Server (NTRS)

    1969-01-01

    From the right, NASA administrator, Dr. Thomas O. Paine talks with U.S. Vice President Spiro T. Agnew while awaiting the launch of Saturn V (AS-506) that carried the Apollo 11 spacecraft to the Moon for man's historic first landing on the lunar surface. At center is astronaut William Anders, a member of the first crew to orbit the moon during the Apollo 8 mission. At left is Lee B. James, director of Program Management at the NASA Marshall Space Flight Center (MSFC) where the Saturn V was developed. The craft lifted off from launch pad 39 at Kennedy Space Flight Center (KSC) on July 16, 1969. The moon bound crew included astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (M) pilot. The mission finalized with splashdown in the Pacific Ocean on July 24, 1969. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  16. An Overview of the Jupiter Icy Moons Orbiter (JIMO) Mission, Environments, and Materials Challenges

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2012-01-01

    Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.

  17. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Jones, Jeffrey A.; Novak, Joseph D.; Polk, James D.; Gillis, David B.; Schmid, Josef; Duncan, James M.; Davis, Jeffrey R.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  18. The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.; Jones, Jeffrey A.; Polk, James D.; Gillis, David B.; Schmid, Joseph; Duncan, James M.; Davis, Jeffrey R.; Novak, Joseph D.

    2007-01-01

    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses to and the operational environment of short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware that will be used for long-duration lunar surface operations.Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort.

  19. Thermal property measurements on lunar material returned by Apollo 11 and 12 missions.

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.; Simmons, G.

    1972-01-01

    Measurement of thermal diffusivity on Apollo 11 type A and type C samples in the temperature range between 150 and 440 K under atmospheric pressure. Thermal diffusivity of type C material is lower and less temperature-dependent than type A material. Both types of samples exhibit lower thermal diffusivities than nonporous terrestrial basalt. The rate of heat generation of Apollo 11 and 12 samples was calculated from the concentrations of radioactive elements: potassium, thorium, and uranium. Apollo 11 crystalline rocks show an average rate of heat generation which is not significantly different from terrestrial basalt. The Th/U ratio does not differ greatly from chondritic and terrestrial averages.

  20. Science exploration opportunities for manned missions to the Moon, Mars, Phobos, and an asteroid

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.; Plescia, Jeffrey; Cintala, Mark; Levine, Joel; Lowman, Paul; Mancinelli, Rocco; Mendell, Wendell; Stoker, Carol; Suess, Steven

    1989-01-01

    Scientific exploration opportunities for human missions to the Moon, Phobos, Mars, and an asteroid are addressed. These planetary objects are of prime interest to scientists because they are the accessible, terresterial-like bodies most likely to be the next destinations for human missions beyond Earth orbit. Three categories of science opportunities are defined and discussed: target science, platform science, and cruise science. Target science is the study of the planetary object and its surroundings (including geological, biological, atmospheric, and fields and particle sciences) to determine the object's natural physical characteristics, planetological history, mode of origin, relation to possible extant or extinct like forms, surface environmental properties, resource potential, and suitability for human bases or outposts. Platform science takes advantage of the target body using it as a site for establishing laboratory facilities and observatories; and cruise science consists of studies conducted by the crew during the voyage to and from a target body. Generic and specific science opportunities for each target are summarized along with listings of strawman payloads, desired or required precursor information, priorities for initial scientific objectives, and candidate landing sites. An appendix details the potential use of the Moon for astronomical observatories and specialized observatories, and a bibliography compiles recent work on topics relating to human scientific exploration of the Moon, Phobos, Mars, and asteroids. It is concluded that there are a wide variety of scientific exploration opportunities that can be pursued during human missions to planetary targets but that more detailed studies and precursor unmanned missions should be carried out first.

  1. Radiation protection for human missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.

    1991-01-01

    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.

  2. Radiation protection for human missions to the Moon and Mars

    SciTech Connect

    Simonsen, L.C.; Nealy, J.E.

    1991-02-01

    Radiation protection assessments are performed for advanced Lunar and Mars manned missions. The Langley cosmic ray transport code and the nucleon transport code are used to quantify the transport and attenuation of galactic cosmic rays and solar proton flares through various shielding media. Galactic cosmic radiation at solar maximum and minimum, as well as various flare scenarios are considered. Propagation data for water, aluminum, liquid hydrogen, lithium hydride, lead, and lunar and Martian regolith (soil) are included. Shield thickness and shield mass estimates required to maintain incurred doses below 30 day and annual limits (as set for Space Station Freedom and used as a guide for space exploration) are determined for simple geometry transfer vehicles. On the surface of Mars, dose estimates are presented for crews with their only protection being the carbon dioxide atmosphere and for crews protected by shielding provided by Martian regolith for a candidate habitat.

  3. Cryogenic Fluid Management Technology for Moon and Mars Missions

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  4. The Lunar Potential Determination Using Apollo-Era Data and Modern Measurements and Models

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Farrell, William M.; Espley, Jared; Webb, Phillip; Stubbs, Timothy J.; Webb, Phillip; Hills, H. Kent; Delory, Greg

    2008-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. More recently, the Lunar Prospector (LP) Electron Reflectometer used electron distributions to infer negative lunar surface potentials, primarily in shadow. We will present initial results from a study to combine lunar surface potential measurements from both SIDE and the LP/Electron Reflectometer to calibrate an advanced model of lunar surface charging which includes effects from the plasma environment, photoemission, secondaries ejected by ion impact onto the lunar surface, and the lunar wake created downstream by the solar wind-lunar interaction.

  5. Apollo 11 Lunar Message For Mankind- Reproduction

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Millions of people on Earth watched via television as a message for all mankind was delivered to the Mare Tranquilitatis (Sea of Tranquility) region of the Moon during the historic Apollo 11 mission, where it still remains today. This photograph is a reproduction of the commemorative plaque that was attached to the leg of the Lunar Module (LM), Eagle, engraved with the following words: 'Here men from the planet Earth first set foot upon the Moon July, 1969 A.D. We came in peace for all of mankind.' It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) pilot along with the signature of the U.S. President Richard M. Nixon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  6. Diagnostic Imaging in the Medical Support of the Future Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael

    2007-01-01

    This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.

  7. Navigation Design and Analysis for the Orion Earth-Moon Mission

    NASA Technical Reports Server (NTRS)

    DSouza, Christopher; Zanetti, Renato

    2014-01-01

    This paper details the design of the cislunar optical navigation system being proposed for the Orion Earth-Moon (EM) missions. In particular, it presents the mathematics of the navigation filter. The unmodeled accelerations and their characterization are detailed. It also presents the analysis that has been performed to understand the performance of the proposed system, with particular attention paid to entry flight path angle constraints and the delta-V performance.

  8. NASA honors Apollo 13 astronaut Fred Haise Jr.

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Apollo 13 astronaut and Biloxi native Fred Haise Jr. smiles during a Dec. 2 ceremony at Gorenflo Elementary School in Biloxi honoring his space career. During the ceremony, Haise was presented with NASA's Ambassador of Exploration Award (an encased moon rock). He subsequently presented the moon rock to Gorenflo officials for display at the school. Haise is best known as one of three astronauts who nursed a crippled Apollo 13 spacecraft back to Earth during a perilous 1970 mission. Although he was unable to walk on the moon as planned for that mission, Haise ended his astronaut career having logged 142 hours and 54 minutes in space. During the ceremony, he praised all those who contributed to the space program.

  9. Back to the Moon, on to an asteroid: The Clementine Mission

    NASA Astrophysics Data System (ADS)

    Nozette, Stewart; Shoemaker, Eugene M.

    1993-10-01

    The planned Clementine satellite mission to the Moon and the Earth-orbit crossing asteroid Geographos is described. It is intended for launch in January 1994. The mission's primary goal is to space-qualify a set of lightweight electronic cameras for the Defense Department to use in detaching the tracking ballistic missiles. Approximately two months will be spent mapping the Lunar surface before traveling to Geographos. At Geographos, approximately 2000 images will be gathered for transmission to Earth. Clementine's instruments include an ultraviolet/visible CCD camera, near-infrared and long-wavelength infrared cameras, and a combined high-resolution CCD camera and laser ranging system.

  10. Comparison of the magnetic properties of glass from Luna 20 with similar properties of glass from the Apollo missions

    USGS Publications Warehouse

    Senftle, F.E.; Thorpe, A.N.; Alexander, C.C.; Briggs, C.L.

    1973-01-01

    Magnetic susceptibility measurements have been made on four glass spherules and fragments from the Luna 20 fines; two at 300??K and two from 300??K to 4??K. From these data the magnetic susceptibility extrapolated to infinite field, the magnetization at low fields and also the saturation magnetization at high fields, the Curie constant, the Weiss temperature, and the temperature-independent susceptibility were determined. Using a model previously proposed for the Apollo specimens, the Curie constant of the antiferromagnetic inclusions and a zero field splitting parameter were calculated for the same specimens. The data show the relatively low concentration of iron in all forms in these specimens. In addition, the Weiss temperature is lower than that measured for the Apollo specimens, and can be attributed almost entirely to the ligand field distortion about the Fe2+ ions in the glassy phase. The data further suggest that the Luna 20 specimens cooled more slowly than those of the Apollo missions, and that some of the antiferromagnetic inclusions in the glass may have crystallized from the glass during cooling. ?? 1973.

  11. Apollo Program Image

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A rocket-powered research vehicle with a standup pilots compartment is used in handling qualities studies of lunar landing vehicles (Apollo Lunar Module) by the National Aeronautics and Space Administrations Langley Research Center, Hampton, Virginia. The Lunar Landing Research Facility, 250 feet high and 400 feet long, provides a controlled laboratory in which NASA scientists work with research pilots to explore and develop techniques for landing the rocket-powered Apollo Lunar Module on the Moons surface, where the gravity is only one-sixth as strong as on Earth. The vehicle operates within the confines of the overhead structure that provides travel of 360 feet down range, 500 feet cross range, and 180 feet vertically. The research vehicle is designed to give the pilot six degrees of freedom in simulated lunar landings. The standup pilots compartment atop the propulsion module provides controls for the thrust of the vehicles main rockets and a system of small maneuvering rockets. In research operations, as shown here, a vertical lifting force equal to five-sixth of the flight vehicles weight is applied by two vertical cables to oppose the pull of the Earths gravity and simulate low gravitational force at the Moons surface. The cables are attached to a servo-controlled hoist system in a dolly unit mounted under the traveling bridge. The hoist system is controlled automatically by load cells in each support strut. Data obtained through operation of the facility will supplement other scientific research at Langley in an extensive program support the Apollo mission.

  12. Fast Calculation of Abort Return Trajectories for Manned Missions to the Moon

    NASA Technical Reports Server (NTRS)

    Senent, Juan S.

    2010-01-01

    In order to support the anytime abort requirements of a manned mission to the Moon, the vehicle abort capabilities for the translunar and circumlunar phases of the mission must be studied. Depending on the location of the abort maneuver, the maximum return time to Earth and the available propellant, two different kinds of return trajectories can be calculated: direct and fly-by. This paper presents a new method to compute these return trajectories in a deterministic and fast way without using numerical optimizers. Since no simplifications of the gravity model are required, the resulting trajectories are very accurate and can be used for both mission design and operations. This technique has been extensively used to evaluate the abort capabilities of the Orion/Altair vehicles in the Constellation program for the translunar phase of the mission.

  13. Apollo Soyuz

    NASA Technical Reports Server (NTRS)

    Froehlich, W.

    1978-01-01

    The mission, background, and spacecraft of the Apollo Soyuz Test Project are summarized. Scientific experiments onboard the spacecraft are reviewed, along with reentry procedures. A small biography of each of the five astronauts (U.S. and Russian) is also presented.

  14. High-resolution Gravity Field Models of the Moon Using GRAIL mission Data

    NASA Astrophysics Data System (ADS)

    Lemoine, Frank G.; Goossens, Sander; Sabaka, Terrence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2015-04-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. GRAIL consisted of two spacecraft, with Ka-band tracking between the two satellites as the single science instrument, with the addition of Earth-based tracking using the Deep Space Network. The science mission was divided into two phases: a primary mission from March 1, 2012 to May 29, 2012, and an extended mission from August 30, 2012 to December 14, 2012. The altitude varied from 3 km to 94 km above the lunar surface during both mission phases. Both the primary and the extended mission data have been processed into global models of the lunar gravity field at NASA/GSFC using the GEODYN software up to 1080 x 1080 in spherical harmonics. In addition to the high-resolution global models, local models have also been developed. Due to varying spacecraft altitude and ground track spacing, the actual resolution of the global models varies geographically. Information beyond the current resolution is still present in the data, as indicated by relatively higher fits in the last part of the extended mission, where the satellites achieved their lowest altitude above lunar surface. Local models of the lunar gravitational field at high resolution were thus estimated to accommodate this signal. Here, we present the current status of GRAIL gravity modeling at NASA/GSFC, for both global and local models. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission). We also evaluate the prospects for extending the resolution of our current models

  15. Of time and the moon.

    PubMed

    Wetherill, G W

    1971-07-30

    Considerable information concerning lunar chronology has been obtained by the study of rocks and soil returned by the Apollo 11 and Apollo 12 missions. It has been shown that at the time the moon, earth, and solar system were formed, approximately 4.6 approximately 10(9) years ago, a severe chemical fractionation took place, resulting in depletion of relatively volatile elements such as Rb and Pb from the sources of the lunar rocks studied. It is very likely that much of this material was lost to interplanetary space, although some of the loss may be associated with internal chemical differentiation of the moon. It has also been shown that igneous processes have enriched some regions of the moon in lithophile elements such as Rb, U, and Ba, very early in lunar history, within 100 million years of its formation. Subsequent igneous and metamorphic activity occurred over a long period of time; mare volcanism of the Apollo 11 and Apollo 12 sites occurred at distinctly different times, 3.6 approximately 10(9) and 3.3 approximately 10(9) years ago, respectively. Consequently, lunar magmatism and remanent magnetism cannot be explained in terms of a unique event, such as a close approach to the earth at a time of lunar capture. It is likely that these phenomena will require explanation in terms of internal lunar processes, operative to a considerable depth in the moon, over a long period of time. These data, together with the low present internal temperatures of the moon, inferred from measurements of lunar electrical conductivity, impose severe constraints on acceptable thermal histories of the moon. Progress is being made toward understanding lunar surface properties by use of the effects of particle bombardment of the lunar surface (solar wind, solar flare particles, galactic cosmic rays). It has been shown that the rate of micrometeorite erosion is very low (angstroms per year) and that lunar rocks and soil have been within approximately a meter of the lunar surface

  16. A potpourri of pristine moon rocks, including a VHK mare basalt and a unique, augite-rich Apollo 17 anorthosite

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Shirley, D. N.; Kallemeyn, G. W.

    1986-01-01

    The anorthosite fragment, 76504,18, the first of the Apollo 17's pristine anorthosites, was found to have: (1) a higher ratio of high-Ca pyroxine to low-Ca pyroxene, (2) higher Na in its plagioclase, (3) higher contents of incompatible elements, and (4) a higher Eu/Al ratio in comparison to ferroan anorthosites. With a parent melt having a negative Eu anomaly, 76504,18 closely resembles a typical mare basalt. This anorthosite was among the latest to be formed by plagioclase flotation above a primordial magmasphere; typical mare basalt regions accumulated at about the same time or even earlier. Another fragment 14181c, a very high potassium basalt, was studied and found to be similar to typical Apollo 14 mare basalt though it has a K/La ratio of 1050. It is suggested that this lithology formed after a normal Apollo 14 mare basaltic melt partially assimilated granite. New data for siderphile elements in Apollo 12 mare basalts indicate that only the lowest of earlier data are trustworthy as being free of laboratory contamination.

  17. Reporters Interview Family of Apollo 11 Astronaut Neil Armstrong

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Newsmen talked with the wife and sons of Apollo 11 astronaut Neil A. Armstrong after the successful launch of Apollo 11 on its trajectory to the moon. The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Pandora - Discovering the origin of the moons of Mars (a proposed Discovery mission)

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.; Diniega, S.; Prettyman, T. H.

    2015-12-01

    After decades of intensive exploration of Mars, fundamental questions about the origin and evolution of the martian moons, Phobos and Deimos, remain unanswered. Their spectral characteristics are similar to C- or D-class asteroids, suggesting that they may have originated in the asteroid belt or outer solar system. Perhaps these ancient objects were captured separately, or maybe they are the fragments of a captured asteroid disrupted by impact. Various lines of evidence hint at other possibilities: one alternative is co-formation with Mars, in which case the moons contain primitive martian materials. Another is that they are re-accreted ejecta from a giant impact and contain material from the early martian crust. The Pandora mission, proposed in response to the 2014 NASA Discovery Announcement of Opportunity, will acquire new information needed to determine the provenance of the moons of Mars. Pandora will travel to and successively orbit Phobos and Deimos to map their chemical and mineral composition and further refine their shape and gravity. Geochemical data, acquired by nuclear- and infrared-spectroscopy, can distinguish between key origin hypotheses. High resolution imaging data will enable detailed geologic mapping and crater counting to determine the timing of major events and stratigraphy. Data acquired will be used to determine the nature of and relationship between "red" and "blue" units on Phobos, and determine how Phobos and Deimos are related. After identifying material representative of each moons' bulk composition, analysis of the mineralogical and elemental composition of this material will allow discrimination between the formation hypotheses for each moon. The information acquired by Pandora can then be compared with similar data sets for other solar system bodies and from meteorite studies. Understanding the formation of the martian moons within this larger context will yield a better understanding of processes acting in the early solar system

  19. Effect of photogrammetric reading error on slope-frequency distributions. [obtained from Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Wu, S. C.

    1973-01-01

    The effect of reading error on two hypothetical slope frequency distributions and two slope frequency distributions from actual lunar data in order to ensure that these errors do not cause excessive overestimates of algebraic standard deviations for the slope frequency distributions. The errors introduced are insignificant when the reading error is small and the slope length is large. A method for correcting the errors in slope frequency distributions is presented and applied to 11 distributions obtained from Apollo 15, 16, and 17 panoramic camera photographs and Apollo 16 metric camera photographs.

  20. The ESA SMART-1 Mission to the Moon: Goals and Science

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Racca, G. R.; SMART-1 Science and Technology Working Team

    2000-10-01

    SMART-1 is the first in the programme of ESA's Small Missions for Advanced Research and Technology . Its objective is to demonstrate Solar Electric Primary Propulsion (SEP) for future Cornerstones (such as Bepi-Colombo) and to test new technologies for spacecraft and instruments. The project aims to have the spacecraft ready in October 2002 for launch as an Ariane-5 auxiliary payload. After a cruise with primary SEP, the SMART-1 mission is to orbit the Moon for a nominal period of six months, with possible extension. The spacecraft will carry out a complete programme of scientific observations during the cruise and in lunar orbit. SMART-1's science payload, with a total mass of some 15 kg, features many innovative instruments and advanced technologies. A miniaturised high-resolution camera (AMIE) for lunar surface imaging, a near-infrared point-spectrometer (SIR) for lunar mineralogy investigation, and a very compact X-ray spectrometer (D-CIXS) with a new type of detector and micro-collimator which will provide fluorescence spectroscopy and imagery of the Moon's surface elemental composition. The payload also includes an experiment (KaTE) aimed at demonstrating deep-space telemetry and telecommand communications in the X and Ka-bands, a radio-science experiment (RSIS), a deep space optical link (Laser-Link Experiment), using the ESA Optical Ground station in Tenerife, and the validation of a system of autonomous navigation SMART-1 lunar science investigations include studies of the chemical (OBAN) based on image processing. SMART-1 lunar science investigations include studies of the chemica composition and evolution of the Moon, of geophysical processes (volcanism, tectonics, cratering, erosion, deposition of ices and volatiles) for comparative planetology, and high resolution studies in preparation for future steps of lunar exploration. The mission could address several topics such as the accretional processes that led to the formation of planets, and the origin

  1. The Moon; twenty years later

    USGS Publications Warehouse

    Kerr, R. A.

    1989-01-01

    The 20th anniversary of the first landing on the Moon occurred on July 21, 1989. The vast majority of the Moon rocks collected by the Apollo mission astronauts await further study in the continuing effort to unravel the origin and evolution of Earth's nearest neighbor. Not that the 382-kilogram treasure trove of lunar samples has been gathering dust in the Planetary Materials Laboratory at the Johnson Space Center in Houston. It is just that lunar scientists are being very sparing in their use of the rocks. 

  2. Dusty plasmas over the Moon: theory research in support of the upcoming lunar missions

    NASA Astrophysics Data System (ADS)

    Popel, Sergey; Zelenyi, Lev; Zakharov, Alexander; Izvekova, Yulia; Dolnikov, Gennady; Dubinskii, Andrey; Kopnin, Sergey; Golub, Anatoly

    The future Russian lunar missions Luna 25 and Luna 27 are planned to be equipped with instruments for direct detection of nano- and microscale dust particles and determination of plasma properties over the surface of the Moon. Lunar dust over the Moon is usually considered as a part of a dusty plasma system. Here, we present the main our theory results concerning the lunar dusty plasmas. We start with the description of the observational data on dust particles on and over the surface of the Moon. We show that the size distribution of dust on the lunar surface is in a good agreement with the Kolmogorov distribution, which is the size distribution of particles in the case of multiple crushing. We discuss the role of adhesion which has been identified as a significant force in the dust particle launching process. We evaluate the adhesive force for lunar dust particles with taking into account the roughness and adsorbed molecular layers. We show that dust particle launching can be explained if the dust particles rise at a height of about dozens of nanometers owing to some processes. This is enough for the particles to acquire charges sufficient for the dominance of the electrostatic force over the gravitational and adhesive forces. The reasons for the separation of the dust particles from the surface of the Moon are, in particular, their heating by solar radiation and cooling. We consider migration of free protons in regolith from the viewpoint of the photoemission properties of the lunar soil. Finally, we develop a model of dusty plasma system over the Moon and show that it includes charged dust, photoelectrons, and electrons and ions of the solar wind. We determine the distributions of the photoelectrons and find the characteristics of the dust which rise over the lunar regolith. We show that there are no significant constraints on the Moon landing sites for future lunar missions that will study dusty plasmas in the surface layer of the Moon. We discuss also waves in

  3. Trajectory Design for MoonRise: A Proposed Lunar South Pole-Aitken Basin Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; McElrath, Timothy P.; Anderson, Rodney L.; Sweetser, Theodore H.

    2013-01-01

    This paper presents the mission design for the proposed MoonRise New Frontiers mission: a lunar far side lander and return vehicle, with an accompanying communication satellite. Both vehicles are launched together, but fly separate low-energy transfers to the Moon. The communication satellite enters lunar orbit immediately upon arrival at the Moon, whereas the lander enters a staging orbit about the lunar Lagrange points. The lander descends and touches down on the surface 17 days after the communication satellite enters orbit. The lander remains on the surface for nearly two weeks before lifting off and returning to Earth via a low-energy return.

  4. Jim Lovell Recalls Apollo 8 Launch Day

    NASA Video Gallery

    Astronaut Jim Lovell, veteran of two Gemini flights as well as the legendary missions of Apollo 8 and Apollo 13, recalls his thoughts on launch day of Apollo 8 in 1968, when humans first left the E...

  5. Backup Crew of the first manned Apollo mission practice water egress

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Backup crew for the first manned Apollo space flight practice water egress procedures with full scale boilerplate model of their spacecraft. Training took place at Ellington AFB, near the Manned Spacecraft Center, Houston. Crew members are Astronauts David R. Scott (top of spacecraft); Russell L. Schweickart (upper right); and James McDivitt (standing in hatch).

  6. Thin section of rock brought back to earth by Apollo 12 mission

    NASA Technical Reports Server (NTRS)

    1970-01-01

    An idea of the mineralogy and texture of a lunar sample can be achieved by use of color microphotos. This thin section is Apollo 12 lunar sample number 12057.27, under polarized light. The lavender minerals are pyrexene; the black mineral is ilmenite; the white and brown, feldspar; and the remainder, olivine.

  7. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  8. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Licatta, Angelo; Griffin, Devon

    2007-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  9. Apollo rocks, fines and soil cores

    NASA Astrophysics Data System (ADS)

    Allton, J.; Bevill, T.

    Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were

  10. Lunar Lander project: A study on future manned missions to the Moon

    NASA Technical Reports Server (NTRS)

    1966-01-01

    This project is based on designing a small lunar probe which will conduct research relating to future manned missions to the moon. The basic design calls for two experiments to be run. The first of these experiments is an enclosed environment section which will be exposed to solar radiation while on the moon. The purpose of this experiment is to determine the effect of radiation on an enclosed environment and how different shielding materials can be used to moderate this effect. The eight compartments will have the following covering materials: glass, polarized glass, plexiglass, polyurethane, and boron impregnated versions of the polyurethane and plexiglass. The enclosed atmosphere will be sampled by a mass spectrometer to determine elemental breakdown of its primary constituents. This is needed so that an accurate atmospheric processing system can be designed for a manned mission. The second experiment is a seismic study of the moon. A small penetrating probe will be shot into the lunar surface and data will be collected onboard the lander by an electronic seismograph which will store the data in the data storage unit for retrieval and transmission once every twenty-three hours. The project is designed to last ten years with possible extended life for an additional nine years at which point power requirements prevent proper functioning of the various systems.

  11. Is There Water on the Moon? NASA's LCROSS Mission [Supplemental Video

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Presents a supplemental video supporting the original conference presentation under the same title. The conference presentation discussed NASA's preparation for its return to the moon with the Lunar CRater Observation and Sensing Satellite (LCROSS) mission which will robotically seek to determine the presence of water ice at the Moon's South Pole. This secondary payload spacecraft will travel with the Lunar Reconnaissance Orbiter (LRO) satellite to the Moon on the same Atlas-V 401 Centaur rocket launched from Cape Canaveral Air Force Station, Florida. The 1000kg Secondary Payload budget is efficiently used to provide a highly modular and reconfigurable LCROSS Spacecraft with extensive heritage to accurately guide the expended Centaur into the crater. Upon separation, LCROSS flies through the impact plume, telemetering real-time images and characterizing water ice in the plume with infrared cameras and spectrometers. LCROSS then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory. The video contains an animated simulation of the Centaur launch, LRO separation, LRO high resolution lunar survey, LCROSS mission elements and LCROSS impactor separation and impact observations.

  12. Discoveries from Revisiting Apollo Direct Active Measurements of Lunar Dust

    NASA Astrophysics Data System (ADS)

    O'Brien, Brian

    2010-05-01

    New missions to the moon being developed by China, Japan, India, USA, Russia and Europe and possibilities of human missions about 2020 face the reality that 6 Apollo expeditions did not totally manage or mitigate effects of easily-mobilised and very "sticky" lunar dust on humans and hardware. Laboratory and theoretical modelling cannot reliably simulate the complex lunar environments that affect dynamical movements of lunar dust. The only direct active measurements of lunar dust during Apollo were made by matchbox-sized minimalist Dust Detector Experiments (DDEs) deployed to transmit some 30 million digital measurements from Apollo 11, 12, 14 and 15. These were misplaced or relatively ignored until 2009, when a self-funded suite of discoveries (O'Brien Geophys. Research Letters FIX 6 May 2099) revealed unexpected properties of lunar dust, such as the adhesive force being stronger as illumination increased. We give the first reports of contrasting effects, contamination or cleansing, from rocket exhausts of Apollo 11, 12, 14 and 15 Lunar Modules leaving the moon. We further strengthen the importance of collateral dust inadvertently splashed on Apollo hardware by human activities. Dust management designs and mission plans require optimum use of such in situ measurements, extended by laboratory simulations and theoretical modelling.

  13. Apollo 13: Houston, we've got a problem

    NASA Astrophysics Data System (ADS)

    1991-04-01

    This video contains historical footage of the flight of Apollo-13, the fifth Lunar Mission and the third spacecraft that was to land on the Moon. Apollo-13's launch date was April 11, 1970. On the 13th of April, after docking with the Lunar Module, the astronauts, Jim Lovell, Fred Haise, and Jack Swiggert, discovered that their oxygen tanks had ruptured and ended up entering and returning to Earth in the Lunar Module instead of the Command Module. There is footage of inside module and Mission Control shots, personal commentary by the astronauts concerning the problems as they developed, national news footage and commentary, and a post-flight Presidential Address by President Richard Nixon. Film footage of the approach to the Moon and departing from Earth, and air-to-ground communication with Mission Control is included.

  14. Apollo 13: Houston, We've Got a Problem

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video contains historical footage of the flight of Apollo-13, the fifth Lunar Mission and the third spacecraft that was to land on the Moon. Apollo-13's launch date was April 11, 1970. On the 13th of April, after docking with the Lunar Module, the astronauts, Jim Lovell, Fred Haise, and Jack Swiggert, discovered that their oxygen tanks had ruptured and ended up entering and returning to Earth in the Lunar Module instead of the Command Module. There is footage of inside module and Mission Control shots, personal commentary by the astronauts concerning the problems as they developed, national news footage and commentary, and a post-flight Presidential Address by President Richard Nixon. Film footage of the approach to the Moon and departing from Earth, and air-to-ground communication with Mission Control is included.

  15. Operating the Dual-Orbiter GRAIL Mission to Measure the Moon's Gravity

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    NASA's mission to measure the Moon's gravity and determine the interior structure, from crust to core, has almost completed its 3-month science data collection phase. The twin orbiters of the Gravity Recovery and Interior Laboratory (GRAIL) mission were launched from Florida on September 10, 2011, on a Delta-II launch vehicle. After traveling for nearly four months on a low energy trajectory to the Moon, they were inserted into lunar orbit on New Year's Eve and New Year's Day. In January 2012 a series of circularization maneuvers brought the orbiters into co-planar near-circular polar orbits. In February a distant (75- km) rendezvous was achieved and the science instruments were turned on. A dual- frequency (Ka and S-band) inter-orbiter radio link provides a precise orbiter-to-orbiter range measurement that enables the gravity field estimation. NASA's Jet Propulsion Laboratory in Pasadena, CA, manages the GRAIL project. Mission management, mission planning and sequencing, and navigation are conducted at JPL. Lockheed Martin, the flight system manufacturer, operates the orbiters from their control center in Denver, Colorado. The orbiters together have performed 28 propulsive maneuvers to reach and maintain the science phase configuration. Execution of these maneuvers, as well as the payload checkout and calibration activities, has gone smoothly due to extensive pre-launch operations planning and testing. The key to the operations success has been detailed timelines for product interchange between the operations teams and proven procedures from previous JPL/LM planetary missions. Once in science phase, GRAIL benefitted from the payload operational heritage of the GRACE mission that measures the Earth's gravity.

  16. The Lunar Reconnaissance Orbiter Mission Six Years of Science and Exploration at the Moon

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Petro, N. E.; Vondrak, R. R.

    2015-01-01

    Since entering lunar orbit on June 23, 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. These measurements provide new information regarding the physical properties of the lunar surface, the lunar environment, and the location of volatiles and other resources. Scientific interpretation of these observations improves our understanding of the geologic history of the Moon, its current state, and what its history can tell us about the evolution of the Solar System. Scientific results from LRO observations overturned existing paradigms and deepened our appreciation of the complex nature of our nearest neighbor. This paper summarizes the capabilities, measurements, and some of the science and exploration results of the first six years of the LRO mission.

  17. The Lunar Reconnaissance Orbiter Mission - Six years of science and exploration at the Moon

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Petro, N. E.; Vondrak, R. R.

    2016-07-01

    Since entering lunar orbit on June 23, 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. These measurements provide new information regarding the physical properties of the lunar surface, the lunar environment, and the location of volatiles and other resources. Scientific interpretation of these observations improves our understanding of the geologic history of the Moon, its current state, and what its history can tell us about the evolution of the Solar System. Scientific results from LRO observations overturned existing paradigms and deepened our appreciation of the complex nature of our nearest neighbor. This paper summarizes the capabilities, measurements, and some of the science and exploration results of the first six years of the LRO mission.

  18. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  19. Height-to-diameter ratios of moon rocks from analysis of Lunokhod-1 and -2 and Apollo 11-17 panoramas and LROC NAC images

    NASA Astrophysics Data System (ADS)

    Demidov, N. E.; Basilevsky, A. T.

    2014-09-01

    An analysis is performed of 91 panoramic photographs taken by Lunokhod-1 and -2, 17 panoramic images composed of photographs taken by Apollo 11-15 astronauts, and six LROC NAC photographs. The results are used to measure the height-to-visible-diameter ( h/ d) and height-to-maximum-diameter ( h/ D) ratios for lunar rocks at three highland and three mare sites on the Moon. The average h/ d and h/ D for the six sites are found to be indistinguishable at a significance level of 95%. Therefore, our estimates for the average h/ d = 0.6 ± 0.03 and h/ D = 0.54 ± 0.03 on the basis of 445 rocks are applicable for the entire Moon's surface. Rounding off, an h/ D ratio of ≈0.5 is suggested for engineering models of the lunar surface. The ratios between the long, medium, and short axes of the lunar rocks are found to be similar to those obtained in high-velocity impact experiments for different materials. It is concluded, therefore, that the degree of penetration of the studied lunar rocks into the regolith is negligible, and micrometeorite abrasion and other factors do not dominate in the evolution of the shape of lunar rocks.

  20. NanoSWARM: A Nano-satellite Mission to Measure Particles and Fields Around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, I.

    2015-12-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<1 km altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade. NanoSWARM was proposed as a NASA Discovery mission in February 2015.

  1. Preface: The Chang'e-3 lander and rover mission to the Moon

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  2. NanoSWARM - A nano-satellite mission to measure particles and fields around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Russell, Christopher; Pieters, Carle; Weiss, Benjamin; Halekas, Jasper; Poppe, Andrew; Larson, Davin; Lawrence, David; Elphic, Richard; Hayne, Paul; Blakely, Richard; Kim, Khan-Hyuk; Choi, Young-Jun; Jin, Ho; Hemingway, Doug; Nayak, Michael; Puig-Suari, Jordi; Jaroux, Belgacem; Warwick, Steven

    2015-04-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<500 m altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade, and expand the cubesat paradigm into deep space. NanoSWARM will be proposed as a NASA Discovery mission in early 2015.

  3. The Apollo 11 Prime Crew

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Portrait of the prime crew of the Apollo 11 lunar landing mission. From left to right they are: Commander, Neil A. Armstrong, Command Module Pilot, Michael Collins, and Lunar Module Pilot, Edwin E. Aldrin Jr. On July 20th 1969 at 4:18 PM, EDT the Lunar Module 'Eagle' landed in a region of the Moon called the Mare Tranquillitatis, also known as the Sea of Tranquillity. After securing his spacecraft, Armstrong radioed back to earth: 'Houston, Tranquility Base here, the Eagle has landed'. At 10:56 p.m. that same evening and witnessed by a worldwide television audience, Neil Armstrong stepped off the 'Eagle's landing pad onto the lunar surface and said: 'That's one small step for a man, one giant leap for mankind.' He became the first human to set foot upon the Moon.

  4. The Radar for Icy Moon Exploration (RIME) on the JUICE Mission

    NASA Astrophysics Data System (ADS)

    Bruzzone, L.; Plaut, J.; Alberti, G.; Blankenship, D. D.; Bovolo, F.; Campbell, B. A.; Castelletti, D.; Gim, Y.; Ilisei, A. M.; Kofman, W. W.; Komatsu, G.; McKinnon, W. B.; Mitri, G.; Moussessian, A.; Notarnicola, C.; Orosei, R.; Patterson, G. W.; Pettinelli, E.; Plettemeier, D.

    2015-12-01

    The Radar for Icy Moon Exploration (RIME) is one of the main instruments included in the JUpiter ICy moons Explorer (JUICE) ESA mission. It is a radar sounder designed for studying the subsurface geology and geophysics of Galilean icy moons (i.e., Ganymede, Europa and Callisto) and for detecting possible subsurface water. RIME is designed for penetration of the icy moons up to a depth of 9 km. Two main operation scenarios are foreseen for RIME: i) flyby observations of Europa, Ganymede and Callisto (from a distance of 1000 km to the closest approach of about 400 km); and ii) circular orbital observations around Ganymede at 500 km of altitude. According to these scenarios, RIME is designed to explore the icy shell of the Galilean icy satellites by characterizing the wide range of compositional, thermal, and structural variation found in the subsurface of these moons. RIME observations will profile the ice shells of the Galilean icy satellites with specific focus on Ganymede given the circular orbital phase. The acquired measures will provide geological context on hemispheric (thousands of km), regional (hundreds of km with multiple overlaps), and targeted (tens of km) scales appropriate for a variety of hypothesis tests. RIME will operate in a single frequency band, centred at 9 MHz. The frequency was selected as the result of extensive study of penetration capabilities, surface roughness of the moons, Jovian radio noise, antenna accommodation, and system design. The 9 MHz frequency provides penetration capabilities and mitigation of surface scattering (which can cause signal loss and clutter issues), at the expense of mapping coverage, as it is likely to obtain high SNR observations only on the anti-Jovian side of the target moons. The RIME antenna is a 16 m dipole. The chirp pulse bandwidth is up to 3 MHz, which provides vertical resolution of about 50 m in ice after side lobe weighting. RIME will also operate with 1 MHz bandwidth to reduce data volume when

  5. Petrographic and petrological studies of lunar rocks. [from the Apollo 15 mission

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1978-01-01

    Thin sections and polished electron probe mounts of Apollo 15 glasscoated breccias 15255, 15286, 15466, and 15505 were examined optically and analyzed by sem/microprobe. Sections from breccias 15465 and 15466 were examined in detail, and chemical and mineralogical analyses of several larger lithic clasts, green glass, and partly crystallized green glass spheres are presented. Area analyses of 33 clasts from the above breccias were also done using the SEM/EDS system. Mineralogical and bulk chemical analyses of clasts from the Apollo 15 glass-coated breccias reveal a diverse set of potential rock types, including plutonic and extrusive igneous rocks and impact melts. Examination of the chemistry of the clasts suggests that many of these clasts, like those found in 61175, are impact melts. Their variability suggests formation by several small local impacts rather than by a large basin-forming event.

  6. Rendezvous with Toutatis from the Moon: The Chang'e-2 mission

    NASA Astrophysics Data System (ADS)

    Huang, J.; Tang, X.; Meng, L.

    2014-07-01

    Chang'e-2 probe was the second lunar probe of China, with the main objectives to demonstrate some key features of the new lunar soft landing technology, and its applications to future exploration missions. After completing the planned mission successfully, Chang'e-2 flew away from the Moon and entered into the interplanetary space. Later, at a distance of 7 million km from the Earth, Chang'e-2 encountered asteroid (4179) Toutatis with a very close fly-by distance and obtained colorful images with a 3-m resolution. Given some surplus velocity increment as well as the promotion of autonomous flight ability and improvement of control, propulsion, and thermal systems in the initial design, Chang'e-2 had the capabilities necessary for escaping from the Moon. By taking advantage of the unique features of the Lagrangian point, the first close fly-by of asteroid Toutatis was realized despite the tight constraints of propellant allocation, spacecraft-Earth communication, and coordination of execution sequences. Chang'e-2 realized the Toutatis flyby with a km-level distance at closest approach. In the absence of direct measurement method, based on the principle of relative navigation and through the use of the sequence of target images, we calculated the rendezvous parameters such as relative distance and image resolution. With the help of these parameters, some fine and new scientific discoveries about the asteroid were obtained by techniques of optical measurements and image processing. Starting with an innovative design, followed by high-fidelity testing and demonstration, elaborative implementation, and optimal usage of residual propellant, Chang'e-2 has for the first time successfully explored the Moon, L2 point and an asteroid, while achieving the purpose of 'faster, better, cheaper'. What Chang'e-2 has accomplished was far beyond our expectations. *J. Huang is the chief designer (PI) of Chang'e-2 probe, planned Chang'e-2's multi-objective and multitasking exploration

  7. Apollo 11 Astronaut Neil Armstrong Approaches Practice Helicopter

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11, crew members underwent training to practice activities they would be performing during the mission. In this photograph Neil Armstrong approaches the helicopter he flew to practice landing the Lunar Module (LM) on the Moon. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished

  8. Quarantined Apollo 11 Crew Debriefing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The three are seen here at the MSC, still inside the MQF, undergoing their first debriefing on Sunday, August 3, 1969. Behind the glass are (L-R): Edwin Aldrin, Michael Collins, and Neil Armstrong.

  9. Antarctica as a testing ground for manned missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Demidov, N. E.; Lukin, V. V.

    2017-03-01

    This paper is concerned with the study of expedition activity in Antarctica as a part of the search for useful analogies and solutions which can be taken into account in planning manned missions to the Moon and Mars. The following is considered: natural analogies, human factors, station facilities, means of transportation, scientific programs, safety issues, and historical and political analogies. A rationalization is given for the idea of creating a testing ground in Antarctica (stations Vostok, Novolazarevskaya, Jetty Oasis) for ground-based simulation of functioning of a lunar and Martian base.

  10. Moon

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During its flight, the Galileo spacecraft returned images of the Moon. The Galileo spacecraft took these images on December 7, 1992 on its way to explore the Jupiter system in 1995-97. The distinct bright ray crater at the bottom of the image is the Tycho impact basin. The dark areas are lava rock filled impact basins: Oceanus Procellarum (on the left), Mare Imbrium (center left), Mare Serenitatis and Mare Tranquillitatis (center), and Mare Crisium (near the right edge). This picture contains images through the Violet, 756 nm, 968 nm filters. The color is 'enhanced' in the sense that the CCD camera is sensitive to near infrared wavelengths of light beyond human vision. The Galileo project is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory.

  11. Apollo by the Numbers: A Statistical Reference

    NASA Technical Reports Server (NTRS)

    Orloff, Richard; Garber, Stephen (Technical Monitor)

    2000-01-01

    The purpose of this work is to provide researchers, students, and space enthusiasts with a comprehensive reference for facts about Project Apollo, America's effort to put humans in the Moon. Research for this work started in 1988, when the author discovered that, despite the number of excellent books that focused on the drama of events that highlighted Apollo, there were none that focused on the drama of the numbers. This book is separated into two parts. The first part contains narratives for the Apollo 1 fire and the 11 flown Apollo missions. Included after each narrative is a series of data tables, followed by a comprehensive timeline of events from just before liftoff to just after crew and spacecraft recovery. The second part contains more than 50 tables. These tables organize much of the data from the narratives in one place so they can be compared among all missions. The tables offer additional data as well. The reader can select a specific mission narrative or specific data table by consulting the Table of Contents.

  12. Apollo 17: On the Shoulders of Giants

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A documentary view of the Apollo 17 journey to Taurus-Littrow, the final lunar landing mission in the Apollo program is discussed. The film depicts the highlights of the mission and relates the Apollo program to Skylab, the Apollo-Soyuz linkup and the Space Shuttle.

  13. Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs.

    PubMed

    Schulze-Makuch, Dirk; Dohm, James M; Fairén, Alberto G; Baker, Victor R; Fink, Wolfgang; Strom, Robert G

    2005-12-01

    Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.

  14. Apollo 12 Astronauts Wave Upon Entering the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Aboard the recovery ship, USS Hornet, Apollo 12 astronauts wave to the crowd as they enter the mobile quarantine facility. The recovery operation took place in the Pacific Ocean after the splashdown of the Command Module capsule. Navy para-rescue men recovered the capsule housing the 3-man Apollo 12 crew. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard Apollo 12 was a crew of three astronauts: Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  15. Project APEX: Advanced Phobos Exploration. Manned mission to the Martian moon Phobos

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The manned exploration of Mars is a massive undertaking which requires careful consideration. A mission to the moon of Mars called Phobos as a prelude to manned landings on the Martian surface offers some advantages. One is that the energy requirements, in terms of delta 5, is only slightly higher than going to the Moon's surface. Another is that Phobos is a potential source of water and carbon which could be extracted and processed for life support and cryogenic propellants for use in future missions; thus, Phobos might serve as a base for extended Mars exploration or for exploration of the outer planets. The design of a vehicle for such a mission is the subject of our Aerospace System Design course this year. The materials and equipment needed for the processing plant would be delivered to Phobos in a prior unmanned mission. This study focuses on what it would take to send a crew to Phobos, set up the processing plant for extraction and storage of water and hydrocarbons, conduct scientific experiments, and return safely to Earth. The size, configuration, and subsystems of the vehicle are described in some detail. The spacecraft carries a crew of five and is launched from low Earth orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing by of Venus and takes eight months to complete. The stay at Phobos is 60 days at which time the crew will be engaged in setting up the processing facility. The crew will then return to Earth orbit after a total mission duration of 656 days. Both stellar and solar observations will be conducted on both legs of the mission. The design of the spacecraft addresses human factors and life science; mission analysis and control; propulsion; power generation and distribution; thermal control; structural analysis; and planetary, solar, and stellar science. A 0.5 g artificial gravity is generated during transit by spinning about the lateral body axis. Nuclear thermal rockets using hydrogen as fuel are

  16. Project APEX: Advanced Phobos Exploration. Manned mission to the Martian moon Phobos

    NASA Astrophysics Data System (ADS)

    1992-04-01

    The manned exploration of Mars is a massive undertaking which requires careful consideration. A mission to the moon of Mars called Phobos as a prelude to manned landings on the Martian surface offers some advantages. One is that the energy requirements, in terms of delta 5, is only slightly higher than going to the Moon's surface. Another is that Phobos is a potential source of water and carbon which could be extracted and processed for life support and cryogenic propellants for use in future missions; thus, Phobos might serve as a base for extended Mars exploration or for exploration of the outer planets. The design of a vehicle for such a mission is the subject of our Aerospace System Design course this year. The materials and equipment needed for the processing plant would be delivered to Phobos in a prior unmanned mission. This study focuses on what it would take to send a crew to Phobos, set up the processing plant for extraction and storage of water and hydrocarbons, conduct scientific experiments, and return safely to Earth. The size, configuration, and subsystems of the vehicle are described in some detail. The spacecraft carries a crew of five and is launched from low Earth orbit in the year 2010. The outbound trajectory to Mars uses a gravitational assisted swing by of Venus and takes eight months to complete. The stay at Phobos is 60 days at which time the crew will be engaged in setting up the processing facility. The crew will then return to Earth orbit after a total mission duration of 656 days. Both stellar and solar observations will be conducted on both legs of the mission. The design of the spacecraft addresses human factors and life science; mission analysis and control; propulsion; power generation and distribution; thermal control; structural analysis; and planetary, solar, and stellar science. A 0.5 g artificial gravity is generated during transit by spinning about the lateral body axis. Nuclear thermal rockets using hydrogen as fuel are

  17. New seismic events identified in the Apollo lunar data by application of a Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, B.; Hammer, C.

    2015-10-01

    The Apollo astronauts installed seismic stations on the Moon during Apollo missions 11, 12, 14, 15 and 16. The stations consisted of a three-component long- period seismometer (eigenperiod 15 s) and a vertical short-period sensor (eigenperiod 1 s). Until today, the Apollo seismic network provides the only confirmed recordings of seismic events from any extrater-restrial. The recorded event waveforms differ significantly from what had been expected based on Earth data, mainly by their long duration body wave codas caused by strong near-surface scattering and weak attenuation due to lack of fluids. The main lunar event types are deep moonquakes, impacts, and the rare shallow moonquakes.

  18. The Lunar Reconnaissance Orbiter Mission: Seven Years at the Moon - Accomplishments, Data, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Petro, Noah; Keller, John

    2016-07-01

    The LRO Spacecraft has been orbiting the Moon for over 7 years (~91 lunations), and in that time data from the seven instruments has contributed to a revolution in our understanding of the Moon. Since launch the mission goals and instruments science questions have evolved, from the initial characterization of the lunar surface and its environment to studying the variability of surface hydration and measuring the flux of new craters that have formed during LRO's time in lunar orbit. The growing LRO dataset in the PDS presents a unique archive that allows for an unprecedented opportunity to study how an airless body changes over time. The LRO instrument suite [1] is performing nominally, with no significant performance issues since the mission entered the current extended mission. The Mini-RF instrument team is investigating new methods for collecting bistatic data using an Earth-based X-band transmitter [2] during a possible upcoming extended mission starting in September 2016, pending NASA approval. The LRO spacecraft has been in an elliptical, polar orbit with a low perilune over the South Pole since December 2011. This orbit minimizes annual fuel consumption, enabling LRO to use fuel to maximize opportunities for obtaining unique science (e.g., lunar eclipse measurements from Diviner, measuring spacecraft impacts by GRAIL and LADEE). The LRO instrument teams deliver data to the PDS every three months, data that includes raw, calibrated, and gridded/map products [3]. As of January, over 681TB has been archived. These higher-level data products include a number of resources that are useful for mission planners, in addition to planetary scientists. A focus of the mission has been on the South Pole, therefore a number of special products (e.g., illumination maps, high resolution topography, hydration maps) are available. Beyond the poles, high-resolution (~1-2 m spatial resolution) topographic products are available for select areas, as well as maps of rock abundance

  19. Apollo 11 Facts Project [EVA Training/Washington, D. C. Tour

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage shows the crew of Apollo 11, Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin Jr., and Command Module Pilot Michael Collins, during various pre-mission activities. They are seen training for the extravehicular activity on the surface of the Moon, giving speeches in front of the White House, and during a parade in Houston.

  20. Cylindrical isomorphic mapping applied to invariant manifold dynamics for Earth-Moon Missions

    NASA Astrophysics Data System (ADS)

    Giancotti, Marco; Pontani, Mauro; Teofilatto, Paolo

    2014-11-01

    Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth-Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth-Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at L_2.

  1. Color and Composition of Pluto and Its Moons from the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Olkin, C.; Reuter, D.; Stern, S. A.; Howett, C.; Parker, A. H.; Ennico Smith, K.; Singer, K. N.; Grundy, W. M.; Weaver, H. A., Jr.; Young, L. A.; Binzel, R. P.; Buie, M. W.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C.; Earle, A. M.; Jennings, D. E.; Linscott, I.; Lunsford, A.; Parker, J. W.; Protopapa, S.; Spencer, J. R.; Tsang, C.; Verbiscer, A.

    2015-12-01

    NASA's New Horizons mission has goals of providing maps of the color and composition of Pluto and its largest moon Charon. When the small moons of Pluto were discovered, the New Horizons science team added investigations on the color and composition of Nix and Hydra and also color of Styx and Kerberos and near-infrared spectra of Kerberos. Color observations taken by Ralph/MVIC, the Multispectral Visible Imaging Camera have revealed diverse terrain units across Pluto. By constructing an enhanced color composite image of Pluto from the Blue, Red and NIR filter images of Pluto, we can see that the informally named, Tombaugh Regio (the large heart-shaped region on Pluto), is clearly two different colors with a clear demarcation down the center of Tombaugh Regio. From infrared spectroscopic data taken by Ralph/LEISA, Linear Etalon Imaging Spectral Array, early analysis has shown that in the less blue region of Tombaugh Regio there is a concentration of CO ice. This paper will present selected highlights of results from the color and composition investigations of the New Horizons mission.

  2. Lunar capture orbits, a method of constructing earth moon trajectories and the lunar GAS mission. [Get Away Specials

    NASA Technical Reports Server (NTRS)

    Belbruno, E. A.

    1987-01-01

    A method is described to construct trajectories from the earth to the moon which utilizes the existence of lunar capture orbits and the concept of 'stability boundary'. These orbits are ballistic and represent a new family of trajectories. They go into orbit about the moon from a suitable position about the earth with no required thrusting. This method is applied to a mission being studied at JPL called Lunar GAS (Get Away Special). Other applications are discussed.

  3. Electromyographic analysis of skeletal muscle changes arising from 9 days of weightlessness in the Apollo-Soyuz space mission

    NASA Technical Reports Server (NTRS)

    Lafevers, E. V.; Nicogossian, A. E.; Hursta, W. N.

    1976-01-01

    Both integration and frequency analyses of the electromyograms from voluntary contractions were performed in one crewman of the Apollo-Soyuz Test Project mission. Of particular interest were changes in excitability, electrical efficiency, and fatigability. As a result of 9 days of weightlessness, muscle excitability was shown to increase; muscle electrical efficiency was found to decrease in calf muscles and to increase in arm muscles; and fatigability was found to increase significantly, as shown by spectral power shifts into lower frequencies. It was concluded from this study that skeletal muscles are affected by the disuse of weightlessness early in the period of weightlessness, antigravity muscles seem most affected by weightlessness, and exercise may abrogate the weightlessness effect. It was further concluded that electromyography is a sensitive tool for measuring spaceflight muscle effects.

  4. Identification of New Orbits to Enable Future Missions for the Exploration of the Martian Moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. In this paper, a showcase of various classes of non-Keplerian orbits are identified and a number of potential mission applications in the Mars-Phobos system are proposed. These applications include: low-thrust hovering around Phobos for close-range observations; Libration Point Orbits in enhanced three-body dynamics to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk as a passive radiation shield during future manned flights to Mars to reduce human exposure to radiation. Moreover, the latter orbits can be used as an orbital garage, requiring no orbital maintenance, where a spacecraft could make planned pit-stops during a round-trip mission to Mars.

  5. News and Views: There's an app for Swift; Underground clay on Mars; YU55 up close; Modelling Moon magnetism; Copernicium (Cn); Top GCSE astronomers

    NASA Astrophysics Data System (ADS)

    2011-12-01

    Remanent magnetism in rocks on the Moon's surface has been a puzzle since its detection in the Apollo missions. The Moon is too small to support a dynamo like the one that powers the Earth's field, but could the field have arisen early in its lifetime as a result of the differential motion of the lunar mantle above?

  6. Gravity Fields of the Moon Derived from GRAIL Primary and Extended Mission Data (Invited)

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B.; Chinn, D. S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2013-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012, for the primary mission and from August 30, 2012 to December 14, 2012 for the extended mission and endgame. During both mission phases, the twin spacecraft acquired highly precise Ka-band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data from altitudes of 2.3 to 98.2 km above the lunar surface. We have processed the GRAIL data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program and used the supercomputers of the NASA Center for Climate Simulation (NCCS) at NASA GSFC to accumulate the SRIF arrays and derive the geopotential solutions. During the extended mission, the spacecraft orbits were maintained at a mean altitude of ~23 km, compared to ~50 km during the primary mission. In addition, from December 7 to December 14, 2012, data were acquired from a mean altitude of 11.5 km. With these data, we have derived solutions in spherical harmonics to degree 900. The new gravity solutions show improved correlations with LOLA-derived topography to very high degree and order and resolve many lunar features in the geopotential with a resolution of less than 15 km. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission).

  7. Early development of Science Opportunity Analysis tools for the Jupiter Icy Moons Explorer (JUICE) mission

    NASA Astrophysics Data System (ADS)

    Cardesin Moinelo, Alejandro; Vallat, Claire; Altobelli, Nicolas; Frew, David; Llorente, Rosario; Costa, Marc; Almeida, Miguel; Witasse, Olivier

    2016-10-01

    JUICE is the first large mission in the framework of ESA's Cosmic Vision 2015-2025 program. JUICE will survey the Jovian system with a special focus on three of the Galilean Moons: Europa, Ganymede and Callisto.The mission has recently been adopted and big efforts are being made by the Science Operations Center (SOC) at the European Space and Astronomy Centre (ESAC) in Madrid for the development of tools to provide the necessary support to the Science Working Team (SWT) for science opportunity analysis and early assessment of science operation scenarios. This contribution will outline some of the tools being developed within ESA and in collaboration with the Navigation and Ancillary Information Facility (NAIF) at JPL.The Mission Analysis and Payload Planning Support (MAPPS) is developed by ESA and has been used by most of ESA's planetary missions to generate and validate science observation timelines for the simulation of payload and spacecraft operations. MAPPS has the capability to compute and display all the necessary geometrical information such as the distances, illumination angles and projected field-of-view of an imaging instrument on the surface of the given body and a preliminary setup is already in place for the early assessment of JUICE science operations.NAIF provides valuable SPICE support to the JUICE mission and several tools are being developed to compute and visualize science opportunities. In particular the WebGeoCalc and Cosmographia systems are provided by NAIF to compute time windows and create animations of the observation geometry available via traditional SPICE data files, such as planet orbits, spacecraft trajectory, spacecraft orientation, instrument field-of-view "cones" and instrument footprints. Other software tools are being developed by ESA and other collaborating partners to support the science opportunity analysis for all missions, like the SOLab (Science Operations Laboratory) or new interfaces for observation definitions and

  8. From Apollo Traverses to Future Exploration

    NASA Astrophysics Data System (ADS)

    Calzada, Mss Abigail; Voute, Sara; van Vynckt, Delphine; Foing, Bernard H.

    Historically, Apollo program is known as the first time that human could land in other space object, in this case Earth's moon, and come back safely to the Earth. It was the first time that humans had to adapt geological field work to extreme conditions in space. We can summarize the field work in a few steps: -Planning of the mission and field training of the astronauts. -Development of instrumental packages and reconnaissance of the area. -Geophysical measure-ments in situ and some sampling near the Lunar Module (LM). -Various EVA's of an average of six hours, from Apollo 15 with Lunar Rover Vehicle (LRV) support, collecting samples and taking measurements of various geophysical experiments. From now to future exploration we have to focus on apply all the knowledge we have from Apollo traverses and adapt it to the new technologies we are developing. The use of robotic rovers can save us hours of human EVA's in the way that we can predict the possible sites of interest before send human there. Also, the development of a field laboratory and habitat can provide us of the intruments necessary to do experiments without the need of a sample return mission. We validate these traverses in EuroMoonMars campaign.

  9. Advanced methods of low cost mission design for Jovian moons exploration

    NASA Astrophysics Data System (ADS)

    Grushevskii, Alexey; Koryanov, Victor; Tuchin, Andrey; Golubev, Yury; Tuchin, Denis

    2016-07-01

    DeltaV-low-cost gravity assists tours mission design of for the Jovian Moons exploration is considered (orbiters and probes around Io, Europa, Ganymede, Callisto), taking radiation hazard into account. Limited dynamic opportunities of using flybys require multiple gravity assists. Relevance of regular creation of optimum scenarios - sequences of passing of celestial bodies with definition of conditions of their execution is obvious. This work is devoted to the description of criteria for creation of such chains. New Multi-Tisserand coordinates [1,2] for this purpose are introduced for the best study of features for the radiation hazard decrease and the spacecraft asymptotic velocity reduction. One of main problems of the Jovian system mission design (JIMO, JUICE, Laplas P) is that the reduction of the asymptotic velocity of the spacecraft with respect to the satellite for the Jovian moon's capture is impossible. A valid reason is in the invariance of Jacobi integral and Tisserand parameter in a restricted three-body model (RTBP) [3]. Furthermore, the same-body flybys tour falls into the hazard radiation zone according the Tisserand-Poincaré graph. Formalized beam's algorithm to overcome this "problem of the ballistic destiny" with using full ephemeris model and with several coupled RTBP engaging has been implemented. Withal low-cost reduction of the spacecraft asymptotic velocity for the capture of the moon is required. The corresponding numerical scheme was developed with using Tisserand-Poincaré graph and the simulation of tens of millions of options. The Delta V-low cost searching was utilized also with help of the modeling of the multiple rebounds (cross gravity assists) of the beam of trajectories. The techniques are developed by the authors specifically to the needs of the mission "Laplas P" of Roscosmos. If we have answers to the questions "what kind of gravity assists", we need answer on the question "when". New Multi-Tisserand coordinates for this

  10. Flight Operations reunion for the Apollo 11 20th anniversary of the first manned lunar landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The following major areas are presented: (1) the Apollo years; (2) official flight control manning list for Apollo 11; (3) original mission control emblem; (4) foundations of flight control; (5) Apollo-11 20th anniversary program and events; (6) Apollo 11 mission operations team certificate; (7) Apollo 11 mission summary (timeline); and (8) Apollo flight control team photographs and biographies.

  11. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong talks with a former Apollo team member during an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  12. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  13. Apollo 12: Pinpoint for Science

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video, using historical film footage, photography, and computer animation, describes the launch, flight, lunar landing and exploration, and return flight of Apollo 12, one of the manned lunar missions. The astronauts were Charles Conrad, Richard Gordon, and Allen Bean. Thirty-six seconds into the November 14, 1969 launch, the spacecraft was hit by lightning from the thunderstorm surrounding the launch site. In spite of this mishap, the vehicle and astronauts were not harmed and continued with their mission. The Yankee Clipper (command module) docked with the Intrepid (lunar module) and upon reaching the Moon, the Intrepid disconnected during lunar orbit and descended to the Moon's surface to a landing area previously marked by the Surveyor satellite. After lunar surface exploration, soil sample collection, satellite maintenance, and setting up various lunar surface monitoring equipment (a seismometer and two atmospheric monitors), the Intrepid launched back into lunar orbit, docked with the Yankee Clipper, and returned to Earth. There are both B/W and color photography and film footage, which includes the Earth launch, lunar orbit, descent and ascent of Intrepid on the Moon, return flight, atmospheric reentry, and recovery on the Earth, and ground to air and space communication is shown.

  14. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    SciTech Connect

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-06-04

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp {approx} 850 to 1000 s) and attractive engine thrust-to-weight ratio ({approx} 3 to 10). Because only a minuscule amount of enriched {sup 235}U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three {approx}15-klb{sub f} engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH{sub 2}) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions.

  15. JUICE: A European mission to Jupiter and its icy moons (Invited)

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.

    2013-12-01

    The recently selected European Space Agency mission JUICE (JUipter ICy moon Explorer), is planned for launch in 2022. Details of the mission will be described, including the payload, planned orbits and the resulting science. The focus of JUICE is to characterise the conditions that may have led to the emergence of habitable environments among the Jovian icy satellites, with special emphasis on the three ocean-bearing worlds, Ganymede, Europa, and Callisto. Ganymede is identified for detailed investigation since it provides a natural laboratory for analysis of the nature, evolution and potential habitability of icy worlds in general, but also because of the role it plays within the system of Galilean satellites, and its unique magnetic and plasma interactions with the surrounding Jovian environment. The mission will also focus on characterising the diversity of processes in the Jupiter system which may be required in order to provide a stable environment at Ganymede, Europa and Callisto on geologic time scales. Focused studies of Jupiter's atmosphere, and magnetosphere and their interaction with the Galilean satellites will further enhance our understanding of the evolution and dynamics of the Jovian system. JUICE spacecraft at Ganymede (courtesy Mike Carroll)

  16. Apollo 15 Proves Galileo Correct

    NASA Video Gallery

    At the end of the last Apollo 15 moon walk, Commander David Scott held out a geologic hammer and a feather and dropped them at the same time. Because they were essentially in a vacuum, there was no...

  17. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  18. Apollo 11 Astronaut Neil Armstrong Performs Ladder Practice

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In preparation of the nation's first Lunar landing mission, Apollo 11 crew members underwent training activities to practice activities they would be performing during the mission. In this photograph, Neil Armstrong, donned in his space suit, practices getting back to the first rung of the ladder on the Lunar Module (LM). The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. On the Relationship between the Apollo 16 Ancient Regolith Breccias and Feldspathic Fragmental Breccias, and the Composition of the Prebasin Crust in the Central Highlands of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1996-01-01

    Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBS) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBS, suggesting that the FFBs might be the protolith of the ARBS. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBS. Also the feldspathic "prebasin" components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBS; the average composition of the plagiociase in the FFBs is more sodic than that of the ARBS; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBS, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30-31% Al203, however, they are slightly richer in

  20. Apollo 16 regolith breccias and soils - Recorders of exotic component addition to the Descartes region of the moon

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Laul, J. C.; Hughes, S. S.; Schmitt, R. A.

    1988-01-01

    Using the subdivision of Apollo 16 regolith breccias into ancient (about 4 Gyr) and younger samples (McKay et al., 1986), with the present-day soils as a third sample, a petrologic and chemical determination of regolith evolution and exotic component addition at the A-16 site was performed. The modal petrologies and mineral and chemical compositions of the regolith breccias in the region are presented. It is shown that the early regolith was composed of fragments of plutonic rocks, impact melt rocks, and minerals and impact glasses. It is found that KREEP lithologies and impact melts formed early in lunar history. The mare components, mainly orange high-TiO2 glass and green low-TiO2 glass, were added to the site after formation of the ancient breccias and prior to the formation of young breccias. The major change in the regolith since the formation of the young breccias is an increase in maturity represented by the formation of fused soil particles with prolonged exposure to micrometeorite impacts.

  1. Habitability of the giant icy moons: current knowledge and future insights from the JUICE mission

    NASA Astrophysics Data System (ADS)

    Grasset, O.; Prieto-Ballesteros, O.; Titov, D.; Erd, C.; Bunce, E.; Coustenis, A.; Blanc, M.; Coates, A.; Fletcher, L.; van Hoolst, T.; Hussmann, H.; Jaumann, R.; Krupp, N.; Tortora, P.; Tosi, F.; Wielders, A.

    2012-09-01

    radiation doses and terrain ages from similar materials. JUICE will address key areas that emerge in the study of habitable worlds around gas giants including constraints on the volume of liquid water in the Jovian system. The mission will also establish the inventory of biologically essential elements on the surfaces of the icy moons, and determine the magnitude of their transport among the moons which exchange material as a result of volcanism, sputtering, and impacts. The mission may also allow us to infer environmental properties such as the pH, salinity, and water activity of the oceans and will investigate the effects of radiation on the detectability of surface organics.

  2. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    NASA Technical Reports Server (NTRS)

    Rucker, M. A.

    2017-01-01

    Although it is tempting to use dust impacts on Apollo lunar exploration mission equipment and operations as an analog for human Mars exploration, there are a number of important differences to consider. Apollo missions were about a week long; a human Mars mission will start at least two years before crew depart from Earth, when cargo is pre-deployed, and crewed mission duration may be over 800 days. Each Apollo mission landed at a different site; although no decisions have been made, NASA is investigating multiple human missions to a single Mars landing site, building up capability over time and lowering costs by re-using surface infrastructure. Apollo missions used two, single-use spacecraft; a human Mars mission may require as many as six craft for different phases of the mission, most of which would be re-used by subsequent crews. Apollo crews never ventured more than a few kilometers from their lander; Mars crews may take "camping trips" a hundred kilo-meters or more from their landing site, utilizing pressurized rovers to explore far from their base. Apollo mission designers weren't constrained by human for-ward contamination of the Moon; if we plan to search for evidence of life on Mars we'll have to be more careful. These differences all impact how we will mitigate and manage dust on our human Mars mission equipment and operations.

  3. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Apollo/Saturn V Center, Lisa Malone, chief of KSC's Media Services branch, identifies a reporter in the stands to pose a question to one of the former Apollo astronauts seated next to her. From left to right, they are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7. Behind them on the lower floor are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. This is the 30th anniversary of the launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  4. Apollo soil mechanics experiment S-200

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.; Carrier, W. D., III; Costes, N. C.

    1974-01-01

    The physical and mechanical properties of the unconsolidated lunar surface material samples that were obtained during the Apollo missions were studied. Sources of data useful for deduction of soil information, and methods used to obtained the data are indicated. A model for lunar soil behavior is described which considers soil characteristics, density and porosity, strength, compressibility, and trafficability parameters. Lunar history and processes are considered, and a comparison is made of lunar and terrestrial soil behavior. The impact of the findings on future exploration and development of the moon are discussed, and publications resulting from lunar research by the soil mechanics team members are listed.

  5. Apollo-Lunar Orbital Rendezvous Technique

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Apollo-Lunar Orbital Rendezvous Technique. The film shows artists rendition of the spacecrafts, boosters, and flight of the Apollo lunar missions. The Apollo spacecraft will consist of three modules: the manned Command Module; the Service Module, which contains propulsion systems; and the Lunar Excursion Module (LEM) to carry astronauts to the moon and back to the Command and Service Modules. The spacecraft will be launched via a three-stage Saturn booster. The first stage will provide 7.5 million pounds of thrust from five F-1 engines for liftoff and initial powered flight. The second stage will develop 1 million pounds of thrust from five J-2 engines to boost the spacecraft almost into Earth orbit. Immediately after ignition of the second stage, the Launch Escape System will be jettisoned. A single J-2 engine in the S4B stage will provide 200,000 pounds of thrust to place the spacecraft in an earth parking orbit. It also will be used to propel the spacecraft into a translunar trajectory, then it will separate from the Apollo Modules. Onboard propulsion systems will be used to insert the spacecraft into lunar orbit. Two astronauts will enter the LEM, which will separate from the command and service modules. The LEM will go into elliptical orbit and prepare for landing. The LEM will lift off of the Moon's surface to return to the Command and Service Modules, and most likely be left in lunar orbit. After leaving the Moon's orbit, and shortly before entering Earth's orbit, the Service Module will be ejected. The Command Module will be oriented for reentry into the Earth's atmosphere. A drogue parachute will deploy at approximately 50,000 feet, followed by the main parachute system for touchdown. [Entire movie available on DVD from CASI as Doc ID 20070030988. Contact help@sti.nasa.gov

  6. Passive seismic experiment. [Apollo 17 flight contributions to determining lunar structure by analyzing moonquake and meteoroid impact seismic signals

    NASA Technical Reports Server (NTRS)

    Latham, G. V.; Ewing, M.; Press, F.; Dorman, J.; Nakamura, Y.; Toksoz, N.; Lammlein, D.; Duennebier, F.; Dainty, A.

    1973-01-01

    The network of seismometers installed by the Apollo 17 and other Apollo missions is described. The effects of the impacts of lunar modules and S-4B stages on the lunar surfaces are discussed. The information concerning lunar composition which is obtained by analyzing the seismic signals generated by moonquakes and meteoroid impacts are analyzed. It is concluded that the seismic activity within the moon is extremely low compared to that with the earth. The moon is characterized by a rigid, dynamically inactive outer shell, approximately 1000 kilometers thick, surrounding a core that has markedly different elastic properties.

  7. Success Factors in Human Space Programs - Why Did Apollo Succeed Better Than Later Programs?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    The Apollo Program reached the moon, but the Constellation Program (CxP) that planned to return to the moon and go on to Mars was cancelled. Apollo is NASA's greatest achievement but its success is poorly understood. The usual explanation is that President Kennedy announced we were going to the moon, the scientific community and the public strongly supported it, and Congress provided the necessary funding. This is partially incorrect and does not actually explain Apollo's success. The scientific community and the public did not support Apollo. Like Apollo, Constellation was announced by a president and funded by Congress, with elements that continued on even after it was cancelled. Two other factors account for Apollo's success. Initially, the surprise event of Uri Gagarin's first human space flight created political distress and a strong desire for the government to dramatically demonstrate American space capability. Options were considered and Apollo was found to be most effective and technically feasible. Political necessity overrode both the lack of popular and scientific support and the extremely high cost and risk. Other NASA human space programs were either canceled, such as the Space Exploration Initiative (SEI), repeatedly threatened with cancellation, such as International Space Station (ISS), or terminated while still operational, such as the space shuttle and even Apollo itself. Large crash programs such as Apollo are initiated and continued if and only if urgent political necessity produces the necessary political will. They succeed if and only if they are technically feasible within the provided resources. Future human space missions will probably require gradual step-by-step development in a more normal environment.

  8. The Inside of the Moon

    NASA Astrophysics Data System (ADS)

    Phillips, Roger J.

    2008-09-01

    Fundamental questions remain regarding the lunar interior, e.g.: Why did the Moon apparently cool so early? Why does the Moon have an asymmetric structure (nearside/farside)? What is the thickness of the lunar crust? How much of crustal variability is due to variable melting vs. impact redistribution? How big are impact basins and how deep did they excavate and thermally perturb the mantle? What was the temporal evolution of magmatism and brecciation? Did the mantle overturn subsequent to magma ocean solidification? How laterally heterogeneous is the lunar mantle? Does the Moon have a seismic discontinuity in the mantle? Does the Moon have a core? Does the Moon have a liquid outer core? Did the Moon have a core dynamo? Some of these questions will be at least partially answered in the next several years through new spacecraft investigations such as the GRAIL mission, which will map the lunar gravity field to unprecedented spatial resolution and accuracy. Furthermore, a long-lived, multi-station seismic network is also essential for understanding interior structure. Recent analyses of Apollo seismic data call into question the existence of the mantle discontinuity at 500-km depth, and the thickness of the lunar crust beneath the Apollo 12 and 14 landing sites now has multiple estimates. However, there is still a great deal that can be learned from existing lunar data sets. One productive approach would construct a set of self-consistent models that describe the coupled petrological-thermal evolution of the Moon. Such an investigation involves the high-level marriage of detailed petrological information from samples of the lunar crust and possibly mantle; of models that can predict accurately lunar solidi, liquidi, and equilibrium compositions; and of sophisticated thermal models that accurately incorporate the physics of melting and melt migration.

  9. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this closeup viewed from above, former Apollo astronauts (seated, left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7, answer questions from the media during a press conference in the Apollo/Saturn V Center. At left is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. In the background are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  10. Former Apollo astronauts talk to the media.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Viewed from above, former Apollo astronauts (seated, left to right) Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch to the moon; Gene Cernan, who flew on Apollo 10 and 17; and Walt Cunningham, who flew on Apollo 7, answer questions from the media during a press conference in the Apollo/Saturn V Center. At left is Lisa Malone, chief of KSC's Media Services branch, who monitored the session. In the background are the original computer consoles used in the firing room during the Apollo program. They are now part of the reenactment of the Apollo launches in the exhibit at the center. The four astronauts were at KSC for the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969.

  11. Remembering Apollo 11: The 30th Anniversary Data Archive CD-ROM

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M. (Editor)

    1999-01-01

    On July 20, 1969, the human race accomplished its single greatest technological achievement of all time when a human first set foot on another celestial body. Six hours after landing at 4:17 p.m. Eastern Standard Time (with less than thirty seconds of fuel remaining), Neil A. Armstrong took the "small step" into our greater future when he stepped off the Lunar Module, named Eagle, onto the surface of the Moon, from which he could look up and see Earth in the heavens as no one had done before him. He was shortly joined by Edwin "Buzz" Aldrin, and the two astronauts spent twenty-one hours on the lunar surface and returned forty-six pounds of lunar rocks. After their historic walks on the Moon, they successfully docked with Michael Collins, patiently orbiting the cold but no longer lifeless Moon alone in the Command module Columbia. This CR-ROM is intended as a collection of hard to find technical data and other interesting information about the Apollo 11 mission, as well as the apollo program in general. It includes basic overviews, such as a retrospective analysis, an annotated bibliography, and history of the lunar-orbit rendezvous concept. It also contains technical data, such as mission operations reports, press kits, and news references for all of the Apollo missions, the Apollo spacecraft, and the Saturn V launch vehicle. Rounding out this CD-ROM are extensive histories of the lunar Orbiter program (the robotic predecessor to Apollo, biographies of the Apollo astronauts and other key individuals, and interesting audio-visual materials, such as video and audio clips, photo galleries, and blueprint-like diagrams of the Apollo spacecraft.

  12. Phobos Sample Return - a mission to return a sample from a Martian moon

    NASA Astrophysics Data System (ADS)

    Korablev, Oleg; Koschny, Detlef; Voirin, Thomas

    2016-07-01

    Phobos Sample Return is a mission currently studied by the European Space Agency (ESA), in collaboration with Russia. The main scientific goal is to return about 100 g of sample from the Martian moon Phobos. The current ESA Phase A study has identified a feasible mission with a launch in Sep 2024. It would arrive at Mars in Aug 2025, land on Phobos in April 2026, escape from Mars in September 2026 and bring back a sample to Earth in the summer of 2027. The spacecraft consists of a Propulsion Module (PM), a Lander Module (LM), an Earth Return Vehicle (ERV), and an Earth Reentry Capsule (ERC). A sampling Acquisition Transfer and Containment system (SATCS) composed of a robotic arm, sampling and sealing mechanism is responsible for the surface sampling operations. The PM is responsible for bringing the whole S/C composite into Mars orbit. The Lander/ERV/ERC composite would separate from the PM after Mars Orbit Insertion. After a phase of 1 month spent observing Deimos from a quasi-satellite orbit, the composite would be transferred to Phobos' vicinity for an extensive phase of detailed surface characterization which would allow the selection of the candidate landing site. The S/C would then land on Phobos and remain on the surface for a few weeks. After some initial characterization of the surroundings, the sample would be taken and transferred to the ERC. The ERV with the ERC would leave Phobos and return to Earth; the LM would continue performing surface science on Phobos until several weeks after ERV departure. Shortly before atmospheric entry, the ERC would separate from the ERV to enter the atmosphere safely. After recovery, the sample would be returned into an analysis lab. This presentation will give the latest status of the mission study, and outline future activities.

  13. Insignia for the Apollo program

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The insignia for the Apollo program is a disk circumscribed by a band displaying the words Apollo and NASA. The center disc bears a large letter 'A' with the constellation Orion positioned so its three central stars form the bar of the letter. To the right is a sphere of the earth, with a sphere of the moon in the upper left portion of the center disc. The face on the moon represents the mythical god, Apollo. A double trajectory passes behind both spheres and through the central stars.

  14. What's New on the Moon?

    ERIC Educational Resources Information Center

    French, Bevan M.

    This document presents an overview of knowledge gained from the scientific explorations of the moon between 1969 and 1972 in the Apollo Program. Answers are given to questions regarding life on the moon, surface composition of rocks on the moon, the nature of the moon's interior, characteristics of lunar "soil," the age, history and…

  15. Project Columbiad: Mission to the Moon. Book 1: Executive Summary. Volume 1: Mission trade studies and requirements. Volume 2: Subsystem trade studies and selection

    NASA Technical Reports Server (NTRS)

    Clarke, Michael; Denecke, Johan; Garber, Suzanne; Kader, Beth; Liu, Celia; Weintraub, Ben; Cazeau, Patrick; Goetz, John; Haughwout, James; Larson, Erik

    1992-01-01

    In response to the Report of the Advisory Committee on the future of the U.S. Space Program and a request from NASA's Exploration Office, the MIT Hunsaker Aerospace Corporation (HAC) conducted a feasibility study, known as Project Columbiad, on reestablishing human presence on the Moon before the year 2000. The mission criteria established were to transport a four person crew to the lunar surface at any latitude and back to Earth with a 14-28 day stay on the lunar surface. Safety followed by cost of the Columbiad Mission were the top level priorities of HAC. The resulting design has a precursor mission that emplaces the required surface payloads before the piloted mission arrives. Both the precursor and piloted missions require two National Launch System (NLS) launches. Both the precursor and piloted mission have an Earth orbit rendezvous (EOR) with a direct transit to the Moon post-EOR. The piloted mission returns to Earth via a direct transit. Included among the surface payloads preemplaced are a habitat, solar power plant (including fuel cells for the lunar night), lunar rover, and mechanisms used to cover the habitat with regolith (lunar soil) in order to protect the crew members from severe solar flare radiation.

  16. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  17. Rock and Roll at the Apollo 17 Site

    NASA Astrophysics Data System (ADS)

    Martel, L. M. V.

    2016-06-01

    Astronauts Eugene A. Cernan and Harrison H. (Jack) Schmitt collected 243 pounds (110 kg) of rock and regolith samples during 22 hours working on the lunar surface during the Apollo 17 mission in December 1972, while Astronaut Ronald Evans orbited in the command module. The field observations, audio descriptions, and photographs coupled with orbital data and detailed, laboratory analyses of Apollo samples provided unprecedented information about the Moon and its geologic history. The Apollo samples continue to inspire new questions and answers about the Moon. Debra Hurwitz and David Kring (Lunar and Planetary Institute and NASA Solar System Exploration Research Virtual Institute; Hurwitz now at NASA Goddard Space Flight Center) were particularly interested in solving the mystery of where the boulders came from at the base of the North Massif (station 6) and at the base of the South Massif (station 2) from which Apollo 17 astronauts collected samples of impact melt breccias. The breccias were unequivocally formed by impact processes, but forty years of analyses had not yet determined unambiguously which impact event was responsible. Was it the basin-forming event of the landing site's neighbor Serenitatis (possibly Nectarian age); the larger, nearby Imbrium basin (Imbrian age and one of the last large basins to form); a combination of these impacts or an impact event older or younger than all of the above. Tracking down the origin of the boulders would ideally unravel details of the formation age of the breccias and, ultimately, help with the historical record of basin formation on the Moon. Hurwitz and Kring verified the boulders rolled down from massif walls - Apollo 17 impact melt breccias originated in massif material, not from the Sculptured Hills, an overlying geologic unit. But the relative geologic context is easier to explain than the absolute age, at least until some discrepancies are resolved in existing Ar-Ar and U-Pb radiometric ages of the Apollo 17

  18. Apollo experience report: Protection of life and health

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.

    1972-01-01

    The development, implementation, and effectiveness of the Apollo Lunar Quarantine Program and the Flight Crew Health Stabilization Program are discussed as part of the broad program required for the protection of the life and health of U.S. astronauts. Because the goal of the Apollo Program has been the safe transport of men to the moon and back to earth, protection of the astronauts and of the biosphere from potentially harmful lunar contaminants has been required. Also, to ensure mission success, the continuing good health of the astronauts before and during a mission has been necessary. Potential applications of specific aspects of the health and quarantine programs to possible manned missions to other planets are discussed.

  19. Restoration of the Apollo Heat Flow Experiments Metadata

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.

    2015-01-01

    Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.

  20. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2009-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  1. Apollo: Learning from the past, for the future

    NASA Astrophysics Data System (ADS)

    Grabois, Michael R.

    2011-04-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle, and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006, a project at NASA's Johnson Space Center was started to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning answers to the question "how did we do this during Apollo?"

  2. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2010-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  3. Apollo Video Photogrammetry Estimation of Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Lane, John; Metzger, Philip; Clements, Sandra

    2008-01-01

    Each of the six Apollo mission landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were largely not an issue. The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the lander ejects the granular material at high velocities. With high vacuum conditions on the moon (10 (exp -14) to 10 (epx -12) torr), motion of all particles is completely ballistic. Estimates from damage to the Surveyor III show that the ejected regolith particles to be anywhere 400 m/s to 2500 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for the Constellation Program.

  4. Apollo Lesson Sampler: Apollo 13 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael A.

    2008-01-01

    This CD-ROM contains a two-part case study of the Apollo 13 accident. The first lesson contains an overview of the electrical system hardware on the Apollo spacecraft, providing a context for the details of the oxygen tank explosion, and the failure chain reconstruction that led to the conditions present at the time of the accident. Given this background, the lesson then covers the tank explosion and immediate damage to the spacecraft, and the immediate response of Mission Control to what they saw. Part 2 of the lesson picks up shortly after the explosion of the oxygen tank on Apollo 13, and discusses how Mission Control gained insight to and understanding of the damage in the aftermath. Impacts to various spacecraft systems are presented, along with Mission Control's reactions and plans for in-flight recovery leading to a successful entry. Finally, post-flight vehicle changes are presented along with the lessons learned.

  5. Borrow the Moon: The STFC Lunar Samples and Meteorites Loan Scheme

    ERIC Educational Resources Information Center

    Swift, Nick

    2013-01-01

    The Apollo missions brought back 382kg of Moon rock. The financial cost of getting these rocks was historically eye-watering so, understandably, NASA is choosy about who gets to play with them. Many go to scientists for laboratory investigation, but some have been set aside for loan to schools and the public. Luckily, the UK was allowed some,…

  6. Space Radiation Hazards on Human Missions to the Moon and Mars

    NASA Astrophysics Data System (ADS)

    Townsend, L.

    2004-12-01

    One of the most significant health risks for humans exploring Earth's moon and Mars is exposure to the harsh space radiation environment. Crews on these exploration missions will be exposed to a complex mixture of very energetic particles. Chronic exposures to the ever-present background galactic cosmic ray (GCR) spectrum consisting of various fluxes of all naturally - occurring chemical elements are combined with infrequent, possibly acute exposures to large fluxes of solar energetic particles, consisting of protons and heavier particles. The GCR environment is primarily a concern for stochastic effects, such as the induction of cancer, with subsequent mortality in many cases, and late deterministic effects, such as cataracts and possible damage to the central nervous system. An acute radiation syndrome response ("radiation sickness") is not possible from the GCR environment since the organ doses are well below levels of concern. Unfortunately, the actual risks of cancer induction and mortality for the very important high-energy heavy ion component of the GCR spectrum are essentially unknown. The sporadic occurrence of extremely large solar energetic particle events, usually associated with intense solar activity, is also a major concern for Lunar and Mars missions because of the possible manifestation of acute effects from the accompanying high doses of such radiations, especially acute radiation syndrome effects such as nausea, emesis, hemorrhaging or possibly even death. Large solar energetic particle events can also contribute significantly to crew risks from cancer mortality. In this presentation an overview of current estimates of critical organ doses and equivalent doses for crews of Lunar and Mars bases and on those on transits between Earth and Mars is presented. Possible methods of mitigating these radiation exposures by shielding, thereby reducing the associated health risks to crews, are also described.

  7. The Italian Mission MAĜIA for the study of the Altimetry, Gravimetry and Geochemistry of the Moon

    NASA Astrophysics Data System (ADS)

    de Sanctis, Maria Cristina

    The scientific objective of the Italian mission MAGIA is the study of the internal structure and of polar/subpolar regions of the Moon. These objectives are identified in order to avoid overlapping with ongoing and future lunar missions. The mission has been developed in the framework of "Small Italian Missions" that foresee a limited economical budget. Therefore the choice has been a to propose a small and innovative satellite (MIOSAT heritage) developed by Rheinmetall S.p.a. and a small relay subsatellite. The scientific payload is based on a reliable heritage developed for other missions (BepiColombo, JUNO, Chandrayaan). This payload and the selected polar orbit (optimized for the measurement of the gravity field)- allows to complete important measurement of fundamental physics, such as an improvement of the G measure and a test of general relativity. The planetological part of the mission includes measurements relevant for origin and evolution of the Moon, the depth of the anorthositic crust (magma ocean theory), crater distribution and age, surface composition, polar regions and exosphere characterization, gravity field and ionizing radiations measurements.

  8. Identification of new orbits to enable future mission opportunities for the human exploration of the Martian moon Phobos

    NASA Astrophysics Data System (ADS)

    Zamaro, Mattia; Biggs, James D.

    2016-02-01

    One of the paramount stepping stones towards NASA's long-term goal of undertaking human missions to Mars is the exploration of the Martian moons. Since a precursor mission to Phobos would be easier than landing on Mars itself, NASA is targeting this moon for future exploration, and ESA has also announced Phootprint as a candidate Phobos sample-and-return mission. Orbital dynamics around small planetary satellites are particularly complex because many strong perturbations are involved, and the classical circular restricted three-body problem (R3BP) does not provide an accurate approximation to describe the system's dynamics. Phobos is a special case, since the combination of a small mass-ratio and length-scale means that the sphere-of-influence of the moon moves very close to its surface. Thus, an accurate nonlinear model of a spacecraft's motion in the vicinity of this moon must consider the additional perturbations due to the orbital eccentricity and the complete gravity field of Phobos, which is far from a spherical-shaped body, and it is incorporated into an elliptic R3BP using the gravity harmonics series-expansion (ER3BP-GH). In this paper, a showcase of various classes of non-keplerian orbits is identified and a number of potential mission applications in the Mars-Phobos system are proposed: these results could be exploited in upcoming unmanned missions targeting the exploration of this Martian moon. These applications include: low-thrust hovering and orbits around Phobos for close-range observations; the dynamical substitutes of periodic and quasi-periodic Libration Point Orbits in the ER3BP-GH to enable unique low-cost operations for space missions in the proximity of Phobos; their manifold structure for high-performance landing/take-off maneuvers to and from Phobos' surface and for transfers from and to Martian orbits; Quasi-Satellite Orbits for long-period station-keeping and maintenance. In particular, these orbits could exploit Phobos' occulting bulk

  9. View of activity in Mission Control Center during Lunar Module liftoff

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The liftoff from the Moon of the Apollo 15 Lunar Module 'Falcon' ascent stage is viewed on the television monitor in the Mission Operations Control Room in the Mission Control Center by Granvil A. Pennington, an Instruments and Communications Systems Officer.

  10. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong poses for a photograph with fans who attended the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon.

  11. Lunar Terrain and Albedo Reconstruction from Apollo Imagery

    NASA Technical Reports Server (NTRS)

    Nefian, Ara V.; Kim, Taemin; Broxton, Michael; Moratto, Zach

    2010-01-01

    Generating accurate three dimensional planetary models and albedo maps is becoming increasingly more important as NASA plans more robotics missions to the Moon in the coming years. This paper describes a novel approach for separation of topography and albedo maps from orbital Lunar images. Our method uses an optimal Bayesian correlator to refine the stereo disparity map and generate a set of accurate digital elevation models (DEM). The albedo maps are obtained using a multi-image formation model that relies on the derived DEMs and the Lunar- Lambert reflectance model. The method is demonstrated on a set of high resolution scanned images from the Apollo era missions.

  12. Quarantined Apollo 11 Astronauts Watch Cake Cutting Ceremony

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days following the mission. In this photograph, the Hornet crew and honor guard snap to attention to begin the official cake cutting ceremony for the Apollo 11 astronauts. Astronauts Armstrong and Aldrin are visible in the window of the MQF.

  13. Apollo 11 Astronauts Headed For Mobile Quarantine Facility (MQF)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Donned in biological isolation garments, the Apollo 11 crew members (front to rear) Armstrong, Collins, and Aldrin leave the pick up helicopter making their way to the MQF. This portable facility served as their home until they reached the NASA Manned Spacecraft Center Lunar Receiving Laboratory in Houston, Texas. With the success of Apollo 11 mission the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  14. Apollo 16 Press Kit

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Apollo 16 spacecraft is scheduled for launch on Apr. 16, 1972 from Complex 39A at the Kennedy Space Center, Florida by the Saturn V launch vehicle. Crewmen are mission commander John W. Young, command module pilot Thomas K. Mattingly II and lunar module pilot Charles M. Duke Jr. Objectives of the mission, to last up to 12 days, as outlined by NASA: to perform selenological inspection, survey and sampling of materials in a preselected region of Descartes using a lunar roving' vehicle; deploy and activate Apollo surface experiments; develop man's capability to work in the lunar environment; obtain photographs of candidate exploration sites; and toconduct inflight experiments and photographic tasks in lunar orbit. Following launch, the spacecraft will reach Earth Parking Orbit and remain in orbit for about two and one-half revolutions prior to Translunar Injection. Next, the Command and Service Module docks with the Lunar Module and the spacecraft "coasts" to the moon. In orbit around the moon, the Command and Service Module/Lunar Module combination will descend to within 50,000 feet of the lunar surface before undocking. The Lunar Module will continue to descend while the Command and Service Module returns to an orbit approximately 60 miles high. Stay time on the lunar surface is scheduled for approximately 73 hours. The ascent stage of the Lunar Module then lifts the astronauts back into lunar orbit where they will dock with the Command/Service Module. The Lunar Module is jettisoned and Transearth Injection follows. Just prior to reentry into the earth's atmosphere, the Service Module is jettisoned, and the astronauts in the Command Module splashdown in the Pacific Ocean. The target point for end-of-mission splashdown is at 05 degrees 0 minutes north latitude and 158 degrees 40 minutes west longitude or approximately 985 nautical miles south of Honolulu, Hawaii. Splashdown is scheduled for Apr. 28, 1972 at 10:30 a.m. Hawaiian Standard Time (2:30 p.m. CST

  15. Apollo 13 Senate Space Committee Hearings

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Astronaut James A. Lovell, Jr., Commander of the Apollo 13, relates to the members of the Senate Space Committee in an open session the problems of the Apollo 13 mission. In the background is Dr. Thomas O. Paine, NASA Administrator.

  16. Adrenocortical responses of the Apollo 17 crew members

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Rambaut, P. C.; Johnson, P. C.

    1974-01-01

    Changes in adrenal activity of the three Apollo 17 crew members were studied during the 12.55-day mission and during selected post-recovery days. Aldosterone excretion was normal early and elevated later in the mission, probably causing a loss in total body exchangeable potassium. There was decreased 17-hydroxycorticosteroid excretion only during the early mission days for the two moon landers and throughout the mission for the other astronaut. Cortisol excretion was elevated on physically stressful mission days. At recovery, plasma ACTH was elevated without a similar increase in plasma cortisol. Angiotensin I activity was elevated at recovery in only one crewman. This crewman was the only one with a decreased extracellular fluid volume. These results indicate that the mission and its activities affect adrenal function of the crewmen.

  17. Low-thrust trajectory optimization of asteroid sample return mission with multiple revolutions and moon gravity assists

    NASA Astrophysics Data System (ADS)

    Tang, Gao; Jiang, FanHuag; Li, JunFeng

    2015-11-01

    Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.

  18. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    NASA Technical Reports Server (NTRS)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  19. Apollo: A retrospective analysis

    NASA Technical Reports Server (NTRS)

    Launius, Roger D.

    1994-01-01

    Since the completion of Project Apollo more than twenty years ago there have been a plethora of books, studies, reports, and articles about its origin, execution, and meaning. At the time of the twenty-fifth anniversary of the first landing, it is appropriate to reflect on the effort and its place in U.S. and NASA history. This monograph has been written as a means to this end. It presents a short narrative account of Apollo from its origin through its assessment. That is followed by a mission by mission summary of the Apollo flights and concluded by a series of key documents relative to the program reproduced in facsimile. The intent of this monograph is to provide a basic history along with primary documents that may be useful to NASA personnel and others desiring information about Apollo.

  20. JUpiter ICy moons Explorer (juice): AN ESA L-Class Mission Candidate to the Jupiter System

    NASA Astrophysics Data System (ADS)

    Dougherty, M. K.; Grasset, O.; Erd, C.; Titov, D.; Bunce, E. J.; Coustenis, A.; Blanc, M.; Coates, A. J.; Drossart, P.; Fletcher, L.; Hussmann, H.; Jaumann, R.; Krupp, N.; Prieto-Ballesteros, O.; Tortora, P.; Tosi, F.; Van Hoolst, T.

    2012-04-01

    the first subsurface observations of this icy moon, including the first determination of the minimal thickness of the icy crust over the most recently active regions. JUICE will determine the characteristics of liquid-water oceans below the icy surfaces of the moons. This will lead to an understanding of the possible sources and cycling of chemical and thermal energy, allow investigation of the evolution and chemical composition of the surfaces and of the subsurface oceans, and enable an evaluation of the processes that have affected the satellites and their environments through time. The study of the diversity of the satellite system will be enhanced with additional information gathered remotely on Io and smaller moons. The mis-sion will also focus on characterising the diversity of processes in the Jupiter system which may be required in order to provide a stable environment at Ganymede, Europa and Callisto on geologic time scales, including gravitational coupling between the Galilean satellites and their long term tidal influence on the system as a whole. Focused stud-ies of Jupiter's atmosphere, and magnetosphere and their interaction with the Galilean satellites will further enhance our understanding of the evolution and dynamics of the Jovian system. The circulation, meteorology, chemistry and structure of Jupiter will be studied from the cloud tops to the thermosphere. These observations will be attained over a sufficiently long temporal baseline with broad latitudinal coverage to investigate evolving weather systems and the mechanisms of transporting energy, momentum and material between the different layers. The focus in Jupiter's magnetosphere will include an investigation of the three dimensional properties of the magnetodisc and in-depth study of the coupling processes within the magnetosphere, ionosphere and thermosphere. Aurora and radio emissions and their response to the solar wind will be elucidated.

  1. Apollo 11 lunar photography

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Michlovitz, C. K.; Hug, K.

    1970-01-01

    A data user's note is presented which announces the availability of the complete set of Apollo 11 pictorial data and aids investigators in the selection of Apollo 11 photographs for study. In addition, this note provides guidance in the interpretation of the photographs. As background information, brief descriptions of the Apollo 11 mission objectives, photographic equipment, and photographic coverage and quality are included. The National Space Science Data Center (NSSDC) can provide all forms of photographs described in the section on format of available data.

  2. Apollo 12 Astronauts Peer Out of the Mobile Quarantine Facility

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The smiling Apollo 12 astronauts peer out of the window of the mobile quarantine facility aboard the recovery ship, USS Hornet. Pictured (Left to right) are Spacecraft Commander, Charles Conrad; Command Module (CM) Pilot, Richard Gordon; and Lunar Module (LM) Pilot, Alan L. Bean. The crew were housed in the quarantine facility immediately after the Pacific recovery operation took place. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 returned safely to Earth on November 24, 1969.

  3. Lunar seismology - The internal structure of the moon

    NASA Technical Reports Server (NTRS)

    Goins, N. R.; Dainty, A. M.; Toksoz, M. N.

    1981-01-01

    It is pointed out that seismology has provided the most detailed information concerning the structure and state of the earth's interior. Beginning in 1969, seismometers were landed on the moon by the Apollo missions, providing the first opportunity to attempt similar studies on another planetary body. In September 1977 the operation of these instruments was terminated. A description is presented of the internal structure of the moon, as determined from the obtained lunar seismic data. The analysis of the lunar data is approached in a systematic fashion, using appropriate techniques to minimize the number of necessary assumptions, extract the maximum amount of structural information, and determine its reliability. The completed lunar seismic network consists of four stations located at the landing sites of Apollo missions 12, 14, 15, and 16. Attention is given to crustal structure, the structure of the lunar mantle, the attenuating region, and the core.

  4. Apollo 14 and 16 Active Seismic Experiments, and Apollo 17 Lunar Seismic Profiling

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Seismic refraction experiments were conducted on the moon by Apollo astronauts during missions 14, 16, and 17. Seismic velocities of 104, 108, 92, 114 and 100 m/sec were inferred for the lunar regolith at the Apollo 12, 14, 15, 16, and 17 landing sites, respectively. These data indicate that fragmentation and comminution caused by meteoroid impacts has produced a layer of remarkably uniform seismic properties moonwide. Brecciation and high porosity are the probable causes of the very low velocities observed in the lunar regolith. Apollo 17 seismic data revealed that the seismic velocity increases very rapidly with depth to 4.7 km/sec at a depth of 1.4 km. Such a large velocity change is suggestive of compositional and textural changes and is compatible with a model of fractured basaltic flows overlying anorthositic breccias. 'Thermal' moonquakes were also detected at the Apollo 17 site, becoming increasingly frequent after sunrise and reaching a maximum at sunset. The source of these quakes could possibly be landsliding.

  5. MAJIS (Moons and Jupiter Imaging Spectrometer): the VIS-NIR imaging spectrometer of the JUICE mission

    NASA Astrophysics Data System (ADS)

    Langevin, Yves; Piccioni, Giuseppe; Dumesnil, Cydalise; Filacchione, Gianrico; Poulet, Francois; MAJIS Team

    2016-10-01

    MAJIS is the VIS-NIR imaging spectrometer of JUICE. This ambitious mission of ESA's « cosmic vision » program will investigate Jupiter and its system with a specific focus on Ganymede. After a tour of more than 3 years including 2 fly-bys of Europa and up to 20 flybys of Ganymede and Callisto, the end of the nominal mission will be dedicated to an orbital phase around Ganymede with 120 days in a near-circular, near-polar orbit at an altitude of 5000 km and 130 days in a circular near-polar orbit at an altitude of 500 km. MAJIS will adress 17 of the 19 primary science objectives of JUICE, investigating the surface and exosphere of the Galilean satellites (Ganymede during the orbital phase, Europa and Callisto during close flybys, Io from a minimum distance of 570,000 km), the atmosphere / exosphere of Jupiter, small satellites and rings, and their role as sources and sinks of particles in the Jupiter magnetosphere.The main technical characteristics are the following:Spectral range : 0.5 - 5.7 µm with two overlapping channels (VIS-NIR : 0.5 - 2.35 µm ; IR : 2.25 - 5.7 µm)Spatial resolution : 0.125 to 0.15 mradSpectral sampling (VIS-NIR channel) : 2.9 to 3.45 nmSpectral sampling (IR channel) : 5.4 to 6.45 nmThe spectral and spatial resolution will be finalized in october 2016 after the selection of the MAJIS detectors.Passive cooling will provide operating temperatures < 130 K (VIS-NIR) and < 90 K (IR) so as to limit the impact of dark current on performances.The SNR as determined from the photometric model and the noise model will be larger than 100 over most of the spectral range except for high resolution observations of icy moons at low altitude due to limitations on the integration time even with motion compensation provided by a scanner and for exospheric observations due to intrinsic low signal levels.

  6. Moon: Old and New

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This video presents the moon as studied by man for more than 20 centuries. It reviews the history of lunar studies before the first moon landing, the major things learned since Apollo 11, and closes with a resume of lunar investigations scientists would like to undertake in the future.

  7. Apollo Medical Operations Project: Recommendations for EVA and Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Scheuring, R. A.; Davis, J. R.; Duncan, J. M.; Polk, J. D.; Jones, J. A.; Gillis, D. B.; Novak, J.

    2013-01-01

    The potential risk of injury to crewmembers is inherent in aggressive surface activities, whether they be Moon-, Mars-, or asteroid-based. In December 2005, the Space Medicine Division at JSC requested a study to identify Apollo mission issues that had an impact to crew health or performance or both. This talk focused on the Apollo EVA suit and lunar surface operations concerning crew health and performance. There were roughly 20 recommendations from this study of Apollo for improving these two areas for future exploration missions, a few of which were incorporated into the Human Systems Integration Requirements (HSIR). Dr. Richard Scheuring covered these topics along with some of the analog work that has been done regarding surface operations and medical contingencies.

  8. Apollo 11 Astronauts Headed For Mobile Quarantine Facility (MQF)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). Donned in biological isolation garments, the Apollo 11 crew members wave to well wishers as they leave the pick up helicopter making their way to the MQF. This portable facility served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  9. Apollo 11 Launched Via the Saturn V Rocket-High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first lunar landing mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon for man's first lunar landing. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  10. More Surprises from the Moon

    NASA Technical Reports Server (NTRS)

    Petro, Noah

    2011-01-01

    Even with the naked eye, the dark, extensive plains of the lunar maria can be clearly seen on the surface of the Moon. The maria formed after meteorite impacts created large craters that later filled with lava flows. Mare volcanism is the dominant type of volcanic activity on the Moon and the lavas are made up of basaltic rocks. However, non-mare volcanic deposits, though rare, have been observed on the lunar nearside. The deposits are distinguished from the maria because they are compositionally more evolved rich in silica, potassium and thorium. The deposits are limited in surface extent and it was unknown whether similar non-mare volcanism occurred at all on the Moon s farside. Writing in Nature Geoscience, Jolliff et al. report using Lunar Reconnaissance Orbiter images and compositional data to identify the rare occurrence of more compositionally evolved volcanic deposits in an isolated area on the Moon s farside. In the 1960s and 1970s, rock and soil samples were collected by the Apollo and Luna missions, by the USA and USSR respectively. This material represents a geologic treasure trove that continues to provide a wealth of information about the Moon and its evolution, and it was a very small fraction of these samples that gave the first hint that non-mare volcanic activity might have occurred. The samples contained fragments of complex volcanic rocks that were unrelated to the maria basalts. Violent bombardment of the Moon by meteorite impacts has caused significant mixing of the rocks at its surface, so the fragments could have had a source hundreds or thousands of kilometres away. The origin of the fragments was unknown. Several decades later, the Lunar Prospector mission used a gamma-ray spectrometer to map the distribution and abundance of various elements, including thorium, on the Moon s surface. The maps identified a distinct and large area of high thorium concentration, as well as several smaller, but equally peculiar areas of high thorium

  11. Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Kukitschek, Daniel; Crain, Timothy

    2008-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.

  12. Lunar laser ranging: a continuing legacy of the apollo program.

    PubMed

    Dickey, J O; Bender, P L; Faller, J E; Newhall, X X; Ricklefs, R L; Ries, J G; Shelus, P J; Veillet, C; Whipple, A L; Wiant, J R; Williams, J G; Yoder, C F

    1994-07-22

    On 21 July 1969, during the first manned lunar mission, Apollo 11, the first retroreflector array was placed on the moon, enabling highly accurate measurements of the Earthmoon separation by means of laser ranging. Lunar laser ranging (LLR) turns the Earthmoon system into a laboratory for a broad range of investigations, including astronomy, lunar science, gravitational physics, geodesy, and geodynamics. Contributions from LLR include the three-orders-of-magnitude improvement in accuracy in the lunar ephemeris, a several-orders-of-magnitude improvement in the measurement of the variations in the moon's rotation, and the verification of the principle of equivalence for massive bodies with unprecedented accuracy. Lunar laser ranging analysis has provided measurements of the Earth's precession, the moon's tidal acceleration, and lunar rotational dissipation. These scientific results, current technological developments, and prospects for the future are discussed here.

  13. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  14. Organics in APOLLO Lunar Samples

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Allton, J. H.

    2007-01-01

    One of many unknowns prior to the Apollo landings concerned the possibility of life, its remains, or its organic precursors on the surface of the Moon. While the existence of lunar organisms was considered highly unlikely, a program of biological quarantine and testing for the astronauts, the Apollo Command Modules, and the lunar rock and soil samples, was instituted in the Lunar Receiving Laboratory (LRL). No conclusive evidence of lunar organisms, was detected and the quarantine program was ended after Apollo 14. Analyses for organic compounds were also con-ducted. Considerable effort was expended, during lunar surface operations and in the LRL, to minimize and quantify organic contamination. Post-Apollo curatorial operations and cleaning minimize contamination from particulates, oxygen, and water but no longer specifically address organic contamination. The organic compounds measured in Apollo samples are generally consistent with known sources of contamination.

  15. Solar Reflectance Measurements of Apollo Lunar Soils

    NASA Astrophysics Data System (ADS)

    Foote, E.; Paige, D.; Shepard, M.; Johnson, J.; Grundy, W.; Biggar, S.; Greenhagen, B.; Allen, C.

    2012-09-01

    The moon is the one planetary object from which we have returned samples. The goal of this work is to analyze and understand the solar reflectance of the Moon. Our approach is to compare Lunar Reconnaissance Orbiter (LRO) Diviner orbital solar albedo measurements at the Apollo soil sample sites with laboratory bidirectional reflectance measurements. CAPTEM provided us with five representative lunar soil samples: a typical low albedo mare sample (10084, Apollo 11), a low titanium basaltic sample with impact breccias (12001, Apollo 12), an Apollo 15 sample (15071), a high albedo lunar highlands soil (68810 & 61141, Apollo 16) and an Apollo 17 soil sample (70181). The laboratory and Diviner datasets provide complementary and independent insights into the photometric properties of the lunar surface. We have made the most extensive set of laboratory bidirectional measurements of lunar soil to date and have successfully fit photometric models to the laboratory data.

  16. Apollo 13 Command Module recovery after splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Crewmen aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission, hoist the Command Module aboard ship. The Apollo 13 crewmen were already aboard the Iwo Jima when this photograph was taken. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970 in the South Pacific Ocean.

  17. Interviews with the Apollo lunar surface astronauts in support of planning for EVA systems design

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Eppler, Dean B.; Morrow, Daniel G.

    1994-01-01

    Focused interviews were conducted with the Apollo astronauts who landed on the moon. The purpose of these interviews was to help define extravehicular activity (EVA) system requirements for future lunar and planetary missions. Information from the interviews was examined with particular attention to identifying areas of consensus, since some commonality of experience is necessary to aid in the design of advanced systems. Results are presented under the following categories: mission approach; mission structure; suits; portable life support systems; dust control; gloves; automation; information, displays, and controls; rovers and remotes; tools; operations; training; and general comments. Research recommendations are offered, along with supporting information.

  18. Evidence from Apollo.

    ERIC Educational Resources Information Center

    Lowman, Paul D., Jr.

    2001-01-01

    Discusses the claims of tabloids and television that the U.S. mission to the moon was faked. Recommends using samples brought back from the moon on the Lunar Sample Disk as instructional material to open a discussion. Makes suggestions for examining lunar rocks. (YDS)

  19. Utilization of Nuclear Power for Moon Missions: Nuclear Based Power and Propulsion Techniques for Spacecraft and Nuclear Power Generation Methods for Moon Habitats

    NASA Astrophysics Data System (ADS)

    Guven, U. G.

    2016-11-01

    With a nuclear reactor, all of the power requirements in a Moon-based station with reduced gravity conditions can be met for several years without any difficulty. Nuclear reactor can be useful for Moon-bound spacecraft for the Moon and habitats.

  20. President Nixon and Dr. Paine Wait to Meet Apollo 11 Astronauts

    NASA Technical Reports Server (NTRS)

    1969-01-01

    President Richard M. Nixon and Dr. Thomas O. Paine, NASA Administrator, watch Apollo 11 astronauts Neil A. Armstrong, Michael Collins and Buzz Aldrin Jr., walk from the recovery helicopter to the Mobile Quarantine Facility aboard the U.S.S. Hornet. The President later congratulated the astronauts by microphone, speaking through a window of the quarantine trailer. During the eight-day space mission, Armstrong and Aldrin explored the Moon's surface and brought back rock samples for scientists to study. Collins piloted the command module in the lunar orbit during their 22-hour stay on the moon. The extravehicular activity lasted more than two hours.

  1. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status.

    NASA Astrophysics Data System (ADS)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (< 0.5 kg) For better interpretation of the future imagery of the Moon by the instrument, laboratory measurements have been carried out by CSEM in Tampere (Finland), with support of the Observatory of Helsinki. The experimental set-up is composed of an optical system to image samples in verti- cal position, a light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass

  2. Gene Cernan on Apollo 17

    NASA Video Gallery

    Apollo 17 Commander Gene Cernan recalls fixing a lunar rover problem with duct tape during his December 1972 mission. Cernan's interview was part of the commemoration of NASA's 50th anniversary in ...

  3. Rb-Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro formation.

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.

    1971-01-01

    Internal Rb-Sr isochrons were determined on four basaltic rocks and on a basaltic clast from a breccia from the Fra Mauro landing site. An internal isochron was determined for rock 12004 and yielded a value in agreement with previous results for basaltic rocks from the Apollo 12 site. The crystallization ages for Apollo 14 basalts are only 0.2 to 0.3 AE older than were found for mare basalts from the Sea of Tranquility. Assuming these leucocratic igneous rocks to be representative of the Fra Mauro site, it follows that there were major igneous processes active in these regions, and presumably throughout the highlands, at times only slightly preceding the periods at which the maria were last flooded.

  4. Re-Assessment of "Water on the Moon" after LCROSS

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; Pillinger, Colin T.

    2010-01-01

    The LCROSS Mission has produced information about the possible presence of water in a permanently shaded regions of the Moon. Without the opportunity to have a controlled impact into a sun-lite site on the Moon, the LCROSS information must be carefully evaluated. The Apollo samples have provided a large amount of information on the nature of lunar hydrogen, water and other volatiles and this information must be considered in any interpretation of the observed data from the LCROSS and other lunar missions. Perhaps the volatiles seen by the LRO/LCROSS mission might be identical to lunar volatiles within ordinary lunar equatorial materials. Until the control experiment of having an impactor strike an equatorially site is carried out, caution must be taken when interpreting the results from the LCROSS mission.

  5. On the fundamental importance of the social psychology of research as a basic paradigm for the philosophy of science: A philosophical case study of the psychology of the Apollo moon scientists

    NASA Technical Reports Server (NTRS)

    Mitroff, I. I.

    1972-01-01

    A combined philosophical and social psychological study of over 40 of the Apollo moon Scientists reveals that the Orthodox or Received View of Scientific Theories is found wanting in several respects: (1) observations are not theory-free; (2) scientific observations are not directly observable; and (3) observations are no less problematic than theories. The study also raises some severe criticisms of distinction between the context of discovery and the context of justification. Not only does this distinction fail to describe the actual practice of science but even more important it has the dangerous effect of excluding some of the strongest lines of evidence which could most effectively challenge the distinction. The distinction is harmful of efforts to found interdisciplinary theories and philosophies of science.

  6. Declaring the Republic of the Moon - Some artistic strategies for re-imagining the Moon.

    NASA Astrophysics Data System (ADS)

    La Frenais., R.

    2014-04-01

    Sooner or later, humans are going back to the Moonwhether to mine it, to rehearse for a Mars mission or to just live there. But how will human activity there reflect what has happened on Earth since the last moon mission, to reflect the diversity and political and social changes that have happened since? Can artists imagine what it would be like to live on the Moon? Artists are already taking part in many scientific endeavours, becoming involved in emerging fields such as synthetic bioloogy, nanotechology, ecological remediation and enthusiastically participating in citizen science. There are already artists in Antarctica. It should be inevitable that artists will sooner or later accompany the next visit by humans to the Moon. But why wait? Artists are already imagining how it would be to live on the Moon, whether in their imaginations or though rehearsals in lunar analogues. In the recent exhibition 'Republic of the Moon' a number of visionary strategies were employed, from the use of earth-moon-earth 'moonbouncing' (Katie Paterson) to the breeding and imprinting of real geese as imagined astronauts. (Agnes Meyer-Brandis). The Outer Space Treaty and the (unsigned) Moon treaty were re-analysed and debates and even small demonstrations were organised protesting (or demanding) the industrial exploitation of the Moon. Fortuitously, China's Chang-e mission landed during the exhibition and the life and death of the rover Jade Rabbit brought a real life drama to the Republic of the Moon. There have been other artistic interventions into lunar exploration, including Aleksandra Mir's First Woman on the Moon, Alicia Framis's Moonlife project and of course the historic inclusion of two artistic artefacts into the Apollo missions, Monument to the Fallen Astronaut (still on the Moon) and the Moon Museum, reportedly inserted by an engineer into the leg of the Lunar Exploration Module. With the worldwide race by the Global Lunar X Prize teams to land a rover independently of any

  7. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    NASA Technical Reports Server (NTRS)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  8. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  9. Apollo gastrointestinal analysis

    NASA Technical Reports Server (NTRS)

    Nichols, B. L.; Huang, C. T. L.

    1975-01-01

    Fecal bile acid patterns for the Apollo 17 flight were studied to determine the cause of diarrhea on the mission. The fecal sterol analysis gave no indication of an infectious diarrhea, or specific, or nonspecific etiology occurring during the entire flight. It is assumed that the gastrointestinal problems encountered are the consequences of altered physiology, perhaps secondary to physical or emotional stress of flight.

  10. Apollo 11 Commander Armstrong Presents President With Commemorative Plaque

    NASA Technical Reports Server (NTRS)

    1974-01-01

    On June 4, 1974, 5 years after the successful Apollo 11 lunar landing mission, commander Neil Armstrong (right) presented a plaque to U.S. President Richard Milhous Nixon (left) on behalf of all people who had taken part in the space program. In making the presentation, Armstrong said 'Mr. President, you have proclaimed this week to be United States Space week in conjunction with the fifth anniversary of our first successful landing on the Moon. It is my privilege to represent my colleagues, the crewmen of projects Mercury, Gemini, Apollo, and Skylab, and the men and women of NASA, and the hundreds of thousands of Americans from across the land who contributed so mightily to the success of our efforts in space in presenting this plaque which bears the names of each individual who has had the privilege of representing this country' in a space flight. The presentation was made at the California white house in San Clemente.

  11. Was Project Management Life Really Better in Apollo?

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This slide presentation discusses the question of "Was Project Management Life Really Better in Apollo?" Was money really flowing freely all through Apollo? Are we wallowing in nostalgia and comparing current circumstances to a managerial time which did not exist? This talk discusses these and other questions as background for you as today s project managers. There are slides showing the timelines from before the speech that Kennedy gave promising to land a man on the moon, to the early 60's, when the manned space center prepared the preliminary lunar landing mission design, an NASA organization chart from 1970, various photos of the rockets, and the astronauts are presented. The next slides discuss the budgets from the 1960's to the early 1970's. Also the results of a survey of 62 managers, who were asked "What problems pose the greatest obstacles to successful project performance?"

  12. Workshop on New Views of the Moon: Integrated Remotely Sensed, Geophysical, and Sample Datasets

    NASA Technical Reports Server (NTRS)

    Jolliff, Brad L. (Editor); Ryder, Graham (Editor)

    1998-01-01

    It has been more than 25 years since Apollo 17 returned the last of the Apollo lunar samples. Since then, a vast amount of data has been obtained from the study of rocks and soils from the Apollo and Luna sample collections and, more recently, on a set of about a dozen lunar meteorites collected on Earth. Based on direct studies of the samples, many constraints have been established for the age, early differentiation, crust and mantle structure, and subsequent impact modification of the Moon. In addition, geophysical experiments at the surface, as well as remote sensing from orbit and Earth-based telescopic studies, have provided additional datasets about the Moon that constrain the nature of its surface and internal structure. Some might be tempted to say that we know all there is to know about the Moon and that it is time to move on from this simple satellite to more complex objects. However, the ongoing Lunar Prospector mission and the highly successful Clementine mission have provided important clues to the real geological complexity of the Moon, and have shown us that we still do not yet adequately understand the geologic history of Earth's companion. These missions, like Galileo during its lunar flyby, are providing global information viewed through new kinds of windows, and providing a fresh context for models of lunar origin, evolution, and resources, and perhaps even some grist for new questions and new hypotheses. The probable detection and characterization of water ice at the poles, the extreme concentration of Th and other radioactive elements in the Procellarum-Imbrium-Frigon's resurfaced areas of the nearside of the Moon, and the high-resolution gravity modeling enabled by these missions are examples of the kinds of exciting new results that must be integrated with the extant body of knowledge based on sample studies, in situ experiments, and remote-sensing missions to bring about the best possible understanding of the Moon and its history.

  13. Apollo 12 view of Solar Eclipse

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photograph of the eclipse of the sun was taken with a 16mm motion picture camera from the Apollo 12 spacecraft during its trans-Earth journey home from the moon. The fascinating view was created when the Earth moved directly between the sun and the Apollo 12 spacecraft. Aboard Apollo 12 were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot. While astronauts Conrad and Bean descended in the Lunar Module (LM) 'Intrepid' to explore the Ocean of Storms region of the moon, astronaut Gordon remained with the Command and Service Modules (CSM) 'Yankee Clipper' in lunar orbit.

  14. The case for planetary sample return missions - Origin and evolution of the moon and its environment

    SciTech Connect

    Ryder, G.; Spudis, P.D.; Taylor, G.J. USGS, Flagstaff, AZ New Mexico Univ., Albuquerque )

    1989-11-01

    The most important questions concerning the origin and evolution of the moon and its environment are reviewed, and the ways that studying lunar samples could help answer them, are discussed. Recommendations are made about methods for obtaining samples and the best lunar sites for obtaining them using simple, unmanned sample returners. Lunar geologic field sites that require intensive field work with human interaction are also considered. 16 refs.

  15. Foundations for the post 2030 space economy: Cislunar and lunar infrastructure, Moon Village, Mars and planetary missions as markets.

    NASA Astrophysics Data System (ADS)

    Beldavs, Vid; Dunlop, David; Crisafulli, Jim; Bernard, Foing

    2016-04-01

    Introduction: The International Lunar Decade (ILD)[1] is a framework for international collaboration from 2020 to 2030 to achieve the ultimate goal in space -- to open the space frontier. Key to opening a frontier is the capacity to "live off the land" through in situ resource utilization (ISRU). Activities in space will remain limited to exploration until ISRU becomes possible on an industrial scale. ISRU, the mining and use of resources on the Moon, asteroids, comets and other cosmic bodies will enable the opening of the space frontier for permanent occupancy and settlement. The capacity for ISRU creates the basis for a space economy where products and services are traded for resources, and increasingly sophisticated products can be produced from mined resources to help sustain life indefinitely. Enabling ISRU will require infrastructure - energy, transportation, and communications systems, as well as navigation, storage and other support services. However, regolith or other lunar/asteroid material will remain regolith until converted to a form useful to customers that will enable the development of markets. NASA's Mars journey, various planetary missions, and emerging operations on the lunar surface and at EML1 and EML2 will provide initial markets for ISRU. This paper will explore a scenario explaining how a self-sustaining space economy can be achieved by 2030, what kind of infrastructure will need to be developed, the role of NASA's Mars Journey in the creation of markets for ISRU, and the role of private-public partnership for financing the various building blocks of a self-sustaining space economy. Also dis-cussed will be the potential for a Moon Village to serve as a formative structure for the nucleation of elements of an emerging space economy, including its potential role as a forum for actors to play a role in the development of governance mechanisms that eventually would enable commercial and industrial development of the Moon. References: [1] Beldavs

  16. Restoration of APOLLO Data by the NSSDC and PDS Lunar Data Node

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Hills, H. Kent; Guinness, Edward A.; Taylor, Patrick T.; McBride, Marie J.

    2012-01-01

    The Apollo Lunar Surface Experiment Packages (ALSEPs), suites of instruments deployed by the Apollo 12. 14, 15, 16 and 17 astronauts on the lunar surface, still represent the only in-situ measurements of the Moon's environment taken over long time periods, Much of these data are housed at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center but are in forms that are not readily usable, such as microfilm, hardcopy, and magnetic tapes with older, obsolete formats. The Lunar Data Node (LDN) has been formed under the auspices of the Planetary Data System (PDS) Geosciences Node to put relevant, scientifically important Apollo data into accessible digital form for use by researchers and mission planners. The LDN has prioritized the restoration of these data based on their scientific and engineering value and the level of effort required. We will report on progress made and plans for future data restorations.

  17. NASA Administrator Paine and U.S. President Richard Milhous Nixon Await Apollo 11 Splashdown

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dr. Thomas Paine, NASA administrator (left) and U.S. President Richard Milhous Nixon wait aboard the recovery ship, the U.S.S. Hornet, for splashdown of the Apollo 11 in the Pacific Ocean. Navy para-rescue men recovered the capsule housing the 3-man crew. The crew was taken to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF). The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  18. Apollo 11 Astronaut Collins Arrives at the Flight Crew Training Building

    NASA Technical Reports Server (NTRS)

    1968-01-01

    In this photograph, Apollo 11 astronaut Michael Collins carries his coffee with him as he arrives at the flight crew training building of the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  19. Apollo 11 Astronaut Armstrong Arrives at the Flight Crew Training Building

    NASA Technical Reports Server (NTRS)

    1969-01-01

    In this photograph, Apollo 11 astronaut Neil Armstrong walks to the flight crew training building at the NASA Kennedy Space Center (KSC) in Florida, one week before the nation's first lunar landing mission. The Apollo 11 mission launched from KSC via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  20. General human health issues for Moon and Mars missions: Results from the HUMEX study

    NASA Astrophysics Data System (ADS)

    Horneck, Gerda; Comet, Bernard

    The general health issues considered in two scenarios of human long-term exploratory missions, which include a mission to a lunar base and a mission to Mars, have been analysed. Based on statistical data from occupational and normal population groups of Western countries, the following safety objectives have been chosen: individual risk of death by illness (=natural death) during the mission shall be <2 × 10-3/year, that by injury (=accidental death) <4 × 10-4/year, and that from all causes, including spacecraft failure (taken from most exposed professions) <3 × 10-2/year. Using the classical reliability requirements for human space missions, reliability objectives have been set for each mission scenario, resulting in values compatible with the mission safety objectives. The main results are as follows: (i) based of the probability of occurrence of diseases and injuries and on the constraints imposed by exploratory mission scenarios, the crew shall have a full autonomy in terms of medical and surgical diagnostics and care means and competency; (ii) the control of the toxic and biological risks in a confined environment for a so long exposure shall be carefully analyzed and the technical solutions shall master these risks; (iii) the state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed; (iv) the control of human physical capacity impairment under weightlessness shall be optimised. A roadmap in the field of health care has been elaborated for a future European participation strategy towards human exploratory missions taking into account preparatory activities, such as analogue situations and ISS opportunities, and potential terrestrial applications and benefits.

  1. Apollo 7 to 11 - Medical Concerns and Results

    NASA Technical Reports Server (NTRS)

    Berry, C. A.

    1969-01-01

    The goal of the Apollo Program is to land men on the moon and safely return them to earth. The medical task thus outlined required confirmation of the Gemini findings and definition and solution of any problems encountered in the four Apollo flights prior to the Apollo 11 lunar landing. The medical concerns included the following: 1. The effect of decreased red blood cell mass and decreased exercise capacity and of cardiovascular de conditioning on the ability of the crew to do lunar-surface activity; 2. The capability to work effectively in one-sixth the force of gravity and the energy cost of such work; 3. The ability to get adequate rest and sleep in flight and on the lunar surface; 4. The prevention of preflight, inflight, and post-flight illness by proper preventive medicine; 5. The possible development of motion sickness of vestibular origin; 6. The conduct of a post-flight quarantine of crew and lunar samples. The results of the Apollo 7 to 11 missions, demonstrating the ability of man to handle this difficult task and the environment successfully, are discussed in detail and are related to the future of manned flight.

  2. Launching to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  3. First-order feasibility analysis of a space suit radiator concept based on estimation of water mass sublimation using Apollo mission data

    NASA Astrophysics Data System (ADS)

    Metts, Jonathan G.; Klaus, David M.

    2012-01-01

    Thermal control of a space suit during extravehicular activity (EVA) is typically accomplished by sublimating water to provide system cooling. Spacecraft, on the other hand, primarily rely on radiators to dissipate heat. Integrating a radiator into a space suit has been proposed as an alternative design that does not require mass consumption for heat transfer. While providing cooling without water loss offers potential benefits for EVA application, it is not currently practical to rely on a directional, fixed-emissivity radiator to maintain thermal equilibrium of a spacesuit where the radiator orientation, environmental temperature, and crew member metabolic heat load fluctuate unpredictably. One approach that might make this feasible, however, is the use of electrochromic devices that are capable of infrared emissivity modulation and can be actively controlled across the entire suit surface to regulate net heat flux for the system. Integrating these devices onto the irregular, compliant space suit material requires that they be fabricated on a flexible substrate, such as Kapton film. An initial assessment of whether or not this candidate technology presents a feasible design option was conducted by first characterizing the mass of water loss from sublimation that could theoretically be saved if an electrochromic suit radiator was employed for thermal control. This is particularly important for lunar surface exploration, where the expense of transporting water from Earth is excessive, but the technology is potentially beneficial for other space missions as well. In order to define a baseline for this analysis by comparison to actual data, historical documents from the Apollo missions were mined for comprehensive, detailed metabolic data from each lunar surface outing, and related data from NASA's more recent "Advanced Lunar Walkback" tests were also analyzed. This metabolic database was then used to validate estimates for sublimator water consumption during surface

  4. Tektite glass in apollo 12 sample.

    PubMed

    O'keefe, J A

    1970-06-05

    The glassy portion of lunar sample 12013 from Apollo 12 is chemically more like some tektites from Java than like any terrestrial igneous rock. It satisfies all the chemical criteria for a tektite. Tektites are relatively recent and acid rocks, whereas the moon is chiefly ancient and basaltic; hence, tektites are probably ejected volcanically, rather than by impact, from the moon.

  5. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.

    PubMed

    Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning

    2013-02-08

    Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.

  6. The scientific rationale for the C1XS X-ray spectrometer on India's Chandrayaan-1 mission to the moon

    NASA Astrophysics Data System (ADS)

    Crawford, I. A.; Joy, K. H.; Kellett, B. J.; Grande, M.; Anand, M.; Bhandari, N.; Cook, A. C.; d'Uston, L.; Fernandes, V. A.; Gasnault, O.; Goswami, J.; Howe, C. J.; Huovelin, J.; Koschny, D.; Lawrence, D. J.; Maddison, B. J.; Maurice, S.; Narendranath, S.; Pieters, C.; Okada, T.; Rothery, D. A.; Russell, S. S.; Sreekumar, P.; Swinyard, B.; Wieczorek, M.; Wilding, M.

    2009-06-01

    The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) in the lunar crust. These data will aid in determining whether regional compositional differences (e.g., the Mg/Fe ratio) are consistent with models of lunar crustal evolution. C1XS data will also permit geochemical studies of smaller scale features, such as the ejecta blankets and central peaks of large impact craters, and individual lava flows and pyroclastic deposits. These objectives all bear on important, and currently unresolved, questions in lunar science, including the structure and evolution of any primordial magma ocean, as revealed by vertical and lateral geochemical variations in the crust, and the composition of the lunar mantle, which will further constrain theories of the Moon's origin, thermal history and internal structure.

  7. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  8. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  9. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  10. TYCHO: Demonstrator and operational satellite mission to Earth-Moon-Libration point EML-4 for communication relay provision as a service

    NASA Astrophysics Data System (ADS)

    Hornig, Andreas; Homeister, Maren

    2015-03-01

    In the current wake of mission plans to the Moon and to Earth-Moon Libration points (EML) by several agencies and organizations, TYCHO identifies the key role of telecommunication provision for the future path of lunar exploration. It demonstrates an interesting extension to existing communication methods to the Moon and beyond by combining innovative technology with a next frontier location and the commercial space communication sector. It is evident that all communication systems will rely on direct communication to Earth ground stations. In case of EML-2 missions around HALO orbits or bases on the far side of the Moon, it has to be extended by communication links via relay stations. The innovative approach is that TYCHO provides this relay communication to those out-of-sight lunar missions as a service. TYCHO will establish a new infrastructure for future missions and even create a new market for add-on relay services. The TMA-0 satellite is TYCHO's first phase and a proposed demonstrator mission to the Earth-Moon Libration point EML-4. It demonstrates relay services needed for automated exploratory and manned missions (Moon bases) on the rim (>90°E and >90°W) and far side surface, to lunar orbits and even to EML-2 halo orbits (satellites and space stations). Its main advantage is the permanent availability of communication coverage. This will provide full access to scientific and telemetry data and furthermore to crucial medical monitoring and safety. The communication subsystem is a platform for conventional communication but also a test-bed for optical communication with high data-rate LASER links to serve the future needs of manned bases and periodic burst data-transfer from lunar poles. The operational TMA-1 satellite is a stand-alone mission integrated into existing space communication networks to provide open communication service to external lunar missions. Therefore the long-time stable libration points EML-4 and -5 are selected to guarantee an

  11. Lunar plant biology--a review of the Apollo era.

    PubMed

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  12. The Apollo 17 regolith

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1992-01-01

    Among Apollo landing sites, Apollo 17 provides the best opportunity to study the efficiency of formation and evolution of regolith by impacts, both large and small. The mare-highlands interface is crucial to this endeavor, but the Light Mantle avalanche and presence of fine-grained pyroclastics offer additional constraints. Compositional variation among soils from different locations and depths provides a means to quantify the extent of mixing by larger impacts. Because of their variety and complex history, Apollo 17 soils have been important in establishing agglutinate abundance, mean grain size, and abundance of fine-grained iron metal (as measured by (I(sub s)/FeO)) as simple index of maturity (relative extent of reworking by micrometeorite impact at the surface). The following topics are discussed: (1) surface soils; (2) cores taken on the mission; (3) gray soil from station 4; (4) components with unknown sources; (5) important points; and (6) future work.

  13. The Moon

    NASA Astrophysics Data System (ADS)

    Warren, P. H.

    2003-12-01

    obvious; and for ancient highland samples, never obvious. The closest approach toin situ sampling of bedrock came on the Apollo 15 mission. The regolith is very thin near the edge of the Hadley Rille, and many samples of clearly comagmatic basalts were acquired within meters of their 3.3 Ga "young," nearly intact, lava flow, so that their collective provenance is certain (Ryder and Cox, 1996). Even the regional provenance of any individual lunar sample is potentially allocthonous. However, most lunar rocks, even ancient highland rocks, are found within a few hundred kilometers of their original locations. This conclusion stems from theoretical modeling of cratered landscapes ( Shoemaker et al., 1970; Melosh, 1989), plus observational evidence such as the sharpness of geochemical boundaries between lava-flooded maria and adjacent highlands (e.g., Li and Mustard, 2000).Besides breaking up rock into loose debris, impacts create melt. Traces of melt along grain boundaries may suffice to produce new rock out of formerly loose debris; the resultant rock would be classified as either regolith breccia or fragmental breccia, depending upon whether surface fines were important, or not, respectively, in the precursor matter (Stöffler et al., 1980). Features diagnostic of a surface component include the presence of glass spherules (typically a mix of endogenous mare-pyroclastic glasses and impact-splash glasses) or abundant solar-wind-implanted noble gases (e.g., Eugster et al., 2000).Elsewhere, especially in the largest events in which a planet's gravitational strength limits displacement and the kinetic energy of impact is mainly partitioned into heat (Melosh, 1989), impact melt may constitute a major fraction of the volume of the material that becomes new rock. Rocks formed in this manner are classified as impact-melt breccias and subclassified based on whether they are clast-poor or clast-rich, and whether their matrix is crystalline or glassy ( Stöffler et al., 1980). Obvious

  14. Recovery and Restoration of Apollo Lunar Surface Experiments Package (ALSEP) Data by the NSSDC and the PDS Lunar Data Node

    NASA Astrophysics Data System (ADS)

    Williams, D. R.; Hills, H. K.; Guinness, E. A.; Taylor, P. T.; McBride, M. J.

    2013-12-01

    Astronauts on the Apollo 12, 14, 15, 16 and 17 missions deployed long-lived (5 to 8 years) automated instrument suites on the Moon, the Apollo Lunar Surface Experiment Packages (ALSEP). The instruments were all turned off in September of 1977, but long before this the Apollo program and most of its funding had been abruptly cancelled. One result of this sudden cancellation was the loss of resources to properly archive these experiment data. Much of the data, particularly from the later years, were lost or saved in obsolete or difficult to access formats, and not properly documented. None of the surface data archived at National Space Science Data Center (NSSDC) were in a form which could be easily archived with the Planetary Data System (PDS). The Lunar Data Project was started at NSSDC in order to recover and restore Apollo data into usable, well-documented digital formats. The PDS Lunar Data Node was established at NSSDC under the auspices of the PDS Geosciences Node to produce validated PDS data sets from the restored data. Six ALSEP data sets are archived at PDS: Apollo 12 and 15 Solar Wind Spectrometer 28-sec and hourly averages, and Apollo 14 and 15 Cold Cathode Ion Gage plots. (Other surface data, from the Apollo 17 Traverse Gravimeter and the Apollo 15 and 16 Penetrometer Soil Mechanics Experiments, have also been restored and are archived with PDS.) Apollo 14 and 15 Dust Detector data and Apollo 15 and 17 Heat Flow data have been restored and gone through a PDS review. They are now undergoing lien resolution. We are currently recovering data and restoring Apollo 12, 14, and 15 Suprathermal Ion Detector Experiment, Apollo 14 Charged Particle Lunar Environment Experiment, Apollo 17 Lunar Atmospheric Composition Experiment, and Apollo 17 Lunar Ejecta and Meteorite data. Lunar Surface Magnetometer data from Apollo 15 and 16 are being restored by another group led by Peter Chi at U.C.L.A. We are also restoring, in conjunction with Yosio Nakamura (University of

  15. First Apollo 11 Lunar Samples Arrive at the Manned Spacecraft Center (MSC)

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. This photograph was taken as the mission's first loaded sample return container arrived at Ellington Air Force Base by air from the Pacific recovery area. The rock box was immediately taken to the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC) in Houston, Texas. Happily posing for the photograph with the rock container are (L-R) Richard S. Johnston (back), special assistant to the MSC Director; George M. Low, MSC Apollo Spacecraft Program manager; George S. Trimble (back), MSC Deputy Director; Lt. General Samuel C. Phillips, Apollo Program Director, Office of Manned Spaceflight at NASA headquarters; Eugene G. Edmonds, MSC Photographic Technology Laboratory; Dr. Thomas O. Paine, NASA Administrator; and Dr. Robert R. Gilruth, MSC Director.

  16. COMPASS Final Report: Saturn Moons Orbiter Using Radioisotope Electric Propulsion (REP): Flagship Class Mission

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2011-01-01

    The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document

  17. Apollo 13 creativity: in-the-box innovation.

    PubMed

    King, M J

    1997-01-01

    A study of the Apollo 13 mission, based on the themes showcased in the acclaimed 1995 film, reveals the grace under pressure that is the condition of optimal creativity. "Apollo 13 Creativity" is a cultural and creative problem-solving appreciation of the thinking style that made the Apollo mission succeed: creativity under severe limitations. Although creativity is often considered a "luxury good," of concern mainly for personal enrichment, the arts, and performance improvement, in life-or-death situations it is the critical pathway not only to success but to survival. In this case. the original plan for a moon landing had to be transformed within a matter of hours into a return to earth. By precluding failure as an option at the outset, both space and ground crews were forced to adopt a new perspective on their resources and options to solve for a successful landing. This now-classic problem provides a range of principles for creative practice and motivation applicable in any situation. The extreme situation makes these points dramatically.

  18. Astronauts Stafford and Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two American ASTP crewmen, Astronauts Thomas P. Stafford (foreground) and Vance D. Brand are seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  19. Astronaut Vance Brand at controls of Apollo Command Module

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Astronaut Vance D. Brand, command module pilot of the American ASTP crew, is seen at the controls of the Apollo Command Module during the joint U.S.-USSR Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission.

  20. Apollo 15 30-day failure and anomaly listing report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The significant anomalies that occurred during the Apollo 15 mission are discussed. The five major areas are command and service modules, lunar module, scientific instrument module experiments, Apollo lunar surface experiment package and associated equipment, and government furnished equipment.

  1. Designing remote operations strategies to optimize science mission goals: Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Russell, P.; ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-08-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determine the origin of a glacially-derived deposit: was the deposit the result of (1) glacial outwash from meltwater; or (2) the result of an ice dam breach at the head of the valley? Lessons learned from MMAMA 2012 science operations include: (1) current rover science operations scenarios tested in this environment provide adequate data to yield accurate derivative products such as geologic maps; (2) instrumentation should be selected based on both engineering and science goals; and chosen during, rather than after, mission definition; and (3) paralleling the tactical and strategic science processes provides significant efficiencies that impact science return. The MER-model concept of operations utilized, in which rover operators were sufficiently facile with science intent to alter traverse and sampling plans during plan execution, increased science efficiency, gave the Science Backroom time to develop mature hypotheses and science rationales, and partially alleviated the problem of data flow being greater than the processing speed of the scientists.

  2. Apollo 13 Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The third marned lunar landing mission, Apollo 13 (SA-508), with three astronauts: Mission commander James A. Lovell Jr., Lunar Module pilot Fred W. Haise Jr., and Command Module pilot John L. Swigert Jr., lifted off from the Kennedy Space Center launch complex 39A on April 11, 1970. The mission was aborted after 56 hours of flight, 205,000 miles from Earth, when an oxygen tank in the service module exploded. The Command Module, Odyssey, carrying the three astronauts, safely splashed down in the Pacific Ocean at 1:08 p.m. EST, April 17, 1970.

  3. Apollo 11 Launched Via Saturn V Rocket - High Angle View

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle produced a holocaust of flames as it rose from its pad at Launch complex 39. The 363 foot tall, 6,400,000 pound rocket hurled the spacecraft into Earth parking orbit and then placed it on the trajectory to the moon. This high angle view of the launch was provided by a `fisheye' camera mounted on the launch tower. The Saturn V was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. Aboard the spacecraft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  4. Quarantined Apollo 11 Astronauts Loaded Onto Trailer For Transport

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days. In this photo taken at Pearl Harbor, Hawaii, the quarantined housing facility is being lowered from the U.S.S. Hornet, onto a trailer for transport to Hickam Field. From there, it was loaded aboard an Air Force C-141 jet and flown back to Ellington Air Force Base Texas, and then on to the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas.

  5. Apollo 11 Quarantine Facility Prepared for Loading Onto Jet Transport

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. In this photo taken at Pearl Harbor, Hawaii, the inhabited MQF is prepared for loading into an Air Force C-141 jet transport for the flight back to Ellington Air Force Base Texas and then on to the MSC.

  6. Apollo 11 Occupied Mobile Quarantine Facility (MQF) Moved For Transport

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The occupied MQF was unloaded from the U.S.S. Hornet in Pearl Harbor, Hawaii. In this photo, the facility is moved from the Hornet's dock enroute to Hickam Field where it was loaded aboard an Air Force C-141 jet transport for the flight back to Ellington Air Force Base Texas, and then on to the MSC.

  7. Quarantined Apollo 11 Astronaut Aldrin Speaks With Wife Joan

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. On arrival at Ellington Air Force base near the MSC, the crew, still under a 21 day quarantine in the MQF, were greeted by their wives. Pictured here is Joan Aldrin, wife of Buzz Aldrin, speaking with her husband via telephone patch.

  8. The Legacy of Apollo: a Thirty Year Perspective

    NASA Astrophysics Data System (ADS)

    Schmitt, Harrison H.

    2002-01-01

    John F. Kennedy's challenge in 1961 for an American commitment toward "achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to Earth" stimulated a remarkable coincidence of many truly American characteristics. It can be argued that American's do truly great things for humanity and themselves when five societal conditions are in coincidence - a sufficient base of technology to serve as a foundation for the effort, a reservoir of young engineers and skilled workers to draw up on, a pervasive environment of national unease about the way things are, a catalytic event that begins to focus attention on a potential goal worth the Nation's effort, and an articulate and trusted President. Kennedy fully deserves the credit for recognizing the needed response to the Soviet challenge and thus formally initiating the U.S. effort that first put men, in particular, Americans on the Moon. Much of the conceptual and political heavy lifting, however, necessary to give policy makers the confidence that such an effort could be successful, had been undertaken in the last few years of President Dwight D. Eisenhower's Administration. The National Aeronautics and Space Administration (NASA) had been created in 1958, NASA and industry studies of manned lunar missions were well advanced, and Eisenhower had initiated the development of rockets capable of such missions. Apollo also gave all human beings a new evolutionary status in the universe as well as a new foundation of know-how for life on Earth. With Apollo, humankind demonstrated that it had the intellect and the will to go into space and stay there permanently. As a consequence, young people alive today will live on the Moon and Mars and will help their home planet survive itself as America helped former homelands in Europe and Asia in recent centuries. race to the Moon. Both Americans and Russians can be proud of the eventual results of their competition.

  9. Food and Nutrition for the Moon Base: What we have Learned in 45 Years of Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen; Kloeris, Vickie; Perchonok, Michele; Zwart, Sara; Smith, Scott M.

    2006-01-01

    The United States has a new human space flight mission to return to the Moon, this time to establish an outpost to continue research there and develop our ability to send humans to Mars and bring them back in good health. The Apollo missions were the first human expeditions to the Moon. Only 2 crew members landed on the lunar surface on each Apollo mission, and they spent a maximum of 72 hours there. Future trips will have at least 4 crew members, and the initial trips will include several days of surface activity. Eventually, these short (sortie) missions will extend to longer lunar surface times, on the order of weeks. Thus, the challenges of meeting the food and nutritional needs of crew members at a lunar outpost will be significantly different from those during the early Apollo missions. The U.S. has had humans in space beginning in 1961 with increasing lengths of time in space flight. Throughout these flights, the areas of particular concern for nutrition are body mass, bone health, and radiation protection. The development and refinement of the food systems over the last 30 years are discussed, as well as the plans for both the sortie and lunar. The articles briefly review what we know today about food and nutrition for space travelers and relate this knowledge to our planned human flights back to the Moon.

  10. Apollo experience report: Television system

    NASA Technical Reports Server (NTRS)

    Coan, P. P.

    1973-01-01

    The progress of the Apollo television systems from the early definition of requirements through the development and inflight use of color television hardware is presented. Television systems that have been used during the Apollo Program are discussed, beginning with a description of the specifications for each system. The document describes the technical approach taken for the development of each system and discusses the prototype and engineering hardware built to test the system itself and to perform the testing to verify compatibility with the spacecraft systems. Problems that occurred during the design and development phase are described. Finally, the flight hardware, operational characteristics, and performance during several Apollo missions are described, and specific recommendations for the remaining Apollo flights and future space missions are made.

  11. Complex Indigenous Organic Matter Embedded in Apollo 17 Volcanic Black Glass Surface Deposits

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, Kathie L.; Clemett, S. J.; Ross, D. K.; Le, L.; Rahman, Z.; Gonzalez, C.; McKay, D. S.; Gibson, E. K.

    2013-01-01

    Papers presented at the first Lunar Science Conference [1] and those published in the subsequent Science Moon Issue [2] reported the C content of Apollo II soils, breccias, and igneous rocks as rang-ing from approx.50 to 250 parts per million (ppm). Later Fegley & Swindle [3] summarized the C content of bulk soils from all the Apollo missions as ranging from 2.5 (Apollo 15) to 280 ppm (Apollo 16) with an overall average of 124+/- 45 ppm. These values are unexpectedly low given that multiple processes should have contributed (and in some cases continue to contribute) to the lunar C inventory. These include exogenous accretion of cometary and asteroidal dust, solar wind implantation, and synthesis of C-bearing species during early lunar volcanism. We estimate the contribution of C from exogenous sources alone is approx.500 ppm, which is approx.4x greater than the reported average. While the assessm ent of indigenous organic matter (OM) in returned lunar samples was one of the primary scientific goals of the Apollo program, extensive analysis of Apollo samples yielded no evidence of any significant indigenous organic species. Furthermore, with such low concentrations of OM reported, the importance of discriminating indigenous OM from terrestrial contamination (e.g., lunar module exhaust, sample processing and handling) became a formidable task. After more than 40 years, with the exception of CH4 [5-7], the presence of indigenous lunar organics still remains a subject of considerable debate. We report for the first time the identification of arguably indigenous OM present within surface deposits of black glass grains collected on the rim of Shorty crater during the Apollo 17 mission by astronauts Eugene Cernan and Harrison Schmitt.

  12. General Human Health Issues For Moon And Mars Missions: Results From The HUMEX Study

    NASA Astrophysics Data System (ADS)

    Horneck, G.; Comet, B.

    Human exploratory missions, such as the establishment of a permanently inhabited lunar base and/or human visits to Mars will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity lev-els, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues. Besides spaceflight specific risks, such as radiation health, gravity related effects and psy-chological issues, general health issues need to be considered. These individual risks of illness, injury or death are based on general human health statistics. The duration of the mission is the main factor in these considerations. These risk estimations are the base which have to supplemented by the risks related specifically to the nature of the expedition under consideration. Crew health and performance have to be secured during transfer flights, during lunar or Mars surface exploration, including EVAs, and upon return to Earth, as defined within the constraints of safety objectives and mass restrictions of the mission. Within the ESA Study on the Survivability and Adaptation of Humans to Long-Duration Interplanetary and Planetary Environments (so called HUMEX study), we have critically assessed the human responses, limits and needs with regard to the environments of interplanetary and planetary missions. Based on various scenarios, the crew health risks have been evaluated. The main results are as follows: (i) The state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed. (ii) The control of human physical capacity impairment under weightlessness shall be optimized. (iii) Based of the probability of occurrence of diseases and injuries and on the con-straints imposed by exploratory mission scenarios, the crew shall

  13. Earth to Moon Transfer: Direct vs Via Libration Points (L1, L2)

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Wilson, Samuel W.

    2004-01-01

    For some three decades, the Apollo-style mission has served as a proven baseline technique for transporting flight crews to the Moon and back with expendable hardware. This approach provides an optimal design for expeditionary missions, emphasizing operational flexibility in terms of safely returning the crew in the event of a hardware failure. However, its application is limited essentially to low-latitude lunar sites, and it leaves much to be desired as a model for exploratory and evolutionary programs that employ reusable space-based hardware. This study compares the performance requirements for a lunar orbit rendezvous mission type with one using the cislunar libration point (L1) as a stopover and staging point for access to arbitrary sites on the lunar surface. For selected constraints and mission objectives, it contrasts the relative uniformity of performance cost when the L1 staging point is used with the wide variation of cost for the Apollo-style lunar orbit rendezvous.

  14. Neil Armstrong chats with attendees at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Former Apollo 11 astronaut Neil A. Armstrong is the center of attention at the anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible. The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Neil Armstrong was the first man to set foot on the moon. He appeared at the banquet with other former astronauts Edwin 'Buzz' Aldrin, Gene Cernan, Walt Cunningham and others.

  15. Moon Diver: A Mission Concept for Exploring the History of Lunar Mare Deposits with the Axel Extreme Terrain Rover

    NASA Astrophysics Data System (ADS)

    Kerber, L.; Nesnas, I.; Ashley, J. W.; Malaska, M. J.; Parcheta, C.; Mitchell, K. L.; Anderson, R. C.

    2016-11-01

    Moon Diver is a lunar exploration concept that would access a mare pit, allowing thorough exploration of a cross sectional exposure of both regolith and bedrock on the Moon, including stratigraphy, textures, chemistry, and mineralogy.

  16. What happened to the moon? A lunar history mission using neutrons

    SciTech Connect

    Breitkreutz, H.; Li, X.; Burfeindt, J.; Bernhardt, H. G.; Hoffmann, P.; Trieloff, M.; Schwarz, W. H.; Hopp, J.; Jessberger, E. K.; Hiesinger, H.

    2011-07-01

    The ages of lunar rocks can be determined using the {sup 40}Ar -{sup 39}Ar technique that can be used in-situ on the moon if a neutron source, a noble gas mass spectrometer and a gas extraction and purification system are brought to the lunar surface. A possible instrument for such a task is ISAGE, which combines a strong {sup 252}Cf neutron source and a compact spectrometer for in-situ dating of e.g. the South Pole Aitken impact basin or the potentially very young basalts south of the Aristachus Plateau. In this paper, the design of the neutron source will be discussed. The source is assumed to be a hollow sphere surrounded by a reflector, a geometry that provides a very homogeneous flux at the irradiation position inside the sphere. The optimal source geometry depending on the experimental conditions, the costs of transportation for the reflector and the costs of the source itself are calculated. A minimum {sup 252}Cf mass of 1.5 mg is determined. (authors)

  17. NASA Exploration Launch Projects Systems Engineering Approach for Astronaut Missions to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to design and develop a new generation of safe, reliable, and cost-effective transportation systems to hlfill the Nation s strategic goals and objectives. These launch vehicles will provide the capability for astronauts to conduct scientific exploration that yields new knowledge from the unique vantage point of space. American leadership in opening new fi-ontiers will improve the quality of life on Earth for generations to come. The Exploration Launch Projects office is responsible for delivering the Crew Launch Vehicle (CLV) that will loft the Crew Exploration Vehicle (CEV) into low-Earth orbit (LEO) early next decade, and for the heavy lift Cargo Launch Vehicle (CaLV) that will deliver the Lunar Surface Access Module (LSAM) to LEO for astronaut return trips to the Moon by 2020 in preparation for the eventual first human footprint on Mars. Crew travel to the International Space Station will be made available as soon possible after the Space Shuttle retires in 2010.

  18. Wernher von Braun Takes a Close Look at Apollo 15 Launch

    NASA Technical Reports Server (NTRS)

    1971-01-01

    During the Apollo 15 launch activities in the launch control center's firing room 1 at Kennedy Space Center, Dr. Wernher von Braun, NASA's Deputy Associate Administrator for planning, takes a closer look at the launch pad through binoculars. The fifth manned lunar landing mission, Apollo 15 (SA-510), carrying a crew of three astronauts: Mission commander David R. Scott, Lunar Module pilot James B. Irwin, and Command Module pilot Alfred M. Worden Jr., lifted off on July 26, 1971. Astronauts Scott and Irwin were the first to use a wheeled surface vehicle, the Lunar Roving Vehicle, or the Rover, which was designed and developed by the Marshall Space Flight Center, and built by the Boeing Company. Astronauts spent 13 days, nearly 67 hours, on the Moon's surface to inspect a wide variety of its geological features.

  19. NASA Now Minute: Geology: Structure of the Moon

    NASA Video Gallery

    This program shows how re-examining moon data from the Apollo days withmodern technology helps scientists determine the structure of the moon’sinterior. NASA Now Minutes are excerpts from a wee...

  20. Radar probing of Jovian icy moons: Understanding subsurface water and structure detectability in the JUICE and Europa missions

    NASA Astrophysics Data System (ADS)

    Heggy, Essam; Scabbia, Giovanni; Bruzzone, Lorenzo; Pappalardo, Robert T.

    2017-03-01

    Radar probing of Jovian icy satellites is fundamental for understanding the moons' origin and their thermal evolution as potential habitable environments in our Solar System. Using the current state of knowledge of the geological and geophysical properties of Ganymede, Europa and Callisto, we perform a comprehensive radar detectability study to quantify the exploration depth and the lower limit for subsurface identification of water and key tectonic structural elements. To achieve these objectives, we establish parametric dielectric models that reflect different hypotheses on the formation and thermal evolution of each moon. The models are then used for FDTD radar propagation simulations at the 9-MHz sounding frequency proposed for both ESA JUICE and NASA Europa missions. We investigate the detectability above the galactic noise level of four predominant subsurface features: brittle-ductile interfaces, shallow faults, brine aquifers, and the hypothesized global oceans. For Ganymede, our results suggest that the brittle-ductile interface could be within radar detectability range in the bright terrains, but is more challenging for the dark terrains. Moreover, understanding the slope variation of the brittle-ductile interface is possible after clutter reduction and focusing. For Europa, the detection of shallow subsurface structural elements few kilometers deep (such as fractures, faults and brine lenses) is achievable and not compromised by surface clutter. The objective of detecting the potential deep global ocean on Europa is also doable under both the convective and conductive hypotheses. Finally, for Callisto, radar waves can achieve an average penetration depth of ∼15 km, although the current understanding of Callisto's subsurface dielectric properties does not suggest sufficiently strong contrasts to produce unambiguous radar returns.

  1. A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.

    PubMed

    Kiely, Carol; Greenberg, Gary; Kiely, Christopher J

    2011-02-01

    Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.

  2. Apollo 11 Crew Boards U.S.S. Hornet Aircraft Carrier

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. Shown here are the three astronauts (L-R) Aldrin, Armstrong, and Collins leaving the recovery helicopter aboard the U.S.S. Hornet after their splashdown in the Pacific Ocean. Wearing biological isolation garments donned before leaving the spacecraft, the three went directly into the Mobile Quarantine Facility (MQF) on the aircraft carrier. The MQF served as their home for 21 days following the mission. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  3. Selection and characterization of landing sites for the upcoming Russian robotic missions to the Moon

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Head, James; Bazilevskiy, Alexander; Dolgopolov, Vladimir

    Russian missions Luna-Glob, Luna-Resource and Luna-Grunt are considered to be a sequence of landers aimed, in particular, to study physical conditions at the lunar poles, lunar volatiles both in situ and delivered to Earth laboratories, opportunities for utilization of lunar resources and to perform technological experiments for future lunar exploration [Zelenyi et al.,2013, 2014]. The first of these missions, tentatively planned for 2016, along with partial accomplishment of these tasks, is also devoted to test new-generation technologies for soft landing. The second one (~2018) addresses most of the mentioned tasks. The major task of the third mission is cryogenic sample return from the polar area. The potential landing sites had to accommodate the 15x30 km landing ellipses and be within 70-85N, 30W-60E and 70-85S, 0-60E [Basilevsky et al., 2013]. In these regions a search based on analysis of LOLA altimetry, LROC NAC and WAC images and Mini-RF data led to finding several spots with rather smooth surfaces which then were tested by the LEND team [Mitrofanov 2011, 2012] to see if they show signatures of enrichment in H/H2O. At the next stage of the studies a floor of the 95-km crater Boguslavsky was studied. The H2O content here is not high, but this place is convenient for the test of the new soft landing technologies. These morphometric studies rely mostly on the data acquired by instruments of the U.S. Lunar Reconnaissance Orbiter and their availability and usage were significantly facilitated through the Brown-Vernadsky/SSERVI interaction.

  4. Continued Analysis and Restoration of Apollo DTREM Instrument Data

    NASA Astrophysics Data System (ADS)

    McBride, M. J.; Williams, D. R.; Hills, H. K.

    2013-12-01

    During the years of 1969 to 1972, NASA sent 12 men to walk on the surface of the Moon. On each mission, on the first lunar extra vehicular activity, the astronauts deployed the Early Apollo Surface Experiments Package (EASEP) (Apollo 11) or the Apollo Lunar Surface Experiments Package (ALSEP) (Apollo 12 - 17). The EASEP was a short-lived package that operated for a few months while the ALSEP contained scientific instruments to collect data on the lunar environment long after the astronauts had left the lunar surface. Part of the package on Apollo 11, 12, 14 and 15 was the Dust, Radiation, Thermal, Engineering Measurement (DTREM), also known as the Lunar Dust Detector. The DTREM was a small fiberglass box that had 3 thermometers and 3 solar cells. The output from the solar cells was used to determine the degradation of the cells from dust, temperature, and radiation on the lunar surface. Over a period of 5-7 years, the DTREM instruments collected data and returned them to Earth through the ALSEP central station housekeeping (Word 33) telemetry stream. The data were in the form of raw digitized telemetry files. The only translated and calibrated data from the instrument that existed were 38 reels of computer printout images archived at the National Space Science Data Center. As part of the lunar data restoration effort, the raw telemetry files from the communications stream have been translated and recalibrated, using the archived microfilm record to determine the correct values in terms of temperature and voltage output. Once they have been properly archived by the Lunar Data Node of the Planetary Data System (PDS) the data sets will be released to the scientific community. The DTREM instrument collected data every 54 seconds for 6 years on the Apollo 14 and 15 missions. The immense size of the data set required that a process be created to convert the raw telemetry fires autonomously. Therefore, we have recreated a digital version of the data from Apollo 14 and 15

  5. Apollo 8 Recovery

    NASA Technical Reports Server (NTRS)

    1968-01-01

    A team of U.S. Navy underwater demolition swimmers prepares the Apollo 8 command module for being hoisted aboard the carrier U.S.S. Yorktown, prime recovery vessel for the initial manned lunar orbital mission. The crew members - astronauts Frank Borman, James A. Lovell, Jr., and William A. Anders - had already egressed the spacecraft and were aboard the recovery ship at the time of this photo.

  6. Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14 - An ion probe study of evolved rocks on the moon

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Crozaz, Ghislaine

    1993-01-01

    Results are presented of trace-element analyses of three lunar zircons. The major-element and REE compositions were determined using electron microprobes, and a correction was made for zircon for Zr-Si-O molecular interferences in the La to Pr mass region. The three zircons were found to exhibit similar REE abundances and patterns. Results of the analyses confirm earlier studies (Hess et al., 1975; Watson, 1976; Neal and Taylor, 1989) on the partitioning behavior of trace elements in immiscible liquid-liquid pairs. The results also support the postulated importance of silicate liquid immiscibility in the differentiation of the upper mantle and crust of the moon.

  7. STS-32 view of the moon setting over the Earth's limb

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 crew took this view of the moon setting over the Earth's limb. Near the center is a semi-vortex in the clouds - a storm system in the early stages of formation. The moon's image is distorted due to refraction through the Earth's atmosphere. The near side of the moon is visible showing the vast area of the moon's western seas (Mare Occidental), Apollo landing sites: Apollo 14 at Fra Mauro and Apollo 16 at Central Highlands near Descartes.

  8. Abort Options for Human Missions to Earth-Moon Halo Orbits

    NASA Technical Reports Server (NTRS)

    Jesick, Mark C.

    2013-01-01

    Abort trajectories are optimized for human halo orbit missions about the translunar libration point (L2), with an emphasis on the use of free return trajectories. Optimal transfers from outbound free returns to L2 halo orbits are numerically optimized in the four-body ephemeris model. Circumlunar free returns are used for direct transfers, and cislunar free returns are used in combination with lunar gravity assists to reduce propulsive requirements. Trends in orbit insertion cost and flight time are documented across the southern L2 halo family as a function of halo orbit position and free return flight time. It is determined that the maximum amplitude southern halo incurs the lowest orbit insertion cost for direct transfers but the maximum cost for lunar gravity assist transfers. The minimum amplitude halo is the most expensive destination for direct transfers but the least expensive for lunar gravity assist transfers. The on-orbit abort costs for three halos are computed as a function of abort time and return time. Finally, an architecture analysis is performed to determine launch and on-orbit vehicle requirements for halo orbit missions.

  9. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Radebaugh, Jani

    2013-12-01

    Dunes on Titan, a dominant landform comprising at least 15% of the surface, represent the end product of many physical processes acting in alien conditions. Winds in a nitrogen-rich atmosphere with Earth-like pressure transport sand that is likely to have been derived from complex organics produced in the atmosphere. These sands then accumulate into large, planet-encircling sand seas concentrated near the equator. Dunes on Titan are predominantly linear and similar in size and form to the large linear dunes of the Namib, Arabian and Saharan sand seas. They likely formed from wide bimodal winds and appear to undergo average sand transport to the east. Their singular form across the satellite indicates Titan’s dunes may be highly mature, and may reside in a condition of stability that permitted their growth and evolution over long time scales. The dunes are among the youngest surface features, as even river channels do not cut through them. However, reorganization time scales of large linear dunes on Titan are likely tens of thousands of years. Thus, Titan’s dune forms may be long-lived and yet be actively undergoing sand transport. This work is a summary of research on dunes on Titan after the Cassini Prime and Equinox Missions (2004-2010) and now during the Solstice Mission (to end in 2017). It discusses results of Cassini data analysis and modeling of conditions on Titan and it draws comparisons with observations and models of linear dune formation and evolution on Earth.

  10. Nickel for your thoughts: urey and the origin of the moon.

    PubMed

    Brush, S G

    1982-09-03

    The theories of Harold C. Urey (1893-1981) on the origin of the moon are discussed in relation to earlier ideas, especially George Howard Darwin's fission hypothesis. Urey's espousal of the idea that the moon had been captured by the earth and has preserved information about the earliest history of the solar system led him to advocate a manned lunar landing. Results from the Apollo missions, in particular the deficiency of siderophile elements in the lunar crust, led him to abandon the capture selenogony and tentatively adopt the fission hypothesis.

  11. Seismology of the moon and implications on internal structure, origin and evolution.

    NASA Technical Reports Server (NTRS)

    Ewing, M.; Latham, G.; Dorman, J.; Press, F.; Sutton, G.; Meissner, R.; Duennebier, F.; Nakamura, Y.; Kovach, R.

    1971-01-01

    The objective of the passive seismic experiment is to measure vibrations of the lunar surface produced by all natural and artificial sources of seismic energy and to use these data to deduce the internal structure and constitution of the moon and the nature of tectonic processes which may be active within the moon. Lunar seismic signals are discussed together with the sources of these signals, and aspects of lunar structure and dynamics. Seismic signals from approximately 250 natural events and from two man-made impacts have been recorded during seven months of operation of the two seismic stations installed during Apollo missions 11 and 12.

  12. NASA Administrator Dan Goldin greets Neil Armstrong at Apollo 11 anniversary banquet.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an anniversary banquet honoring the Apollo team, the people who made the entire lunar landing program possible, former Apollo astronaut Neil A. Armstrong (left) shakes the hand of Judy Goldin (center), wife of NASA Administrator Daniel S. Goldin (right). The banquet was held in the Apollo/Saturn V Center, part of the KSC Visitor Complex. This is the 30th anniversary of the Apollo 11 launch and moon landing, July 16 and July 20, 1969. Among the guests at the banquet were former Apollo astronauts are Neil A. Armstrong and Edwin 'Buzz' Aldrin who flew on Apollo 11, the launch of the first moon landing; Gene Cernan, who flew on Apollo 10 and 17 and was the last man to walk on the moon; and Walt Cunningham, who flew on Apollo 7.

  13. U.S. President Richard Milhous Nixon Arrives Aboard U.S.S. Hornet for Apollo 11 Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    U.S. President Richard Milhous Nixon (center), is saluted by the honor guard of flight deck crewmen when he arrives aboard the U.S.S. Hornet, prime recovery ship for the Apollo 11 mission, to watch recovery operations and welcome the astronauts home. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) for 21 days following the mission. The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard were Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  14. Apollo 13 Command Module recovery after splashdown

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Crewmen aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission, guide the Command Module (CM) atop a dolly on board the ship. The CM is connected by strong cable to a hoist on the vessel. The Apollo 13 crewmen were already aboard the Iwo Jima when this photograph was taken. The Apollo 13 spacecraft splashed down at 12:07:44 p.m., April 17, 1970 in the South Pacific Ocean.

  15. Navigation of the GRAIL Spacecraft Pair Through the Extended Mission at the Moon

    NASA Technical Reports Server (NTRS)

    Goodson, Troy D.; Antreasian, Peter G.; Bhat, Ram S.; Chung, Min-Kun; Criddle, Kevin E.; Hatch, Sara J.; Jefferson, David C.; Lau, Eunice L.; Roncoli, Ralph B.; Ryne, Mark S.; Sweetser, Theodore H.; You, Tung-Han; Young, Brian T.; Wong, Mau C.; Kangas, Julie A.; Wen, Hui Ying

    2013-01-01

    The GRAIL extended mission (XM) dramatically expands the scope of GRAIL's gravity science investigation by flying the pair of spacecraft at the lowest orbit the flight team can safely support. From the perspective of the Navigation team, the low orbit altitude introduces new challenges. At this lower altitude, navigation is more sensitive to higher-order terms of the gravity field so that orbit determination solutions are more difficult and there is less certainty of achieving maneuver targets. This paper reports on the strategy and performance of the Navigation system for GRAIL's XM. On a weekly basis, the Navigation team provided reference trajectory updates, designed three maneuvers, and reconstructed the execution of those maneuvers. In all, the XM involved 55 planned maneuvers; five were canceled. The results of the Navigation team's efforts, in terms of maintaining the reference-trajectory targets, satisfying requirements, and achieving desired separation distances, are assessed.

  16. Compositional Variation in Apollo 16 Impact-Melt Breccias and Inferences for the Geology and Bombardment History of the Central Highlands of the Moon

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.

    1994-01-01

    High-precision data for the concentrations of a number of lithophile and siderophile elements were obtained on multiple subsamples from 109 impact-melt rocks and breccias (mostly crystalline) from the Apollo 16 site. Compositions of nearly all Apollo 16 melt rocks fall on one of two trends of increasing Sm concentration with increasing Sc concentration. The Eastern trend (lower Sm/Sc, Mg/Fe, and Sm/Yb ratios) consists of compositional groups 3 and 4 of previous classification schemes. These melt rocks are feldspathic, poor in incompatible and siderophile elements, and appear to have provenance in the Descartes formation to the east of the site. The Western trend (higher Sm/Sc. Mg/Fe, and Sm/ Yb ratios) consists of compositional groups 1 and 2. These relatively mafic, KREEP-bearing breccias are a major component (approx.35%) of the Cayley plains west of the site and are unusual, compared to otherwise similar melt breccias from other sites, in having high concentrations of Fe-Ni metal ( 1-2 %). The metal is the carrier of the low-Ir/Au (approx. 0.3 x chondritic) siderophile-element signature that is characteristic of the Apollo 16 site. Four compositionally distinct groups (1M, 1F, 2DB, and 2NR) of Western-trend melt breccias occur that are each represented by at least six samples. Compositional group 1 or previous classification schemes (the 'poikilitic' or 'LKFM' melt breccias) can be subdivided into two groups. Group 1M (represented by six samples, including 60315) is characterized by lower Al2O3 concentrations, higher MgO and alkali concentrations, and higher Mg/Fe and Cr/Sc ratios than group 1F (represented by fifteen samples, including 65015). Group 1M also has siderophile-element concentrations averaging about twice those of group lF and Ir/Au and Ir/Ni ratios that are even lower than those of other Western-trend melt rocks (Ir/Au = 0.24 +/- 0.03. CI-normalized). At the mafic extreme of group 2 ('VHA' melt breccias), the melt lithology occurring as clasts in

  17. View of activity in Mission Control Center during Lunar Module liftoff

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module 'Falcon' ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the Lunar Module (LM) launch from the Moon. Seated in the right foreground is Astronaut Edgar D. Mitchell, a spacecraft communicator. Note liftoff on the television monitor in the center background.

  18. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  19. Five Apollo astronauts with Lunar Module at ASVC prior to grand opening

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Some of the former Apollo program astronauts observe a Lunar Module and Moon mockup during a tour the new Apollo/Saturn V Center (ASVC) at KSC prior to the gala grand opening ceremony for the facility that was held Jan. 8, 1997. The astronauts were invited to participate in the event, which also featured NASA Administrator Dan Goldin and KSC Director Jay Honeycutt. Some of the visiting astonauts were (from left): Apollo 10 Lunar Module Pilot and Apollo 17 Commander Eugene A. Cernan; Apollo 9 Lunar Module Pilot Russell L. Schweikart; Apollo 10 Command Module Pilot and Apollo 16 Commander John W. Young; Apollo 10 Commander Thomas P. Stafford; and Apollo 11 Lunar Module Pilot Edwin E. 'Buzz' Aldrin, Jr. The ASVC also features several other Apollo program spacecraft components, multimedia presentations and a simulated Apollo/Saturn V liftoff. The facility will be a part of the KSC bus tour that embarks from the KSC Visitor Center.

  20. Apollo Field Geology: 45 Years of Digesting Rocks, Field Data, and Future Objectives

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.

    2012-12-01

    Twelve Apollo astronauts participated in the Lunar Field Geological Experiment, overseen by Gene Shoemaker, Gordon Swann, and Bill Muehlberger and their Co-Investigators. In conjunction with geologists and engineers of the Geological Survey and NASA, this team planned, trained and executed the first extraterrestrial field geological investigation. As a result, astronaut sample selection, observations, photo-documentation and experiment deployment underpin 45 years of laboratory analyses and interpretation by thousands of lunar and planetary scientists. --Current hypotheses related to the origin, evolution and nature of the Moon would be far different had Apollo geological explorations not occurred, even assuming that all robotic missions flown before and since Apollo were flown. *Would we have recognized lunar meteorites without the broad suite of Apollo samples to guide us? If we eventually had properly identified such meteorites, would their chemistry and age data give us the same detailed insights about the origin and evolution of the Moon without the highly specific field documentation of samples collected by the astronauts? *Would we recognize that the early history of the Earth and Mars up to 3.8 billion years ago, including the development of life's precursors, was a period of the prolonged violence due to impacts of asteroids and comets? Would we have realized that clay minerals, produced by the alteration of impact-generated glass and debris, would have been dominant components and potential templates for complex organic molecules in the terrestrial and Martian environments? *Would we fully understand the surface environments of asteroids and young terrestrial planets without the detailed dissection and analysis of Apollo's lunar regolith samples? *Would the Moon's near-surface environment, and its mantle and core structure, be as well defined as they are without the ground-truth provided by Apollo samples and the equipment carefully emplaced there by the

  1. Exploring the Moon: A Teacher's Guide with Activities for Earth and Space Sciences.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational guide concerns exploring the moon. Activities are divided into three units: Pre-Apollo, Learning from Apollo, and The Future. These correspond, at least roughly, to exercises that can be done before the Lunar Sample Disk (available from NASA) arrives to the school (Pre-Apollo), while it is there (Learning from Apollo), and after…

  2. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of

  3. Elemental mapping of the moon using gamma rays : past, present, and future /

    SciTech Connect

    Reedy, R. C.

    2001-01-01

    The energies and intensities of gamma rays From a planetary surface can be used to infer the elemental composition of an object with no or a thin atmosphere. The Apollo gamma-ray spectrometers in 1972 and 1973 produced many of the results for the distribution of elements in the Moon that are now generally well accepted. Lunar Prospector in 1998 and 1999 globally mapped the Moon with gamma rays and neutrons. Both missions used spectrometers with poor energy resolution ({approx}8-10%). The Japanese plan to send a high-resolution germanium gamma-ray spectrometer to the Moon in about 2004 on their SELENE mission. However, little has been done since the 1970s on the models used to unfold planetary gamma-ray spectra. More work needs to be done on understanding what to expect in future gamma-ray spectra and how to unfold such data.

  4. APOLLO 9 : Who's in charge of Spider & Gumdrop?

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Introduces the crew of the APOLLO 9 mission. From the film documentary 'APOLLO 9: The Duet of Spider & Gumdrop': part of a documentary series made in the early 70's on the APOLLO missions, and narrated by Burgess Meredith. (Actual date created is not known at this time) Mission: APOLLO 9: Earth orbital flight with James A. McDivitt, David R. Scott, and Russell Schweickart. First flight of the Lunar Module. Performed rendezvous, docking and E.V.A..Mission Duration 241hrs 0m 54s.

  5. Apollo 20

    ERIC Educational Resources Information Center

    Houston Independent School District, 2013

    2013-01-01

    The Apollo 20 project was launched during the 2010-2011 school year to accelerate Houston Independent School District's (HISD's) efforts to improve student performance in every school and close the achievement gap districtwide. This partnership with EdLabs at Harvard University incorporates best practices from successful public and charter schools…

  6. Apollo 11 Facts Project [On-Orbit Activities

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage is shown of the crew of Apollo 11 (Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin Jr., and Command Module Pilot Michael Collins) inside the spacecraft as they fly from the Earth to the Moon. A scene shows the entire Earth as seen from Apollo.

  7. APOLLO 16 TECHNICIAN ATTACHES PLAQUE TO LUNAR MODULE'S DESCENT STAGE

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Working inside the Apollo 16 Saturn V space vehicle at the launch pad, technician Ken Crow attaches a stainless steel plaque bearing the names of Apollo 16 astronauts John W. Young, Thomas K. Mattingly II and Charles M. Duke, Jr., to the Lunar Module's descent stage, which will remain on the Moon's surface.

  8. Human Exploration of the Moon

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    1999-01-01

    Human exploration of the Moon tilde-n or, more generally, human exploration of the solar system tilde-n began with the landing of Apollo 11 Lunar Module on the lunar surface. Human exploration continued with growing capability until the departure of the Apollo 17 lunar module from the lunar surface in 1972. Human exploration is currently experiencing what can be called euphemistically a hiatus.

  9. Long-lasting Science Returns from the Apollo Heat Flow Experiments

    NASA Astrophysics Data System (ADS)

    Nagihara, S.; Taylor, P. T.; Williams, D. R.; Zacny, K.; Hedlund, M.; Nakamura, Y.

    2012-12-01

    The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of re-analyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, ~0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors' current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow data

  10. Long-Lasting Science Returns from the Apollo Heat Flow Experiments

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Taylor, P. T.; Williams, D. R.; Zacny, K.; Hedlund, M.; Nakamura, Y.

    2012-01-01

    The Apollo astronauts deployed geothermal heat flow instruments at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiments Packages (ALSEP) in July 1971 and December 1972, respectively. These instruments continuously transmitted data to the Earth until September 1977. Four decades later, the data from the two Apollo sites remain the only set of in-situ heat flow measurements obtained on an extra-terrestrial body. Researchers continue to extract additional knowledge from this dataset by utilizing new analytical techniques and by synthesizing it with data from more recent lunar orbital missions such as the Lunar Reconnaissance Orbiter. In addition, lessons learned from the Apollo experiments help contemporary researchers in designing heat flow instruments for future missions to the Moon and other planetary bodies. For example, the data from both Apollo sites showed gradual warming trends in the subsurface from 1971 to 1977. The cause of this warming has been debated in recent years. It may have resulted from fluctuation in insolation associated with the 18.6-year-cycle precession of the Moon, or sudden changes in surface thermal environment/properties resulting from the installation of the instruments and the astronauts' activities. These types of reanalyses of the Apollo data have lead a panel of scientists to recommend that a heat flow probe carried on a future lunar mission reach 3 m into the subsurface, approx 0.6 m deeper than the depths reached by the Apollo 17 experiment. This presentation describes the authors current efforts for (1) restoring a part of the Apollo heat flow data that were left unprocessed by the original investigators and (2) designing a compact heat flow instrument for future robotic missions to the Moon. First, at the conclusion of the ALSEP program in 1977, heat flow data obtained at the two Apollo sites after December 1974 were left unprocessed and not properly archived through NASA. In the following decades, heat flow

  11. Apollo 13 Facts [Post Flight Press Conference

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Apollo 13 astronauts, James Lovell, Jr., John Swigert, Jr., and Fred Haise, Jr., are seen during this post flight press conference. They describe their mission and answer questions from the audience.

  12. Apollo Telescope Mount of Skylab: an overview.

    PubMed

    Tousey, R

    1977-04-01

    This introductory paper describes Skylab and the course of events that led to this complex space project. In particular it covers the Apollo Telescope Mount and its instruments and the method of operation of the ATM mission.

  13. Food and nutrition studies for Apollo 16

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Rambaut, P. C.; Heidelbaugh, N. D.; Rapp, R. M.; Wheeler, H. O.

    1972-01-01

    A study has been conducted on nutrient intake and absorption during the Apollo 16 mission. Results indicate that inflight intakes of all essential nutrients were adequate and that absorption of these materials occurred normally.

  14. Preserving, Enhancing, and Continuing the Scientific Legacy of the Apollo Sample Suite

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan; Evans, Cindy; Cai, Yue; Lehnert, Kerstin; Todd, Nancy; Blumenfeld, Erika

    2016-01-01

    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six geologically diverse locations on the Moon. In the nearly 50 years since the samples were collected, over 3000 different studies have been conducted using the nearly 2200 different Apollo samples. Despite the maturity of the sample collection, many new studies of lunar samples are undertaken each year, with an average of more than 55 requests and more than 600 distinct subsamples allocated annually over the past five years. The Apollo samples are a finite resource, however. Although new studies are encouraged, it is important that new studies do not duplicate previous studies, and where possible, leverage previous results to inform and enhance the current studies. This helps to preserve the samples and scientific funding, both of which are precious resources. We have initiated several new efforts to rescue some of the early analyses from these samples, including unpublished analytical data. We are actively scanning NASA documentation in paper form that is related to the Apollo missions and sample processing, and we are collaborating with IEDA to establish a geochemical data base called MoonDB. To populate this database, we are actively working with about a dozen prominent lunar PIs to organize and transcribe years of both published and unpublished data, making it available to all researchers. This effort will also take advantage of new online analytical tools like PetDB. There have already been tangible results from the MoonDB data rescue effort. A pilot project involving the rescue of geochemical data of John Delano on Apollo pyroclastic glasses has already been referenced in multiple Apollo sample requests, and in fact, the compiled data was used as part of one of the new studies. Similarly, scanned sample handling reports have been utilized to find previously analyzed samples that were appropriate to fulfill new sample requests. We have also begun to image the Apollo

  15. Human factors for the Moon: the gap in anthropometric data.

    NASA Astrophysics Data System (ADS)

    Lia Schlacht, Irene; Foing, Bernard H.; Rittweger, Joern; Masali, Melchiorre; Stevenin, Hervé

    2016-07-01

    Since the space era began, we learned first to survive and then to live in space. In the state of the art, we know how important human factors research and development is to guarantee maximum safety and performance for human missions. With the extension of the duration of space missions, we also need to learn how habitability and comfort factors are closely related to safety and performance. Humanities disciplines such as design, architecture, anthropometry, and anthropology are now involved in mission design from the start. Actual plans for building a simulated Moon village in order to simulate and test Moon missions are now being carried out using a holistic approach, involving multidisciplinary experts cooperating concurrently with regard to the interactions among humans, technology, and the environment. However, in order to implement such plans, we need basic anthropometrical data, which is still missing. In other words: to optimize performance, we need to create doors and ceilings with dimensions that support a natural human movement in the reduced gravity environment of the Moon, but we are lacking detailed anthropometrical data on human movement on the Moon. In the Apollo missions more than 50 years ago, no anthropometrical studies were carried in hypogravity out as far as we know. The necessity to collect data is very consistent with state-of-the-art research. We still have little knowledge of how people will interact with the Moon environment. Specifically, it is not known exactly which posture, which kind of walking and running motions astronauts will use both inside and outside a Moon station. Considering recent plans for a Moon mission where humans will spend extensive time in reduced gravity conditions, the need for anthropometric, biomechanics and kinematics field data is a priority in order to be able to design the right architecture, infrastructure, and interfaces. Objective of this paper: Bring knowledge on the relevance of anthropometrical and

  16. Apollo 14 and apollo 16 heavy-particle dosimetry experiments.

    PubMed

    Fleischer, R L; Hart, H R; Comstock, G M; Carter, M; Renshaw, A; Hardy, A

    1973-08-03

    Doses of heavy particles at positions inside the command modules of Apollo missions 8, 12, 14, and 16 correlate well with the calculated effects of solar modulation of the primary cosmic radiation. Differences in doses at different stowage positions indicate that the redistribution of mass within the spacecraft could enhance safety from the biological damage that would otherwise be expected on manned, deep-space missions.

  17. Apollo 13 Guidance, Navigation, and Control Challenges

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2009-01-01

    Combustion and rupture of a liquid oxygen tank during the Apollo 13 mission provides lessons and insights for future spacecraft designers and operations personnel who may never, during their careers, have participated in saving a vehicle and crew during a spacecraft emergency. Guidance, Navigation, and Control (GNC) challenges were the reestablishment of attitude control after the oxygen tank incident, re-establishment of a free return trajectory, resolution of a ground tracking conflict between the LM and the Saturn V S-IVB stage, Inertial Measurement Unit (IMU) alignments, maneuvering to burn attitudes, attitude control during burns, and performing manual GNC tasks with most vehicle systems powered down. Debris illuminated by the Sun and gaseous venting from the Service Module (SM) complicated crew attempts to identify stars and prevented execution of nominal IMU alignment procedures. Sightings on the Sun, Moon, and Earth were used instead. Near continuous communications with Mission Control enabled the crew to quickly perform time critical procedures. Overcoming these challenges required the modification of existing contingency procedures.

  18. Apollo 11 Lunar Science Conference

    ERIC Educational Resources Information Center

    Cochran, Wendell

    1970-01-01

    Report of a conference called to discuss the findings of 142 scientists from their investigations of samples of lunar rock and soil brought back by the Apollo 11 mission. Significant findings reported include the age and composition of the lunar samples, and the absence of water and organic matter. Much discussed was the origin and structure of…

  19. Apollo 15 at Hadley Base.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This publication highlights the mission of Apollo 15 and includes many detailed black and white and color photographs taken near the lunar Apennine Mountains and the mile-wide, meandering Hadley Rille. Some of the photographs are full page (9 by 12 inch) reproductions. (Author/PR)

  20. Apollo experience report: Consumables budgeting

    NASA Technical Reports Server (NTRS)

    Nelson, D. A.

    1973-01-01

    The procedures and techniques used in predicting the consumables usage for the Apollo mission are discussed. Because of the many interfaces and influences on the consumables system, it is impractical to document all facets of consumables budgeting; therefore, information in this report is limited to the major contributions to the formulation of a consumables budget.