Sample records for apollo space shuttle

  1. NASA Remembers Astronaut John Young, Moonwalker and First Shuttle Commander

    NASA Image and Video Library

    2018-01-06

    Astronaut John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission, has passed away at the age of 87. After earning an engineering degree from Georgia Tech and flying planes for the Navy, Young began his impressive career at NASA in 1962, when he was selected from among hundreds of young pilots to join NASA's second astronaut class, known as the "New Nine." Young first flew in space on the first manned Gemini flight, Gemini 3 in March 1965. He later commanded the Gemini 10 mission in July 1966, served as command module pilot on Apollo 10 in 1969, and landed on the Moon as commander of Apollo 16 in April 1972. He went on to command the first Space Shuttle flight in 1981, and also commanded the STS-9 shuttle mission in 1983. He is the only person to go into space as part of the Gemini, Apollo and space shuttle programs and was the first to fly into space six times -- or seven times, when counting his liftoff from the Moon during Apollo 16.

  2. Space Flight: The First 30 Years

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.

  3. History of Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.

  4. Food packages for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

    1978-01-01

    The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

  5. Meals in orbit. [Space Shuttle food service planning

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Space foods which will be available to the Space Shuttle crew are discussed in view of the research and development of proper nutrition in space that began with the pastelike tube meals of the Mercury and Gemini astronauts. The variety of food types proposed for the Space Shuttle crew which include thermostabilized, intermediate moisture, rehydratable, irradiated, freeze-dried and natural forms are shown to be a result of the successive improvements in the Apollo, Skylab and Apollo Soyuz test project flights. The Space Shuttle crew will also benefit from an increase of caloric content (3,000 cal./day), the convenience of a real oven and a comfortable dining and kitchen area.

  6. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James Lovell makes the opening remarks at the induction ceremony of four Space Shuttle astronauts into the U.S. Astronaut Hall of Fame. Being inducted are Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  8. The ninth Dr. Albert Plesman memorial lecture: The Future of Space Flight

    NASA Technical Reports Server (NTRS)

    Moore, J. W.

    1984-01-01

    The history of space flight is reviewed and major NASA programs (Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz, Science and Applications, Space Shuttle, Space Station) are summarized. Developments into the early 21st century are predicted.

  9. KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Former astronaut James Lovell addresses the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. Apollo 11: A good ending to a bad decade

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Gemini program and the Apollo program which culminated in landing a man on the moon and safely returning him to earth are highlighted. The space program in the aftermath of Apollo 11 is briefly summarized, including: Skylab, Apollo Soyuz, Mars and Venus probes, improved world communications, remote sensing of world resources, and finally, space shuttle.

  11. Apollo 17: On the Shoulders of Giants

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A documentary view of the Apollo 17 journey to Taurus-Littrow, the final lunar landing mission in the Apollo program is discussed. The film depicts the highlights of the mission and relates the Apollo program to Skylab, the Apollo-Soyuz linkup and the Space Shuttle.

  12. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, actor and Master of Ceremonies Lance Henriksen (at podium) introduces four newly inducted Space Shuttle astronauts to the audience at their induction ceremony into the U.S. Astronaut Hall of Fame. From left center, they are Story Musgrave, Sally K. Ride, Daniel Brandenstein, and Robert "Hoot" Gibson. Also standing, left, is former astronaut James A. Lovell. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. Kennedy Space Center: Apollo to Multi-User Spaceport

    NASA Technical Reports Server (NTRS)

    Weber, Philip J.; Kanner, Howard S.

    2017-01-01

    NASA Kennedy Space Center (KSC) was established as the gateway to exploring beyond earth. Since the establishment of KSC in December 1963, the Center has been critical in the execution of the United States of Americas bold mission to send astronauts beyond the grasp of the terra firma. On May 25, 1961, a few weeks after a Soviet cosmonaut became the first person to fly in space, President John F. Kennedy laid out the ambitious goal of landing a man on the moon and returning him safely to the Earth by the end of the decade. The resultant Apollo program was massive endeavor, driven by the Cold War Space Race, and supported with a robust budget. The Apollo program consisted of 18 launches from newly developed infrastructure, including 12 manned missions and six lunar landings, ending with Apollo 17 that launched on December 7, 1972. Continuing to use this infrastructure, the Skylab program launched four missions. During the Skylab program, KSC infrastructure was redesigned to meet the needs of the Space Shuttle program, which launched its first vehicle (STS-1) on April 12, 1981. The Space Shuttle required significant modifications to the Apollo launch pads and assembly facilities, as well as new infrastructure, such as Orbiter and Payload Processing Facilities, as well as the Shuttle Landing Facility. The Space Shuttle was a workhorse that supported many satellite deployments, but was key for the construction and maintenance of the International Space Station, which required additional facilities at KSC to support processing of the flight hardware. After reaching the new Millennium, United States policymakers searched for new ways to reduce the cost of space exploration. The Constellation Program was initiated in 2005 with a goal of providing a crewed lunar landing with a much smaller budget. The very successful Space Shuttle made its last launch on July 8, 2011, after 135 missions. In the subsequent years, KSC continues to evolve, and this paper will address past and future efforts of the transformation of the KSC Apollo and Space Shuttle heritage infrastructure into a more versatile, multi-user spaceport. The paper will also discuss the US Congressional and NASA initiatives for developing and supporting multiple commercial partners, while simultaneously supporting NASAs human exploration initiative, consisting of Space Launch System (SLS), Orion spacecraft and associated ground launch systems. In addition, the paper explains the approach with examples for NASA KSC to leverage new technologies and innovative capabilities developed to reduce the cost to individual users.

  14. Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

    2009-01-01

    Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be a part of any 2l century initiatives furthering a growing human presence beyond earth.

  15. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert "Hoot" Gibson (at podium) addresses the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen and former astronaut John H. Glenn. Also being inducted with Gibson are Space Shuttle astronauts Daniel Brandenstein, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  16. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2009-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  18. Apollo: Learning From the Past, For the Future

    NASA Technical Reports Server (NTRS)

    Grabois, Michael R.

    2010-01-01

    This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to "reinvent the wheel". NASA's new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006 a project at NASA's Johnson Space Center was begun to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today's engineers and managers. This "Apollo Mission Familiarization for Constellation Personnel" project is accessible via the web from any NASA center for those interested in learning "how did we do this during Apollo?"

  19. KSC-04pd1007

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, astronaut John Young is warmly greeted as he is introduced as a previous inductee. Co-holder of a record for the most space flights, six, he flew on Gemini 3 and 10, orbited the Moon on Apollo 10, walked on the Moon on Apollo 16, and commanded two space shuttle missions, STS-1 and STS-9. Young currently serves as associate director, technical, at Johnson Space Center. The induction ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. KENNEDY SPACE CENTER, FLA. - Daniel LeBlanc, chief operating officer of Delaware North Companies Parks and Resorts at KSC, makes the opening remarks to hundreds of guests and media representatives attending a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Daniel LeBlanc, chief operating officer of Delaware North Companies Parks and Resorts at KSC, makes the opening remarks to hundreds of guests and media representatives attending a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  1. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) greets former astronaut Story Musgrave (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also seated on the dais are, from left, former astronaut and Senator John H. Glenn, astronaut and Associate Director (Technical) of the Johnson Space Center John W. Young, and former astronaut Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Musgrave are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  2. KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  3. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut John H. Glenn (at podium) presents former astronaut Robert "Hoot" Gibson (standing right) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are actor and Master of Ceremonies Lance Henriksen (left), and former astronauts Sally K. Ride and Daniel Brandenstein (right), both inducted into the Hall of Fame today. Also being inducted is Space Shuttle astronaut Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Daniel Brandenstein (standing right) is presented to the audience at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  5. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Frederick H. (Rick) Hauck (standing right) congratulates former astronaut Daniel Brandenstein (standing center) at his induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts John H. Glenn and Gordon Cooper, both previously inducted into the Hall of Fame. Being inducted with Brandenstein are Space Shuttle astronauts Robert "Hoot" Gibson, Story Musgrave, and Sally K. Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (right) presents former astronaut Sally K. Ride (standing center) at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais are, from left, former astronauts John H. Glenn, Gordon Cooper, Buzz Aldrin, and Walter Cunningham, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-21

    KENNEDY SPACE CENTER, FLA. - At the KSC Visitor Complex, former astronaut Robert L. Crippen (standing right) congratulates former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Also standing is former astronaut James A. Lovell. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, Buzz Aldrin, Walter Cunningham, Edgar B. Mitchell, and Fred W. Haise, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert "Hoot" Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  8. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach answers questions from the Stafford-Covey Return to Flight Task Group (SCTG). Chairing the task group are Richard O. Covey (fifth from left), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  9. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Shuttle Launch Director Mike Leinbach (left) talks to members of the Stafford-Covey Return to Flight Task Group (SCTG) about reconstruction efforts. Chairing the task group are Richard O. Covey (second from right), former Space Shuttle commander, and Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  10. A new era of space transportation. [Space Shuttle system utilization

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.

    1976-01-01

    It is pointed out that founded on the experiences of Apollo, Skylab, and the Apollo/Soyuz mission an era is entered which will be characterized by a displacement of the interface between the experimenter and his experiment from the control center on the ground to the laboratory in orbit. A new world has been opened by going into space. Economic applications are related to the achievement of an enormous efficiency in world communications at a much lower cost. However, programs of space exploration and usage are under severe economic constraints. A primary tool to lower the cost of programs is to be the Space Transportation System using the Space Shuttle. It is emphasized that the Shuttle system is an international enterprise. Attention is also given to the results of the Viking missions, the Landsat satellites, and applications of space technology for science and commerce.

  11. KSC-2012-1864

    NASA Image and Video Library

    2012-02-17

    Skylab and Mir Space Stations: In 1964, design and feasibility studies were initiated for missions that could use modified Apollo hardware for a number of possible lunar and Earth-orbital scientific and applications missions. An S-IVB stage of a Saturn V launch vehicle was outfitted completely as a workshop. The Skylab 1 Orbital Workshop with its Apollo Telescope Mount was launched into orbit May 14, 1973. The Skylab 2, 3 and 4 missions, each with three-man crews, proved that humans could live and work in space for extended periods. The Shuttle-Mir Program was a joint effort between 1994-1998 which allowed American and Russian crews to share expertise and knowledge while working together in space. As preparation for the construction of the International Space Station, Shuttle-Mir encompassed 11 space shuttle flights and 7 astronaut residencies on the Russian space station Mir. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  12. KSC-04pd1015

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Robert Crippen smiles at the warm greeting he is receiving when introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Crippen piloted the first Space Shuttle flight in 1981 and commanded three other Shuttle missions in the next 3-1/2 years. In the early 1990s he served as director of NASA’s Kennedy Space Center. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. Air and Space Museum Apollo 40th Celebration

    NASA Image and Video Library

    2009-07-19

    Jazz pianist and singer Diana Krall holds a montage given to her by the STS-125 space shuttle crew along with Apollo 11 Astronaut Neil Armstrong at the Apollo 40th anniversary celebration held at the National Air and Space Museum, Monday, July 20, 2009 in Washington. From left, Michael J. Massimino, Michael T. Good, Gregory C. Johnson, Andrew J. Feustel, Krall, Scott D. Altman, Neil Armstrong, John M. Grunsfeld and Megan McArthur. Photo Credit: (NASA/Bill Ingalls)

  14. KSC-03PD-2014

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. Hundreds of guests attend a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert 'Hoot' Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. Perspectives on NASA flight software development - Apollo, Shuttle, Space Station

    NASA Technical Reports Server (NTRS)

    Garman, John R.

    1990-01-01

    Flight data systems' software development is chronicled for the period encompassing NASA's Apollo, Space Shuttle, and (ongoing) Space Station Freedom programs, with attention to the methodologies and 'development tools' employed in each case and their mutual relationships. A dominant concern in all three programs has been the accommodation of software change; it has also been noted that any such long-term program carries the additional challenge of identifying which elements of its software-related 'institutional memory' are most critical, in order to preclude their loss through the retirement, promotion, or transfer of its 'last expert'.

  16. KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell (hand up) and Buzz Aldrin on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - Center Director and former astronaut Roy D. Bridges, Jr., (holding scissors) cuts the ribbon at a ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. Invited guests and dignitaries look on, such as former astronauts Edgar D. Mitchell on Bridges' left and James Lovell (hand up) and Buzz Aldrin on his right. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. KSC-04PD-1013

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Vance Brand is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brand was Command Module Pilot on the 1975 Apollo- Soyuz Test Project, the first linkup in orbit between spaceships of the United States and Soviet Union, and he later commanded three Space Shuttle missions. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  18. KSC-04pd1013

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Vance Brand is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brand was Command Module Pilot on the 1975 Apollo-Soyuz Test Project, the first linkup in orbit between spaceships of the United States and Soviet Union, and he later commanded three Space Shuttle missions. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  19. NASA Remembers Astronaut Bruce McCandless II

    NASA Image and Video Library

    2017-12-22

    Former NASA Astronaut Bruce McCandless II, best known for his iconic free-floating spacewalk on a 1984 shuttle flight, died on Dec. 21 at the age of 80. A native of Boston, McCandless II attended the U.S. Naval Academy and served as a naval aviator before joining NASA in 1966. He served in support or backup roles during the Apollo and Skylab programs, including serving as the communicator from mission control to the Apollo 11 crew during their historic 1969 moonwalk. On Feb. 7, 1984, during the Space Shuttle Challenger’s STS-41B mission, he made the first, untethered, free flight spacewalk in the Manned Maneuvering Unit. In 1990, McCandless II was part of the crew on Space Shuttle Discovery’s STS-31 mission, which deployed the Hubble Space Telescope.

  20. Orion Navigation Sensitivities to Ground Station Infrastructure for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Kukitschek, Daniel; Crain, Timothy

    2008-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans to the International Space Station and back to the Moon for the first time since the Apollo program. As in the Apollo and Space Shuttle programs, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of the CEV. In the case of lunar missions, the ground station infrastructure consisting of approximately twelve stations distributed about the Earth and known as the Apollo Manned Spaceflight Network, no longer exists. Therefore, additional tracking resources will have to be allocated or constructed to support mission operations for Orion lunar missions. This paper examines the sensitivity of Orion navigation for lunar missions to the number and distribution of tracking sites that form the ground station infrastructure.

  1. KSC-2012-4668

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  2. KSC-2012-4666

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-4667

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-4664

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-4665

    NASA Image and Video Library

    2012-08-27

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, firing room 3 of the Launch Control Center is undergoing a major reconstruction. Space shuttle era consoles have been removed as well as flooring and cables that had been in place dating back to the Apollo program. For more than 40 years, the firing rooms of the Launch Control Center have served as the “brain” for launches at NASA’s Florida Spaceport. Whether an Apollo-Saturn rocket or the space shuttle, the focus was always on one program. Now the firing rooms are also being modified to be more generic in nature supporting a variety of future launch vehicles. Photo credit: NASA/Kim Shiflett

  6. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-14200 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  7. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-014193 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  8. Apollo 11 lunar sample

    NASA Image and Video Library

    2009-06-24

    ISS020-E-14196 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  9. KSC-04pd1018

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Joe Engle acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Engle made 16 flights in the X-15 rocket plane before he became a NASA astronaut and flew two Space Shuttle missions. In 1981, he commanded the second flight of Columbia, the first manned spacecraft to be reflown in space, and in 1985 he commanded a five-man crew on the 20th shuttle flight, a satellite-deploy and repair mission. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. KSC-04pd1003

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut John Glenn Jr. is greeted with applause as he is introduced as a previous inductee. One of America's original Mercury Seven astronauts, in 1962 he became the first American to orbit the Earth. Twenty-six years later, at age 77, he spent nine days in space aboard Space Shuttle Discovery. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. KENNEDY SPACE CENTER, FLA. - A group of current and former U.S. astronauts are introduced to the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. In the front row, from left, are Owen K. Garriott, Walter Cunningham, Jack R. Lousma, Alfred M. Worden, and Buzz Aldrin. In the back row, from left, are Edgar D. Mitchell, Edward G. Gibson, Fred W. Haise, Frederick H. (Rick) Hauck, and John W. Young. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

    NASA Image and Video Library

    2003-06-20

    KENNEDY SPACE CENTER, FLA. - A group of current and former U.S. astronauts are introduced to the audience at a ribbon cutting ceremony officially opening the U.S. Astronaut Hall of Fame as part of the Kennedy Space Center Visitor Complex. In the front row, from left, are Owen K. Garriott, Walter Cunningham, Jack R. Lousma, Alfred M. Worden, and Buzz Aldrin. In the back row, from left, are Edgar D. Mitchell, Edward G. Gibson, Fred W. Haise, Frederick H. (Rick) Hauck, and John W. Young. The ceremony was held in conjunction with the induction of four Space Shuttle astronauts into the Hall of Fame including Daniel Brandenstein, Robert "Hoot" Gibson, Story Musgrave, and Sally Ride. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. KSC-03PD-2020

    NASA Technical Reports Server (NTRS)

    2003-01-01

    KENNEDY SPACE CENTER, FLA. At the KSC Visitor Complex, former astronaut James A. Lovell (standing left) applauds former astronaut Sally K. Ride at her induction ceremony into the U.S. Astronaut Hall of Fame. Seated on the dais, from left, are former astronauts Gordon Cooper, Scott Carpenter, and Buzz Aldrin, all previously inducted into the Hall of Fame. Being inducted with Ride are Space Shuttle astronauts Daniel Brandenstein, Robert 'Hoot' Gibson, and Story Musgrave. Conceived by six of the Mercury Program astronauts, the U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The four new inductees join 48 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. KSC-04PD-1016

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  14. KSC-04pd1016

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Frederick (Rick) Hauck acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Hauck flew on three Space Shuttle missions, including command of the redesigned spaceship on its critical first flight after the explosion of Challenger. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. Air & Space, Volume 2, Number 4, March-April, 1979.

    ERIC Educational Resources Information Center

    Forbush, Julie, Ed.

    This newsletter, produced by the National Air and Space Museum of the Smithsonian Institution, contains an article on the Apollo 11 spaceflight, an article on hypersonic and supersonic flight which compares the Concorde, the X-15, and the Shuttle Orbiter, an article presenting photographs of the construction of the Shuttle Orbiter, and an article…

  16. KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - The news media capture the words and images of the Return To Flight Task Group (RTFTG) which held its first public meeting at the Debus Center, KSC Visitor Complex. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board.

  17. KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) visits the Columbia Debris Hangar . Chairing the task group are Richard O. Covey (third from right), former Space Shuttle commander, and Thomas P. Stafford (fourth from right), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  18. KSC-04pd1008

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gene Cernan waves to guests as he is introduced as a previous inductee. He walked in space on Gemini 9, orbited the Moon on Apollo 10 and walked on the Moon as commander of Apollo 17. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  19. Apollo Seals: A Basis for the Crew Exploration Vehicle Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.

    2006-01-01

    The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.

  20. Apollo Seals: A Basis for the Crew Exploration Vehicle Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Daniels, Christopher C.

    2007-01-01

    The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.

  1. KSC-04pd1012

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Owen Garriott acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Garriott exercised his expertise as a solar physicist on two space missions, the 59-day Skylab 3 flight in 1973, and an 11-day trip aboard the Space Shuttle Columbia a decade later. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  2. KSC-04pd1019

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Dan Brandenstein acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Brandenstein piloted one Space Shuttle mission and commanded three others, including the maiden flight of Endeavour, and later served as chief of the Astronaut Office. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  3. Design/Development of Spacecraft and Module Crew Compartments

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2010-01-01

    This slide presentation reviews the design and development of crew compartments for spacecraft and for modules. The Crew Compartment or Crew Station is defined as the spacecraft interior and all other areas the crewman interfaces inside the cabin, or may potentially interface.It uses examples from all of the human rated spacecraft. It includes information about the process, significant drivers for the design, habitability, definitions of models, mockups, prototypes and trainers, including pictures of each stage in the development from Apollo, pictures of the space shuttle trainers, and International Space Station trainers. It further reviews the size and shape of the Space Shuttle orbiter crew compartment, and the Apollo command module and the lunar module. It also has a chart which reviews the International Space Station (ISS) internal volume by stage. The placement and use of windows is also discussed. Interestingly according to the table presented, the number 1 rated piece of equipment for recreation was viewing windows. The design of crew positions and restraints, crew translation aids and hardware restraints is shown with views of the restraints and handholds used from the Apollo program through the ISS.

  4. KSC-2013-2500

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  5. KSC-2013-2497

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  6. KSC-2013-2498

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  7. KSC-2013-2499

    NASA Image and Video Library

    2013-05-29

    CAPE CANAVERAL, Fla. – Ed Hoffman, from left, Bob Sieck and Bob Cabana discuss techniques to handle a transition era during the second session in a weeklong series called "Masters with Masters" at the agency's Kennedy Space Center in Florida. Hoffman, NASA's chief Knowledge officer, Sieck, a former space shuttle launch director, and Cabana, the director of Kennedy, focused on the transition from Apollo to the shuttle and the current transition under way following the shuttle fleet's retirement. Photo credit: NASA/Jim Grossmann

  8. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) look at tiles recovered. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (center), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  9. KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, members of the Stafford-Covey Return to Flight Task Group (SCTG) inspect some of the debris. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (fourth from left), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  10. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  11. Man in Space, Space in the Seventies.

    ERIC Educational Resources Information Center

    Froehlich, Walter

    Included is a summary of the Apollo lunar program to date. Projected future NASA programs planned for the 1970's are discussed under the headings Skylab, Space Shuttle, and Space Station. Possibilities for the 1980's are outlined in the final section. (Author/AL)

  12. Vestibular response to pseudorandom angular velocity input: progress report.

    PubMed

    Lessard, C S; Wong, W C

    1987-09-01

    Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. One of NASA's efforts to resolve the space adaptation syndrome is to model the vestibular response for both basic knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyze the vestibular system when subjected to a pseudorandom angular velocity input.

  13. KSC-2014-3246

    NASA Image and Video Library

    2014-07-21

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Robert Cabana, a former space shuttle astronaut, at front right, finds a moment to talk to Apollo astronaut Jim Lovell during a tour for Apollo astronauts and their families of the Vehicle Assembly Building, the facility in which Apollo's Saturn V rockets were processed at NASA's Kennedy Space Center in Florida. The visit followed a ceremony renaming Kennedy's refurbished Operations and Checkout Building for Apollo 11 astronaut Neil Armstrong, the first person to set foot on the moon. The ceremony was part of NASA's 45th anniversary celebration of the Apollo 11 moon landing. As the world watched, Neil Armstrong and Buzz Aldrin landed in the moon's Sea of Tranquility on July 20, 1969, aboard the lunar module Eagle. Meanwhile, crewmate Michael Collins orbited above in the command module Columbia. For more, visit http://www.nasa.gov/press/2014/july/nasa-honors-historic-first-moon-landing-eyes-first-mars-mission. Photo credit: NASA/Kim Shiflett

  14. Inside KSC! for Jan. 26, 2018

    NASA Image and Video Library

    2018-01-26

    Major components of the rocket that will launch an advanced weather satellite, GOES-S, were delivered to Port Canaveral on Monday, as launch on March 1 approaches. On Thursday, the crews of Apollo 1, Shuttle Challenger, Shuttle Columbia, and others who gave their lives in the pursuit of space exploration were honored on NASA’s Day of Remembrance. Their names are cut into the surface of the Space Mirror Memorial at the Kennedy Space Center Visitor Complex.

  15. Space Shuttle Projects

    NASA Image and Video Library

    2004-04-15

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  16. Space Shuttle Drawing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  17. Space shuttle rendezous, radiation and reentry analysis code

    NASA Technical Reports Server (NTRS)

    Mcglathery, D. M.

    1973-01-01

    A preliminary space shuttle mission design and analysis tool is reported emphasizing versatility, flexibility, and user interaction through the use of a relatively small computer (IBM-7044). The Space Shuttle Rendezvous, Radiation and Reentry Analysis Code is used to perform mission and space radiation environmental analyses for four typical space shuttle missions. Included also is a version of the proposed Apollo/Soyuz rendezvous and docking test mission. Tangential steering circle to circle low-thrust tug orbit raising and the effects of the trapped radiation environment on trajectory shaping due to solar electric power losses are also features of this mission analysis code. The computational results include a parametric study on single impulse versus double impulse deorbiting for relatively low space shuttle orbits as well as some definitive data on the magnetically trapped protons and electrons encountered on a particular mission.

  18. Construction bidding cost of KSC's space shuttle facilities

    NASA Technical Reports Server (NTRS)

    Brown, Joseph Andrew

    1977-01-01

    The bidding cost of the major Space Transportation System facilities constructed under the responsibility of the John F. Kennedy Space Center (KSC) is described and listed. These facilities and Ground Support Equipment (GSE) are necessary for the receiving, assembly, testing, and checkout of the Space Shuttle for launch and landing missions at KSC. The Shuttle launch configuration consists of the Orbiter, the External Tank, and the Solid Rocket Boosters (SRB). The reusable Orbiter and SRB's is the major factor in the program that will result in lowering space travel costs. The new facilities are the Landing Facility; Orbiter Processing Facility; Orbiter Approach and Landing Test Facility (Dryden Test Center, California); Orbiter Mating Devices; Sound Suppression Water System; and Emergency Power System for LC-39. Also, a major factor was to use as much Apollo facilities and hardware as possible to reduce the facilities cost. The alterations to existing Apollo facilities are the VAB modifications; Mobile Launcher Platforms; Launch Complex 39 Pads A and B (which includes a new concept - the Rotary Service Structure), which was featured in ENR, 3 Feb. 1977, 'Hinged Space Truss will Support Shuttle Cargo Room'; Launch Control Center mods; External Tank and SRB Processing and Storage; Fluid Test Complex mods; O&C Spacelab mods; Shuttle mods for Parachute Facility; SRB Recovery and Disassembly Facility at Hangar 'AF'; and an interesting GSE item - the SRB Dewatering Nozzle Plug Sets (Remote Controlled Submarine System) used to inspect and acquire for reuse of SRB's.

  19. KSC-04pd1020

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Jim Lovell acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Lovell piloted Gemini 7, commanded Gemini 12, orbited the Moon on Apollo 8 and commanded the aborted Apollo 13 moon flight. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. Crew Quarters Modifications

    NASA Image and Video Library

    2018-03-30

    Modifications and upgrades are underway inside the Astronaut Crew Quarters in the Neil Armstrong Operations and Checkout Building at NASA's Kennedy Space Center in Florida. The crew quarters are being prepared for the next generation of space explorers. The historic facility housed Apollo and space shuttle astronauts before and after their missions into space.

  1. KSC-04pd1009

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Ed Mitchell is introduced as a previous inductee. Mitchell explored the Moon's hilly Fra Mauro region with Alan B. Shepard during the 1971 Apollo 14 mission. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  2. Shuttle - Mir Program Insignia

    NASA Image and Video Library

    1994-09-20

    The rising sun signifies the dawn of a new era of human Spaceflight, the first phase of the United States/Russian space partnership, Shuttle-Mir. Mir is shown in its proposed final on orbit configuration. The Shuttle is shown in a generic tunnel/Spacehab configuration. The Shuttle/Mir combination, docked to acknowledge the union of the two space programs, orbits over an Earth devoid of any definable features or political borders to emphasize Earth as the home planet for all humanity. The individual stars near the Space Shuttle and the Russian Mir Space Station represent the previous individual accomplishments of Russia's space program and that of the United States. The binary star is a tribute to the previous United States-Russian joint human Spaceflight program, the Apollo-Soyuz Test Project (ASTP). The flags of the two nations are symbolized by flowing ribbons of the national colors interwoven in space to represent the two nations joint exploration of space. NASA SHUTTLE and PKA MNP are shown in the stylized logo fonts of the two agencies that are conducting this program.

  3. Success Factors in Human Space Programs - Why Did Apollo Succeed Better Than Later Programs?

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    The Apollo Program reached the moon, but the Constellation Program (CxP) that planned to return to the moon and go on to Mars was cancelled. Apollo is NASA's greatest achievement but its success is poorly understood. The usual explanation is that President Kennedy announced we were going to the moon, the scientific community and the public strongly supported it, and Congress provided the necessary funding. This is partially incorrect and does not actually explain Apollo's success. The scientific community and the public did not support Apollo. Like Apollo, Constellation was announced by a president and funded by Congress, with elements that continued on even after it was cancelled. Two other factors account for Apollo's success. Initially, the surprise event of Uri Gagarin's first human space flight created political distress and a strong desire for the government to dramatically demonstrate American space capability. Options were considered and Apollo was found to be most effective and technically feasible. Political necessity overrode both the lack of popular and scientific support and the extremely high cost and risk. Other NASA human space programs were either canceled, such as the Space Exploration Initiative (SEI), repeatedly threatened with cancellation, such as International Space Station (ISS), or terminated while still operational, such as the space shuttle and even Apollo itself. Large crash programs such as Apollo are initiated and continued if and only if urgent political necessity produces the necessary political will. They succeed if and only if they are technically feasible within the provided resources. Future human space missions will probably require gradual step-by-step development in a more normal environment.

  4. A study of the role of pyrotechnic systems on the space shuttle program

    NASA Technical Reports Server (NTRS)

    Lake, E. R.; Thompson, S. J.; Drexelius, V. W.

    1973-01-01

    Pyrotechnic systems, high burn rate propellant and explosive-actuated mechanisms, have been used extensively in aerospace vehicles to perform a variety of work functions, including crew escape, staging, deployment and destruction. Pyrotechnic system principles are described in this report along with their applications on typical military fighter aircraft, Mercury, Gemini, Apollo, and a representative unmanned spacecraft. To consider the possible pyrotechnic applications on the space shuttle the mechanical functions on a large commercial aircraft, similar in scale to the shuttle orbiter, were reviewed. Many potential applications exist for pyrotechnic system on the space shuttle, both in conventional short-duration functions and in longer duration and/or repetitive type gas generators.

  5. "Festival of Flight Special": Opening Space for Next Generation Explorers. NASA CONNECT[TM]. [Videotape].

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    The National Aeronautics and Space Administration's (NASA) Space Launch Initiative (SLI) Program will ultimately move from the explorations of the Mercury, Gemini, Apollo, and Space Shuttle missions to a new period of pioneering in which people and businesses are more routinely traveling, working, and living in space. (Author/NB)

  6. NASA Materials Research for Extreme Conditions

    NASA Technical Reports Server (NTRS)

    Sharpe, R. J.; Wright, M. D.

    2009-01-01

    This Technical Memorandum briefly covers various innovations in materials science and development throughout the course of the American Space program. It details each innovation s discovery and development, explains its significance, and describes the applications of this material either in the time period discovered or today. Topics of research include silazane polymers, solvent-resistant elastomeric polymers (polyurethanes and polyisocyanurates), siloxanes, the Space Shuttle thermal protection system, phenolic-impregnated carbon ablator, and carbon nanotubes. Significance of these developments includes the Space Shuttle, Apollo programs, and the Constellation program.

  7. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezous missions presented unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading and contamination concerns. These issues, along with limited forward reaction control system propellant, drove a change from the Gemimi/Apollo coelliptic profile heritage to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions and crew exchange, assembly and replinishment flights to Mir and to the International Space Station drove further profile and piloting technique changes, including new relative navigation sensors and new computer generated piloting cues.

  8. Greeting between STS-79 commander and Mir 22 commander after docking

    NASA Image and Video Library

    1996-09-19

    STS79-E-5090 (19 September 1996) --- Cosmonaut Valeri G. Korzun, Mir-22 commander, greets his American counterpart - astronaut William F. Readdy in the tunnel connecting the Space Shuttle Atlantis to Russia's Mir Space Station, during Flight Day 4. This mission marks the fourth such reunion involving astronauts and cosmonauts during the Shuttle era and the fifth overall, going back to the historic Apollo-Soyuz Test Project (ASTP) in 1975.

  9. KSC-04pd1005

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Wally Schirra is greeted with applause as he is introduced as a previous inductee. One of America's original Mercury Seven astronauts, Schirra is the only one who flew in all three of the nation's pioneering space programs, Mercury, Gemini, and Apollo. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. KSC-2015-1214

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. A wreath-laying ceremony was held at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Behind the memorial, the full-size mock-up of the external fuel tank and solid rocket boosters mark the entrance to the Space Shuttle Atlantis exhibit. Photo credit: NASA/Jim Grossmann

  11. Automation of checkout for the shuttle operations era

    NASA Technical Reports Server (NTRS)

    Anderson, J. A.; Hendrickson, K. O.

    1985-01-01

    The Space Shuttle checkout is different from its Apollo predecessor. The complexity of the hardware, the shortened turnaround time, and the software that performs ground checkout are outlined. Generating new techniques and standards for software development and the management structure to control it are implemented. The utilization of computer systems for vehicle testing is high lighted.

  12. KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-05

    KENNEDY SPACE CENTER, FLA. - The Stafford-Covey Return to Flight Task Group (SCTG) inspects debris in the Columbia Debris Hangar. At right is the model of the left wing that has been used during recovery operations. Chairing the task group are Richard O. Covey, former Space Shuttle commander, and Thomas P. Stafford (third from right, foreground), Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  13. KSC-04PD-1011

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Charles Duke receives a warm welcome as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russias Mir space station; the late Francis R. 'Dick' Scobee, commander of the ill- fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Duke explored the rugged highlands of the Moons Descartes region with John Young during the Apollo 16 mission in April 1972. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo- Soyuz, and Space Shuttle programs.

  14. KSC-04pd1011

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Charles Duke receives a warm welcome as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Duke explored the rugged highlands of the Moon’s Descartes region with John Young during the Apollo 16 mission in April 1972. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. Aeronautics and Space Highlights [1979 Highlights

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The videotape includes footage of the following: Voyagers to Jupiter, Pioneer to Saturn, High Energy Astronomy Observatory, space telescope, space shuttle, astronauts Young and Crippen, 10th anniversary of Apollo 11, Skylab reentry, Landsat, satellite freeze warning, Fire Fighting Module, SAGE, wind generators, Solar Energy Project, electric car research, XV-15, HiMAT, and crash worthiness tests.

  16. KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-06

    KENNEDY SPACE CENTER, FLA. - Martin Wilson, with United Space Alliance, describes an orbiter’s Thermal Protection System for members of the Stafford-Covey Return to Flight Task Group (SCTG). Handling some of the blanket insulation are Dr. Kathryn Clark and Joe Engle. Third from left is Richard Covey, former Space Shuttle commander, who is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  17. Rendezvous and Proximity Operations of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2005-01-01

    Space Shuttle rendezvous missions present unique challenges that were not fully recognized when the Shuttle was designed. Rendezvous targets could be passive (i.e., no lights or transponders), and not designed to facilitate Shuttle rendezvous, proximity operations, and retrieval. Shuttle reaction control system jet plume impingement on target spacecraft presented induced dynamics, structural loading, and contamination concerns. These issues, along with limited reaction control system propellant in the Shuttle nose, drove a change from the legacy Gemini/Apollo coelliptic profile to a stable orbit profile, and the development of new proximity operations techniques. Multiple scientific and on-orbit servicing missions, and crew exchange, assembly and replenishment flights to Mir and to the International Space Station drove further profile and piloting technique changes. These changes included new proximity operations, relative navigation sensors, and new computer generated piloting cues. However, the Shuttle's baseline rendezvous navigation system has not required modification to place the Shuttle at the proximity operations initiation point for all rendezvous missions flown.

  18. Around Marshall

    NASA Image and Video Library

    1994-07-20

    On the 25th Anniversary of the Apollo-11 space launch, Marshall celebrated with a test firing of the Space Shuttle Main Engine at the Technology Test Bed (SSME-TTB). This drew a large crowd who stood in the fields around the test site and watched as plumes of white smoke verified ignition.

  19. KSC-2012-1679

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians begin the work to secure a new engine and generator inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-1670

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, new engines and generators have arrived for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  1. KSC-2012-1680

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians begin the work to secure a new engine and generator inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-1343

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine inside crawler-transporter 2 CT-2) for removal. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-1671

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a new engine and generator have arrived for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  4. KSC-2012-1672

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  5. KENNEDY SPACE CENTER, FLA. - The Return To Flight Task Group (RTFTG) holds the first public meeting at the Debus Center, KSC Visitor Complex. Members and staff at the table, from left, are retired Navy Rear Adm. Walter H. Cantrell, David Raspet, retired Air Force Col. Gary S. Geyer, Dr. Kathryn Clark, Dr. Decatur B. Rogers, Dr. Dan L. Crippen, Dr. Walter Broadnax and astronaut Carlos Noriega. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - The Return To Flight Task Group (RTFTG) holds the first public meeting at the Debus Center, KSC Visitor Complex. Members and staff at the table, from left, are retired Navy Rear Adm. Walter H. Cantrell, David Raspet, retired Air Force Col. Gary S. Geyer, Dr. Kathryn Clark, Dr. Decatur B. Rogers, Dr. Dan L. Crippen, Dr. Walter Broadnax and astronaut Carlos Noriega. The RTFTG was at KSC to conduct organizational activities, tour Space Shuttle facilities and receive briefings on Shuttle-related topics. The task group was chartered by NASA Administrator Sean O’Keefe to perform an independent assessment of NASA’s implementation of the final recommendations of the Columbia Accident Investigation Board. The group is co-chaired by former Shuttle commander Richard O. Covey and retired Air Force Lt. Gen. Thomas P. Stafford, who was an Apollo commander.

  6. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led the development of unique flame retardant fibers for the specific requirements of different space programs. Three of these fibers have greatly contributed to the safety of all the space missions since the Apollo program. Beta alumina-silica microfiber developed for the outer layer of the space suit after the Apollo 1 fire is no longer used and has been replaced by other glass fibers. Expanded polytetrafluoroethylene (e-PTFE) fiber used in the current spacesuit is mostly known today through its trade mark Gore-Tex®. Polybenzimidazole (PBI) filament fiber used in many applications from the Apollo to the Space Shuttle program is no longer available. More recently, TOR"TM" copolymer of polyimide fiber developed during the space shuttle program to resist the atomic oxygen present in Low Earth Orbit has been barely used. The high cost and narrow range of aeronautical and aerospace applications have, however, led to a limited production of these fibers. Only fibers that found niche markets survived. Yet, deep space exploration will require more of these inherently flame retardant fibers than what is available today. There is a need for new flame retardant fabrics inside the space vehicles as well as a need for logistics reduction for long term space missions. Materials like modacrylic and polyimide are good candidates for future flame retardant aerospace fabrics. New fabrics must be developed for astronauts' clothing, as well as crew quarters and habitat. Therefore, both staple and filament fibers of various linear densities are needed for a three years mission to Mars.

  7. Case Studies in NASA High-Technology Risk Assessment and Management

    NASA Technical Reports Server (NTRS)

    Lambright, W. Henry

    1998-01-01

    This study discusses the approach of NASA managers in the assessment of risk in three critical decisions: the Apollo 8 decision to orbit the Moon in 1968, the servicing of the Hubble Space Telescope in 1993, and the privitization of the Space Shuttle in the latter 1990s.

  8. John Young-NASA’s Longest Serving Astronaut

    NASA Image and Video Library

    2018-01-06

    This music video takes a look back at the NASA career of astronaut John Young, who died Friday night following complications from pneumonia at the age of 87. Young is the only agency astronaut to go into space as part of the Gemini, Apollo and space shuttle programs, and the first to fly into space six times.

  9. KSC-2009-5139

    NASA Image and Video Library

    2009-09-15

    EDWARDS AIR FORCE BASE, Calif. – Disney’s space ranger Buzz Lightyear returned from space on Sept. 11 aboard space shuttle Discovery’s STS-128 mission after 15 months aboard the International Space Station. His time on the orbiting laboratory will be celebrated in a ticker-tape parade together with his space station crewmates and former Apollo 11 moonwalker Buzz Aldrin on Oct. 2 at Walt Disney World in Florida.

  10. KSC-04pd1010

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Al Worden acknowledges the applause as he is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Worden served as Command Module pilot on the 1971 Apollo 15 moon mission, during which he orbited the Moon and took a space walk 200,000 miles from Earth. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. KSC-04pd1006

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Before the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame, former astronaut Gordon Cooper is introduced as a previous inductee. One of America’s original Mercury Seven astronauts, Cooper flew the last and longest Project Mercury orbital mission and spent eight days in space aboard Gemini 5. The ceremony was held at the Apollo/Saturn V Center at KSC. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. KSC-04pd1002

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Inside the Apollo/Saturn V Center at the Kennedy Space Center Visitor Complex, the Bethune-Cookman Choir performs prior to the induction ceremony of five space program heroes into the U.S. Astronaut Hall of Fame. New inductees are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. Status of shuttle fuel cell technology program.

    NASA Technical Reports Server (NTRS)

    Rice, W. E.; Bell, D., III

    1972-01-01

    The hydrogen-oxygen fuel cell has been proved as an efficient and reliable electrical power supply for NASA manned-space-flight vehicles. It has thus ensured a role in the Space Shuttle Program as the primary electrical power supply for the Orbiter vehicle. The advanced fuel cell technology programs conducted under the management of the NASA Manned Spacecraft Center over the past two years have resulted in a high level of technical readiness in fuel cell power generation to support shuttle mission requirements. These programs have taken advantage of technological developments that have occurred since the designs were completed for the Gemini and Apollo fuel cells.

  14. KSC-04pd1004

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. - Former astronaut Scott Carpenter is introduced as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. Aerial Video Imaging

    NASA Technical Reports Server (NTRS)

    1991-01-01

    When Michael Henry wanted to start an aerial video service, he turned to Johnson Space Center for assistance. Two NASA engineers - one had designed and developed TV systems in Apollo, Skylab, Apollo- Soyuz and Space Shuttle programs - designed a wing-mounted fiberglass camera pod. Camera head and angles are adjustable, and the pod is shaped to reduce vibration. The controls are located so a solo pilot can operate the system. A microprocessor displays latitude, longitude, and bearing, and a GPS receiver provides position data for possible legal references. The service has been successfully utilized by railroads, oil companies, real estate companies, etc.

  16. KSC-2009-2301

    NASA Image and Video Library

    2009-03-25

    CAPE CANAVERAL, Fla. – NASA's Kennedy Space Center management host a ceremony near Launch Pad 39B to mark the handover of Mobile Launcher Platform-1 (behind them) from NASA's Space Shuttle Program to the Constellation Program for the Ares I-X flight test targeted for this summer. Seated are (left) Shuttle Launch Director Mike Leinbach and (right) Pepper E. Phillips, director of the Constellation Project Office, and Brett Raulerson, manager of MLP Operations with United Space Alliance. At the podium is Rita Willcoxon, director of Launch Vehicle Processing at Kennedy. Constructed in 1964, the mobile launchers used in Apollo/Saturn operations were modified for use in shuttle operations. With cranes, umbilical towers and swing arms removed, the mobile launchers were renamed Mobile Launcher Platforms, or MLPs. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-1676

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-1349

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-1674

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lifts a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  20. KSC-2012-1350

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  1. KSC-2012-1675

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane is used to lift a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  2. KSC-2012-1678

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lowers a new engine and generator for installation inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  3. KSC-2012-1337

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-1351

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-1336

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-1346

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  7. KSC-2012-1340

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane operator lifts part of an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  8. KSC-2012-1673

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane begins to lift a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  9. KSC-2012-1338

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane begins to lift part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  10. KSC-2012-1352

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lift an Apollo era diesel engine away from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-1344

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. ––Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane begins to lift an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-1677

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-1334

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  14. KSC-2012-1348

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a technician monitors the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-1345

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians prepare an Apollo era diesel engine to be lifted by crane from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-1339

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane lifts part of an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-1347

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a crane lifts an Apollo era diesel engine from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  18. Aerial shows Stennis test stands

    NASA Image and Video Library

    2004-04-16

    An aerial photo shows the B-1/B-2 Test Stand (foreground), A-2 Test Stand (middle) and A-1 Test Stand (back). The historic stands have been used to test engines used on every manned Apollo and space shuttle mission.

  19. KSC-04pd0998

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Apollo/Saturn V Center at KSC, the newest inductees to the Astronaut Hall of Fame get ready for a press conference following the induction ceremony. Seated from left are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator; Kathryn D. Sullivan, the first American woman to walk in space; June Scobee, representing her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russia’s Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. Crew Exploration Vehicle Ascent Abort Trajectory Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gefert, Leon P.

    2007-01-01

    The Orion Crew Exploration Vehicle is the first crewed capsule design to be developed by NASA since Project Apollo. Unlike Apollo, however, the CEV is being designed for service in both Lunar and International Space Station missions. Ascent aborts pose some issues that were not present for Apollo, due to its launch azimuth, nor Space Shuttle, due to its cross range capability. The requirement that a North Atlantic splashdown following an abort be avoidable, in conjunction with the requirement for overlapping abort modes to maximize crew survivability, drives the thrust level of the service module main engine. This paper summarizes 3DOF analysis conducted by NASA to aid in the determination of the appropriate propulsion system for the service module, and the appropriate propellant loading for ISS missions such that crew survivability is maximized.

  1. KSC-99pp0882

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- Singer Judy Collins (left) shares a laugh with First Lady Hillary Rodham Clinton in the Apollo/Saturn V Facility. Both women are at KSC to view the launch of Space Shuttle mission STS-93 scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Judy Collins has honored the commander with a song, "Beyond the Sky," which was commissioned by NASA through the NASA Art Program

  2. The Impact of Apollo-Era Microbiology on Human Space Flight

    NASA Technical Reports Server (NTRS)

    Elliott, T. F; Castro, V. A.; Bruce, R. J.; Pierson, D. L.

    2014-01-01

    The microbiota of crewmembers and the spacecraft environment contributes significant risk to crew health during space flight missions. NASA reduces microbial risk with various mitigation methods that originated during the Apollo Program and continued to evolve through subsequent programs: Skylab, Shuttle, and International Space Station (ISS). A quarantine of the crew and lunar surface samples, within the Lunar Receiving Laboratory following return from the Moon, was used to prevent contamination with unknown extraterrestrial organisms. The quarantine durations for the crew and lunar samples were 21 days and 50 days, respectively. A series of infections among Apollo crewmembers resulted in a quarantine before launch to limit exposure to infectious organisms. This Health Stabilization Program isolated the crew for 21 days before flight and was effective in reducing crew illness. After the program developed water recovery hardware for Apollo spacecraft, the 1967 National Academy of Science Space Science Board recommended the monitoring of potable water. NASA implemented acceptability limits of 10 colony forming units (CFU) per mL and the absence of viable E. coli, anaerobes, yeasts, and molds in three separate 150 mL aliquots. Microbiological investigations of the crew and spacecraft environment were conducted during the Apollo program, including the Apollo-Soyuz Test Project and Skylab. Subsequent space programs implemented microbial screening of the crew for pathogens and acceptability limits on spacecraft surfaces and air. Microbiology risk mitigation methods have evolved since the Apollo program. NASA cancelled the quarantine of the crew after return from the lunar surface, reduced the duration of the Health Stabilization Program; and implemented acceptability limits for spacecraft surfaces and air. While microbial risks were not a main focus of the early Mercury and Gemini programs, the extended duration of Apollo flights resulted in the increased scrutiny of impact of the space flight environment on crew health. The lessons learned during that era of space flight continue to impact microbiology risk mitigation in space programs today.

  3. KSC-2013-3235

    NASA Image and Video Library

    2013-08-09

    CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 4 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room was the most advanced of the control rooms used for shuttle missions and was the primary firing room for the shuttle's final series of launches before retirement. It is furnished in a more contemporary style with wood cabinets and other features, although it retains many of the computer systems the shuttle counted on to operate safely. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang

  4. Mir 18 Crew Insignia

    NASA Image and Video Library

    1994-07-07

    S94-36965 (20 Sept 1994) --- The rising sun signifies the dawn of a new era of human Spaceflight, the first phase of the U.S./Russian space partnership, Shuttle-Mir. Mir is shown in its proposed final on orbit configuration. The Shuttle is shown in a generic tunnel/Spacehab configuration. The Shuttle-Mir combination, docked to acknowledge the union of the two space programs, orbits over an Earth devoid of any definable features or political borders to emphasize Earth as the home planet for all humanity. The individual stars near the Shuttle and the Mir station represent the previous individual accomplishments of Russia's space program and that of the U.S. The binary star is a tribute to the previous U.S.-Russian joint human Spaceflight program, the Apollo-Soyuz Test Project. The flags of the two nations are symbolized by flowing ribbons of the national colors interwoven in space to represent the two nations joint exploration of space. NASA SHUTTLE and PKA MNP are shown in the stylized logo fonts of the two agencies that are conducting this program.

  5. Compiling the space shuttle wind tunnel data base: An exercise in technical and managerial innovators

    NASA Technical Reports Server (NTRS)

    Kemp, N. D.

    1983-01-01

    Engineers evaluating Space Shuttle flight data and performance results are using a massive data base of wind tunnel test data. A wind tunnel test data base of the magnitude attained is a major accomplishment. The Apollo program spawned an automated wind tunnel data analysis system called SADSAC developed by the Chrysler Space Division. An improved version of this system renamed DATAMAN was used by Chrysler to document analyzed wind tunnel data and data bank the test data in standardized formats. These analysis documents, associated computer graphics and standard formatted data were disseminated nationwide to the Shuttle technical community. These outputs became the basis for substantiating and certifying the flight worthiness of the Space Shuttle and for improving future designs. As an aid to future programs this paper documents the lessons learned in compiling the massive wind tunnel test data base for developing the Space Shuttle. In particular, innovative managerial and technical concepts evolved in the course of conceiving and developing this successful DATAMAN system and the methods and organization for applying the system are presented.

  6. KSC-2015-1207

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. A wreath-laying ceremony was held at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Photo credit: NASA/Jim Grossmann

  7. KSC-2015-1208

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. Kennedy workers and guests left roses at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Photo credit: NASA/Jim Grossmann

  8. KSC-2015-1212

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. A wreath-laying ceremony was held at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Photo credit: NASA/Jim Grossmann

  9. KSC-2015-1209

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. A wreath-laying ceremony was held at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Photo credit: NASA/Jim Grossmann

  10. KSC-2015-1213

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. A wreath-laying ceremony was held at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Photo credit: NASA/Jim Grossmann

  11. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, Jim

    2010-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  12. KSC-04pd1017

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Former astronaut Ed Gibson acknowledges the warm response to his introduction as a previous inductee into the U.S. Astronaut Hall of Fame. He and other Hall of Fame members were present for the induction of five new space program heroes into the U.S. Astronaut Hall of Fame: Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. Gibson orbited the Earth for 84 days during the final manned flight of the Skylab Space Station in 1973 and 1974. The induction ceremony was held at the Apollo/Saturn V Center at KSC. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. Rendezvous radar modification and evaluation. [for space shuttles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of this effort was to continue the implementation and evaluation of the changes necessary to add the non-cooperative mode capability with frequency diversity and a doppler filter bank to the Apollo Rendezvous Radar while retaining the cooperative mode capability.

  14. KSC-2014-3270

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana speaks at a wreath-laying ceremony honoring Henry W. "Hank" Hartsfield at the U.S. Astronaut Hall of Fame. Hartsfield commanded space shuttle Discovery's maiden mission and was a veteran of three shuttle flights. He died July 17 after an illness. He was 80 years old. Hartsfield joined NASA in 1969 and was part of the astronaut support crew for Apollo 16 and the Skylab 2, 3 and 4 missions. He logged 483 hours in space during missions STS-4, on which he served as pilot, as well as STS-41D and STS-61A, both of which he commanded. Photo credit: NASA/Dimitri Gerondidakis

  15. The Evolution of Failure Analysis at NASA's Kennedy Space Center and the Lessons Learned

    NASA Technical Reports Server (NTRS)

    Long, Victoria S.; Wright, M. Clara; McDanels, Steve

    2015-01-01

    The United States has had four manned launch programs and three station programs since the era of human space flight began in 1961. The launch programs, Mercury, Gemini, Apollo, and Shuttle, and the station programs, Skylab, Shuttle-Mir, and the International Space Station (ISS), have all been enormously successful, not only in advancing the exploration of space, but also in advancing related technologies. As each subsequent program built upon the successes of previous programs, they similarly learned from their predecessors' failures. While some failures were spectacular and captivated the attention of the world, most only held the attention of the dedicated men and women working to make the missions succeed.

  16. Operational Concept for the NASA Constellation Program's Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Best, Joel; Chavers, Greg; Richardson, Lea; Cruzen, Craig

    2008-01-01

    Ares I design brings together innovation and new technologies with established infrastructure and proven heritage hardware to achieve safe, reliable, and affordable human access to space. NASA has 50 years of experience from Apollo and Space Shuttle. The Marshall Space Flight Center's Mission Operations Laboratory is leading an operability benchmarking effort to compile operations and supportability lessons learned from large launch vehicle systems, both domestically and internationally. Ares V will be maturing as the Shuttle is retired and the Ares I design enters the production phase. More details on the Ares I and Ares V will be presented at SpaceOps 2010 in Huntsville, Alabama, U.S.A., April 2010.

  17. KSC-2012-1356

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, an Apollo era diesel engine is secured onto the flatbed of a truck after it was removed from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-1341

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. ––– Outside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lower part of an Apollo era diesel engine from crawler-transporter 2 CT-2) onto the flatbed of a truck. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-1342

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Outside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a crane is used to lower part of an Apollo era diesel engine from crawler-transporter 2 CT-2) onto the flatbed of a truck. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-1335

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a worker helps guide a crane as it is lowered toward crawler-transporter 2 CT-2) so that the Apollo era diesel engine can be removed. New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  1. KSC-2012-1355

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians help secure an Apollo era diesel engine onto the flatbed of a truck after it was removed from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  2. Astronaut John Young Remembrance, Wreath Laying Ceremony

    NASA Image and Video Library

    2018-01-11

    NASA is remembering the accomplishments and legacy of astronaut John Young, who died Jan. 5 at the age of 87. The U.S. Navy fighter pilot joined the space program in 1962 and went on to fly six missions spanning three generations of NASA spacecraft. NASA, the Astronaut Memorial Foundation and the Kennedy Space Center Visitor Complex hosted a wreath laying ceremony at the Heroes and Legends exhibit at Kennedy’s Visitor Complex Jan. 11 in honor of Young. Young flew aboard Gemini 3 in 1965 and commanded Gemini 10 the following year. In May 1969, he served as command module pilot on Apollo 10 and returned to the Moon as commander of Apollo 16. In April 1981, he commanded the ultimate test flight: STS-1, the first flight of the space shuttle. He was joined aboard shuttle Columbia by pilot Bob Crippen. Young flew his final mission, STS-9, in 1983, but he continued to work in NASA’s astronaut office until his retirement in 2004. Kennedy’s Firing Room 1 was named the Young-Crippen Firing Room in April 2006, the 25th anniversary of Columbia’s maiden voyage.

  3. KSC-04PD-1000

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Kathryn D. Sullivan, the first American woman to walk in space, responds to a reporters question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with her are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator; Sullivan; June Scobee, representing her late husband Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russias Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. KSC-04PD-0999

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator, responds to a reporters question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with him on the platform are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Gregory; Kathryn D. Sullivan, the first American woman to walk in space; June Scobee, representing her late husband Francis R. 'Dick' Scobee, commander of the ill- fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russias Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  5. KSC-04pd0999

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator, responds to a reporter’s question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with him on the platform are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Gregory; Kathryn D. Sullivan, the first American woman to walk in space; June Scobee, representing her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russia’s Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KSC-04pd1000

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- Kathryn D. Sullivan, the first American woman to walk in space, responds to a reporter’s question at a press conference in the Apollo/Saturn V Center following the induction ceremony of five space program heroes into the Astronaut Hall of Fame. Seated (left to right) with her are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory (second from left), the first African-American to command a space mission and the current NASA deputy administrator; Sullivan; June Scobee, representing her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; and Norman E. Thagard, the first American to occupy Russia’s Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KSC-2013-3234

    NASA Image and Video Library

    2013-08-09

    CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 3 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room is furnished in the classic style with the same metal computer cabinets and some of the same monitors in place when the first shuttle mission launched April 12, 1981. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang

  8. Thermal protection systems manned spacecraft flight experience

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    1992-01-01

    Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.

  9. Potable water bactericide agent development

    NASA Technical Reports Server (NTRS)

    Hurley, T. L.; Bambenek, R. A.

    1972-01-01

    The results are summarized of the work performed for the development and evaluation of a bactericide agent/system concept capable of being used in the space shuttle potable water system. The concept selected for evaluation doses fuel cell water with silver ions before the water is stored and used, by passing this water through columns packed with silver chloride and silver bromide particles, respectively. Four simulated space shuttle potable water system tests, each of seven days duration, were performed to demonstrate that this concept is capable of delivering sterile water even though 3 + or - 1 x 10 to the 9th power Type IIIa or Pseudomonas aeruginosa bacteria, two types which have been found in the Apollo potable water system, are purposely injected into the system each day. This result, coupled with the fact that silver ions do not have to be periodically added to the stored water, indicates that this concept is superior to the chlorine and iodine techniques used on Apollo.

  10. KENNEDY SPACE CENTER, FLA. - On a tour of the Tile Shop, members of the Stafford-Covey Return to Flight Task Group (SCTG) learn about PU-tiles, part of an orbiter’s Thermal Protection System. At left is Martin Wilson, with United Space Alliance. Others (left to right) around the table are James Adamson, Dr. Kathryn Clark, William Wegner, Richard Covey and Joe Engle. Covey, former Space Shuttle commander, is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

    NASA Image and Video Library

    2003-08-06

    KENNEDY SPACE CENTER, FLA. - On a tour of the Tile Shop, members of the Stafford-Covey Return to Flight Task Group (SCTG) learn about PU-tiles, part of an orbiter’s Thermal Protection System. At left is Martin Wilson, with United Space Alliance. Others (left to right) around the table are James Adamson, Dr. Kathryn Clark, William Wegner, Richard Covey and Joe Engle. Covey, former Space Shuttle commander, is co-chair of the SCTG, along with Thomas P. Stafford, Apollo commander. Chartered by NASA Administrator Sean O’Keefe, the task group will perform an independent assessment of NASA’s implementation of the final recommendations by the Columbia Accident Investigation Board.

  11. 50th Anniversary First American to Orbit Earth

    NASA Image and Video Library

    2012-02-20

    The Ohio State University President E. Gordon Gee, left, Apollo 11 Astronaut Neil Armstrong, 2nd from left, Former space shuttle astronaut and former Under Secretary of the Air Force Dr. Ron Sega, and Captain Mark Kelly, commander of the space shuttle Endeavour’s final mission and husband of retired U.S. Representative Gabrielle Giffords, right, talk prior to a reception at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  12. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  13. KSC-2015-1211

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. Thad Altman, president and chief executive officer of The Astronauts Memorial Foundation, attaches a rose to the fence surrounding the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex.

  14. A Tribute to National Aeronautics and Space Administration Minority Astronauts: Past and Present

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has been selecting astronauts since 1959. The first group was called the "Mercury Seven." These seven men were chosen because of their performance as military officers and test pilots, their character, their intelligence, and their guts. Six of these seven flew in the Mercury capsule. Several additional groups were chosen between 1959 and 1978. It was an exciting period in the American space program. Many of these astronauts participated in the Gemini and Apollo programs, traveled and walked on the Moon, docked with the Russians during the Apollo-Soyuz Test Project, and occupied America's first space station, the Skylab. With the onset of the Space Shuttle, a new era began. The astronauts selected in 19 78 broke the traditional mold. For the first time, minorities and women became part of America's astronaut corps. Since then, eight additional groups have been selected, with an increasing mix of African American, Hispanic, Latino, Asian/Pacific Islander, and Native American men and women. These astronauts will continue the American space program into the new millennium by continuing flights on the Space Shuttle and participating in the construction and occupancy of the International Space Station. These astronauts, and those who will be chosen in the future, will lead America and its partners to future voyages beyond the influence of Earth's gravity.

  15. SpaceX Launches Tenth Cargo Mission to the International Space Station

    NASA Image and Video Library

    2017-02-19

    On Feb. 19, SpaceX launched almost 5,500 pounds of scientific research and other supplies on a Dragon spacecraft to the International Space Station. The Dragon launched on top of the company’s Falcon 9 rocket from historic Launch Complex 39A at NASA’s Kennedy Space Center, where Apollo and Shuttle missions flew. This was the first commercial launch from Kennedy, and highlights the center’s transition to providing support for both government and commercial aerospace activities.

  16. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Kennedy Space Center Director Bob Cabana, a former space shuttle astronaut and member of the Astronaut Hall of Fame, speaks to guests during the opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  17. 2014-1288

    NASA Image and Video Library

    2014-01-31

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Employees and guests placed flowers at the Space Mirror Memorial at the spaceport's Visitor Complex during NASA's Day of Remembrance. A brief ceremony honored the astronauts of Apollo 1, who were lost in 1967, the shuttle Challenger crew, who perished in 1986, the space shuttle Columbia astronauts who were lost in 2003, as well as other astronauts who gave their lives while furthering the cause of exploration and discovery. Dedicated in 1991, the names of fallen astronauts are emblazoned the monument's 4.5-foot-high-by-50-foot-wide polished black granite surface which reflects the sky and has been designated by Congress as a National Memorial. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-04pd2138

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - A closeup of some of the new crawler shoes that arrived from Minnesota. The new shoes were manufactured by ME Global in Duluth. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  19. KSC-2014-3271

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. -- Former NASA astronaut Jon McBride, left, and Kennedy Space Center Director Bob Cabana place a wreath honoring Henry W. "Hank" Hartsfield at the U.S. Astronaut Hall of Fame. Hartsfield commanded space shuttle Discovery's maiden mission and was a veteran of three shuttle flights. He died July 17 after an illness. He was 80 years old. Hartsfield joined NASA in 1969 and was part of the astronaut support crew for Apollo 16 and the Skylab 2, 3 and 4 missions. He logged 483 hours in space during missions STS-4, on which he served as pilot, as well as STS-41D and STS-61A, both of which he commanded. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2014-3272

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. -- Former NASA astronaut Jon McBride, left, and Kennedy Space Center Director Bob Cabana pause for reflection after placing a wreath honoring Henry W. "Hank" Hartsfield at the U.S. Astronaut Hall of Fame. Hartsfield commanded space shuttle Discovery's maiden mission and was a veteran of three shuttle flights. He died July 17 after an illness. He was 80 years old. Hartsfield joined NASA in 1969 and was part of the astronaut support crew for Apollo 16 and the Skylab 2, 3 and 4 missions. He logged 483 hours in space during missions STS-4, on which he served as pilot, as well as STS-41D and STS-61A, both of which he commanded. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-2012-1354

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians assist as a crane is used to lower an Apollo era diesel engine onto the flatbed of a truck after it was removed from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  2. KSC-2012-1353

    NASA Image and Video Library

    2012-02-15

    CAPE CANAVERAL, Fla. –– Just outside of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians assist as a crane is used to lower an Apollo era diesel engine onto the flatbed of a truck after it was removed from crawler-transporter 2 CT-2). New engines will be installed later this month. Work is in progress in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Kim Shiflett

  3. Magnetic Separator Enhances Treatment Possibilities

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Since the earliest missions in space, NASA specialists have performed experiments in low gravity. Protein crystal growth, cell and tissue cultures, and separation technologies such as electrophoresis and magnetophoresis have been studied on Apollo 14, Apollo 16, STS-107, and many other missions. Electrophoresis and magnetophoresis, respectively, are processes that separate substances based on the electrical charge and magnetic field of a molecule or particle. Electrophoresis has been studied on over a dozen space shuttle flights, leading to developments in electrokinetics, which analyzes the effects of electric fields on mass transport (atoms, molecules, and particles) in fluids. Further studies in microgravity will continue to improve these techniques, which researchers use to extract cells for various medical treatments and research.

  4. Pre Capture view of Intelsat VI Over Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this pre-capture view of the Intelsat VI communications satellite over Kennedy Space Center, Florida (28.0N, 80.0W), the disabled satellite can be seen in a decaying orbit over the KSC launch complex. On the ground, both the older Mercury and Gemini series launch complexes can be seen south of the cape and the Apollo, Skylab and Space Shuttle series launch complexes are north of the cape.

  5. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Kennedy Space Center Director Bob Cabana speaks at the dedication of the newest display at the entrance to the center's visitor complex. The historic countdown clock was originally set up at the space center's Press Site and was used from the launch of Apollo 12 on Nov. 14, 1969 to the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  6. Preparation Methods: past and Potential Methods of Food Preparation for Space

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1985-01-01

    The logical progression of development of space food systems during the Mercury, Gemini, Apollo, Skylab and Shuttle programs is outlined. The preparation methods which include no preparation to heating, cooling and freezing are reviewed. The introduction of some new and exciting technological advances is proposed, which should result in a system providing crew members with appetizing, safe, nutritious and convenient food.

  7. KSC-02pd0194

    NASA Image and Video Library

    2002-02-24

    KENNEDY SPACE CENTER, FLA. - John Glenn Jr. speaks to the audience at KSC's Apollo/Saturn V Center during the dinner celebration of the 40th anniversary of American spaceflight. Glenn was the first American to orbit the Earth, aboard the Friendship 7 spacecraft. That journey lasted nearly five hours. In 1998, 36 years later, Glenn flew on Space Shuttle Discovery on mission STS-95, orbiting the Earth for 218 hours

  8. Research pilot and former astronaut Gordon Fullerton is congratulated by retired astronaut Fred Haise upon Fullerton's induction into the Astronaut Hall of Fame

    NASA Image and Video Library

    2005-04-30

    Former astronaut Gordon Fullerton (left), currently chief research pilot at NASA's Dryden Flight Research Center at Edwards Air Force Base, is congratulated by former astronaut Fred Haise (right) upon Fullerton's induction into the Astronaut Hall of Fame at the Kennedy Space Center (KSC) in Florida on April 30, 2005. Fullerton and Haise were one of two flight crews who flew the Approach and Landing Tests of the prototype Space Shuttle orbiter Enterprise at Dryden in 1977. Fullerton, who had served on the support crews for four Apollo moon landing missions in the early 1970s, went on to fly two Shuttle missions, STS-3 in 1982 and STS-51F in 1985. STS-3 became the only Shuttle mission to date to land at White Sands, N.M., and STS-51F was completed successfully despite the failure of one of the Shuttle's main engines during ascent to orbit. Haise, a member of the crew on the ill-fated Apollo 13 mission, was also a research pilot at NASA Dryden during his pre-astronaut career. Former astronauts Joseph Allen and Bruce McCandless were also inducted during the 2005 ceremonies at the KSC Visitor Center. In addition to honoring former members of NASA's astronaut corps who have made significant contributions to the advancement of space flight, the annual induction ceremonies serve as a fund-raiser for the Astronaut Scholarship Foundation. The foundation funded 17 $10,000 scholarships to college students studying science and engineering in 2004.

  9. The Apollo Lightcraft Project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary launch vehicle technology that can reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The RPI design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This second year focused on systems integration and analysis of the 'Apollo Lightcraft'. This beam-powered, single-stage-to-orbit vehicle is envisioned as the globe-trotting family shuttlecraft of the 21st century. Detailed investigations of the Apollo Lightcraft Project during the second year of study helped evolve the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) reentry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis.

  10. KSC-2012-1120

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- A memorial to the crew of space shuttle Columbia’s STS-107 mission is forever preserved at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. Kennedy Space Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi placed a wreath at the Space Mirror Memorial during Kennedy’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  11. KSC-04pd0997

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Kathryn D. Sullivan, the first American woman to walk in space, is one of five space program heroes inducted into the U.S. Astronaut Hall of Fame. Other inductees were Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Richard O. Covey, commander of the Hubble Space Telescope repair mission; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. KSC-04pd0996

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Richard O. Covey, commander of the Hubble Space Telescope repair mission, is one of five space program heroes inducted into the U.S. Astronaut Hall of Fame. Other inductees were Norman E. Thagard, the first American to occupy Russia’s Mir space station; the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. Vice President Pence Visits NASA's Kennedy Space Center

    NASA Image and Video Library

    2017-07-06

    Vice President Mike Pence got a first-hand look at the public-private partnerships at America’s multi-user spaceport on Thursday, July 6, during a visit to NASA’s Kennedy Space Center in Florida. Speaking in the center’s iconic Vehicle Assembly Building, the Vice President thanked employees for their commitment to America’s continued leadership in the space frontier, before taking a tour showcasing both NASA and commercial work that will soon lead to U.S.-based astronaut launches and eventual missions into deep space. The Vice President started his visit at Shuttle Landing Facility, the former space shuttle landing strip now leased and operated by Space Florida. He also visited the Neil Armstrong Operations and Checkout Building, where the Orion spacecraft is being prepped for its first integrated flight with the Space Launch System (SLS) in 2019. A driving tour showcased the mobile launch platform being readied for SLS flights as well as two commercial space facilities: Launch Complex 39A, the historic Apollo and shuttle pad now leased by SpaceX and used for commercial launches, and Boeing’s facility, where engineers are prepping the company’s Starliner capsule for crew flights to the space station in the same facility once used to do the same thing for space shuttles.

  14. Mission Operations Directorate - Success Legacy of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Azbell, James A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA s other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. MOD s focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  15. KSC-04pd0982

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Dr. Kathryn D. Sullivan, the first American woman to walk in space, is inducted into the U.S. Astronaut Hall of Fame. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  16. KSC-04pd0971

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Dr. Norman E. Thagard is inducted into the U.S. Astronaut Hall of Fame. Thagard was the first American to occupy Russia's Mir space station. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. KSC-04pd0991

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut Richard O. Covey, commander of the Hubble Space Telescope repair mission, is inducted into the U.S. Astronaut Hall of Fame. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  18. KSC-04pd0976

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Dr. Kathryn D. Sullivan, the first American woman to walk in space, is inducted into the U.S. Astronaut Hall of Fame. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  19. KSC-04pd0987

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, NASA Deputy Administrator Frederick D. Gregory is inducted into the U.S. Astronaut Hall of Fame. Gregory was the first African-American to command a space mission. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. KSC-04pd0983

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, NASA Deputy Administrator Frederick D. Gregory is inducted into the U.S. Astronaut Hall of Fame. Gregory was the first African-American to command a space mission. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  1. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Former space shuttle astronaut Dan Brandenstein, chairman of the Astronaut Scholarship Foundation board of directors, speaks to guests during the opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  2. KSC-2015-1215

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. Kennedy workers and guests attached roses and carnations to the fence during a wreath-laying ceremony at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex. Photo credit: NASA/Jim Grossmann

  3. KSC-2014-3273

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. -- A wreath honoring Henry W. "Hank" Hartsfield is displayed beside his photo at the U.S. Astronaut Hall of Fame. Hartsfield commanded space shuttle Discovery's maiden mission and was a veteran of three shuttle flights. He died July 17 after an illness. He was 80 years old. Hartsfield joined NASA in 1969 and was part of the astronaut support crew for Apollo 16 and the Skylab 2, 3 and 4 missions. He logged 483 hours in space during missions STS-4, on which he served as pilot, as well as STS-41D and STS-61A, both of which he commanded. Photo credit: NASA/Dimitri Gerondidakis

  4. The Apollo lightcraft project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The detailed design of a small beam-powered trans-atmospheric vehicle, 'The Apollo Lightcraft,' was selected as the project for the design course. The vehicle has a lift-off gross weight of about six (6) metric tons and the capability to transport 500 kg of payload (five people plus spacesuits) to low Earth orbit. Beam power was limited to 10 gigawatts. The principal goal of this project is to reduce the low-Earth-orbit payload delivery cost by at least three orders of magnitude below the space shuttle orbiter--in the post 2020 era. The completely reusable, single-stage-to-orbit, shuttle craft will take off and land vertically, and have a reentry heat shield integrated with its lower surface--much like the Apollo command module. At the appropriate points along the launch trajectory, the combined cycle propulsion system will transition through three or four air breathing modes, and finally a pure rocket mode for orbital insertion. As with any revolutionary flight vehicle, engine development must proceed first. Hence, the objective for the spring semester propulsion course was to design and perform a detailed theoretical analysis on an advanced combined-cycle engine suitable for the Apollo Light craft. The analysis indicated that three air breathing cycles will be adequate for the mission, and that the ram jet cycle is unnecessary.

  5. Columbia Quilt

    NASA Image and Video Library

    2018-02-22

    A certificate is on display that confirms the transfer of a giant hand-made quilt in honor of space shuttle Columbia and her crew from the Office of Procurement to the Columbia Preservation Room inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The quilt was made by Katherine Walsh, a lifelong NASA and space program fan originally from Kentucky. The quilt will be displayed with its certificate in the preservation room as part of NASA's Apollo, Challenger, Columbia Lessons Learned Program.

  6. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    The newest display at the Kennedy Space Center Visitor Complex is the spaceport's historic countdown clock. It is now located at the entrance to the visitor complex. The clock was set up at the space center's Press Site and used from the launch of Apollo 12 on Nov. 14, 1969 to the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  7. Safety and Mission Assurance Knowledge Management Retention: Managing Knowledge for Successful Mission Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Teresa A.

    2006-01-01

    Knowledge Management is a proactive pursuit for the future success of any large organization faced with the imminent possibility that their senior managers/engineers with gained experiences and lessons learned plan to retire in the near term. Safety and Mission Assurance (S&MA) is proactively pursuing unique mechanism to ensure knowledge learned is retained and lessons learned captured and documented. Knowledge Capture Event/Activities/Management helps to provide a gateway between future retirees and our next generation of managers/engineers. S&MA hosted two Knowledge Capture Events during 2005 featuring three of its retiring fellows (Axel Larsen, Dave Whittle and Gary Johnson). The first Knowledge Capture Event February 24, 2005 focused on two Safety and Mission Assurance Safety Panels (Space Shuttle System Safety Review Panel (SSRP); Payload Safety Review Panel (PSRP) and the latter event December 15, 2005 featured lessons learned during Apollo, Skylab, and Space Shuttle which could be applicable in the newly created Crew Exploration Vehicle (CEV)/Constellation development program. Gemini, Apollo, Skylab and the Space Shuttle promised and delivered exciting human advances in space and benefits of space in people s everyday lives on earth. Johnson Space Center's Safety & Mission Assurance team work over the last 20 years has been mostly focused on operations we are now beginning the Exploration development program. S&MA will promote an atmosphere of knowledge sharing in its formal and informal cultures and work processes, and reward the open dissemination and sharing of information; we are asking "Why embrace relearning the "lessons learned" in the past?" On the Exploration program the focus will be on Design, Development, Test, & Evaluation (DDT&E); therefore, it is critical to understand the lessons from these past programs during the DDT&E phase.

  8. KSC-99pp0236

    NASA Image and Video Library

    1999-02-25

    KENNEDY SPACE CENTER, FLA. -- At a ribbon-cutting ceremony inside the Operations and Checkout Building high bay, Sterling Walker, director of Engineering Development, introduces the project team members responsible for renovating an altitude chamber formerly used on the Apollo program. In addition, management, media and onlookers are present for the ceremony. Seated in the front row left are (left to right) Terry Smith, director of Engineering, Boeing Space Coast Operations; Steve Francois, director, Space Station and Shuttle Payloads; Jay Greene, International Space Station manager for Technical; and Roy Bridges, center director. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test

  9. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  10. 2014-1285

    NASA Image and Video Library

    2014-01-31

    CAPE CANAVERAL, Fla. -- Under rainy skies, Kennedy Space Center Director Bob Cabana and Deputy Center Director Janet Petro placed a wreath in front of the Space Mirror Memorial at the spaceport's Visitor Complex during NASA's Day of Remembrance. The brief ceremony honored the astronauts of Apollo 1, who were lost in 1967, the shuttle Challenger crew, who perished in 1986, the space shuttle Columbia astronauts who were lost in 2003, as well as other astronauts who gave their lives while furthering the cause of exploration and discovery. Dedicated in 1991, the names of fallen astronauts are emblazoned the monument's 4.5-foot-high-by-50-foot-wide polished black granite surface which reflects the sky and has been designated by Congress as a National Memorial. Photo credit: NASA/Dimitri Gerondidakis

  11. 2014-1287

    NASA Image and Video Library

    2014-01-31

    CAPE CANAVERAL, Fla. -- Under rainy skies, Kennedy Space Center Director Bob Cabana speaks to guests after placing a wreath in front of the Space Mirror Memorial at the spaceport's Visitor Complex during NASA's Day of Remembrance. The brief ceremony honored the astronauts of Apollo 1, who were lost in 1967, the shuttle Challenger crew, who perished in 1986, the space shuttle Columbia astronauts who were lost in 2003, as well as other astronauts who gave their lives while furthering the cause of exploration and discovery. Dedicated in 1991, the names of fallen astronauts are emblazoned the monument's 4.5-foot-high-by-50-foot-wide polished black granite surface which reflects the sky and has been designated by Congress as a National Memorial. Photo credit: NASA/Dimitri Gerondidakis

  12. Moon rock in JPM

    NASA Image and Video Library

    2009-06-07

    ISS020-E-007383 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth and a section of a station solar panel can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.

  13. KSC-2014-3268

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. -- Therrin Protze, chief operating officer for Delaware North Parks Services at Kennedy Space Center Visitor Complex, speaks at a wreath-laying ceremony honoring Henry W. "Hank" Hartsfield at the U.S. Astronaut Hall of Fame. Hartsfield commanded space shuttle Discovery's maiden mission and was a veteran of three shuttle flights. He died July 17 after an illness. He was 80 years old. Hartsfield joined NASA in 1969 and was part of the astronaut support crew for Apollo 16 and the Skylab 2, 3 and 4 missions. He logged 483 hours in space during missions STS-4, on which he served as pilot, as well as STS-41D and STS-61A, both of which he commanded. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-04pd2134

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - A tractor-trailer arrives at the Crawler Transporter (CT) area with a new shipment of crawler shoes. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  15. KSC-04pd2137

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - In the Crawler Transporter (CT) area, a worker places another load of new crawler shoes on the ground. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  16. Remembering NASA Astronaut John Young, 1930-2018

    NASA Image and Video Library

    2018-01-06

    Astronaut John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission, has passed away at the age of 87. This video tribute, which includes music and portions of Young’s own words from previous interviews and events, recounts some of the highlights of his storied career at NASA.

  17. Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware

    NASA Technical Reports Server (NTRS)

    Class, C. R.; Presta, G.; Trucks, H.

    1975-01-01

    A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.

  18. Thirty years together: A chronology of U.S.-Soviet space cooperation

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.

    1993-01-01

    The chronology covers 30 years of cooperation between the U.S. and the Soviet Union (and its successor, the Commonwealth of Independent States, of which the Russian Federation is the leading space power). It tracks successful cooperative projects and failed attempts at space cooperation. Included are the Dryden-Blagonravov talks; the UN Space Treaties; the Apollo Soyuz Test Project; COSPAS-SARSAT; the abortive Shuttle-Salyut discussions; widespread calls for joint manned and unmanned exploration of Mars; conjectural plans to use Energia and other Russian space hardware in ambitious future joint missions; and contemporary plans involving the U.S. Shuttle, Russian Mir, and Soyuz-TM. The chronology also includes events not directly related to space cooperation to provide context. A bibliography lists works and individuals consulted in compiling the chronology, plus works not used but relevant to the topic of space cooperation.

  19. KSC-07pd1035

    NASA Image and Video Library

    2007-05-05

    KENNEDY SPACE CENTER, FLA. -- At the U.S. Astronaut Hall of Fame induction ceremony, Boy Scouts lead the pledge of allegiance. The May 5 induction added space shuttle commanders Michael L. Coats, Steven A. Hawley and Jeffrey A. Hoffman to the Hall of Fame. They grow the number of space explorers enshrined in the Hall of Fame to 66. These gentlemen have joined such American space heroes as Neil Armstrong, John Glenn, Alan Shepard and Sally Ride. The ceremony was held at the Kennedy Space Center's Apollo/Saturn V Center. Photo credit: NASA/Kim Shiflett

  20. Life sciences - On the critical path for missions of exploration

    NASA Technical Reports Server (NTRS)

    Sulzman, Frank M.; Connors, Mary M.; Gaiser, Karen

    1988-01-01

    Life sciences are important and critical to the safety and success of manned and long-duration space missions. The life science issues covered include gravitational physiology, space radiation, medical care delivery, environmental maintenance, bioregenerative systems, crew and human factors within and outside the spacecraft. The history of the role of life sciences in the space program is traced from the Apollo era, through the Skylab era to the Space Shuttle era. The life science issues of the space station program and manned missions to the moon and Mars are covered.

  1. Space Shuttle Crawler Transporter Truck Shoe Qualification Tests and Analyses for Return-to-Flight

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.; Meyer, Karl A.; Burton, Roy C.; Gosselin, Armand M.

    2005-01-01

    A vital element to Launch Complex 39 (LC39) and NASA's Kennedy Space Center (KSC) mobile launch transfer operation is a 3 million kilogram behemoth known as the Crawler Transporter (CT). Built in the 1960's, two CT's have accumulated over 1700+ miles each and have been used for the Apollo and the Space Shuttle programs. Recent observation of fatigue cracks on the CT shoes led to a comprehensive engineering, structural and metallurgical evaluation to assess the root cause that necessitated procurement of over 1000 new shoes. This paper documents the completed dynamic and compression tests on the old and new shoes respectively, so as to certify them for Space Shuttle's return-to-flight (RTF). Measured strain data from the rollout tests was used to develop stress/loading spectra and static equivalent load for qualification testing of the new shoes. Additionally, finite element analysis (FEA) was used to conduct sensitivity analyses of various contact parameters and structural characteristics for acceptance of new shoes.

  2. United States/Russia space cooperation documentary

    NASA Astrophysics Data System (ADS)

    1993-12-01

    This video documents the initiative to develop a multinational, permanent space research laboratory. Historical background on the U.S. and Soviet manned space flight program as well as joint efforts such as the Apollo-Soyuz link up is shown. The current initiative will begin with collaborative missions involving NASA's space shuttle and Russia's Mir space station, and culminate in a permanently manned space station involving the U.S., Russia, Japan, Canada, and ESA. Shown are computer simulations of the proposed space station. Commentary is provided by the NASA administrator, former astronauts, cosmonauts, and Russian and American space experts.

  3. United States/Russia Space Cooperation Documentary

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This video documents the initiative to develop a multinational, permanent space research laboratory. Historical background on the U.S. and Soviet manned space flight program as well as joint efforts such as the Apollo-Soyuz link up is shown. The current initiative will begin with collaborative missions involving NASA's space shuttle and Russia's Mir space station, and culminate in a permanently manned space station involving the U.S., Russia, Japan, Canada, and ESA. Shown are computer simulations of the proposed space station. Commentary is provided by the NASA administrator, former astronauts, cosmonauts, and Russian and American space experts.

  4. Columbia Quilt

    NASA Image and Video Library

    2018-02-22

    A certificate and quilt square are on display that confirms the transfer of a giant hand-made quilt in honor of space shuttle Columbia and her crew from the Office of Procurement to the Columbia Preservation Room inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The quilt was made by Katherine Walsh, a lifelong NASA and space program fan originally from Kentucky. The quilt will be displayed in the preservation room with its certificate as part of NASA's Apollo, Challenger, Columbia Lessons Learned Program.

  5. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Confetti is launched as the spaceport's historic countdown clock is dedicated as the newest display at the Kennedy Space Center Visitor Complex. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock operated through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  6. The Challenges of Developing a Food System for a Mars Mission

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2008-01-01

    This viewgraph presents a review of the development of food systems for the use during a Mars Mission. It review some of the food delivery systems developed for all of the NASA space programs from Mercury, Gemini, and Apollo, to the Space Shuttle, International Space Station. The goals and objectives of the program are to: provide an adequate food system and develop a safe food system, that is nutritious and acceptable to astronauts, and to provide a food system that efficiently balances vehicle resources.

  7. KSC-2011-7004

    NASA Image and Video Library

    2011-09-16

    CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann

  8. KSC-2011-7001

    NASA Image and Video Library

    2011-09-16

    CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-7003

    NASA Image and Video Library

    2011-09-16

    CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann

  10. KSC-2011-7002

    NASA Image and Video Library

    2011-09-16

    CAPE CANAVERAL, Fla. – At the newly remodeled Launch Control Center's Young-Crippen Firing Room at NASA's Kennedy Space Center in Florida, engineering directorate personnel demonstrate the recently added Space Command & Control System which will be used for launches of future human spaceflight vehicles. Known as Firing Room 1 in the Apollo era, it was re-named as a tribute to the Space Shuttle Program's first crewed mission, STS-1, which was flown by Commander John W. Young and Pilot Robert L. Crippen in April 1981. Photo credit: NASA/Jim Grossmann

  11. Manned spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  12. KSC-2014-2101

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  13. Air & Space Power Journal Summer 2006

    DTIC Science & Technology

    2006-01-01

    spending a great deal of time and money developing and fielding a system that may not provide the capabilities expected of it, the use of near ...magnetic fields , or infrared radiation against the cold background of space. 28 Merge-Page.indd 29 5/1/06 10:37:10 AM If the correct...cialized field . During the 1960s through 1980s, our workforce gained an immense amount of knowledge and experience from the Apollo, shuttle, and

  14. Judy Collins shares a laugh with First Lady Hillary Clinton

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Singer Judy Collins (left) shares a laugh with First Lady Hillary Rodham Clinton in the Apollo/Saturn V Facility. Both women are at KSC to view the launch of Space Shuttle mission STS-93 scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Judy Collins has honored the commander with a song, 'Beyond the Sky,' which was commissioned by NASA through the NASA Art Program.

  15. Judy Collins and First Lady Hillary Clinton await the launch of STS-93

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Singer Judy Collins (left) and First Lady Hillary Rodham Clinton await the launch of Space Shuttle mission STS-93 in the Apollo/Saturn V Facility. Liftoff is scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Judy Collins has honored the commander with a song, 'Beyond the Sky,' which was commissioned by NASA through the NASA Art Program.

  16. KSC-2014-3269

    NASA Image and Video Library

    2014-07-24

    CAPE CANAVERAL, Fla. -- Former NASA astronaut Jon McBride shares his thoughts at a wreath-laying ceremony honoring Henry W. "Hank" Hartsfield at the U.S. Astronaut Hall of Fame. Hartsfield commanded space shuttle Discovery's maiden mission and was a veteran of three shuttle flights. He died July 17 after an illness. He was 80 years old. Hartsfield joined NASA in 1969 and was part of the astronaut support crew for Apollo 16 and the Skylab 2, 3 and 4 missions. He logged 483 hours in space during missions STS-4, on which he served as pilot, as well as STS-41D and STS-61A, both of which he commanded. Photo credit: NASA/Dimitri Gerondidakis

  17. NASA RFID Applications

    NASA Technical Reports Server (NTRS)

    Fink, Patrick, Ph.D.; Kennedy, Timothy, Ph.D; Powers, Anne; Haridi, Yasser; Chu, Andrew; Lin, Greg; Yim, Hester; Byerly, Kent, Ph.D.; Barton, Richard, Ph.D.; Khayat, Michael, Ph.D.; hide

    2007-01-01

    This viewgraph document reviews some potential uses for Radio Frequency Identification in space missions. One of these is inventory management in space, including the methods used in Apollo, the Space Shuttle, and Space Station. The potential RFID uses in a remote human outpost are reviewed. The use of Ultra-Wideband RFID for tracking are examined such as that used in Sapphire DART The advantages of RFID in passive, wireless sensors in NASA applications are shown such as: Micrometeoroid impact detection and Sensor measurements in environmental facilities The potential for E-textiles for wireless and RFID are also examined.

  18. KSC-2015-1210

    NASA Image and Video Library

    2015-01-28

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida paid tribute to the crews of Apollo 1 and space shuttles Challenger and Columbia, as well as other NASA astronauts who lost their lives while furthering the cause of exploration and discovery, during the agency's Day of Remembrance, Jan. 28. From left, President and Chief Executive Officer of The Astronauts Memorial Foundation Thad Altman, Kennedy Associate Director Kelvin Manning, and Kennedy Deputy Director Janet Petro, participated in a wreath-laying ceremony at the Space Mirror Memorial located in the Kennedy Space Center Visitor Complex.

  19. KSC-04pd1001

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, five space program heroes accept the accolades of the crowd attending their induction into the U.S. Astronaut Hall of Fame. From left, they are Norman E. Thagard, the first American to occupy Russia's Mir space station; June Scobee, on behalf of her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission and the current NASA Deputy Administrator; and Richard O. Covey, commander of the Hubble Space Telescope repair mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. KSC-04pd0995

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Richard O. Covey, commander of the Hubble Space Telescope repair mission, speaks to guests at the induction of five space program heroes into the U.S. Astronaut Hall of Fame. Seated from left, they are Norman E. Thagard, the first American to occupy Russia’s Mir space station; June Scobee, on behalf of her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; and Frederick D. Gregory, the first African-American to command a space mission and the current NASA deputy administrator. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  1. KSC-04pd0990

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, five space heroes are being inducted into the U.S. Astronaut Hall of Fame. From left, they are Norman E. Thagard, the first American to occupy Russia's Mir space station; June Scobee, representing her late husband Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission; Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission and the current NASA Deputy Administrator; and Richard O. Covey, commander of the Hubble Space Telescope repair mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  2. The Challenges and Achievements in 50 Years of Human Spaceflight

    NASA Astrophysics Data System (ADS)

    Hawley, Steven A.

    2012-01-01

    On April 12, 1961 the era of human spaceflight began with the orbital flight of Cosmonaut Yuri Gagarin. On May 5, 1961 The United States responded with the launch of Alan Shepard aboard Freedom 7 on the first flight of Project Mercury. The focus of the first 20 years of human spaceflight was developing the fundamental operational capabilities and technologies required for a human mission to the Moon. The Mercury and Gemini Projects demonstrated launch and entry guidance, on-orbit navigation, rendezvous, extravehicular activity, and flight durations equivalent to a round-trip to the Moon. Heroes of this epoch included flight directors Chris Kraft, Gene Kranz, and Glynn Lunney along with astronauts like John Young, Jim Lovell, Tom Stafford, and Neil Armstrong. The "Race to the Moon” was eventually won by the United States with the landing of Apollo 11 on July 20, 1969. The Apollo program was truncated at 11 missions and a new system, the Space Shuttle, was developed which became the focus of the subsequent 30 years. Although never able to meet the flight rate or cost promises made in the 1970s, the Shuttle nevertheless left a remarkable legacy of accomplishment. The Shuttle made possible the launch and servicing of the Hubble Space Telescope and diverse activities such as life science research and classified national security missions. The Shuttle launched more than half the mass ever put into orbit and its heavy-lift capability and large payload bay enabled the on-orbit construction of the International Space Station. The Shuttle also made possible spaceflight careers for scientists who were not military test pilots - people like me. In this talk I will review the early years of spaceflight and share my experiences, including two missions with HST, from the perspective of a five-time flown astronaut and a senior flight operations manager.

  3. KSC-04pd2136

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - In the Crawler Transporter (CT) area, a worker offloads some of the new crawler shoes that arrived. In the background is one of the two CTs. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  4. KSC-04pd2135

    NASA Image and Video Library

    2004-10-15

    KENNEDY SPACE CENTER, FLA. - A tractor-trailer arrives at the Crawler Transporter (CT) area with a new shipment of crawler shoes. In the background is the Vehicle Assembly Building. The new shoes were manufactured by ME Global in Duluth, Minn. The CT transports the Mobile Launcher Platform, with the assembled Space Shuttle aboard, between the refurbishment area, the VAB and Launch Complex Pads 39A and 39B. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. The original shoes were manufactured for the Apollo Program. Cracks appeared in the shoes in recent years spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for Return to Flight and use through the balance of the Space Shuttle Program.

  5. KSC-04PD-0992

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut Joe H. Engle (right) congratulates Richard O. Covey, commander of the Hubble Space Telescope repair mission, on his induction into the U.S. Astronaut Hall of Fame. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KSC-04PD-0973

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, the late Francis R. 'Dick' Scobee, commander of the ill- fated 1986 Challenger mission, is represented by his widow, June Scobee (right), at his induction into the U.S. Astronaut Hall of Fame. Another inductee, Dr. Norman E. Thagard (left), offers his encouragement. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and Thagard, the first American to occupy Russia's Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KSC-04PD-0979

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. (right) congratulates former NASA astronaut and fellow Ohioan Kathryn D. Sullivan on her induction into the U.S. Astronaut Hall of Fame. Sullivan was the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  8. KSC-04pd0992

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut Joe H. Engle (right) congratulates Richard O. Covey, commander of the Hubble Space Telescope repair mission, on his induction into the U.S. Astronaut Hall of Fame. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  9. KSC-04pd0979

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. (right) congratulates former NASA astronaut and fellow Ohioan Kathryn D. Sullivan on her induction into the U.S. Astronaut Hall of Fame. Sullivan was the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. KSC-04pd0978

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. participates in the 2004 U.S. Astronaut Hall of Fame induction ceremony. He is introducing inductee and fellow Ohioan Kathryn D. Sullivan, the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. KSC-04pd0984

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut Daniel C. Brandenstein participates in the 2004 U.S. Astronaut Hall of Fame induction ceremony. He is introducing inductee Frederick D. Gregory, the first African-American to command a space mission and the current NASA Deputy Administrator. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  12. KSC-04pd0989

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut Joe H. Engle participates in the 2004 U.S. Astronaut Hall of Fame induction ceremony. He is introducing inductee Richard O. Covey, commander of the Hubble Space Telescope repair mission. Also chosen for induction in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  13. KSC-04pd0993

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut James A. Lovell Jr. (left) congratulates Richard O. Covey, commander of the Hubble Space Telescope repair mission, on his induction into the U.S. Astronaut Hall of Fame. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  14. KSC-04pd0985

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, NASA Deputy Administrator Frederick D. Gregory (left) is congratulated by former NASA astronaut Daniel C. Brandenstein at his induction into the U.S. Astronaut Hall of Fame. Gregory was the first African-American to command a space mission. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  15. KSC-04pd0973

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission, is represented by his widow, June Scobee (right), at his induction into the U.S. Astronaut Hall of Fame. Another inductee, Dr. Norman E. Thagard (left), offers his encouragement. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and Thagard, the first American to occupy Russia's Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  16. KSC-04pd0975

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission, is inducted into the U.S. Astronaut Hall of Fame. He is represented by his widow, June Scobee, at the podium. Also chosen for induction in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and Norman E. Thagard, the first American to occupy Russia's Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  17. KSC-04pd0970

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Dr. Norman E. Thagard (left) is ceremoniously inducted into the U.S. Astronaut Hall of Fame by former NASA astronaut James A. Lovell Jr. Thagard was the first American to occupy Russia's Mir space station. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  18. KSC-04pd0977

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. participates in the 2004 U.S. Astronaut Hall of Fame induction ceremony. He is introducing inductee and fellow Ohioan Kathryn D. Sullivan, the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  19. KSC-04pd0994

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut Richard O. Covey (at podium) is inducted into the U.S. Astronaut Hall of Fame as former NASA astronaut James A. Lovell Jr. looks on. Covey was commander of the Hubble Space Telescope repair mission. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  20. KSC-2014-2100

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  1. KSC-2014-2099

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center Launch Pad 39A, NASA Administrator Charlie Bolden announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  2. Analysis of nystagmus response to a pseudorandom velocity input

    NASA Technical Reports Server (NTRS)

    Lessard, C. S.

    1986-01-01

    Space motion sickness was not reported during the first Apollo missions; however, since Apollo 8 through the current Shuttle and Skylab missions, approximately 50% of the crewmembers have experienced instances of space motion sickness. Space motion sickness, renamed space adaptation syndrome, occurs primarily during the initial period of a mission until habilation takes place. One of NASA's efforts to resolve the space adaptation syndrome is to model the individual's vestibular response for basis knowledge and as a possible predictor of an individual's susceptibility to the disorder. This report describes a method to analyse the vestibular system when subjected to a pseudorandom angular velocity input. A sum of sinusoids (pseudorandom) input lends itself to analysis by linear frequency methods. Resultant horizontal ocular movements were digitized, filtered and transformed into the frequency domain. Programs were developed and evaluated to obtain the (1) auto spectra of input stimulus and resultant ocular resonse, (2) cross spectra, (3) the estimated vestibular-ocular system transfer function gain and phase, and (4) coherence function between stimulus and response functions.

  3. Nasa Langley Research Center seventy-fifth anniversary publications, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The following are presented: The National Advisory Committee for Aeronautics Charter; Exploring NASA's Roots, the History of NASA Langley Research Center; NASA Langley's National Historic Landmarks; The Mustang Story: Recollections of the XP-51; Testing the First Supersonic Aircraft: Memoirs of NACA Pilot Bob Champine; NASA Langley's Contributions to Spaceflight; The Rendezvous that was Almost Missed: Lunar Orbit Rendezvous and the Apollo Program; NASA Langley's Contributions to the Apollo Program; Scout Launch Vehicle Program; NASA Langley's Contributions to the Space Shuttle; 69 Months in Space: A History of the First LDEF; NACA TR No. 460: The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel; NACA TR No. 755: Requirements for Satisfactory Flying Qualities of Airplanes; 'Happy Birthday Langley' NASA Magazine Summer 1992 Issue.

  4. KSC-2011-1209

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- Flowers lay at the foot of the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida before a Day of Remembrance wreath laying ceremony to honor members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The floral arrangement is dedicated to the Apollo 1 crew members Virgil "Gus" Grissom, Roger B. Chaffee and Edward H. White II. The memorial honors 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  5. Feasibility analysis of cislunar flight using the Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Haynes, Davy A.

    1991-01-01

    A first order orbital mechanics analysis was conducted to examine the possibility of utilizing the Space Shuttle Orbiter to perform payload delivery missions to lunar orbit. In the analysis, the earth orbit of departure was constrained to be that of Space Station Freedom. Furthermore, no enhancements of the Orbiter's thermal protection system were assumed. Therefore, earth orbit insertion maneuvers were constrained to be all propulsive. Only minimal constraints were placed on the lunar orbits and no consideration was given to possible landing sites for lunar surface payloads. The various phases and maneuvers of the mission are discussed for both a conventional (Apollo type) and an unconventional mission profile. The velocity impulses needed, and the propellant masses required are presented for all of the mission maneuvers. Maximum payload capabilities were determined for both of the mission profiles examined. In addition, other issues relating to the feasibility of such lunar shuttle missions are discussed. The results of the analysis indicate that the Shuttle Orbiter would be a poor vehicle for payload delivery missions to lunar orbit.

  6. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  7. KSC-07pd1034

    NASA Image and Video Library

    2007-05-05

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center's Apollo/Saturn V Center, a wreath and poster honor former astronaut Wally Schirra, who died May 3. The site is the location for the U.S. Astronaut Hall of Fame induction ceremony. The May 5 induction added space shuttle commanders Michael L. Coats, Steven A. Hawley and Jeffrey A. Hoffman to the Hall of Fame. They grow the number of space explorers enshrined in the Hall of Fame to 66. These gentlemen have joined such American space heroes as Neil Armstrong, John Glenn, Alan Shepard and Sally Ride. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-5950

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Nearly twice as tall as the space shuttle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  9. Umbilical Connect Techniques Improvement-Technology Study

    NASA Technical Reports Server (NTRS)

    Valkema, Donald C.

    1972-01-01

    The objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the space shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn 5/Apollo to an elapsed time of less than one hour to connect and verify all of the space shuttle ground service umbilicals. The study was conducted in four phases: (1) literature and hardware examination, (2) concept development, (3) concept evaluation and tradeoff analysis, and (4) selected concept design. The final product of this study was a detail design of a rise-off disconnect panel prototype test specimen for a LO2/LH2 booster (or an external oxygen/hydrogen tank for an orbiter), a detail design of a swing-arm mounted preflight umbilical carrier prototype test specimen, and a part 1 specification for the umbilical connect and verification design for the vehicles as defined in the space shuttle program.

  10. Astronauts Bob Behnken and Eric Boe walk the Crew Access Arm at

    NASA Image and Video Library

    2017-08-30

    Astronauts Bob Behnken, left, and Eric Boe walk down the Crew Access Arm being built by SpaceX for Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The access arm will be installed on the launch pad, providing a bridge between the launch tower it’s the Fixed Service Structure, as noted below, and SpaceX’s Dragon 2 spacecraft for astronauts flying to the International Space Station on the company’s Falcon 9 rocket as part of NASA’s Commercial Crew Program. The access arm is being readied for installation in early 2018. It will be installed 70 feet higher than the former space shuttle access arm on the launch pad’s Fixed Service Structure. SpaceX continues to modify the historic launch site from its former space shuttle days, removing more than 500,000 pounds of steel from the pad structure, including the Rotating Service Structure that was once used for accessing the payload bay of the shuttle. SpaceX also is using the modernized site to launch commercial payloads, as well as cargo resupply missions to and from the International Space Station for NASA. The first SpaceX launch from the historic Apollo and space shuttle site was this past February. NASA’s Commercial Crew Program is working with private companies, Boeing and SpaceX, with a goal of once again flying people to and from the International Space Station, launching from the United States.

  11. KSC-97pc584

    NASA Image and Video Library

    1997-04-04

    Apollo 11 Commander Neil A. Armstrong and his wife, Carol, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission

  12. Motivational contracting in space programs - Government and industry prospectives

    NASA Technical Reports Server (NTRS)

    Clough, D. R.

    1985-01-01

    NASA's Marshall Space Flight Center has used incentive-free policies in contracting for Apollo's Saturn Launch vehicle hardware, as well as award-fee contracts for major development and early production programs in the case of the Space Shuttle Program. These programs have evolved to a point at which multiple incentive fees are useful in motivating cost reductions and assuring timely achievement of delivery requirements and flight mission goals. An examination is presently conducted of the relative success of these motivation-oriented techniques, drawing on the comments of both government and industry personnel.

  13. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  14. Space shuttle electrical power generation and reactant supply system

    NASA Technical Reports Server (NTRS)

    Simon, W. E.

    1985-01-01

    The design philosophy and development experience of fuel cell power generation and cryogenic reactant supply systems are reviewed, beginning with the state of technology at the conclusion of the Apollo Program. Technology advancements span a period of 10 years from initial definition phase to the most recent space transportation system (STS) flights. The development program encompassed prototype, verification, and qualification hardware, as well as post-STS-1 design improvements. Focus is on the problems encountered, the scientific and engineering approaches employed to meet the technological challenges, and the results obtained. Major technology barriers are discussed, and the evolving technology development paths are traced from their conceptual beginnings to the fully man-rated systems which are now an integral part of the shuttle vehicle.

  15. The Challenges of Developing a Food System for a Mars Mission

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2007-01-01

    A viewgraph describing the food system that NASA is developing for Manned Mars Missions is shown. The topics include: 1) The President's Vision for U.S. Space Exploration -January 14, 2004; 2) Introducing Orion (and Ares); 3) Mercury (1961-1963); 4) Gemini (1965-1966); 5) Apollo (1968-1972); 6) Skylab (1973-1974); 7) Shuttle/Mir (1995-1998); 8) Shuttle (1981-present) International Space Station (2000-present); 9) NASA Stored Food System; 10) Advanced Food Technology; 11) Orion Missions; 12) Orion Challenges; 13) Food Packaging; 14) Mars Mission Assumptions; 15) Planetary Food System Selected Crops; 16) Food Processing Equipment Constraints; 17) Crew Involvement Constraints; 18) Advanced Food Technology Integration; 19) Research Highlights Internal; and 20) Research Highlights External.

  16. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.

    2000-01-01

    The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

  17. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, WIlliam

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020 by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage (EDS). This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo era experts to derive other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  18. Development of the J-2X Engine for the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle: Building on the Apollo Program for Lunar Return Missions

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Snoddy, Jim

    2007-01-01

    The United States (U.S.) Vision for Space Exploration has directed NASA to develop two new launch vehicles for sending humans to the Moon, Mars, and beyond. In January 2006, NASA streamlined its hardware development approach for replacing the Space Shuttle after it is retired in 2010. Benefits of this approach include reduced programmatic and technical risks and the potential to return to the Moon by 2020, by developing the Ares I Crew Launch Vehicle (CLV) propulsion elements now, with full extensibility to future Ares V Cargo Launch Vehicle (CaLV) lunar systems. The Constellation Program selected the Pratt & Whitney Rocketdyne J-2X engine to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage. This decision was reached during the Exploration Systems Architecture Study and confirmed after the Exploration Launch Projects Office performed a variety of risk analyses, commonality assessments, and trade studies. This paper narrates the evolution of that decision; describes the performance capabilities expected of the J-2X design, including potential commonality challenges and opportunities between the Ares I and Ares V launch vehicles; and provides a current status of J-2X design, development, and hardware testing activities. This paper also explains how the J-2X engine effort mitigates risk by testing existing engine hardware and designs; building on the Apollo Program (1961 to 1975), the Space Shuttle Program (1972 to 2010); and consulting with Apollo-era experts to derive other lessons lived to deliver a human-rated engine that is on an aggressive development schedule, with its first demonstration flight in 2012.

  19. KSC-2014-2102

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., announces that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Kennedy Space Center Director Bob Cabana listen. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  20. Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard; Tuan, George C.

    2007-01-01

    As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.

  1. Operations to Research: Communication of Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer

    2009-01-01

    This presentation explores ways to build upon previous spaceflight experience and communicate this knowledge to prepare for future exploration. An operational approach is highlighted, focusing on selection and retention standards (disease screening and obtaining medical histories); pre-, in-, and post-flight monitoring (establishing degrees of bone loss, skeletal muscle loss, cardiovascular deconditioning, medical conditions, etc.); prevention, mitigation, or treatment (in-flight countermeasures); and, reconditioning, recovery, and reassignment (post-flight training regimen, return to pre-flight baseline and flight assignment). Experiences and lessons learned from the Apollo, Skylab, Shuttle, Shuttle-Mir, International Space Station, and Orion missions are outlined.

  2. The history and development of NASA survival equipment.

    NASA Technical Reports Server (NTRS)

    Radnofsky, M. I.

    1972-01-01

    A research and development program on survival equipment was begun in early 1960 with the Mercury Program. The Mercury survival kit is discussed together with Gemini survival equipment, and Apollo I survival equipment. A study program is conducted to assess potential survival problems that may be associated with future space flights landing in polar waters. Survival kit requirements for applications on the Skylab program are also considered. Other investigations are concerned with the design of a global survival kit in connection with Space Shuttle missions.

  3. KSC-2012-1127

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- A blue sky is reflected in the massive granite Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida where a large wreath was placed during Kennedy Space Center’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  4. KSC-06pd0790

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Brewster H. Shaw Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Shaw, Henry "Hank" Hartsfield Jr., and Charles F. Bolden Jr. Shaw flew on three space shuttle missions including STS-9, STS-61B, STS-28, logging 533 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  5. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Therrin Protze, chief operating officer of the Kennedy Space Center Visitor Complex, speaks at the dedication of the center's historic countdown clock. To the right is space center director Bob Cabana. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock was used through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  6. KSC-06pd0789

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Henry "Hank" Hartsfield Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Hartsfield, Brewster H. Shaw Jr. and Charles F. Bolden Jr. Hartsfield flew on three space shuttle missions including STS-4, STS-41D and STS-61A, logging 482 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  7. MCC History

    NASA Image and Video Library

    2017-02-12

    Since the days of Gemini all of America’s human spaceflight programs have been controlled by men and women stationed in one of several flight control rooms at NASA’s Johnson Space Center in Houston: the International Space Station flight controllers recently moved into an upgraded facility in the room that hosted the teams during the first manned flights of Apollo and the space shuttle. Here’s a tour of “Mission Control Houston” through the years, from its first generation through the facility ready for the flights of Orion, the spacecraft that will take humans farther into space than they’ve ever gone before.

  8. KSC-2012-1121

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- An American flag flies at half staff near the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida during Kennedy Space Center’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  9. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Boeing Vice President and General Manager John Elbon addresses the crowd gathered for the grand opening of the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. Boeing is sponsoring the new attraction. Seated, to the left, is former space shuttle astronaut Dan Brandenstein, chairman of the Astronaut Scholarship Foundation board of directors. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  10. A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques

    NASA Technical Reports Server (NTRS)

    Ruiz, Jose O,; Hart, Jeremy

    2010-01-01

    The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation architecture and contrast it with shuttle rendezvous techniques and circumstances. The shuttle rendezvous profile is timed to take approximately 3 days from orbit insertion to docking at the International Space Station (ISS). This process can be divided into 3 phases: far-field, mid-field and proximity operations. The far-field stage is characterized as the most quiescent phase. The spacecraft is usually too far to navigate using relative sensors and uses the Inertial Measurement Units (IMU s) to numerically solve for its position. The maneuvers are infrequent, roughly twice per day, and are larger than other burns in the profile. The shuttle uses this opportunity to take extensive ground based radar updates and keep high fidelity orbit states on the ground. This state is then periodically uplinked to the shuttle computers. The targeting solutions for burn maneuvers are also computed on the ground and uplinked. During the burn the crew is responsible for setting the shuttle attitude and configuring the propulsion system for ignition. Again this entire process is manually driven by both crew and ground activity. The only automatic processes that occur are associated with the real-time execution of the burn. The Orion automated functionality will seek to relieve the workload of both the crew and ground during this phase

  11. The ribbon-cutting ceremony unveils the reactivated altitude chamber inside the O&C high bay

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a ribbon-cutting ceremony inside the Operations and Checkout Building high bay, Sterling Walker, director of Engineering Development, introduces the project team members responsible for renovating an altitude chamber formerly used on the Apollo program. In addition, management, media and onlookers are present for the ceremony. Seated in the front row left are (left to right) Terry Smith, director of Engineering, Boeing Space Coast Operations; Steve Francois, director, Space Station and Shuttle Payloads; Jay Greene, International Space Station manager for Technical; and Roy Bridges, center director. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test.

  12. KSC-99pp0237

    NASA Image and Video Library

    1999-02-25

    KENNEDY SPACE CENTER, FLA. -- Cutting a red ribbon for the unveiling of a newly renovated altitude chamber are (left to right) Tommy Mack, project manager, NASA; Steve Francois, director, Space Station and Shuttle Payloads; Sterling Walker, director, Engineering Development; Roy Bridges, director, Kennedy Space Center; Jay Greene, International Space Station manager for Technical; Michael Terry, project manager, Boeing; and Terry Smith, director of Engineering, Boeing Space Coast Operations. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test

  13. NASA's extended duration orbiter medical program

    NASA Technical Reports Server (NTRS)

    Pool, Sam Lee; Sawin, Charles F.

    1992-01-01

    The physiological issues involved in safely extending Shuttle flights from 10 to 16 days have been viewed by some as academic. After all, they reasoned, humans already have lived and worked in space for periods exceeding even 28 days in the United States Skylab Program and onboard the Russian space stations. The difference in the Shuttle program is in the physical position of the astronauts as they reenter the Earth's atmosphere. Crewmembers in the earlier Apollo, Skylab, and Russian programs were returned to Earth in the supine position. Space Shuttle crewmembers, in contrast, are seated upright during reentry and landing; reexperiencing the Earth's g forces in this position has far more pronounced effects on the crewmember's physiological functions. The goal of the Extended Duration Orbiter (EDO) Medical Project (EDOMP) has been to ensure that crewmembers maintain physiological reserves sufficient to perform entry, landing, and egress safely. Early in the Shuttle Program, it became clear that physiological deconditioning during space flight could produce significant symptoms upon return to Earth. The signs and symptoms observed during the entry, landing, and egress after Shuttle missions have included very high heart rates and low blood pressures upon standing. Dizziness, 'graying out,' and fainting have occurred on ambulation or shortly thereafter. Other symptoms at landing have included headache, light-headedness, nausea and vomitting, leg cramping, inability to stand for several minutes after wheel-stop, and unsteadiness of gait.

  14. KSC-2014-2103

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX of Hawthorne, Calif., speaks to members of the news media announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  15. KSC-2014-2098

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, center director Bob Cabana announces that NASA has just signed a lease agreement with Space Exploration Technologies SpaceX of Hawthorne, Calif., for use and operation of Launch Complex 39A. NASA Administrator Charlie Bolden, left, and Gwynne Shotwell, president and chief operating officer of SpaceX, look on. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  16. Mission Operations Directorate - Success Legacy of the Space Shuttle Program (Overview of the Evolution and Success Stories from MOD During the Space Shuttle program)

    NASA Technical Reports Server (NTRS)

    Azbell, Jim A.

    2011-01-01

    In support of the Space Shuttle Program, as well as NASA's other human space flight programs, the Mission Operations Directorate (MOD) at the Johnson Space Center has become the world leader in human spaceflight operations. From the earliest programs - Mercury, Gemini, Apollo - through Skylab, Shuttle, ISS, and our Exploration initiatives, MOD and its predecessors have pioneered ops concepts and emphasized a history of mission leadership which has added value, maximized mission success, and built on continual improvement of the capabilities to become more efficient and effective. This paper provides specific examples that illustrate how MOD's focus on building and contributing value with diverse teams has been key to their successes both with the US space industry and the broader international community. This paper will discuss specific examples for the Plan, Train, Fly, and Facilities aspects within MOD. This paper also provides a discussion of the joint civil servant/contractor environment and the relative badge-less society within MOD. Several Shuttle mission related examples have also been included that encompass all of the aforementioned MOD elements and attributes, and are used to show significant MOD successes within the Shuttle Program. These examples include the STS-49 Intelsat recovery and repair, the (post-Columbia accident) TPS inspection process and the associated R-Bar Pitch Maneuver for ISS missions, and the STS-400 rescue mission preparation efforts for the Hubble Space Telescope repair mission. Since their beginning, MOD has consistently demonstrated their ability to evolve and respond to an ever changing environment, effectively prepare for the expected and successfully respond to the unexpected, and develop leaders, expertise, and a culture that has led to mission and Program success.

  17. NASA Crew and Cargo Launch Vehicle Development Approach Builds on Lessons from Past and Present Missions

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The United States (US) Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with new space transportation systems for missions to the Moon, Mars, and beyond. The Crew Exploration Vehicle (CEV) that the new human-rated Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station (ISS) Toward the end of the next decade, a heavy-lift Cargo Launch Vehicle (CaLV) will deliver the Earth Departure Stage (EDS) carrying the Lunar Surface Access Module (LSAM) to low-Earth orbit (LEO), where it will rendezvous with the CEV launched on the CLV and return astronauts to the Moon for the first time in over 30 years. This paper outlines how NASA is building these new space transportation systems on a foundation of legacy technical and management knowledge, using extensive experience gained from past and ongoing launch vehicle programs to maximize its design and development approach, with the objective of reducing total life cycle costs through operational efficiencies such as hardware commonality. For example, the CLV in-line configuration is composed of a 5-segment Reusable Solid Rocket Booster (RSRB), which is an upgrade of the current Space Shuttle 4- segment RSRB, and a new upper stage powered by the liquid oxygen/liquid hydrogen (LOX/LH2) J-2X engine, which is an evolution of the J-2 engine that powered the Apollo Program s Saturn V second and third stages in the 1960s and 1970s. The CaLV configuration consists of a propulsion system composed of two 5-segment RSRBs and a 33- foot core stage that will provide the LOX/LED needed for five commercially available RS-68 main engines. The J-2X also will power the EDS. The Exploration Launch Projects, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operations planning for these new space transportation systems. Utilizing a foundation of heritage hardware and management lessons learned mitigates both technical and programmatic risk. Project engineers and managers work closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch systems, leveraging a wealth of knowledge from Shuffle operations. In addition, NASA and its industry partners have tapped into valuable Apollo databases and are applying corporate wisdom conveyed firsthand by Apollo-era veterans of America s original Moon missions. Learning from its successes and failures, NASA employs rigorous systems engineering and systems management processes and principles in a disciplined, integrated fashion to further improve the probability of mission success.

  18. KSC-97pc583

    NASA Image and Video Library

    1997-04-04

    Apollo 7 Commander Walter M. "Wally" Schirra and his wife, Josephine, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission

  19. KSC-97pc582

    NASA Image and Video Library

    1997-04-04

    Apollo l1 Commander Neil A. Armstrong and his wife, Carol, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission

  20. On the frontier: Flight research at Dryden 1946-1981

    NASA Technical Reports Server (NTRS)

    Hallion, R. P.

    1984-01-01

    The history of flight research at the NASA Hugh L. Dryden Flight Research Center is recounted. The period of emerging supersonic flight technology (1944 to 1959) is reviewed along with the era of flight outside the Earth's atmosphere (1959 to 1981). Specific projects such as the X-15, Gemini, Apollo, and the space shuttle are addressed. The flight chronologies of various aircraft and spacecraft are given.

  1. Living and Working in Space

    NASA Technical Reports Server (NTRS)

    Roman, Monserrate C.

    2000-01-01

    This document is a presentation about some of the challenges of living and working in space. The presentation shows slides of the Apollo 11 liftoff, Skylab in orbit, a Space Shuttle launch, and a slide of the International Space Station. It reviews the needs and effluents of the astronauts per day, and the Environmental Control and Life Support (ECLS) systems. It shows a flow diagram of the Space Station Regenerative ECLS, which shows the various systems, and how they interact to control the environment and recycle the air, and water. There are other slides some of which show astronauts eating, brushing teeth, shaving, and sipping from a sip bottle while exercising.

  2. Development and application of nonflammable, high-temperature beta fibers

    NASA Technical Reports Server (NTRS)

    Dawn, Frederic S.

    1989-01-01

    Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.

  3. KSC-04PD-0972

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Dr. Norman E. Thagard (left) is inducted into the U.S. Astronaut Hall of Fame. Thagard was the first American to occupy Russia's Mir space station. Former NASA astronaut James A. Lovell Jr. holds a 'penguin suit,' the clothing Thagard wore aboard Mir. The suit will be put on display in the Hall of Fame. Also chosen for induction in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  4. KSC-04PD-0981

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. (right) congratulates former NASA astronaut and fellow Ohioan Kathryn D. Sullivan on her induction into the U.S. Astronaut Hall of Fame. Former NASA astronaut James A. Lovell Jr. looks on (left). Sullivan was the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  5. KSC-04PD-0980

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. (right) congratulates former NASA astronaut and fellow Ohioan Kathryn D. Sullivan on her induction into the U.S. Astronaut Hall of Fame. Former NASA astronaut James A. Lovell Jr. looks on (left). Sullivan was the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. 'Dick' Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  6. KSC-04pd0980

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. (right) congratulates former NASA astronaut and fellow Ohioan Kathryn D. Sullivan on her induction into the U.S. Astronaut Hall of Fame. Former NASA astronaut James A. Lovell Jr. looks on (left). Sullivan was the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  7. KSC-04pd0986

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, NASA Deputy Administrator Frederick D. Gregory (center) is congratulated by former NASA astronaut James A. Lovell Jr. at his induction into the U.S. Astronaut Hall of Fame, as former NASA astronaut Daniel C. Brandenstein looks on. Gregory was the first African-American to command a space mission. Also chosen for this honor in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  8. KSC-04pd0972

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, Dr. Norman E. Thagard (left) is inducted into the U.S. Astronaut Hall of Fame. Thagard was the first American to occupy Russia's Mir space station. Former NASA astronaut James A. Lovell Jr. holds a "penguin suit," the clothing Thagard wore aboard Mir. The suit will be put on display in the Hall of Fame. Also chosen for induction in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  9. KSC-04pd0981

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, former NASA astronaut John H. Glenn Jr. (right) congratulates former NASA astronaut and fellow Ohioan Kathryn D. Sullivan on her induction into the U.S. Astronaut Hall of Fame. Former NASA astronaut James A. Lovell Jr. looks on (left). Sullivan was the first American woman to walk in space. Also chosen for this honor in 2004 are Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; Norman E. Thagard, the first American to occupy Russia's Mir space station; and the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  10. Planning for the Future, a Look from Apollo to the Present

    NASA Technical Reports Server (NTRS)

    Segrera, David

    2008-01-01

    Future missions out of low Earth orbit, returning to the moon and Mars, will be some of the most complicated endeavors ever attempted by mankind. It will require the wealth of nations and the dedicated efforts of thousand of individuals working in a concerted effort to take man to the moon, Mars and beyond. These missions will require new equipment and new approaches to optimize our limited resources and time in space. This daily planning and optimization which currently is being performed by scores of people in MCC Houston and around the world will need to adapt to the challenges faced far from Earth. By studying the processes, methodologies, and tools employed from Apollo, Skylab, Shuttle, ISS, and other programs such as NEEMO, we can learn from the past to plan for the future. This paper will explore the planning process used from Apollo onward and will discuss their relevancy in future applications.

  11. Center Planning and Development Student Engineer

    NASA Technical Reports Server (NTRS)

    Jenkins, Kenneth T.

    2013-01-01

    This fall I was the Student Trainee (Engineering) Pathways Intern (co-op) at the Kennedy Space Center (KSC) in the Center Planning Development (CPD) Directorate. CPD works with commercial companies who are interested using KSCs unique capabilities in spaceflight, spacecraft processing, ground systems and Research Development (RD) projects that fall in line with NASAs mission and goals. CPD is divided into four (4) groups: (1) AD-A, which works on the Master Planning for center, (2) AD-B (where I am), which works on project management and integration, (3) AD-C, which works on partnership development, and (4) AD-T, which works on the RD aspects of partnerships. CPDs main goal is to one day make KSC the worlds largest spaceport and maintain the center as a leader in space exploration. CPD is a very diverse group with employees having a wide knowledge of not only the Space Shuttle, but also that of the Apollo era. Our director of CPD, Scott Colloredo, is on the advisory board for Commercial Space Operations (CSO) and has a degree at ERAU. I worked on a number of different tasks for AD-B, as well as CPD, that includes, but not limited to: reviewing and reissuing engineering drawings from the Apollo and Shuttle eras, to supporting NASA rocket launches (MAVEN), and working on actual agreementsproposals that will be used in the partnership process with multiple partners. Most of the work I have done is sensitive information and cannot be disclosed.

  12. Immune response during space flight.

    PubMed

    Criswell-Hudak, B S

    1991-01-01

    The health status of an astronaut prior to and following space flight has been a prime concern of NASA throughout the Apollo series of lunar landings, Skylab, Apollo-Soyuz Test Projects (ASTP), and the new Spacelab-Shuttle missions. Both humoral and cellular immunity has been studied using classical clinical procedures. Serum proteins show fluctuations that can be explained with adaptation to flight. Conversely, cellular immune responses of lymphocytes appear to be depressed in both in vivo as well as in vitro. If this depression in vivo and in vitro is a result of the same cause, then man's adaptation to outer space living will present interesting challenges in the future. Since the cause may be due to reduced gravity, perhaps the designs of the experiments for space flight will offer insights at the cellular levels that will facilitate development of mechanisms for adaptation. Further, if the aging process is viewed as an adaptational concept or model and not as a disease process then perhaps space flight could very easily interact to supply some information on our biological time clocks.

  13. The ribbon-cutting ceremony unveils the reactivated altitude chamber inside the O&C high bay

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Cutting a red ribbon for the unveiling of a newly renovated altitude chamber are (left to right) Tommy Mack, project manager, NASA; Steve Francois, director, Space Station and Shuttle Payloads; Sterling Walker, director, Engineering Development; Roy Bridges, director, Kennedy Space Center; Jay Greene, International Space Station manager for Technical; Michael Terry, project manager, Boeing; and Terry Smith, director of Engineering, Boeing Space Coast Operations. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test.

  14. NASA's Zero-g aircraft operations

    NASA Technical Reports Server (NTRS)

    Williams, R. K.

    1988-01-01

    NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.

  15. Shuttle sonic boom - Technology and predictions. [environmental impact

    NASA Technical Reports Server (NTRS)

    Holloway, P. F.; Wilhold, G. A.; Jones, J. H.; Garcia, F., Jr.; Hicks, R. M.

    1973-01-01

    Because the shuttle differs significantly in both geometric and operational characteristics from conventional supersonic aircraft, estimation of sonic boom characteristics required a new technology base. The prediction procedures thus developed are reviewed. Flight measurements obtained for both the ascent and entry phases of the Apollo 15 and 16 and for the ascent phase only of the Apollo 17 missions are presented which verify the techniques established for application to shuttle. Results of extensive analysis of the sonic boom overpressure characteristics completed to date are presented which indicate that this factor of the shuttle's environmental impact is predictable, localized, of short duration and acceptable. Efforts are continuing to define the shuttle sonic boom characteristics to a fine level of detail based on the final system design.

  16. Industrial Engineering Lifts Off at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  17. Space Shuttle Program: STS-1 Medical Report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The necessity for developing medical standards addressing individual classes of Shuttle crew positions is discussed. For the U.S. manned program the conclusion of the Apollo era heralded the end of water recovery operations and the introduction of land-based medical operations. This procedural change marked a significant departure from the accepted postflight medical recovery and evaluation techniques. All phases of the missions required careful re-evaluation, identification of potential impact on preexisting medical operational techniques, and development of new methodologies which were carefully evaluated and tested under simulated conditions. Significant coordination was required between the different teams involved in medical operations. Additional dimensions were added to the concepts of medical operations, by the introduction of different toxic substances utilized by the Space Transportation Systems especially during ground operations.

  18. KSC-99pp0896

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- At the Apollo/Saturn V Center, NASA Administrator Daniel Goldin (right) chats with First Lady Hillary Rodham Clinton and others while waiting for the launch of STS-93. Much attention has been generated over STS-93 due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20

  19. High Leverage Space Transportation System Technologies for Human Exploration Missions to the Moon and Beyond

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Dudzinski, Leonard A.

    1996-01-01

    The feasibility of returning humans to the Moon by 2004, the 35th anniversary of the Apollo 11 landing, is examined assuming the use of existing launch vehicles (the Space Shuttle and Titan 4B), a near term, advanced technology space transportation system, and extraterrestrial propellant--specifically 'lunar-derived' liquid oxygen or LUNOX. The lunar transportation system (LTS) elements consist of an expendable, nuclear thermal rocket (NTR)-powered translunar injection (TLI) stage and a combination lunar lander/Earth return vehicle (LERV) using cryogenic liquid oxygen and hydrogen (LOX/LH2) chemical propulsion. The 'wet' LERV, carrying a crew of 2, is configured to fit within the Shuttle orbiter cargo bay and requires only modest assembly in low Earth orbit. After Earth orbit rendezvous and docking of the LERV with the Titan 4B-launched NTR TLI stage, the initial mass in low Earth orbit (IMLEO) is approx. 40 t. To maximize mission performance at minimum mass, the LERV carries no return LOX but uses approx. 7 t of LUNOX to 'reoxidize' itself for a 'direct return' flight to Earth followed by an 'Apollo-style' capsule recovery. Without LUNOX, mission capability is constrained and the total LTS mass approaches the combined Shuttle-Titan 4B IMLEO limit of approx. 45 t even with enhanced NTR and chemical engine performance. Key technologies are discussed, lunar mission scenarios described, and LTS vehicle designs and characteristics are presented. Mission versatility provided by using a small 'all LH2' NTR engine or a 'LOX-augmented' derivative, either individually or in clusters, for outer planet robotic orbiter, small Mars cargo, lunar 'commuter', and human Mars exploration class missions is also briefly discussed.

  20. KSC-2012-1462

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, left, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  1. KSC-2012-1461

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, left, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  2. KSC-2012-1465

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston

  3. Ares 1 First Stage Design, Development, Test, and Evaluation

    NASA Technical Reports Server (NTRS)

    Williams, Tom; Cannon, Scott

    2006-01-01

    The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  4. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Kennedy Space Center Director Bob Cabana, left, and Therrin Protze, chief operating officer of Kennedy's Visitor Complex, celebrate the dedication of the spaceport's historic countdown clock as the newest display at the center's visitor complex. Now located at the entrance to the visitor complex, the spaceport's historic countdown clock was used starting with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock operated through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  5. Countdown Clock Ribbon Cutting

    NASA Image and Video Library

    2016-03-01

    Therrin Protze, chief operating officer of the Kennedy Space Center Visitor Complex, left, and center director Bob Cabana watch as confetti was launched as the spaceport's historic countdown clock is dedicated as the newest display at the entrance to Kennedy's visitor complex. The spaceport's historic countdown clock was used beginning with the launch of Apollo 12 on Nov. 14, 1969. Originally set up at the space center's Press Site, the clock was used through the final space shuttle mission, STS-135, launched on July 8, 2011. The old countdown clock was replaced in 2014 with a modern light emitting diode, or LED, display.

  6. Historical flight qualifications of space nuclear systems

    NASA Astrophysics Data System (ADS)

    Bennett, Gary L.

    1997-01-01

    An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems.

  7. On Space Exploration and Human Error: A Paper on Reliability and Safety

    NASA Technical Reports Server (NTRS)

    Bell, David G.; Maluf, David A.; Gawdiak, Yuri

    2005-01-01

    NASA space exploration should largely address a problem class in reliability and risk management stemming primarily from human error, system risk and multi-objective trade-off analysis, by conducting research into system complexity, risk characterization and modeling, and system reasoning. In general, in every mission we can distinguish risk in three possible ways: a) known-known, b) known-unknown, and c) unknown-unknown. It is probably almost certain that space exploration will partially experience similar known or unknown risks embedded in the Apollo missions, Shuttle or Station unless something alters how NASA will perceive and manage safety and reliability

  8. 50th anniversary logo

    NASA Image and Video Library

    2011-03-02

    John C. Stennis Space Center is celebrating its 50th anniversary in 2011. NASA announced plans to build a rocket engine test facility in Hancock County, Miss., on Oct. 25, 1961. A new anniversary logo highlights the theme of the anniversary year - celebrating Stennis as a unique federal city and its five decades of powering America's space dreams. Stennis is home to more than 30 federal, state, academic and private organizations and several technology-based companies. In addition to testing Apollo Program rocket stages that carried humans to the moon, Stennis tested every main engine used in more than 130 space shuttle flights.

  9. KSC-2009-5951

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Pad 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds. At left is space shuttle Atlantis, poised on Launch Pad 39A for liftoff, targeted for Nov. 16. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  10. Kennedy Space Center's Command and Control System - "Toasters to Rocket Ships"

    NASA Technical Reports Server (NTRS)

    Lougheed, Kirk; Mako, Cheryle

    2011-01-01

    This slide presentation reviews the history of the development of the command and control system at Kennedy Space Center. From a system that could be brought to Florida in the trunk of a car in the 1950's. Including the development of larger and more complex launch vehicles with the Apollo program where human launch controllers managed the launch process with a hardware only system that required a dedicated human interface to perform every function until the Apollo vehicle lifted off from the pad. Through the development of the digital computer that interfaced with ground launch processing systems with the Space Shuttle program. Finally, showing the future control room being developed to control the missions to return to the moon and Mars, which will maximize the use of Commercial-Off-The Shelf (COTS) hardware and software which was standards based and not tied to a single vendor. The system is designed to be flexible and adaptable to support the requirements of future spacecraft and launch vehicles.

  11. NASA takes stock

    NASA Technical Reports Server (NTRS)

    Frosch, R. A.

    1979-01-01

    The history of NASA activities and achievements in the past decade is reviewed with consideration given to the Apollo expeditions and the post-Apollo planetary exploration. Progress in spaceborne astronomy and in satellite communications is characterized as revolutionary. It is also noted that Landsat alone may eventually repay the United States for the cost of the entire space program. Special attention is given to the Shuttle program which will be the key to all operations in space for the next decade including the Galileo mission to Jupiter (1982) and the Space Telescope (1983). Future missions could include a Venus orbiter with imaging radar to finally penetrate the cloud cover of the planet and to map its surface; a rover or sample return expedition to Mars; a Saturn orbiter combined with a probe of its Titan satellite, and an examination of Halley's Comet. Finally the next decade should bring the data needed to make a 'go' or 'no go' decision on the concept of SPS that would beam solar energy into earth stations.

  12. Power to Explore: A History of the Marshall Space Flight Center, 1960-1990

    NASA Technical Reports Server (NTRS)

    Dunar, Andrew J.; Waring, Stephen P.

    1999-01-01

    This scholarly study of NASA's Marshall Space Flight Center places the institution in social, political, scientific and technological context. It traces the evolution of Marshall, located in Huntsville, Alabama, from its origins as an Army missile development organization to its status in 1990 as one of the most diversified of NASA's field Center. Chapters discuss military rocketry programs in Germany and the United States, Apollo-Saturn, Skylab, Space shuttle, Spacelab, the Space Station, and various scientific and technical projects including the Hubble Space Telescope. It sheds light not only on the history of space technology, science and exploration, but also on the Cold War, federal politics and complex organizations.

  13. KSC-2009-5314

    NASA Image and Video Library

    2009-10-02

    CAPE CANAVERAL, Fla. – At Walt Disney World's Magic Kingdom in Orlando, Fla., Apollo 11 astronaut Buzz Aldrin, riding in a 1969 Camaro convertible, participates in a ticker-tape parade to welcome his namesake, toy space ranger Buzz Lightyear, home from space. The 12-inch-tall action figure spent more than 15 months aboard the International Space Station and returned to Earth aboard space shuttle Discovery on Sept. 11 with the STS-128 crew. Lightyear's space adventure, a collaboration between NASA and Disney Parks, is intended to share the excitement of space exploration with students around the world and encourage them to pursue studies in science, technology, engineering and mathematics. For additional information, visit http://www.nasa.gov/buzzoniss. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-07pd1042

    NASA Image and Video Library

    2007-05-05

    KENNEDY SPACE CENTER, FLA. -- At the U.S. Astronaut Hall of Fame induction ceremony, new and former inductees are seated on the dais. In the front row, from left, are John Glenn, Scott Carpenter, Al Worden, Steven Hawley, Michael Coats, John Young, Jim Lovell and Ed Mitchell. At far left is John Zarrella, CNN's Miami Bureau Chief, who moderated. The May 5 induction added space shuttle commanders Michael L. Coats, Steven A. Hawley and Jeffrey A. Hoffman to the Hall of Fame. They grow the number of space explorers enshrined in the Hall of Fame to 66. The ceremony was held at the Kennedy Space Center's Apollo/Saturn V Center. Photo credit: NASA/Kim Shiflett

  15. KSC-06pd0791

    NASA Image and Video Library

    2006-05-06

    KENNEDY SPACE CENTER, FLA. - Charles F. Bolden Jr. (right) accepts congratulations from Al Worden, U.S. Astronaut Hall of Fame member and chairman of the Astronaut Scholarship Foundation. The occasion is the 2006 induction ceremony for the U.S. Astronaut Hall of Fame, held in the Apollo/Saturn V Center. The inductees for 2006 are former NASA astronauts Bolden, Henry "Hank" Hartsfield Jr. and Brewster H. Shaw Jr. Bolden flew on four space shuttle missions including STS-61C, STS-31, STS-45 and STS-60, logging 680 hours in space. The U.S. Astronaut Hall of Fame now includes 63 space explorers. Photo credit: NASA/Kim Shiflett

  16. ASK Talks with Alex McCool

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As a charter member at Marshall, McCool was instrumental in the design of the propulsion systems for the Saturn launch vehicles that propelled Apollo to the Moon and directed project engineering for Skylab, the first space science laboratory. Alex McCool's 48-year career includes exceptional contributions to the vehicles that launched America into orbit and carried human beings to the moon. Presently, he is the manager of the Space Shuttle Projects Office at Marshall. Among his many honors he recently received the National Space Club's 2002 Astronautics Engineer Award. The award recognizes those who have made outstanding contributions in engineering management to the national space program.

  17. TDRS-L NASA Social Tour

    NASA Image and Video Library

    2014-01-23

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, social media participants were given an opportunity to go inside the spaceport's Vehicle Assembly Building. After serving through the Apollo and Space Shuttle Programs, the structure now is undergoing renovations to accommodate future launch vehicles and to continue as a major part of America's efforts to explore space. The social media participants gathered at the Florida spaceport for the launch of the Tracking and Data Relay Satellite, or TDRS-L spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Dan Casper

  18. Female Astronaut-Candidates (ASCAN)'s - JSC

    NASA Image and Video Library

    1979-03-23

    S79-29592 (28 Feb 1979) --- Sporting their new Shuttle-type constant-wear garments, these six astronaut candidates pose for a picture in the crew systems laboratory at the Johnson Space Center (JSC) with the personnel rescue enclosure (PRE) or "rescue ball" and an unoccupied Apollo EMU. From left to right are Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Sally K. Ride, Anna L. Fisher and Shannon W. Lucid.

  19. The NASA planning process, appendix D. [as useful planning approach for solving urban problems

    NASA Technical Reports Server (NTRS)

    Annett, H. A.

    1973-01-01

    The planning process is outlined which NASA used in making some fundamental post-Apollo decisions concerning the reuseable space shuttle and the orbiting laboratory. It is suggested that the basic elements and principles of the process, when combined, form a useful planning approach for solving urban problems. These elements and principles are defined along with the basic strengths of the planning model.

  20. KSC-2014-2104

    NASA Image and Video Library

    2014-04-14

    CAPE CANAVERAL, Fla. -- At Kennedy Space Center's Launch Pad 39A, from the left, NASA Administrator Charlie Bolden, Gwynne Shotwell, president and chief operating officer of Space Exploration Technologies SpaceX and Kennedy Space Center Director Bob Cabana pose in from the of the historic launch complex after announcing that NASA has just signed a lease agreement with SpaceX for use and operation of Launch Complex 39A. SpaceX will use Launch Complex 39A for rockets such as the Falcon Heavy, currently under development. Both launch pad 39A and 39B were originally built for the Apollo/Saturn V rockets that launched American astronauts on their historic journeys to the moon and later modified to support the 30-year shuttle program. Pad 39B is now being modified by NASA to support the Space Launch System SLS rocket boosting the Orion spacecraft part of the agency’s plan to explore beyond low-Earth orbit. To learn more about Launch Pad 39A visit: http://www.nasa.gov/mission_pages/shuttle/launch/launch-complex39-toc.html Photo credit: NASA/Dan Casper

  1. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  2. Refining the Ares V Design to Carry Out NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2008-01-01

    NASA's Ares V cargo launch vehicle is part of an overall architecture for u.S. space exploration that will span decades. The Ares V, together with the Ares I crew launch vehicle, Orion crew exploration vehicle and Altair lunar lander, will carry out the national policy goals of retiring the Space Shuttle, completing the International Space Station program, and expanding exploration of the Moon as a steps toward eventual human exploration of Mars. The Ares fleet (Figure 1) is the product of the Exploration Systems Architecture study which, in the wake of the Columbia accident, recommended separating crew from cargo transportation. Both vehicles are undergoing rigorous systems design to maximize safety, reliability, and operability. They take advantage of the best technical and operational lessons learned from the Apollo, Space Shuttle and more recent programs. NASA also seeks to maximize commonality between the crew and cargo vehicles in an effort to simplify and reduce operational costs for sustainable, long-term exploration.

  3. KSC-2012-1123

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Deputy Director Janet Petro, at left, Kennedy Center Director Robert Cabana, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi, place a wreath at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex during Kennedy’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-1119

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi place a wreath at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida during Kennedy’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-1124

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Robert Cabana, at left, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi, place a wreath at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida during Kennedy’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  6. Space Suit Electrocardiographic Electrode Selection: Are commercial electrodes better than the old Apollo technology?

    NASA Technical Reports Server (NTRS)

    Redmond, M.; Polk, J. D.; Hamilton, D.; Schuette, M.; Guttromson, J.; Guess, T.; Smith, B.

    2005-01-01

    The NASA Manned Space Program uses an electrocardiograph (ECG) system to monitor astronauts during extravehicular activity (EVA). This ECG system, called the Operational Bioinstrumentation System (OBS), was developed during the Apollo era. Throughout the Shuttle program these electrodes experienced failures during several EVAs performed from the Space Shuttle and International Space Station (ISS) airlocks. An attempt during Shuttle Flight STS-109 to replace the old electrodes with new commercial off-the-shelf (COTS) disposable electrodes proved unsuccessful. One assumption for failure of the STS-109 COTS electrodes was the expansion of trapped gases under the foam electrode pad, causing the electrode to be displaced from the skin. Given that our current electrodes provide insufficient reliability, a number of COTS ECG electrodes were tested at the NASA Altitude Manned Chamber Test Facility. Methods: OBS disposable electrodes were tested on human test subjects in an altitude chamber simulating an Extravehicular Mobility Unit (EMU) operating pressure of 4.3 psia with the following goals: (1) to confirm the root cause of the flight certified, disposable electrode failure during flight STS-109. (2) to identify an adequate COTS replacement electrode and determine if further modifications to the electrodes are required. (3) to evaluate the adhesion of each disposable electrode without preparation of the skin with isopropyl alcohol. Results: There were several electrodes that failed the pressure testing at 4.3psia, including the electrodes used during flight STS-109. Two electrodes functioned well throughout all testing and were selected for further testing in an EMU at altitude. A vent hole placed in all electrodes was also tested as a possible solution to prevent gas expansion from causing electrode failures. Conclusions: Two failure modes were identified: (1) foam-based porous electrodes entrapped air bubbles under the pad (2) poor adhesion caused some electrodes to fail

  7. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers

    NASA Technical Reports Server (NTRS)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.

    2013-01-01

    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  8. KSC-2009-5313

    NASA Image and Video Library

    2009-10-02

    CAPE CANAVERAL, Fla. – At Walt Disney World's Magic Kingdom in Orlando, Fla., a ticker-tape parade officially welcomes toy space ranger Buzz Lightyear home from space. NASA Apollo 11 astronaut Buzz Aldrin, behind the banner, and International Space Station commander Mike Fincke are featured in the procession. The 12-inch-tall action figure spent more than 15 months aboard the International Space Station and returned to Earth aboard space shuttle Discovery on Sept. 11 with the STS-128 crew. Lightyear's space adventure, a collaboration between NASA and Disney Parks, is intended to share the excitement of space exploration with students around the world and encourage them to pursue studies in science, technology, engineering and mathematics. For additional information, visit http://www.nasa.gov/buzzoniss. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2009-5312

    NASA Image and Video Library

    2009-10-02

    CAPE CANAVERAL, Fla. – At Walt Disney World's Magic Kingdom in Orlando, Fla., a ticker-tape parade officially welcomes toy space ranger Buzz Lightyear home from space. NASA Apollo 11 astronaut Buzz Aldrin and International Space Station commander Mike Fincke are featured in the procession. The 12-inch-tall action figure spent more than 15 months aboard the International Space Station and returned to Earth aboard space shuttle Discovery on Sept. 11 with the STS-128 crew. Lightyear's space adventure, a collaboration between NASA and Disney Parks, is intended to share the excitement of space exploration with students around the world and encourage them to pursue studies in science, technology, engineering and mathematics. For additional information, visit http://www.nasa.gov/buzzoniss. Photo credit: NASA/Dimitri Gerondidakis

  10. Development of lightweight reinforced plastic laminates for spacecraft interior applications

    NASA Technical Reports Server (NTRS)

    Hertz, J.

    1975-01-01

    Lightweight, Kevlar - reinforced laminating systems that are non-burning, generate little smoke in the space shuttle environment, and are physically equivalent to the fiberglass/polyimide system used in the Apollo program for non-structural cabin panels, racks, etc. Resin systems representing five generic classes were screened as matrices for Kevlar 49 reinforced laminates. Of the systems evaluated, the polyimides were the most promising with the phenolics a close second. Skybond 703 was selected as the most promising resin candidate. With the exception of compression strength, all program goals of physical and mechanical properties were exceeded. Several prototype space shuttle mobility and translation handrail segments were manufactured using Kevlar/epoxy and Kevlar-graphite/epoxy. This application shows significant weight savings over the baseline aluminum configuration used previous. The hybrid Kevlar-graphite/epoxy is more suitable from a processing standpoint.

  11. KSC-99pp0893

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- In the VIP Lounge, Apollo/Saturn V Center, First Lady Hillary Rodham Clinton gets ready to speak to the group gathered there before the launch of STS-93. At right is NASA Administrator Daniel Goldin. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes

  12. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  13. Spacecraft propulsion systems test capability at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, Pleddie; Gorham, Richard

    1993-01-01

    The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.

  14. Orders of Magnitude: A History of NACA and NASA, 1915 - 1980

    NASA Technical Reports Server (NTRS)

    Anderson, F. W., Jr.

    1981-01-01

    The history of NACA and NASA from 1915 to 1980 is narrated. The impact of two world wars on aeronautics is reviewed. Research activity before and during World War II is presented. Postwar exploitation of new technologies is summarized. The creation of NASA and a comprehensive space program is discussed. Long range planning for a lunar mission is described. The Gemini project is reviewed. The Apollo project and side effects includng NASA's university and technology transfer programs are presented. Numerous scientific and application satellite projects are reviewed. The impact of budget reductions is explained. The value of space exploration is emphasized. Development of the Space Shuttle is reported.

  15. Human factors technology for America's space program

    NASA Technical Reports Server (NTRS)

    Montemerlo, M. D.

    1982-01-01

    NASA is initiating a space human factors research and technology development program in October 1982. The impetus for this program stems from: the frequent and economical access to space provided by the Shuttle, the advances in control and display hardware/software made possible through the recent explosion in microelectronics technology, heightened interest in a space station, heightened interest by the military in space operations, and the fact that the technology for long duration stay times for man in space has received relatively little attention since the Apollo and Skylab missions. The rationale for and issues in the five thrusts of the new program are described. The main thrusts are: basic methodology, crew station design, ground control/operations, teleoperations and extra vehicular activity.

  16. Space Shuttle Crawler Transporter Sound Attenuation Study

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.; MacDonald, Rod; Faszer, Clifford

    2004-01-01

    The crawler transporter (CT) is the world's largest tracked vehicle known, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960's, maintained and retrofitted for use in the Space Shuttle program. As a key element of the Space Shuttle ground systems, the crawler transports the entire 12-million-pound stack comprising the orbiter, the mobile launch platform (MLP), the external tank (ET), and the solid rocket boosters (SRB) from the Vehicle Assembly Building (VAB) to the launch pad. This rollout, constituting a 3.5-5.0-mile journey at a top speed of 0.9 miles-per-hour, requires over 8 hours to reach either Launch Complex 39A or B. This activity is only a prelude to the spectacle of sound and fury of the Space Shuttle launch to orbit in less than 10 minutes and traveling at orbital velocities of Mach 24. This paper summarizes preliminary results from the Crawler Transporter Sound Attenuation Study, encompassing test and engineering analysis of significant sound sources to measure and record full frequency spectrum and intensity of the various noise sources and to analyze the conditions of vibration. Additionally, data such as ventilation criteria, plus operational procedures were considered to provide a comprehensive noise suppression design for implementation. To date, sound attenuation study and results on Crawler 2 have shown significant noise reductions ranging from 5 to 24 dBA.

  17. Processing materials in space - The history and the future

    NASA Technical Reports Server (NTRS)

    Chassay, Roger; Carswell, Bill

    1987-01-01

    The development of materials processing in space, and some of the Soyuz, Apollo, Skylab, and Shuttle orbital materials experiments are reviewed. Consideration is given to protein crystal growth, electrophoresis, low-gravity isoelectric focusing, phase partitioning, a monodisperse latex reactor, semiconductor crystal growth, solution crystal growth, the triglycine sulfate experiment, vapor crystal growth experiments, the mercuric iodide experiment, electronic and electrooptical materials, organic thin films and crystalline solids, deep undercooling of metals and alloys, magnetic materials, immiscible materials, metal solidification research, reluctant glass-forming materials, and containerless glass formation. The space processing apparatuses and ground facilities, for materials processing are described. Future facilities for commercial research, development, and manufacturing in space are proposed.

  18. KSC-2009-5946

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. At right is space shuttle Atlantis, poised on Launch Pad 39A for liftoff, targeted for Nov. 16. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  19. KSC-2012-1126

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- Roses decorate the fence surrounding the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida during Kennedy Space Center’s NASA Day of Remembrance. A large wreath was placed at the memorial by Kennedy Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-1122

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- During Kennedy Space Center’s NASA Day of Remembrance at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida, United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi, at left, Kennedy Deputy Director Janet Petro, and Kennedy Center Director Robert Cabana prepare to place a wreath at the memorial. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  1. KSC-2012-1131

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- Visitors place roses at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida during Kennedy Space Center’s NASA Day of Remembrance. Kennedy Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi placed a wreath at the memorial. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-99pp0894

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- The group waiting in the Apollo/Saturn V Center for the launch of STS-93 pose for a photo. Among the spectators gathered are First Lady Hillary Rodham Clinton and her daughter, Chelsea, NASA Administrator Daniel Goldin, astronauts, and attendees of a Women in Space forum, including Donna Shalala, secretary , Department of Health and Human Services. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20

  3. Research and technology Fiscal Year 1985 report

    NASA Technical Reports Server (NTRS)

    Speer, F.

    1985-01-01

    A quarter of a century is but a moment on the cosmic calendar. Now that Marshall Space Flight Center has reached its 25th Anniversity, it seems just moments ago that President Dwight D. Eisenhower stood on these grounds and formally dedicated the George C. Marshall Space Flight Center in Huntsville, Alabama. The Fiscal Year 1985 Research and Technology Report reflects the wide spectrum of activities closely linked with the Center's mainstream spaceflight developments. Past accomplishments testify to the success of getting deeply involved in the science and technology of its projects - 32 Saturn launches, Pegasus, the Skylab missions, three High Energy Astronomy Observatory missions, the Apollo - Soyuz mission, and an accelerating schedule of successful Shuttle, Spacelab, and Shuttle payload missions. The Center continues to be involved in engineering development, scientific research, and technology. At the beginning of the second quarter century, the experience and dedication of the engineers and scientists, and the success of the collaboration with industry and academia will now be aimed at the next great endeavor, the Space Station.

  4. Main Propulsion for the Ares Projects

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2009-01-01

    The goal of this slide presentation is to provide an update on the status of the Ares propulsion systems. The Ares I is the vehicle to launch the crew and the Ares V is a heavy lift vehicle that is being designed to launch cargo into Low Earth Orbit (LEO) and transfer cargo and crews to the moon. The Ares propulsion systems are based on the heritage hardware and experiences from the Apollo project to the Space Shuttle and also to current expendable launch vehicles (ELVs). The presentation compares the various launch vehicles from the Saturn V to the space shuttle, including the planned details of the Ares I and V. There are slides detailing the elements of the Ares I and the Ares V, including views of the J2X upper stage engine that is to serve both the Ares I and V. The extent of the progress is reviewed.

  5. Alan Bean and Don Peterson Wreath Laying Ceremony

    NASA Image and Video Library

    2018-05-30

    NASA’s Kennedy Space Center Visitor Complex hosted two remembrance ceremonies Wednesday, May 30 in honor of astronauts Alan Bean and Don Peterson, respectively. Bean, a member of the U.S. Astronaut Hall of Fame was selected to join NASA’s third astronaut class in 1963. He was the fourth person to walk on the Moon during the Apollo 12 mission in 1969. Bean went on to become the commander of the second crewed flight of Skylab in 1973 and an accomplished artist during his retirement. He passed away on May 26 at the age of 86. Peterson became a NASA astronaut in 1969. He flew on the maiden voyage of Space Shuttle Challenger in 1983 and was one of the first astronauts to perform a spacewalk from the shuttle. He passed away on May 27 at the age of 84.WreatWreljklaejlkjawekjwWwewerewrwefdsfdsgdfgsdfggdfsgdfsgdfsfdgdffgddsfgrtWrjelkwjlkrewsadjkl

  6. KSC-00pp0716

    NASA Image and Video Library

    2000-06-01

    KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads

  7. KSC00pp0716

    NASA Image and Video Library

    2000-06-01

    KENNEDY SPACE CENTER, FLA. -- A crawler-transporter with mobile launcher platform on top tests the buried portion of the Apollo-era crawlerway leading to the Vehicle Assembly Building (VAB) high bay 2 on the southwest side. The road was restored as part of KSC’s Safe Haven project. High bay 2 provides a third stacking area. The primary goal of the Safe Haven construction project was to strengthen readiness for hurricane season by expanding the VAB’s storage capacity. The new area, in high bay 2, will allow NASA to preassemble stacks and still have room in the VAB to pull a Shuttle back from the pad if severe weather threatens. Potential rollouts of the Space Shuttle to the launch pad from high bay 2 will involve making a turn around the north side of the VAB in contrast to the straight rollouts from high bays 1 and 3, on the east side of the VAB facing the launch pads

  8. A Simple Space Station Rescue Vehicle

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1995-01-01

    Early in the development of the Space Station it was determined that there is a need to have a vehicle which could be used in the event that the Space Station crew need to quickly depart and return to Earth when the Space Shuttle is not available. Unplanned return missions might occur because of a medical emergency, a major Space Station failure, or if there is a long-term interruption in the delivery of logistics to the Station. The rescue vehicle ms envisioned as a simple capsule-type spacecraft which would be maintained in a dormant state at the Station for several years and be quickly activated by the crew when needed. During the assembly phase for the International Space Station, unplanned return missions will be performed by the Russian Soyuz vehicle, which can return up to three people. When the Station assembly is complete there will be a need for rescue capability for up to six people. This need might be met by an additional Soyuz vehicle or by a new vehicle which might come from a variety of sources. This paper describes one candidate concept for a Space Station rescue vehicle. The proposed rescue vehicle design has the blunt-cone shape of the Apollo command module but with a larger diameter. The rescue vehicle would be delivered to the Station in the payload bay of the Space Shuttle. The spacecraft design can accommodate six to eight people for a one-day return mission. All of the systems for the mission including deorbit propulsion are contained within the conical spacecraft and so there is no separate service module. The use of the proven Apollo re-entry shape would greatly reduce the time and cost for development and testing. Other aspects of the design are also intended to minimize development cost and simplify operations. This paper will summarize the evolution of rescue vehicle concepts, the functional requirements for a rescue vehicle, and describe the proposed design.

  9. Apollo Lightcraft project

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Blandino, John S.; Borkowski, Chris A.; Cross, David P.; Frazier, Scott R.; Hill, Stephen C.; Mitty, Todd J.; Moder, Jeffrey P.; Morales, Ciro; Nyberg, Gregory A.

    1987-01-01

    The detailed design of a beam-powered transatmospheric vehicle, the Apollo Lightcraft, was selected as the project for the design course. The principal goal is to reduce the LEO payload delivery cost by at least three orders of magnitude below the Space Shuttle Orbiter in the post 2020 era. The completely reusable, single-stage-to-orbit shuttlecraft will take off and land vertically, and have a reentry heat shield integrated with its lower surface. At appropriate points along the launch trajectory, the combined cycle propulsion system will transition through three or four airbreathing modes, and finally use a pure rocket mode for orbital insertion. The objective for the Spring semester propulsion source was to design and perform a detailed theoretical analysis on an advanced combined-cycle engine suitable for the Apollo Lightcraft. The preliminary theoretical analysis of this combined-cycle engine is now completed, and the acceleration performance along representative orbital trajectories was simulated. The total round trip cost is $3430 or $686 per person. This represents a payload delivery cost of $3.11/lb, which is a factor of 1000 below the STS. The Apollo Lightcraft concept is now ready for a more detailed investigation during the Fall semester Transatmosphere Vehicle Design course.

  10. KSC-04pd0974

    NASA Image and Video Library

    2004-05-01

    KENNEDY SPACE CENTER, FLA. -- At the Kennedy Space Center Visitor Complex, the late Francis R. "Dick" Scobee, commander of the ill-fated 1986 Challenger mission, is inducted into the U.S. Astronaut Hall of Fame. He is represented by his widow, June Scobee (left), who is accompanied by former NASA astronaut James A. Lovell Jr. and NASA astronaut Barbara R. Morgan. Morgan assumed the duties of Teacher in Space designee following the death of Christa McAuliffe, the teacher on the Challenger mission, and was selected by NASA in January 1998 as the first Educator Astronaut. Also chosen for induction in 2004 are Kathryn D. Sullivan, the first American woman to walk in space; Richard O. Covey, commander of the Hubble Space Telescope repair mission; Frederick D. Gregory, the first African-American to command a space mission; and Norman E. Thagard, the first American to occupy Russia's Mir space station. The U.S. Astronaut Hall of Fame opened in 1990 to provide a place where space travelers could be remembered for their participation and accomplishments in the U.S. space program. To be eligible for induction, an individual must have been a U.S. citizen, a NASA astronaut, and out of the active astronaut corps at least five years. The five inductees join 52 previously honored astronauts from the ranks of the Gemini, Apollo, Skylab, Apollo-Soyuz, and Space Shuttle programs.

  11. KSC-2012-1128

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- The names of U.S. space explorers who have been lost are engraved on the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. Kennedy Space Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi placed a wreath at the memorial during Kennedy’s NASA Day of Remembrance. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Dimitri Gerondidakis

  12. KSC-2012-1129

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center civil service and contractor workers, along with visitors gather at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida for Kennedy Space Center’s NASA Day of Remembrance. Kennedy Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi placed a wreath at the memorial. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Dimitri Gerondidakis

  13. KSC-2012-1130

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center civil service and contractor workers, along with visitors gather at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida for Kennedy Space Center’s NASA Day of Remembrance. Kennedy Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi placed a wreath at the memorial. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Dimitri Gerondidakis

  14. KSC-2011-1212

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- Pictured near the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida are the members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial honors 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  15. Historical flight qualifications of space nuclear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.

    1997-01-01

    An overview is presented of the qualification programs for the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions; the SNAP-10A space reactor; the Nuclear Engine for Rocket Vehicle Applications (NERVA); the F-1 chemical rocket engine used on the Saturn-V Apollo lunar missions; and the Space Shuttle Main Engines (SSMEs). Some similarities and contrasts between the qualification testing employed on these five programs will be noted. One common thread was that in each of these successful programs there was an early focus on component and subsystem tests to uncover and correct problems. {copyright} {italmore » 1997 American Institute of Physics.}« less

  16. KSC-08pd2377

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – A view from above of repairs made to the walls of the Launch Pad 39A flame trench at NASA's Kennedy Space Center. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-08pd2375

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – An inspector stands in the Launch Pad 39A flame trench at NASA's Kennedy Space Center after tests of the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-08pd2373

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – A closeup of the wall in the Launch Pad 39A flame trench at NASA's Kennedy Space Center after repairs were made. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-08pd2374

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – In the Launch Pad 39A flame trench at NASA's Kennedy Space Center, inspectors test the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-08pd2372

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – This view of the Launch Pad 39A flame trench at NASA's Kennedy Space Center shows the areas on the walls recently repaired. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  1. Habitability design for spacecraft

    NASA Technical Reports Server (NTRS)

    Franklin, G. C.

    1978-01-01

    Habitability is understood to mean those spacecraft design elements that involve a degree of comfort, quality or necessities to support man in space. These elements are environment, architecture, mobility, clothing, housekeeping, food and drink, personal hygiene, off-duty activities, each of which plays a substantial part in the success of a mission. Habitability design for past space flights is discussed relative to the Mercury, Gemini, Apollo, and Skylab spacecraft, with special emphasis on an examination of the Shuttle Orbiter cabin design from a habitability standpoint. Future projects must consider the duration and mission objectives to meet their habitability requirements. Larger ward rooms, improved sleeping quarters and more complete hygiene facilities must be provided for future prolonged space flights

  2. Learning from Past Experiences

    NASA Technical Reports Server (NTRS)

    Hulet, Michael W.

    2007-01-01

    Space flight is a risky business. This truism has been bandied about since the earliest days of the space program. When asked by the young daughter of a coworker, one of the Mercury astronauts likened launching into space to "riding a Roman candle" -- it was both exciting and dangerous. Even in these more technologically advanced days, the solid rocket boosters and external tanks of the space shuttle provide a no less exciting, or dangerous, ride into space. However much the phrase "risk mitigation" is bandied about within the U.S. space program, there is still the history of the Apollo 1 fire during a ground test at Cape Canaveral, Fla., the loss of the shuttle Challenger during liftoff, and the loss of the shuttle Columbia when returning to Earth to remind us that while we give lip-service to risk management, we have not learned to manage risk as well as we ought. Moreover, there are many more less dramatic, but equally critical, incidents that have occurred in association with the space program that also highlight our inability to accurately gauge and manage risk. Why do we seem caught in a senseless spiral in which we focus most on risk only after a tragedy? Why do we repeat serious mishaps and not learn from our mistakes? This paper reviews some possible explanations for our risk-taking behavior and provides examples of interest to the NASA centers, while also discussing inter center and intra-center opportunities for sharing information to mitigate risk.

  3. Lessons learned in creating spacecraft computer systems: Implications for using Ada (R) for the space station

    NASA Technical Reports Server (NTRS)

    Tomayko, James E.

    1986-01-01

    Twenty-five years of spacecraft onboard computer development have resulted in a better understanding of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Voyager, and Galileo) and three reserach programs (digital fly-by-wire, STAR, and the Unified Data System) are useful in projecting the computer hardware configuration of the Space Station and the ways in which the Ada programming language will enhance the development of the necessary software. The evolution of hardware technology, fault protection methods, and software architectures used in space flight in order to provide insight into the pending development of such items for the Space Station are reviewed.

  4. KSC-2012-1125

    NASA Image and Video Library

    2012-01-26

    CAPE CANAVERAL, Fla. -- The Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida gleams in the morning sunlight during Kennedy’s NASA Day of Remembrance. A large wreath was placed at the memorial by Kennedy Center Director Robert Cabana, Deputy Director Janet Petro, and United Space Alliance’s Vice President for Aerospace Services/Florida Site Director Mark Nappi. The Day of Remembrance honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery, including the astronaut crews of Apollo 1 and space shuttles Challenger and Columbia. Kennedy civil service and contractor employees, along with the general public, paid their respects throughout the day. The visitor complex provided flowers for visitors to place at the memorial. Photo credit: NASA/Kim Shiflett

  5. On the Shoulders of Giants - Apollo's Contribution to Ares

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2008-01-01

    It has been over 35 years since NASA developed new human spaceflight capabilities. As NASA builds vehicles to once again venture beyond Earth's orbit, it has the advantage of a powerful legacy of seasoned professionals who have already been there. Apollo-era veterans are lending their knowledge and expertise to nearly every aspect of the new Ares I crew launch vehicle and the Ares V cargo launch vehicle, from management to design and manufacturing techniques. Through group discussions, personal interviews, and consultant relationships, these talented individuals are sharing their "lessons lived" to help a new generation of engineers repeat the successes and avoid some of the pitfalls of America's first journeys to the Moon. In addition to learning from resident and retired experts, Ares will draw on legacy facilities, tooling, and hardware like the J-2 engine from the Apollo era and the Reusable Solid Rocket Boosters from the Space Shuttle Program. NASA needs to re-learn the skills required to send astronauts to the Moon, Mars, and beyond. The new Ares team is training with the best and building on the work of their eminent predecessors. They are standing on the shoulders of giants to see a future that is bright with possibilities on the space frontier.

  6. LAUNCH (IGOR) - STS-1

    NASA Image and Video Library

    1981-04-12

    S81-33179 (12 April 1981) --- Though their STS-1 task has been performed, the two solid rocket boosters (SRB) still glow following their jettisoning from the space shuttle Columbia on its way to many firsts. Among the history recorded by the spacecraft is the marking of a mission in a reusable spacecraft. STS-1 is NASA's first manned mission since the Apollo-Soyuz Test Project in 1975. Inside the cabin of the climbing spacecraft are astronauts John W. Young and Robert L. Crippen. Photo credit: NASA

  7. KSC-2012-1449

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  8. KSC-2012-1451

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn stands in the middeck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  9. KSC-2012-1444

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  10. KSC-2012-1443

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, left, enter Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida where space shuttle Discovery is being prepared for public display. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  11. KSC-2012-1453

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  12. KSC-2012-1458

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn signs autographs in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida where space shuttle Discovery is being prepared for public display. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  13. KSC-2012-1454

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA Kennedy Space Center Director Bob Cabana sit in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  14. KSC-2012-1445

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand under space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  15. KSC-2012-1447

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn stands beside the wheel of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  16. KSC-2012-1452

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and NASA astronaut Stephen Robinson stand in the middeck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  17. KSC-2012-1455

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  18. KSC-2012-1457

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn signs the wall of the clean room leading into space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  19. Flexible Packaging Concept for a Space Suit Portable Life Support Subsystem

    NASA Technical Reports Server (NTRS)

    Thomas, Gretchen; Dillon, Paul; Oliver, Joe; Zapata, Felipe

    2009-01-01

    Neither the Shuttle Extravehicular Mobility Unit (EMU), the space suit currently used for space shuttle and International Space Station (ISS) missions, nor the Apollo EMU, the space suit successfully used on previous lunar missions, will satisfy the requirements for the next generation Constellation Program (CxP) lunar suit. The CxP system or Constellation Space Suit Element (CSSE) must be able to tolerate more severe environmental and use conditions than any previous system. These conditions include missions to the severely cold lunar poles and up to 100 Extravehicular Activity (EVA) excursions without ground maintenance. Much effort is focused on decreasing the mass and volume of the Portable Life Support Subsystem (PLSS) over previous suit designs in order to accommodate the required increase in functionality. This paper documents the progress of a conceptual packaging effort of a flexible backpack for the CSSE PLSS. The flexible backpack concept relies on a foam protection system to absorb, distribute, and dissipate the energy from falls on the lunar surface. Testing and analysis of the foam protection system concept that was conducted during this effort indicates that this method of system packaging is a viable solution.

  20. Worldwide Spacecraft Crew Hatch History

    NASA Technical Reports Server (NTRS)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  1. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  2. KSC-2009-5848

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the pad and the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-5849

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the pad and the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  4. KSC-2009-5850

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the pad and the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-5859

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As night settles over Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  6. KSC-2009-5860

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As night settles over Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-5852

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-5858

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As night settles over Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-5847

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the pad and the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-5846

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights illuminate the pad and the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  11. KSC-2009-5853

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-5854

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-5855

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-5856

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As night settles over Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-5851

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As nightfall comes to Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  16. KSC-2009-5857

    NASA Image and Video Library

    2009-10-23

    CAPE CANAVERAL, Fla. - As night settles over Launch Complex 39B at NASA's Kennedy Space Center in Florida, xenon lights reveal the Ares I-X rocket awaiting the approaching liftoff of its flight test. This is the first time since the Apollo Program's Saturn rockets were retired that a vehicle other than the space shuttle has occupied the pad. Part of the Constellation Program, the Ares I-X is the test vehicle for the Ares I. The Ares I-X flight test is set for Oct. 27. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  17. Space station data management system - A common GSE test interface for systems testing and verification

    NASA Technical Reports Server (NTRS)

    Martinez, Pedro A.; Dunn, Kevin W.

    1987-01-01

    This paper examines the fundamental problems and goals associated with test, verification, and flight-certification of man-rated distributed data systems. First, a summary of the characteristics of modern computer systems that affect the testing process is provided. Then, verification requirements are expressed in terms of an overall test philosophy for distributed computer systems. This test philosophy stems from previous experience that was gained with centralized systems (Apollo and the Space Shuttle), and deals directly with the new problems that verification of distributed systems may present. Finally, a description of potential hardware and software tools to help solve these problems is provided.

  18. KSC-2012-1450

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana, right, talks to guests in Orbiter Processing Facility-1 OPF-1 where space shuttle Discovery is being prepared for public display during a 50th anniversary celebration of the first orbital flight of an American. The astronaut who made that first flight, John Glenn, is at the space center to commemorate that achievement. Glenn orbited the Earth three times in the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. He later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Also in the photo are Glenn's wife, Annie, NASA astronaut Stephen Robinson, and Bob Sieck, a former shuttle launch director. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  19. Flame Retardant Fibers for Human Space Exploration - Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne

    2017-01-01

    The National Aeronautics and Space Administration (NASA) has led in the development of unique flame retardant fibers for human spaceflight since the beginning of the Apollo program. After the Apollo 1 fire which killed Command Pilot Virgil I 'Gus' Grissom, Senior Pilot Edward H. White II, and Pilot Roger B. Chaffee from cardiac arrest on January 27, 1967, the accident investigators found severe third degree burns and melted spacesuits on the astronauts bodies. NASA immediately initiated an extensive research program aimed at developing flame retardant and flame resistant fibers for the enriched oxygen atmosphere of the Apollo crew cabin. Fibers are flame retardant when they have been modified by chemical and thermal treatments. Fibers are flame resistant when they are made of inherently flame resistant materials (i.e. glass, ceramic, highly aromatic polymers). Immediately after this tragic accident, NASA funded extensive research in specifically developing flame retardant fibers and fabrics. The early developmental efforts for human spaceflight were for the outer layer of the Apollo spacesuit. It was imperative that non-flammable fabrics be used in a 100% oxygen environment. Owens-Corning thus developed the Beta fiber that was immediately used in the Apollo program and later in the Space Shuttle program. Aside from the urgent need for protective fabrics for the spacesuit, NASA also needed flame retardant fabrics for both clothing and equipment inside the spacecraft. From the mid-1960s to the early 1980's, NASA contracted with many companies to develop inherently flame retardant fibers and flame retardant finishes for existing fibers. Fluorocarbons and aromatic polyamides were the polymers of great interest for the development of new inherently flame retardant fibers for enriched oxygen environments. These enriched environments varied for different space programs. For example, the Apollo program requirements were for materials that would not support combustion in a 70%/30% oxygen/nitrogen environment at 6.3 pounds per square inch (psi). The Skylab program flammability requirements were set at 80%/20% oxygen/nitrogen ratios at 5 psi. While many fibers produced under several NASA contracts were never used, a few have become commercial products. The intent of this paper is to present the developmental history of some of these new or modified textile fibers. These developmental efforts are presented at various levels of details depending on the source of the historical records.

  20. Immunology presentation at the 1990 NASA/NSF Antarctica Biomedical Science Working Group

    NASA Technical Reports Server (NTRS)

    Meehan, Richard T.

    1990-01-01

    An overview of methodology used for determining human in vitro lymphocyte activation, proliferation and effector cell function was presented and results of previous manned space flight immunology studies from Apollo through Shuttle were reviewed. Until the Shuttle era, lymphocyte assays were not very sensitive and had such large variations among normal subjects that it was difficult to define a consistent effect of space flight. More sensitive assay, however, even with Shuttle missions as brief as 6 days indicate depressed T-cell proliferative responses are routinely observed following space flight. Using a slight modification of the Shuttle assay, five different human stress-immunology models have been studied over the last 6 years in our lab. These have included: academic examinations of medical students having blood drawn during major test periods on three separate groups of first year students and two hypoxia studies (at 25,000 feet in a 6 week chamber ascent to the equivalent of Mount Everest and twice on Pikes Peak at 14,000 feet). These studies are particularly pertinent to Antarctica, since the altitude equivalent of 11,000 feet at the South Pole may affect some of the variables that are being measured in immunology, physiology or cognitive studies. An extravehicular study was performed drawing blood from 35 individuals before and immediately following a chamber exposure study. Preliminary results from 30 Shuttle astronauts investigated immunophenotype analysis and the role of a novel monocyte population in modulating the previously observed suppressed in vitro immune function. The results of the Air Force Academy cadet stress study were also presented.

  1. KSC-2012-1456

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA astronaut Stephen Robinson sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Robinson is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  2. KSC-07pd0193

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- Employees and guests are seated in the Operations and Checkout (O&C) Building high bay for the ceremony commemorating the bay's transition for use by the Constellation Program. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd2376

    NASA Image and Video Library

    2008-08-12

    CAPE CANAVERAL, Fla. – A van travels the width of the Launch Pad 39A flame trench at NASA's Kennedy Space Center after tests of the repairs on the wall. Workers sprayed a heat-resistant concrete called Fondue Fyre into steel grid structures, welded to the wall of the flame trench. Fondue Fyre was developed during NASA's Apollo lunar program. Damage to the trench occurred during the launch of space shuttle Discovery on the STS-124 mission. A 75-foot by 20-foot section of the east wall was destroyed and debris scattered as far as the pad perimeter fence. Repairs being completed before the targeted Oct. 8 launch of Atlantis on the NASA Hubble Space Telescope servicing mission. Photo credit: NASA/Dimitri Gerondidakis

  4. Improved Lunar Lander Handling Qualities Through Control Response Type and Display Enhancements

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard; Bilimoria, Karl D.; Frost, Chad Ritchie

    2010-01-01

    A piloted simulation that studied the handling qualities for a precision lunar landing task from final approach to touchdown is presented. A vehicle model based on NASA's Altair Lunar Lander was used to explore the design space around the nominal vehicle configuration to determine which combination of factors provides satisfactory pilot-vehicle performance and workload; details of the control and propulsion systems not available for that vehicle were derived from Apollo Lunar Module data. The experiment was conducted on a large motion base simulator. Eight Space Shuttle and Apollo pilot astronauts and three NASA test pilots served as evaluation pilots, providing Cooper-Harper ratings, Task Load Index ratings and qualitative comments. Each pilot flew seven combinations of control response types and three sets of displays, including two varieties of guidance and a nonguided approach. The response types included Rate Command with Attitude Hold, which was used in the original Apollo Moon landings, a Velocity Increment Command response type designed for up-and-away flight, three response types designed specifically for the vertical descent portion of the trajectory, and combinations of these. It was found that Velocity Increment Command significantly improved handling qualities when compared with the baseline Apollo design, receiving predominantly Level 1 ratings. This response type could be flown with or without explicit guidance cues, something that was very difficult with the baseline design, and resulted in approximately equivalent touchdown accuracies and propellant burn as the baseline response type. The response types designed to be used exclusively in the vertical descent portion of the trajectory did not improve handling qualities.

  5. Lightning Protection System for Space Shuttle

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The suitability and cost effectiveness of using a lightning mast for the shuttle service and access tower (SSAT) similar to the type used for the Apollo Soyuz Test Project (ASTP) mobile launcher (ML) was evaluated. Topics covered include: (1) ASTP launch damage to mast, mast supports, grounded overhead wires, and the instrumentation system; (2) modifications required to permit reusing the ASTP mast on the SSAT; (3) comparative costing factors per launch over a 10 year period in repetitive maintenance and refurbishment of the existing and modified masts, mast supports, grounded overhead wires, and ground instrumentation required to sustain mechanical and electrical integrity of the masts; (4) effects of blast testing samples of the ASTP ML type mast (corrosion and electrical flashover); (5) comparison of damages from ASTP launch and from blast testing.

  6. Dan Goldin chats with First Lady Hillary Clinton

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Apollo/Saturn V Center, NASA Administrator Daniel Goldin (right) chats with First Lady Hillary Rodham Clinton and others while waiting for the launch of STS-93. Much attention has been generated over STS-93 due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20.

  7. Implementation of Programmatic Quality and the Impact on Safety

    NASA Astrophysics Data System (ADS)

    Huls, Dale T.; Meehan, Kevin M.

    2005-12-01

    The implementation of an inadequate programmatic quality assurance discipline has the potential to adversely affect safety and mission success. This is best demonstrated in the lessons provided by the Apollo 1 Apollo 13 Challenger, and Columbia accidents; NASA Safety and Mission Assurance (S&MA) benchmarking exchanges; and conclusions reached by the Shuttle Return-to-Flight Task Group established following the Columbia Shuttle accident. Examples from the ISS Program demonstrate continuing issues with programmatic quality. Failure to adequately address programmatic quality assurance issues has a real potential to lead to continued inefficiency, increases in program costs, and additional catastrophic accidents.

  8. Kennedy Space Center (KSC) Pad B Catenary Capability Analysis and Technical Exchange Meeting (TEM) Support

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Kichak, Robert; Rakov, Vladimir; Kithil, Richard, Jr.; Sargent, Noel B.

    2009-01-01

    The existing lightning protection system at Pad 39B for the Space Shuttle is an outgrowth of a system that was put in place for the Apollo Program. Dr. Frank Fisher of Lightning Technologies was a key participant in the design and implementation of that system. He conveyed to the NESC team that the catenary wire provision was put in place quickly (as assurance against possible vehicle damage causing critical launch delays) rather than being implemented as a comprehensive system designed to provide a high degree of guaranteed protection. Also, the technology of lightning protection has evolved over time with considerable work being conducted by groups such as the electric utilities companies, aircraft manufacturers, universities, and others. Several accepted present-day methods for analysis of lightning protection were used by Drs. Medelius and Mata to study the expected lightning environment for the Pad 39B facility and to analyze the degree of protection against direct lightning attachment to the Space Shuttle. The specific physical configuration directly affects the vulnerability, so cases that were considered included the RSS next to and rolled back from the Space Shuttle, and the GOx Vent Arm both extended and withdrawn from the ET. Elements of the lightning protection system at Pad 39B are shown in Figure 6.0-1 and consist of an 80 foot insulating mast on top of the Fixed Support Structure (FSS), a catenary wire system that runs from the mast in a North/South direction to grounds 1000 feet away on each side of the mast, the RSS which can either be next to or away from the Space Shuttle, and a GOx vent that can either be extended or retracted from the top of the ET.

  9. Orion Powered Flight Guidance Burn Options for Near Term Exploration

    NASA Technical Reports Server (NTRS)

    Fill, Tom; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  10. Orion's Powered Flight Guidance Burn Options for Near Term Exploration Missions

    NASA Technical Reports Server (NTRS)

    Fill, Thomas; Goodman, John; Robinson, Shane

    2018-01-01

    NASA's Orion exploration spacecraft will fly more demanding mission profiles than previous NASA human flight spacecraft. Missions currently under development are destined for cislunar space. The EM-1 mission will fly unmanned to a Distant Retrograde Orbit (DRO) around the Moon. EM-2 will fly astronauts on a mission to the lunar vicinity. To fly these missions, Orion requires powered flight guidance that is more sophisticated than the orbital guidance flown on Apollo and the Space Shuttle. Orion's powered flight guidance software contains five burn guidance options. These five options are integrated into an architecture based on a proven shuttle heritage design, with a simple closed-loop guidance strategy. The architecture provides modularity, simplicity, versatility, and adaptability to future, yet-to-be-defined, exploration mission profiles. This paper provides a summary of the executive guidance architecture and details the five burn options to support both the nominal and abort profiles for the EM-1 and EM-2 missions.

  11. KSC-2009-5952

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - A bow shock forms around the Constellation Program's 327-foot-tall Ares I-X test rocket traveling at supersonic speed. The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds. Liftoff of the 6-minute flight test from Launch Pad 39B at NASA's Kennedy Space Center in Florida was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  12. KSC-2009-5947

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews

  13. KSC-2009-6023

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, NASA's 327-foot-tall Ares I-X test rocket lifts off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Carl Winebarger

  14. KSC-2009-5937

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket lifts off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller

  15. KSC-2009-5941

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  16. Crowd at VIP viewing site pose for photo

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The group waiting in the Apollo/Saturn V Center for the launch of STS-93 pose for a photo. Among the spectators gathered are First Lady Hillary Rodham Carter and her daughter, Chelsea, NASA Administrator Daniel Goldin, astronauts, and attendees of a Women in Space forum, including Donna Shalala, secretary , Department of Health and Human Services. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20.

  17. KSC-2009-5959

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – A fiery blaze trails the Ares I-X test rocket as it takes off from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT Oct. 28. Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ Kenny Allen

  18. KSC-2009-5962

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – Two of the lightning towers frame the Ares I-X test rocket as it takes off from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ Sandra Joseph and Kevin O'Connell

  19. KSC-2009-5968

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket ignites its first stage at Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. The Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ George Roberts and Tony Gray

  20. KSC-2009-5971

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket climbs into the skies above Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/ George Roberts and Tony Gray

  1. KSC-2009-5972

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – NASA's Ares I-X test rocket flies high above Launch Pad 39B at Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.Photo credit: NASA/ George Roberts and Tom Farrar

  2. KSC-2009-5973

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. – The Ares I-X test rocket launches into a bright Florida sky from Launch Pad 39B at NASA's Kennedy Space Center in Florida at 11:30 a.m. EDT on Oct. 28. NASA’s Constellation Program's 327-foot-tall rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/George Roberts and Tom Farrar

  3. KSC-2009-5942

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Kim Shiflett

  4. KSC-2009-5938

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, the Constellation Program's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Jack Pfaller

  5. KSC-2009-6021

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - With more than 23 times the power output of the Hoover Dam, NASA's Ares I-X test rocket zooms off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Carl Winebarger

  6. Launching to the Moon, Mars, and Beyond

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from the Apollo Saturn, Space Shuttle, and contemporary commercial launch vehicle programs. Less than one year after the Exploration Launch Projects Office was formed at NASA's Marshall Space Flight Center, engineers are testing engine components, firing test rocket motors, refining vehicle designs in wind tunnel tests, and building hardware for the first flight test of Ares I, scheduled for spring 2009. The Vision for Exploration will require this nation to develop tools, machines, materials, and processes never before invented, technologies and capabilities that can be turned over to the private sector to benefit nearly all aspects of life on Earth. This new pioneering venture, as did the Apollo Program before it, will contribute to America's economic leadership, national security, and technological global competitiveness and serve as an inspiration for all its citizens.

  7. KSC-99pp0904

    NASA Image and Video Library

    1999-07-19

    KENNEDY SPACE CENTER, FLA. -- At the Apollo/Saturn V Center, country music recording artist Teresa performs a song, "Brave New Girls," written for astronaut Catherine "Cady" Coleman, mission specialist on STS-93. She entertains participants and attendees of a women's forum held in the center. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. Liftoff is scheduled for July 20 at 12:36 a.m. EDT

  8. Initial development of an ablative leading edge for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Daforno, G.; Rose, L.; Graham, J.; Roy, P.

    1974-01-01

    A state-of-the-art preliminary design for typical wing areas is developed. Seven medium-density ablators (with/without honeycomb, flown on Apollo, Prime, X15A2) are evaluated. The screening tests include: (1) leading-edge models sequentially subjected to ascent heating, cold soak, entry heating, post-entry pressure fluctuations, and touchdown shock, and (2) virgin/charred models subjected to bondline strains. Two honeycomb reinforced 30 pcf elastomeric ablators were selected. Roughness/recession degradation of low speed aerodynamics appears acceptable. The design, including attachments, substructure and joints, is presented.

  9. KSC-2009-5248

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – This ribbon cutting officially turns over NASA Kennedy Space Center's Launch Control Center Firing Room 1 from the Space Shuttle Program to the Constellation Program. Participating are (from left) Pepper Phillips, director of the Constellation Project Office at Kennedy; Bob Cabana, Kennedy's director; Robert Crippen, former astronaut; Jeff Hanley, manager of the Constellation Program at NASA's Johnson Space Center; and Nancy Bray, deputy director of Center Operations at Kennedy. The room has undergone demolition and construction and been outfitted with consoles for the upcoming Ares I-X rocket flight test targeted for launch on Oct. 27. As the center of launch operations at Kennedy since the Apollo Program, the Launch Control Center, or LCC, has played a central role in NASA's human spaceflight programs. Firing Room 1 was the first operational firing room constructed. From this room, controllers launched the first Saturn V, the first crewed flight of Saturn V, the first crewed mission to the moon and the first space shuttle. Firing Room 1 will continue this tradition of firsts when controllers launch the Constellation Program's first flight test. Also, this firing room will be the center of operations for the upcoming Ares I and Orion operations. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-4892

    NASA Image and Video Library

    2011-07-20

    CAPE CANAVERAL, Fla. -- Employees at NASA's Kennedy Space Center in Florida gathered in the Press Site parking lot, with the towering Vehicle Assembly Building in the background on June 27, 2011, to record a wake-up call to Atlantis' STS-135 crew members on NASA’s last voyage aboard a space shuttle. Use of music to awaken astronauts on space missions dates back at least to the Apollo Program, when astronauts returning from the moon were serenaded by their colleagues in mission control with lyrics from popular songs that seemed appropriate for the occasion. Usually picked by flight controllers or by crew members’ friends and family members, most wake-up calls are musical, but sometimes include dialog from movies or TV shows. The recording is usually followed by a call from the CAPCOM in Mission Control, wishing the crew a good morning but because this is the final mission for the Space Shuttle Program many of the NASA centers were given the opportunity to choose a phrase that most represents their best wishes and gratitude for a successful mission. The common element of all these selections is that they promote a sense of camaraderie and esprit de corps among the astronauts and ground support personnel. Photo credit: Cory Huston

  11. Marshall Space Flight Center Materials and Processes Laboratory

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.

    2012-01-01

    Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.

  12. KSC-2012-1448

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson stand beside the wheel of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  13. KSC-2012-1446

    NASA Image and Video Library

    2012-02-18

    CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana talks to guests in Orbiter Processing Facility-1 OPF-1 where space shuttle Discovery is being prepared for public display during a 50th anniversary celebration of the first orbital flight of an American. The astronaut who made that first flight, John Glenn, is at the space center to commemorate that achievement. Glenn orbited the Earth three times in the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. He later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston

  14. KSC-04pd1046

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Commander Eileen Collins tries out one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  15. KSC-04pd1047

    NASA Image and Video Library

    2004-05-07

    KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Wendy Lawrence examines one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  16. KSC-04PD-1047

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-114 Mission Specialist Wendy Lawrence examines one of the seats in the Rubber Room. Located under the launch pad, the steel dome Rubber Room floats on rubber isolators. It was the escape area used during the Apollo launches and it could not be removed when the pad was modified for the Shuttle. In case of an emergency on the pad, the astronauts would slide down the long vertical tube to the Rubber Room, strap themselves into the seats and wait for the danger to clear. The STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  17. Overview of crew member energy expenditure during Shuttle Flight 61-8 EASE/ACCESS task performance

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.; Waligora, J. W.; Stanford, J.; Edwards, B. F.

    1987-01-01

    The energy expenditure of the Shuttle Flight 61-B crewmembers during the extravehicular performance of Experimental Assembly of Structures in EVA (EASE) and Assembly Concept of Construction of Space Structures (ACCESS) construction system tasks are reported. These data consist of metabolic rate time profiles correlated with specific EASE and ACCESS tasks and crew comments. Average extravehicular activity metabolic rates are computed and compared with those reported from previous Apollo, Shylab, and Shuttle flights. These data reflect total energy expenditure and not that of individual muscle groups such as hand and forearm. When correlated with specific EVA tasks and subtasks, the metabolic profile data is expected to be useful in planning future EVA protocols. For example, after experiencing high work rates and apparent overheating during some Gemini EVAs, it was found useful to carefully monitor work rates in subsequent flights to assess the adequacy of cooling garments and as an aid to preplanning EVA procedures. This presentation is represented by graphs and charts.

  18. Managing Toxicological Risks: The Legacy of Shuttle Operations

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Space toxicology greatly matured as a result of research and operations associated with the Shuttle. Materials offgassing had been a manageable concern since the Apollo days, but we learned to pay careful attention to compounds that could escape containment, to combustion events, to toxic propellants, to overuse of utility compounds, and to microbial and human metabolites. We also learned that flying real-time hardware to monitor air pollutants was a pathway with unanticipated speed bumps. Each new orbiter was tested for any excess offgassing products that could pollute the air during flight. In the late 1990s toxicologists and safety experts developed a 5-level toxicity rating system to guide containment of toxic compounds. This system is now in use aboard the International Space Station (ISS). Several combustion events during Shuttle Mir and also during Shuttle free-flight impelled toxicologists to identify hardware capable of monitoring toxic products; however, rapid adaptation of the hardware for the unique conditions of spaceflight caused unexpected missteps. Current and planned combustion analyzers would be useful to commercial partners that wish to manage the risk of health effects from thermal events. Propellants received special attention during the Shuttle program because of the possibility of bringing them into the habitable volume on extravehicular activity suits. Monitors for the airlocks were developed to mitigate this risk. Utility materials, such as lubricants, posed limited toxicological problems because water was not recovered. One clearly documented case of microbial metabolites polluting the Shuttle atmosphere was noted, and this has implications for commercial flights and control of microbes. Finally, carbon dioxide, the major human metabolite, episodically presented air quality problems aboard Shuttle, especially when nominal air flows were obstructed. Commercial vehicles must maintain robust air circulation given the anticipated high density of human occupants.

  19. Space Adaptation Back Pain: A Retrospective Study

    NASA Technical Reports Server (NTRS)

    Kerstman, E. L.; Scheuring, R. A.; Barnes, M. G.; DeKorse, T. B.; Saile, L. G.

    2008-01-01

    Back pain is frequently reported by astronauts during the early phase of space flight as they adapt to the microgravity environment. However, the epidemiology of space adaptation back pain has not been well defined. The purpose of this retrospective study was to develop a case definition of space adaptation back pain, determine the incidence of space adaptation back pain, and determine the effectiveness of available treatments. Medical records from the Mercury, Apollo, Apollo-Soyuz Test Project (ASTP), Skylab, Mir, International Space Station (ISS), and Shuttle programs were reviewed. All episodes of in-flight back pain that met the criteria for space adaptation back pain were recorded. Pain characteristics, including intensity, location, and duration of the pain were noted. The effectiveness of specific treatments also was recorded. The incidence of space adaptation back pain among astronauts was determined to be 53% (384/722). Most of the affected astronauts reported mild pain (85%). Moderate pain was reported by 11% of the affected astronauts and severe pain was reported by only 4% of the affected astronauts. The most effective treatments were fetal positioning (91% effective) and the use of analgesic medications (85% effective). This retrospective study aids in the development of a case definition of space adaptation back pain and examines the epidemiology of space adaptation back pain. Space adaptation back pain is usually mild and self-limited. However, there is a risk of functional impairment and mission impact in cases of moderate or severe pain that do not respond to currently available treatments. Therefore, the development of preventive measures and more effective treatments should be pursued.

  20. KSC-2009-2828

    NASA Image and Video Library

    2009-04-24

    CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to pack the Combined Operational Load Bearing External Resistance Treadmill, or COLBERT, for launch to the International Space Station on the space shuttle Discovery STS-128 mission. The treadmill is named after comedian Stephen Colbert, the host of Comedy Central’s “The Colbert Report.” Colbert urged his viewers to suggest the name “Colbert” as the name for the station’s Node 3 module. Although his name did receive the most entries in an Internet polling contest, NASA chose the name “Tranquility” to honor the accomplishments of the Apollo 11 mission. COLBERT will be installed in Tranquility after the node arrives at the station next year. Launch of STS-128 is targeted for Aug. 6, 2009. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-2826

    NASA Image and Video Library

    2009-04-24

    CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to pack the Combined Operational Load Bearing External Resistance Treadmill, or COLBERT, for launch to the International Space Station on the space shuttle Discovery STS-128 mission. The treadmill is named after comedian Stephen Colbert, the host of Comedy Central’s “The Colbert Report.” Colbert urged his viewers to suggest the name “Colbert” as the name for the station’s Node 3 module. Although his name did receive the most entries in an Internet polling contest, NASA chose the name “Tranquility” to honor the accomplishments of the Apollo 11 mission. COLBERT will be installed in Tranquility after the node arrives at the station next year. Launch of STS-128 is targeted for Aug. 6, 2009. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-2827

    NASA Image and Video Library

    2009-04-24

    CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to pack the Combined Operational Load Bearing External Resistance Treadmill, or COLBERT, for launch to the International Space Station on the space shuttle Discovery STS-128 mission. The treadmill is named after comedian Stephen Colbert, the host of Comedy Central’s “The Colbert Report.” Colbert urged his viewers to suggest the name “Colbert” as the name for the station’s Node 3 module. Although his name did receive the most entries in an Internet polling contest, NASA chose the name “Tranquility” to honor the accomplishments of the Apollo 11 mission. COLBERT will be installed in Tranquility after the node arrives at the station next year. Launch of STS-128 is targeted for Aug. 6, 2009. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-2825

    NASA Image and Video Library

    2009-04-24

    CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a worker prepares to pack a component of the Combined Operational Load Bearing External Resistance Treadmill, or COLBERT, for launch to the International Space Station on the space shuttle Discovery STS-128 mission. The treadmill is named after comedian Stephen Colbert, the host of Comedy Central’s “The Colbert Report.” Colbert urged his viewers to suggest the name “Colbert” as the name for the station’s Node 3 module. Although his name did receive the most entries in an Internet polling contest, NASA chose the name “Tranquility” to honor the accomplishments of the Apollo 11 mission. COLBERT will be installed in Tranquility after the node arrives at the station next year. Launch of STS-128 is targeted for Aug. 6, 2009. Photo credit: NASA/Jack Pfaller

  4. KSC-2009-2824

    NASA Image and Video Library

    2009-04-24

    CAPE CANAVERAL, Fla. –– In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a worker prepares to pack the Combined Operational Load Bearing External Resistance Treadmill, or COLBERT, for launch to the International Space Station on the space shuttle Discovery STS-128 mission. The treadmill is named after comedian Stephen Colbert, the host of Comedy Central’s “The Colbert Report.” Colbert urged his viewers to suggest the name “Colbert” as the name for the station’s Node 3 module. Although his name did receive the most entries in an Internet polling contest, NASA chose the name “Tranquility” to honor the accomplishments of the Apollo 11 mission. COLBERT will be installed in Tranquility after the node arrives at the station next year. Launch of STS-128 is targeted for Aug. 6, 2009. Photo credit: NASA/Jack Pfaller

  5. KSC-2011-1217

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director and former astronaut Bob Cabana answers media questions during a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  6. KSC-2014-1955

    NASA Image and Video Library

    2014-04-01

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, ground support technicians install new roller bearings on the C truck of crawler-transporter 2, or CT-2. Work continues in high bay 2 to upgrade CT-2. The modifications are designed to ensure CT-2’s ability to transport launch vehicles currently in development, such as the agency’s Space Launch System, to the launch pad. The Ground Systems Development and Operations Program office at Kennedy is overseeing the upgrades. For more than 45 years the crawler-transporters were used to transport the mobile launcher platform and the Apollo-Saturn V rockets and, later, space shuttles to Launch Pads 39A and B. For more information, visit: http://www.nasa.gov/exploration/systems/ground/crawler-transporter. Photo credit: NASA/Cory Huston

  7. A Summary of NASA and USAF Hypergolic Propellant Related Spills and Fires

    NASA Technical Reports Server (NTRS)

    Nufer, Brian

    2010-01-01

    Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system test, checkout, and operational use.

  8. Hypergolic Propellants: The Handling Hazards and Lessons Learned from Use

    NASA Technical Reports Server (NTRS)

    Nufer, Brian

    2010-01-01

    Several unintentional hypergolic fluid related spills, fires, and explosions from the Apollo Program, the Space Shuttle Program, the Titan Program, and a few others have occurred over the past several decades. Spill sites include the following government facilities: Kennedy Space Center (KSC), Johnson Space Center (JSC), White Sands Test Facility (WSTF), Vandenberg Air Force Base (VAFB), Cape Canaveral Air Force Station (CCAFS), Edwards Air Force Base (EAFB), Little Rock AFB, and McConnell AFB. Until now, the only method of capturing the lessons learned from these incidents has been "word of mouth" or by studying each individual incident report. Through studying several dozen of these incidents, certain root cause themes are apparent. Scrutinizing these themes could prove to be highly beneficial to future hypergolic system testing, checkout, and operational use.

  9. KSC-2011-1211

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- A wreath is displayed at the foot of the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida during a Day of Remembrance ceremony to honor members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial honors 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  10. KSC-2011-1208

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- Flowers lay at the foot of the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida before a Day of Remembrance wreath laying ceremony to honor members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial honors 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  11. Nutrition in space: lessons from the past applied to the future.

    PubMed

    Lane, H W; Smith, S M; Rice, B L; Bourland, C T

    1994-11-01

    From the basic impact of nutrient intake on health maintenance to the psychosocial benefits of mealtime, the role of nutrition in space is evident. In this discussion, dietary intake data from three space programs, Apollo, Space Shuttle, and Skylab, are presented. Data examination reveals that energy and fluid intakes are almost always lower than predicted. Nutrition in space has many areas of impact, including provision of required nutrients and maintenance of endocrine, immune, and musculoskeletal systems. Long-duration missions will require quantitation of nutrient requirements for maintenance of health and protection against the effects of microgravity. Psychosocial aspects of nutrition will also be important for more productive missions and crew morale. Realization of the full role of nutrition during spaceflight is critical for the success of extended-duration missions. Research conducted to determine the impact of spaceflight on human physiology and subsequent nutritional requirements will also have direct and indirect applications in Earth-based nutrition research.

  12. KSC-2011-1216

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director and former astronaut Bob Cabana, left, United Space Alliance's Associate Program Manager for Solid Rocket Boosters Roger Elliott and Center Deputy Director Janet Petro participate in a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-1215

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- United Space Alliance's Associate Program Manager for Solid Rocket Boosters Roger Elliott, back, Kennedy Space Center Deputy Director Janet Petro, and Center Director and former astronaut Bob Cabana, participate in a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-1214

    NASA Image and Video Library

    2011-01-27

    CAPE CANAVERAL, Fla. -- United Space Alliance's Associate Program Manager for Solid Rocket Boosters Roger Elliott, left, Kennedy Space Center Deputy Director Janet Petro, and Center Director and former astronaut Bob Cabana, participate in a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-1346

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida participate in a ceremony at NASA's Kennedy Space Center in Florida to mark the completion of renovations on the historic Operations and Checkout Building high bay for use by the Constellation Program. At right, Richard Harris, with Lockheed Martin, describes activities that will take place in the building. Originally built to process space vehicles in the Apollo era, the building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's future human spaceflight vehicle, will be capable of transporting four crew members to the moon and later will support crew transfers to Mars. The Orion spacecraft also will be used to transport crew members to the International Space Station after space shuttles are retired in 2010. The first operational launch of Orion atop an Ares I rocket is planned for 2015. Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-2009-1345

    NASA Image and Video Library

    2009-01-26

    CAPE CANAVERAL, Fla. – Representatives from NASA, Lockheed Martin, Space Florida and the state of Florida participate in a ceremony at NASA's Kennedy Space Center in Florida to mark the completion of renovations on the historic Operations and Checkout Building high bay for use by the Constellation Program. At left, Richard Harris, with Lockheed Martin, describes activities that will take place in the building. Originally built to process space vehicles in the Apollo era, the building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's future human spaceflight vehicle, will be capable of transporting four crew members to the moon and later will support crew transfers to Mars. The Orion spacecraft also will be used to transport crew members to the International Space Station after space shuttles are retired in 2010. The first operational launch of Orion atop an Ares I rocket is planned for 2015. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-2014-2615

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter rolls toward Launch Pad 39A at NASA's Kennedy Space Center in Florida. Operations are underway to move Mobile Launcher Platform-2, or MLP-2, from the pad to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  18. KSC-2014-2622

    NASA Image and Video Library

    2014-05-20

    CAPE CANAVERAL, Fla. -- A crawler-transporter carries Mobile Launcher Platform-2, or MLP-2, away from Launch Pad 39A at NASA's Kennedy Space Center in Florida. The MLP is being moved to a nearby park site in Launch Complex 39. The historic launch pad was the site from which numerous Apollo and space shuttle missions began and is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corp., or SpaceX, of Hawthorne, California, on April 14 for use and occupancy of the seaside complex along Florida's central east coast. It will serve as a platform for SpaceX to support their commercial launch activities. For more information on Launch Pad 39A, visit http://www.nasa.gov/centers/kennedy/pdf/167416main_LC39-08.pdf. For learn more about the crawler-transporter, visit http://www.nasa.gov/centers/kennedy/pdf/167402main_crawlertransporters07.pdf. Photo credit: NASA/Kim Shiflett

  19. NASA Manned Launch Vehicle Lightning Protection Development

    NASA Technical Reports Server (NTRS)

    McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.

    2009-01-01

    Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.

  20. The Art and Science of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.

  1. NASA's Space Launch System Progress Report

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2012-01-01

    Exploration beyond Earth orbit will be an enduring legacy for future generations, as it provides a platform for science and exploration that will define new knowledge and redefine known boundaries. NASA s Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program s Saturn V that sent Americans to the Moon in the 1960s and 1970s. The SLS offers a flexible design that may be configured for the Orion Multi-Purpose Crew Vehicle with associated life-support equipment and provisions for long journeys or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 tonnes (t) in 2017 and will be evolvable to 130 t after 2021. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of Mars. Building on the foundation laid by over 50 years of human and scientific space flight and on the lessons learned from the Apollo, Space Shuttle, and Constellation Programs the SLS team is delivering both technical trade studies and business case analyses to ensure that the SLS architecture will be safe, affordable, reliable, and sustainable. This panel will address the planning and progress being made by NASA s SLS Program.

  2. Space: exploration-exploitation and the role of man.

    PubMed

    Loftus, J P

    1986-10-01

    The early years of space activity have emphasized a crew role similar to that of the test pilot or the crew of a high performance aircraft; even the Apollo lunar exploration missions were dominated by the task of getting to and from the moon. Skylab was a prototype space station and began to indicate the range of other functional roles man will play in space. The operation of the Space Shuttle has the elements of the operation of any other high performance flight vehicle during launch and landing; but in its on-orbit operations, it is often a surrogate space station, developing techniques and demonstrating the role of a future space station in various functions. In future space systems, the role of the crew will encompass all of the activities pursued in research laboratories, manufacturing facilities, maintenance shops, and construction sites. The challenge will be to design the tasks and the tools so that the full benefit of the opportunities offered by performing these functions in space can be attained.

  3. Metabolic energy requirements for space flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.

    1992-01-01

    The international space community, including the USSR, Japan, Germany, the European Space Agency, and the US, is preparing for extended stays in space. Much of the research planned for space will be tended by humans, thus, maintaining adequate nutritional status during long stays in space has lately become an issue of much interest. Historically, it appears that minimum nutritional requirements are being met during stays in space. Thus far, crewmembers have been able to consume food adequate for maintaining nominal performance in microgravity. The physiological data obtained from ground-based and flight research that may enable us to understand the biochemical alterations that effect energy utilization and performance. Focus is on energy utilization during the Apollo lunar missions, Skylab's extended space lab missions, and Space Shuttle flights. Available data includes those recorded during intra- and extravehicular activities as well as during microgravity simulation (bed rest). Data on metabolism during flight and during bed rest are discussed, with a follow-up on human gastrointestinal function.

  4. Attendees of a women's forum at the Apollo/Saturn V Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Administrator Daniel Goldin addresses the attendees of a women's forum held in the Apollo/Saturn V Center. Participants in a panel discussion, 'Past, Present and Future of Space,' include former astronaut Sally Ride; Marta Bohn-Meyer, the first SR-71 female pilot; Kathryn Sullivan, Ph.D., the first American woman to walk in space; Donna Shirley, Ph.D., the first woman leading the Mars Exploration Program; astronaut Yvonne Cagle; Jennifer Harris, flight director, Mars Pathfinder; astronaut Ellen Ochoa, the first Hispanic female in space and member of the President's commission on the Celebration of Women in American History. The forum included a welcome by Center Director Roy Bridges and remarks by Donna Shalala, secretary of Department of Health and Human Services. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT.

  5. Donna Shalala speaks to a women's forum at the Apollo/Saturn V Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a women's forum held in the Apollo/Saturn V Center, Donna Shalala, secretary of Department of Health and Human Services, addresses the attendees. At the far left is NASA Administrator Daniel Goldin. Participants in a panel discussion, 'Past, Present and Future of Space,' include former astronaut Sally Ride; Marta Bohn-Meyer, the first SR-71 female pilot; Kathryn Sullivan, Ph.D., the first American woman to walk in space; Donna Shirley, Ph.D., the first woman leading the Mars Exploration Program; astronaut Yvonne Cagle; Jennifer Harris, flight director, Mars Pathfinder; astronaut Ellen Ochoa, the first Hispanic female in space and member of the President's commission on the Celebration of Women in American History. The forum included a welcome by Center Director Roy Bridges and remarks by Goldin. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing sight. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five- day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT.

  6. Research pilot Fred Haise

    NASA Image and Video Library

    1966-04-07

    Fred W. Haise Jr. was a research pilot and an astronaut for the National Aeronautics and Space Administration from 1959 to 1979. He began flying at the Lewis Research Center in Cleveland, Ohio (today the Glenn Research Center), in 1959. He became a research pilot at the NASA Flight Research Center (FRC), Edwards, Calif., in 1963, serving NASA in that position for three years until being selected to be an astronaut in 1966 His best-known assignment at the FRC (later redesignated the Dryden Flight Research Center) was as a lifting body pilot. Shortly after flying the M2-F1 on a car tow to about 25 feet on April 22, 1966, he was assigned as an astronaut to the Johnson Space Center in Houston, Texas. While at the FRC he had also flown a variety of other research and support aircraft, including the variable-stability T-33A to simulate the M2-F2 heavyweight lifting body, some light aircraft including the Piper PA-30 to evaluate their handling qualities, the Apache helicopter, the Aero Commander, the Cessna 310, the Douglas F5D, the Lockheed F-104 and T-33, the Cessna T-37, and the Douglas C-47. After becoming an astronaut, Haise served as a backup crewmember for the Apollo 8, 11, and 16 missions. He flew on the aborted Apollo 13 lunar mission in 1970, spending 142 hours and 54 minutes in space before returning safely to Earth. In 1977, he was the commander of three free flights of the Space Shuttle prototype Enterprise when it flew its Approach and Landing Tests at Edwards Air Force Base, Calif. Meanwhile, from April 1973 to January 1976, Haise served as the Technical Assistant to the Manager of the Space Shuttle Orbiter Project. In 1979, he left NASA to become the Vice President for Space Programs with the Grumman Aerospace Corporation. He then served as President of Grumman Technical Services, an operating division of Northrop Grumman Corporation, from January 1992 until his retirement. Haise was born in Biloxi, Miss., on November 14, 1933. He underwent flight traini

  7. Marta Bohn-Meyer greets Astronaut Yvonne Cagle at a women's forum at the Apollo/Saturn V Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KENNEDY SPACE CENTER, Fla. -- At a women's forum held in the Apollo/Saturn V Center, Marta Bohn-Meyer, the first woman to pilot an SR-71, greets astronaut Yvonne Cagle. They participated in the panel discussion about 'Past, Present and Future of Space,' along with Kathryn Sullivan, Ph.D., the first American woman to walk in space; Donna Shirley, Ph.D., the first woman leading the Mars Exploration Program; Jennifer Harris, the Mars 2001 Operations System Development Manager at the Jet Propulsion Laboratory; and astronaut Ellen Ochoa, the first Hispanic female in space and member of the President's commission on the Celebration of Women in American History. The forum included a welcome by Center Director Roy Bridges and remarks by Donna Shalala, secretary of Department of Health and Human Services. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing site. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT.

  8. Flight Planning and Procedures

    NASA Technical Reports Server (NTRS)

    Rich, Allison C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.

  9. KSC-07pd0195

    NASA Image and Video Library

    2007-01-30

    KENNEDY SPACE CENTER, FLA. -- Kennedy Space Center Director Bill Parsons addresses guests and attendees in the Operations and Checkout (O&C) Building high bay in the ceremony commemorating the bay's transition for use by the Constellation Program. At right is Russell Romanella, director of the International Space Station/Payload Processing Directorate at Kennedy Space Center. Other representatives from NASA, Lockheed Martin, Space Florida and the state of Florida also attended. Originally built to process space vehicles in the Apollo era, the O&C Building will serve as the final assembly facility for the Orion crew exploration vehicle. Orion, America's human spaceflight vehicle of the future, will be capable of transporting four crewmembers for lunar missions and later will support crew transfers for Mars missions. Each Orion spacecraft also may be used to support up to six crewmembers to the International Space Station after the space shuttle is retired in 2010. Design, development and construction of Orion's components will be performed by Lockheed Martin for NASA at facilities throughout the country. Photo credit: NASA/Kim Shiflett

  10. Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2015-01-01

    NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.

  11. The NASA Constellation Program Procedure System

    NASA Technical Reports Server (NTRS)

    Phillips, Robert G.; Wang, Lui

    2010-01-01

    NASA has used procedures to describe activities to be performed onboard vehicles by astronaut crew and on the ground by flight controllers since Apollo. Starting with later Space Shuttle missions and the International Space Station, NASA moved forward to electronic presentation of procedures. For the Constellation Program, another large step forward is being taken - to make procedures more interactive with the vehicle and to assist the crew in controlling the vehicle more efficiently and with less error. The overall name for the project is the Constellation Procedure Applications Software System (CxPASS). This paper describes some of the history behind this effort, the key concepts and operational paradigms that the work is based upon, and the actual products being developed to implement procedures for Constellation

  12. Guests line the stage at a women's forum at the Apollo/Saturn V Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a women's forum about 'Past, Present and Future of Space,' held in the Apollo/Saturn V Center, guests line the stage. From left, they are Marta Bohn-Meyer, the first woman to pilot an SR- 71; astronauts Ellen Ochoa, Ken Cockrell, Joan Higginbotham, and Yvonne Cagle; former astronaut Sally Ride, the first American woman to fly in space; and Jennifer Harris, the Mars 2001 Operations System Development Manager at the Jet Propulsion Laboratory. The forum included a welcome by Center Director Roy Bridges and remarks by Donna Shalala, secretary of Department of Health and Human Services. The attendees are planning to view the launch of STS-93 at the Banana Creek viewing site. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. Liftoff is scheduled for July 20 at 12:36 a.m. EDT.

  13. KSC-2009-3794

    NASA Image and Video Library

    2009-06-16

    CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Leonardo multi-purpose logistics module is being prepared for the STS-128 mission to the International Space Station aboard space shuttle Discovery. The module will carry among its science and storage racks the Combined Operational Load Bearing External Resistance Treadmill, or C.O.L.B.E.R.T. The treadmill is named after comedian Stephen Colbert, the host of Comedy Central’s “The Colbert Report.” Colbert urged his viewers to suggest the name “Colbert” as the name for the station’s Node 3 module. Although his name did receive the most entries in an Internet polling contest, NASA chose the name “Tranquility” to honor the accomplishments of the Apollo 11 mission. COLBERT will be installed in Tranquility after the node arrives at the station next year. Launch of STS-128 is targeted for Aug. 7, 2009. Photo credit: NASA/Jim Grossmann

  14. Winged cargo return vehicle. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).

  15. Around Marshall

    NASA Image and Video Library

    2002-10-01

    This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.

  16. One hundred US EVAs: a perspective on spacewalks.

    PubMed

    Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K

    2002-01-01

    In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.

  17. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  18. Regional muscle loss after short duration spaceflight.

    PubMed

    LeBlanc, A; Rowe, R; Schneider, V; Evans, H; Hedrick, T

    1995-12-01

    Muscle strength and limb girth measurements during Skylab and Apollo missions suggested that loss of muscle mass may occur as a result of spaceflight. Extended duration spaceflight is important for the economical and practical use of space. The loss of muscle mass during spaceflight is a medical concern for long duration flights to the planets or extended stays aboard space stations. Understanding the extent and temporal relationships of muscle loss is important for the development of effective spaceflight countermeasures. We hypothesized that significant and measurable changes in muscle volume would occur in Shuttle crewmembers following 8 d of weightlessness. MRI was used to obtain the muscle volumes of the calf, thigh and lower back before and after the STS-47 Shuttle mission. Statistical analyses demonstrated that the soleus-gastrocnemius (-6.3%), anterior calf (-3.9%), hamstrings (-8.3%), quadriceps (-6.0%) and intrinsic back (-10.3%) muscles were decreased, p < 0.05, compared to baseline, 24 h after landing. At 2 weeks post recovery, the hamstrings and intrinsic lower back muscles were still below baseline, p < 0.05. These results demonstrate that even short duration spaceflight can result in significant muscle atrophy.

  19. KSC-2009-5943

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket races off Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo credit: NASA/Sandra Joseph and Kevin O'Connell

  20. KSC-2009-5934

    NASA Image and Video Library

    2009-10-28

    CAPE CANAVERAL, Fla. - Almost twice as tall as Disney's Cinderella Castle, the Constellation Program's 327-foot-tall Ares I-X test rocket lifts off from Launch Complex 39B at NASA's Kennedy Space Center in Florida. The rocket produces 2.96 million pounds of thrust at liftoff and reaches a speed of 100 mph in eight seconds. Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired. The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals. For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX. Photo courtesy of Scott Andrews, Canon

Top