Sample records for apoptosis

  1. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    PubMed

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  2. Butyric Acid-Induced T-Cell Apoptosis Is Mediated by Caspase-8 and -9 Activation in a Fas-Independent Manner

    PubMed Central

    Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu; Fukushima, Kazuo

    2001-01-01

    Our previous study demonstrated that butyric acid, an extracellular metabolite of periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat cells. In this study, we examined whether CD95 ligand-receptor interaction is involved in butyric acid-induced T-cell apoptosis. Flow cytometry analysis indicated that expression of Fas in Jurkat and T cells from peripheral blood mononuclear cells was not affected by butyric acid treatment. Furthermore, the expression of Fas and FasL protein in Western blotting was not affected by butyric acid treatment. Coincubation with blocking anti-Fas antibodies prevented Fas-induced apoptosis but not butyric acid-induced apoptosis. Anti-FasL antibodies also did not prevent butyric acid-induced apoptosis at any dose examined. Although cytotoxic anti-Fas antibody affected butyric acid-induced apoptosis, a synergistic effect was not seen. Time-dependent activation of caspase-8 and -9 was recognized in butyric acid- as well as Fas-mediated apoptosis. IETD-CHO and LEHD-CHO, specific inhibitors of caspase-8 and -9, respectively, completely blocked Fas-mediated apoptosis and partially prevented butyric acid-induced apoptosis. These results suggest that the Fas-FasL interaction is not involved in butyric acid-induced apoptosis and that caspase-8 and -9-dependent apoptosis plays an important role in butyric acid-induced apoptosis, as well as Fas-induced apoptosis. PMID:11238216

  3. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  4. Apoptosis-Dependent and Apoptosis-Independent Functions Bim in Prostate Cancer Cells

    DTIC Science & Technology

    2004-03-01

    AD_ Award Number: DAMD17-03-1-0146 TITLE: Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells PRINCIPAL...FUNDING NUMBERS Apoptosis-Dependent and Apoptosis-Independent Functions of DAMD17-03-1-0146 Bim in Prostate Cancer Cells 6. A UTHORs) Junwei Liu, M.D...extended cell survival have been implicated in prostate cancer (PCa) development and progression. We recently found that Bim , a BH3-only pro

  5. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis.

    PubMed

    Povea-Cabello, Suleva; Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Villanueva-Paz, Marina; de la Mata, Mario; Suárez-Rivero, Juan Miguel; Álvarez-Córdoba, Mónica; Villalón-García, Irene; Cotán, David; Ybot-González, Patricia; Sánchez-Alcázar, José A

    2017-11-11

    During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new "two coffins" hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis.

  6. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis

    PubMed Central

    Povea-Cabello, Suleva; Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Villanueva-Paz, Marina; de la Mata, Mario; Álvarez-Córdoba, Mónica; Villalón-García, Irene; Cotán, David; Ybot-González, Patricia

    2017-01-01

    During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new “two coffins” hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis. PMID:29137119

  7. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i.more » CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and endocytosis of virions or virion proteins, (ii) is inhibited under conditions permitting early viral expression, and (iii) requires the JNK signaling pathway. This is the first report of JNK signal requirement during apoptosis induction by an insect virus.« less

  8. Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic of physiological apoptosis and can be regulated by neuronal activity.

    PubMed

    Wang, Qi; Shen, Feng-Yan; Zou, Rong; Zheng, Jing-Jing; Yu, Xiang; Wang, Ying-Wei

    2017-06-17

    The effects of general anesthetics on inducing neuronal apoptosis during early brain development are well-documented. However, since physiological apoptosis also occurs during this developmental window, it is important to determine whether anesthesia-induced apoptosis targets the same cell population as physiological apoptosis or different cell types altogether. To provide an adequate plane of surgery, ketamine was co-administered with dexmedetomidine. The apoptotic neurons in the mouse primary somatosensory cortex (S1) were quantitated by immunohistochemistry. To explore the effect of neural activity on ketamine-induced apoptosis, the approaches of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and an environmental enrichment (EE) were performed. Ketamine-induced apoptosis in S1 is most prominent at postnatal days 5 and 7 (P5 - P7), and becomes insignificant by P12. Physiological and ketamine-induced apoptosis follow similar developmental patterns, mostly comprised of layer V pyramidal neurons at P5 and shifting to mostly layer II to IV GABAergic neurons by P9. Changes in neuronal activity induced by the DREADD system bidirectionally regulated the pattern of ketamine-induced apoptosis, with reduced activity inducing increased apoptosis and shifting the lamination pattern to a more immature form. Importantly, rearing mice in an EE significantly reduced the magnitude of ketamine-induced apoptosis and shifted its developmental pattern to a more mature form. Together, these results demonstrate that lamination pattern and cell-type dependent vulnerability to ketamine-induced apoptosis follow the physiological apoptosis pattern and are age- and activity-dependent. Naturally elevating neuronal activity is a possible method for reducing the adverse effects of general anesthesia.

  9. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    PubMed

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  10. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Junwei; Zhang, Huan; Fang, Liurong

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferasemore » by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.« less

  11. Live-cell imaging shows apoptosis initiates locally and propagates as a wave throughout syncytiotrophoblasts in primary cultures of human placental villous trophoblasts

    PubMed Central

    Longtine, Mark S.; Barton, Aaron; Chen, Baosheng; Nelson, D. Michael

    2012-01-01

    Human placental villi are surfaced by the syncytiotrophoblast, a multinucleated, epithelial-cell layer that functions in maternal-fetal exchange. Mononucleated cytotrophoblasts are subjacent to the syncytiotrophoblast. Using confocal fluorescence microscopy of third-trimester villi, we previously found that cytotrophoblasts are often interdigitated into the syncytiotrophoblast, that cytotrophoblasts undergo caspase-mediated apoptosis, and that apoptosis is much lower, and perhaps completely inhibited, in intact syncytiotrophoblast lacking fibrin-type fibrinoid. Previous analysis of primary cultures of human trophoblasts also indicated lower levels of apoptosis in syncytiotrophoblast compared to cytotrophoblasts. Here, using confocal microscopy we find that cultured cytotrophoblasts and syncytiotrophoblasts display complex structural relationships, as in vivo, and that apoptosis of a cytotrophoblast or syncytiotrophoblast does not induce apoptosis of adjacent trophoblasts. Using live-cell imaging of mitochondrial depolarization and nuclear condensation in cultured syncytiotrophoblasts, we show apoptosis initiates in a localized region and propagates radially at ~five μm/min with no loss of velocity until the entire syncytium has undergone apoptosis. The rate of propagation is similar in cases of spontaneous apoptosis and in apoptosis that occurs in the presence of cobalt chloride or rotenone, two inducers of apoptosis. We suggest that inhibition of syncytiotrophoblast apoptosis in vivo is important to prevent widespread syncytiotrophoblast death, which would result in placental dysfunction and contribute to poor pregnancy outcomes. PMID:23102999

  12. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  13. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    PubMed Central

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  14. Apoptosis in unicellular organisms: mechanisms and evolution.

    PubMed

    Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A

    2004-10-01

    Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

  15. Virus Infection and Death Receptor-Mediated Apoptosis.

    PubMed

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-10-27

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.

  16. Virus Infection and Death Receptor-Mediated Apoptosis

    PubMed Central

    Zhou, Xingchen; Jiang, Wenbo; Liu, Zhongshun; Liu, Shuai; Liang, Xiaozhen

    2017-01-01

    Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis. PMID:29077026

  17. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases.

    PubMed

    Li, Meng; Gao, Ping; Zhang, Junping

    2016-03-03

    Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases.

  18. Wavelength-dependent backscattering measurements for quantitative monitoring of apoptosis, Part 1: early and late spectral changes are indicative of the presence of apoptosis in cell cultures

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Zhang, Kexiong; Liu, Wei-Han Bobby; Waxman, David J.; Bigio, Irving J.

    2011-11-01

    Apoptosis, a form of programmed cell death with unique morphological and biochemical features, is dysregulated in cancer and is activated by many cancer chemotherapeutic drugs. Noninvasive assays for apoptosis in cell cultures can aid in screening of new anticancer agents. We have previously demonstrated that elastic scattering spectroscopy can monitor apoptosis in cell cultures. In this report we present data on monitoring the detailed time-course of scattering changes in a Chinese hamster ovary (CHO) and PC-3 prostate cancer cells treated with staurosporine to induce apoptosis. Changes in the backscattering spectrum are detectable within 10 min, and continue to progress up to 48 h after staurosporine treatment, with the magnitude and kinetics of scattering changes dependent on inducer concentration. Similar responses were observed in CHO cells treated with several other apoptosis-inducing protocols. Early and late scattering changes were observed under conditions shown to induce apoptosis via caspase activity assay and were absent under conditions where apoptosis was not induced. Finally, blocking caspase activity and downstream apoptotic morphology changes prevented late scattering changes. These observations demonstrate that early and late changes in wavelength-dependent backscattering correlate with the presence of apoptosis in cell cultures and that the late changes are specific to apoptosis.

  19. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liiv, Ingrid, E-mail: ingrid.liiv@ut.ee; Haljasorg, Uku; Kisand, Kai

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well asmore » doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.« less

  20. The role of ARK in stress-induced apoptosis in Drosophila cells

    PubMed Central

    Zimmermann, Katja C.; Ricci, Jean-Ehrland; Droin, Nathalie M.; Green, Douglas R.

    2002-01-01

    The molecular mechanisms of apoptosis are highly conserved throughout evolution. The homologs of genes essential for apoptosis in Caenorhabditis elegans and Drosophila melanogaster have been shown to be important for apoptosis in mammalian systems. Although a homologue for CED-4/apoptotic protease-activating factor (Apaf)-1 has been described in Drosophila, its exact function and the role of the mitochondrial pathway in its activation remain unclear. Here, we used the technique of RNA interference to dissect apoptotic signaling pathways in Drosophila cells. Inhibition of the Drosophila CED-4/Apaf-1–related killer (ARK) homologue resulted in pronounced inhibition of stress-induced apoptosis, whereas loss of ARK did not protect the cells from Reaper- or Grim-induced cell death. Reduction of DIAP1 induced rapid apoptosis in these cells, whereas the inhibition of DIAP2 expression did not but resulted in increased sensitivity to stress-induced apoptosis; apoptosis in both cases was prevented by inhibition of ARK expression. Cells in which cytochrome c expression was decreased underwent apoptosis induced by stress stimuli, Reaper or Grim. These results demonstrate the central role of ARK in stress-induced apoptosis, which appears to act independently of cytochrome c. Apoptosis induced by Reaper or Grim can proceed via a distinct pathway, independent of ARK. PMID:11901172

  1. Modulation of apoptosis during HTLV-1-mediated immortalization process in vitro.

    PubMed

    Matteucci, Claudia; Balestrieri, Emanuela; Macchi, Beatrice; Mastino, Antonio

    2004-11-01

    Suppression of apoptosis has been proposed as a mechanism involved in the transforming action of human T-cell leukemia/lymphotropic virus type-1 (HTLV-1). However, there is evidence that HTLV-1 and its protein Tax also induce apoptosis. To resolve this apparent paradox, apoptosis was monitored in primary cultures of peripheral blood lymphocytes (PBLs) from healthy donors, following HTLV-1 infection in vitro. High levels of apoptosis in HTLV-1 infected cultures during the first weeks after infection were detected. Apoptosis was not related to the presence of uninfected cells, as revealed by a fluorescence in situ hybridization assay. Successively, a progressive decrease in apoptosis in infected cultures going towards immortalization, was observed. When IL-2 in the medium was replaced by IL-4, allowing the cells to be efficiently infected by HTLV-1 but not immortalized, apoptosis levels tended to increase, instead of decreasing, with the ongoing time. The caspase cascade was remarkably activated in PBLs recently infected in vitro by HTLV-1, but apoptosis was only partly reduced by caspase inhibitors. Even if spontaneous apoptosis was relatively low in long-term cultures of PBLs immortalized by HTLV-1 in vitro, Fas death-receptor expression and function were well conserved. These observations provide a new rationale for explaining the dual effect of HTLV-1 in controlling apoptosis.

  2. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    PubMed

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  3. Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).

    PubMed

    He, Ling; Xiao, Deyou; Feng, Jianguo; Yao, Chenguo; Tang, Liling

    2017-02-01

    The application of nanosecond pulsed electric fields (nsPEFs) is a novel method to induce the death of cancer cells. NsPEFs could directly function on the cell membrane and activate the apoptosis pathways, then induce apoptosis in various cell lines. However, the nsPEFs-inducing-apoptosis action sites and the exact pathways are not clear now. In this study, nsPEFs were applied to the human liver cancer cells HepG2 with different parameters. By apoptosis assay, morphological observation, detecting the mitochondrial membrane potential (ΔΨ m ), intracellular calcium ion concentration ([Ca 2+ ]i) and the expressions of key apoptosis factors, we demonstrated that nsPEFs could induce the morphology of cell apoptosis, the change in ΔΨ m , [Ca 2+ ]i and the upregulation of some key apoptosis factors, which revealed the responses of liver cancer cells and indicated that cells may undergo apoptosis through the mitochondria-dependent pathway after nsPEFs were applied.

  4. [The mechanism of docetaxel-induced apoptosis in human lung cancer cells].

    PubMed

    Li, Y; Shi, T; Zhao, W

    2000-05-01

    To study the mechanism of docetaxel-induced apoptosis. Morphological study, DNA gel electrophoresis, flow cytometry and fluorescin labeled Annexin V to detect apoptosis, RT-PCR to detect the gene related with apoptosis. Human lung cancer A549 cells treated with docetaxel induced cell cycle arrest at G2M phase, leading to apoptosis. The morphology of A549 showed nuclear chromatine condensation and fragmentation. Typical ladder pattern of DNA fragmentation was observed. Sub-G1 peak was found by flow cytometry. Transcription of Fas gene was enhanced, while no change in c-myc and bcl-2 genes. Annexin labeling results revealed the co-existence of cell apoptosis and necrosis in docetaxel-treated A549 cells. Docetaxel induces apoptosis and necrosis of human lung cancer. The induction of apoptosis may be related to expression of Fas.

  5. The mitochondria-mediate apoptosis of Lepidopteran cells induced by azadirachtin.

    PubMed

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis.

  6. The Mitochondria-Mediate Apoptosis of Lepidopteran Cells Induced by Azadirachtin

    PubMed Central

    Huang, Jingfei; Lv, Chaojun; Hu, Meiying; Zhong, Guohua

    2013-01-01

    Mitochondria have been shown to play an important role in apoptosis using mammalian cell lines. However, this seems not to be the case in Drosophila, an insect model organism; thus more in-depth studies of insect cell apoptosis are necessary. In the present study, mitochondrial involvement during azadirachtin- and camptothecin-induced apoptosis in Spodoptera frugiperda Sf9 cells (isolated from Spodoptera frugiperda pupal ovarian tissue) was investigated. The results showed that both azadirachtin and camptothecin could induce apoptosis in Sf9 cells. Reactive oxygen species (ROS) generation, activation of mitochondrial permeability transition pores (MPTPs) and loss of mitochondrial membrane potential (MMP) were observed very early during apoptosis and were followed subsequently by the release of cytochrome-c from the mitochondria. Furthermore, the results also revealed that the opening of MPTPs and the loss of MMP induced by azadirachtin could be significantly inhibited by the permeability transition pore (PTP) inhibitor cyclosporin A (CsA), which was used to identify the key role of mitochondria in the apoptosis of Sf9 cells. However, in camptothecin-treated Sf9 cells, CsA could not suppress the opening of MPTPs and the loss of MMP when apoptosis was induced. The data from caspase-3 and caspase-9 activity assays and detection of apoptosis by morphological observation and flow cytometry also uncovered the different effect of CsA on the two botanical apoptosis inducers. Although different mechanisms of apoptosis induction exist, our study revealed that mitochondria play a crucial role in insect cell line apoptosis. PMID:23516491

  7. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis.

    PubMed

    Sun, Xin-Zhi; Liao, Ying; Li, Wei; Guo, Li-Mei

    2017-06-01

    Ganoderma lucidum polysaccharides have protective effects against apoptosis in neurons exposed to ischemia/reperfusion injury, but the mechanisms are unclear. The goal of this study was to investigate the underlying mechanisms of the effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Hydrogen peroxide (H 2 O 2 ) was used to induce apoptosis in cultured cerebellar granule cells. In these cells, ganoderma lucidum polysaccharides remarkably suppressed H 2 O 2 -induced apoptosis, decreased expression of caspase-3, Bax and Bim and increased that of Bcl-2. These findings suggested that ganoderma lucidum polysaccharides regulate expression of apoptosis-associated proteins, inhibit oxidative stress-induced neuronal apoptosis and, therefore, have significant neuroprotective effects.

  8. SIRT6 knockout cells resist apoptosis initiation but not progression: a computational method to evaluate the progression of apoptosis.

    PubMed

    Domanskyi, Sergii; Nicholatos, Justin W; Schilling, Joshua E; Privman, Vladimir; Libert, Sergiy

    2017-11-01

    Apoptosis is essential for numerous processes, such as development, resistance to infections, and suppression of tumorigenesis. Here, we investigate the influence of the nutrient sensing and longevity-assuring enzyme SIRT6 on the dynamics of apoptosis triggered by serum starvation. Specifically, we characterize the progression of apoptosis in wild type and SIRT6 deficient mouse embryonic fibroblasts using time-lapse flow cytometry and computational modelling based on rate-equations and cell distribution analysis. We find that SIRT6 deficient cells resist apoptosis by delaying its initiation. Interestingly, once apoptosis is initiated, the rate of its progression is higher in SIRT6 null cells compared to identically cultured wild type cells. However, SIRT6 null cells succumb to apoptosis more slowly, not only in response to nutrient deprivation but also in response to other stresses. Our data suggest that SIRT6 plays a role in several distinct steps of apoptosis. Overall, we demonstrate the utility of our computational model to describe stages of apoptosis progression and the integrity of the cellular membrane. Such measurements will be useful in a broad range of biological applications.

  9. Apoptosis and Molecular Targeting Therapy in Cancer

    PubMed Central

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  10. Herpes simplex virus 2 modulates apoptosis and stimulates NF-{kappa}B nuclear translocation during infection in human epithelial HEp-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedowitz, Jamie C.; Blaho, John A.

    2005-11-25

    Virus-mediated apoptosis is well documented in various systems, including herpes simplex virus 1 (HSV-1). HSV-2 is closely related to HSV-1 but its apoptotic potential during infection has not been extensively scrutinized. We report that (i) HEp-2 cells infected with HSV-2(G) triggered apoptosis, assessed by apoptotic cellular morphologies, oligosomal DNA laddering, chromatin condensation, and death factor processing when a translational inhibitor (CHX) was added at 3 hpi. Thus, HSV-2 induced apoptosis but was unable to prevent the process from killing cells. (ii) Results from a time course of CHX addition experiment indicated that infected cell protein produced between 3 and 5more » hpi, termed the apoptosis prevention window, are required for blocking virus-induced apoptosis. This corresponds to the same prevention time frame as reported for HSV-1. (iii) Importantly, CHX addition prior to 3 hpi led to less apoptosis than that at 3 hpi. This suggests that proteins produced immediately upon infection are needed for efficient apoptosis induction by HSV-2. This finding is different from that observed previously with HSV-1. (iv) Infected cell factors produced during the HSV-2(G) prevention window inhibited apoptosis induced by external TNF{alpha} plus cycloheximide treatment. (v) NF-{kappa}B translocated to nuclei and its presence in nuclei correlated with apoptosis prevention during HSV-2(G) infection. (vi) Finally, clinical HSV-2 isolates induced and prevented apoptosis in HEp-2 cells in a manner similar to that of laboratory strains. Thus, while laboratory and clinical HSV-2 strains are capable of modulating apoptosis in human HEp-2 cells, the mechanism of HSV-2 induction of apoptosis differs from that of HSV-1.« less

  11. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy

    PubMed Central

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-01-01

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG. PMID:24625987

  12. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic Targets for Cardiac Diseases

    PubMed Central

    Li, Meng; Gao, Ping; Zhang, Junping

    2016-01-01

    Autophagy is a cell survival process which is related to breaking down and reusing cytoplasm components. Moreover, autophagy regulates cell death under certain conditions. Apoptosis has the characteristics of chromatin agglutination and the shrinking of nuclear and apoptosis body form. Even if the mechanisms of autophagy and apoptosis have differences, some proteins modulate both autophagy and apoptosis. Crosstalk between them exists. This review highlights recent advances in the interaction of autophagy and apoptosis and its importance in the development of cardiovascular diseases. PMID:26950124

  13. Exosomes Secreted by Apoptosis-Resistant Acute Myeloid Leukemia (AML) Blasts Harbor Regulatory Network Proteins Potentially Involved in Antagonism of Apoptosis*

    PubMed Central

    Wojtuszkiewicz, Anna; Schuurhuis, Gerrit J.; Kessler, Floortje L.; Piersma, Sander R.; Knol, Jaco C.; Pham, Thang V.; Jansen, Gerrit; Musters, René J. P.; van Meerloo, Johan; Assaraf, Yehuda G.; Kaspers, Gertjan J. L.; Zweegman, Sonja; Cloos, Jacqueline; Jimenez, Connie R.

    2016-01-01

    Expression of apoptosis-regulating proteins (B-cell CLL/lymphoma 2 - BCL-2, Myeloid Cell Leukemia 1 - MCL-1, BCL-2 like 1 - BCL-X and BCL-2-associated X protein - BAX) in acute myeloid leukemia (AML) blasts at diagnosis is associated with disease-free survival. We previously found that the initially high apoptosis-resistance of AML cells decreased after therapy, while regaining high levels at relapse. Herein, we further explored this aspect of dynamic apoptosis regulation in AML. First, we showed that the intraindividual ex vivo apoptosis-related profiles of normal lymphocytes and AML blasts within the bone marrow of AML patients were highly correlated. The expression values of apoptosis-regulating proteins were far beyond healthy control lymphocytes, which implicates the influence of microenvironmental factors. Second, we demonstrated that apoptosis-resistant primary AML blasts, as opposed to apoptosis-sensitive cells, were able to up-regulate BCL-2 expression in sensitive AML blasts in contact cultures (p = 0.0067 and p = 1.0, respectively). Using secretome proteomics, we identified novel proteins possibly engaged in apoptosis regulation. Intriguingly, this analysis revealed that major functional protein clusters engaged in global gene regulation, including mRNA splicing, protein translation, and chromatin remodeling, were more abundant (p = 4.01E-06) in secretomes of apoptosis-resistant AML. These findings were confirmed by subsequent extracellular vesicle proteomics. Finally, confocal-microscopy-based colocalization studies show that splicing factors-containing vesicles secreted by high AAI cells are taken up by low AAI cells. The current results constitute the first comprehensive analysis of proteins released by apoptosis-resistant and sensitive primary AML cells. Together, the data point to vesicle-mediated release of global gene regulatory protein clusters as a plausible novel mechanism of induction of apoptosis resistance. Deciphering the modes of communication between apoptosis-resistant blasts may in perspective lead to the discovery of prognostic tools and development of novel therapeutic interventions, aimed at limiting or overcoming therapy resistance. PMID:26801919

  14. Radiation and stress-induced apoptosis: A role for Fas/Fas ligand interactions

    PubMed Central

    Reap, Elizabeth A.; Roof, Kevin; Maynor, Kenrick; Borrero, Michelle; Booker, Jessica; Cohen, Philip L.

    1997-01-01

    The lpr gene encodes a defective form of Fas, a cell surface protein that mediates apoptosis. This defect blocks apoptotic deletion of autoreactive T and B cells, leading to lymphoproliferation and lupus-like autoantibody production. The effects of the lpr Fas mutation on other kinds of physiologically relevant apoptosis are largely undocumented. To assess whether some of the apoptosis known to occur after ionizing radiation might be mediated by Fas/Fas ligand (FasL) interactions, we quantitated in vitro apoptosis by flow cytometry measurement of DNA content in splenic T and B cells from irradiated 5- to 8-month-old B6/lpr mice. Total apoptosis of both lpr and control cells was substantial after treatment; however there was a significant difference between B6 (73%) and lpr (25%) lymphocyte apoptosis. Thy1, CD4, CD8, and IgM cells from lpr showed much lower levels of apoptosis than control cells after irradiation. Apoptosis induced by heat shock was also impaired in lpr. The finding that γ-irradiation increased Fas expression on B6 cells and that irradiation-induced apoptosis could be blocked with a Fas–Fc fusion protein further supported the possible involvement of Fas in this form of apoptosis. Fas/FasL interactions may thus play an important role in identifying and eliminating damaged cells after γ-irradiation and other forms of injury. PMID:9159145

  15. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    PubMed Central

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  16. Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma.

    PubMed

    Cheriyath, V; Kuhns, M A; Kalaycio, M E; Borden, E C

    2011-03-15

    Although inhibitors of histone deacetylase inhibitors (HDACis) in combination with genotoxins potentiate apoptosis, the role of proteases other than caspases in this process remained elusive. Therefore, we examined the potentiation of apoptosis and related mechanisms of HDACis and doxorubicin combination in a panel of myeloma cell lines and in 25 primary myelomas. At IC(50) concentrations, sodium butyrate (an HDACi) or doxorubicin alone caused little apoptosis. However, their combination potentiated apoptosis and synergistically reduced the viability of myeloma cells independent of p53 and caspase 3-7 activation. Potentiated apoptosis correlated with nuclear translocation of apoptosis-inducing factor, suggesting the induction of caspase 3- and 7-independent pathways. Consistent with this, butyrate and doxorubicin combination significantly increased the activity of cytoplasmic cathepsin B. Inhibition of cathepsin B either with a small-molecule inhibitor or downregulation with a siRNA reversed butyrate- and doxorubicin-potentiated apoptosis. Finally, ex vivo, clinically relevant concentrations of butyrate or SAHA (suberoylanilide hydroxamic acid, vorinostat, an HDACi in clinical testing) in combination with doxorubicin significantly (P<0.0001) reduced the survival of primary myeloma cells. Cathepsin B has a prominent function in mediating apoptosis potentiated by HDACi and doxorubicin combinations in myeloma. Our results support a molecular model of lysosomal-mitochondrial crosstalk in HDACi- and doxorubicin-potentiated apoptosis through the activation of cathepsin B.

  17. Bacterial anti-apoptotic activities.

    PubMed

    Häcker, Georg; Fischer, Silke F

    2002-05-21

    Cell death by apoptosis is a common response to environmental stimuli and a frequent event in a multicellular organism. Not surprisingly, apoptosis is also found in microbial infections where it may contribute to progression and outcome. Perhaps less predictably, a number of bacteria have also been found to alleviate or even to inhibit apoptosis. Today we are at a point where our in some parts detailed knowledge of the molecular pathway to apoptosis allows us to probe situations in biology for the occurrence of apoptosis and to inquire into mechanisms of apoptosis induction and inhibition. In this brief article we will focus on anti-apoptotic activities exhibited by various bacteria. We will attempt to present the current knowledge on how the contact between mammalian and bacterial cell decrees resistance to apoptosis, what the respective contributions of the two partners are and how this interaction relates to the molecular path to apoptosis.

  18. Regulation of Apoptosis during Flavivirus Infection.

    PubMed

    Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu

    2017-08-28

    Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses.

  19. Biomarkers of Chondrocyte Apoptosis and Autophagy in Osteoarthritis

    PubMed Central

    Musumeci, Giuseppe; Castrogiovanni, Paola; Trovato, Francesca Maria; Weinberg, Annelie Martina; Al-Wasiyah, Mohammad K.; Alqahtani, Mohammed H.; Mobasheri, Ali

    2015-01-01

    Cell death with morphological and molecular features of apoptosis has been detected in osteoarthritic (OA) cartilage, which suggests a key role for chondrocyte death/survival in the pathogenesis of OA. Identification of biomarkers of chondrocyte apoptosis may facilitate the development of novel therapies that may eliminate the cause or, at least, slow down the degenerative processes in OA. The aim of this review was to explore the molecular markers and signals that induce chondrocyte apoptosis in OA. A literature search was conducted in PubMed, Scopus, Web of Science and Google Scholar using the keywords chondrocyte death, apoptosis, osteoarthritis, autophagy and biomarker. Several molecules considered to be markers of chondrocyte apoptosis will be discussed in this brief review. Molecular markers and signalling pathways associated with chondroycte apoptosis may turn out to be therapeutic targets in OA and approaches aimed at neutralizing apoptosis-inducing molecules may at least delay the progression of cartilage degeneration in OA. PMID:26334269

  20. Interference of Apoptosis by Hepatitis B Virus

    PubMed Central

    2017-01-01

    Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective. PMID:28820498

  1. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    PubMed

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Prevention of Hypovolemic Circulatory Collapse by IL-6 Activated Stat3

    PubMed Central

    Tsimelzon, Anna I.; Mastrangelo, Mary-Ann A.; Hilsenbeck, Susan G.; Poli, Valeria; Tweardy, David J.

    2008-01-01

    Half of trauma deaths are attributable to hypovolemic circulatory collapse (HCC). We established a model of HCC in rats involving minor trauma plus severe hemorrhagic shock (HS). HCC in this model was accompanied by a 50% reduction in peak acceleration of aortic blood flow and cardiomyocyte apoptosis. HCC and apoptosis increased with increasing duration of hypotension. Apoptosis required resuscitation, which provided an opportunity to intervene therapeutically. Administration of IL-6 completely reversed HCC, prevented cardiac dysfunction and cardiomyocyte apoptosis, reduced mortality 5-fold and activated intracardiac signal transducer and activator of transcription (STAT) 3. Pre-treatment of rats with a selective inhibitor of Stat3, T40214, reduced the IL-6-mediated increase in cardiac Stat3 activity, blocked successful resuscitation by IL-6 and reversed IL-6-mediated protection from cardiac apoptosis. The hearts of mice deficient in the naturally occurring dominant negative isoform of Stat3, Stat3β, were completely resistant to HS-induced apoptosis. Microarray analysis of hearts focusing on apoptosis related genes revealed that expression of 29% of apoptosis related genes was altered in HS vs. sham rats. IL-6 treatment normalized the expression of these genes, while T40214 pretreatment prevented IL-6-mediated normalization. Thus, cardiac dysfunction, cardiomyocyte apoptosis and induction of apoptosis pathway genes are important components of HCC; IL-6 administration prevented HCC by blocking cardiomyocyte apoptosis and induction of apoptosis pathway genes via Stat3 and warrants further study as a resuscitation adjuvant for prevention of HCC and death in trauma patients. PMID:18270592

  3. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis.

    PubMed

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-04-09

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM-ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM-ceramide-CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells.

  4. Lysosomal ceramide generated by acid sphingomyelinase triggers cytosolic cathepsin B-mediated degradation of X-linked inhibitor of apoptosis protein in natural killer/T lymphoma cell apoptosis

    PubMed Central

    Taniguchi, M; Ogiso, H; Takeuchi, T; Kitatani, K; Umehara, H; Okazaki, T

    2015-01-01

    We previously reported that IL-2 deprivation induced acid sphingomyelinase-mediated (ASM-mediated) ceramide elevation and apoptosis in an NK/T lymphoma cell line KHYG-1. However, the molecular mechanism of ASM–ceramide-mediated apoptosis during IL-2 deprivation is poorly understood. Here, we showed that IL-2 deprivation induces caspase-dependent apoptosis characterized by phosphatidylserine externalization, caspase-8, -9, and -3 cleavage, and degradation of X-linked inhibitor of apoptosis protein (XIAP). IL-2 re-supplementation rescued apoptosis via inhibition of XIAP degradation without affecting caspase cleavage. However, IL-2 deprivation induced ceramide elevation via ASM in lysosomes and activated lysosomal cathepsin B (CTSB) but not cathepsin D. A CTSB inhibitor CA-074 Me and knockdown of CTSB inhibited ceramide-mediated XIAP degradation and apoptosis. Inhibition of ceramide accumulation in lysosomes using an ASM inhibitor, desipramine, decreased cytosolic activation of CTSB by inhibiting its transfer into cytosol from the lysosome. Knockdown of ASM also inhibited XIAP degradation and apoptosis. Furthermore, cell permeable N-acetyl sphingosine (C2-ceramide), which increases mainly endogenous d18:1/16:0 and d18:1/24:1 ceramide-like IL-2 deprivation, induced caspase-dependent apoptosis with XIAP degradation through CTSB. These findings suggest that lysosomal ceramide produced by ASM mediates XIAP degradation by activation of cytosolic CTSB and caspase-dependent apoptosis. The ASM–ceramide–CTSB signaling axis is a novel pathway of ceramide-mediated apoptosis in IL-2-deprived NK/T lymphoma cells. PMID:25855965

  5. Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors.

    PubMed

    Abrahan, Carolina E; Miranda, Gisela E; Agnolazza, Daniela L; Politi, Luis E; Rotstein, Nora P

    2010-02-01

    Oxidative stress is involved in inducing apoptosis of photoreceptors in many retinal neurodegenerative diseases. It has been shown that oxidative stress increases in photoreceptors the synthesis of ceramide, a sphingolipid precursor that then activates apoptosis. In several cell types, ceramide is converted by ceramidases to sphingosine (Sph), another apoptosis mediator; hence, this study was undertaken to determine whether Sph participates in triggering photoreceptor apoptosis. Rat retina neurons were incubated with [(3)H]palmitic acid and treated with the oxidant paraquat (PQ) to evaluate Sph synthesis. Sph was added to cultures with or without docosahexaenoic acid (DHA), the major retina polyunsaturated fatty acid and a photoreceptor survival factor, to evaluate apoptosis. Synthesis of Sph and sphingosine-1-phosphate (S1P), a prosurvival signal, were inhibited with alkaline ceramidase or sphingosine kinase inhibitors, respectively, before adding PQ, C(2)-ceramide, or Sph. Apoptosis, mitochondrial membrane polarization, cytochrome c localization, and reactive oxygen species (ROS) production were determined. PQ increased [(3)H]Sph synthesis in photoreceptors and blocking this synthesis by inhibiting alkaline ceramidase decreased PQ-induced apoptosis. Addition of Sph induced photoreceptor apoptosis, increased ROS production, and promoted cytochrome c release from mitochondria. Although DHA prevented this apoptosis, inhibiting Sph conversion to S1P blocked DHA protection. These results suggest that oxidative stress enhances formation of ceramide and its subsequent breakdown to Sph; ceramide and/or Sph would then trigger photoreceptor apoptosis. Preventing Sph synthesis or promoting its phosphorylation to S1P rescued photoreceptors, suggesting that Sph is a mediator of their apoptosis and modulation of Sph metabolism may be crucial for promoting photoreceptor survival.

  6. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. Inmore » the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.« less

  7. Resistance to apoptosis should not be taken as a hallmark of cancer.

    PubMed

    Wang, Rui-An; Li, Zeng-Shan; Yan, Qing-Guo; Bian, Xiu-Wu; Ding, Yan-Qing; Du, Xiang; Sun, Bao-Cun; Sun, Yun-Tian; Zhang, Xiang-Hong

    2014-02-01

    In the research community, resistance to apoptosis is often considered a hallmark of cancer. However, pathologists who diagnose cancer via microscope often see the opposite. Indeed, increased apoptosis and mitosis are usually observed simultaneously in cancerous lesions. Studies have shown that increased apoptosis is associated with cancer aggressiveness and poor clinical outcome. Furthermore, overexpression of Bcl-2, an antiapoptotic protein, is linked with better survival of cancer patients. Conversely, Bax, CD95, Caspase-3, and other apoptosis-inducing proteins have been found to promote carcinogenesis. This notion of the role of apoptosis in cancer is not new; cancer cells were found to be short-lived 88 years ago. Given these observations, resistance to apoptosis should not be considered a hallmark of cancer.

  8. ER-stress and apoptosis: molecular mechanisms and potential relevance in infection.

    PubMed

    Häcker, Georg

    2014-10-01

    During ER-stress, one of the responses a cell can choose is apoptosis. Apoptosis generally is a cell's preferred response when other control mechanisms are overwhelmed. We now have a reasonably clear molecular picture what is happening once the apoptotic apparatus has been started. Unclear however are the majority of the upstream pathways that connect other signalling to apoptosis. During ER-stress, confirmed apoptosis-regulating targets are pro- and anti-apoptotic proteins of the Bcl-2-family, whose concerted action induces apoptosis. I will here discuss how mitochondrial apoptosis is triggered, how this is linked to the ER-stress response and in what way this may be relevant during microbial infections. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε.

    PubMed

    Aziz, Moammir H; Shen, Hong; Maki, Carl G

    2012-08-24

    Glucocorticoid receptor (GR) is a ligand-dependent transcription factor that can promote apoptosis or survival in a cell-specific manner. Activated GR has been reported to inhibit apoptosis in mammary epithelial cells and breast cancer cells by increasing pro-survival gene expression. In this study, activated GR inhibited p53-dependent apoptosis in MCF10A cells and human mammary epithelial cells that overexpress the MYC oncogene. Specifically, GR agonists hydrocortisone or dexamethasone inhibited p53-dependent apoptosis induced by cisplatin, ionizing radiation, or the MDM2 antagonist Nutlin-3. In contrast, the GR antagonist RU486 sensitized the cells to apoptosis by these agents. Apoptosis inhibition was associated with maintenance of mitochondrial membrane potential, diminished caspase-3 and -7 activation, and increased expression at both the mRNA and protein level of the anti-apoptotic PKC family member PKCε. Knockdown of PKCε via siRNA targeting reversed the protective effect of dexamethasone and restored apoptosis sensitivity. These data provide evidence that activated GR can inhibit p53-dependent apoptosis through induction of the anti-apoptotic factor PKCε.

  10. High glucose induces apoptosis via upregulation of Bim expression in proximal tubule epithelial cells.

    PubMed

    Zhang, Xiao-Qian; Dong, Jian-Jun; Cai, Tian; Shen, Xue; Zhou, Xiao-Jun; Liao, Lin

    2017-04-11

    Diabetic nephropathy is the primary cause of end-stage renal disease. Apoptosis of tubule epithelial cells is a major feature of diabetic nephropathy. The mechanisms of high glucose (HG) induced apoptosis are not fully understood. Here we demonstrated that, HG induced apoptosis via upregulating the expression of proapoptotic Bcl-2 homology domain 3 (BH3)-only protein Bim protein, but not bring a significant change in the baseline level of autophagy in HK2 cells. The increase of Bim expression was caused by the ugregulation of transcription factors, FOXO1 and FOXO3a. Bim expression initiates BAX/BAK-mediated mitochondria-dependent apoptosis. Silence of Bim by siRNA in HK2 cells prevented HG-induced apoptosis and also sensitized HK2 cells to autophagy during HG treatment. The autophagy inhibitor 3-MA increased the injury in Bim knockdown HK2 cells by retriggering apoptosis. The above results suggest a Bim-independent apoptosis pathway in HK2 cells, which normally could be inhibited by autophagy. Overall, our results indicate that HG induces apoptosis via up-regulation of Bim expression in proximal tubule epithelial cells.

  11. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    PubMed Central

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  12. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice.

    PubMed

    Emerton, K B; Hu, B; Woo, A A; Sinofsky, A; Hernandez, C; Majeska, R J; Jepsen, K J; Schaffler, M B

    2010-03-01

    Osteocyte apoptosis has been linked to bone resorption resulting from estrogen depletion and other resorptive stimuli; however, precise spatial and temporal relationships between the two events have not been clearly established. The purpose of this study was to characterize the patterns of osteocyte apoptosis in relation to bone resorption following ovariectomy to test whether osteocyte apoptosis occurs preferentially in areas known to activate resorption. Moreover, we report that osteocyte apoptosis is necessary to initiate endocortical remodeling in response to estrogen withdrawal. Adult female C57BL/6J mice (17 weeks old) underwent either bilateral ovariectomy (OVX), or sham surgery (SHAM) and were euthanized on days 3, 7, 14, or 21 days after OVX. Diaphyseal cross-sections were stained by immunohistochemistry for activated caspase-3 as a marker of apoptosis. The percentages of caspase-positive stained osteocytes (Casp+Ot.) were measured along major and minor anatomical axes around the femoral diaphysis to evaluate the distribution of osteocyte apoptosis after estrogen loss; resorption surface was measured at the adjacent endocortical regions. In a second study to test whether osteocyte apoptosis plays a regulatory role in the initiation of bone resorption, a group of OVX mice received the pan-caspase inhibitor, QVDOPh, to inhibit osteocyte apoptosis. Remaining experimental and sham groups received either QVD or Vehicle. OVX increased osteocyte apoptosis in a non-uniform distribution throughout the femoral diaphyses. Increases in Casp+osteocytes were predominantly located in the posterior diaphyseal cortex. Here, the number of apoptotic osteocytes 4- to 7-fold higher than sham controls (p<0.005) by day 3 post-OVX and remained elevated. Increases in resorption post-OVX also occurred along the posterior endocortical surface overlying the region of osteocyte apoptosis, but these increases occurred only at 14 and 21 days post-OVX (p<0.002) well after the increases in osteocyte apoptosis. Treatment with QVD in OVX animals suppressed osteocyte apoptosis, with levels in QVD-treated samples equivalent to baseline. Moreover, the increases in osteoclastic resorption normally observed after estrogen loss did not occur in OVX mice treated with QVD. The results of this study demonstrate that osteocyte apoptosis following estrogen loss occur regionally, rather than uniformly throughout the cortex. We also showed that estrogen loss increased osteocyte apoptosis. Apoptotic osteocytes were overwhelmingly localized within the posterior cortical region, the location where endocortical resorption was subsequently activated in ovariectomized mice. Finally, the increases in osteoclastic resorption normally observed after estrogen withdrawal did not occur in the absence of osteocyte apoptosis indicating that this apoptosis is necessary to activate endocortical remodeling following estrogen loss.

  13. Apigenin promotes TRAIL-mediated apoptosis regardless of ROS generation.

    PubMed

    Kang, Chang-Hee; Molagoda, Ilandarage Menu Neelaka; Choi, Yung Hyun; Park, Cheol; Moon, Dong-Oh; Kim, Gi-Young

    2018-01-01

    Apigenin is a bioactive flavone in several herbs including parsley, thyme, and peppermint. Apigenin possesses anti-cancer and anti-inflammatory properties; however, whether apigenin enhances TRAIL-mediated apoptosis in cancer cells is unknown. In the current study, we found that apigenin enhanced TRAIL-induced apoptosis by promoting caspase activation and death receptor 5 (DR5) expression and a chimeric antibody against DR5 completely blocked the apoptosis. Apigenin also upregulated reactive oxygen species (ROS) generation; however, intriguingly, ROS inhibitors, glutathione (GSH) or N-acetyl-l-cysteine (NAC), moderately increased apigenin/TRAIL-induced apoptosis. Additional results showed that an autophagy inducer, rapamycin, enhanced apigenin/TRAIL-mediated apoptosis by a slight increase of ROS generation. Accordingly, NAC and GSH rather decreased apigenin-induced autophagy formation, suggesting that apigenin-induced ROS generation increased autophagy formation. However, autophagy inhibitors, bafilomycin (BAF) and 3-methyladenine (3-MA), showed different result in apigenin/TRAIL-mediated apoptosis without ROS generation. 3-MA upregulated the apoptosis but remained ROS levels; however, no changes on apoptosis and ROS generation were observed by BAF treatment. Taken together, these findings reveal that apigenin enhances TRAIL-induced apoptosis by activating apoptotic caspases by upregulating DR5 expression regardless of ROS generation, which may be a promising strategy for an adjuvant of TRAIL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Correlation of lung surface area to apoptosis and proliferation in human emphysema.

    PubMed

    Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M

    2005-02-01

    Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.

  15. Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches?

    PubMed

    Huber, Heinrich J; McKiernan, Ross G; Prehn, Jochen H M

    2014-03-01

    Most cytotoxic chemotherapeutics are believed to kill cancer cells by inducing apoptosis. Understanding the factors that contribute to impairment of apoptosis in cancer cells is therefore critical for the development of novel therapies that circumvent the widespread chemoresistance. Apoptosis, however, is a complex and tightly controlled process that can be induced by different classes of chemotherapeutics targeting different signalling nodes and pathways. Moreover, apoptosis initiation and apoptosis execution strongly depend on patient-specific, genomic and proteomic signatures. Here, we will review recent translational studies that suggest a critical link between the sensitivity of cancer cells to initiate apoptosis and clinical outcome. Next we will discuss recent advances in the field of system modelling of apoptosis pathways for the prediction of treatment responses. We propose that initiation of mitochondrial apoptosis, defined as the process of mitochondrial outer membrane permeabilisation (MOMP), is a dose-dependent decision process that allows for a prediction of individual therapy responses and therapeutic windows. We provide evidence in contrast that apoptosis execution post-MOMP may be a binary decision that dictates whether apoptosis is executed or not. We will discuss the implications of this concept for the future use of novel adjuvant therapeutics that specifically target apoptosis signalling pathways or which may be used to reduce the impact of cell-to-cell heterogeneity on therapy responses. Finally, we will discuss the technical and regulatory requirements surrounding the use and implications of system-based patient stratification tools for the future of personalised oncology.

  16. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition

    PubMed Central

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R.; Sun, Shi-Yong

    2012-01-01

    API-1 is a novel small molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation, and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of c-FLIP levels and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of DR4 or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis, but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1, but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Since other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. PMID:22345097

  17. Artesunate induces AIF-dependent apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  18. MicroRNA-137 Negatively Regulates H2O2-Induced Cardiomyocyte Apoptosis Through CDC42

    PubMed Central

    Wang, Junnan; Xu, Rihao; Wu, Junduo; Li, Zhibo

    2015-01-01

    Background Oxidative stress, inducing cardiomyocyte apoptosis or myocardial ischemia, is the major denominator of many cardiac diseases. In this study, we intended to explore the regulatory function of microRNA-137 (miR-137) in oxidative stress-induced cardiomyocyte apoptosis. Material/Methods Cardiomyocytes were extracted from newborn C57BL/6 mice and cultured in vitro. Apoptosis was induced by H2O2, and evaluated by TUNEL assay. The effect of cardiomyocyte apoptosis on gene expression of miR-137 was evaluated by qRT-PCR. Lentivirus was used to stably down-regulate miR-137, and the subsequent effects of miR-137 down-regulation on cardiomyocyte apoptosis, its targeted gene CDC42, and caspase pathway were evaluated by TUNEL assay, dual-luciferase reporter assay, and Western blot assay, respectively. Finally, CDC42 was down-regulated by siRNA and its effect on miR-137-mediated cardiomyocyte apoptosis protection was examined. Results H2O2 induced significant apoptosis and up-regulated miR-137 in cardiomyocytes, whereas lentivirus-mediated miR-137 down-regulation protected against apoptosis. CDC42 was the direct target gene of miR-137 and proteins of CDC42, caspase-3, and caspase-9 were all regulated by miR-137 down-regulation in cardiomyocyte apoptosis. SiRNA-mediated CDC42 down-regulation reversed the protection of miR-137 down-regulation against cardiomyocyte apoptosis. Conclusions Our work demonstrated miR-137 and CDC42 are critical regulators in cardiomyocyte apoptosis. It may help to identify the molecular targets to prevent myocardial injury in human patients. PMID:26566162

  19. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori

    PubMed Central

    2010-01-01

    Background Apoptosis is regulated in an orderly fashion by a series of genes, and has a crucial role in important physiological processes such as growth development, immunological response and so on. Recently, substantial studies have been undertaken on apoptosis in model animals including humans, fruit flies, and the nematode. However, the lack of genomic data for silkworms limits their usefulness in apoptosis studies, despite the advantages of silkworm as a representative of Lepidoptera and an effective model system. Herein we have identified apoptosis-related genes in the silkworm Bombyx mori and compared them to those from insects, mammals, and nematodes. Results From the newly assembled genome databases, a genome-wide analysis of apoptosis-related genes in Bombyx mori was performed using both nucleotide and protein Blast searches. Fifty-two apoptosis-related candidate genes were identified, including five caspase family members, two tumor necrosis factor (TNF) superfamily members, one Bcl-2 family member, four baculovirus IAP (inhibitor of apoptosis) repeat (BIR) domain family members and 1 RHG (Reaper, Hid, Grim, and Sickle; Drosophila cell death activators) family member. Moreover, we identified a new caspase family member, BmCaspase-New, two splice variants of BmDronc, and Bm3585, a mammalian TNF superfamily member homolog. Twenty-three of these apoptosis-related genes were cloned and sequenced using cDNA templates isolated from BmE-SWU1 cells. Sequence analyses revealed that these genes could have key roles in apoptosis. Conclusions Bombyx mori possesses potential apoptosis-related genes. We hypothesized that the classic intrinsic and extrinsic apoptotic pathways potentially are active in Bombyx mori. These results lay the foundation for further apoptosis-related study in Bombyx mori. PMID:21040523

  20. Flavonoids Activated Caspases for Apoptosis in Human Glioblastoma T98G and U87MG Cells But Not in Human Normal Astrocytes

    PubMed Central

    Das, Arabinda; Banik, Naren L.; Ray, Swapan K.

    2011-01-01

    BACKGROUND Human glioblastoma is a deadly brain cancer that continues to defy all current therapeutic strategies. We induced apoptosis in human glioblastoma T98G and U87MG cells following treatment with apigenin (APG), (−)-epigallocatechin (EGC), (−)-epigallocatechin-3-gallate (EGCG), and genistein (GST) that did not induce apoptosis in human normal astrocytes (HNA). METHODS Induction of apoptosis was examined using Wright staining and ApopTag assay. Production of reactive oxygen species (ROS) and increase in intracellular free [Ca2+] were measured by fluoresent probes. Analysis of mRNA and Western blotting indicated increases in expression and activities of the stress kinases and cysteine proteases for apoptosis. JC-1 showed changes in mitochondrial membrane potential (ΔΨm) and use of specific inhibitors confirmed activation of kinases and proteases in apoptosis. RESULTS Treatment of glioblastoma cells with APG, EGC, EGCG, or GST triggered ROS production that induced apoptosis with phosphorylation of p38 MAPK and activation of the redox-sensitive JNK1 pathway. Pretreatment of cells with ascorbic acid attenuated ROS production and p38 MAPK phosphorylation. Increases in intracellular free [Ca2+] and activation of caspase-4 indicated involvement of endoplasmic reticulum stress in apoptosis. Other events in apoptosis included overexpression of Bax, loss of ΔΨm, mitochondrial release of cytochrome c and Smac into the cytosol, down regulation of baculoviral inhibitor-of-apoptosis repeat containing proteins, and activation of calpain, caspase-9, and caspase-3. EGC and EGCG also induced caspase-8 activity. APG, EGC, EGCG, or GST did not induce apoptosis in HNA. CONCLUSION Results strongly suggest that flavonoids are potential therapeutic agents for induction of apoptosis in human glioblastoma cells. PMID:19894226

  1. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Chaitali; Goswami, Ramansu; Centre for Environmental Studies, Visva-Bharati University, Santiniketan 731 235

    2011-10-01

    We had earlier shown that exposure to arsenic (0.50 {mu}M) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca{sup 2+}) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 andmore » interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca{sup 2+} homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca{sup 2+} levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: > Altered Ca{sup 2+} homeostasis leads to arsenic-induced HKM apoptosis. > Calpain-2 plays a critical role in the process. > ERK is pro-apoptotic in arsenic-induced HKM apoptosis. > Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.« less

  2. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    PubMed Central

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  3. Regulation of Apoptosis during Flavivirus Infection

    PubMed Central

    Okamoto, Toru; Suzuki, Tatsuya; Kusakabe, Shinji; Tokunaga, Makoto; Hirano, Junki; Miyata, Yuka; Matsuura, Yoshiharu

    2017-01-01

    Apoptosis is a type of programmed cell death that regulates cellular homeostasis by removing damaged or unnecessary cells. Its importance in host defenses is highlighted by the observation that many viruses evade, obstruct, or subvert apoptosis, thereby blunting the host immune response. Infection with Flaviviruses such as Japanese encephalitis virus (JEV), Dengue virus (DENV) and West Nile virus (WNV) has been shown to activate several signaling pathways such as endoplasmic reticulum (ER)-stress and AKT/PI3K pathway, resulting in activation or suppression of apoptosis in virus-infected cells. On the other hands, expression of some viral proteins induces or protects apoptosis. There is a discrepancy between induction and suppression of apoptosis during flavivirus infection because the experimental situation may be different, and strong links between apoptosis and other types of cell death such as necrosis may make it more difficult. In this paper, we review the effects of apoptosis on viral propagation and pathogenesis during infection with flaviviruses. PMID:28846635

  4. Is apoptosis a massive process in myelodysplastic syndromes?

    PubMed

    Lepelley, P; Campergue, L; Grardel, N; Preudhomme, C; Cosson, A; Fenaux, P

    1996-11-01

    We looked for increased apoptosis in fresh bone marrow aspirates in 40 cases of myelodysplastic syndrome (MDS), by detection of DNA fragmentation using TdT incorporation of nucleotides on 3' ends of DNA (TUNEL technique). No DNA laddering was seen. In six cases (15%) the TUNEL technique showed a moderate increase in the percentage of apoptotic cells (2.5-5% in comparison with < 2% in controls). In seven of the 34 patients with normal findings by TUNEL analysis, apoptosis was reanalysed after short-term (18 h) bone marrow culture without inducers of apoptosis. Increased apoptosis was shown in four of the seven cases by morphological analysis and/or the TUNEL technique. Increased apoptosis predominated on erythroblasts in three of them. The percentage of apoptotic cells, however, was < 40% in all samples. Our findings suggest that increased apoptosis can be detected in one half of MDS cases after cell culture. Furthermore, the precise relationship between increased apoptosis of myeloid precursors and cytopenias will have to be more precisely explored in MDS.

  5. X-ray-induced apoptosis of BEL-7402 cell line enhanced by extremely low frequency electromagnetic field in vitro.

    PubMed

    Jian, Wen; Wei, Zhao; Zhiqiang, Cheng; Zheng, Fang

    2009-02-01

    This study was designed to test whether extremely low frequency electromagnetic field (ELF-EMF) could enhance the apoptosis-induction effect of X-ray radiotherapy on liver cancer cell line BEL-7402 in vitro. EMF exposure was performed inside an energized solenoid coil. X-ray irradiation was performed using a linear accelerator. Apoptosis rates of BEL-7402 cells were analyzed using Annexin V-Fit Apoptosis Detection kit. Apoptosis rates of EMF group and sham EMF group were compared when combined with X-ray irradiation. Our results suggested that the apoptosis rate of BEL-7402 cells exposed to low doses of X-ray irradiation could be significantly increased by EMF. More EMF exposures obtain significantly higher apoptosis rates than fewer EMF exposures when combined with 2 Gy X-ray irradiation. These findings suggested that ELF-EMF could augment the cell apoptosis effects of low doses of X-ray irradiation on BEL-7402 cells in a synergistic and cumulative way. Copyright 2008 Wiley-Liss, Inc.

  6. Identification of apoptosis-related PLZF target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes

    2007-07-27

    The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less

  7. [Role of placental apoptosis in fetal growth restriction].

    PubMed

    Liu, Yuan; Gao, Peng; Xie, Yingbo; Wang, Shuyun; Dai, Minsheng; Jiang, Sen

    2002-12-01

    To determine the relationship of placental cellular apoptosis and pathophysiology of fetal growth restriction (FGR). Placental samples were obtained from 18 pregnancies complicated by FGR and 14 normal pregnancies. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) and transmission electron microscopy were used to confirm the occurrence of apoptosis. In FGR group the placental apoptosis rate was (n = 18) 12.1 per thousand, the average placental weight was (236 +/- 24) g, the average birth weight was (2,071 +/- 428) g; In normal group (n = 14), the placental apoptosis rate was 7.3 per thousand, the average placental weight was (354 +/- 63) g, the average birth weight was (3,411 +/- 588) g (P < 0.05). The incidence of apoptosis was significantly higher in placental samples from pregnancies with FGR compared with normal placental samples (P < 0.05). Under transmission election microscopy, apoptosis was obviously compact and the chromatins were formed as mass. These results suggest that apoptosis may play a role in the pathophysiologic mechanisms of FGR.

  8. Diabetes and renal tubular cell apoptosis

    PubMed Central

    Habib, Samy L

    2013-01-01

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells. PMID:23593533

  9. Diabetes and renal tubular cell apoptosis.

    PubMed

    Habib, Samy L

    2013-04-15

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells.

  10. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis.

    PubMed

    Clarke, Murray C H; Figg, Nichola; Maguire, Janet J; Davenport, Anthony P; Goddard, Martin; Littlewood, Trevor D; Bennett, Martin R

    2006-09-01

    Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodeling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. To study the direct consequences of VSMC apoptosis, we generated transgenic mice expressing the human diphtheria toxin receptor (hDTR, encoded by HBEGF) from a minimal Tagln (also known as SM22alpha) promoter. Despite apoptosis inducing loss of 50-70% of VSMCs, normal arteries showed no inflammation, reactive proliferation, thrombosis, remodeling or aneurysm formation. In contrast, VSMC apoptosis in atherosclerotic plaques of SM22alpha-hDTR Apoe-/- mice induced marked thinning of fibrous cap, loss of collagen and matrix, accumulation of cell debris and intense intimal inflammation. We conclude that VSMC apoptosis is 'silent' in normal arteries, which have a large capacity to withstand cell loss. In contrast, VSMC apoptosis alone is sufficient to induce features of plaque vulnerability in atherosclerosis. SM22alpha-hDTR Apoe-/- mice may represent an important new model to test agents proposed to stabilize atherosclerotic plaques.

  11. Apoptosis of non-parasitised red blood cells in Plasmodium yoelii malaria

    PubMed Central

    Totino, Paulo Renato Rivas; Pinna, Raquel Alves; De-Oliveira, Ana Cecilia Amado Xavier; Banic, Dalma Maria; Daniel-Ribeiro, Cláudio Tadeu; Ferreira-da-Cruz, Maria de Fátima

    2013-01-01

    Recently, while studying erythrocytic apoptosis during Plasmodium yoelii infection, we observed an increase in the levels of non-parasitised red blood cell (nRBC) apoptosis, which could be related to malarial anaemia. Therefore, in the present study, we attempted to investigate whether nRBC apoptosis is associated with the peripheral RBC count, parasite load or immune response. To this end, BALB/c mice were infected with P. yoelii 17XL and nRBC apoptosis, number of peripheral RBCs, parasitaemia and plasmatic levels of cytokines, nitric oxide and anti-RBC antibodies were evaluated at the early and late stages of anaemia. The apoptosis of nRBCs increased at the late stage and was associated with parasitaemia, but not with the intensity of the immune response. The increased percentage of nRBC apoptosis that was observed when anaemia was accentuated was not related to a reduction in peripheral RBCs. We conclude that nRBC apoptosis in P. yoelii malaria appears to be induced in response to a high parasite load. Further studies on malaria models in which acute anaemia develops during low parasitaemia are needed to identify the potential pathogenic role of nRBC apoptosis. PMID:24037189

  12. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    PubMed

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  13. IFN-{gamma} sensitizes MIN6N8 insulinoma cells to TNF-{alpha}-induced apoptosis by inhibiting NF-{kappa}B-mediated XIAP upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik

    2005-10-28

    Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less

  14. Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin.

    PubMed

    Shu, Benshui; Zhang, Jingjing; Sethuraman, Veeran; Cui, Gaofeng; Yi, Xin; Zhong, Guohua

    2017-10-16

    As an important botanical pesticide, azadirachtin demonstrates broad insecticidal activity against many agricultural pests. The results of a previous study indicated the toxicity and apoptosis induction of azadirachtin in Spodoptera frugiperda Sf9 cells. However, the lack of genomic data has hindered a deeper investigation of apoptosis in Sf9 cells at a molecular level. In the present study, the complete transcriptome data for Sf9 cell line was accomplished using Illumina sequencing technology, and 97 putative apoptosis-related genes were identified through BLAST and KEGG orthologue annotations. Fragments of potential candidate apoptosis-related genes were cloned, and the mRNA expression patterns of ten identified genes regulated by azadirachtin were examined using qRT-PCR. Furthermore, Western blot analysis showed that six putative apoptosis-related proteins were upregulated after being treated with azadirachtin while the protein Bcl-2 were downregulated. These data suggested that both intrinsic and extrinsic apoptotic signal pathways comprising the identified potential apoptosis-related genes were potentially active in S. frugiperda. In addition, the preliminary results revealed that caspase-dependent or caspase-independent apoptotic pathways could function in azadirachtin-induced apoptosis in Sf9 cells.

  15. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  16. Endoplasmic reticulum stress is involved in the lidocaine-induced apoptosis in SH-SY5Y neuroblastoma cells.

    PubMed

    Li, Kehan; Han, Xuechang

    2015-05-01

    Lidocaine has been indicated to promote apoptosis and to promote endoplasmic reticulum (ER) stress. However, the mechanism underlining ER stress-mediated apoptosis is unclear. In the present study, we investigated the promotion to ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Firstly, we confirmed that lidocaine treatment induced apoptosis in SH-SY5Y cells, time-dependently and dose-dependently, via MTT cell viability assay and annexin V/FITC apoptosis detection with a FACScan flow cytometer. And the anti-apoptosis Bcl-2 and Bcl-xL were downregulated, whereas the apoptosis-executive caspase 3 was promoted through Western blot assay and caspase 3 activity assay. Moreover, the ER stress-associated binding immunoglobulin protein (BiP), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein homologous protein (CHOP) were also upregulated at both mRNA and protein levels by lidocaine treatment. On the other hand, downregulation of the ER stress-associated BiP by RNAi method not only blocked the lidocaine-promoted ER stress but also attenuated the lidocaine-induced SH-SY5Y cell apoptosis. In conclusion, the present study confirmed the involvement of ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Our study provides a better understanding on the mechanism of lidocaine's neurovirulence.

  17. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    PubMed

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  18. MACC1 regulates Fas mediated apoptosis through STAT1/3 - Mcl-1 signaling in solid cancers.

    PubMed

    Radhakrishnan, Harikrishnan; Ilm, Katharina; Walther, Wolfgang; Shirasawa, Senji; Sasazuki, Takehiko; Daniel, Peter T; Gillissen, Bernhard; Stein, Ulrike

    2017-09-10

    MACC1 was identified as a novel player in cancer progression and metastasis, but its role in death receptor-mediated apoptosis is still unexplored. We show that MACC1 knockdown sensitizes cancer cells to death receptor-mediated apoptosis. For the first time, we provide evidence for STAT signaling as a MACC1 target. MACC1 knockdown drastically reduced STAT1/3 activating phosphorylation, thereby regulating the expression of its apoptosis targets Mcl-1 and Fas. STAT signaling inhibition by the JAK1/2 inhibitor ruxolitinib mimicked MACC1 knockdown-mediated molecular signatures and apoptosis sensitization to Fas activation. Despite the increased Fas expression, the reduced Mcl-1 expression was instrumental in apoptosis sensitization. This reduced Mcl-1-mediated apoptosis sensitization was Bax and Bak dependent. MACC1 knockdown also increased TRAIL-induced apoptosis. MACC1 overexpression enhanced STAT1/3 phosphorylation and increased Mcl-1 expression, which was abrogated by ruxolitinib. The central role of Mcl-1 was strengthened by the resistance of Mcl-1 overexpressing cells to apoptosis induction. The clinical relevance of Mcl-1 regulation by MACC1 was supported by their positive expression correlation in patient-derived tumors. Altogether, we reveal a novel death receptor-mediated apoptosis regulatory mechanism by MACC1 in solid cancers through modulation of the STAT1/3-Mcl-1 axis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. NF-κB is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows.

    PubMed

    Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying

    2016-11-01

    To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.

  20. Tumors acquire inhibitor of apoptosis protein (IAP)-mediated apoptosis resistance through altered specificity of cytosolic proteolysis.

    PubMed

    Hong, Xu; Lei, Lu; Glas, Rickard

    2003-06-16

    Many tumors overexpress members of the inhibitor of apoptosis protein (IAP) family. IAPs contribute to tumor cell apoptosis resistance by the inhibition of caspases, and are degraded by the proteasome to allow further progression of apoptosis. Here we show that tumor cells can alter the specificity of cytosolic proteolysis in order to acquire apoptosis resistance, which promotes formation of rapidly growing tumors. Survival of tumor cells with low proteasomal activity can occur in the presence of high expression of Tri-peptidyl-peptidase II (TPP II), a large subtilisin-like peptidase that complements proteasomal activity. We find that this state leaves tumor cells unable of effectively degrading IAPs, and that cells in this state form rapidly growing tumors in vivo. We also find, in studies of apoptosis resistant cells derived from large in vivo tumors, that these have acquired an altered peptidase activity, with up-regulation of TPP II activity and decreased proteasomal activity. Importantly, we find that growth of subcutaneous tumors is limited by maintenance of the apoptosis resistant phenotype. The apoptosis resistant phenotype was reversed by increased expression of Smac/DIABLO, an antagonist of IAP molecules. Our data suggest a reversible mechanism in regulation of apoptosis resistance that drives tumor progression in vivo. These data are relevant in relation to the multitude of therapy-resistant clinical tumors that have increased levels of IAP molecules.

  1. Neutrophil and macrophage apoptosis in bronchoalveolar lavage fluid from healthy horses and horses with recurrent airway obstruction (RAO)

    PubMed Central

    2014-01-01

    Background Dysregulation of apoptosis has been implicated in a range of diseases including tumors, neurodegenerative and autoimmine diseases, as well as allergic asthma and chronic obstructive pulmonary disease (COPD) in humans. Although it has a different pathophysiology, delayed apoptosis of various inflammatory cells may play a pivotal role in the development of recurrent airway obstruction (RAO) in horses. Reduction of inflammatory cell apoptosis or a dysregulation of this process could lead to chronic inflammation and tissue injury. Therefore, the aim of this study was to investigate the rate of apoptosis and necrosis of neutrophils and macrophages in bronchoalveolar lavage fluid obtained from seven horses suffering from RAO (study group) and seven control horses. Results We demonstrated that neutrophil/macrophage apoptosis is altered in RAO-affected horses compared with the control group in the BAL fluid. We found a significant difference between the median percentage of early and late apoptosis of neutrophils between the study and control group of horses. Moreover, we found a positive correlation between the rate of apoptosis and the median percentage of macrophages in RAO-affected horses. Conclusion The findings suggest that apoptosis dysregulation may play a significant role in the pathogenesis of RAO. However, further studies are needed to clarify the role of altered apoptosis in the course of equine recurrent airway obstruction. PMID:24460911

  2. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  3. Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents.

    PubMed

    Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Porcuna, Jesús; Villanueva-Paz, Marina; Fernández-Vega, Alejandro; de la Mata, Mario; de Lavera, Isabel; Rivero, Juan Miguel Suarez; Luzón-Hidalgo, Raquel; Álvarez-Córdoba, Mónica; Cotán, David; Zaderenko, Ana Paula; Cordero, Mario D; Sánchez-Alcázar, José A

    2017-03-01

    Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. Using fixed and living cell imaging, we showed that CPT induced two dose- and cell cycle-dependent types of apoptosis characterized by different cytoskeleton reorganizations, time-dependent caspase activation and final apoptotic cell morphology. In the one referred as "slow" (~h) or round-shaped, apoptosis was characterized by a slow contraction of the actinomyosin ring and late caspase activation. In "slow" apoptosis the γ-tubulin complexes were not disorganized and microtubules were not depolymerized at early stages. In contrast, "fast" (~min) or irregular-shaped apoptosis was characterized by early caspase activation followed by full contraction of the actinomyosin ring. In fast apoptosis γ-tubulin complexes were disorganized and microtubules were initially depolymerized. However, after actinomyosin contraction, microtubules were reformed adopting a cortical but irregular disposition near plasma membrane. In addition to distinctive cytoskeleton reorganization kinetics, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocytes response. Our results suggest that the knowledge and modulation of the type of apoptosis promoted by genotoxic agents may be important for deciding a better therapeutic option and predicting the immune response in cancer treatment.

  4. Feedback regulation of mitochondria by caspase-9 in the B cell receptor-mediated apoptosis.

    PubMed

    Eeva, J; Nuutinen, U; Ropponen, A; Mättö, M; Eray, M; Pellinen, R; Wahlfors, J; Pelkonen, J

    2009-12-01

    During the germinal centre reaction (GC), B cells with non-functional or self-reactive antigen receptors are negatively selected by apoptosis to generate B cell repertoire with appropriate antigen specificities. We studied the molecular mechanism of Fas/CD95- and B cell receptor (BCR)-induced apoptosis to shed light on the signalling events involved in the negative selection of GC B cells. As an experimental model, we used human follicular lymphoma (FL) cell line HF1A3, which originates from a GC B cell, and transfected HF1A3 cell lines overexpressing Bcl-x(L), c-FLIP(long) or dominant negative (DN) caspase-9. Fas-induced apoptosis was dependent on the caspase-8 activation, since the overexpression of c-FLIP(long), a natural inhibitor of caspase-8 activation, blocked apoptosis induced by Fas. In contrast, caspase-9 activation was not involved in Fas-induced apoptosis. BCR-induced apoptosis showed the typical characteristics of mitochondria-dependent (intrinsic) apoptosis. Firstly, the activation of caspase-9 was involved in BCR-induced DNA fragmentation, while caspase-8 showed only marginal role. Secondly, overexpression of Bcl-x(L) could block all apoptotic changes induced by BCR. As a novel finding, we demonstrate that caspase-9 can enhance the cytochrome-c release and collapse of mitochondrial membrane potential (DeltaPsi(m)) during BCR-induced apoptosis. The requirement of different signalling pathways in apoptosis induced by BCR and Fas may be relevant, since Fas- and BCR-induced apoptosis can thus be regulated independently, and targeted to different subsets of GC B cells.

  5. Inhibition of c-Jun N-terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down-regulation of JunD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kook, Sung-Ho; Research Center of Bioactive Materials, Chonbuk National University, Chonju 561-756; Son, Young-Ok

    Reduction of susceptibility to apoptosis signals is a crucial step in carcinogenesis. Therefore, sensitization of tumor cells to apoptosis is a promising therapeutic strategy. c-Jun NH{sub 2}-terminal kinase (JNK) has been implicated in stress-induced apoptosis. However, many studies also emphasize the role of JNK on cell survival, although its mechanisms are not completely understood. Previously, we found that inhibition of JNK activity promotes flavonoid-mediated apoptosis of human osteosarcoma cells. We thus determined whether inhibition of JNK sensitizes tumor cells to a bioflavonoid-induced apoptosis, and whether this effect of JNK is a general effect. As the results, quercetin and genistein asmore » well as a flavonoid fraction induced apoptosis of tumor cells, which was further accelerated by specific JNK inhibitor, SP600125 or by small interfering RNA specific to JNK1/2. This effect was specific to types of cells because it was further apparent in tumorigenic cell lines. Inhibition of JNK by SP600125 also reduced flavonoid-stimulated nuclear induction of JunD which was known to have protective role in apoptosis, whereas JNK inhibition alone had little effect on apoptosis. The flavonoid-induced apoptosis of tumor cells was significantly enhanced by transfecting them with antisense JunD oligonucleotides. These results suggest that inhibition of JNK facilitates flavonoid-induced apoptosis through down-regulation of JunD, which is further sensitive to tumor cells. Therefore, combination with a specific JNK inhibitor further enhances the anti-cancer and chemopreventive potential of bio-flavonoids.« less

  6. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    PubMed

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  7. The mechanism of thioacetamide-induced apoptosis in the L37 albumin-SV40 T-antigen transgenic rat hepatocyte-derived cell line occurs without DNA fragmentation.

    PubMed

    Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C

    1998-10-01

    The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.

  8. Apoptosis in lung injury and remodeling.

    PubMed

    Li, Xiaopeng; Shu, Ruijie; Filippatos, Gerasimos; Uhal, Bruce D

    2004-10-01

    The mode of cell death termed apoptosis, sometimes referred to as programmed cell death, is as critical a determinant of cell population size as is cell proliferation. Although best characterized in cells of the immune system, apoptosis is now known to be a key factor in the maintenance of normal cell turnover within structural cells in the parenchyma of virtually every organ. Recent interest in apoptosis in the lung has sparked a surge of investigations designed to determine the roles of apoptosis in lung development, injury, and remodeling. Of particular recent interest are the roles of apoptosis in disease pathogenesis and resolution, in which the concept of apoptosis as a "programmed" cell death, i.e., genetically determined, is often more accurately viewed as "inappropriate cell suicide" with regard to its extent and/or timing. Data accumulating over the past decade have made clear the complexity of the control of lung cell apoptosis; concepts of the regulation of apoptosis originally determined in classical cell culture models are often, but not always, applicable to structural cells. For this reason, each of the many cell types of the lung must be studied as a potentially new subject with its own idiosyncrasies yet to be discovered. In light of the large volume of literature now available, this article focuses on the roles of apoptosis in three pathophysiological contexts: acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis. Each section presents key data describing the evidence for apoptosis in the lung, its possible relevance to disease pathogenesis, and proposed mechanisms that might suggest potential avenues for therapeutic intervention.

  9. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  10. THE PROS AND CONS OF APOPTOSIS ASSAYS FOR USE IN THE STUDY OF CELLS, TISSUES AND ORGANS

    EPA Science Inventory

    Abstract
    Programmed cell death or apoptosis occurs in many tissues during normal development and in the normal homeostasis of adult tissues. Apoptosis also plays a significant role in abnormal development and disease. Increased interest in apoptosis and cell death in general...

  11. [Apoptosis and pathological process].

    PubMed

    Rami, Mukhammed Salim Iusef

    2007-01-01

    Apoptosis (programmed cell death) occurs normally for maitenance of tissue homeostasis and play an important role in morphogenesis, embriogenesis and tissue growth. On the other hand, apoptosis may be involved in different pathological processes such as malignancy, infectious diseases and autoimmune disorders. Apoptosis is regulated by various mediators. Caspases, death receptors, mitochondria, Bcl-2 protoncogenes and tumor supressor genes are considered to be the most important of them. Advance in apoptosis regulation research suggests enormouse facilities for therapy of wide range of human illnesses.

  12. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    PubMed

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  13. Optical imaging of TNF-α induced apoptosis pathway in living PC12 cells

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Xing, Da; Chen, Miaojuan

    2007-05-01

    Tumor necrosis factor-α (TNF-α) elicits a wide range of biological responses, including neuronal apoptosis and neuroprotection, and this functional pleiotropy is essentially determined by the individual molecular orchestration. Two main pathways lead to apoptosis - the 'extrinsic' or death receptor-initiated pathway, and the 'intrinsic' or mitochondrial pathway. In this study we firstly examine the signaling pathways involved in TNF-α induced apoptosis in living PC12 cells by optical imaging. Our results show that the cleavage of BID has been monitored in real time using fluorescence resonance energy transfer (FRET) technique after PC12 cells treated with TNF-α. Then we observe BAX can't translocation to mitochondria during PC12 cells apoptosis induced by TNF-α, and that there is no any evidence of cytochrome C release into cytosol during cell apoptosis. Our data support that TNF-α mediated PC12 cells apoptosis is extrinsic apoptotic pathway which independent of mitochondria.

  14. Aspartame-induced apoptosis in PC12 cells.

    PubMed

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Apoptosis-induced lymphopenia in sepsis and other severe injuries.

    PubMed

    Girardot, Thibaut; Rimmelé, Thomas; Venet, Fabienne; Monneret, Guillaume

    2017-02-01

    Sepsis and other acute injuries such as severe trauma, extensive burns, or major surgeries, are usually followed by a period of marked immunosuppression. In particular, while lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after severe injuries. Apoptosis plays a central role in this process by affecting immune response at various levels. Indeed, apoptosis-induced lymphopenia duration and depth have been associated with higher risk of infection and mortality in various clinical settings. Therapies modulating apoptosis represent an interesting approach to restore immune competence after acute injury, although their use in clinical practice still presents several limitations. After briefly describing the apoptosis process in physiology and during severe injuries, we will explore the immunological consequences of injury-induced lymphocyte apoptosis, and describe associations with clinically relevant outcomes in patients. Therapeutic perspectives targeting apoptosis will also be discussed.

  16. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    PubMed

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  17. Association of nbl gene expression and glucocorticoid-induced apoptosis in mouse thymus in vivo.

    PubMed

    Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H

    1995-05-01

    A gene of unknown biological function, nbl, was originally isolated by virtue of its abundance in a Namalwa Burkitt Lymphoma cDNA library. nbl expression was initially found to be higher in tissues which exhibited internucleosomal DNA cleavage characteristic of apoptosis, than in tissues which did not exhibit a 'DNA ladder'. nbl expression was therefore examined in mouse thymus in vivo, in which apoptosis is induced by the glucocorticoid, dexamethasone. nbl expression was markedly enhanced by dexamethasone treatment and then sharply decreased prior to the occurrence of maximal 'DNA ladder' formation. In contrast, expression of myc, which is believed to be involved in apoptosis in other cell systems, declined as thymic apoptosis increased. Thymic apoptosis was blocked by the transcriptional inhibitor actinomycin D, if administered when nbl expression was enhanced, but not before or after the peak of nbl expression. These results suggest that nbl expression is associated with thymic apoptosis.

  18. Steroid Receptor Coactivator-interacting Protein (SIP) Inhibits Caspase-independent Apoptosis by Preventing Apoptosis-inducing Factor (AIF) from Being Released from Mitochondria*

    PubMed Central

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-01-01

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis. PMID:22371500

  19. Modulation of inflammation by vasoactive intestinal peptide and bombesin: lack of effects on neutrophil apoptosis.

    PubMed

    Djanani, Angela M; Kähler, Ch M

    2002-01-01

    Inhibition of neutrophil apoptosis has been identified as a prominent feature in chronic inflammation, parenchymal damage, and unresolved organ dysfunction. Lung injury animal models suggest that the neuropeptides vasoactive intestinal peptide and bombesin are protective. Therefore, in vitro effects of VIP and bombesin on apoptosis of normal human neutrophils were tested. For measuring effects on cell survival and apoptosis, trypan dye exclusion, colorimetric MTT assay to assess cell survival, and caspase-3 assay and annexin-V binding for analysing apoptosis rates were used. Foetal calf serum, Fas ligand, and tumour necrosis factor-alpha served as modulatory control agents; survival-promoting and apoptosis-inducing activities of the respective agents were confirmed. Vasoactive intestinal peptide and bombesin, however, failed to significantly affect cell death in neutrophils. Data suggest that direct regulation of neutrophil apoptosis is unlikely to be among the mechanisms of lung-protective actions of VIP and bombesin.

  20. Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death

    ERIC Educational Resources Information Center

    Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard

    2017-01-01

    Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…

  1. Differential effects of alloherpesvirus CyHV-3 and rhabdovirus SVCV on apoptosis in fish cells.

    PubMed

    Miest, Joanna J; Adamek, Mikolaj; Pionnier, Nicolas; Harris, Sarah; Matras, Marek; Rakus, Krzysztof Ł; Irnazarow, Ilgiz; Steinhagen, Dieter; Hoole, Dave

    2015-03-23

    Whilst Herpesviridae, which infect higher vertebrates, actively influence host immune responses to ensure viral replication, it is mostly unknown if Alloherpesviridae, which infect lower vertebrates, possess similar abilities. An important antiviral response is clearance of infected cells via apoptosis, which in mammals influences the outcome of infection. Here, we utilise common carp infected with CyHV-3 to determine the effect on the expression of genes encoding apoptosis-related proteins (p53, Caspase 9, Apaf-1, IAP, iNOS) in the pronephros, spleen and gills. The influence of CyHV-3 on CCB cells was also studied and compared to SVCV (a rhabdovirus) which induces apoptosis in carp cell lines. Although CyHV-3 induced iNOS expression in vivo, significant induction of the genetic apoptosis pathway was only seen in the pronephros. In vitro CyHV-3 did not induce apoptosis or apoptosis-related expression whilst SVCV did stimulate apoptosis. This suggests that CyHV-3 possesses mechanisms similar to herpesviruses of higher vertebrates to inhibit the antiviral apoptotic process. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Emerging roles of apoptotic microtubules during the execution phase of apoptosis.

    PubMed

    Oropesa Ávila, Manuel; Fernández Vega, Alejandro; Garrido Maraver, Juan; Villanueva Paz, Marina; De Lavera, Isabel; De La Mata, Mario; Cordero, Mario D; Alcocer Gómez, Elizabet; Delgado Pavón, Ana; Álvarez Córdoba, Mónica; Cotán, David; Sánchez-Alcázar, José Antonio

    2015-09-01

    Apoptosis is a genetically programmed energy-dependent process of cell demise, characterized by specific morphological and biochemical events in which the activation of caspases has an essential role. During apoptosis the cytoskeleton participates actively in characteristic morphological rearrangements of the dying cell. This reorganisation has been assigned mainly to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent reports have showed that microtubules are reformed during the execution phase of apoptosis organizing an apoptotic microtubule network (AMN). AMN is organized behind plasma membrane, forming a cortical structure. Apoptotic microtubules repolymerization takes place in many cell types and under different apoptotic inducers. It has been hypothesized that AMN is critical for maintaining plasma membrane integrity and cell morphology during the execution phase of apoptosis. AMN disorganization leads apoptotic cells to secondary necrosis and the release of potential toxic molecules which can damage neighbor cells and promotes inflammation. Therefore, AMN formation during physiological apoptosis or in pathological apoptosis induced by anti-cancer treatments is essential for tissue homeostasis and the prevention of additional cell damage and inflammation. © 2015 Wiley Periodicals, Inc.

  3. Differential induction of apoptosis in Swiss 3T3 cells by nitric oxide and the nitrosonium cation.

    PubMed

    Khan, S; Kayahara, M; Joashi, U; Mazarakis, N D; Sarraf, C; Edwards, A D; Hughes, M N; Mehmet, H

    1997-09-01

    We have investigated the effect of nitric oxide (NO) on apoptosis in Swiss 3T3 fibroblasts and compared it to the effect of the nitrosonium cation (NO+). Both species induced apoptosis, confirmed by electron microscopy, propidium iodide staining, DNA laddering and activation of caspases. The kinetics of triggering apoptosis were different for the two redox species: NO+ required only a 2 hour exposure, whereas NO required 24 hours. Three sources of NO were used: aqueous solutions of NO and two NO donors, S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine. The time course of apoptosis induced by these two S-nitrosothiols correlated with their rate of decomposition to NO. The apoptotic effect of NO was reduced in the presence of the NO scavenger oxyhaemoglobin, or the antioxidants N-acetylcysteine and ascorbic acid, whereas in the case of NO+ these antioxidants potentiated apoptosis. Glutathione also had a potentiating effect on the cytotoxicity of NO+. This suggests that cellular antioxidants may play a role in protecting the cell from NO-induced apoptosis while NO+ may trigger apoptosis independently of oxidative stress mechanisms.

  4. Novel Triazole linked 2-phenyl benzoxazole derivatives induce apoptosis by inhibiting miR-2, miR-13 and miR-14 function in Drosophila melanogaster.

    PubMed

    Mondal, Tanmoy; Lavanya, A V S; Mallick, Akash; Dadmala, Tulshiram L; Kumbhare, Ravindra M; Bhadra, Utpal; Bhadra, Manika Pal

    2017-06-01

    Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21-22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.

  5. mir-200c Regulates Induction of Apoptosis through CD95 by Targeting FAP-1

    PubMed Central

    Schickel, Robert; Park, Sun-Mi; Murmann, Andrea E.; Peter, Marcus E.

    2010-01-01

    SUMMARY Tumor progression shares many characteristics with the process of epithelial-to-mesenchymal transition (EMT). Cells that have undergone an EMT are known to have an increased resistance to apoptosis. CD95/Fas is an apoptosis-inducing receptor expressed on many tissues and tumor cells. During tumor progression CD95 is frequently downregulated, and tumor cells lose apoptosis sensitivity. miR-200 microRNAs repress both the EMT-inducing ZEB1 and ZEB2 transcription factors. We now demonstrate that miR-200c sensitizes cells to apoptosis mediated by CD95. We have identified the apoptosis inhibitor FAP-1 as a target for miR-200c. FAP-1 was demonstrated to be responsible for the reduced sensitivity to CD95-mediated apoptosis in cells with inhibited miR-200. The identification of FAP-1 as a miR-200c target provides a molecular mechanism to explain both the downregulation of CD95 expression and the reduction in sensitivity of cells to CD95-mediated apoptosis that is observed in the context of reduced miR-200 expression during tumor progression. PMID:20620960

  6. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  7. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    PubMed Central

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  8. DR3 regulation of apoptosis of naive T-lymphocytes in children with acute infectious mononucleosis.

    PubMed

    Filatova, Elena Nikolaevna; Anisenkova, Elena Viktorovna; Presnyakova, Nataliya Borisovna; Utkin, Oleg Vladimirovich

    2016-09-01

    Acute infectious mononucleosis (AIM) is a widespread viral disease that mostly affects children. Development of AIM is accompanied by a change in the ratio of immune cells. This is provided by means of different biological processes including the regulation of apoptosis of naive T-cells. One of the potential regulators of apoptosis of T-lymphocytes is a death receptor 3 (DR3). We have studied the role of DR3 in the regulation of apoptosis of naive CD4 + (nTh) and CD8 + (nCTL) T-cells in healthy children and children with AIM. In healthy children as well as in children with AIM, the activation of DR3 is accompanied by inhibition of apoptosis of nTh. In healthy children, the stimulation of DR3 resulted in the increase in apoptosis of nCTL. On the contrary, in children with AIM, the level of apoptosis of nCTL decreased after DR3 activation, which is a positive contribution to the antiviral immune response. In children with AIM, nCTL are characterized by reduced level of apoptosis as compared with healthy children. These results indicate that DR3 can be involved in the reduction of sensitivity of nCTL to apoptosis in children with AIM.

  9. Deficiency in methionine, tryptophan, isoleucine, or choline induces apoptosis in cultured cells.

    PubMed

    Yen, Chi-Liang E; Mar, Mei-Heng; Craciunescu, Corneliu N; Edwards, Lloyd J; Zeisel, Steven H

    2002-07-01

    Cells in culture die by apoptosis when deprived of the essential nutrient choline. We now report that cells (both proliferating PC12 cells and postmitotic neurons isolated from fetal rat brains) undergo apoptosis when deprived of other individual essential nutrients (methionine, tryptophan or isoleucine). In PC12 cells, deficiencies of each nutrient independently led to ceramide accumulation and to caspase activation, both recognized signals of several apoptotic pathways. A similar profile of caspases was activated in PC12 cells deprived of choline, methionine, tryptophan or isoleucine. More than one caspase was involved and these caspases appeared to transmit parallel signals for apoptosis induction because only broad-spectrum caspase inhibitors, but not inhibitors for specific individual caspases inhibited apoptosis in choline- or methionine-deprived cells. The induction of these caspase-dependent apoptosis pathways likely did not involve the same upstream signals. Choline deficiency perturbed choline metabolism but did not affect protein synthesis, whereas amino acid deficiencies inhibited protein synthesis but did not perturb choline metabolism. In addition, a subclone of PC12 cells that was resistant to choline deficiency-induced apoptosis was not resistant to tryptophan deficiency-induced apoptosis. These observations suggest that deficiency of each studied nutrient activates different pathways for signaling apoptosis that ultimately converge on a common execution pathway.

  10. Reduced risk of apoptosis: mechanisms of stress responses.

    PubMed

    Milisav, Irina; Poljšak, Borut; Ribarič, Samo

    2017-02-01

    Apoptosis signaling pathways are integrated into a wider network of interconnected apoptotic and anti-apoptotic pathways that regulate a broad range of cell responses from cell death to growth, development and stress responses. An important trigger for anti- or pro-apoptotic cell responses are different forms of stress including hypoxia, energy deprivation, DNA damage or inflammation. Stress duration and intensity determine whether the cell's response will be improved cell survival, due to stress adaptation, or cell death by apoptosis, necrosis or autophagy. Although the interplay between enhanced stress tolerance and modulation of apoptosis triggering is not yet fully understood, there is a substantial body of experimental evidence demonstrating that apoptosis and anti-apoptosis signaling pathways can be manipulated to trigger or delay apoptosis in vitro or in vivo. Anti-apoptotic strategies cover a broad range of approaches. These interventions include mediators that prevent apoptosis (trophic factors and cytokines), apoptosis inhibition (caspase inhibition, stimulation of anti-apoptotic or inhibition of pro-apoptotic proteins and elimination of apoptotic stimulus), adaptive stress responses (induction of maintenance and repair, caspase inactivation) and cell-cell interactions (blocking engulfment and modified micro environment). There is a consensus that preclinical efficacy and safety evaluations of anti-apoptotic strategies should be performed with protocols that simulate as closely as possible the effects of aging, gender, risk factors, comorbidities and co-medications.

  11. Effects of celecoxib on cell apoptosis and Fas, FasL and Bcl-2 expression in a BGC-823 human gastric cancer cell line.

    PubMed

    Li, Qian; Peng, Jie; Liu, Ting; Zhang, Guiying

    2017-09-01

    Fas, which is an apoptotic-related protein, has an important role in cell apoptosis. Fas ligand (FasL) binds to Fas and activates apoptosis signal transduction. We previously demonstrated that the efficiency of celecoxib inhibited the proliferation and apoptosis of HT-29 colon cancer cell line. The BGC823 cell line was used as an experimental model to evaluate the potential role of celecoxib on gastric cancer cell apoptosis. Inhibitory effects of celecoxib on cell viability were determined by MTT assay. Cell apoptosis was evaluated by flow cytometric analysis and laser confocal microscopy. The results of the present study demonstrated that celecoxib inhibited the viability of BGC823 cells in a concentration- and time-dependent manner. Furthermore, the effect of BGC823 cells apoptosis was increased in a concentration-dependent manner. Western blotting was used to determine the protein expression levels of Fas, FasL, and B-cell lymphoma-2 (Bcl-2). During the celecoxib-induced apoptosis of BGC823 cells, celecoxib upregulated Fas expression and downregulated FasL and Bcl-2 expression in a concentration-dependent manner. These results suggest that celecoxib inhibited the growth and induced apoptosis of BGC823 gastric cancer cells by regulating the protein expression of Fas, FasL and Bcl-2.

  12. Surfactant protein D delays Fas- and TRAIL-mediated extrinsic pathway of apoptosis in T cells.

    PubMed

    Djiadeu, Pascal; Kotra, Lakshmi P; Sweezey, Neil; Palaniyar, Nades

    2017-05-01

    Only a few extracellular soluble proteins are known to modulate apoptosis. We considered that surfactant-associated protein D (SP-D), an innate immune collectin present on many mucosal surfaces, could regulate apoptosis. Although SP-D is known to be important for immune cell homeostasis, whether SP-D affects apoptosis is unknown. In this study we aimed to determine the effects of SP-D on Jurkat T cells and human T cells dying by apoptosis. Here we show that SP-D binds to Jurkat T cells and delays the progression of Fas (CD95)-Fas ligand and TRAIL-TRAIL receptor induced, but not TNF-TNF receptor-mediated apoptosis. SP-D exerts its effects by reducing the activation of initiator caspase-8 and executioner caspase-3. SP-D also delays the surface exposure of phosphatidylserine. The effect of SP-D was ablated by the presence of caspase-8 inhibitor, but not by intrinsic pathway inhibitors. The binding ability of SP-D to dying cells decreases during the early stages of apoptosis, suggesting the release of apoptotic cell surface targets during apoptosis. SP-D also delays FasL-induced death of primary human T cells. SP-D delaying the progression of the extrinsic pathway of apoptosis could have important implications in regulating immune cell homeostasis at mucosal surfaces.

  13. Evaluation of the neuronal apoptotic pathways involved in cytoskeletal disruption-induced apoptosis.

    PubMed

    Jordà, Elvira G; Verdaguer, Ester; Jimenez, Andrés; Arriba, S Garcia de; Allgaier, Clemens; Pallàs, Mercè; Camins, Antoni

    2005-08-01

    The cytoskeleton is critical to neuronal functioning and survival. Cytoskeletal alterations are involved in several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. We studied the possible pathways involved in colchicine-induced apoptosis in cerebellar granule neurons (CGNs). Although colchicine evoked an increase in caspase-3, caspase-6 and caspase-9 activation, selective caspase inhibitors did not attenuate apoptosis. Inhibitors of other cysteine proteases such as PD150606 (a calpain-specific inhibitor), Z-Phe-Ala fluoromethyl ketone (a cathepsins-inhibitors) and N(alpha)-p-tosyl-l-lysine chloromethyl ketone (serine-proteases inhibitor) also had no effect on cell death/apoptosis induced by colchicine. However, BAPTA-AM 10 microM (intracellular calcium chelator) prevented apoptosis mediated by cytoskeletal alteration. These data indicate that calcium modulates colchicine-induced apoptosis in CGNs. PARP-1 inhibitors did not prevent apoptosis mediated by colchicine. Finally, colchicine-induced apoptosis in CGNs was attenuated by kenpaullone, a cdk5 inhibitor. Kenpaullone and indirubin also prevented cdk5/p25 activation mediated by colchicine. These findings indicate that cytoskeletal alteration can compromise cdk5 activation, regulating p25 formation and suggest that cdk5 inhibitors attenuate apoptosis mediated by cytoskeletal alteration. The present data indicate the potential therapeutic value of drugs that prevent the formation of p25 for the treatment of neurodegenerative disorders.

  14. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface fas ligand expression and amplifies fas-mediated hepatocyte death during allograft rejection.

    PubMed

    Afford, S C; Randhawa, S; Eliopoulos, A G; Hubscher, S G; Young, L S; Adams, D H

    1999-01-18

    We propose that a novel mechanism of hepatocyte apoptosis, involving a cooperative interaction between CD40 and Fas, is involved in the hepatocyte loss of chronic liver allograft rejection. We detected increased hepatocyte expression of Fas, Fas ligand (FasL), and CD40 associated with dropout of centrilobular (acinar zone 3) hepatocytes in chronic allograft rejection. Expression of CD40 ligand (CD40L) was also increased but was largely restricted to CD68(+) macrophages. A functional role for CD40 and Fas in hepatocyte apoptosis was demonstrated in vitro using primary human hepatocytes and the HepG2 cell line in both of which apoptosis was induced, not only by cross-linking Fas directly but also via CD40 activation. Our data suggest that CD40 activation induces apoptosis via Fas because (a) ligation of CD40 upregulated hepatocyte FasL expression, and (b) apoptosis induced via activation of CD40 was prevented by a neutralizing monoclonal antibody to FasL. Thus, CD40 engagement triggers apoptosis of human hepatocytes and might amplify Fas-dependent hepatocyte apoptosis in chronic rejection and other inflammatory liver diseases in which Fas-mediated apoptosis is involved.

  15. Berberine exerts antioxidant effects via protection of spiral ganglion cells against cytomegalovirus-induced apoptosis.

    PubMed

    Zhuang, Wei; Li, Ting; Wang, Caiji; Shi, Xi; Li, Yalan; Zhang, Shili; Zhao, Zeqi; Dong, Hongyan; Qiao, Yuehua

    2018-06-01

    Cytomegalovirus (CMV) is the leading cause of sensorineural hearing loss (SNHL) in children because of its damage to the cochlea and spiral ganglion cells. Therefore, it has become a top priority to devise new methods to effectively protect spiral ganglion cells from damage. Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, and its anti-inflammatory and anti-apoptosis properties. However, the effect of BBR on spiral ganglion cells and molecular mechanisms are still unclear. This study aims to investigate whether BBR has an anti-apoptosis effect in CMV-induced apoptosis in cultured spiral ganglion cells and explore the possible mechanism. In this study, TUNEL and MTT assays significantly demonstrated that low doses of BBR did not promote cell apoptosis and they also inhibited the CMV-induced cultured spiral ganglion cell apoptosis. Immunofluorescence and Western blot assays indicated that the anti-apoptosis effect of BBR was related to Nox3. Mitochondrial calcium and Western blot assays revealed that NMDAR1 mediated this anti-apoptosis effect. Our results demonstrated that BBR exerted an anti-apoptosis effect against CMV in cultured spiral ganglion cells, and the mechanism is related to NMDAR1/Nox3-mediated mitochondrial reactive oxygen species (ROS) generation. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and themore » gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.« less

  17. Iron dysregulation combined with aging prevents sepsis-induced apoptosis.

    PubMed

    Javadi, Pardis; Buchman, Timothy G; Stromberg, Paul E; Turnbull, Isaiah R; Vyas, Dinesh; Hotchkiss, Richard S; Karl, Irene E; Coopersmith, Craig M

    2005-09-01

    Sepsis, iron loading, and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Hfe-/- mice (a murine homologue of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24-26 months) or mature (16-18 months) Hfe-/- mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 h later and assessed for apoptosis and cytokine levels. Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe-/- mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe-/- mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe-/- mice than septic mature Hfe-/- animals. Interleukin-6 was elevated in septic aged Hfe-/- mice compared to sham mice. Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe-/- mice are able to mount an inflammatory response following CLP and mature Hfe-/- mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation.

  18. Does perinatal asphyxia induce apoptosis in the inner ear?

    PubMed

    Schmutzhard, Joachim; Glueckert, Rudolf; Sergi, Consolato; Schwentner, Ilona; Abraham, Irene; Schrott-Fischer, Annelies

    2009-04-01

    Pre- and perinatal asphyxia is known to be an important risk factor in the development of neonatal hearing impairment. This study aims to evaluate the role of apoptosis, which is known to play an essential role in the development of the inner ear structures, in the development of neonatal hearing loss caused by pre- and perinatal asphyxia. Eight temporal bones of six different newborns were included. We performed a morphologic analysis by both light microscopy, and transmission electron microscopy, as well as immunohistochemical staining to detect the cleaved form of caspase 3 as apoptosis marker and Bcl 2 as anti-apoptotic marker. Early and late phases of apoptosis were evidenced by condensation of chromatin (electron-dense, black structure along nuclear membrane) and fragmentation of the nucleus, respectively. Changes in nuclear morphology during apoptosis correlate with cleavage by caspase 3 located downstream of Bcl 2 action. The immunohistochemistry for cleaved caspase 3 showed a particular predilection for the inner and outer hair cells, spiral ganglion cells and the marginal cells of the stria vascularis. The brain of all examined cases did not show signs of apoptosis. In summary, this investigation suggests that apoptosis takes place before brain tissue apoptosis and is probably an earlier event than thought. Apoptosis of the cochlea is known to play an essential role in the development of the inner ear. Additionally, this study shows that apoptosis may play an important role in the development of hearing impairment, caused by pre- and perinatal asphyxia.

  19. Induction of ultra-morphological features of apoptosis in mature and immature sperm.

    PubMed

    Grunewald, Sonja; Fitzl, Guenther; Springsguth, Christopher

    2017-01-01

    There is a fundamental body of evidence suggesting that activated apoptosis signaling in ejaculated human sperm negatively influences their fertilization potential. However, it is still controversial whether this apoptotic signaling is a relic of an abortive apoptosis related to spermatogenesis or if it should be regarded as a functional preformed pathway in mature sperm leading to stereotypical morphological changes reflecting nuclear disassembly. To address this question, apoptosis was induced using betulinic acid in mature and immature ejaculated human sperm enriched by density gradient centrifugation. Execution of apoptosis was monitored by observing ultra-morphological changes via transmission electron microscopy. Typical morphological signs of apoptosis in somatic cells include plasma membrane blebbing with the formation of apoptotic bodies, impaired mitochondrial integrity, defects of the nuclear envelope, and nuclear fragmentation; these morphologies have also been observed in human sperm. In addition, these apoptotic characteristics were more frequent in immature sperm compared to mature sperm. Following betulinic acid treatment, apoptosis-related morphological changes were induced in mature sperm from healthy donors. This effect was much less pronounced in immature sperm. Moreover, in both fractions, the betulinic acid treatment increased the percentage of acrosome-reacted sperm. The results of our ultra-morphological study prove the functional competence of apoptosis in mature ejaculated human sperm. The theory of a sole abortive process may be valid only for immature sperm. The induction of the acrosome reaction by stimulating apoptosis might shed light on the biological relevance of sperm apoptosis.

  20. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.

    PubMed

    Silva-García, Carlos Giovanni; Estela Navarro, Rosa

    2013-10-01

    In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions. Copyright © 2013 Wiley Periodicals, Inc.

  1. Cyclopamine and jervine induce COX-2 overexpression in human erythroleukemia cells but only cyclopamine has a pro-apoptotic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezali, Lamia; Leger, David Yannick; Limami, Youness

    2013-04-15

    Erythroleukemia is generally associated with a very poor response and survival to current available therapeutic agents. Cyclooxygenase-2 (COX-2) has been described to play a crucial role in the proliferation and differentiation of leukemia cells, this enzyme seems to play an important role in chemoresistance in different cancer types. Previously, we demonstrated that diosgenin, a plant steroid, induced apoptosis in HEL cells with concomitant COX-2 overexpression. In this study, we investigated the antiproliferative and apoptotic effects of cyclopamine and jervine, two steroidal alkaloids with similar structures, on HEL and TF1a human erythroleukemia cell lines and, for the first time, their effectmore » on COX-2 expression. Cyclopamine, but not jervine, inhibited cell proliferation and induced apoptosis in these cells. Both compounds induced COX-2 overexpression which was responsible for apoptosis resistance. In jervine-treated cells, COX-2 overexpression was NF-κB dependent. Inhibition of NF-κB reduced COX-2 overexpression and induced apoptosis. In addition, cyclopamine induced apoptosis and COX-2 overexpression via PKC activation. Inhibition of the PKC pathway reduced both apoptosis and COX-2 overexpression in both cell lines. Furthermore, we demonstrated that the p38/COX-2 pathway was involved in resistance to cyclopamine-induced apoptosis since p38 inhibition reduced COX-2 overexpression and increased apoptosis in both cell lines. - Highlights: ► Cyclopamine alone but not jervine induces apoptosis in human erythroleukemia cells. ► Cyclopamine and jervine induce COX-2 overexpression. ► COX-2 overexpression is implicated in resistance to cyclopamine-induced apoptosis. ► Apoptotic potential of jervine is restrained by NF-κB pathway activation. ► PKC is involved in cyclopamine-induced apoptosis and COX-2 overexpression.« less

  2. MiR-24 alleviates cardiomyocyte apoptosis after myocardial infarction via targeting BIM.

    PubMed

    Pan, L-J; Wang, X; Ling, Y; Gong, H

    2017-07-01

    Ischemia hypoxia induces cardiomyocyte (CM) apoptosis in the process of acute myocardial infarction (AMI). It was showed that pro-apoptosis factor BIM participates in regulating tumor cell apoptosis under ischemia or hypoxia condition, while its role in CM apoptosis after AMI is still unclear. It was revealed that miR-24 expression was significantly reduced in myocardial tissue after AMI. Bioinformatics analysis exhibits that miR-24 is targeted to the 3'-UTR of BIM. This study aims to investigate the role of miR-24 in mediating BIM expression and CM apoptosis. Dual-luciferase assay was used to confirm the targeted regulation between miR-24 and BIM. Cells were cultured under ischemia hypoxia for 12 h after transfection for 48 h. Cell apoptosis was tested by using flow cytometry. The caspase activity was detected by using spectrophotometry. Wistar rats were divided into four groups, including Sham, AMI, AMI + agomir-control, and AMI + agomir-24 groups. Cardiac function was evaluated by using echocardiography. CM apoptosis was determined by using TUNEL. Infarction area was measured by using evans blue staining. MiR-24 targeted suppressed BIM expression. MiR-24 mimic and/or si-BIM transfection significantly declined the BIM expression, inhibited caspase-9 and caspase-3 activities, and reduced cell apoptosis in H9C2 cells. MiR-24 expression was decreased, while BIM levels were up-regulated in myocardium after AMI. Agomir-24 injection down-regulated the BIM expression in myocardium, reduced CM apoptosis, narrowed infarction area, and improved cardiac function in rats. MiR-24 was reduced, whereas BIM was enhanced in the CM after AMI. MiR-24 up-regulation plays a critical role in decreasing BIM expression, reducing CM apoptosis, and improving cardiac function after AMI.

  3. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    PubMed

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  4. 2-aryl benzimidazole conjugate induced apoptosis in human breast cancer MCF-7 cells through caspase independent pathway.

    PubMed

    Nayak, V Lakshma; Nagesh, Narayana; Ravikumar, A; Bagul, Chandrakant; Vishnuvardhan, M V P S; Srinivasulu, Vunnam; Kamal, Ahmed

    2017-01-01

    Apoptosis is a representative form of programmed cell death, which has been assumed to be critical for cancer prevention. Thus, any agent that can induce apoptosis may be useful for cancer treatment and apoptosis induction is arguably the most potent defense against cancer promotion. In our previous studies, 2-aryl benzimidazole conjugates were synthesized and evaluated for their antiproliferative activity and one of the new molecule (2f) was considered as a potential lead. This lead molecule showed significant antiproliferative activity against human breast cancer cell line, MCF-7. The results of the present study revealed that this compound arrested the cell cycle at G2/M phase. Topoisomerase II inhibition assay and Western blot analysis suggested that this compound effectively inhibits topoisomerase II activity which leads to apoptotic cell death. Apoptosis induction in MCF-7 cells was further confirmed by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome c from mitochondria, an increase in the level of apoptosis inducing factor (AIF), generation of reactive oxygen species (ROS), up regulation of proapoptotic protein Bax and down regulation of anti apoptotic protein Bcl-2. Apoptosis assay using Annexin V-FITC assay also suggested that this compound induced cell death by apoptosis. However, compound 2f induced apoptosis could not be reversed by Z-VAD-FMK (a pan-caspase inhibitor) demonstrated that the 2f induced apoptosis was caspase independent. Further, 2f treatment did not activate caspase-7 and caspase-9 activity, suggesting that this compound induced apoptosis in breast cancer cells via a caspase independent pathway. Most importantly, this compound was less toxic towards non-tumorigenic breast epithelial cells, MCF-10A. Furthermore, docking studies also support the potentiality of this molecule to bind to the DNA topoisomerase II.

  5. Endoplasmic reticulum stress signaling is involved in mitomycin C (MMC)-induced apoptosis in human fibroblasts via PERK pathway.

    PubMed

    Shi, Kun; Wang, Daode; Cao, Xiaojian; Ge, Yingbin

    2013-01-01

    Endoplasmic reticulum (ER) stress-mediated cell apoptosis has been implicated in various cell types, including fibroblasts. Previous studies have shown that mitomycin C (MMC)-induced apoptosis occurs in fibroblasts, but the effects of MMC on ER stress-mediated apoptosis in fibroblasts have not been examined. Here, MMC-induced apoptosis in human primary fibroblasts was investigated by exposing cells to a single dose of MMC for 5 minutes. Significant inhibition of cell proliferation and increased apoptosis were observed using a cell viability assay, Annexin V/propidium iodide double staining, cell cycle analysis, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining. Upregulation of proapoptotic factors, including cleaved caspase-3 and poly ADP-ribose polymerase (PARP), was detected by Western blotting. MMC-induced apoptosis was correlated with elevation of 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP), which are hallmarks of ER stress. Three unfolded protein response (UPR) sensors (inositol-requiring enzyme 1, IRE1; activating transcription factor 6, ATF6; and PKR-like ER kinase, PERK) and their downstream signaling pathways were also activated. Knockdown of CHOP attenuated MMC-induced apoptosis by increasing the ratio of BCL-2/BAX and decreasing BIM expression, suggesting that ER stress is involved in MMC-induced fibroblast apoptosis. Interestingly, knockdown of PERK significantly decreased ER stress-mediated apoptosis by reducing the expression of CHOP, BIM and cleaved caspase-3. Reactive oxygen species (ROS) scavenging also decreased the expression of GRP78, phospho-PERK, CHOP, and BIM. These results demonstrate that MMC-induced apoptosis is triggered by ROS generation and PERK activation.

  6. Endoplasmic Reticulum Stress Signaling Is Involved in Mitomycin C(MMC)-Induced Apoptosis in Human Fibroblasts via PERK Pathway

    PubMed Central

    Cao, Xiaojian; Ge, Yingbin

    2013-01-01

    Endoplasmic reticulum (ER) stress-mediated cell apoptosis has been implicated in various cell types, including fibroblasts. Previous studies have shown that mitomycin C (MMC)-induced apoptosis occurs in fibroblasts, but the effects of MMC on ER stress-mediated apoptosis in fibroblasts have not been examined. Here, MMC-induced apoptosis in human primary fibroblasts was investigated by exposing cells to a single dose of MMC for 5 minutes. Significant inhibition of cell proliferation and increased apoptosis were observed using a cell viability assay, Annexin V/propidium iodide double staining, cell cycle analysis, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining. Upregulation of proapoptotic factors, including cleaved caspase-3 and poly ADP-ribose polymerase (PARP), was detected by Western blotting. MMC-induced apoptosis was correlated with elevation of 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP), which are hallmarks of ER stress. Three unfolded protein response (UPR) sensors (inositol-requiring enzyme 1, IRE1; activating transcription factor 6, ATF6; and PKR-like ER kinase, PERK) and their downstream signaling pathways were also activated. Knockdown of CHOP attenuated MMC-induced apoptosis by increasing the ratio of BCL-2/BAX and decreasing BIM expression, suggesting that ER stress is involved in MMC-induced fibroblast apoptosis. Interestingly, knockdown of PERK significantly decreased ER stress-mediated apoptosis by reducing the expression of CHOP, BIM and cleaved caspase-3. Reactive oxygen species (ROS) scavenging also decreased the expression of GRP78, phospho-PERK, CHOP, and BIM. These results demonstrate that MMC-induced apoptosis is triggered by ROS generation and PERK activation. PMID:23533616

  7. Identification of RIP1 as a critical mediator of Smac mimetic-mediated sensitization of glioblastoma cells for Drozitumab-induced apoptosis.

    PubMed

    Cristofanon, S; Abhari, B A; Krueger, M; Tchoghandjian, A; Momma, S; Calaminus, C; Vucic, D; Pichler, B J; Fulda, S

    2015-04-16

    This study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination index<0.1). Also, BV6 profoundly enhances Drozitumab-induced apoptosis in primary glioblastoma cultures and glioblastoma stem-like cells. Importantly, BV6 cooperates with Drozitumab to suppress tumor growth in two glioblastoma in vivo models including an orthotopic, intracranial mouse model, underlining the clinical relevance of these findings. Mechanistic studies reveal that BV6 and Drozitumab act in concert to trigger the formation of a cytosolic receptor-interacting protein (RIP) 1/Fas-associated via death domain (FADD)/caspase-8-containing complex and subsequent activation of caspase-8 and -3. BV6- and Drozitumab-induced apoptosis is blocked by the caspase inhibitor zVAD.fmk, pointing to caspase-dependent apoptosis. RNA interference-mediated silencing of RIP1 almost completely abolishes the BV6-conferred sensitization to Drozitumab-induced apoptosis, indicating that the synergism critically depends on RIP1 expression. In contrast, both necrostatin-1, a RIP1 kinase inhibitor, and Enbrel, a TNFα-blocking antibody, do not interfere with BV6/Drozitumab-induced apoptosis, demonstrating that apoptosis occurs independently of RIP1 kinase activity or an autocrine TNFα loop. In conclusion, the rational combination of BV6 and Drozitumab presents a promising approach to trigger apoptosis in glioblastoma, which warrants further investigation.

  8. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans.

    PubMed

    Wang, Yun; Wang, Shunchang; Luo, Xun; Yang, Yanan; Jian, Fenglei; Wang, Xuemin; Xie, Lucheng

    2014-08-01

    The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. CYP3A-mediated apoptosis of dauricine in cultured human bronchial epithelial cells and in lungs of CD-1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hua; Shen, Shuijie; Chen, Xiaoyan

    2012-06-15

    Dauricine is the major bioactive component isolated from the root of Menispermum dauricum DC and has shown promising pharmacologic activities with a great potential for clinical use. Recently, we found that intraperitoneal exposure of dauricine produced selective pulmonary injury in mice. A quinone methide metabolite of dauricine was identified and is suggested to be associated with the pulmonary toxicity of dauricine. The present study evaluated the apoptotic effect of dauricine in cultured cells and mice, determined the change in cellular glutathione (GSH) contents after exposure to dauricine, investigated the role of GSH depletion in dauricine-induced cytotoxicity and apoptosis, and examinedmore » the role of CYP3A in dauricine-induced GSH depletion and apoptosis. Dauricine was found to induce apoptosis in NL-20 cells. Additionally, intraperitoneal administration of dauricine caused GSH depletion and apoptosis in lungs of mice. Treatment with ketoconazole, an inhibitor of CYP3A, reversed cellular GSH depletion in lungs of mice given dauricine and showed protective effect on dauricine-induced apoptosis in lungs of mice. This indicates that metabolic activation is involved in dauricine-induced GSH-depletion, cytotoxicity and apoptosis. The glutathione depletor L-buthionine sulfoximine showed potentiating effect on cytotoxicity and apoptosis induced by dauricine. We propose that dauricine is metabolized to a quinone methide intermediate which depletes cellular GSH, and the depletion of GSH may trigger and/or intensify the cytotoxicity and apoptosis induced by dauricine. -- Highlights: ► Dauricine induced apoptosis in lungs in mice and in cultured human pulmonary cells. ► Dauricine depleted cellular GSH in lungs of mice and in the human pulmonary cells. ► CYP3A subfamily mediated GSH depletion and apoptosis induced by dauricine. ► L-Buthionine sulfoximine potentiated dauricine-induced GSH depletion and apoptosis.« less

  10. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jie; Zhu, Chao; Hong, Yali

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR)more » or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.« less

  11. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-Troglitazone-induced Apoptosis in Prostate Cancer Cells Involve AMP-activated Protein Kinase*

    PubMed Central

    Santha, Sreevidya; Viswakarma, Navin; Das, Subhasis; Rana, Ajay; Rana, Basabi

    2015-01-01

    Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of β-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACCS79 (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and β-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer. PMID:26198640

  12. Plasmodium falciparum, but not P. vivax, can induce erythrocytic apoptosis.

    PubMed

    Totino, Paulo Renato Rivas; Magalhães, Aline das Dores; Alves, Eliana Brasil; Costa, Monica Regina Farias; de Lacerda, Marcus Vinícius Guimarães; Daniel-Ribeiro, Cláudio Tadeu; Ferreira-da-Cruz, Maria de Fátima

    2014-10-18

    Apoptosis can occur in red blood cells (RBC) and seems to be involved in hematologic disorders related to many diseases. In malaria it is known that parasitized RBC (pRBC) is involved in the development of anemia and thrombosis; however, non-parasitized RBC (nRBC) apoptosis could amplify these malaria-associated hematologic events. In fact, in experimental malaria, increased levels of apoptosis were observed in nRBC during lethal Plasmodium yoelii 17XL infection, but in human malaria erythrocytic apoptosis has never been studied. The present study was performed to investigate if nRBC apoptosis also occurs in P. vivax and P. falciparum infections. Apoptosis of nRBC was evaluated in blood samples of P. vivax malaria patients and clinically healthly individuals living in Manaus, Brazil, both ex vivo and after incubation of RBC for 24 h. Additionally, the capacity of plasma from P. vivax or P. falciparum patients was tested for induction of in vitro apoptosis of normal RBC from a clinically healthy individual living in a non-endemic malaria region. Apoptosis was detected by flow cytometry using annexin V staining. In contrast to experimental malaria that significantly increased the levels of apoptotic nRBC both ex-vivo and after 24 h of incubation, no significant alteration on apoptotic nRBC rates was detected in P. vivax infected patients when compared with non-infected control individuals. Similar results were observed when plasma of these P. vivax patients was incubated with normal RBC. Conversely, plasma from P. falciparum-infected subjects induced significant apoptosis of these cells. Apoptosis of normal RBC can be induced by plasma from individuals with P. falciparum (but not with P. vivax) malaria. This finding could reflect the existence of erythrocytic apoptosis during infection that could contribute to the pathogenesis of hematological and vascular complications associated with falciparum malaria.

  13. Hyperglycemia potentiates a shift from apoptosis to RIP1-dependent necroptosis.

    PubMed

    McCaig, William D; Patel, Payal S; Sosunov, Sergey A; Shakerley, Nicole L; Smiraglia, Tori A; Craft, Miranda M; Walker, Katharine M; Deragon, Matthew A; Ten, Vadim S; LaRocca, Timothy J

    2018-01-01

    Apoptosis and necroptosis are the primary modes of eukaryotic cell death, with apoptosis being non-inflammatory while necroptosis is highly inflammatory. We previously demonstrated that, once activated, necroptosis is enhanced by hyperglycemia in several cell types. Here, we determine if hyperglycemia affects apoptosis similarly. We show that hyperglycemia does not enhance extrinsic apoptosis but potentiates a shift to RIP1-dependent necroptosis. This is due to increased levels and activity of RIP1, RIP3, and MLKL, as well as decreased levels and activity of executioner caspases under hyperglycemic conditions following stimulation of apoptosis. Cell death under hyperglycemic conditions was classified as necroptosis via measurement of markers and involvement of RIP1, RIP3, and MLKL. The shift to necroptosis was driven by RIP1, as mutation of this gene using CRISPR-Cas9 caused cell death to revert to apoptosis under hyperglycemic conditions. The shift of apoptosis to necroptosis depended on glycolysis and production of mitochondrial ROS. Importantly, the shift in PCD was observed in primary human T cells. Levels of RIP1 and MLKL increased, while executioner caspases and PARP1 cleavage decreased, in cerebral tissue from hyperglycemic neonatal mice that underwent hypoxia-ischemia (HI) brain injury, suggesting that this cell death shift occurs in vivo . This is significant as it demonstrates a shift from non-inflammatory to inflammatory cell death which may explain the exacerbation of neonatal HI-brain injury during hyperglycemia. These results are distinct from our previous findings where hyperglycemia enhanced necroptosis under conditions where apoptosis was inhibited artificially. Here we demonstrate a shift from apoptosis to necroptosis under hyperglycemic conditions while both pathways are fully active. Therefore, while our previous work documented that intensity of necroptosis is responsive to glucose, this work sheds light on the molecular balance between apoptosis and necroptosis and identifies hyperglycemia as a condition that pushes cells to undergo necroptosis despite the initial activation of apoptosis.

  14. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway

    PubMed Central

    Guo, Yinfeng; Song, Zhixia; Zhou, Min; Yang, Ying; Zhao, Yu; Liu, Bicheng; Zhang, Xiaoliang

    2017-01-01

    Macrophage infiltration has been linked to the pathogenesis of diabetic nephropathy (DN). However, how infiltrating macrophages affect the progression of DN is unknown. Although infiltrating macrophages produce pro-inflammatory mediators and induce apoptosis in a variety of target cells, there are no studies in podocytes. Therefore, we tested the contribution of macrophages to podocytes apoptosis in DN. in vivo experiments showed that apoptosis in podocytes was increased in streptozocin (STZ)-induced diabetic rats compared with control rats and that this apoptosis was accompanied by increased macrophages infiltration in the kidney. Then, we established a co-culture system to study the interaction between macrophages and podocytes in the absence or presence of high glucose. Macrophages did not trigger podocytes apoptosis when they were co-cultured in the absence of high glucose in a transwell co-culture system. Additionally, although podocyte apoptosis was increased after high glucose stimulation, there was a further enhancement of podocyte apoptosis when podocytes were co-cultured with macrophages in the presence of high glucose compared with podocytes cultured alone in high glucose. Mechanistically, we found that macrophages were activated when they were exposed to high glucose, displaying pro-inflammatory M1 polarization. Furthermore, conditioned media (CM) from such high glucose-activated M1 macrophages (HG-CM) trigged podocytes apoptosis in a reactive oxygen species (ROS)-p38mitogen-activated protein kinases (p38MAPK) dependent manner, which was abolished by either a ROS inhibitor (Tempo) or a p38MAPK inhibitor (SB203580). Finally, we identified tumor necrosis factor (TNF-α) as a key mediator of high glucose-activated macrophages to induce podocytes apoptosis because an anti-TNF-α neutralizing antibody blunted the apoptotic response, excess ROS generation and p38MPAK activation in podocytes induced by HG-CM. Moreover, addition of recombinant TNF-α similarly resulted in podocytes apoptosis. In summary, the TNF-α that was released by high glucose-activated macrophages promoted podocytes apoptosis via ROS-p38MAPK pathway. Blockade of TNF-α secretion from high glucose activated macrophages and ROS-p38MAPK pathway might be effective therapeutic options to limit podocytes apoptosis and delay the progression of diabetic nephropathy. PMID:28881810

  15. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    PubMed

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.

  16. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels ofmore » the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners. • TNF/TNFR{sub 1} pathway is involved in ofloxacin-induced apoptosis of chondrocytes in the early stage. • Endoplasmic reticulum stress is involved in ofloxacin-induced apoptosis of chondrocytes in the early stage.« less

  17. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia–reperfusion

    PubMed Central

    Wu, Bin; Qiu, Wei; Wang, Peng; Yu, Hui; Cheng, Tao; Zambetti, Gerard P; Zhang, Lin; Yu, Jian

    2007-01-01

    Background The small intestine is highly sensitive to ischaemia–reperfusion (I/R) induced injury which is associated with high morbidity and mortality. Apoptosis, or programmed cell death, is a major mode of cell death occurring during I/R induced injury. However, the mechanisms by which I/R cause apoptosis in the small intestine are poorly understood. p53 upregulated modulator of apoptosis (PUMA) is a p53 downstream target and a member of the BH3‐only group of Bcl‐2 family proteins. It has been shown that PUMA plays an essential role in apoptosis induced by a variety of stimuli in different tissues through a mitochondrial pathway. Aims The role of PUMA in I/R induced injury and apoptosis in the small intestine was investigated. The mechanisms by which PUMA is regulated in I/R induced intestinal apoptosis were also studied. Methods Ischaemia was induced by superior mesenteric artery occlusion in the mouse small intestine. Induction of PUMA in response to ischaemia alone, or ischaemia followed by reperfusion (I/R), was examined. I/R induced intestinal apoptosis and injury were compared between PUMA knockout and wild‐type mice. The mechanisms of I/R induced and PUMA mediated apoptosis were investigated through analysis of caspase activation, cytosolic release of mitochondrial cytochrome c and alterations of the proapoptotic Bcl‐2 family proteins Bax and Bak. To determine whether PUMA is induced by reactive oxygen species and/or reactive nitrogen species generated by I/R, superoxide dismutase (SOD) and N‐nitro‐L‐arginine methyl ester (L‐NAME) were used to treat animals before I/R. To determine whether p53 is involved in regulating PUMA during I/R induced apoptosis, PUMA induction and apoptosis in response to I/R were examined in p53 knockout mice. Results PUMA was markedly induced following I/R in the mucosa of the mouse small intestine. I/R induced intestinal apoptosis was significantly attenuated in PUMA knockout mice compared with that in wild‐type mice. I/R induced caspase 3 activation, cytochrome c release, Bax mitochondrial translocation and Bak multimerisation were also inhibited in PUMA knockout mice. SOD or L‐NAME significantly blunted I/R induced PUMA expression and apoptosis. Furthermore, I/R induced PUMA expression and apoptosis in the small intestine were not affected in the p53 knockout mice. Conclusions Our data demonstrated that PUMA is activated by oxidative stress in response to I/R to promote p53 independent apoptosis in the small intestine through the mitochondrial pathway. Inhibition of PUMA is potentially useful for protecting against I/R induced intestinal injury and apoptosis. PMID:17127703

  18. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  19. Apoptosis induced by cold shock in vitro is dependent on cell growth phase.

    PubMed

    Soloff, B L; Nagle, W A; Moss, A J; Henle, K J; Crawford, J T

    1987-06-15

    Chinese hamster V79 fibroblast cells were exposed to brief periods of cold but non-freezing temperatures at different points on the population growth curve. Upon rewarming, cells at the transition from logarithmic to stationary growth exhibited apoptosis (programmed cell death). Cells in other stages of growth, or after reentry into logarithmic growth by refeeding, did not exhibit apoptosis. Apoptosis was expressed by marked cytoplasmic blebbing, by a characteristic non-random fragmentation of DNA into nucleosomal-sized pieces, and by loss of colony-forming ability. The data suggest that cold shock served as a stimulus for susceptible cells to undergo apoptosis. Thus, the experiments describe a new in vitro system for studying the mechanisms of apoptosis.

  20. Is there, and should there be, apoptosis in bacteria?

    PubMed

    Häcker, Georg

    2013-01-01

    Apoptosis is a well-studied form of cell death in metazoans, where it has a clear role during the life of the (multicellular) animal. Some situations of cell death in unicellular eukaryotes (protozoa and yeast) have also been referred to as apoptosis. In recent years apoptosis has further been identified in bacteria several times. As a bacterial response to external stimuli, apoptosis could be important not only for the bacteria but also to the host. Here I will discuss why I believe that the term apoptosis should be avoided for these situations in bacteria, no matter how interesting the molecular background or how biologically important the underlying mechanism may be. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    PubMed Central

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis. PMID:24919172

  2. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    PubMed

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  3. Clinical application of a systems model of apoptosis execution for the prediction of colorectal cancer therapy responses and personalisation of therapy.

    PubMed

    Hector, Suzanne; Rehm, Markus; Schmid, Jasmin; Kehoe, Joan; McCawley, Niamh; Dicker, Patrick; Murray, Frank; McNamara, Deborah; Kay, Elaine W; Concannon, Caoimhin G; Huber, Heinrich J; Prehn, Jochen H M

    2012-05-01

    Key to the clinical management of colorectal cancer is identifying tools which aid in assessing patient prognosis and determining more effective and personalised treatment strategies. We evaluated whether an experimental systems biology strategy which analyses the susceptibility of cancer cells to undergo caspase activation can be exploited to predict patient responses to 5-fluorouracil-based chemotherapy and to case-specifically identify potential alternative targeted treatments to reactivate apoptosis. We quantified five essential apoptosis-regulating proteins (Pro-Caspases 3 and 9, APAF-1, SMAC and XIAP) in samples of Stage II (n = 13) and III (n=17) tumour and normal colonic (n = 8) tissue using absolute quantitative immunoblotting and employed systems simulations of apoptosis signalling to predict the susceptibility of tumour cells to execute apoptosis. Additional systems analyses assessed the efficacy of novel apoptosis-inducing therapeutics such as XIAP antagonists, proteasome inhibitors and Pro-Caspase-3-activating compounds in restoring apoptosis execution in apoptosis-incompetent tumours. Comparisons of caspase activity profiles demonstrated that the likelihood of colorectal tumours to undergo apoptosis decreases with advancing disease stage. Systems-level analysis correctly predicted positive or negative outcome in 85% (p=0.004) of colorectal cancer patients receiving 5-fluorouracil based chemotherapy and significantly outperformed common uni- and multi-variate statistical approaches. Modelling of individual patient responses to novel apoptosis-inducing therapeutics revealed markedly different inter-individual responses. Our study represents the first proof-of-concept example demonstrating the significant clinical potential of systems biology-based approaches for predicting patient outcome and responsiveness to novel targeted treatment paradigms.

  4. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress.

    PubMed

    Ichinose, Masashi; Yonemochi, Hidetoshi; Sato, Toshiaki; Saikawa, Tetsunori

    2003-06-01

    Although mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels have been reported to reduce the extent of apoptosis, the critical timing of mitoK(ATP) channel opening required to protect myocytes against apoptosis remains unclear. In the present study, we examined whether the mitoK(ATP) channel serves as a trigger of cardioprotection against apoptosis induced by oxidative stress. Apoptosis of cultured neonatal rat cardiomyocytes was determined by flow cytometry (light scatter and propidium iodide/annexin V-FITC fluorescence) and by nuclear staining with Hoechst 33342. Mitochondrial membrane potential (DeltaPsi) was measured by flow cytometry of cells stained with rhodamine-123 (Rh-123). Exposure to H(2)O(2) (500 microM) induced apoptosis, and the percentage of apoptotic cells increased progressively and peaked at 2 h. This H(2)O(2)-induced apoptosis was associated with the loss of DeltaPsi, and the time course of decrease in Rh-123 fluorescence paralleled that of apoptosis. Pretreatment of cardiomyocytes with diazoxide (100 microM), a putative mitoK(ATP) channel opener, for 30 min before exposure to H(2)O(2) elicited transient and mild depolarization of DeltaPsi and consequently suppressed both apoptosis and DeltaPsi loss after 2-h exposure to H(2)O(2). These protective effects of diazoxide were abrogated by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microM) but not by the sarcolemmal K(ATP) channel blocker HMR-1098 (30 microM). Our results suggest for the first time that diazoxide-induced opening of mitoK(ATP) channels triggers cardioprotection against apoptosis induced by oxidative stress in rat cardiomyocytes.

  5. Iron dysregulation combined with aging prevents sepsis-induced apoptosis

    PubMed Central

    Javadi, Pardis; Buchman, Timothy G.; Stromberg, Paul E.; Turnbull, Isaiah R.; Vyas, Dinesh; Hotchkiss, Richard S.; Karl, Irene E.; Coopersmith, Craig M.

    2005-01-01

    Background Sepsis, iron loading and aging cause independent increases in gut epithelial and splenic apoptosis. It is unknown how their combination will affect apoptosis and systemic cytokine levels. Methods Hfe−/− mice (a murine homolog of hemochromatosis) abnormally accumulate iron in their tissues. Aged (24–26 months) or mature (16–18 months) Hfe−/− mice and wild type (WT) littermates were subjected to cecal ligation and puncture (CLP) or sham laparotomy. Intestine, spleen, and blood were harvested 24 hours later and assessed for apoptosis and cytokine levels. Results Gut epithelial and splenic apoptosis were low in both aged septic and sham Hfe−/− mice, regardless of the amount of iron in their diet. Mature septic WT mice had increased apoptosis compared to age-matched sham WT mice. Mature septic Hfe−/− mice had similar levels of intestinal cell death to age-matched septic WT mice but higher levels of splenic apoptosis. Apoptosis was significantly lower in septic aged Hfe−/− mice than septic mature Hfe−/− animals. Interleukin-6 was elevated in septic aged Hfe−/− mice compared to sham mice. Conclusions Although sepsis, chronic iron dysregulation, and aging each increase gut and splenic apoptosis, their combination yields cell death levels similar to sham animals despite the fact that aged Hfe−/− mice are able to mount an inflammatory response following CLP and mature Hfe−/− mice have elevated sepsis-induced apoptosis. Combining sepsis with two risk factors that ordinarily increase cell death and increase mortality in CLP yields an apoptotic response that could not have been predicted based upon each element in isolation. PMID:15921699

  6. Epithelial apoptosis in mechanistically distinct methods of injury in the murine small intestine

    PubMed Central

    Vyas, Dinesh; Robertson, Charles M; Stromberg, Paul E; Martin, James R.; Dunne, W. Michael; Houchen, Courtney W; Barrett, Terrence A; Ayala, Alfred; Perl, Mario; Buchman, Timothy G; Coopersmith, Craig M

    2007-01-01

    Gut epithelial apoptosis is involved in the pathophysiology of multiple diseases. This study characterized intestinal apoptosis in three mechanistically distinct injuries with different kinetics of cell death. FVB/N mice were subjected to gamma radiation, Pseudomonas aeruginosa pneumonia or injection of monoclonal anti-CD3 antibody and sacrificed 4, 12, or 24 hours post-injury (n=10/time point). Apoptosis was quantified in the jejunum by hematoxylin and eosin (H&E), active caspase-3, terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling (TUNEL), in situ oligoligation reaction (ISOL,) cytokeratin 18, and annexin V staining. Reproducible results were obtained only for H&E, active caspase-3, TUNEL and ISOL, which were quantified and compared against each other for each injury at each time point. Kinetics of injury were different with early apoptosis highest following radiation, late apoptosis highest following anti CD3, and more consistent levels following pneumonia. ISOL was the most consistent stain and was always statistically indistinguishable from at least 2 stains. In contrast, active caspase-3 demonstrated lower levels of apoptosis, while the TUNEL assay had higher levels of apoptosis in the most severely injured intestine regardless of mechanism of injury. H&E was a statistical outlier more commonly than any other stain. This suggests that regardless of mechanism or kinetics of injury, ISOL correlates to other quantification methods of detecting gut epithelial apoptosis more than any other method studied and compares favorably to other commonly accepted techniques of quantifying apoptosis in a large intestinal cross sectional by balancing sensitivity and specificity across a range of times and levels of death. PMID:17357092

  7. Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process.

    PubMed

    Alanazi, Ibrahim O; Ebrahimie, Esmaeil

    2016-07-01

    Novel computational systems biology tools such as common targets analysis, common regulators analysis, pathway discovery, and transcriptomic-based hotspot discovery provide new opportunities in understanding of apoptosis molecular mechanisms. In this study, after measuring the global contribution of microRNAs in the course of apoptosis by Affymetrix platform, systems biology tools were utilized to obtain a comprehensive view on the role of microRNAs in apoptosis process. Network analysis and pathway discovery highlighted the crosstalk between transcription factors and microRNAs in apoptosis. Within the transcription factors, PRDM1 showed the highest upregulation during the course of apoptosis, with more than 9-fold expression increase compared to non-apoptotic condition. Within the microRNAs, MIR1208 showed the highest expression in non-apoptotic condition and downregulated by more than 6 fold during apoptosis. Common regulators algorithm showed that TNF receptor is the key upstream regulator with a high number of regulatory interactions with the differentially expressed microRNAs. BCL2 and AKT1 were the key downstream targets of differentially expressed microRNAs. Enrichment analysis of the genomic locations of differentially expressed microRNAs led us to the discovery of chromosome bands which were highly enriched (p < 0.01) with the apoptosis-related microRNAs, such as 13q31.3, 19p13.13, and Xq27.3 This study opens a new avenue in understanding regulatory mechanisms and downstream functions in the course of apoptosis as well as distinguishing genomic-enriched hotspots for apoptosis process.

  8. Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    PubMed Central

    Schoneich, Christian; Dremina, Elena; Galeva, Nadezhda; Sharov, Victor

    2014-01-01

    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad. PMID:24129924

  9. Genetic Signatures of HIV-1 Envelope-mediated Bystander Apoptosis

    PubMed Central

    Joshi, Anjali; Lee, Raphael T. C.; Mohl, Jonathan; Sedano, Melina; Khong, Wei Xin; Ng, Oon Tek; Maurer-Stroh, Sebastian; Garg, Himanshu

    2014-01-01

    The envelope (Env) glycoprotein of HIV is an important determinant of viral pathogenesis. Several lines of evidence support the role of HIV-1 Env in inducing bystander apoptosis that may be a contributing factor in CD4+ T cell loss. However, most of the studies testing this phenomenon have been conducted with laboratory-adapted HIV-1 isolates. This raises the question of whether primary Envs derived from HIV-infected patients are capable of inducing bystander apoptosis and whether specific Env signatures are associated with this phenomenon. We developed a high throughput assay to determine the bystander apoptosis inducing activity of a panel of primary Envs. We tested 38 different Envs for bystander apoptosis, virion infectivity, neutralizing antibody sensitivity, and putative N-linked glycosylation sites along with a comprehensive sequence analysis to determine if specific sequence signatures within the viral Env are associated with bystander apoptosis. Our studies show that primary Envs vary considerably in their bystander apoptosis-inducing potential, a phenomenon that correlates inversely with putative N-linked glycosylation sites and positively with virion infectivity. By use of a novel phylogenetic analysis that avoids subtype bias coupled with structural considerations, we found specific residues like Arg-476 and Asn-425 that were associated with differences in bystander apoptosis induction. A specific role of these residues was also confirmed experimentally. These data demonstrate for the first time the potential of primary R5 Envs to mediate bystander apoptosis in CD4+ T cells. Furthermore, we identify specific genetic signatures within the Env that may be associated with the bystander apoptosis-inducing phenotype. PMID:24265318

  10. Excretory-secretory product of third-stage Gnathostoma spinigerum larvae induces apoptosis in human peripheral blood mononuclear cells.

    PubMed

    Viseshakul, Nareerat; Dechkhajorn, Wilanee; Benjathummarak, Surachet; Nuamtanong, Supaporn; Maneerat, Yaowapa

    2017-10-01

    Human gnathostomiasis caused by third-stage Gnathostoma spinigerum larvae (G. spinigerum L3) is an important zoonotic disease in tropical areas of the world. The excretory-secretory products (ES) that are excreted by infective larva play a significant role in host immune evasion and tissue destruction. To investigate the poorly understood mechanisms of G. spinigerum L3 pathogenesis, we focused on the potential effect of ES on inducing apoptosis in human immune cells by using human peripheral blood mononuclear cells (PBMCs) as a model. Early and late apoptosis of PBMCs were assessed following the exposure of these cells to G. spinigerum L3 ES (0.1, 0.5, and 1.0 μg/ml) for 6-48 h. The apoptotic cells were identified by flow cytometric staining of PBMC with FITC-annexin V and propidium iodide. The expression of regulatory genes related to apoptosis mechanisms in ES-treated PBMCs was investigated using a Human Apoptosis RT 2 Profiler™ PCR Array. The results showed significant levels of early phase apoptosis at 18 h and of late phase apoptosis at 24 h. We speculate that this apoptosis in PBMCs occurs via the extrinsic pathway. Apoptosis in the ES-induced PBMCs was observed as quickly as 90 min after exposure, and the highest effect was observed at 18-24 h. Furthermore, ES can trigger apoptosis lasting for 48 h. Our findings expand the understanding of one of the mechanisms involved, immune-evasive strategy mechanism used by G. spinigerum larvae during human gnathostomiasis.

  11. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    PubMed

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  12. The role of apoptosis in LDL transport through cultured endothelial cell monolayers

    PubMed Central

    Cancel, Limary M.; Tarbell, John M.

    2009-01-01

    We have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for LDL transport under convective conditions, accounting for more than 90% of the transport [1]. To explore the role of apoptosis in the leaky junction pathway, TNFα and cycloheximide (TNFα/CHX) were used to induce an elevated rate of apoptosis in cultured bovine aortic endothelial cell (BAEC) monolayers and the convective fluxes of LDL and water were measured. Treatment with TNFα/CHX induced a 18.3-fold increase in apoptosis and a 4.4-fold increase in LDL permeability. Increases in apoptosis and permeability were attenuated by treatment with the caspase inhibitor Z-VAD-FMK. Water flux increased by 2.7-fold after treatment with TNFα/CHX, and this increase was not attenuated by treatment with Z-VAD-FMK. Immunostaining of the tight junction protein ZO-1 showed that TNFα/CHX treatment disrupts the tight junction in addition to inducing apoptosis. This disruption is present even when Z-VAD-FMK is used to inhibit apoptosis, and likely accounts for the increase in water flux. We found a strong correlation between the rate of apoptosis and the permeability of BAEC monolayers to LDL. These results demonstrate the potential of manipulating endothelial monolayer permeability by altering the rate of apoptosis pharmacollogicaly. This has implications for the treatment of atherosclerosis. PMID:19709659

  13. Noxa/Mcl-1 Balance Regulates Susceptibility of Cells to Camptothecin-Induced Apoptosis1

    PubMed Central

    Mei, Yide; Xie, Chongwei; Xie, Wei; Tian, Xu; Li, Mei; Wu, Mian

    2007-01-01

    Although camptothecin (CPT) has been reported to induce apoptosis in various cancer cells, the molecular details of this regulation remain largely unknown. In this study, we demonstrate that BH3-only protein Noxa is upregulated during CPT-induced apoptosis, which is independent of p53. In addition, we show that phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is responsible for Noxa's induction. Luciferase assay and cAMP response element binding protein (CREB) knockdown experiments further demonstrate that CREB is involved in the transcriptional upregulation of Noxa. Moreover, blocking Noxa expression using specific small interfering ribonucleic acid (siRNA) significantly reduces the apoptosis in response to CPT, indicating that Noxa is an essential mediator for CPT-induced apoptosis. Interestingly, antiapoptotic Mcl-1 was also upregulated through PI3K/Akt signaling pathway upon CPT treatment. Using immunoprecipitation assay, Noxa was found to interact with Mcl-1 in the presence or absence of CPT. Knockdown of Mcl-1 expression by short hairpin ribonucleic acid (shRNA) was shown to potentiate CPT-induced apoptosis. Consistently, ectopic overexpression of Mcl-1 rescued cells from apoptosis induced by CPT. Cells coexpressing Noxa and Mcl-1 at different ratio correlates well with the extent of apoptosis, suggesting that the balance between Noxa and Mcl-1 may determine the susceptibility of HeLa cells to CPT-induced apoptosis. PMID:17971907

  14. RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1

    PubMed Central

    Siddiqui, Mohammad Adnan; Mukherjee, Sushovita; Manivannan, Praveen; Malathi, Krishnamurthy

    2015-01-01

    Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer. PMID:26263979

  15. Apoptosis in mammalian oocytes: a review.

    PubMed

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  16. Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells

    DTIC Science & Technology

    2005-03-01

    Independent Functions of Bim in Prostate Cancer Cells PRINCIPAL INVESTIGATOR: Dr. Dean Tang...SUBTITLE 5a. CONTRACT NUMBER Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells 5b. GRANT NUMBER DAMD17-03-1...Unlimited 13. SUPPLEMENTARY NOTES Original contains colored plates: ALL DTIC reproductions will be in black and white. 14. ABSTRACT

  17. A novel role for the apoptosis inhibitor ARC in suppressing TNFα-induced regulated necrosis

    PubMed Central

    Kung, G; Dai, P; Deng, L; Kitsis, R N

    2014-01-01

    TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis. PMID:24440909

  18. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    PubMed

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  19. The role of apoptosis in respiratory diseases.

    PubMed

    Pierce, Janet D; Pierce, Jana; Stremming, Stephanie; Fakhari, Mahtab; Clancy, Richard L

    2007-01-01

    The purpose of this article is to define apoptosis and describe how this cellular pathway is relevant to the pathogenesis of different respiratory diseases. This will assist clinical nurse specialists in understanding how new drugs and therapies inhibit and stimulate apoptotic pathways. Clinical nurse specialists need to expand their knowledge concerning the role of apoptosis so that they can better expand their spheres of influence. The 4 stages of apoptosis are discussed, as well as the various apoptotic pathways involved with asthma, emphysema, and acute respiratory distress syndrome that promote and inhibit apoptosis in patients. It is crucial for clinical nurse specialists to know what apoptosis is and how it relates to different pathophysiologic states. The challenge facing clinical nurse specialists is how to be kept informed and current concerning molecular and cellular mechanisms that are important in the practice setting. Strategies needed to maintain expertise include acquiring new knowledge, developing new skills, and changing attitudes about molecular biology. Apoptosis must become a significant part of any health professionals' continuing educational program because it has been recognized as the pathway to most any disease. Clinical nurse specialists who understand apoptosis and its pathways can use this knowledge to aid in the prevention and treatment of respiratory diseases.

  20. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain.

    PubMed

    Danthi, Pranav; Coffey, Caroline M; Parker, John S L; Abel, Ty W; Dermody, Terence S

    2008-12-01

    Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.

  1. Dopamine Attenuates Ketamine-Induced Neuronal Apoptosis in the Developing Rat Retina Independent of Early Synchronized Spontaneous Network Activity.

    PubMed

    Dong, Jing; Gao, Lingqi; Han, Junde; Zhang, Junjie; Zheng, Jijian

    2017-07-01

    Deprivation of spontaneous rhythmic electrical activity in early development by anesthesia administration, among other interventions, induces neuronal apoptosis. However, it is unclear whether enhancement of neuronal electrical activity attenuates neuronal apoptosis in either normal development or after anesthesia exposure. The present study investigated the effects of dopamine, an enhancer of spontaneous rhythmic electrical activity, on ketamine-induced neuronal apoptosis in the developing rat retina. TUNEL and immunohistochemical assays indicated that ketamine time- and dose-dependently aggravated physiological and ketamine-induced apoptosis and inhibited early-synchronized spontaneous network activity. Dopamine administration reversed ketamine-induced neuronal apoptosis, but did not reverse the inhibitory effects of ketamine on early synchronized spontaneous network activity despite enhancing it in controls. Blockade of D1, D2, and A2A receptors and inhibition of cAMP/PKA signaling partially antagonized the protective effect of dopamine against ketamine-induced apoptosis. Together, these data indicate that dopamine attenuates ketamine-induced neuronal apoptosis in the developing rat retina by activating the D1, D2, and A2A receptors, and upregulating cAMP/PKA signaling, rather than through modulation of early synchronized spontaneous network activity.

  2. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission

    PubMed Central

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-01-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. PMID:26119034

  3. The apoptotic effect of Zoledronic acid on the nasopharyngeal carcinoma cells via ROS mediated chloride channel activation.

    PubMed

    Wang, Liang; Gao, Hong; Yang, Xiaoya; Liang, Xiechou; Tan, Qiuchan; Chen, Zhanru; Zhao, Chan; Gu, Zhuoyu; Yu, Meisheng; Zheng, Yanfang; Huang, Yanqing; Zhu, Linyan; Jacob, Tim J C; Wang, Liwei; Chen, Lixin

    2018-06-08

    Zoledronic acid (ZA), a third-generation bisphosphonate, has been applied for treatment of bone metastases caused by malignant tumors. Recent studies have found its anti-cancer effects on various tumor cells. One of the mechanisms of anti-cancer effects of ZA is induction of apoptosis. However, the mechanisms of ZA-induced apoptosis in tumor cells have not been clarified clearly. In this study, we investigated the roles of chloride channels in ZA-induced apoptosis in nasopharyngeal carcinoma CNE-2Z cells. Apoptosis and chloride current were induced by ZA and suppressed by chloride channel blockers. After the knockdown of ClC-3 expression by ClC-3 siRNA, ZA-induced chloride current and apoptosis were significantly suppressed, indicating that the chloride channel participated in ZA-induced apoptosis may be ClC-3. When reactive oxygen species (ROS) generation was inhibited by the antioxidant N-acetyl-L-cysteine (L-NAC), ZA-induced apoptosis and chloride current were blocked accordingly, suggesting that ZA induces apoptosis through promoting ROS production and subsequently activating chloride channel. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Reactive oxygen species are required for zoledronic acid-induced apoptosis in osteoclast precursors and mature osteoclast-like cells

    PubMed Central

    Tai, Ta-Wei; Chen, Ching-Yu; Su, Fong-Chin; Tu, Yuan-Kun; Tsai, Tsung-Ting; Lin, Chiou-Feng; Jou, I.-Ming

    2017-01-01

    Inhibiting osteoclasts and osteoclast precursors to reduce bone resorption is an important strategy to treat osteoclast-related diseases, such as osteoporosis, inflammatory bone loss, and malignant bone metastasis. However, the mechanism by which apoptosis is induced in the osteoclasts and their precursors are not completely understood. Here, we used nitrogen-containing bisphosphonate zoledronic acid (ZA) to induce cell apoptosis in human and murine osteoclast precursors and mature osteoclast-like cells. Caspase-3-mediated cell apoptosis occurred following the ZA (100 μM) treatment. Reactive oxygen species (ROS) were also generated in a time-dependent manner. Following knock-down of the p47phox expression, which is required for ROS activation, or co-treatment with the ROS inhibitor, N-acetyl-L-cysteine, ZA-induced apoptosis was significantly suppressed in both osteoclast precursors and mature osteoclast-like cells. The ROS-activated mitogen-activated protein kinases pathways did not trigger cell apoptosis. However, a ROS-regulated Mcl-1 decrease simultaneously with glycogen synthase kinase (GSK)-3β promoted cell apoptosis. These findings show that ZA induces apoptosis in osteoclast precursors and mature osteoclast-like cells by triggering ROS- and GSK-3β-mediated Mcl-1 down-regulation. PMID:28281643

  5. Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).

    PubMed

    Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad

    2018-02-24

    Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  6. Placental Apoptosis in Health and Disease

    PubMed Central

    Sharp, Andrew N.; Heazell, Alexander E.P.; Crocker, Ian P.; Mor, Gil

    2011-01-01

    Apoptosis, programmed cell death, is an essential feature of normal placental development but is exaggerated in association with placental disease. Placental development relies upon effective implantation and invasion of the maternal decidua by the placental trophoblast. In normal pregnancy, trophoblast apoptosis increases with placental growth and advancing gestation. However, apoptosis is notably exaggerated in the pregnancy complications, hydatidiform mole, pre-eclampsia, and intra-uterine growth restriction (IUGR). Placental apoptosis may be initiated by a variety of stimuli, including hypoxia and oxidative stress. In common with other cell-types, trophoblast apoptosis follows the extrinsic or intrinsic pathways culminating in the activation of caspases. In contrast, the formation of apoptotic bodies is less clearly identified, but postulated by some to involve the clustering of apoptotic nuclei and liberation of this material into the maternal circulation. In addition to promoting a favorable maternal immune response, the release of this placental-derived material is thought to provoke the endothelial dysfunction of pre-eclampsia. Widespread apoptosis of the syncytiotrophoblast may also impair trophoblast function leading to the reduction in nutrient transport seen in IUGR. A clearer understanding of placental apoptosis and its regulation may provide new insights into placental pathologies, potentially suggesting therapeutic targets. PMID:20367628

  7. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  8. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240

    PubMed Central

    GHRICI, MOHAMED; EL ZOWALATY, MOHAMED; OMAR, ABDUL RAHMAN; IDERIS, AINI

    2013-01-01

    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications. PMID:23807159

  9. Induction of apoptosis in MCF-7 cells by the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus Malaysian strain AF2240.

    PubMed

    Ghrici, Mohamed; El Zowalaty, Mohamed; Omar, Abdul Rahman; Ideris, Aini

    2013-09-01

    Newcastle disease virus (NDV) exerts its naturally occurring oncolysis possibly through the induction of apoptosis. We hypothesized that the binding of the virus to the cell via the hemagglutinin-neuraminidase (HN) glycoprotein may be sufficient to not only induce apoptosis but to induce a higher apoptosis level than the parental NDV AF2240 virus. NDV AF2240 induction of apoptosis in MCF-7 human breast cancer cells was analyzed and quantified. In addition, the complete HN gene of NDV strain AF2240 was amplified, sequenced and cloned into the pDisplay eukaryotic expression vector. HN gene expression was first detected at the cell surface membrane of the transfected MCF-7 cells. HN induction of apoptosis in transfected MCF-7 cells was analyzed and quantified. The expression of the HN gene alone was able to induce apoptosis in MCF-7 cells but it was a less potent apoptosis inducer compared to the parental NDV AF2240 strain. In conclusion, the NDV AF2240 strain is a more suitable antitumor candidate agent than its recombinant HN gene unless the latter is further improved by additional modifications.

  10. Berberine potentizes apoptosis induced by X-rays irradiation probably through modulation of gap junctions.

    PubMed

    Liu, Bing; Wang, Qin; Yuan, Dong-dong; Hong, Xiao-ting; Tao, Liang

    2011-04-01

    Clinical combination of some traditional Chinese medical herbs, including berberine, with irradiation is demonstrated to improve efficacy of tumor radiotherapy, yet the mechanisms for such effect remain largely unknown. The present study investigated the effect of berberine on apoptosis induced by X-rays irradiation and the relation between this effect and gap junction intercellular communication (GJIC). The role of gap junctions in the modulation of X-rays irradiation-induced apoptosis was explored by manipulation of connexin (Cx) expression, and gap junction function, using oleamide, a GJIC inhibitor, and berberine. In transfected HeLa cells, Cx32 expression increased apoptosis induced by X-rays irradiation, while inhibition of gap junction by oleamide reduced the irradiation responses, indicating the dependence of X-rays irradiation-induced apoptosis on GJIC. Berberine, at the concentrations without cytotoxicity, enhanced apoptosis induced by irradiation only in the presence of functional gap junctions. These results suggest that berberine potentizes cell apoptosis induced by X-rays irradiation, probably through enhancement of gap junction activity.

  11. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury.

    PubMed

    Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2005-10-28

    Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage.

  12. Autophagy inhibitors reduce avian-reovirus-mediated apoptosis in cultured cells and in chicken embryos.

    PubMed

    Duan, Shipeng; Cheng, Jinghua; Li, Chenxi; Yu, Liping; Zhang, Xiaorong; Jiang, Ke; Wang, Yupeng; Xu, Jiansheng; Wu, Yantao

    2015-07-01

    Avian reovirus (ARV)-induced apoptosis contributes to the pathogenesis of reovirus in infected chickens. However, methods for effectively reducing ARV-triggered apoptosis remain to be explored. Here, we show that pretreatment with chloroquine (CQ) or E64d plus pepstatin A decreases ARV-mediated apoptosis in chicken DF-1 cells. By acting as autophagy inhibitors, CQ and E64d plus pepstatin A increase microtubule-associated protein 1 light chain 3-II (LC3II) accumulation in ARV-infected cells, which results in decreased ARV protein synthesis and virus yield and thereby contributes to the reduction of apoptosis. Furthermore, ARV-mediated apoptosis in the bursa, heart and intestines of chicken embryos is attenuated by CQ and E64d plus pepstatin A treatment. Importantly, treatment with these autophagy inhibitors increases the survival of infected chicken embryos. Together, our data suggest that pharmacological inhibition of autophagy might represent a novel strategy for reducing ARV-mediated apoptosis.

  13. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    PubMed

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  14. [Biochemical changes in apoptosis and methods for their determination (review)].

    PubMed

    Sedláková, A; Kohút, A; Kalina, I

    1999-08-01

    Apoptosis or programmed cell death is a physiological process which occurs at different biological states as well as at disease process. Morphologically it is characterized by the chromatine condensation and other changes with preserved integrity of plasmatic membrane. The major and most frequently studied biochemical characteristic of apoptosis is a DNA fragmentation. In our paper attention is directed to the early biochemical changes in cell membranes, i.g., the externalization of phosphatidylserine, hydrolysis of sphingomyeline on the ceramide and activation of phospholipases especially phospholipase A2. In one part we described the changes of cysteine proteases (caspases), which play a key role in the execution of apoptosis. These biochemical changes are associated with ceramide signalization of apoptosis. Briefly are presented also some dates about apoptosis induction with reactive oxygen radicals and the role of the arachidonic acid metabolites in this process. We consider the investigation and determination of these changes as important parameters of apoptosis at some diseases, e.g., cancer or degenerative diseases, and of their treatment.

  15. PPARγ and Apoptosis in Cancer

    PubMed Central

    Elrod, Heath A.; Sun, Shi-Yong

    2008-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand binding transcription factors which function in many physiological roles including lipid metabolism, cell growth, differentiation, and apoptosis. PPARs and their ligands have been shown to play a role in cancer. In particular, PPARγ ligands including endogenous prostaglandins and the synthetic thiazolidinediones (TZDs) can induce apoptosis of cancer cells with antitumor activity. Thus, PPARγ ligands have a potential in both chemoprevention and therapy of several types of cancer either as single agents or in combination with other antitumor agents. Accordingly, the involvement of PPARγ and its ligands in regulation of apoptosis of cancer cells have been extensively studied. Depending on cell types or ligands, induction of apoptosis in cancer cells by PPARγ ligands can be either PPARγ-dependent or -independent. Through increasing our understanding of the mechanisms of PPARγ ligand-induced apoptosis, we can develop better strategies which may include combining other antitumor agents for PPARγ-targeted cancer chemoprevention and therapy. This review will highlight recent research advances on PPARγ and apoptosis in cancer. PMID:18615184

  16. Association of nbl gene expression and glucocorticoid-induced apoptosis in mouse thymus in vivo.

    PubMed Central

    Naora, H; Nishida, T; Shindo, Y; Adachi, M; Naora, H

    1995-01-01

    A gene of unknown biological function, nbl, was originally isolated by virtue of its abundance in a Namalwa Burkitt Lymphoma cDNA library. nbl expression was initially found to be higher in tissues which exhibited internucleosomal DNA cleavage characteristic of apoptosis, than in tissues which did not exhibit a 'DNA ladder'. nbl expression was therefore examined in mouse thymus in vivo, in which apoptosis is induced by the glucocorticoid, dexamethasone. nbl expression was markedly enhanced by dexamethasone treatment and then sharply decreased prior to the occurrence of maximal 'DNA ladder' formation. In contrast, expression of myc, which is believed to be involved in apoptosis in other cell systems, declined as thymic apoptosis increased. Thymic apoptosis was blocked by the transcriptional inhibitor actinomycin D, if administered when nbl expression was enhanced, but not before or after the peak of nbl expression. These results suggest that nbl expression is associated with thymic apoptosis. Images Figure 1 Figure 3 Figure 4 Figure 6 PMID:7635523

  17. Multiple mechanisms modulate distinct cellular susceptibilities towards apoptosis in the developing Drosophila eye

    PubMed Central

    Fan, Yun; Bergmann, Andreas

    2014-01-01

    Although apoptosis is mechanistically well understood, a comprehensive understanding of how cells modulate their susceptibility towards apoptosis in a developing tissue is lacking. Here, we reveal striking dynamics in the apoptotic susceptibilities of different cell types in the Drosophila retina over a period of only 24 hours. Mitotic cells are extremely susceptible to apoptotic signals, while post-mitotic cells have developed several strategies to promote survival. For example, photoreceptor neurons accumulate the inhibitor of apoptosis, Diap1. In unspecified cells, Cullin-3-mediated degradation keeps Diap1 levels low. These cells depend on EGFR signaling for survival. As development proceeds, developmentally older photoreceptors degrade Diap1 resulting in increased apoptosis susceptibility. Finally, R8 photoreceptors have very efficient survival mechanisms independently of EGFR or Diap1. These examples illustrate how complex cellular susceptibility towards apoptosis is regulated in a developing organ. Similar complexities may regulate apoptosis susceptibilities in mammalian development and tumor cells may take advantage of it. PMID:24981611

  18. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells.

    PubMed

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-03-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels.

  19. JS-K promotes apoptosis by inducing ROS production in human prostate cancer cells

    PubMed Central

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2017-01-01

    Reactive oxygen species (ROS) are chemical species that alter redox status, and are responsible for inducing carcinogenesis. The purpose of the present study was to assess the effects of the glutathione S transferase-activated nitric oxide donor prodrug, JS-K, on ROS accumulation and on proliferation and apoptosis in human prostate cancer cells. Cell proliferation and apoptosis, ROS accumulation and the activation of the mitochondrial signaling pathway were measured. The results demonstrated that JS-K may inhibit prostate cancer cell growth in a dose- and time-dependent manner, and induce ROS accumulation and apoptosis in a dose-dependent manner. With increasing concentrations of JS-K, expression of pro-apoptotic proteins increased, but Bcl-2 expression decreased. Additionally, the antioxidant N-acetylcysteine reversed JS-K-induced cell apoptosis; conversely, the pro-oxidant glutathione disulfide exacerbated JS-K-induced apoptosis. In conclusion, the data suggest that JS-K induces prostate cancer cell apoptosis by increasing ROS levels. PMID:28454225

  20. Sodium selenite induces apoptosis and inhibits autophagy in human synovial sarcoma cell line SW982 in vitro.

    PubMed

    Yang, Le; Cai, Yong-Song; Xu, Ke; Zhu, Jia-Lin; Li, Yuan-Bo; Wu, Xiao-Qing; Sun, Jian; Lu, She-Min; Xu, Peng

    2018-05-01

    The present study aimed to examine the effects of sodium selenite on the SW982 human synovial sarcoma cell line in relation to cell viability, apoptosis and autophagy. The results indicated that sodium selenite reduced cell viability and induced apoptosis by activating caspase‑3 and members of the poly (ADP‑ribose) polymerase and Bcl‑2 protein families in SW982 cells. Furthermore, autophagy was also suppressed by sodium selenite treatment in SW982 cells, and apoptosis was upregulated in cells co‑treated with sodium selenite and the autophagy inhibitor 3‑methyladenine. By contrast, apoptosis was downregulated when sodium selenite was combined with rapamycin, an inducer of autophagy. The results indicated that autophagy may protect cells from the cytotoxicity of sodium selenite. The present study results demonstrated that sodium selenite induced apoptosis and inhibited autophagy and autophagy‑protected cells from death by antagonizing sodium selenite‑induced apoptosis in SW982 cells in vitro.

  1. Differential effects of triterpene glycosides, frondoside A and cucumarioside A2-2 isolated from sea cucumbers on caspase activation and apoptosis of human leukemia cells.

    PubMed

    Jin, Jun-O; Shastina, Valeria V; Shin, Sung-Won; Xu, Qi; Park, Joo-In; Rasskazov, Valery A; Avilov, Sergey A; Fedorov, Sergey N; Stonik, Valentin A; Kwak, Jong-Young

    2009-02-18

    Frondoside A is a pentaoside having an acetyl moiety at the aglycon ring and xylose as a third monosaccharide residue. Cucumarioside A(2)-2 is a pentaoside having glucose as a third monosaccahride unit. We compared the effects of frondoside A and A(2)-2 for cell death-inducing capability with close attention paid to structure-activity relationships. Both frondoside A and A(2)-2 strongly induced apoptosis of leukemic cells. Frondoside A-induced apoptosis was more potent and rapid than A(2)-2-induced apoptosis. A(2)-2-induced but not frondoside A-induced apoptosis was caspase-dependent. This suggests that holothurians may induce apoptosis of leukemic cells caspase-dependently or -independently, depending on the holothurian structure.

  2. [Mechanisms of signaling associated with reactive nitrogen and oxygen in apoptosis].

    PubMed

    Piłat, Justyna; Ługowski, Mateusz; Saczko, Jolanta; Choromańska, Anna; Chwiłkowska, Agnieszka; Banaś, Teresa; Kulbacka, Julita

    2016-05-01

    The knowledge of apoptotic mechanisms is essential in many biologic aspects related to both normal and neoplastic cells. Cell death by apoptosis is a very desirable way to eliminate unwanted cells: prevents release of the cellular content, which, in contrast to necrosis, provides no activation of inflammatory reactions. Apoptosis is a multistep process in where an extremely important role is played by caspases. Functions of caspases and their modifications are fundamental to understanding the signaling pathways responsible for regulation of apoptosis. These enzymes belong to a family of cysteine proteases that have the potential to destroy the enzymatic and structural proteins, and in the final stages of apoptosis, to lead to the disintegration of the cell. Apoptosis can be modulated by certain signaling pathway. © 2016 MEDPRESS.

  3. [Progress on mechanism of cell apoptosis induced by rubella virus].

    PubMed

    Li, Zhen-mei; Chu, Fu-lu; Liu, Ying; Wang, Zhi-yu

    2013-09-01

    Rubella virus (RV), a member of the family Togaviridae, can induce apoptosis of host cells in vitro. Protein kinases of the Ras-Raf-MEK-ERK pathway and PI3K-Akt pathway play essential roles in virus multiplication, cell survival and apoptosis. Proteins p53 and TAp63 that bind to specific DNA sequences stimulate Bax in a manner to produce functional pores that facilitate release of mitochondrial cytochrome c and downstream caspase activation. In this review, the molecular mechanisms of RV-induced cell apoptosis, including RV-infected cell lines, pathological changes in cell components and apoptosis signaling pathways are summarized.

  4. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    PubMed

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  5. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  6. Role of Apoptosis in disease

    PubMed Central

    Favaloro, B.; Allocati, N.; Graziano, V.; Di Ilio, C.; De Laurenzi, V.

    2012-01-01

    Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice. PMID:22683550

  7. Molecular Effects of I3C/DIM in Prostate Cancer Cells

    DTIC Science & Technology

    2005-04-01

    DNA fragmentation, resulting in apoptosis (40,41). To (phorbol myristate acetate, etc.), stress (pH, hypoxia, heavy further explore the mechanism of...cytosol into the ling cell proliferation, differentiation, apoptosis, inflammation, mitochondria in both cell lines treated with 13C. However, stress ...of cell prolifer- the control of cell growth, apoptosis, inflammation, ation, cell cycle, apoptosis, signal transduction, onco- stress response, and

  8. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Bing; Xiao, Bo; Liang, Desheng

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less

  9. Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells

    PubMed Central

    2011-01-01

    Background Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. Results We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. Conclusions we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our data suggest the importance of caspase-8-mediated positive feedback amplification in the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. PMID:21801448

  10. Visualizing Vpr-Induced G2 Arrest and Apoptosis

    PubMed Central

    Murakami, Tomoyuki; Aida, Yoko

    2014-01-01

    Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1) with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2). The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to characterize the dynamics of the morphological changes that occur during Vpr-induced G2 arrest and apoptosis. PMID:24466265

  11. Attenuation of alcohol-induced apoptosis of hepatocytes in rat livers by polyenylphosphatidylcholine (PPC).

    PubMed

    Mi, L J; Mak, K M; Lieber, C S

    2000-02-01

    Alcohol consumption increases apoptosis of hepatocytes. This effect appears to be mediated by the induction of hepatic cytochrome P-4502E1(CYP2E1) and its generation of free radicals, which results in an enhanced lipid peroxidation that initiates apoptosis. Because polyenylphosphatidylcholine (PPC), a soybean extract rich in polyunsaturated phosphatidylcholines, decreases the induction of ethanol-specific CYP2E1 and opposes oxidative stress, we hypothesized that PPC supplementation may attenuate hepatocyte apoptosis caused by ethanol ingestion. Twenty-eight male Sprague Dawley rats were pair-fed Lieber-DeCarli liquid diets containing 36% of energy as alcohol or an isocaloric amount of carbohydrate for 28 days. Half of the rats were given PPC (3 g/liter), whereas the other half received the same amount of linoleate (as safflower oil) and of choline as the bitartrate. An additional dose of alcohol (3 g/kg) was given intragastrically 90 min before the livers were removed. We assessed apoptosis in formalin-fixed, paraffin-embedded liver sections by using the TUNEL (terminal transferase dUTP nick end labeling) assay. Apoptotic hepatocytes were identified by positive TUNEL staining in conjunction with condensation of nucleoplasm or margination of chromatin. In each rat, 20,000 to 60,000 hepatocytes were counted by light microscopy by using Image-Pro Plus computer software, and the incidence of apoptosis was expressed as the percentage of total hepatocytes. Alcohol feeding resulted in a 4.5-fold increase in apoptosis of hepatocytes compared to pair-fed control rats; PPC supplementation decreased the alcohol-induced apoptosis to less than half. No difference in the incidence of apoptosis between the control and PPC-supplemented rats was found in the absence of alcohol. Apoptosis was distributed randomly in the liver lobules of the rats fed the control diet, whereas the alcohol-induced apoptosis was significantly increased in the perivenular area. PPC supplementation strikingly reduced this effect. PPC attenuates alcohol-induced apoptosis of hepatocytes; this effect may provide a mechanism for PPC's protection against liver injury, possibly in association with its antioxidative action via the down-regulation of ethanol-mediated CYP2E1 induction.

  12. Activation of PPAR alpha by fenofibrate inhibits apoptosis in vascular adventitial fibroblasts partly through SIRT1-mediated deacetylation of FoxO1.

    PubMed

    Wang, Wei-Rong; Liu, En-Qi; Zhang, Ji-Ye; Li, Yan-Xiang; Yang, Xiao-Feng; He, Yan-Hao; Zhang, Wei; Jing, Ting; Lin, Rong

    2015-10-15

    Recent studies demonstrated that the ligand-activated transcription factor peroxisome proliferator-activated receptorα (PPARα) acts in association with histone deacetylase sirtuin 1 (SIRT1) in the regulation of metabolism and inflammation involved in cardiovascular diseases. PPARα activation also participates in the modulation of cell apoptosis. Our previous study found that SIRT1 inhibits the apoptosis of vascular adventitial fibroblasts (VAFs). However, whether the role of PPARα in apoptosis of VAFs is mediated by SIRT1 remains unknown. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on cell apoptosis and SIRT1 expression and related mechanisms in ApoE(-/-) mice and VAFs in vitro. We found that fenofibrate inhibited cell apoptosis in vascular adventitia and up-regulated SIRT1 expression in aorta of ApoE(-/-) mice. Moreover, SIRT1 activator resveratrol (RSV) further enhanced these effects of fenofibrate. In vitro study showed that activation of PPARα by fenofibrate inhibited TNF-α-induced cell apoptosis and cell cycle arrest in VAFs. Meanwhile, fenofibrate up-regulated SIRT1 expression and inhibited SIRT1 translocation from nucleus to cytoplasm in VAFs stimulated with TNF-α. Moreover, the effects of fenofibrate on cell apoptosis and SIRT1 expression in VAFs were reversed by PPARα antagonist GW6471. Importantly, treatment of VAFs with SIRT1 siRNA or pcDNA3.1(+)-SIRT1 showed that the inhibitory effect of fenofibrate on cell apoptosis in VAFs through SIRT1. On the other hand, knockdown of FoxO1 decreased cell apoptosis of VAFs compared with fenofibrate group. Overexpression of FoxO1 increased cell apoptosis of VAFs compared with fenofibrate group. Further study found that fenofibrate decreased the expression of acetylated-FoxO1 in TNF-α-stimulated VAFs, which was abolished by SIRT1 knockdown. Taken together, these findings indicate that activation of PPARα by fenofibrate inhibits cell apoptosis in VAFs partly through the SIRT1-mediated deacetylation of FoxO1. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Essential role of caspase-8 in p53/p73-dependent apoptosis induced by etoposide in head and neck carcinoma cells.

    PubMed

    Liu, Juan; Uematsu, Hiroshi; Tsuchida, Nobuo; Ikeda, Masa-Aki

    2011-07-31

    Caspase-8 is a key upstream mediator in death receptor-mediated apoptosis and also participates in mitochondria-mediated apoptosis via cleavage of proapoptotic Bid. However, the role of caspase-8 in p53- and p73-dependent apoptosis induced by genotoxic drugs remains unclear. We recently reported that the reconstitution of procaspase-8 is sufficient for sensitizing cisplatin- but not etoposide-induced apoptosis, in chemoresistant and caspase-8 deficient HOC313 head and neck squamous cell carcinoma (HNSCC) cells. We show that p53/p73-dependent caspase-8 activation is required for sensitizing etoposide-induced apoptosis by utilizing HOC313 cells carrying a temperature-sensitive p53G285K mutant. Restoration of wild-type p53 function under the permissive conditions, together with etoposide treatment, led to substantial transcriptional activation of proapoptotic Noxa and PUMA, but failed to induce apoptosis. In addition to p53 restoration, caspase-8 reconstitution was needed for sensitization to etoposide-induced apoptosis, mitochondria depolarization, and cleavage of the procaspases-3, and -9. In etoposide-sensitive Ca9-22 cells carrying a temperature-insensitive mutant p53, siRNA-based p73 knockdown blocked etoposide-induced apoptosis and procaspase-8 cleavage. However, induction of p73 protein and up-regulation of Noxa and PUMA, although observed in Ca9-22 cells, were hardly detected in etoposide-treated HOC313 cells under non-permissive conditions, suggesting a contribution of p73 reduction to etoposide resistance in HOC313 cells. Finally, the caspase-9 inhibitor Ac-LEHD-CHO or caspase-9 siRNA blocked etoposide-induced caspase-8 activation, Bid cleavage, and apoptosis in both cell lines, indicating that p53/p73-dependent caspase-8 activation lies downstream of mitochondria. we conclude that p53 and p73 can act as upstream regulators of caspase-8, and that caspase-8 is an essential mediator of the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells. Our data suggest the importance of caspase-8-mediated positive feedback amplification in the p53/p73-dependent apoptosis induced by etoposide in HNSCC cells.

  14. Lactated ringer's solution and hetastarch but not plasma resuscitation after rat hemorrhagic shock is associated with immediate lung apoptosis by the up-regulation of the Bax protein.

    PubMed

    Deb, S; Sun, L; Martin, B; Talens, E; Burris, D; Kaufmann, C; Rich, N; Rhee, P

    2000-07-01

    We previously demonstrated that the type of resuscitation fluid used in hemorrhagic shock affects apoptosis. Unlike crystalloid, whole blood seems to attenuate programmed cell death. The purpose of this study was to determine whether the acellular components of whole blood (plasma, albumin) attenuated apoptosis and to determine whether this process involved the Bax protein pathway. Rats were hemorrhaged 27.5 mL/kg, kept in hypovolemic shock for 75 minutes, then resuscitated over 1 hour (n = 44). Control animals underwent anesthesia only (sham, n = 7). Treatment animals were bled then randomly assigned to the following resuscitation groups: no resuscitation (n = 6), whole blood (n = 6), plasma (n = 6), 5% human albumin (n = 6), 6% hetastarch (n = 7), and lactated Ringer's solution (LR, n = 6). Hetastarch was used to control for any colloid effect. LR was used as positive control. Immediately after resuscitation, the lung was collected and evaluated for apoptosis by using two methods. TUNEL stain was used to determine general DNA damage, and Bax protein was used to specifically determine intrinsic pathway involvement. LR and hetastarch treatment resulted in significantly increased apoptosis in the lung as determined by both TUNEL and Bax expression (p < 0.05). Plasma infusion resulted in significantly less apoptosis than LR and hetastarch resuscitation. Multiple cell types (epithelium, endothelium, smooth muscle, monocytes) underwent apoptosis in the lung as demonstrated by the TUNEL stain, whereas Bax expression was limited to cells residing in the perivascular and peribronchial spaces. Apoptosis after volume resuscitation of hemorrhagic shock can be affected by the type of resuscitation fluid used. Manufactured fluids such as lactated Ringer's solution and 6% hetastarch resuscitation resulted in the highest degree of lung apoptosis. The plasma component of whole blood resulted in the least apoptosis. The process of apoptosis after hemorrhagic shock resuscitation involves the Bax protein.

  15. C-TERMINAL FRAGMENT OF TRANSFORMING GROWTH FACTOR BETA-INDUCED PROTEIN (TGFBIp) IS REQUIRED FOR APOPTOSIS IN HUMAN OSTEOSARCOMA CELLS

    PubMed Central

    Zamilpa, Rogelio; Rupaimoole, Rajesha; Phelix, Clyde F.; Somaraki-Cormier, Maria; Haskins, William; Asmis, Reto; LeBaron, Richard G.

    2009-01-01

    Transforming growth factor beta induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp is uncertain. It is reportedly within the final 166 amino acids. We sought to determine if this property is dependent upon the final 69 amino acids containing the integrin-binding, EPDIM and RGD, sequences. With MG-63 osteosarcoma cells, transforming growth factor (TGF)-β1 treatment increased expression of TGFBIp over 72 hours (p<0.001). At this time point, apoptosis was significantly increased (p<0.001) and was prevented by an anti-TGFBIp, polyclonal antibody (p<0.05). Overexpression of TGFBIp by transient transfection produced a 2-fold increase in apoptosis (p<0.01). Exogenous purified TGFBIp at concentrations of 37 to 150 nM produced a dose dependent increase in apoptosis (p<0.001). Mass spectrometry analysis of TGFBIp isolated from conditioned medium of cells treated with TGF-β1 revealed truncated forms of TGFBIp that lacked integrin-binding sequences in the C-terminus. Recombinant TGFBIp truncated, similarly, at amino acid 614 failed to induce apoptosis. A recombinant fragment encoding the final 69 amino acids of the TGFBIp C-terminus produced significant apoptosis. This apoptosis level was comparable to that induced by TGF-β1 upregulation of endogenous TGFBIp. Mutation of the integrin-binding sequence EPDIM, but not RGD, blocked apoptosis (p<0.001). These pro-apoptotic actions are dependent on the C-terminus most likely to interact with integrins. PMID:19505574

  16. The pro-apoptotic protein Bim is a convergence point for cAMP/protein kinase A- and glucocorticoid-promoted apoptosis of lymphoid cells.

    PubMed

    Zhang, Lingzhi; Insel, Paul A

    2004-05-14

    The mechanisms by which cAMP mediates apoptosis are not well understood. In the current studies, we used wild-type (WT) S49 T-lymphoma cells and the kin(-) variant (which lacks protein kinase A (PKA)) to examine cAMP/PKA-mediated apoptosis. The cAMP analog, 8-CPT-cAMP, increased phosphorylation of the cAMP response element-binding protein (CREB), activated caspase-3, and induced apoptosis in WT but not in kin(-) S49 cells. Using an array of 96 apoptosis-related genes, we found that treatment of WT cells with 8-CPT-cAMP for 24 h induced expression of mRNA for the pro-apoptotic gene, Bim. Real-time PCR analysis indicated that 8-CPT-cAMP increased Bim RNA in WT cells in <2 h and maintained this increase for >24 h. Bim protein expression increased in WT but not kin(-) cells treated with 8-CPT-cAMP or with the beta-adrenergic receptor agonist isoproterenol. Both apoptosis and Bim expression were reversible with removal of 8-CPT-cAMP after <6 h. The glucocorticoid dexamethasone also promoted apoptosis and Bim expression in S49 cells. In contrast, both UV light and anti-mouse Fas monoclonal antibody promoted apoptosis in S49 cells but did not induce Bim expression. 8-CPT-cAMP also induced Bim expression and enhanced dexamethasone-promoted apoptosis in human T-cell leukemia CEM-C7-14 (glucocorticoid-sensitive) and CEM-C1-15 (glucocorticoid-resistant) cells; increased Bim expression in 8-CPT-cAMP-treated CEM-C1-15 cells correlated with conversion of the cells from resistance to sensitivity to glucocorticoid-promoted apoptosis. Induction of Bim appears to be a key event in cAMP-promoted apoptosis in both murine and human T-cell lymphoma and leukemia cells and thus appears to be a convergence point for the killing of such cells by glucocorticoids and agents that elevate cAMP.

  17. Notch1 Signaling Sensitizes Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Human Hepatocellular Carcinoma Cells by Inhibiting Akt/Hdm2-mediated p53 Degradation and Up-regulating p53-dependent DR5 Expression*

    PubMed Central

    Wang, Chunmei; Qi, Runzi; Li, Nan; Wang, Zhengxin; An, Huazhang; Zhang, Qinghua; Yu, Yizhi; Cao, Xuetao

    2009-01-01

    Notch signaling plays a critical role in regulating cell proliferation, differentiation, and apoptosis. Our previous study showed that overexpression of Notch1 could inhibit human hepatocellular carcinoma (HCC) cell growth by arresting the cell cycle and inducing apoptosis. HCC cells are resistant to apoptotic induction by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), so new therapeutic approaches have been explored to sensitize HCC cells to TRAIL-induced apoptosis. We are wondering whether and how Notch1 signaling can enhance the sensitivity of HCC cells to TRAIL-induced apoptosis. In this study, we found that overexpression of ICN, the constitutive activated form of Notch1, up-regulated p53 protein expression in HCC cells by inhibiting proteasome degradation. p53 up-regulation was further observed in human primary hepatocellular carcinoma cells after activation of Notch signaling. Inhibition of the Akt/Hdm2 pathway by Notch1 signaling was responsible for the suppression of p53 proteasomal degradation, thus contributing to the Notch1 signaling-mediated up-regulation of p53 expression. Accordingly, Notch1 signaling could make HCC cells more sensitive to TRAIL-induced apoptosis, whereas Notch1 signaling lost the synergistic promotion of TRAIL-induced apoptosis in p53-silenced HepG2 HCC cells and p53-defective Hep3B HCC cells. The data suggest that enhancement of TRAIL-induced apoptosis by Notch1 signaling is dependent upon p53 up-regulation. Furthermore, Notch1 signaling could enhance DR5 expression in a p53-dependent manner. Taken together, Notch1 signaling sensitizes TRAIL-induced apoptosis in HCC cells by inhibiting Akt/Hdm2-mediated p53 degradation and up-regulating p53-dependent DR5 expression. Thus, our results suggest that activation of Notch1 signaling may be a promising approach to improve the therapeutic efficacy of TRAIL-resistant HCC. PMID:19376776

  18. The mechanism by which MEK/ERK regulates JNK and p38 activity in polyamine depleted IEC-6 cells during apoptosis

    PubMed Central

    Bavaria, Mitul N.; Jin, Shi; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Polyamine-depletion inhibited apoptosis by activating ERK1/2, while, preventing JNK1/2 activation. MKP-1 knockdown by SiRNA increased ERK1/2, JNK1/2, and p38 phosphorylation and apoptosis. Therefore, we predicted that polyamines might regulate MKP1 via MEK/ERK and thereby apoptosis. We examined the role of MEK/ERK in the regulation of MKP1 and JNK, and p38 activities and apoptosis. Inhibition of MKP-1 activity with a pharmacological inhibitor, sanguinarine (SA), increased JNK1/2, p38, and ERK1/2 activities without causing apoptosis. However, pre-activation of these kinases by SA significantly increased camptothecin (CPT)-induced apoptosis suggesting different roles for MAPKs during survival and apoptosis. Inhibition of MEK1 activity prevented the expression of MKP-1 protein and augmented CPT-induced apoptosis, which correlated with increased activities of JNK1/2, caspases, and DNA fragmentation. Polyamine depleted cells had higher levels of MKP-1 protein and decreased JNK1/2 activity and apoptosis. Inhibition of MEK1 prevented MKP-1 expression and increased JNK1/2 and apoptosis. Phospho-JNK1/2, phospho-ERK2, MKP-1, and the catalytic subunit of protein phosphatase 2A (PP2Ac) formed a complex in response to TNF/CPT. Inactivation of PP2Ac had no effect on the association of MKP-1 and JNK1. However, inhibition of MKP-1 activity decreased the formation of the MKP-1, PP2Ac and JNK complex. Following inhibition by SA, MKP-1 localized in the cytoplasm, while basal and CPT-induced MKP-1 remained in the nuclear fraction. These results suggest that nuclear MKP-1 translocates to the cytoplasm, binds phosphorylated JNK and p38 resulting in dephosphorylation and decreased activity. Thus, MEK/ERK activity controls the levels of MKP-1 and, thereby, regulates JNK activity in polyamine-depleted cells. PMID:24253595

  19. Inhibition of neurotensin receptor 1 induces intrinsic apoptosis via let-7a-3p/Bcl-w axis in glioblastoma.

    PubMed

    Dong, Zhen; Lei, Qian; Yang, Rui; Zhu, Shunqin; Ke, Xiao-Xue; Yang, Liqun; Cui, Hongjuan; Yi, Liang

    2017-06-06

    Backgroud:Glioblastoma is a kind of highly malignant and aggressive tumours in the central nervous system. Previously, we found that neurotensin (NTS) and its high-affinity receptor 1 (NTSR1) had essential roles in cell proliferation and invasiveness of glioblastoma. Unexpectedly, cell death also appeared by inhibition of NTSR1 except for cell cycle arrest. However, the mechanisms were remained to be further explored. Cells treated with SR48692, a selective antagonist of NTSR1, or NTSR1 shRNA were stained with Annexin V-FITC/PI and the apoptosis was assessed by flow cytometry. Cytochrome c release was detected by using immunofluorescence. Mitochondrial membrane potential (MMP, ΔΨm) loss was stained by JC-1 and detected by immunofluorescence or flow cytometry. Apoptosis antibody array and microRNA microarray were performed to seek the potential regulators of NTSR1 inhibition-induced apoptosis. Interaction between let-7a-3p and Bcl-w 3'UTR was evaluated by using luciferase assay. SR48692 induced massive apoptosis, which was related to mitochondrial cytochrome c release and MMP loss. Knockdown of NTSR1 induced slight apoptosis and significant MMP loss. In addition, NTSR1 inhibition sensitised glioblastoma cells to actinomycin D or doxorubicin-induced apoptosis. Consistently, NTSR1 inhibition-induced mitochondrial apoptosis was accompanied by downregulation of Bcl-w and Bcl-2. Restoration of Bcl-w partly rescued NTSR1 deficiency-induced apoptosis. In addition, NTSR1 deficiency promoted higher let-7a-3p expression and inhibition let-7a-3p partly rescued NTSR1 inhibition-induced apoptosis. In addition, let-7a-3p inhibition promoted 3'UTR activities of Bcl-w and the expression of c-Myc and LIN28, which were the upstream of let-7a-3p, decreased after NTSR1 inhibition. NTSR1 had an important role in protecting glioblastoma from intrinsic apoptosis via c-Myc/LIN28/let-7a-3p/Bcl-w axis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristinemore » induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.« less

  1. Partial construction of apoptotic pathway in PBMC obtained from active SLE patients and the significance of plasma TNF-alpha on this pathway.

    PubMed

    Pitidhammabhorn, Dhanesh; Kantachuvesiri, Surasak; Totemchokchyakarn, Kitti; Kitiyanant, Yindee; Ubol, Sukathida

    2006-09-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that affects various organs and systems. Increased apoptosis, together with defects in the uptake of apoptotic bodies, are thought to have a pathogenic role in SLE. By detection of chromatin condensation, 30% of apoptosis was detected in peripheral blood mononuclear cells (PBMC) from Thai patients with active SLE. Therefore, understanding of the molecular processes in PBMC apoptosis may allow us to gain insight into pathophysiology of SLE. Thus, genes involved in the apoptosis of PBMC from these patients were investigated ex vivo by cDNA array analysis. Seventeen apoptosis-related genes were stimulated in active SLE, more than twofold higher than in inactive SLE. These genes are classified into six groups, namely death receptors, death ligands, caspases, bcl-family, and neutral proteases and genes involved in endoplasmic reticulum stress-mediated apoptosis, such as caspase-4 and GADD153. Among those stimulated genes, tumor necrosis factor (TNF) and the TNF-receptor family were drastically up-regulated 60- and 19-fold higher than in healthy controls, respectively. Moreover, the degree of apoptosis correlated with the level of TNF-alpha in plasma, suggesting that the TNF family plays a role in the induction of apoptosis in SLE. To verify this hypothesis, PBMC from healthy individuals were treated with plasma from active SLE patients in the presence or absence of etanercept, a TNF inhibitor. In the presence of etanercept, active SLE plasma reduced the level of apoptosis to 26.43%. In conclusion, massive apoptotic death of PBMC occurred during the active stage of SLE. The molecular pathway of SLE-PBMC apoptosis was mediated at least via TNF/TNFR signaling pathway, which was confirmed by functional test of TNF-alpha in SLE patients' plasma.

  2. Metadherin facilitates podocyte apoptosis in diabetic nephropathy

    PubMed Central

    Liu, Wen-Ting; Peng, Fen-Fen; Li, Hong-Yu; Chen, Xiao-Wen; Gong, Wang-Qiu; Chen, Wen-Jing; Chen, Yi-Hua; Li, Pei-Lin; Li, Shu-Ting; Xu, Zhao-Zhong; Long, Hai-Bo

    2016-01-01

    Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway. PMID:27882943

  3. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor

    PubMed Central

    2013-01-01

    Introduction The apoptosis and subsequent injury of podocytes plays a pathogenic role in diabetic nephropathy (DN). Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and reducing cellular injury. Our previous study found that MSCs could protect kidneys from diabetes-induced injury without obvious engraftment. So we evaluated the effects of human adipose-derived MSCs (hAd-MSCs) on podocytic apoptosis and injury induced by high glucose (HG) and the underlying mechanisms. Methods We used flow cytometry, Western blot and confocal fluorescence microscopy to study podocytic apoptosis and injury induced by HG at 24 hours, 48 hours, and 72 hours in the presence or absence of MSC-conditioned medium (CM). An antibody-based cytokine array was used to identify the mediating factor, which was verified by adding the neutralizing antibody (NtAb) to block its function or adding the recombinant cytokine to the medium to induce its function. Results hAd-MSC-CM reduced podocytic apoptosis in a dose-dependent manner, decreased the expression of podocytic cleaved caspase-3, and prevented the reduced expression and maintained the normal arrangement of podocytic synaptopodin and nephrin. However, human embryonic lung cell (Wi38)-CM failed to ameliorate podocytic apoptosis or injury. Twelve cytokines with concentration ratios (MSC-CM/Wi38-CM) >10-fold were identified. Epithelial growth factor (EGF) was singled out for its known ability to prevent apoptosis. Recombinant human EGF (rhEGF) prevented podocytic apoptosis and injury similarly to hAd-MSC-CM but, upon blockade of EGF, the beneficial effect of hAd-MSC-CM decreased dramatically. Conclusions hAd-MSCs prevent podocytic apoptosis and injury induced by HG, mainly through secreting soluble EG. PMID:24004644

  4. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor.

    PubMed

    Li, Diangeng; Wang, Nan; Zhang, Li; Hanyu, Zhu; Xueyuan, Bai; Fu, Bo; Shaoyuan, Cui; Zhang, Weiguang; Xuefeng, Sun; Li, Rongshan; Chen, Xiangmei

    2013-01-01

    The apoptosis and subsequent injury of podocytes plays a pathogenic role in diabetic nephropathy (DN). Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and reducing cellular injury. Our previous study found that MSCs could protect kidneys from diabetes-induced injury without obvious engraftment. So we evaluated the effects of human adipose-derived MSCs (hAd-MSCs) on podocytic apoptosis and injury induced by high glucose (HG) and the underlying mechanisms. We used flow cytometry, Western blot and confocal fluorescence microscopy to study podocytic apoptosis and injury induced by HG at 24 hours, 48 hours, and 72 hours in the presence or absence of MSC-conditioned medium (CM). An antibody-based cytokine array was used to identify the mediating factor, which was verified by adding the neutralizing antibody (NtAb) to block its function or adding the recombinant cytokine to the medium to induce its function. hAd-MSC-CM reduced podocytic apoptosis in a dose-dependent manner, decreased the expression of podocytic cleaved caspase-3, and prevented the reduced expression and maintained the normal arrangement of podocytic synaptopodin and nephrin. However, human embryonic lung cell (Wi38)-CM failed to ameliorate podocytic apoptosis or injury. Twelve cytokines with concentration ratios (MSC-CM/Wi38-CM) >10-fold were identified. Epithelial growth factor (EGF) was singled out for its known ability to prevent apoptosis. Recombinant human EGF (rhEGF) prevented podocytic apoptosis and injury similarly to hAd-MSC-CM but, upon blockade of EGF, the beneficial effect of hAd-MSC-CM decreased dramatically. hAd-MSCs prevent podocytic apoptosis and injury induced by HG, mainly through secreting soluble EG.

  5. Crizotinib induces apoptosis and gene expression changes in ALK+ anaplastic large cell lymphoma cell lines; brentuximab synergizes and doxorubicin antagonizes.

    PubMed

    Hudson, Sandra; Wang, Dongliang; Middleton, Frank; Nevaldine, Barbara H; Naous, Rana; Hutchison, Robert E

    2018-04-26

    Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma (ALCL) shows 60-70% event free survival with standard treatments. Targeted therapies are being tested for increased benefit and/or reduced toxicity, but interactions with standard agents are not well known. We exposed four ALCL cell lines to two targeted agents, crizotinib and brentuximab vedotin, and to two standard agents, doxorubicin and vinblastine. For each agent and combination, we measured apoptosis and expression of approximately 300 previously annotated genes of interest using targeted RNA-sequencing. An aurora kinase inhibitor, alisertib, was similarly tested for gene expression effects. Only crizotinib, alone or in combination, showed significant effects (adjusted P < 0.05) on expression and apoptosis. One hundred and nine of 277 gene expressions showed crizotinib-associated differential expression, mostly downregulation, 62 associated with apoptosis, and 28 associated with both crizotinib and apoptosis. Doxorubicin was antagonistic with crizotinib on gene expression and apoptosis. Brentuximab was synergistic with crizotinib in apoptosis, and not antagonistic in gene expression. Vinblastine also appeared synergistic with crizotinib but did not achieve statistical significance. Alisertib did not show significant expression changes. Our data suggest that crizotinib induces apoptosis through orderly changes in cell signaling associated with ALK inhibition. Expression effects of crizotinib and associated apoptosis are antagonized by doxorubicin, but apoptosis is synergized by brentuximab vedotin and possibly vinblastine. These findings suggest that concurrent use of crizotinib and doxorubicin may be counterproductive, while the pairing of crizotinib with brentuximab (or vinblastine) may increase efficacy. Alisertib did not induce expression changes at cytotoxic dosage. © 2018 Wiley Periodicals, Inc.

  6. Apoptosis of circulating lymphocytes during pediatric cardiac surgery

    NASA Astrophysics Data System (ADS)

    Bocsi, J.; Pipek, M.; Hambsch, J.; Schneider, P.; Tárnok, A.

    2006-02-01

    There is a constant need for clinical diagnostic systems that enable to predict disease course for preventative medicine. Apoptosis, programmed cell death, is the end point of the cell's response to different induction and leads to changes in the cell morphology that can be rapidly detected by optical systems. We tested whether apoptosis of T-cells in the peripheral blood is useful as predictor and compared different preparation and analytical techniques. Surgical trauma is associated with elevated apoptosis of circulating leukocytes. Increased apoptosis leads to partial removal of immune competent cells and could therefore in part be responsible for reduced immune defence. Cardiovascular surgery with but not without cardiopulmonary bypass (CPB) induces transient immunosuppression. Its effect on T-cell apoptosis has not been shown yet. Flow-cytometric data of blood samples from 107 children (age 3-16 yr.) who underwent cardiac surgery with (78) or without (29) CPB were analysed. Apoptotic T-lymphocytes were detected based on light scatter and surface antigen (CD45/CD3) expression (ClinExpImmunol2000;120:454). Results were compared to staining with CD3 antibodies alone and in the absence of antibodies. T-cell apoptosis rate was comparable when detected with CD45/CD3 or CD3 alone, however not in the absence of CD3. Patients with but not without CPB surgery had elevated lymphocyte apoptosis. T-cell apoptosis increased from 0.47% (baseline) to 0.97% (1 day postoperatively). In CPB patients with complication 1.10% significantly higher (ANOVA p=0.01) comparing to CPB patients without complications. Quantitation of circulating apoptotic cells based on light scatter seems an interesting new parameter for diagnosis. Increased apoptosis of circulating lymphocytes and neutrophils further contributes to the immune suppressive response to surgery with CPB. (Support: MP, Deutsche Herzstiftung, Frankfurt, Germany)

  7. Meiotic competence of equine oocytes and pronucleus formation after intracytoplasmic sperm injection (ICSI) as related to granulosa cell apoptosis.

    PubMed

    Dell'Aquila, Maria Elena; Albrizio, Maria; Maritato, Filippo; Minoia, Paolo; Hinrichs, Katrin

    2003-06-01

    Follicle atresia and granulosa cell apoptosis may be related to oocyte meiotic and developmental competence. We analyzed the relationships among granulosa cell apoptosis, initial cumulus morphology, oocyte nuclear maturation in vitro, and pronucleus formation after intracytoplasmic sperm injection (ICSI) in the horse. For each follicle, the size was measured and granulosa cells were used for DNA laddering analysis. Oocytes were evaluated for cumulus morphology, cultured for in vitro maturation, and submitted to ICSI. Apoptosis was categorized as absent, intermediate, or advanced according to the relative concentrations of two DNA fragments at 900 and 360 base pairs (bp). In 98 oocyte-follicle pairs, 52 oocytes were classified as expanded (Exp), 39 as compact (Cp), and 7 as having a partial (P) cumulus. Advanced apoptosis was detected in 55% (54/98) of follicles; 37% (36/98) of follicles showed an intermediate level of apoptosis; and 8 follicles (8%) were nonapoptotic. Follicle size was not significantly correlated with granulosa cell apoptosis (P > 0.05). Significantly more Exp than Cp oocytes originated from follicles with advanced apoptosis (P < 0.001). The proportion of oocytes maturing in vitro was significantly higher in oocytes issuing from apoptotic follicles than in oocytes issuing from healthy follicles (P < 0.05). The proportion of normally (two pronuclei) or abnormally fertilized oocytes (one or greater than two pronuclei, or partially decondensed sperm) did not differ in relation to granulosa cell apoptosis. We conclude that, in the mare, granulosa cell apoptosis is related to cumulus expansion and an increase in oocyte meiotic competence but has no effect on the proportion of meiotically competent oocytes that activate after ICSI. These results provide selection criteria for horse oocytes used in assisted reproductive techniques so that embryo production may be maximized.

  8. Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis.

    PubMed

    Yang, Limin; Chen, Yuanyuan; Yu, Zhengze; Pan, Wei; Wang, Hongyu; Li, Na; Tang, Bo

    2017-08-23

    Autophagy and apoptosis are closely associated with various pathological and physiological processes in cell cycles. Investigating the dynamic changes of intracellular active molecules in autophagy and apoptosis is of great significance for clarifying their inter-relationship and regulating mechanism in many diseases. In this study, we develop a dual-ratiometric fluorescent nanoprobe for quantitatively differentiating the dynamic process of superoxide anion (O 2 •- ) and pH changes in autophagy and apoptosis in HeLa cells. A rhodamine B-loaded mesoporous silica core was used as the reference, and fluorescence probes for pH and O 2 •- measurement were doped in the outer layer shell of SiO 2 . Then, chitosan and triphenylphosphonium were modified on the surface of SiO 2 . The experimental results showed that the nanoprobe is able to simultaneously and precisely visualize the changes of mitochondrial O 2 •- and pH in HeLa cells. The kinetics data revealed that the changes of pH and O 2 •- during autophagy and apoptosis in HeLa cells were significantly different. The pH value was decreased at the early stage of apoptosis and autophagy, whereas the O 2 •- level was enhanced at the early stage of apoptosis and almost unchanged at the initial stage of autophagy. At the late stage of apoptosis and autophagy, the concentration of O 2 •- was increased, whereas the pH was decreased at the late stage of autophagy and almost unchanged at the late stage of apoptosis. We hope that the present results provide useful information for studying the effects of O 2 •- and pH in autophagy and apoptosis in various pathological conditions and diseases.

  9. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis*

    PubMed Central

    Barnwal, Bhaskar; Karlberg, Helen; Mirazimi, Ali; Tan, Yee-Joo

    2016-01-01

    Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells. PMID:26574543

  10. Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis

    PubMed Central

    Liu, Shuying; Zhang, Zhengyu; Wang, Jingjing; Zhou, Yuhuan; Liu, Kefeng; Huang, Jintao; Chen, Dadi; Wang, Junmei; Li, Chaohong

    2015-01-01

    Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels. PMID:26488175

  11. Bim directly antagonizes Bcl-xl in doxorubicin-induced prostate cancer cell apoptosis independently of p53.

    PubMed

    Yang, Min-Chi; Lin, Ru-Wei; Huang, Shih-Bo; Huang, Shin-Yuan; Chen, Wen-Jie; Wang, Shiaw; Hong, Yi-Ren; Wang, Chihuei

    2016-01-01

    Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.

  12. Nature and mechanisms of hepatocyte apoptosis induced by D-galactosamine/lipopolysaccharide challenge in mice.

    PubMed

    Wu, Yi-Hang; Hu, Shao-Qing; Liu, Jun; Cao, Hong-Cui; Xu, Wei; Li, Yong-Jun; Li, Lan-Juan

    2014-06-01

    Apoptosis plays a role in the normal development of liver. However, overactivation thereof may lead to hepatocellular damage. The aim of this study was to assess D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced hepatocyte apoptotic changes in mice and clarify the mechanisms involved in this process. DNA ladder detection was employed to determine the induction condition of hepatic apoptosis. An initial test indicated that typical hepatocyte apoptosis was observed at 6-10 h after the intraperitoneal injection of D-GalN (700 mg/kg) and LPS (10 µg/kg). Subsequently, we evaluated hepatocyte apoptosis at 8 h after administering D-GalN/LPS by histopathological analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end‑labeling (TUNEL) detection, flow cytometry and electron microscopy analysis. To clarify the apoptosis-related gene expression, the expression levels of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), caspase-3, and Fas/Fas ligand (FasL) were determined by serum enzyme immunoassay, immunohistochemistry and western blot analysis. Strong apoptotic positive signals following D-GalN/LPS injection were observed from the results of the serum analysis, histopathological and immunohistochemical analyses, DNA ladder detection, TUNEL detection, flow cytometry and electron microscopy analysis. Additionally, apoptotic hepatocytes were mainly at the late stage of cell apoptosis. The expression of TNF-α, TGF-β1, caspase-3 and Fas/FasL was significantly increased. In conclusion, this study evaluated the D-GalN/LPS-induced hepatocyte apoptotic changes and clarified the apoptosis-related gene expression in mice. The hepatocyte apoptosis induced by D-GalN/LPS may be mainly regulated by the death receptor pathway. TGF-β signaling pathway may also play a vital role in this process of hepatocyte apoptosis.

  13. Bax and Bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemopreventive agent derived from turmeric, Curcuma longa.

    PubMed

    Shankar, Sharmila; Srivastava, Rakesh K

    2007-06-01

    Curcumin, an active ingredient of turmeric (Curcuma longa), inhibits proliferation and induces apoptosis in cancer cells, but the sequence of events leading to cell death is poorly defined. The objective of this study was to examine the molecular mechanisms by which multidomain pro-apoptotic Bcl-2 family members Bax and Bak regulate curcumin-induced apoptosis using mouse embryonic fibroblasts (MEFs) deficient in Bax, Bak or both genes. Curcumin treatment resulted an increase in the protein levels of both Bax and Bak, and mitochondrial translocation and activation of Bax in MEFs to trigger drop in mitochondrial membrane potential, cytosolic release of apoptogenic molecules [cytochrome c and second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis protein-binding protein with low isoelectric point], activation of caspase-9 and caspase-3 and ultimately apoptosis. Furthermore, MEFs derived from Bax and Bak double-knockout (DKO) mice exhibited even greater protection against curcumin-induced release of cytochrome c and Smac, activation of caspase-3 and caspase-9 and induction of apoptosis compared with wild-type MEFs or single-knockout Bax(-/-) or Bak(-/-) MEFs. Interestingly, curcumin treatment also caused an increase in the protein level of apoptosis protease-activating factor-1 in wild-type MEFs. Smac N7 peptide enhanced curcumin-induced apoptosis, whereas Smac siRNA inhibited the effects of curcumin on apoptosis. Mature form of Smac sensitized Bax and Bak DKO MEFs to undergo apoptosis by acting downstream of mitochondria. The present study demonstrates the role of Bax and Bak as a critical regulator of curcumin-induced apoptosis and over-expression of Smac as interventional approaches to deal with Bax- and/or Bak-deficient chemoresistant cancers for curcumin-based therapy.

  14. Resistance to etoposide-induced apoptosis in a Burkitt's lymphoma cell line.

    PubMed

    Zhao, E G; Song, Q; Cross, S; Misko, I; Lees-Miller, S P; Lavin, M F

    1998-08-31

    Burkitt's lymphoma cells that vary in their phenotypic characteristics show significantly different degrees of susceptibility to radiation-induced apoptosis. Propensity to undergo apoptosis is reflected in the degradation of substrates such as DNA-dependent protein kinase but the status of bcl-2, c-myc and p53 has been uninformative. In this study, we have focused on 2 Epstein-Barr virus (EBV)-associated Burkitt's cell lines, one (WW2) susceptible and the other (BL29) resistant to etoposide-induced apoptosis. Differences in expression of BHRF1, an EBV gene that is homologous to the Bcl-2 proto-oncogene and known to inhibit apoptosis, or changes in apoptosis inhibitory proteins (IAPs), did not appear to account for the difference in susceptibility in the 2 cell lines. Cytoplasmic extracts from etoposide-treated WW2 cells caused apoptotic changes in nuclei isolated from either BL29 or WW2 cells, whereas extracts from BL29 cells failed to do so. In addition, extracts from etoposide-treated WW2 cells degraded the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), an important indicator of apoptosis, but this protein was resistant to degradation by BL29 extracts. It appears likely that caspase 3 (CPP32) is involved in this degradation since it was activated only in the apoptosis susceptible cells and the pattern of cleavage of DNA-PKcs was similar to that reported previously with recombinant caspase 3. As observed previously, addition of caspase 3 to nuclei failed to induce morphological changes indicative of apoptosis, but addition of caspase 3 to nuclei in the presence of extract from the resistant cells led to apoptotic changes. We conclude that resistance to apoptosis in BL29 cells is due to a failure of etoposide to activate upstream effectors of caspase activity.

  15. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    PubMed

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  16. Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway.

    PubMed

    Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie

    2016-01-01

    Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.

  17. Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells.

    PubMed

    Li, Xiaoning; Su, Jing; Xia, Meihui; Li, Hongyan; Xu, Ye; Ma, Chunhui; Ma, Liwei; Kang, Jingsong; Yu, Huimei; Zhang, Zhichao; Sun, Liankun

    2016-02-01

    S1, a novel BH3 mimetic, can induce apoptosis dependent on Bax/Bak through inhibition of Bcl-2 in various tumors. S1 also induces autophagy through interrupting the interaction of Bcl-2 and Beclin1. Our results showed that S1 induces apoptosis in human ovarian cancer SKOV3 cells in a time- and dose-dependent manner. Autophagy precedes apoptosis, in SKOV3 cells treated with S1 (6 μmol/L), autophagy reached the maximum peak at 12 h after treatment and decreased to 24 h. In SKOV3 cells treated with different concentrations of S1 for 24 h, the highest level of autophagy was observed with 5 μmol/L and decreased to 10 μmol/L. Autophagy inhibitors 3-MA and CQ enhanced apoptosis induced by S1 in SKOV3 cells. However, overactivation of caspases in apoptosis induced by S1 may inhibit the autophagy-inducing function of Beclin1. Because the pan-caspase inhibitor Z-VAD recovered the autophagy-inducing function of Beclin1 through reduction of activated caspase-mediated cleavage of Beclin1. Furthermore, the Beclin1 cleavage products could further increase apoptosis induced by S1 in SKOV3 cells. This indicates that apoptosis induced by high doses and long exposure of S1 causes the overactivation of caspases and subsequent cleavage of Beclin1, and inhibits the protection of autophagy. Moreover, the cleaved product of Beclin1 further promotes apoptosis induced by S1 in SKOV3 cells. Our results suggest this may be a molecular mechanism for enhancing the sensitivity of cancer cells to apoptosis induced by small molecular compound targeting Bcl-2.

  18. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    PubMed

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  19. Chromatin status of apoptosis genes correlates with sensitivity to chemo-, immune- and radiation therapy in colorectal cancer cell lines.

    PubMed

    Benard, Anne; Janssen, Connie M; van den Elsen, Peter J; van Eggermond, Marja C J A; Hoon, Dave S B; van de Velde, Cornelis J H; Kuppen, Peter J K

    2014-12-01

    The apoptosis pathway of programmed cell death is frequently deregulated in cancer. An intact apoptosis pathway is required for proper response to anti-cancer treatment. We investigated the chromatin status of key apoptosis genes in the apoptosis pathway in colorectal cancer cell lines in relation to apoptosis induced by chemo-, immune- or radiation therapy. Using chromatin immunoprecipitation (ChIP), we measured the presence of transcription-activating histone modifications H3Ac and H3K4me3 and silencing modifications H3K9me3 and H3K27me3 at the gene promoter regions of key apoptosis genes Bax, Bcl2, Caspase-9, Fas (CD95) and p53. Cell lines DLD1, SW620, Colo320, Caco2, Lovo and HT29 were treated with cisplatin, anti-Fas or radiation. The apoptotic response was measured by flow cytometry using propidium iodide and annexin V-FITC. The chromatin status of the apoptosis genes reflected the activation status of the intrinsic (Bax, Bcl2, Caspase-9 and p53) and extrinsic (Fas) pathways. An active intrinsic apoptotic pathway corresponded to sensitivity to cisplatin and radiation treatment of cell lines DLD1, SW620 and Colo320. An active Fas promoter corresponded to an active extrinsic apoptotic pathway in cell line DLD1. mRNA expression data correlated with the chromatin status of the apoptosis genes as measured by ChIP. In conclusion, the results presented in this study indicate that the balance between activating and silencing histone modifications, reflecting the chromatin status of apoptosis genes, can be used to predict the response of tumor cells to different anti-cancer therapies and could provide a novel target to sensitize tumors to obtain adequate treatment responses.

  20. Eleostearic acid induces RIP1-mediated atypical apoptosis in a kinase-independent manner via ERK phosphorylation, ROS generation and mitochondrial dysfunction

    PubMed Central

    Obitsu, S; Sakata, K; Teshima, R; Kondo, K

    2013-01-01

    RIP1 is a serine/threonine kinase, which is involved in apoptosis and necroptosis. In apoptosis, caspase-8 and FADD have an important role. On the other hand, RIP3 is a key molecule in necroptosis. Recently, we reported that eleostearic acid (ESA) elicits caspase-3- and PARP-1-independent cell death, although ESA-treated cells mediate typical apoptotic morphology such as chromatin condensation, plasma membrane blebbing and apoptotic body formation. The activation of caspases, Bax and PARP-1, the cleavage of AIF and the phosphorylation of histone H2AX, all of which are characteristics of typical apoptosis, do not occur in ESA-treated cells. However, the underlying mechanism remains unclear. To clarify the signaling pathways in ESA-mediated apoptosis, we investigated the functions of RIP1, MEK, ERK, as well as AIF. Using an extensive study based on molecular biology, we identified the alternative role of RIP1 in ESA-mediated apoptosis. ESA mediates RIP1-dependent apoptosis in a kinase independent manner. ESA activates serine/threonine phosphatases such as calcineurin, which induces RIP1 dephosphorylation, thereby ERK pathway is activated. Consequently, localization of AIF and ERK in the nucleus, ROS generation and ATP reduction in mitochondria are induced to disrupt mitochondrial cristae, which leads to cell death. Necrostatin (Nec)-1 blocked MEK/ERK phosphorylation and ESA-mediated apoptosis. Nec-1 inactive form (Nec1i) also impaired ESA-mediated apoptosis. Nec1 blocked the interaction of MEK with ERK upon ESA stimulation. Together, these findings provide a new finding that ERK and kinase-independent RIP1 proteins are implicated in atypical ESA-mediated apoptosis. PMID:23788031

  1. MicroRNA-29c regulates apoptosis sensitivity via modulation of the cell-surface death receptor, Fas, in lung fibroblasts.

    PubMed

    Matsushima, Shingo; Ishiyama, Junichi

    2016-12-01

    MicroRNAs play an important role in the development and progression of various diseases, such as idiopathic pulmonary fibrosis (IPF). Although the accumulation of aberrant fibroblasts resistant to apoptosis is a hallmark in IPF lungs, the mechanism regulating apoptosis susceptibility is not fully understood. Here, we investigated the role of miR-29, which is the most downregulated microRNA in IPF lungs and is also known as a regulator of extracellular matrix (ECM), in the mechanism of apoptosis resistance. We found that functional inhibition of miR-29c caused resistance to Fas-mediated apoptosis in lung fibroblasts. Furthermore, experiments using miR-29c inhibitor and miR-29c mimic revealed that miR-29c regulated expression of the death receptor, Fas, and formation of death-inducing signaling complex leading to extrinsic apoptosis. The representative profibrotic transforming growth factor (TGF)-β downregulated the expression of miR-29c as well as Fas receptor and conferred resistance to apoptosis. We also found that introduction of miR-29c mimic abrogated these TGF-β-induced phenotypes of Fas repression and apoptosis resistance. The results presented here suggest that downregulation of miR-29 observed in IPF lungs may be associated with the apoptosis-resistant phenotype of IPF lung fibroblasts via downregulation of Fas receptor. Therefore, restoration of miR-29 expression in IPF lungs could not only inhibit the accumulation of ECM but also normalize the sensitivity to apoptosis in lung fibroblasts, which may be an effective strategy for treatment of IPF. Copyright © 2016 the American Physiological Society.

  2. Down-regulated RPS3a/nbl expression during retinoid-induced differentiation of HL-60 cells: a close association with diminished susceptibility to actinomycin D-stimulated apoptosis.

    PubMed

    Russell, L; Naora, H; Naora, H

    2000-04-01

    The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.

  3. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Il; Park, Soo Hyun, E-mail: parksh@chonnam.ac.kr

    Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucosemore » treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.« less

  4. Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis.

    PubMed

    Chen, Songfeng; Lv, Xiao; Hu, Binwu; Zhao, Lei; Li, Shuai; Li, Zhiliang; Qing, Xiangcheng; Liu, Hongjian; Xu, Jianzhong; Shao, Zengwu

    2018-04-28

    The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.

  5. Pneumolysin Activates Macrophage Lysosomal Membrane Permeabilization and Executes Apoptosis by Distinct Mechanisms without Membrane Pore Formation

    PubMed Central

    Bewley, Martin A.; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M.; Read, Robert C.; Mitchell, Timothy J.; Whyte, Moira K. B.

    2014-01-01

    ABSTRACT Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY’s ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. PMID:25293758

  6. Escin-induced DNA damage promotes escin-induced apoptosis in human colorectal cancer cells via p62 regulation of the ATM/γH2AX pathway.

    PubMed

    Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen

    2018-05-31

    Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.

  7. Toll-like Receptor 4-mediated Endoplasmic Reticulum Stress in Intestinal Crypts Induces Necrotizing Enterocolitis*

    PubMed Central

    Afrazi, Amin; Branca, Maria F.; Sodhi, Chhinder P.; Good, Misty; Yamaguchi, Yukihiro; Egan, Charlotte E.; Lu, Peng; Jia, Hongpeng; Shaffiey, Shahab; Lin, Joyce; Ma, Congrong; Vincent, Garrett; Prindle, Thomas; Weyandt, Samantha; Neal, Matthew D.; Ozolek, John A.; Wiersch, John; Tschurtschenthaler, Markus; Shiota, Chiyo; Gittes, George K.; Billiar, Timothy R.; Mollen, Kevin; Kaser, Arthur; Blumberg, Richard; Hackam, David J.

    2014-01-01

    The cellular cues that regulate the apoptosis of intestinal stem cells (ISCs) remain incompletely understood, yet may play a role in diseases characterized by ISC loss including necrotizing enterocolitis (NEC). Toll-like receptor-4 (TLR4) was recently found to be expressed on ISCs, where its activation leads to ISC apoptosis through mechanisms that remain incompletely explained. We now hypothesize that TLR4 induces endoplasmic reticulum (ER) stress within ISCs, leading to their apoptosis in NEC pathogenesis, and that high ER stress within the premature intestine predisposes to NEC development. Using transgenic mice and cultured enteroids, we now demonstrate that TLR4 induces ER stress within Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5)-positive ISCs, resulting in crypt apoptosis. TLR4 signaling within crypts was required, because crypt ER stress and apoptosis occurred in TLR4ΔIEC-OVER mice expressing TLR4 only within intestinal crypts and epithelium, but not TLR4ΔIEC mice lacking intestinal TLR4. TLR4-mediated ER stress and apoptosis of ISCs required PERK (protein kinase-related PKR-like ER kinase), CHOP (C/EBP homologous protein), and MyD88 (myeloid differentiation primary response gene 88), but not ATF6 (activating transcription factor 6) or XBP1 (X-box-binding protein 1). Human and mouse NEC showed high crypt ER stress and apoptosis, whereas genetic inhibition of PERK or CHOP attenuated ER stress, crypt apoptosis, and NEC severity. Strikingly, using intragastric delivery into fetal mouse intestine, prevention of ER stress reduced TLR4-mediated ISC apoptosis and mucosal disruption. These findings identify a novel link between TLR4-induced ER stress and ISC apoptosis in NEC pathogenesis and suggest that increased ER stress within the premature bowel predisposes to NEC development. PMID:24519940

  8. Toll-like receptor 4-mediated endoplasmic reticulum stress in intestinal crypts induces necrotizing enterocolitis.

    PubMed

    Afrazi, Amin; Branca, Maria F; Sodhi, Chhinder P; Good, Misty; Yamaguchi, Yukihiro; Egan, Charlotte E; Lu, Peng; Jia, Hongpeng; Shaffiey, Shahab; Lin, Joyce; Ma, Congrong; Vincent, Garrett; Prindle, Thomas; Weyandt, Samantha; Neal, Matthew D; Ozolek, John A; Wiersch, John; Tschurtschenthaler, Markus; Shiota, Chiyo; Gittes, George K; Billiar, Timothy R; Mollen, Kevin; Kaser, Arthur; Blumberg, Richard; Hackam, David J

    2014-04-04

    The cellular cues that regulate the apoptosis of intestinal stem cells (ISCs) remain incompletely understood, yet may play a role in diseases characterized by ISC loss including necrotizing enterocolitis (NEC). Toll-like receptor-4 (TLR4) was recently found to be expressed on ISCs, where its activation leads to ISC apoptosis through mechanisms that remain incompletely explained. We now hypothesize that TLR4 induces endoplasmic reticulum (ER) stress within ISCs, leading to their apoptosis in NEC pathogenesis, and that high ER stress within the premature intestine predisposes to NEC development. Using transgenic mice and cultured enteroids, we now demonstrate that TLR4 induces ER stress within Lgr5 (leucine-rich repeat-containing G-protein-coupled receptor 5)-positive ISCs, resulting in crypt apoptosis. TLR4 signaling within crypts was required, because crypt ER stress and apoptosis occurred in TLR4(ΔIEC-OVER) mice expressing TLR4 only within intestinal crypts and epithelium, but not TLR4(ΔIEC) mice lacking intestinal TLR4. TLR4-mediated ER stress and apoptosis of ISCs required PERK (protein kinase-related PKR-like ER kinase), CHOP (C/EBP homologous protein), and MyD88 (myeloid differentiation primary response gene 88), but not ATF6 (activating transcription factor 6) or XBP1 (X-box-binding protein 1). Human and mouse NEC showed high crypt ER stress and apoptosis, whereas genetic inhibition of PERK or CHOP attenuated ER stress, crypt apoptosis, and NEC severity. Strikingly, using intragastric delivery into fetal mouse intestine, prevention of ER stress reduced TLR4-mediated ISC apoptosis and mucosal disruption. These findings identify a novel link between TLR4-induced ER stress and ISC apoptosis in NEC pathogenesis and suggest that increased ER stress within the premature bowel predisposes to NEC development.

  9. Chlamydia trachomatis can protect host cells against apoptosis in the absence of cellular Inhibitor of Apoptosis Proteins and Mcl-1.

    PubMed

    Ying, Songmin; Christian, Jan G; Paschen, Stefan A; Häcker, Georg

    2008-01-01

    Infection with Chlamydia protects mammalian host cells against apoptosis. Hypotheses have been proposed to explain this molecularly, including the up-regulation of host anti-apoptotic proteins such as cellular Inhibitor of Apoptosis Protein (IAP) 2 and the Bcl-2 protein Mcl-1. To test for the importance of these proteins, we used mouse embryonic fibroblasts from gene-targeted mice that were deficient in cIAP1, cIAP2, cIAP1/cIAP2, XIAP, or Mcl-1. Infection with Chlamydia trachomatis protected all cells equally well against apoptosis, which was induced either with tumour necrosis factor/cycloheximide (IAP-knock-out cells) or staurosporine (Mcl-1-knock-out). Therefore, these cellular anti-apoptotic proteins are not essential for apoptosis-protection by C. trachomatis.

  10. Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 domain Mediated PUMA Degradation

    PubMed Central

    Lakhter, Alexander J; Sahu, Ravi P; Sun, Yang; Kaufmann, William K; Androphy, Elliot J; Travers, Jeffrey B; Naidu, Samisubbu R

    2013-01-01

    The BH3-only protein PUMA counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine prevents degradation of PUMA protein, promotes apoptosis and reduces the growth of melanoma xenografts in mice. Compared to wild–type PUMA, a BH3 domain deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by chloroquine. While both chloroquine and inhibitors of lysosomal proteases stalled autophagy, only choroquine stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease independent activity of chloroquine that selectively promotes apoptosis in melanoma cells. PMID:23370537

  11. Tumor dormancy and cell signaling: anti-mu-induced apoptosis in human B-lymphoma cells is not caused by an APO-1-APO-1 ligand interaction.

    PubMed Central

    Racila, E; Hsueh, R; Marches, R; Tucker, T F; Krammer, P H; Scheuermann, R H; Uhr, J W

    1996-01-01

    Signal transduction initiated by crosslinking of antigen-specific receptors on T- and B-lymphoma cells induces apoptosis. In T-lymphoma cells, such crosslinking results in upregulation of the APO-1 ligand, which then interacts with induced or constitutively expressed APO-1, thereby triggering apoptosis. Here we show that crosslinking the membrane immunoglobulin on human lymphoma cells (Daudi) (that constitutively express APO-1) does not induce synthesis of APO-1 ligand. Further, a noncytotoxic fragment of anti-APO-1 antibody that blocks T-cell-receptor-mediated apoptosis in T-lymphoma cells does not block anti-mu-induced apoptosis. Hence, in B-lymphoma cells, apoptosis induced by signaling via membrane IgM is not mediated by the APO-1 ligand. Images Fig. 2 Fig. 3 PMID:8700902

  12. Gamma-irradiation enhances apoptosis induced by cannabidiol, a non-psychotropic cannabinoid, in cultured HL-60 myeloblastic leukemia cells.

    PubMed

    Gallily, Ruth; Even-Chena, Tal; Katzavian, Galia; Lehmann, Dan; Dagan, Arie; Mechoulam, Raphael

    2003-10-01

    Two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabidiol-dimethylheptyl (CBD-DMH), induced apoptosis in a human acute myeloid leukemia (AML) HL-60 cell line. Apoptosis was determined by staining with bisBenzimide and propidium iodide. A dose dependent increase of apoptosis was noted, reaching 61 and 43% with 8 microg/ml CBD and 15 microg/ml CBD-DMH, respectively, after a 24 h treatment. Prior exposure of the cells to gamma-irradiation (800 cGy) markedly enhanced apoptosis, reaching values of 93 and 95%, respectively. Human monocytes from normal individuals were resistant to either cannabinoids or gamma-irradiation. Caspase-3 activation was observed after the cannabinoid treatment, and may represent a mechanism for the apoptosis. Our data suggest a possible new approach to treatment of AML.

  13. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells.

    PubMed

    Shimizu, Takamitsu; Kawai, Junya; Ouchi, Kenji; Kikuchi, Haruhisa; Osima, Yoshiteru; Hidemi, Rikiishi

    2016-04-01

    Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.

  14. A steroid-controlled global switch in sensitivity to apoptosis during Drosophila development.

    PubMed

    Kang, Yunsik; Bashirullah, Arash

    2014-02-01

    Precise control over activation of the apoptotic machinery is critical for development, tissue homeostasis and disease. In Drosophila, the decision to trigger apoptosis--whether in response to developmental cues or to DNA damage--converges on transcription of inhibitor of apoptosis protein (IAP) antagonists reaper, hid and grim. Here we describe a parallel process that regulates the sensitivity to, rather than the execution of, apoptosis. This process establishes developmental windows that are permissive or restrictive for triggering apoptosis, where the status of cells determines their capacity to die. We characterize one switch in the sensitivity to apoptotic triggers, from restrictive to permissive, that occurs during third-instar larval (L3) development. Early L3 animals are highly resistant to induction of apoptosis by expression of IAP-antagonists, DNA-damaging agents and even knockdown of the IAP diap1. This resistance to apoptosis, however, is lost in wandering L3 animals after acquiring a heightened sensitivity to apoptotic triggers. This switch in sensitivity to death activators is mediated by a change in mechanisms available for activating endogenous caspases, from an apoptosome-independent to an apoptosome-dependent pathway. This switch in apoptotic pathways is regulated in a cell-autonomous manner by the steroid hormone ecdysone, through changes in expression of critical pro-, but not anti-, apoptotic genes. This steroid-controlled switch defines a novel, physiologically-regulated, mechanism for controlling sensitivity to apoptosis and provides new insights into the control of apoptosis during development. © 2013 Published by Elsevier Inc.

  15. Molecular and Cellular Mechanisms of Apoptosis during Dissociated Spermatogenesis

    PubMed Central

    Liu, Tengfei; Wang, Lingling; Chen, Hong; Huang, Yufei; Yang, Ping; Ahmed, Nisar; Wang, Taozhi; Liu, Yi; Chen, Qiusheng

    2017-01-01

    Apoptosis is a tightly controlled process by which tissues eliminate unwanted cells. Spontaneous germ cell apoptosis in testis has been broadly investigated in mammals that have an associated spermatogenesis pattern. However, the mechanism of germ cell apoptosis in seasonally breeding reptiles following a dissociated spermatogenesis has remained enigmatic. In the present study, morphological evidence has clearly confirmed the dissociated spermatogenesis pattern in Pelodiscus sinensis. TUNEL and TEM analyses presented dynamic changes and ultrastructural characteristics of apoptotic germ cells during seasonal spermatogenesis, implying that apoptosis might be one of the key mechanisms to clear degraded germ cells. Furthermore, using RNA-Seq and digital gene expression (DGE) profiling, a large number of apoptosis-related differentially expressed genes (DEGs) at different phases of spermatogenesis were identified and characterized in the testis. DGE and RT-qPCR analysis revealed that the critical anti-apoptosis genes, such as Bcl-2, BAG1, and BAG5, showed up-regulated patterns during intermediate and late spermatogenesis. Moreover, the increases in mitochondrial transmembrane potential in July and October were detected by JC-1 staining. Notably, the low protein levels of pro-apoptotic cleaved caspase-3 and CytC in cytoplasm were detected by immunohistochemistry and western blot analyses, indicating that the CytC-Caspase model might be responsible for the effects of germ cell apoptosis on seasonal spermatogenesis. These results facilitate understanding the regulatory mechanisms of apoptosis during spermatogenesis and uncovering the biological process of the dissociated spermatogenesis system in reptiles. PMID:28424629

  16. Sonic hedgehog, Apoptosis and the Penis

    PubMed Central

    Podlasek, Carol A.

    2009-01-01

    Introduction Smooth muscle apoptosis in the penis is common in prostatectomy patients and animal models of erectile dysfunction (ED). A critical regulator of smooth muscle apoptosis in the penis is the secreted protein Sonic hedgehog (SHH). Since SHH protein treatment of the penis prevents cavernous nerve (CN) injury induced apoptosis, SHH has the potential to treat post-prostatectomy apoptosis. However little is known about how SHH signaling is regulated in the adult penis. Aim The goal of this review is to examine what is known about SHH signaling in the penis, to offer insight as to how SHH inhibition induces apoptosis in penile smooth muscle, and to define the role of the SHH pathway in maintaining CN integrity. Methods Information presented in this review was derived from a literature search using the National Library of Medicine PubMed Services. Search terms included SHH, apoptosis, smooth muscle, penis, ED, pelvic ganglia, corpora cavernosa, CN, regeneration, Schwann cell, neural activity and transport. Results In this review we have discussed the role of the CN in regulation of SHH abundance and apoptosis induction in the penis and have examined the function and localization of SHH signaling in the CN. Conclusion There is substantial potential to develop SHH for delivery to the penis of prostatectomy patients at the time of surgery in order to prevent apoptosis induction and long term ED development. Studies are in progress which will identify if SHH may be used as a regenerative therapy to speed CN regeneration. PMID:19267857

  17. Apoptosis in fish: environmental factors and programmed cell death.

    PubMed

    AnvariFar, Hossein; Amirkolaie, Abdolsamad Keramat; Miandare, Hamed Kolangi; Ouraji, Hossein; Jalali, M Ali; Üçüncü, Sema İşisağ

    2017-06-01

    Apoptosis, a form of programmed cell death, is a critical component in maintaining homeostasis and growth in all tissues and plays a significant role in immunity and cytotoxicity. In contrast to necrosis or traumatic cell death, apoptosis is a well-controlled and vital process characterized mainly by cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing and apoptotic bodies. Our understanding of apoptosis is partly based on observations in invertebrates but mainly in mammals. Despite the great advantages of fish models in studying vertebrate development and diseases and the tremendous interest observed in recent years, reports on apoptosis in fish are still limited. Although apoptotic machinery is well conserved between aquatic and terrestrial organisms throughout the history of evolution, some differences exist in key components of apoptotic pathways. Core parts of apoptotic machinery in fish are virtually expressed as equivalent to the mammalian models. Some differences are, however, evident, such as the extrinsic and intrinsic pathways of apoptosis including lack of a C-terminal region in the Fas-associated protein with a death domain in fish. Aquatic species inhabit a complex and highly fluctuating environment, making these species good examples to reveal features of apoptosis that may not be easily investigated in mammals. Therefore, in order to gain a wider view on programmed cell death in fish, interactions between the main environmental factors, chemicals and apoptosis are discussed in this review. It is indicated that apoptosis can be induced in fish by exposure to environmental stressors during different stages of the fish life cycle.

  18. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3more » signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.« less

  19. Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong

    2016-12-01

    Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography in vivo. When compared to saline control, the doxorubicin treated group showed a significant increase in uptake of ICG-PS monoclonal antibody in triple negative breast tumor xenografted in NCr nude female mice. Day 5 posttreatment had the highest optoacoustic signal in the tumor region, indicating maximum apoptosis and the tumor subsequently shrank. Since multispectral optoacoustic imaging does not involve the use of radioactivity, the longer the circulatory time of the PS antibody can be exploited to monitor apoptosis over a period of time without multiple injections of commonly used imaging probes such as Tc-99m Annexin V or F-18 ML10. The proposed apoptosis imaging technique involving multispectral optoacoustic tomography, monoclonal antibody, and near-infrared absorbing fluorescent marker can be an effective tool for imaging apoptosis and treatment planning.

  20. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    PubMed

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p < 0.05) followed by late apoptosis at 12 hpi (p < 0.05) and necrosis from 24 hpi (p < 0.05). Then, next generation sequencing was performed on 9 hpi and control uninfected cells by Illumina analyzer. An aggregate of 4546 genes (2229 down-regulated and 2317 up-regulated) from 17 cellular process, 11 molecular functions and 130 possible biological pathways were affected by FIPV. 131 genes from apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  1. A reactive oxygen species activation mechanism contributes to JS-K-induced apoptosis in human bladder cancer cells.

    PubMed

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2015-10-13

    Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.

  2. A reactive oxygen species activation mechanism contributes to JS-K-induced apoptosis in human bladder cancer cells

    PubMed Central

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2015-01-01

    Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect. PMID:26458509

  3. Azadirachtin-induced apoptosis involves lysosomal membrane permeabilization and cathepsin L release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Wang, Zheng; Cheng, Xingan; Meng, Qianqian; Wang, Peidan; Shu, Benshui; Hu, Qiongbo; Hu, Meiying; Zhong, Guohua

    2015-07-01

    Azadirachtin as a kind of botanical insecticide has been widely used in pest control. We previously reported that azadirachtin could induce apoptosis of Spodoptera litura cultured cell line Sl-1, which involves in the up-regulation of P53 protein. However, the detailed mechanism of azadirachtin-induced apoptosis is not clearly understood in insect cultured cells. The aim of the present study was to address the involvement of lysosome and lysosomal protease in azadirachtin-induced apoptosis in Sf9 cells. The result confirmed that azadirachtin indeed inhibited proliferation and induced apoptosis. The lysosomes were divided into different types as time-dependent manner, which suggested that changes of lysosomes were necessarily physiological processes in azadirachtin-induced apoptosis in Sf9 cells. Interestingly, we noticed that azadirachtin could trigger lysosomal membrane permeabilization and cathepsin L releasing to cytosol. Z-FF-FMK (a cathepsin L inhibitor), but not CA-074me (a cathepsin B inhibitor), could effectively hinder the apoptosis induced by azadirachtin in Sf9 cells. Meanwhile, the activity of caspase-3 could also be inactivated by the inhibition of cathepsin L enzymatic activity induced by Z-FF-FMK. Taken together, our findings suggest that azadirachtin could induce apoptosis in Sf9 cells in a lysosomal pathway, and cathepsin L plays a pro-apoptosis role in this process through releasing to cytosol and activating caspase-3. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microenvironment mesenchymal cells protect ovarian cancer cell lines from apoptosis by inhibiting XIAP inactivation

    PubMed Central

    Castells, M; Milhas, D; Gandy, C; Thibault, B; Rafii, A; Delord, J-P; Couderc, B

    2013-01-01

    Epithelial ovarian carcinoma is characterized by high frequency of recurrence (70% of patients) and carboplatin resistance acquisition. Carcinoma-associated mesenchymal stem cells (CA-MSC) have been shown to induce ovarian cancer chemoresistance through trogocytosis. Here we examined CA-MSC properties to protect ovarian cancer cells from carboplatin-induced apoptosis. Apoptosis was determined by Propidium Iodide and Annexin-V-FITC labelling and poly-ADP-ribose polymerase cleavage analysis. We showed a significant increase of inhibitory concentration 50 and a 30% decrease of carboplatin-induced apoptosis in ovarian cancer cells incubated in the presence of CA-MSC-conditioned medium (CM). A molecular analysis of apoptosis signalling pathway in response to carboplatin revealed that the presence of CA-MSC CM induced a 30% decrease of effector caspases-3 and -7 activation and proteolysis activity. CA-MSC secretions promoted Akt and X-linked inhibitor of apoptosis protein (XIAP; caspase inhibitor from inhibitor of apoptosis protein (IAP) family) phosphorylation. XIAP depletion by siRNA strategy permitted to restore apoptosis in ovarian cancer cells stimulated by CA-MSC CM. The factors secreted by CA-MSC are able to confer chemoresistance to carboplatin in ovarian cancer cells through the inhibition of effector caspases activation and apoptosis blockade. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway and the phosphorylation of its downstream target XIAP underlined the implication of this signalling pathway in ovarian cancer chemoresistance. This study reveals the potentialities of targeting XIAP in ovarian cancer therapy. PMID:24176845

  5. Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons.

    PubMed

    Antonio, Angeline M; Druse, Mary J

    2008-04-14

    It is well known that ethanol damages the developing nervous system by augmenting apoptosis. Previously, this laboratory reported that ethanol augments apoptosis in fetal rhombencephalic neurons, and that the increased apoptosis is associated with reduced activity of the phosphatidylinositol 3-kinase pathway and downstream expression of pro-survival genes. Other laboratories have shown that another mechanism by which ethanol induces apoptosis in developing neurons is through the generation of reactive oxygen species (ROS) and the associated oxidative stress. The present study used an in vitro model to investigate the potential neuroprotective effects of several antioxidants against ethanol-associated apoptosis in fetal rhombencephalic neurons. The investigated antioxidants included three phenolics: (-)-epigallocatechin-3-gallate (EGCG), a flavanoid polyphenol found in green tea; curcumin, found in tumeric; and resveratrol (3,5,4'-trihydroxystilbene), a component of red wine. Additional antioxidants, including melatonin, a naturally occurring indole, and alpha-lipoic acid, a naturally occurring dithiol, were also investigated. These studies demonstrated that a 24-hour treatment of fetal rhombencephalic neurons with 75 mM ethanol caused a 3-fold increase in the percentage of apoptotic neurons. However, co-treatment of these cultures with any of the five different antioxidants prevented ethanol-associated apoptosis. Antioxidant treatment did not alter the extent of apoptosis in control neurons, i.e., those cultured in the absence of ethanol. These studies showed that several classes of antioxidants can exert neuroprotection against ethanol-associated apoptosis in fetal rhombencephalic neurons.

  6. Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: Modulation by bacoside A.

    PubMed

    Anbarasi, K; Kathirvel, G; Vani, G; Jayaraman, G; Shyamala Devi, C S

    2006-01-01

    Cigarette smoking is associated with the development of several diseases and antioxidants play a major role in the prevention of smoking-related diseases. Apoptosis is suggested as a possible contributing factor in the pathogenesis of smoking-induced toxicity. Therefore the present study was designed to investigate the influence of chronic cigarette smoke exposure on apoptosis and the modulatory effect of bacoside A (triterpenoid saponin isolated from the plant Bacopa monniera) on smoking-induced apoptosis in rat brain. Adult male albino rats of Wistar strain were exposed to cigarette smoke and simultaneously administered with bacoside A (10 mg/kg b.w./day, orally) for a period of 12 weeks. Expression of brain hsp70 was analyzed by Western blotting. Apoptosis was identified by DNA fragmentation, terminal deoxynucleotidyl transferase-mediated deoxy uridine triphosphate nick end labeling (TUNEL) staining and transmission electron microscopy. The results showed that exposure to cigarette smoke induced hsp70 expression and apoptosis as characterized by DNA laddering, increased TUNEL-positive cells and ultrastructural apoptotic features in the brain. Administration of bacoside A prevented expression of hsp70 and neuronal apoptosis during cigarette smoking. We speculate that apoptosis may be responsible for the smoking-induced brain damage and bacoside A can protect the brain from the toxic effects of cigarette smoking.

  7. Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus.

    PubMed

    Martyniszyn, Lech; Szulc-Dąbrowska, Lidia; Boratyńska-Jasińska, Anna; Struzik, Justyna; Winnicka, Anna; Niemiałtowski, Marek

    2013-10-01

    Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages.

  8. Motor neurons with limb-innervating character in the cervical spinal cord are sculpted by apoptosis based on the Hox code in chick embryo.

    PubMed

    Mukaigasa, Katsuki; Sakuma, Chie; Okada, Tomoaki; Homma, Shunsaku; Shimada, Takako; Nishiyama, Keiji; Sato, Noboru; Yaginuma, Hiroyuki

    2017-12-15

    In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1 + MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1 + MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1 + MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1 + MNs committed to LMC neurons, depending on the Hox expression pattern. © 2017. Published by The Company of Biologists Ltd.

  9. ApoptoProteomics, an integrated database for analysis of proteomics data obtained from apoptotic cells.

    PubMed

    Arntzen, Magnus Ø; Thiede, Bernd

    2012-02-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no.

  10. ApoptoProteomics, an Integrated Database for Analysis of Proteomics Data Obtained from Apoptotic Cells*

    PubMed Central

    Arntzen, Magnus Ø.; Thiede, Bernd

    2012-01-01

    Apoptosis is the most commonly described form of programmed cell death, and dysfunction is implicated in a large number of human diseases. Many quantitative proteome analyses of apoptosis have been performed to gain insight in proteins involved in the process. This resulted in large and complex data sets that are difficult to evaluate. Therefore, we developed the ApoptoProteomics database for storage, browsing, and analysis of the outcome of large scale proteome analyses of apoptosis derived from human, mouse, and rat. The proteomics data of 52 publications were integrated and unified with protein annotations from UniProt-KB, the caspase substrate database homepage (CASBAH), and gene ontology. Currently, more than 2300 records of more than 1500 unique proteins were included, covering a large proportion of the core signaling pathways of apoptosis. Analysis of the data set revealed a high level of agreement between the reported changes in directionality reported in proteomics studies and expected apoptosis-related function and may disclose proteins without a current recognized involvement in apoptosis based on gene ontology. Comparison between induction of apoptosis by the intrinsic and the extrinsic apoptotic signaling pathway revealed slight differences. Furthermore, proteomics has significantly contributed to the field of apoptosis in identifying hundreds of caspase substrates. The database is available at http://apoptoproteomics.uio.no. PMID:22067098

  11. Differential modulation of apoptotic processes by proanthocyanidins as a dietary strategy for delaying chronic pathologies.

    PubMed

    Puiggròs, Francesc; Salvadó, Maria-Josepa; Bladé, Cinta; Arola, Lluís

    2014-01-01

    Apoptosis is a biological process necessary for maintaining cellular homeostasis. Several diseases can result if it is deregulated. For example, inhibition of apoptotic signaling pathways is linked to the survival of pathological cells, which contributes to cancer, whereas excessive apoptosis is linked to neurodegenerative diseases, partially via oxidative stress. The activation or restoration of apoptosis via extrinsic or intrinsic pathways combined with cell signaling pathways triggered by reactive oxygen specises (ROS) formation is considered a key strategy by which bioactive foods can exert their health effects. Proanthocyanidins, a class of flavonoids naturally found in fruits, vegetables, and beverages, have attracted a great deal of attention not only because they are strong antioxidants but also because they appear to exert a different modulation of apoptosis, stimulating apoptosis in damaged cells, thus preventing cancer or reducing apoptosis in healthy cells, and as a result, preserving the integrity of normal cells and protecting against neurodegenerative diseases. Therefore, proanthocyanidins could provide a defense against apoptosis induced by oxidative stress or directly inhibit apoptosis, and they could also provide a promising treatment for a variety of diseases. Emerging data suggest that proanthocyanidins, especially those that humans can be persuaded to consume, may be used to prevent and manage cancer and mental disorders.

  12. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission.

    PubMed

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-09-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice

    PubMed Central

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J.; Karl, Michael

    2016-01-01

    Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis. PMID:20962747

  14. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice.

    PubMed

    Doublier, Sophie; Lupia, Enrico; Catanuto, Paola; Periera-Simon, Simone; Xia, Xiaomei; Korach, Ken; Berho, Mariana; Elliot, Sharon J; Karl, Michael

    2011-02-01

    Podocyte damage and apoptosis are thought to be important if not essential in the development of glomerulosclerosis. Female estrogen receptor knockout mice develop glomerulosclerosis at 9 months of age due to excessive ovarian testosterone production and secretion. Here, we studied the pathogenesis of glomerulosclerosis in this mouse model to determine whether testosterone and/or 17β-estradiol directly affect the function and survival of podocytes. Glomerulosclerosis in these mice was associated with the expression of desmin and the loss of nephrin, markers of podocyte damage and apoptosis. Ovariectomy preserved the function and survival of podocytes by eliminating the source of endogenous testosterone production. In contrast, testosterone supplementation induced podocyte apoptosis in ovariectomized wild-type mice. Importantly, podocytes express functional androgen and estrogen receptors, which, upon stimulation by their respective ligands, have opposing effects. Testosterone induced podocyte apoptosis in vitro by androgen receptor activation, but independent of the TGF-β1 signaling pathway. Pretreatment with 17β-estradiol prevented testosterone-induced podocyte apoptosis, an estrogen receptor-dependent effect mediated by activation of the ERK signaling pathway, and protected podocytes from TGF-β1- or TNF-α-induced apoptosis. Thus, podocytes are target cells for testosterone and 17β-estradiol. These hormones modulate podocyte damage and apoptosis.

  15. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    PubMed

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  16. The interaction between HIV-1 Nef and adaptor protein-2 reduces Nef-mediated CD4+ T cell apoptosis.

    PubMed

    Jacob, Rajesh Abraham; Johnson, Aaron L; Pawlak, Emily N; Dirk, Brennan S; Van Nynatten, Logan R; Haeryfar, S M Mansour; Dikeakos, Jimmy D

    2017-09-01

    Acquired Immune Deficiency Syndrome is characterized by a decline in CD4 + T cells. Here, we elucidated the mechanism underlying apoptosis in Human Immunodeficiency Virus-1 (HIV-1) infection by examining host apoptotic pathways hijacked by the HIV-1 Nef protein in the CD4 + T-cell line Sup-T1. Using a panel of Nef mutants unable to bind specific host proteins we uncovered that Nef generates pro- and anti-apoptotic signals. Apoptosis increased upon mutating the motifs involved in the interaction of Nef:AP-1 (Nef M20A or Nef EEEE62-65AAAA ) or Nef:AP-2 (Nef LL164/165AA ), implying these interactions limit Nef-mediated apoptosis. In contrast, disrupting the Nef:PAK2 interaction motifs (Nef H89A or Nef F191A ) reduced apoptosis. To validate further, apoptosis was measured after short-hairpin RNA knock-down of AP-1, AP-2 and PAK2. AP-2α depletion enhanced apoptosis, demonstrating that disrupting the Nef:AP-2α interaction limits Nef-mediated apoptosis. Collectively, we describe a mechanism by which HIV-1 regulates cell survival and demonstrate the consequence of interfering with Nef:host protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis.

    PubMed

    Lim, Chuan Bian; Prêle, Cecilia M; Baltic, Svetlana; Arthur, Peter G; Creaney, Jenette; Watkins, D Neil; Thompson, Philip J; Mutsaers, Steven E

    2015-01-30

    Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown. In this study human MMe cells were treated with GANT61 and the mechanisms regulating cell death investigated. Exposure of MMe cells to GANT61 led to G1 phase arrest and apoptosis, which involved ROS but not its purported targets, GLI1 or GLI2. GANT61 triggered ROS generation and quenching of ROS protected MMe cells from GANT61-induced apoptosis. Furthermore, we demonstrated that mitochondria are important in mediating GANT61 effects: (1) ROS production and apoptosis were blocked by mitochondrial inhibitor rotenone; (2) GANT61 promoted superoxide formation in mitochondria; and (3) mitochondrial DNA-deficient LO68 cells failed to induce superoxide, and were more resistant to apoptosis induced by GANT61 than wild-type cells. Our data demonstrate for the first time that GANT61 induces apoptosis by promoting mitochondrial superoxide generation independent of Gli inhibition, and highlights the therapeutic potential of mitochondrial ROS-mediated anticancer drugs in MMe.

  18. [The role of apoptosis of granulosa cells in follicular atresia].

    PubMed

    Grotowski, W; Lecybył, R; Warenik-Szymankiewicz, A; Trzeciak, W H

    1997-07-01

    Apoptosis plays an important role in the process of morphogenesis and embryogenesis. Its increase or inhibition is an etiopathological factor in many different diseases. It has recently been shown that apoptosis of granulosa cells is one of the main mechanisms responsible for follicular atresia. There are many other factors influencing the process of granulosa cells apoptosis, among them the most important are: RnGH, FSH, LH, sex hormones (estrogens and androgens), growth factors and their receptors (EGF/TGF-alpha, FGF, IGF-1) and cytokines (e.g. TNF-alpha). The article presents data concerning the regulatory mechanisms of granulosa cells apoptosis in the ovary.

  19. [Influence of human gastrointestinal tract bacterial pathogens on host cell apoptosis].

    PubMed

    Wronowska, Weronika; Godlewska, Renata; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2005-01-01

    Several pathogenic bacteria are able to trigger apoptosis in the host cell, but the mechanisms by which it occurs differ, and the resulting pathology can take different courses. Induction and/or blockage of programmed cell death upon infection is a result of complex interaction of bacterial proteins with cellular proteins involved in signal transduction and apoptosis. In this review we focus on pro/anti-apoptotic activities exhibited by two enteric pathogens Salmonella enterica, Yersinia spp. and gastric pathogen Helicobacter pylori. We present current knowledge on how interaction between mammalian and bacterial cell relates to the molecular pathways of apoptosis, and what is the role of apoptosis in pathogenesis.

  20. The Role of Apoptosis Associated Markers in Pathogenesis of Pulmonary Tuberculosis

    ClinicalTrials.gov

    2012-08-28

    To Compare the Serum Apoptosis-associated Markers Between Patients With Active TB and Patients With LTBI; To Evaluate the Efficiency of Apoptosis-associated Markers to Differentiate Potential of Active TB From LTBI

  1. Physician Education: Apoptosis.

    PubMed

    Kataoka; Tsuruo

    1996-01-01

    We have come to understand apoptosis as not merely a single form of cell death, but as a fundamental theme in cell biology that has far-reaching implications in the fields of physiology and pathology. At the present time, however, the mechanism of apoptosis is not clearly understood, as research into apoptosis is still at the initial stages. Nevertheless, the links between apoptosis and a variety of pathological conditions are gradually becoming clearer. In this article, we will provide a simple explanation of apoptosis and its mechanism as a novel concept of cell death and discuss the way in which apoptosis has been linked to a variety of pathological conditions. WHAT IS APOPTOSIS?: In normal tissue, cells that are no longer needed are rapidly eliminated without affecting the overall function of the tissue. In this process cells undergo an active and spontaneous suicide called programmed cell death. In fact, the majority of physiological cell deaths take the form of apoptosis. The word apoptosis is used, in contrast to necrosis, to describe the situation in which a cell actively pursues a course toward death upon receiving certain stimuli [1]. The morphological changes of apoptosis found in most cell types first involve contraction in cell volume and condensation of the nucleus. When this happens the intracellular organelles such as the mitochondria retain their normal morphology. As apoptosis proceeds, blebbing of the plasma membrane occurs, and the nucleus becomes fragmented. Finally, the cell itself fragments to form apoptotic bodies that are engulfed by nearby phagocytes. With respect to biochemical changes, it is known that the chromosomes become fragmented into nucleosome units, and DNA forms characteristic ladder patterns when subjected to agarose gel electrophoresis. MECHANISM OF APOPTOSIS: It has been reported that apoptosis is induced in various cells by many kinds of irritations, but the precise mechanism is still unclear. Cell injuries that induce apoptosis include those that cause DNA damage such as radiation and anticancer drugs, those that are mediated by the TNF receptor and Fas receptor (the so-called "death signal receptors"), and the deprivation of cytokines that supply survival signals such as IL-3 and erythropoietin. The tumor suppressor gene p53 plays a very important role in apoptosis induced by damage to DNA. This has been demonstrated by studying resistance to apoptosis of cells derived from p53 knockout mice [2]. Other than the irritations that induce apoptosis, molecules that have been strongly implicated as major players in the drama of apoptosis include the Bcl-2 family proteins and the IL-1 converting enzyme (ICE) and its homolog proteases (caspase family). Both groups of proteins show homology with proteins that affect cell death in nematodes. It is believed that molecules that contribute to cell death have been well conserved in multicellular organisms all the way from the relatively primitive nematodes to mammals including humans. It was discovered that Bcl-2 suppressed apoptosis induced in IL-3 dependent cells by deprivation of IL-3 [3]. It has since become the gene around which apoptosis research revolves. Recently, it has become clear that cell death involving the Bcl-2 protein is under the control of similar proteins from the same family [4]. It is interesting that the phenomenon of cell death may be regulated by the balance of the molecules involved in it. APOPTOSIS ABNORMALITIES AND DISEASE: Physiological cell death plays a major role in the growth and permanent maintenance of the human body [5]. In the process of forming the nervous system, neurons that do not form proper connections die. Physiological cell death also accompanies the removal of virus-infected cells by cytotoxic T cells, the elimination of autoreactive immune cells, the formation of the gut, the reconstitution of cartilage and bone, etc. When physiological cell death that normally should occur is inhibited, inappropriate physiological cell death may occur that is harmful to the body and forms the basis of disease. For example, in patients with neural degenerative disorders such as Alzheimer's disease and Parkinson's disease, we can find premature cell death in a particular subset of neurons. The death of T cells in AIDS patients is also a form of physiological cell death. Inhibition of cell death in the immune system enables the survival of autoreactive B cells and T cells, and is therefore a cause of autoimmune disorders. Apoptosis has been particularly linked to cancer. Normal cells are programmed for death if they are subjected to many types of non-physiological stress such as anticancer drugs or radiation, if they become isolated from surrounding cells and are unable to receive their tissue-specific survival signals [6], or if oncogenes are expressed haphazardly [7]. On the other hand, it is believed that the ability to survive is enhanced in transformed cancer cells because they are more resistant to apoptosis, they exhibit resistance to anticancer drugs, they are no longer dependent on survival signals, and they can metastasize. Therefore, the cancer progresses as the cancer cells maintain the proliferative superiority they acquire from their oncogenes. In other words, when cancer cells become resistant to apoptosis, they become resistant to treatment, metastasize, and proliferate destructively. The concept that the malignancy of cancer is due to its resistance to apoptosis is a relatively new one and is worthy of further study.

  2. Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expression in renal carcinoma Caki cells.

    PubMed

    Min, Kyoung-Jin; Han, Min Ae; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2017-04-01

    Osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-inflammatory and antitumor. In the present study, we examined whether osthole could sensitize TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma Caki cells. We found that osthole and TRAIL alone, had no effect on apoptosis, but combined treatment with osthole and TRAIL markedly induced apoptosis in Caki (renal carcinoma), U251MG (glioma) and MDA-MB-231 (breast carcinoma) cells. In contrast, combined treatment with osthole and TRAIL did not induce apoptosis in normal human skin fibroblast cells. Osthole induced downregulation of cellular FLICE-like inhibitory protein (c-FLIP) expression, and overexpression of c-FLIP markedly blocked apoptosis induced by the combined treatment with osthole and TRAIL. In addition, osthole markedly reduced mitochondrial membrane potential levels, and increased cytosolic cytochrome c release in combined treatment with osthole and TRAIL. Therefore, these data suggest that osthole may be an efficient TRAIL sensitizer.

  3. High temporal resolution fluorescence measurements of a mitochondrial dye for detection of early stage apoptosis

    PubMed Central

    Iyer, Divya; Ray, Rachel D.; Pappas, Dimitri

    2013-01-01

    In the present study, early stage apoptosis is explored with high temporal resolution. In addition to monitoring early apoptosis induction in single cells by ultrasensitive confocal fluorescence microscopy (UCFM), the mitochondrial proteins release kinetics was explored. The current study shows development and optimization of a novel, rapid apoptosis assay to explore the earliest changes in cells by the intrinsic apoptosis pathway. We show that early apoptotic changes in the mitochondria begin nearly simultaneously with the addition of an apoptosis-inducing drug, such as staurosporine. With a temporal resolution of five minutes, this non-invasive analytical technique can elucidate the earliest apoptotic events in living cells. Moreover, our results show that the mitochondrial inter-membrane proteins are not involved in the extrinsic pathway of Ramos cells mediated by an anti-CD95 antibody. Additional techniques such as light microscopy and flow cytometry were employed to confirm the results obtained by ultrasensitive confocal fluorescence microscopy. The results of this study help to understand the earliest mechanisms of apoptosis induction in cells, enabling new methods of drug testing and dose-response analyses. PMID:23831722

  4. Excess apoptosis of mononuclear cells contributes to the depressed cytomegalovirus-specific immunity in HIV-infected patients on HAART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Adriana; Jesser, Renee D.; Edelstein, Charles L.

    2004-12-05

    HIV-infected patients on highly active antiretroviral therapy (HAART) have persistently decreased cytomegalovirus (CMV)-specific proliferative responses [lymphocyte proliferation assay (LPA)] in spite of increases in CD4+ T cell counts. Here we demonstrate an association between apoptosis of unstimulated peripheral blood mononuclear cells (uPBMC) and decreased CMV-LPA. HAART recipients had more apoptosis of uPBMC than controls when measured by caspases 3, 8, and 9 activities and by annexin V binding. Patients with undetectable HIV replication maintained significantly higher apoptosis of CD4+ and CD14+ cells compared to controls. CMV-LPA decreased with higher apoptosis of uPBMC in patients only. This association was independent ofmore » CD4+ cell counts or HIV replication. Furthermore, rescuing PBMC from apoptosis with crmA, but not with TRAIL- or Fas-pathway blocking agents or with other caspase inhibitors, increased CMV-LPA in HAART recipients. This effect was not observed in uninfected controls, further indicating that the down regulatory effect of apoptosis on cell-mediated immunity (CMI) was specifically associated with the HIV-infected status.« less

  5. Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts.

    PubMed

    Feng, Yu; Tian, Xiang-Yang; Sun, Peng; Cheng, Ze-Peng; Shi, Reng-Fei

    2018-06-27

    Mechanical stretch may cause myoblasts to either proliferate or undergo apoptosis. Identifying the molecular events that switch the fate of a stretched cell from proliferation to apoptosis is practically important in the field of regenerative medicine. A recent study on vascular smooth muscle cells illustrated that identification of these events may be achieved by addressing the stretch-induced opposite cellular outcomes simultaneously within a single investigation. To define conditions or a model in which both proliferation and apoptosis can be studied at the same time, we exposed in vitro cultured C2C12 myoblasts to a cyclic mechanical stretch regimen of 15% elongation at a stretching frequency of 1 Hz for 0, 2, 4, 6, or 8 h every day, consecutively, for 3 days. Both proliferation and apoptosis were observed. Moreover, as the duration of the stretch was prolonged, cell proliferation increased until it peaked at the optimal stretching duration. Afterwards, apoptosis gradually prevailed. Therefore, we established a model in which stretch-induced cell proliferation and apoptosis can be studied simultaneously. © 2018 S. Karger AG, Basel.

  6. AMP kinase–mediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis

    PubMed Central

    Concannon, Caoimhín G.; Tuffy, Liam P.; Weisová, Petronela; Bonner, Helena P.; Dávila, David; Bonner, Caroline; Devocelle, Marc C.; Strasser, Andreas; Ward, Manus W.

    2010-01-01

    Excitotoxicity after glutamate receptor overactivation induces disturbances in cellular ion gradients, resulting in necrosis or apoptosis. Excitotoxic necrosis is triggered by rapid, irreversible ATP depletion, whereas the ability to recover cellular bioenergetics is suggested to be necessary for the activation of excitotoxic apoptosis. In this study, we demonstrate that even a transient decrease in cellular bioenergetics and an associated activation of adenosine monophosphate–activated protein kinase (AMPK) is necessary for the activation of excitotoxic apoptosis. We show that the Bcl-2 homology domain 3 (BH3)–only protein Bim, a proapoptotic Bcl-2 family member, is activated in multiple excitotoxicity paradigms, mediates excitotoxic apoptosis, and inhibits delayed Ca2+ deregulation, mitochondrial depolarization, and apoptosis-inducing factor translocation. We demonstrate that bim activation required the activation of AMPK and that prolonged AMPK activation is sufficient to induce bim gene expression and to trigger a bim-dependent cell death. Collectively, our data demonstrate that AMPK activation and the BH3-only protein Bim couple transient energy depletion to stress-induced neuronal apoptosis. PMID:20351066

  7. Activation of Wnt3α/β-catenin signal pathway attenuates apoptosis of the cerebral microvascular endothelial cells induced by oxygen-glucose deprivation.

    PubMed

    Zhang, Jianshui; Zhang, Junfeng; Qi, Cunfang; Yang, Pengbo; Chen, Xinlin; Liu, Yong

    2017-08-19

    Brain microvascular endothelial cells (BMECs) play vital roles in cerebral ischemia, during which many signal pathways mediate BMECs apoptosis. In this study, we explored the potential role of Wnt3α/β-catenin signal in BMECs apoptosis induced by ischemia. Here, we found that oxygen-glucose deprivation (OGD) could induce apoptosis of BMECs with Wnt3a mRNA expression decrease. Meanwhile, activation Wnt3a/β-catenin signal with exogenous Wnt3α protein (100 ng/ml) or Lithium Chloride (LiCl, 4 mM) decreased significantly apoptosis of BMECs induced by OGD with increasing expression of Bcl-2 in the whole cell and β-catenin in the nucleus. But, inhibition Wnt3a/β-catenin signal with DKK1 (100 ng/ml) or 2.4-diamino quinazoline (DQ, 0.2 μM) increased apoptosis of BMECs with decreasing expression of Bcl-2. These results suggest that activation Wnt3α/β-catenin signal attenuate apoptosis of BMECs induced by ischemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines.

    PubMed Central

    Harrington, E A; Bennett, M R; Fanidi, A; Evan, G I

    1994-01-01

    We have investigated the mechanism by which deregulated expression of c-Myc induces death by apoptosis in serum-deprived fibroblasts. We demonstrate that Myc-induced apoptosis in low serum is inhibited by a restricted group of cytokines, principally the insulin-like growth factors and PDGF. Cytokine-mediated protection from apoptosis is not linked to the cytokines' abilities to promote growth. Protection from apoptosis is evident in the post-commitment (mitogen-independent) S/G2/M phases of the cell cycle and also in cells that are profoundly blocked in cell cycle progression by drugs. Moreover, IGF-I inhibition of apoptosis occurs in the absence of protein synthesis, and so does not require immediate early gene expression. We conclude that c-Myc-induced apoptosis does not result from a conflict of growth signals but appears to be a normal physiological aspect of c-Myc function whose execution is regulated by the availability of survival factors. We discuss the possible implications of these findings for models of mammalian cell growth in vivo. Images PMID:8045259

  9. Apoptotic pathways of epothilone BMS 310705.

    PubMed

    Uyar, Denise; Takigawa, Nagio; Mekhail, Tarek; Grabowski, Dale; Markman, Maurie; Lee, Francis; Canetta, Renzo; Peck, Ron; Bukowski, Ronald; Ganapathi, Ram

    2003-10-01

    BMS 310705 is a novel water-soluble analog of epothilone B currently in phase I clinical evaluation in the treatment of malignancies such as ovarian, renal, bladder, and lung carcinoma. Using an early passage cell culture model derived from the ascites of a patient clinically refractory to platinum/paclitaxel therapy, we evaluated the pathway of caspase-mediated apoptosis. Cells were treated for 1 h and subsequently evaluated for apoptosis, survival, and caspase activity. Apoptosis was determined by fluorescent microscopy. Caspase-3, -8, and -9 activities were determined by fluorometry using target tetrapeptide substrates. Mitochondrial release of cytochrome c was determined by immunoblot analysis. After treatment with BMS 310705, apoptosis was confirmed in >25% of cells at 24 h. Survival was significantly lower (P < 0.02) in cells treated with 0.05 micro M BMS 310705 vs paclitaxel. Analysis revealed an increase of caspase-9 and -3 activity; no caspase -8 activity was observed. Release of cytochrome c was detected at 12 h following treatment. SN-38 and topotecan failed to induce apoptosis. BMS 310705 induces significant apoptosis, decreases survival, and utilizes the mitochondrial-mediated pathway for apoptosis in this model.

  10. Interactome disassembly during apoptosis occurs independent of caspase cleavage.

    PubMed

    Scott, Nichollas E; Rogers, Lindsay D; Prudova, Anna; Brown, Nat F; Fortelny, Nikolaus; Overall, Christopher M; Foster, Leonard J

    2017-01-12

    Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. A Role for Serglycin Proteoglycan in Mast Cell Apoptosis Induced by a Secretory Granule-mediated Pathway*

    PubMed Central

    Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar

    2011-01-01

    Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167

  12. Apoptosis induction in duck tissues during duck hepatitis A virus type 1 infection.

    PubMed

    Sheng, X D; Zhang, W P; Zhang, Q R; Gu, C Q; Hu, X Y; Cheng, G F

    2014-03-01

    To investigate the role of apoptosis in duck viral hepatitis pathogenesis, 4- and 21-d-old ducks were inoculated with duck hepatitis A virus serotype 1 and killed at 2, 6, 12, 24, and 48 h postinfection. TdT-mediated dUTP nick-end labeling was used to detect apoptosis cells. Expression profiles of apoptosis-related genes including caspase-3, -8, -9, and Bcl-2 in spleen, bursa of Fabricius, liver, and the quantity of virus in blood were examined using real-time PCR. The TdT-mediated dUTP nick-end labeling analysis indicated there was a significant difference of apoptotic cells between treatments and controls. The same difference also appeared in virus amount variation in blood during infection. Gene expression analysis revealed that the apoptosis-related gene expression profile was different in the 2 groups, and also different between various organs. This study suggested that apoptosis may play an important role in duck hepatitis A virus serotype 1 infection, and apoptosis suppression might facilitate virus multiplication, resulting in the highest virus concentration in the host.

  13. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    PubMed

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

    PubMed

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-09-28

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling.

  15. NADPH Oxidase versus Mitochondria-Derived ROS in Glucose-Induced Apoptosis of Pericytes in Early Diabetic Retinopathy

    PubMed Central

    Mustapha, Nik M.; Tarr, Joanna M.; Kohner, Eva M.; Chibber, Rakesh

    2010-01-01

    Objectives. Using apocynin (inhibitor of NADPH oxidase), and Mitoquinol 10 nitrate (MitoQ; mitochondrial-targeted antioxidant), we addressed the importance of mitochondria versus NADPH oxidase-derived ROS in glucose-induced apoptosis of pericytes. Methods. NADPH oxidase was localised using Western blot analysis and cytochrome C reduction assay. Apoptosis was detected by measuring caspase-3 activity. Intracellular glucose concentration, ROS formation and Nε-(carboxymethyl) lysine (CML) content were measured using Amplex Red assay kit, dihydroethidium (DHE), and competitive immunoabsorbant enzyme-linked assay (ELISA), respectively. Results. NADPH oxidase was localised in the cytoplasm of pericytes suggesting ROS production within intracellular compartments. High glucose (25 mM) significantly increased apoptosis, intracellular glucose concentration, and CML content. Apoptosis was associated with increased gp91phox expression, activity of NADPH oxidase, and intracellular ROS production. Apocynin and not MitoQ significantly blunted the generation of ROS, formation of intracellular CML and apoptosis. Conclusions. NADPH oxidase and not mitochondria-derived ROS is responsible for the accelerated apoptosis of pericytes in diabetic retinopathy. PMID:20652059

  16. Infrasound exposure induces apoptosis of rat cardiac myocytes by regulating the expression of apoptosis-related proteins.

    PubMed

    Pei, Zhao-Hui; Chen, Bao-Ying; Tie, Ru; Zhang, Hai-Feng; Zhao, Ge; Qu, Ping; Zhu, Xiao-Xing; Zhu, Miao-Zhang; Yu, Jun

    2011-12-01

    It has been reported that exposure to infrasound causes cardiac dysfunction. Allowing for the key role of apoptosis in the pathogenesis of cardiovascular diseases, the objective of this study was to investigate the apoptotic effects of infrasound. Cardiac myocytes cultured from neonatal rats were exposed to infrasound of 5 Hz at 130 dB. The apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Also, the expression levels of a series of apoptosis-related proteins were detected. As a result, infrasound induced apoptosis of cultured rat cardiac myocytes in a time-dependant manner. The expression of proapoptotic proteins such as Bax, caspase-3, caspase-8, caspase-9, and FAS was significantly up-regulated, with concomitant down-regulated expression of antiapoptotic proteins such as Bcl-x, and the inhibitory apoptosis proteins family proteins including XIAP, cIAP-1, and cIAP-2. The expression of poly (ADP-ribose) polymerase and β-catenin, which are the substrate proteins of caspase-3, was significantly decreased. In conclusion, infrasound is an apoptotic inducer of cardiac myocytes.

  17. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy.

  18. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation.

    PubMed

    Morioka, Sho; Broglie, Peter; Omori, Emily; Ikeda, Yuka; Takaesu, Giichi; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun

    2014-02-17

    TNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8-mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)-dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis. Here we report the biological event switching to activate necrosis over apoptosis. TAK1 kinase is normally transiently activated upon TNF stimulation. We found that prolonged and hyperactivation of TAK1 induced phosphorylation and activation of RIPK3, leading to necrosis without caspase activation. In addition, we also demonstrated that activation of RIPK1 and RIPK3 promoted TAK1 activation, suggesting a positive feedforward loop of RIPK1, RIPK3, and TAK1. Conversely, ablation of TAK1 caused caspase-dependent apoptosis, in which Ripk3 deletion did not block cell death either in vivo or in vitro. Our results reveal that TAK1 activation drives RIPK3-dependent necrosis and inhibits apoptosis. TAK1 acts as a switch between apoptosis and necrosis.

  19. Hsa-Let-7g miRNA Targets Caspase-3 and Inhibits the Apoptosis Induced by ox-LDL in Endothelial Cells

    PubMed Central

    Zhang, Yefei; Chen, Naiyun; Zhang, Jihao; Tong, Yaling

    2013-01-01

    It has been well confirmed ox-LDL plays key roles in the development of atherosclerosis via binding to LOX-1 and inducing apoptosis in vascular endothelial cells. Recent studies have shown ox-LDL can suppress microRNA has-let-7g, which in turn inhibits the ox-LDL induced apoptosis. However, details need to be uncovered. To determine the anti-atherosclerosis effect of microRNA has-let-7g, and to evaluate the possibility of CASP3 as an anti-atherosclerotic drug target by has-let-7g, the present study determined the role of hsa-let-7g miRNA in ox-LDL induced apoptosis in the vascular endothelial cells. We found that miRNA has-let-7g was suppressed during the ox-LDL-induced apoptosis in EAhy926 endothelial cells. In addition, overexpression of has-let-7g negatively regulated apoptosis in the endothelial cells by targeting caspase-3 expression. Therefore, miRNA let-7g may play important role in endothelial apoptosis and atherosclerosis. PMID:24252910

  20. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response.

    PubMed

    Zhang, Lu; Wang, Kui; Lei, Yunlong; Li, Qifu; Nice, Edouard Collins; Huang, Canhua

    2015-12-01

    Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides and Fibronectin Expression in Lung

    DTIC Science & Technology

    2008-12-01

    of apoptosis , how it might be affected by nicotine, and how it might be involved in lung development. This idea was based on observations generated...Furthermore, we recently found that agents capable of inhibiting apoptosis (zinc and autocarboxylic acid) inhibit lung branching morphogenesis...cell apoptosis in lung development. We discovered that apoptosis is most prominent in pseudoglandular-stage lungs coinciding with the time period of

  2. Inhibition of phosphatidylinositol 3-kinase causes apoptosis in retinoic acid differentiated hl-60 leukemia cells.

    PubMed

    Ma, Jin; Liu, Qiang; Zeng, Yi-Xin

    2004-01-01

    Phosphatidylinositol 3-kinase (PI3-K) signaling may inhibit apoptosis in neoplastic cells. The PI-3K inhibitor wortmannin renders cells apoptosis-prone. Inducers of differentiation may also cause apoptosis. To detect the effect of wortmannin on the survival of differentiated human acute promyeloid leukemia cells, HL-60 cells were induced to differentiation with treatment of all trans-retinoic acid (ATRA) followed by treatment with wortmannin. Results showed that apoptosis occurred in cells that underwent differentiation, but not in undifferentiated HL-60 cells. The pro-apoptotic molecule, Bad, played a role in this apoptotic mechanism. Thus, the survival of differentiated HL-60 cells induced by ATRA depends on the ability of the PI3-K pathway to transduce survival signals; the PI3-K inhibitor, wortmannin, can induce apoptosis of differentiated HL-60 cells. These results may indicate a novel method for treating cancer with differentiation induction and signal pathway regulation.

  3. The Morphogenetic Role of Apoptosis.

    PubMed

    Monier, Bruno; Suzanne, Magali

    2015-01-01

    Beyond safeguarding the organism from cell misbehavior and controlling cell number, apoptosis (or programmed cell death) plays key roles during animal development. In particular, it has long been acknowledged that apoptosis participates in tissue remodeling. Yet, until recently, this contribution to morphogenesis was considered as "passive," consisting simply in the local removal of unnecessary cells leading to a new shape. In recent years, applying live imaging methods to study the dynamics of apoptosis in various contexts has considerably modified our vision, revealing that in fact, dying cells remodel their neighborhood actively. Here, we first focus on the intrinsic cellular properties of apoptotic cells during their dismantling, in particular the role of the cytoskeleton during their characteristic morphological changes. Second, we review the various roles of apoptosis during developmental morphogenetic processes and pinpoint the crucial role of live imaging in revealing new concepts, in particular apoptosis as a generator of mechanical forces to control tissue dynamics. © 2015 Elsevier Inc. All rights reserved.

  4. Renilla luciferase-labeled Annexin V: a new probe for detection of apoptotic cells.

    PubMed

    Nazari, Mahboobeh; Emamzadeh, Rahman; Hosseinkhani, Saman; Cevenini, Luca; Michelini, Elisa; Roda, Aldo

    2012-11-07

    The Ca(2+)-dependent binding of Annexin V to phosphatidylserine on cell surfaces is a reliable marker for apoptosis that is widely used in flow cytometry based apoptosis assays. In this paper, we report a new class of Annexin V-based probes for apoptosis. Luciferase from Renilla reniformis (RLuc) was linked to Annexin V and expressed successfully in a soluble form in Escherichia coli BL21 (DE3). The new probe, Rluc/Annexin V, was purified and functionally assayed for detection of apoptosis in actinomycin D-induced apoptotic Jurkat cells. Moreover, the spontaneous apoptosis in neutrophils was shown using the new probe. The results indicate that Rluc/Annexin V can bind to the apoptotic cells, and the signal of Renilla luciferase can be detected by luminometric measurements. The availability of Rluc/Annexin V may be of potential commercial interest for improving current apoptosis assays.

  5. Depletion of cdc-25.3, a Caenorhabditis elegans orthologue of cdc25, increases physiological germline apoptosis.

    PubMed

    Sung, Minhee; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-07-01

    In Caenorhabditis elegans hermaphrodites, physiological germline apoptosis is higher in cdc-25.3 mutants than in wild-type. The elevated germline apoptosis in cdc-25.3 mutants seems to be induced by accumulation of double-stranded DNA breaks (DSBs). Both DNA damage and synapsis checkpoint genes are required to increase the germline apoptosis. Notably, the number of germ cells that lose P-granule components, PGL-1 and PGL-3, increase in cdc-25.3 mutants, and the increase in germline apoptosis requires the activity of SIR-2.1, a Sirtuin orthologue. These results suggest that elevation of germline apoptosis in cdc-25.3 mutants is induced by accumulation of DSBs, leading to a loss of PGL-1 and PGL-3 in germ cells, which promotes cytoplasmic translocation of SIR-2.1, and finally activates the core apoptotic machinery. © 2017 Federation of European Biochemical Societies.

  6. Effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophil apoptosis, actin cytoskelton, and oxidative state

    USGS Publications Warehouse

    Sweet, L.I.; Passino-Reader, D. R.; Meier, P.G.; Omann, G.M.

    2006-01-01

    Apoptosis, or programmed cell death, has been proposed as a biomarker for environmental contaminant effects. In this work, we test the hypothesis that in vitro assays of apoptosis are sensitive indicators of immunological effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophils. Apoptosis, necrosis, and viability as well as the related indicators F-actin levels, and active thiol state were measured in purified human neutrophils after treatment with contaminants. Effective concentrations observed were 0.3 μM (60 μg/L) mercury, 750 μg/L Aroclor 1254, and 50 μM (14,500 μg/L) hexachlorocylcohexanes. Concentrations of contaminants that induced apoptosis also decreased cellular F-actin levels. Active thiols were altered by mercury, but not organochlorines. Comparison of these data with levels of contaminants reported to be threats to human health indicate neutrophil apoptosis is a sensitive indicator of mercury toxicity.

  7. Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction

    PubMed Central

    Cruz, Anthony C.; Ramaswamy, Madhu; Ouyang, Claudia; Klebanoff, Christopher A.; Sengupta, Prabuddha; Yamamoto, Tori N.; Meylan, Françoise; Thomas, Stacy K.; Richoz, Nathan; Eil, Robert; Price, Susan; Casellas, Rafael; Rao, V. Koneti; Lippincott-Schwartz, Jennifer; Restifo, Nicholas P.; Siegel, Richard M.

    2016-01-01

    Mutations affecting the apoptosis-inducing function of the Fas/CD95 TNF-family receptor result in autoimmune and lymphoproliferative disease. However, Fas can also costimulate T-cell activation and promote tumour cell growth and metastasis. Palmitoylation at a membrane proximal cysteine residue enables Fas to localize to lipid raft microdomains and induce apoptosis in cell lines. Here, we show that a palmitoylation-defective Fas C194V mutant is defective in inducing apoptosis in primary mouse T cells, B cells and dendritic cells, while retaining the ability to enhance naive T-cell differentiation. Despite inability to efficiently induce cell death, the Fas C194V receptor prevents the lymphoaccumulation and autoimmunity that develops in Fas-deficient mice. These findings indicate that induction of apoptosis through Fas is dependent on receptor palmitoylation in primary immune cells, and Fas may prevent autoimmunity by mechanisms other than inducing apoptosis. PMID:28008916

  8. ApoptomiRs of Breast Cancer: Basics to Clinics

    PubMed Central

    Sharma, Shivani; Patnaik, Praveen K.; Aronov, Stella; Kulshreshtha, Ritu

    2016-01-01

    Apoptosis, a form of programmed cell death, is a highly regulated process, the deregulation of which has been associated with the tumor initiation, progression, and metastasis in various cancers including breast cancer. Induction of apoptosis is a popular target of various therapies currently being tested or used for breast cancer treatment. Thus, identifying apoptotic mediators and regulators is imperative for molecular biologists and clinicians for benefit of patients. The regulation of apoptosis is complex and involves a tight equilibrium between the pro- and anti-apoptotic factors. Recent studies have highlighted the role of miRNAs in the control of apoptosis and their interplay with p53, the master guardian of apoptosis. Here, we summarize and integrate the data on the role of miRNAs in apoptosis in breast cancer and the clinical advantage it may offer for the prognosis or treatment of breast cancer patients. PMID:27746811

  9. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    PubMed

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. ApoptomiRs of Breast Cancer: Basics to Clinics.

    PubMed

    Sharma, Shivani; Patnaik, Praveen K; Aronov, Stella; Kulshreshtha, Ritu

    2016-01-01

    Apoptosis, a form of programmed cell death, is a highly regulated process, the deregulation of which has been associated with the tumor initiation, progression, and metastasis in various cancers including breast cancer. Induction of apoptosis is a popular target of various therapies currently being tested or used for breast cancer treatment. Thus, identifying apoptotic mediators and regulators is imperative for molecular biologists and clinicians for benefit of patients. The regulation of apoptosis is complex and involves a tight equilibrium between the pro- and anti-apoptotic factors. Recent studies have highlighted the role of miRNAs in the control of apoptosis and their interplay with p53, the master guardian of apoptosis. Here, we summarize and integrate the data on the role of miRNAs in apoptosis in breast cancer and the clinical advantage it may offer for the prognosis or treatment of breast cancer patients.

  11. Modeling heterogeneous responsiveness of intrinsic apoptosis pathway

    PubMed Central

    2013-01-01

    Background Apoptosis is a cell suicide mechanism that enables multicellular organisms to maintain homeostasis and to eliminate individual cells that threaten the organism’s survival. Dependent on the type of stimulus, apoptosis can be propagated by extrinsic pathway or intrinsic pathway. The comprehensive understanding of the molecular mechanism of apoptotic signaling allows for development of mathematical models, aiming to elucidate dynamical and systems properties of apoptotic signaling networks. There have been extensive efforts in modeling deterministic apoptosis network accounting for average behavior of a population of cells. Cellular networks, however, are inherently stochastic and significant cell-to-cell variability in apoptosis response has been observed at single cell level. Results To address the inevitable randomness in the intrinsic apoptosis mechanism, we develop a theoretical and computational modeling framework of intrinsic apoptosis pathway at single-cell level, accounting for both deterministic and stochastic behavior. Our deterministic model, adapted from the well-accepted Fussenegger model, shows that an additional positive feedback between the executioner caspase and the initiator caspase plays a fundamental role in yielding the desired property of bistability. We then examine the impact of intrinsic fluctuations of biochemical reactions, viewed as intrinsic noise, and natural variation of protein concentrations, viewed as extrinsic noise, on behavior of the intrinsic apoptosis network. Histograms of the steady-state output at varying input levels show that the intrinsic noise could elicit a wider region of bistability over that of the deterministic model. However, the system stochasticity due to intrinsic fluctuations, such as the noise of steady-state response and the randomness of response delay, shows that the intrinsic noise in general is insufficient to produce significant cell-to-cell variations at physiologically relevant level of molecular numbers. Furthermore, the extrinsic noise represented by random variations of two key apoptotic proteins, namely Cytochrome C and inhibitor of apoptosis proteins (IAP), is modeled separately or in combination with intrinsic noise. The resultant stochasticity in the timing of intrinsic apoptosis response shows that the fluctuating protein variations can induce cell-to-cell stochastic variability at a quantitative level agreeing with experiments. Finally, simulations illustrate that the mean abundance of fluctuating IAP protein is positively correlated with the degree of cellular stochasticity of the intrinsic apoptosis pathway. Conclusions Our theoretical and computational study shows that the pronounced non-genetic heterogeneity in intrinsic apoptosis responses among individual cells plausibly arises from extrinsic rather than intrinsic origin of fluctuations. In addition, it predicts that the IAP protein could serve as a potential therapeutic target for suppression of the cell-to-cell variation in the intrinsic apoptosis responsiveness. PMID:23875784

  12. Human decidual stromal cells secrete soluble pro-apoptotic factors during decidualization in a cAMP-dependent manner.

    PubMed

    Leno-Durán, E; Ruiz-Magaña, M J; Muñoz-Fernández, R; Requena, F; Olivares, E G; Ruiz-Ruiz, C

    2014-10-10

    Is there a relationship between decidualization and apoptosis of decidual stromal cells (DSC)? Decidualization triggers the secretion of soluble factors that induce apoptosis in DSC. The differentiation and apoptosis of DSC during decidualization of the receptive decidua are crucial processes for the controlled invasion of trophoblasts in normal pregnancy. Most DSC regress in a time-dependent manner, and their removal is important to provide space for the embryo to grow. However, the mechanism that controls DSC death is poorly understood. The apoptotic response of DSC was analyzed after exposure to different exogenous agents and during decidualization. The apoptotic potential of decidualized DSC supernatants and prolactin (PRL) was also evaluated. DSC lines were established from samples of decidua from first trimester pregnancies. Apoptosis was assayed by flow cytometry. PRL production, as a marker of decidualization, was determined by enzyme-linked immunosorbent assay. DSCs were resistant to a variety of apoptosis-inducing substances. Nevertheless, DSC underwent apoptosis during decidualization in culture, with cAMP being essential for both apoptosis and differentiation. In addition, culture supernatants from decidualized DSC induced apoptosis in undifferentiated DSC, although paradoxically these supernatants decreased the spontaneous apoptosis of decidual lymphocytes. Exogenously added PRL did not induce apoptosis in DSC and an antibody that neutralized the PRL receptor did not decrease the apoptosis induced by supernatants. Further studies are needed to examine the involvement of other soluble factors secreted by decidualized DSC in the induction of apoptosis. The present results indicate that apoptosis of DSC occurs in parallel to differentiation, in response to decidualization signals, with soluble factors secreted by decidualized DSC being responsible for triggering cell death. These studies are relevant in the understanding of how the regression of decidua, a crucial process for successful pregnancy, takes place. This work was supported by the Consejería de Economía, Innovación y Ciencia, Junta de Andalucía (Grant CTS-6183, Proyectos de Investigación de Excelencia 2010 to C.R.-R.) and the Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain (Grants PS09/00339 and PI12/01085 to E.G.O.). E.L.-D. was supported by fellowships from the Ministerio de Educación y Ciencia, Spain and the University of Granada. The authors have no conflict of interest. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The role of apoptosis in LDL transport through cultured endothelial cell monolayers.

    PubMed

    Cancel, Limary M; Tarbell, John M

    2010-02-01

    We have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for low density lipoprotein (LDL) transport under convective conditions, accounting for more than 90% of the transport [Cancel LM, Fitting A, Tarbell JM. In vitro study of LDL transport under pressurized (convective) conditions. Am J Physiol Heart Circ Physiol 2007;293:H126-32]. To explore the role of apoptosis in the leaky junction pathway, TNFalpha and cycloheximide (TNFalpha/CHX) were used to induce an elevated rate of apoptosis in cultured bovine aortic endothelial cell (BAEC) monolayers and the convective fluxes of LDL and water were measured. Treatment with TNFalpha/CHX induced a 18.3-fold increase in apoptosis and a 4.4-fold increase in LDL permeability. Increases in apoptosis and permeability were attenuated by treatment with the caspase inhibitor Z-VAD-FMK. Water flux increased by 2.7-fold after treatment with TNFalpha/CHX, and this increase was not attenuated by treatment with Z-VAD-FMK. Immunostaining of the tight junction protein ZO-1 showed that TNFalpha/CHX treatment disrupts the tight junction in addition to inducing apoptosis. This disruption is present even when Z-VAD-FMK is used to inhibit apoptosis, and likely accounts for the increase in water flux. We found a strong correlation between the rate of apoptosis and the permeability of BAEC monolayers to LDL. These results demonstrate the potential of manipulating endothelial monolayer permeability by altering the rate of apoptosis pharmacollogicaly. This has implications for the treatment of atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes.

    PubMed Central

    Klingler, K; Tchou-Wong, K M; Brändli, O; Aston, C; Kim, R; Chi, C; Rom, W N

    1997-01-01

    Since apoptosis is observed in tuberculous granulomata, we investigated the molecular mechanisms underlying the apoptotic pathway in an in vitro model of mycobacterial infection of mononuclear phagocytes. We postulated that Mycobacterium tuberculosis could trigger the apoptotic pathway in macrophages, resulting in death of the microorganism by modulating the expression of bcl-2, bax, bcl-xL, and bcl-xS. We found that the mRNA of bcl-2, an inhibitor of apoptosis, was downregulated in peripheral blood monocytes (PBM) between 2 and 6 h following infection with M. bovis BCG or induction with heat-killed M. tuberculosis H37Ra. Western analysis showed a downregulation of the Bcl-2 protein, with a half-life of 24 h. At the same time points, there was no change in the expression of Bax or Bcl-xS, inducers of apoptosis, but Bcl-xL, another inhibitor of apoptosis, was minimally upregulated by BCG. To determine if apoptosis could be a mechanism for growth inhibition in vivo, we obtained alveolar macrophages by bronchoalveolar lavage from involved sites in patients with active pulmonary tuberculosis. Using the TUNEL (terminal deoxynucleotidyltransferase mediated nick end labeling) technique, we observed significantly more apoptosis in involved segments of five tuberculosis patients (14.8 +/- 1.9%) than in those of normal controls (<1%, P = 0.02) or in uninvolved segments (4.3 +/- 0.9%, P < 0.05). We conclude that apoptosis of mononuclear phagocytes induced by M. tuberculosis occurs in vivo and that in an in vitro model of mycobacterial infection, apoptosis may be mediated by downregulation of Bcl-2. PMID:9393826

  15. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  16. Bid Participates in Genotoxic Drug-Induced Apoptosis of HeLa Cells and Is Essential for Death Receptor Ligands' Apoptotic and Synergistic Effects

    PubMed Central

    Concannon, Caoimhin G.; Rehm, Markus; Kögel, Donat; Prehn, Jochen H. M.

    2008-01-01

    Background The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling. PMID:18665234

  17. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    PubMed

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  18. Induction of apoptosis by N-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis-related genes in human prostate carcinoma cells.

    PubMed

    Sun, S Y; Yue, P; Lotan, R

    1999-03-01

    The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) has been shown to induce apoptosis in various malignant cells including human prostate carcinoma cells (HPC). We examined several possible mechanisms by which 4HPR could induce apoptosis in HPC cells. 4HPR exhibited concentration- and time-dependent decrease in cell number both in androgen-dependent (LNCaP) and -independent (DU145 and PC-3) cells. The 4HPR concentrations causing 50% decrease in cell number in LNCaP, DU145, and PC-3 cultures were 0.9 +/- 0.16, 4.4 +/- 0.45, and 3.0 +/- 1.0 microM, respectively, indicating that LNCaP cells were more sensitive to 4HPR than the other cells. 4HPR-induced apoptosis in all three cell lines was evidenced by increased enzymatic labeling of DNA breaks and formation of a DNA ladder. 4HPR increased the level of reactive oxygen species, especially in LNCaP cells. 4HPR-induced apoptosis could be suppressed in LNCaP cells by antioxidant and in DU145 cells by a nuclear retinoic acid receptor-specific antagonist, suggesting the involvement of reactive oxygen species or retinoic acid receptors in mediating apoptosis induced by 4HPR in the different HPC cells. Furthermore, 4HPR modulated the expression levels of some apoptosis-related gene (p21, c-myc, and c-jun), which may also contribute to the induction of apoptosis by 4HPR in HPC cells.

  19. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5.

    PubMed

    Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi

    2013-03-01

    Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.

  20. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.

    PubMed

    Leszczynska, Katarzyna B; Foskolou, Iosifina P; Abraham, Aswin G; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N; O'Neill, Eric E; Buffa, Francesca M; Hammond, Ester M

    2015-06-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

  1. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  2. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    PubMed

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  3. Phloretin induces apoptosis of human esophageal cancer via a mitochondria-dependent pathway.

    PubMed

    Duan, Hongtao; Wang, Ruixuan; Yan, Xiaolong; Liu, Honggang; Zhang, Yong; Mu, Deguang; Han, Jing; Li, Xiaofei

    2017-12-01

    2,4,6-trihydroxy-3-(4-hydroxyphenyl)-propiophenone (phloretin) is found in apple tree leaves and the Manchurian apricot, and is a potent compound that exhibits anti-inflammatory, antioxidant and antitumor activities. However, the effect of phloretin on esophageal cancer cells is not well-defined. The present study aimed to examine whether and how phloretin induced apoptosis in human esophageal cancer cells. EC-109 cells were cultured in Dulbecco's modified Eagle's medium and incubated with 60, 70, 80, 90 and 100 µg/ml phloretin for 6, 12, 24 and 48 h. Cell proliferation was measured by an MTT assay. Cell apoptosis rate was measured using flow cytometric analysis subsequent to propidium iodide (PI) staining. The protein expression levels were determined by western blot analysis. It was found that phloretin significantly decreased viable cell numbers in a dose- and time-dependent manner and induced apoptosis in EC-109 cells. Additionally, phloretin exhibited potent anticancer activity in vitro , as evidenced by the downregulation of the anti-apoptosis-associated molecule B-cell lymphoma 2 (bcl-2) and an increase in the levels of the apoptosis-associated molecules bcl-2-like protein 4 and tumor protein p53. Phloretin treatment also affected the expression of apoptotic protease activating factor-1, the protein product of the direct binding of the inhibitor of apoptosis protein with low PI to the X-linked inhibitor of apoptosis protein. The present results indicated that phloretin may inhibit EC-109 cell growth by inducing apoptosis, which may be mediated through a mitochondria-dependent pathway.

  4. Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis

    PubMed Central

    Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai

    2017-01-01

    Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577

  5. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    PubMed

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.

  6. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling

    PubMed Central

    Liu, Zhi-feng; Zheng, Dong; Fan, Guo-chang; Peng, Tianqing; Su, Lei

    2016-01-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 µg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. PMID:27325431

  7. Activation of human herpesvirus replication by apoptosis.

    PubMed

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  8. Activation of Human Herpesvirus Replication by Apoptosis

    PubMed Central

    Prasad, Alka; Remick, Jill

    2013-01-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073

  9. Inhibition of benzopyrene diol epoxide-induced apoptosis by cadmium (II) is AP-1-independent: role of extracelluler signal related kinase

    PubMed Central

    Mukherjee, Jagat J.; Gupta, Suresh K.; Kumar, Subodh

    2010-01-01

    Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other PAHs. The mechanism underlying this synergism is not clearly understood. We observed that (+/−)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in promotion sensitive mouse epidermal JB6 Cl41 cells at non-cytotoxic concentrations. BPDE also activates AP-1 several folds in AP-1 reporter JB6 cells. Cadmium at non-cytotoxic concentrations inhibits both AP-1 activation and apoptosis in response to BPDE. Since AP-1 is known to be involved in stress-induced apoptosis we investigated whether inhibition of AP-1 by cadmium has any role in the inhibition of BPDE-induced apoptosis. MAP kinases (particularly ERKs, p38 and JNKs) are known to have important role in DNA damage-induced AP-1 activation. We observed that ERK and JNK, but not p38 MAP kinase, are involved in BPDE-induced AP-1 activation. Effect of cadmium on MAP kinases and the effect of inhibition of above three MAP kinases on BPDE-induced AP-1 activation and apoptosis indicate that AP-1 is probably not involved in BPDE-induced apoptosis. Cadmium up-regulates BPDE-activated ERKs and ERK inhibition by U0126 relieves cadmium-mediated inhibition of BPDE-induced apoptosis. We suggest that cadmium inhibits BPDE-induced apoptosis not involving AP-1 but probably through a different mechanism by up-regulating ERK which is known to promote cell survival. PMID:18093576

  10. Neuroprotective effects of autophagy induced by rapamycin in rat acute spinal cord injury model.

    PubMed

    Wang, Zhen-Yu; Liu, Wen-Ge; Muharram, Akram; Wu, Zhao-Yan; Lin, Jian-Hua

    2014-01-01

    To explore the effects of rapamycin-induced autophagy on apoptosis in a rat model of acute spinal cord injury (SCI), and to explore the effect of rapamycin on apoptosis in primary spinal cord cell culture. SCI was induced at T10 in female adult Sprague-Dawley rats. After injury was induced, the rats were injected with rapamycin and/or methylprednisolone and were sacrificed at various days after injury. Apoptosis and autophagy were examined with TUNEL staining and electron microscopy. Hind limb function was assessed by the Gale scale. The expression of the apoptosis-related protein caspase-3 did not significantly increase until 21 days following injury, while increases in LC3II and LC3I began 10 days after injury, but then declined. TUNEL staining and electron microscopy confirmed that following injury autophagy occurred before apoptosis, but by 14 days after the injury, the level of autophagy had decreased significantly while the level of apoptosis showed a continued increase. Following treatment with rapamycin, apoptosis was significantly higher than in the vehicle control group, but significantly lower than in the sham-operated group, showing a protective effect of rapamycin. Gale scale grades in rats treated with rapamycin were significantly higher compared with the vehicle control group, suggesting a functional effect of rapamycin-induced inhibition of apoptosis. The results indicate that rapamycin significantly improved the prognosis of acute SCI in rats by inhibiting cell apoptosis. Rapamycin might be useful as a therapeutic agent for acute SCI. © 2014 S. Karger AG, Basel

  11. Tocilizumab inhibits neuronal cell apoptosis and activates STAT3 in cerebral infarction rat model.

    PubMed

    Wang, Shaojun; Zhou, Jun; Kang, Weijie; Dong, Zhaoni; Wang, Hezuo

    2016-01-15

    Cerebral infarction is a severe hypoxic ischemic necrosis with accelerated neuronal cell apoptosis in the brain. As a monoclonal antibody against interleukin 6, tocilizumab (TCZ) is widely used in immune diseases, whose function in cerebral infarction has not been studied. This study aims to reveal the role of TCZ in regulating neuronal cell apoptosis in cerebral infarction. The cerebral infarction rat model was constructed by middle cerebral artery occlusion and treated with TCZ. Cell apoptosis in hippocampus and cortex of the brain was examined with TUNEL method. Rat neuronal cells cultured in oxygen-glucose deprivation (OGD) conditions and treated with TCZ were used to compare cell viability and apoptosis. Apoptosis-related factors including B-cell lymphoma extra large (Bcl-xL) and Caspase 3, as well as the phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in brain cortex were analyzed from the protein level. Results indicated that TCZ treatment could significantly prevent the promoted cell apoptosis caused by cerebral infarction or OGD (P < 0.05 or P < 0.01). In brain cortex of the rat model, TCZ up-regulated Bcl-xL and down-regulated Caspase 3, consistent with the inhibited cell apoptosis. It also promoted tyrosine 705 phosphorylation of STAT3, which might be the potential regulatory mechanism of TCZ in neuronal cells. This study provided evidence for the protective role of TCZ against neuronal cell apoptosis in cerebral infarction. Based on these fundamental data, TCZ is a promising option for treating cerebral infarction, but further investigations on related mechanisms are still necessary.

  12. The CD95 receptor: apoptosis revisited.

    PubMed

    Peter, Marcus E; Budd, Ralph C; Desbarats, Julie; Hedrick, Stephen M; Hueber, Anne-Odile; Newell, M Karen; Owen, Laurie B; Pope, Richard M; Tschopp, Juerg; Wajant, Harald; Wallach, David; Wiltrout, Robert H; Zörnig, Martin; Lynch, David H

    2007-05-04

    CD95 is the quintessential death receptor and, when it is bound by ligand, cells undergo apoptosis. Recent evidence suggests, however, that CD95 mediates not only apoptosis but also diverse nonapoptotic functions depending on the tissue and the conditions.

  13. Regulation of apoptosis by peroxisome proliferators.

    PubMed

    Roberts, Ruth A; Michel, Cecile; Coyle, Beth; Freathy, Caroline; Cain, Kelvin; Boitier, Eric

    2004-04-01

    Peroxisome proliferators (PPs) constitute a large and chemically diverse family of non-genotoxic rodent hepatocarcinogens that activate the PP-activated receptor alpha (PPARalpha). In order to investigate the hypothesis that PPs elicit their carcinogenic effects through the suppression of apoptosis, we established an in vitro assay for apoptosis using both primary rat hepatocytes and the FaO rat hepatoma cell line. Apoptosis was induced by transforming growth factor beta1 (TGFbeta1), the physiological negative regulator of liver growth. In this system, PPs could suppress both spontaneous and TGFbeta1-induced apoptosis. In order to understand the mechanisms of this regulation of apoptosis, we conducted microarray analysis followed by pathway-specific gene clustering in TGFbeta1-treated cells. After treatment, 76 genes were up-regulated and 185 were down-regulated more than 1.5-fold. Cluster analysis of up-regulated genes revealed three clusters, A-C. Cluster A (4h) was associated with 12% apoptosis and consisted of genes mainly of the cytoskeleton and extracellular matrix such as troponin and the proteoglycan SDC4. In cluster B (8h; 25% apoptosis), there were many pro- and anti-apoptotic genes such as XIAP, BAK1 and BAD, whereas at 16h (40% apoptosis) the regulated genes were mainly those of the cellular stress pathways such as the genes implicated in the activation of the transcription factor NFkappab. Genes found down-regulated in response to TGFbeta1 were mainly those associated with oxidative stress and several genes implicated in glutathione production and maintenance. Thus, TGFbeta1 may induce apoptosis via a down regulation of oxidant defence leading to the generation of reactive oxygen species. The ability of PPs to impact on these apoptosis pathways remains to be determined. To approach this question, we have developed a technique using laser capture microdissection of livers treated with the PP, clofibric acid coupled with gene expression array analysis. Results show that some of the key steps of the LCM process had an impact on the gene profiles generated. However, this did not preclude accurate determination of a PP-specific molecular signature. Thus, the choice of appropriate controls will ensure that meaningful gene expression analyses can be performed on tissue microdissected from the foci generated in clofibric acid treated livers. These data will allow the identification of specific genes that are regulated by PPs leading to changes in apoptosis and ultimately to tumours.

  14. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    PubMed Central

    Szliszka, Ewelina; Czuba, Zenon P; Mazur, Bogdan; Sedek, Lukasz; Paradysz, Andrzej; Krol, Wojciech

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer. PMID:20161998

  15. Association between p75 neurotrophin receptor gene expression and cell apoptosis in tissues surrounding hematomas in rat models of intracerebral hemorrhage.

    PubMed

    He, Baixiang; Bao, Gang; Guo, Shiwen; Xu, Gaofeng; Li, Qi; Wang, Ning

    2012-03-15

    Animal models of intracerebral hemorrhage were established by injection of autologous blood into the caudate nucleus in rats. Cell apoptosis was measured by flow cytometry and immunohistochemical staining of the p75 neurotrophin receptor. p75 neurotrophin receptor protein was detected by immunohistochemistry. p75 neurotrophin receptor mRNA was examined by quantitative real-time polymerase chain reactions. At 24 hours after modeling, cellular apoptosis occured around hematoma with upregulation of p75 neurotrophin receptor protein and mRNA was observed, which directly correlated to apoptosis. This observation indicated that p75 neurotrophin receptor upregulation was associated with cell apoptosis around hematomas after intracerebral hemorrhage.

  16. Tryptophol induces death receptor (DR) 5-mediated apoptosis in U937 cells.

    PubMed

    Inagaki, Shyuichiro; Morimura, Shigeru; Tang, Yueqin; Akutagawa, Hiroshi; Kida, Kenji

    2007-08-01

    Tryptophol is a natural component isolated from vinegar produced from the boiled extract of black soybean. We have reported that tryptophol induces apoptosis in U937 cells via activation of caspase-8 followed by caspase-3. Tryptophol, however, did not affect human peripheral blood lymphocytes (PBL). In this study, we found that tryptophol enhances formation of a death-inducing signaling complex including death receptor (DR) 5. Cell viability and induction of apoptosis by tryptophol was reduced by transfection with decoy receptor (DcR) 1. These results indicate that tryptophol induces apoptosis through DR5 and that the resistance of PBL to tryptophol-induced apoptosis might be due to competition from DcR1.

  17. The Marine Fungal Metabolite, Dicitrinone B, Induces A375 Cell Apoptosis through the ROS-Related Caspase Pathway

    PubMed Central

    Chen, Li; Gong, Mei-Wei; Peng, Zhen-Fei; Zhou, Tong; Ying, Min-Gang; Zheng, Qiu-Hong; Liu, Qin-Ying; Zhang, Qi-Qing

    2014-01-01

    Dicitrinone B, a rare carbon-bridged citrinin dimer, was isolated from the marine-derived fungus, Penicillium citrinum. It was reported to have antitumor effects on tumor cells previously; however, the details of the mechanism remain unclear. In this study, we found that dicitrinone B inhibited the proliferation of multiple tumor types. Among them, the human malignant melanoma cell, A375, was confirmed to be the most sensitive. Morphologic evaluation, cell cycle arrest and apoptosis rate analysis results showed that dicitrinone B significantly induced A375 cell apoptosis. Subsequent observation of reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) reduction revealed that the apoptosis induced by dicitrinone B may be triggered by over-producing ROS. Further studies indicated that the apoptosis was associated with both intrinsic and extrinsic apoptosis pathways under the regulation of Bcl-2 family proteins. Caspase-9, caspase-8 and caspase-3 were activated during the process, leading to PARP cleavage. The pan-caspase inhibitor, Z-VAD-FMK, could reverse dicitrinone B-induced apoptosis, suggesting that it is a caspase-dependent pathway. Our data for the first time showed that dicitrinone B inhibits the proliferation of tumor cells by inducing cell apoptosis. Moreover, compared with the first-line chemotherapy drug, 5-fluorouracil (5-Fu), dicitrinone B showed much more potent anticancer efficacy, suggesting that it might serve as a potential antitumor agent. PMID:24699111

  18. Increased sensitivity to apoptosis induced by methotrexate is mediated by Jun N-terminal kinase

    PubMed Central

    Spurlock, Charles F.; Aune, Zachary T.; Tossberg, John T.; Collins, Patrick L.; Aune, Jessica P.; Huston, Joseph W.; Crooke, Philip S.; Olsen, Nancy J.; Aune, Thomas M.

    2011-01-01

    Objective Low-dose methotrexate [MTX] is an effective therapy for rheumatoid arthritis yet its mechanism of action is incompletely understood. Here, we explored induction of apoptosis by MTX. Methods We employed flow cytometry to assess changes in levels of intracellular proteins, reactive oxygen species [ROS], and apoptosis.Quantitative polymerase chain reaction was usedtoassess changes in transcript levels of select target genes in response to MTX. Results MTX does not directly induce apoptosis but rather ‘primes’ cells for markedly increased sensitivity to apoptosis via either mitochondrial or death receptor pathways by a Jun N-terminal kinase [JNK]-dependent mechanism. Increased sensitivity to apoptosis is mediated, at least in part, by MTX-dependent production of reactive oxygen species, JNK activation and JNK-dependent induction of genes whose protein products promote apoptosis. Supplementation with tetrahydrobiopterin blocks these methotrexate-induced effects. Subjects with rheumatoid arthritis on low-dose MTX therapy express elevated levels of the JNK-target gene, JUN. Conclusions Our results support a model whereby methotrexate inhibits reduction of dihydrobiopterin to tetrahydrobiopterin resulting in increased production of ROS, increased JNK activity and increased sensitivity to apoptosis. The finding of increased JUN levels in subjects with RA taking low-dose MTX supports the notion that this pathway is activated by MTX, in vivo, and may contribute to efficacy of MTX in inflammatory disease. PMID:21618198

  19. 3-Bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway.

    PubMed

    Liu, Zhe; Zhang, Yuan-Yuan; Zhang, Qian-Wen; Zhao, Su-Rong; Wu, Cheng-Zhu; Cheng, Xiu; Jiang, Chen-Chen; Jiang, Zhi-Wen; Liu, Hao

    2014-04-01

    The hexokinase inhibitor 3-bromopyruvate (3-BrPA) can inhibit glycolysis in tumor cells to reduce ATP production, resulting in apoptosis. However, as 3-BrPA is an alkylating agent, its cytotoxic action may be induced by other molecular mechanisms. The results presented here reveal that 3-BrPA-induced apoptosis is caspase independent. Further, 3-BrPA induces the generation of reactive oxygen species in MDA-MB-231 cells, leading to mitochondria-mediated apoptosis. These results suggest that caspase-independent apoptosis may be induced by the generation of reactive oxygen species. In this study, we also demonstrated that 3-BrPA induces apoptosis through the downregulation of myeloid cell leukemia-1 (Mcl-1) in MDA-MB-231 breast cancer cells. The results of Mcl-1 knockdown indicate that Mcl-1 plays an important role in 3-BrPA-induced apoptosis. Further, the upregulation of Mcl-1 expression in 3-BrPA-treated MDA-MB-231 cells significantly increases cell viability. In addition, 3-BrPA treatment resulted in the downregulation of p-Akt, suggesting that 3-BrPA may downregulate Mcl-1 through the phosphoinositide-3-kinase/Akt pathway. These findings indicate that 3-BrPA induces apoptosis in breast cancer cells by downregulating Mcl-1 through the phosphoinositide-3-kinase/Akt signaling pathway.

  20. Age-related differential responses to curcumin-induced apoptosis during the initiation of colon cancer in rats.

    PubMed

    Kwon, Youngjoo; Magnuson, Bernadene A

    2009-02-01

    Curcumin is a widely-used dietary supplement and a chemopreventive agent for various cancers. Pre-clinical chemopreventive studies rarely consider the effect of aging. We previously reported that unlike young animals, curcumin is ineffective in middle-aged rats for colon chemoprevention. This study investigated whether resistance to apoptosis during cancer initiation contributes to this age-dependent effect. Young, middle-aged, and old F344 rats were fed either curcumin (0.6%) or control diet. Colonic apoptosis was evaluated 0, 8, and 16 h after azoxymethane (AOM) injection. Colonic Hsp70 mRNA levels, caspase-9 activity, cell proliferation, and crypt morphology were measured. In AOM-treated rats, only middle-aged rats were resistant to curcumin-induced apoptosis whereas cell proliferation was reduced by curcumin in all ages. Curcumin-induced apoptosis was mediated by caspase-9 in young but not older rats. Transcriptional Hsp70 expression was induced in only young rats and was suppressed by curcumin. Therefore, the age-related difference in curcumin chemoprevention is due to a differential response in induction of apoptosis. The mitochondria-dependent pathway seems to mediate curcumin-induced apoptosis in young but not older animals. Hsp70 expression was not related with resistance to curcumin-induced apoptosis. Understanding age-related differences in the apoptotic response may lead to improved translation from pre-clinical animal studies to humans.

  1. UVC-induced apoptosis in Dubca cells is independent of JNK activation and p53{sup Ser-15} phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth, Shahanas; Thayyullathil, Faisal; Hago, Abdulkader

    2009-06-12

    Ultraviolet C (UVC) irradiation in mammalian cell lines activates a complex signaling network that leads to apoptosis. By using Dubca cells as a model system, we report the presence of a UVC-induced apoptotic pathway that is independent of c-Jun N-terminal kinases (JNKs) activation and p53 phosphorylation at Ser{sup 15}. Irradiation of Dubca cells with UVC results in a rapid JNK activation and phosphorylation of its downstream target c-Jun, as well as, phosphorylation of activating transcription factor 2 (ATF2). Pre-treatment with JNK inhibitor, SP600125, inhibited UVC-induced c-Jun phosphorylation without preventing UVC-induced apoptosis. Similarly, inhibition of UVC-induced p53 phosphorylation did not preventmore » Dubca cell apoptosis, suggesting that p53{sup Ser-15} phosphorylation is not associated with UVC-induced apoptosis signaling. The pan-caspase inhibitor z-VAD-fmk inhibited UVC-induced PARP cleavage, DNA fragmentation, and ultimately apoptosis of Dubca cells. Altogether, our study clearly indicates that UVC-induced apoptosis is independent of JNK and p53 activation in Dubca cells, rather, it is mediated through a caspase dependent pathway. Our findings are not in line with the ascribed critical role for JNKs activation, and downstream phosphorylation of targets such as c-Jun and ATF2 in UVC-induced apoptosis.« less

  2. Trichostatin A-induced apoptosis is mediated by Kruppel-like factor 4 in ovarian and lung cancer.

    PubMed

    Zohre, Sadeghi; Kazem, Nejati-Koshki; Abolfazl, Akbarzadeh; Mohammad, Rahmati-Yamchi; Aliakbar, Movassaghpour; Effat, Alizadeh; Zahra, Davoudi; Hassan, Dariushnejad; Nosratollah, Zarghami

    2014-01-01

    The istone deacetylase (HDAC) inhibitor trichostatin A (TSA) is known to mediate the regulation of gene expression and anti proliferation activity in cancer cells. Kruppel-like factor 4 (klf4) is a zinc finger- containing transcription factor of the SP/KLF family, that is expressed in a variety of tissues and regulates cell proliferation, differentiation, tumorigenesis, and apoptosis. It may either either function as a tumor suppressor or an oncogene depending on genetic context of tumors. In this study, we tested the possibility that TSA may increase klf4 expression and cancer cell growth inhibition and apoptosis in SKOV-3 and A549 cells. The cytotoxicity of TSA was determined using the MTT assay test, while klf4 gene expression was assessed by real time PCR and to ability of TSA to induce apoptosis using a Vybrant Apoptosis Assay kit. Our results showed that TSA exerted dose and time dependent cytotoxicity effect on SKOV-3 and A549 cells. Moreover TSA up-regulated klf4 expression. Flow cytometric analysis demonstrated that apoptosis was increased after TSA treatment. Taken together, this study showed that TSA increased klf4 expression in SKOV3 and A549 cell lines, consequently, klf4 may played a tumor-suppressor role by increasing both cell growth inhibition and apoptosis. This study sheds light on the details of molecular mechanisms of HDACI-induced cell cycle arrest and apoptosis.

  3. Apoptosis of lactotrophs induced by D2 receptor activation is estrogen dependent.

    PubMed

    Radl, Daniela B; Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Zaldivar, Verónica; Eijo, Guadalupe; Seilicovich, Adriana; Pisera, Daniel

    2008-01-01

    Dopamine (DA) inhibits prolactin release and reduces lactotroph proliferation by activating D2 receptors. DA and its metabolite, 6-hydroxydopamine (6-OHDA), induce apoptosis in different cell types. DA receptors and DA transporter (DAT) were implicated in this action. Considering that estradiol sensitizes anterior pituitary cells to proapoptotic stimuli, we investigated the effect of estradiol on the apoptotic action of DA and 6-OHDA in anterior pituitary cells, and the involvement of the D2 receptor and DAT in the proapoptotic effect of DA. Viability of cultured anterior pituitary cells from ovariectomized rats was determined by MTS assay. Apoptosis was evaluated by Annexin-V/flow cytometry and TUNEL. Lactotrophs were identified by immunocytochemistry. DA induced apoptosis of lactotrophs in an estrogen-dependent manner. In contrast, estradiol was not required to trigger the apoptotic action of 6-OHDA. Cabergoline, a D2 receptor agonist, induced lactotroph apoptosis, while sulpiride, a D2 receptor antagonist, blocked DA-induced cell death. The blockade of DAT by GBR12909 did not affect the apoptotic action of DA, but inhibited 6-OHDA-induced apoptosis. These data show that DA, through D2 receptor activation, induces apoptosis of estrogen-sensitized anterior pituitary cells, and suggest that DA contributes to the control of lactotroph number not only by inhibiting proliferation but also by inducing apoptosis. 2008 S. Karger AG, Basel.

  4. Initiation and execution of lipotoxic ER stress in pancreatic β-cells

    PubMed Central

    Cunha, Daniel A.; Hekerman, Paul; Ladrière, Laurence; Bazarra-Castro, Angie; Ortis, Fernanda; Wakeham, Marion C.; Moore, Fabrice; Rasschaert, Joanne; Cardozo, Alessandra K.; Bellomo, Elisa; Overbergh, Lutgart; Mathieu, Chantal; Lupi, Roberto; Hai, Tsonwin; Herchuelz, Andre; Marchetti, Piero; Rutter, Guy A.; Eizirik, Décio L.; Cnop, Miriam

    2013-01-01

    Summary Free fatty acids (FFA) cause apoptosis of pancreatic β-cells and might contribute to β-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary β-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling. Palmitate induced more apoptosis and markedly activated the IRE1, PERK and ATF6 pathways, owing to a sustained depletion of ER Ca2+ stores, whereas the unsaturated FFA oleate led to milder PERK and IRE1 activation and comparable ATF6 signaling. Non-metabolizable methyl-FFA analogs induced neither ER stress nor β-cell apoptosis. The FFA-induced ER stress response was not modified by high glucose concentrations, suggesting that ER stress in primary β-cells is primarily lipotoxic, and not glucolipotoxic. Palmitate, but not oleate, activated JNK. JNK inhibitors reduced palmitate-mediated AP-1 activation and apoptosis. Blocking the transcription factor CHOP delayed palmitate-induced β-cell apoptosis. In conclusion, saturated FFA induce ER stress via ER Ca2+ depletion. The IRE1 and resulting JNK activation contribute to β-cell apoptosis. PERK activation by palmitate also contributes to β-cell apoptosis via CHOP. PMID:18559892

  5. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release.

    PubMed Central

    Thompson, G J; Langlais, C; Cain, K; Conley, E C; Cohen, G M

    2001-01-01

    Efflux of intracellular K(+) and cell shrinkage are features of apoptosis in many experimental systems, and a regulatory role has been proposed for cytoplasmic [K(+)] in initiating apoptosis. We have investigated this in both death-receptor-mediated and chemical-induced apoptosis. Using Jurkat T cells pre-loaded with the K(+) ion surrogate (86)Rb(+), we have demonstrated an efflux of intracellular K(+) during apoptosis that was concomitant with, but did not precede, other apoptotic changes, including phosphatidylserine externalization, mitochondrial depolarization and cell shrinkage. To further clarify the role of K(+) ions in apoptosis, cytoprotection by elevated extracellular [K(+)] was studied. Induction of apoptosis by diverse death-receptor and chemical stimuli in two cell lines was inhibited prior to phosphatidylserine externalization, mitochondrial depolarization, cytochrome c release and caspase activation. Using a cell-free system, we have demonstrated a novel mechanism by which increasing [K(+)] inhibited caspase activation. In control dATP-activated lysates, Apaf-1 oligomerized to a biologically active caspase processing approximately 700 kDa complex and an inactive approximately 1.4 MDa complex. Increasing [K(+)] inhibited caspase activation by preventing formation of the approximately 700 kDa complex, but not of the inactive complex. Thus intracellular and extracellular [K(+)] markedly affect caspase activation and the initiation of apoptosis induced by both death-receptor ligation and chemical stress. PMID:11415444

  6. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players.

    PubMed

    Bahar, Entaz; Kim, Hyongsuk; Yoon, Hyonok

    2016-09-15

    The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.

  7. Induction of apoptosis by pistachio (Pistacia vera L.) hull extract and its molecular mechanisms of action in human hepatoma cell line HepG2.

    PubMed

    Fathalizadeh, J; Bagheri, V; Khorramdelazad, H; Kazemi Arababadi, M; Jafarzadeh, A; Mirzaei, M R; Shamsizadeh, A; Hajizadeh, M R

    2015-11-30

    Several important Pistacia species such as P. vera have been traditionally used for treating a wide range of diseases (for instance, liver-related disorders). There is a relative lack of research into pharmacological aspects of pistachio hull. Hence, this study was aimed at investigating whether pistachio rosy hull (PRH) extract exerts apoptotic impacts on HepG2 liver cancer cell line. In order to evaluate cell viability and apoptosis in response to treatment with the extract, MTT assay and Annexin-V-fluorescein/propidium iodide (PI) double staining were performed, respectively. Moreover, molecular mechanism of apoptosis induced by the extract was determined using human apoptosis PCR array. Our findings showed that PRH extract treatment reduced cell viability (IC50 ~ 0.3 mg/ml) in a dose-dependent manner. Flow cytometric analysis revealed that the extract significantly induced apoptosis in HepG2 cells. In addition, quantitative PCR array results demonstrated the regulation of a considerable number of apoptosis-related genes belonging to the TNF, BCL2, IAP, TRAF, and caspase families. We observed altered expression of both pro-apoptotic and anti-apoptotic genes associated with the extrinsic and intrinsic apoptosis signaling pathways. These results suggest that the aqueous extract of PRH possesses apoptotic activity through cytotoxic and apoptosis-inducing effects on HepG2 cells.

  8. Protective effect of nicotinamide adenine dinucleotide (NAD+) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis.

    PubMed

    Xie, Lei; Wang, Zhenfei; Li, Changwei; Yang, Kai; Liang, Yu

    2017-02-01

    As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD + ) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD + could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD + were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD + at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD + administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD + might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. GSK-3β mediates dexamethasone-induced pancreatic β cell apoptosis

    PubMed Central

    Guo, Bin; Zhang, Wenjian; Xu, Shiqing; Lou, Jinning; Wang, Shuxia; Men, Xiuli

    2015-01-01

    Aims Glucocorticoids, such as dexamethasone, are widely used anti-inflammatory drugs. Their use is frequently associated with the development of steroid- associated diabetes. Pancreatic β-cell dysfunction has been suggested to be one of the main causes of steroid-associated diabetes. However, the mechanism is not fully understood. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase and plays an important role in energy metabolism, cell growth and apoptosis. Therefore, the contribution of GSK-3β in dexamethasone-induced pancreatic β-cell apoptosis was determined in the present study. Main Methods The effect of dexamethasone treatment on rat pancreatic β-cell line (INS-1) apoptosis (determined by TUNEL and Flow Cytometry), generation of reactive oxidative stress (ROS), and the phosphorylation status of GSK-3β was determined. The inhibitory effect of GSK-3β inhibitor-lithium chloride (LiCl) on dexamethasone-induced β-cell apoptosis was also evaluated. Key Findings Dexamethasone (0.1 μM) treatment induced INS-1 apoptosis, which was associated with increased GSK-3β activation and increased NOX4-derived ROS generation. Pretreatment of INS-1 with LiCl inhibited dexamethasone induced ROS generation and INS-1 apoptosis. Significance This study provides a new mechanism of Dex induced pancreatic β cell apoptosis and may serve as a new therapeutic option for treating GCs induced diabetes. PMID:26606859

  10. [Effect of mitogen activated protein kinase signal transduction on apoptosis of PC12 cells induced by electromagnetic exposure].

    PubMed

    Yang, Xue-Sen; Zhang, Wei; Gong, Qian-Fen

    2008-06-01

    To observe the effect of mitogen activated protein kinase (MAPK) signal transduction system on the apoptosis induced by electromagnetic exposure in PC12 cells. After pretreated by SB203580 alone or together with U0126, PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The phosphorylations of ERK1/2, JNK and P38 MAPK were tested by Western-blot at 3 h and 24 h after electromagnetic exposure. The apoptosis of PC12 cells were detected by Annexin-V-FITC flow cytometry. U0126, but not SB203580 could inhibit the activation of ERK1/2 induced by electromagnetic exposure. U0126 and SB203580 had no effects on the activation of JNK. SB203580 could inhibit the activation of P38 MAPK significantly. But U0126 had no such effect on the activation of P38 MAPK. After pretreated by SB203580 alone or together with U0126, the apoptosis of PC12 cells decreased. But the pretreatment by U0126 alone had no influence on the apoptosis of PC12 cells. The P38 MAPK signal transduction modulate the apoptosis of PC12 cells induced by electromagnetic exposure. ERK signal transduction has no effect on the apoptosis of PC12 cells. JNK signal transduction may promote the apoptosis of PC12 cells in the early stage after electromagnetic exposure.

  11. SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic

    PubMed Central

    Wang, Xiaobo; Feng, Han; Zhao, Shichao; Xu, Junling; Wu, Xinyu; Cui, Jing; Zhang, Ying; Qin, Yuhua; Liu, Zhiguo; Gao, Tang; Gao, Yongju; Zeng, Wenbin

    2017-01-01

    Owing to the central role of apoptosis in many human diseases and the wide-spread application of apoptosis-based therapeutics, molecular imaging of apoptosis in clinical practice is of great interest for clinicians, and holds great promises. Based on the well-defined biochemical changes for apoptosis, a rich assortment of probes and approaches have been developed for molecular imaging of apoptosis with various imaging modalities. Among these imaging techniques, nuclear imaging (including single photon emission computed tomography and positron emission tomography) remains the premier clinical method owing to their high specificity and sensitivity. Therefore, the corresponding radiopharmaceuticals have been a major focus, and some of them like 99mTc-Annexin V, 18F-ML-10, 18F-CP18, and 18F-ICMT-11 are currently under clinical investigations in Phase I/II or Phase II/III clinical trials on a wide scope of diseases. In this review, we summarize these radiopharmaceuticals that have been widely used in clinical trials and elaborate them in terms of radiosynthesis, pharmacokinetics and dosimetry, and their applications in different clinical stages. We also explore the unique features required to qualify a desirable radiopharmaceutical for imaging apoptosis in clinical practice. Particularly, a perspective of the impact of these clinical efforts, namely, apoptosis imaging as predictive and prognostic markers, early-response indicators and surrogate endpoints, is also the highlight of this review. PMID:28108738

  12. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    PubMed

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  13. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    PubMed Central

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  14. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    PubMed

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  15. Chk2 mediates RITA-induced apoptosis.

    PubMed

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  16. Chk2 mediates RITA-induced apoptosis

    PubMed Central

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-01-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA. PMID:22158418

  17. Nonylphenol diethoxylate inhibits apoptosis induced in PC12 cells.

    PubMed

    Liu, Chuang; Sun, Yongkun; Song, Yutong; Saito, Takeshi; Kurasaki, Masaaki

    2016-11-01

    Nonylphenol and short-chain nonylphenol ethoxylates such as NP 2 EO are present in aquatic environment as wastewater contaminants, and their toxic effects on aquatic species have been reported. Apoptosis has been shown to be induced by serum deprivation or copper treatment. To understand the toxicity of nonylphenol diethoxylate, we investigated the effects of NP 2 EO on apoptosis induced by serum deprivation and copper by using PC12 cell system. Nonylphenol diethoxylate itself showed no toxicity and recovered cell viability from apoptosis. In addition, nonylphenol diethoxylate decreased DNA fragmentation caused by apoptosis in PC12 cells. This phenomenon was confirmed after treating apoptotic PC12 cells with nonylphenol diethoxylate, whereas the cytochrome c release into the cytosol decreased as compared to that in apoptotic cells not treated with nonylphenol diethoxylates. Furthermore, Bax contents in apoptotic cells were reduced after exposure to nonylphenol diethoxylate. Thus, nonylphenol diethoxylate has the opposite effect on apoptosis in PC12 cells compared to nonylphenol, which enhances apoptosis induced by serum deprivation. The difference in structure of the two compounds is hypothesized to be responsible for this phenomenon. These results indicated that nonylphenol diethoxylate has capability to affect cell differentiation and development and has potentially harmful effect on organisms because of its unexpected impact on apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1389-1398, 2016. © 2015 Wiley Periodicals, Inc.

  18. Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3

    PubMed Central

    Zou, Bingyu; Wang, Hailian; Liu, Yilong; Qi, Ping; Lei, Tiantian; Sun, Minghan; Wang, Yi

    2017-01-01

    Ovarian cancer is the most lethal gynecological malignancy in the world. Our previous studies showed that mangiferin, purified from plant source, possessed anti-neoplasm effect on human lung adenocarcinoma A549 cells. This study aimed to determine the apoptosis-inducing effect of mangiferin on human ovarian carcinoma OVCAR3 cells. By in vitro studies, we found mangiferin significantly inhibited viability of OVCAR3 cells, and remarkably increased the sensitivity of OVCAR3 cells to cisplatin. In addition, the activation of caspase-dependent apoptosis was observed in mangiferin treated ovarian cancer cells. Importantly, we observed an obviously downregulated Notch expression after mangiferin treatment, indicating the crucial role of Notch in mangiferin mediated apoptosis. In contrast, overexpression of Notch3 abrogated the apoptosis-inducing efficacy of mangiferin, further demonstrating that mangiferin induced apoptosis via Notch pathway. Furthermore, OVCAR3 cell xenograft models revealed that mangiferin treatment inhibited tumor growth and expanded survival of tumor xenograft mice. Based on these results, we concluded that mangiferin could significantly inhibit the proliferation and induce apoptosis in OVCAR3 cells. Our study also suggested the anti-neoplasm effect of mangiferin might be via the regulation of Notch3. Taken together, by targeting cell apoptosis pathways and enhancing the response to cisplatin treatment, mangiferin may represent a potential new drug for the treatment of human ovarian cancer. PMID:28714011

  19. Mangiferin induces apoptosis in human ovarian adenocarcinoma OVCAR3 cells via the regulation of Notch3.

    PubMed

    Zou, Bingyu; Wang, Hailian; Liu, Yilong; Qi, Ping; Lei, Tiantian; Sun, Minghan; Wang, Yi

    2017-09-01

    Ovarian cancer is the most lethal gynecological malignancy in the world. Our previous studies showed that mangiferin, purified from plant source, possessed anti-neoplasm effect on human lung adenocarcinoma A549 cells. This study aimed to determine the apoptosis-inducing effect of mangiferin on human ovarian carcinoma OVCAR3 cells. By in vitro studies, we found mangiferin significantly inhibited viability of OVCAR3 cells, and remarkably increased the sensitivity of OVCAR3 cells to cisplatin. In addition, the activation of caspase-dependent apoptosis was observed in mangiferin treated ovarian cancer cells. Importantly, we observed an obviously downregulated Notch expression after mangiferin treatment, indicating the crucial role of Notch in mangiferin mediated apoptosis. In contrast, overexpression of Notch3 abrogated the apoptosis-inducing efficacy of mangiferin, further demonstrating that mangiferin induced apoptosis via Notch pathway. Furthermore, OVCAR3 cell xenograft models revealed that mangiferin treatment inhibited tumor growth and expanded survival of tumor xenograft mice. Based on these results, we concluded that mangiferin could significantly inhibit the proliferation and induce apoptosis in OVCAR3 cells. Our study also suggested the anti-neoplasm effect of mangiferin might be via the regulation of Notch3. Taken together, by targeting cell apoptosis pathways and enhancing the response to cisplatin treatment, mangiferin may represent a potential new drug for the treatment of human ovarian cancer.

  20. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rapamycin treatment is associated with an increased apoptosis rate in experimental vein grafts.

    PubMed

    Schachner, Thomas; Oberhuber, Alexander; Zou, Yping; Tzankov, Alexandar; Ott, Harald; Laufer, Günther; Bonatti, Johannes

    2005-02-01

    Rapamycin is an immunosuppressive agent with marked antiproliferative properties and is effective in reducing in stent restenosis and vein graft neointimal hyperplasia. Apoptosis is one mechanism counterbalancing cellular proliferation. We therefore investigated the role of apoptosis in rapamycin treated vein grafts in a mouse model. C57BL6J mice underwent interposition of the inferior vena cava from isogenic donor mice into the common carotid artery using a cuff technique. In the treatment group 200 microg of rapamycin were applied locally in pluronic gel. The control group did not receive local treatment. Vein grafts were harvested at 4 weeks postoperatively and underwent morphometric analysis as well as immunohistochemical analysis for apoptosis (TUNEL). In grafted veins without treatment (controls) neointimal thickness was 50 (12-58) microm at 4 weeks postoperatively. In 200 microg rapamycin treated grafts the neointimal thickness was 17 (5-55) microm. Rapamycin treated vein grafts showed a significantly increased rate of apoptosis in the adventitia as compared with controls (P=0.032). In the neointima the apoptosis rate was lower in both groups with no significant difference between rapamycin treated grafts and controls. We conclude that treatment of experimental vein grafts with rapamycin is associated with an increased apoptosis rate in the vascular wall and a trend towards reduction of neointimal hyperplasia. These results suggest that apoptosis may be a beneficial antiproliferative component for the treatment of vein graft disease.

  2. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels.

    PubMed

    Zhao, Jing; He, Qiuxia; Cheng, Yizhe; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2009-09-01

    Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.

  3. p53-Regulated Apoptosis Is Differentiation Dependent in Ultraviolet B-Irradiated Mouse Keratinocytes

    PubMed Central

    Tron, Victor A.; Trotter, Martin J.; Tang, Liren; Krajewska, Maryla; Reed, John C.; Ho, Vincent C.; Li, Gang

    1998-01-01

    Previous studies from our laboratory, using p53 transgenic mice, have suggested that ultraviolet (UV) light-induced keratinocyte apoptosis in the skin is not affected by overexpression of mutant p53 protein. To further elucidate a possible role for p53 in UV-induced keratinocyte cell death, we now examine apoptosis in skin and isolated keratinocytes from p53 null (−/−) mice and assess the influence of cell differentiation on this process. In vivo, using this knockout model, epidermal keratinocytes in p53−/− mice exhibited only a 5.2-fold increase in apoptosis after 2000 J/m2 UVB irradiation compared with a 26.3-fold increase in normal control animals. If this p53-dependent apoptosis is important in elimination of precancerous, UV-damaged keratinocytes, then it should be active in the undifferentiated cells of the epidermal basal layer. To test this hypothesis, we examined the effect of differentiation on UV-induced apoptosis in primary cultures of murine and human keratinocytes. Apoptosis was p53-independent in undifferentiated murine keratinocytes, which exhibited relative resistance to UVB-induced killing with only a 1.5-fold increase in apoptosis in p53+/+ cells and a 1.4-fold increase in p53−/− cells. Differentiated keratinocytes, in contrast, showed a 9.4-fold UVB induction of apoptosis in p53+/+ cells, almost three times the induction observed in p53−/− cells. This UV-induced difference in apoptosis was observed when keratinocytes were cultured on type IV collagen substrate, but not on plastic alone. Western blotting of UV-irradiated, differentiated keratinocytes did not support a role for either Bax or Bcl-2 in this process. In support of these findings in mice, cell death in human cultured keratinocytes also occurred in a differentiation-associated fashion. We conclude that p53-induced apoptosis eliminates damaged keratinocytes in the differentiated cell compartment, but this mechanism is not active in the basal, undifferentiated cells and is therefore of questionable significance in protection against skin cancer induction. PMID:9708817

  4. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

    PubMed

    Xu, Xiang; Huang, Enping; Luo, Baoying; Cai, Dunpeng; Zhao, Xu; Luo, Qin; Jin, Yili; Chen, Ling; Wang, Qi; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2018-06-25

    Methamphetamine (Meth) is a widely abused psychoactive drug that primarily damages the nervous system, notably causing dopaminergic neuronal apoptosis. CCAAT-enhancer binding protein (C/EBPβ) is a transcription factor and an important regulator of cell apoptosis and autophagy. Insulin-like growth factor binding protein (IGFBP5) is a proapoptotic factor that mediates Meth-induced neuronal apoptosis, and Trib3 (tribbles pseudokinase 3) is an endoplasmic reticulum (ER) stress-inducible gene involved in autophagic cell death through the mammalian target of rapamycin (mTOR) signaling pathway. To test the hypothesis that C/EBPβ is involved in Meth-induced IGFBP5-mediated neuronal apoptosis and Trib3-mediated neuronal autophagy, we measured the protein expression of C/EBPβ after Meth exposure and evaluated the effects of silencing C/EBPβ, IGFBP5, or Trib3 on Meth-induced apoptosis and autophagy in neuronal cells and in the rat striatum after intrastriatal Meth injection. We found that, at relatively high doses, Meth exposure increased C/EBPβ protein expression, which was accompanied by increased neuronal apoptosis and autophagy; triggered the IGFBP5-mediated, p53-up-regulated modulator of apoptosis (PUMA)-related mitochondrial apoptotic signaling pathway; and stimulated the Trib3-mediated ER stress signaling pathway through the Akt-mTOR signaling axis. We also found that autophagy is an early response to Meth-induced stress upstream of apoptosis and plays a detrimental role in Meth-induced neuronal cell death. These results suggest that Meth exposure induces C/EBPβ expression, which plays an essential role in the neuronal apoptosis and autophagy induced by relatively high doses of Meth; however, relatively low concentrations of Meth did not change the expression of C/EBPβ in vitro. Further studies are needed to elucidate the role of C/EBPβ in low-dose Meth-induced neurotoxicity.-Xu, X., Huang, E., Luo, B., Cai, D., Zhao, X., Luo, Q., Jin, Y., Chen, L., Wang, Q., Liu, C., Lin, Z., Xie, W.-B., Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ-related signaling pathway.

  5. Rapid Induction of Apoptosis in Gastrulating Mouse Embryos by Ethanol and Its Prevention by HB-EGF

    PubMed Central

    Kilburn, Brian A.; Chiang, Po Jen; Wang, Jun; Flentke, George R.; Smith, Susan M.; Armant, D. Randall

    2006-01-01

    Background Ethanol exposure during gastrulation and early neurulation induces apoptosis within certain embryonic cell populations, leading to craniofacial and neurological defects. There is currently little information about the initial kinetics of ethanol-induced apoptosis, and interest in the ability of endogenous survival factors to moderate apoptosis is growing. Ethanol alters intracellular signaling, leading to cell death in chick embryos, suggesting that apoptosis could occur rapidly and that signaling pathways activated by survival factors might reduce apoptosis. Methods Pregnant mice were intubated with 1, 2, or 4 g/kg ethanol on day 7.5 of embryogenesis (E7.5) 1, 3, or 6, hours before harvesting gastrulation-stage embryos. Control animals received maltose/dextran. Blood alcohol concentrations (BAC) were determined by gas chromatography. E7.5 embryos isolated from untreated dams were cultured in vitro for 1 or 3 hr with 0 or 400 mg% ethanol and 0 or 5 nM heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). Apoptosis was quantified using fluorescence microscopy to detect annexin V binding and DNA fragmentation [terminal deoxynucleotidyl transferase-mediated dUTP-X nick end labeling (TUNEL)] in whole-mount or sectioned embryos. Results Both annexin V binding and TUNEL were elevated (p<0.05) in embryos exposed in utero to 1 g/kg ethanol for 3 hours, increasing linearly with time and ethanol concentration. Apoptosis increased (p<0.05) in all germ cell layers. Mice treated with 4 g/kg sustained BAC of 400 mg% for nearly 3 hours, significantly increasing apoptosis within the first hour. Cultured embryos exposed to 400 mg% ethanol displayed 2- to 3-fold more TUNEL than vehicle-treated embryos (p<0.05); however, exogenous HB-EGF prevented apoptosis. Conclusions Ethanol rapidly produced apoptosis in gastrulation-stage embryos, consistent with induction by intracellular signaling. The ethanol-induced apoptotic pathway was blocked by the endogenous survival factor, HB-EGF. Differences in the expression of survival factors within individual embryos could be partly responsible for variations in the teratogenic effects of ethanol among offspring exposed prenatally. PMID:16433740

  6. CHOP mediates XBP1S-induced renal mesangial cell necrosis following high glucose treatment.

    PubMed

    Shao, Decui; Ni, Jun; Shen, Yang; Liu, Jia; Zhou, Li; Xue, Hong; Huang, Yu; Zhang, Wei; Lu, Limin

    2015-07-05

    High glucose (HG)-induced apoptosis in mesangial cells (MCs) is a critical determinant during the pathogenesis of diabetic nephropathy. The signaling cascade inducing MCs apoptosis by HG involves overproduction of reactive oxygen species. Our previous studies have demonstrated that HG-induced oxidative stress is mediated by suppression of spliced/active X-box binding protein 1 (XBP1S), suggesting the importance of XBP1S in HG-induced MCs apoptosis. CHOP, an endoplasmic reticulum stress-associated proapoptotic signal, is involved in downstream of XBP1S. In the present study, we explored the effect of XBP1S in modulating HG-induced apoptosis in renal MCs and then identified the role of CHOP in these processes. Apoptosis and necrosis were quantified by flow cytometry; protein levels of XBP1S, caspase3, Bax, Bcl2, BNIP3, and CHOP were analyzed by Western blotting. The cellular localization of XBP1S was determined by immunofluorescence histochemistry. The binding of XBP1 to CHOP promoter was determined by chromatin immunoprecipitation assays. In addition, adenoviruses harboring XBP1S gene (Ad-XBP1S) were used to overexpress XBP1S, whereas the knockdown of CHOP was achieved by small interference RNA. HG suppressed nuclear distribution of XBP1S and induced apoptosis and necrosis in MCs. Ad-XBP1S infection enhanced the nuclear translocation of XBP1S and reduced MCs apoptosis and necrosis. XBP1S bound to the promoter region of CHOP and upregulated CHOP expression. Conversely, CHOP expression was reduced upon HG exposure and knockdown of CHOP increased necrosis but not apoptosis in MCs. These results suggest that XBP1S protected MCs from HG-induced apoptosis and necrosis, and CHOP participates in XBP1S-regulated necrosis but not apoptosis. Copyright © 2015. Published by Elsevier B.V.

  7. Balance between senescence and apoptosis is regulated by telomere damage-induced association between p16 and caspase-3.

    PubMed

    Panneer Selvam, Shanmugam; Roth, Braden M; Nganga, Rose; Kim, Jisun; Cooley, Marion A; Helke, Kristi L; Smith, Charles D; Ogretmen, Besim

    2018-05-10

    Telomerase activation protects cells from telomere damage by delaying senescence and inducing cell immortalization, whereas telomerase inhibition mediates rapid senescence or apoptosis. However, the cellular mechanisms that determine telomere damage-dependent senescence versus apoptosis induction are largely unknown. Here, we demonstrate that telomerase instability mediated by silencing of sphingosine kinase 2 (SPHK2) and sphingosine 1-phosphate (S1P), which binds and stabilizes telomerase, induces telomere damage-dependent caspase-3 activation and apoptosis, but not senescence, in p16-deficient lung cancer cells or tumors. These outcomes were prevented by knockdown of a tumor-suppressor protein, transcription factor 21 (TCF21), or by ectopic expression of WT human telomerase reverse transcriptase (hTERT), but not mutant hTERT with altered S1P binding. Interestingly, SphK2-deficient mice exhibited accelerated aging and telomerase instability that increased telomere damage and senescence via p16 activation especially in testes tissues, but not in apoptosis. Moreover, p16 silencing in SphK2-/- mouse embryonic fibroblasts activated caspase-3 and apoptosis without inducing senescence. Further, ectopic WT p16 expression in p16-deficient A549 lung cancer cells prevented TCF21 and caspase-3 activation, and resulted in senescence in response to SphK2/S1P inhibition and telomere damage. Mechanistically, a p16 mutant with impaired [MS2] caspase-3 association did not prevent telomere damage-induced apoptosis, indicating that an association between p16 and caspase-3 proteins forces senescence induction by inhibiting caspase-3 activation and apoptosis.[MS3]  These results suggest that p16 plays a direct role in telomere damage-dependent senescence by limiting apoptosis via binding to caspase-3, revealing a direct link between telomere damage-dependent senescence and apoptosis with regards to aging and cancer. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed Central

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-01-01

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some forms of apoptosis, depending on the death trigger, and that in quiescent cells the de-energization of mitochondria is not necessarily linked to apoptosis. PMID:9148768

  9. Involvement of transcription factor encoded by the mouse mi locus (MITF) in apoptosis of cultured mast cells induced by removal of interleukin-3.

    PubMed Central

    Tsujimura, T.; Hashimoto, K.; Morii, E.; Tunio, G. M.; Tsujino, K.; Kondo, T.; Kanakura, Y.; Kitamura, Y.

    1997-01-01

    Mast cells develop when spleen cells of mice are cultured in the medium containing interleukin (IL)-3. Cultured mast cells (CMCs) show apoptosis when they are incubated in the medium without IL-3. We obtained CMCs from tg/tg mice that did not express the transcription factor encoded by the mi gene (MITF) due to the integration of a transgene at its 5' flanking region. MITF is a member of the basic-helix-loop-helix-leucine zipper (bHLH-Zip) protein family of transcription factors. We investigated the effect of MITF on the apoptosis of CMCs after removal of IL-3. When cDNA encoding normal MITF ((+)-MITF) was introduced into tg/tg CMCs with the retroviral vector, the apoptosis of tg/tg CMCs was significantly accelerated. The mutant mi allele represents a deletion of an arginine at the basic domain of MITF. The apoptosis of tg/tg CMCs was not accelerated by the introduction of cDNA encoding mi-MITF. The overexpression of (+)-MITF was not prerequisite to the acceleration of the apoptosis, as the apoptotic process proceeded faster in +/+ CMCs than in mi/mi CMCs. The Ba/F3 lymphoid cell line is also dependent on IL-3, and Ba/F3 cells show apoptosis after removal of IL-3. The c-myc gene encodes another transcription factor of the bHLH-Zip family, and the overexpression of the c-myc gene accelerated the apoptosis of Ba/F3 cells. However, the overexpression of (+)-MITF did not accelerate the apoptosis of Ba/F3 cells. The (+)-MITF appeared to play some roles for the acceleration of the apoptosis specifically in the mast cell lineage. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9327738

  10. Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells.

    PubMed

    Wang, Ling; Lu, Luo

    2007-02-01

    To define the role of molecular interaction between the UV-induced JNK (c-Jun N-terminal kinase) cascade and corneal epithelial cell apoptosis and protection against apoptosis by caffeine. Rabbit and human corneal epithelial cells were cultured in DMEM/F12 medium containing 10% FBS and 5 microg/mL insulin at 37 degrees C in 5% CO(2). DNA fragmentation and ethidium bromide/acridine orange (EB/AO) nuclear staining were performed to detect cell death. Western blot, immunoprecipitation, and kinase assays were used to measure UV-induced mitogen-activated protein (MAP) kinase activity. UV irradiation-induced apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and MAKK4 (SEK1) upstream from JNK was caffeine sensitive. Caffeine (1,3,7-trimethylxanthine), an agent that is one of the most popular additions to food consumed in the world and a potential enhancer of chemotherapy, effectively protected corneal epithelial cells against apoptosis by its specific effect on the JNK cascade. Theophylline (1,3-dimethylxanthine) exhibited an effect similar to that of caffeine on prevention of UV irradiation-induced apoptosis. However, alterations of either intracellular cAMP or Ca(2+) levels did not alter the effect of caffeine on the JNK signaling pathway. In addition, the blockade of PI3K-like kinases by wortmannin had no impact on the protective effect of caffeine against UV irradiation-induced apoptosis, suggesting that the protective effect of caffeine acts through a specific mechanism involving UV irradiation-induced activation of ASK1 and SEK1. In contrast, caffeine had no effects on melphalan-, hyperosmotic stress-, or IL-1beta-induced activation of the JNK signaling pathway in these cells. UV irradiation stress-induced activation of the ASK1-SEK1-JNK signaling pathway leading to apoptosis is a caffeine-sensitive process, and caffeine, as a multifunctional agent in cells, can specifically interact with the pathway to protect against apoptosis.

  11. Bcl-2 silencing attenuates hypoxia-induced apoptosis resistance in pulmonary microvascular endothelial cells.

    PubMed

    Cao, Yongmei; Jiang, Zhen; Zeng, Zhen; Liu, Yujing; Gu, Yuchun; Ji, Yingying; Zhao, Yupeng; Li, Yingchuan

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disorder that ultimately causes heart failure. While the underlying causes of this condition are not well understood, previous studies suggest that the anti-apoptotic nature of pulmonary microvascular endothelial cells (PMVECs) in hypoxic environments contributes to PAH pathogenesis. In this study, we focus on the contribution of Bcl-2 and hypoxia response element (HRE) to apoptosis-resistant endothelial cells and investigate the mechanism. PMVECs obtained from either normal rats or apoptosis-resistant PMVECs obtained from PAH rats were transduced with recombinant lentiviral vectors carrying either Bcl-2-shRNA or HRE combined Bcl-2-shRNA, and then cultured these cells for 24 h under hypoxic (5% O2) or normoxic (21% O2) conditions. In normal PMVECs, Bcl-2-shRNA or HRE combined with Bcl-2-shRNA transduction successfully decreased Bcl-2 expression, while increasing apoptosis as well as caspase-3 and P53 expression in a normoxic environment. In a hypoxic environment, the effects of Bcl-2-shRNA treatment on cell apoptosis, and on Bcl-2, caspase-3, P53 expression were significantly suppressed. Conversely, HRE activation combined with Bcl-2-shRNA transduction markedly enhanced cell apoptosis and upregulated caspase-3 and P53 expression, while decreasing Bcl-2 expression. Furthermore, in apoptosis-resistant PMVECs, HRE-mediated Bcl-2 silencing effectively enhanced cell apoptosis and caspase-3 activity. The apoptosis rate was significantly depressed when Lv-HRE-Bcl-2-shRNA was combined with Lv-P53-shRNA or Lv-caspase3-shRNA transduction in a hypoxic environment. These results suggest that HRE-mediated Bcl-2 inhibition can effectively attenuate hypoxia-induced apoptosis resistance in PMVECs by downregulating Bcl-2 expression and upregulating caspase-3 and P53 expression. This study therefore reveals critical insight into potential therapeutic targets for treating PAH.

  12. Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells.

    PubMed

    Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui; Ip, Margot M

    2010-04-01

    Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim. Copyright 2009 Elsevier Inc. All rights reserved.

  13. Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells.

    PubMed

    Sun, S Y; Yue, P; Lotan, R

    2000-09-14

    The synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) induces apoptosis in several types of cancer cell. CD437 inhibited the growth of both androgen-dependent and -independent human prostate carcinoma (HPC) cells in a concentration-dependent manner by rapid induction of apoptosis. CD437 was more effective in killing androgen-independent HPC cells such as DU145 and PC-3 than the androgen-dependent LNCaP cells. The caspase inhibitors Z-VAD-FMK and Z-DEVD-FMK blocked apoptosis induced by CD437 in DU145 and LNCaP cells, in which increased caspase-3 activity and PARP cleavage were observed, but not in PC-3 cells, in which CD437 did not induce caspase-3 activation and PARP cleavage. Thus, CD437 can induce either caspase-dependent or caspase-independent apoptosis in HPC cells. CD437 increased the expression of c-Myc, c-Jun, c-Fos, and death receptors DR4, DR5 and Fas. CD437's potency in apoptosis induction in the different cell lines was correlated with its effects on the expression of oncogenes and death receptors, thus implicating these genes in CD437-induced apoptosis in HPC cells. However, the importance and contribution of each of these genes in different HPC cell lines may vary. Because CD437 induced the expression of DR4, DR5 and Fas, we examined the effects of combining CD437 and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Fas ligand, respectively, in HPC cells. We found synergistic induction of apoptosis, highlighting the importance of the modulation of these death receptors in CD437-induced apoptosis in HPC cells. This result also suggests a potential strategy of using CD437 with TRAIL for treatment of HPC. Oncogene (2000) 19, 4513 - 4522.

  14. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this is the first report of the use of backscattering spectral measurements to quantitatively monitor apoptosis in viable cell cultures in vitro.

  15. Cellular Apoptosis of Hemocytes from Dendrolimus tabulaeformis Tsai et Liu Larvae Induced with the Secondary Metabolites of Beauveria brongniartii (Sacc.) Petch

    PubMed Central

    Fan, Jinhua; Xie, Yingping; Xue, Jiaoliang; Zhang, Yingling; Yang, Qian

    2013-01-01

    To investigate the effect of the secondary metabolites of entomopathogenic fungus on the hemocyte immunity of host insect, the secondary metabolite complex (SMC) of Beauveria brongniartii was used in three concentrations (5.5, 55, and 550 µg/mL), and the 4th instar larvae of the pine caterpillar Dendrolimus tabulaeformis were employed as host insects. The larvae were inoculated with the SMC solutions by injection in bioassays. Apoptosis of the larval hemocytes was observed using fluorescence microscopy (FM), transmission electron microscopy (TEM), and flow cytometry (FCM). The FM results showed that in the treated groups, larval hemocytes exhibited symptoms of early apoptosis at 6 h post-treatment by radiating a non-uniform kelly fluorescence and exhibited symptoms of late apoptosis at 12 h post-treatment by radiating a non-uniform orange fluorescence. Under TEM, the following ultra-structural changes associated with apoptosis of the larval hemocytes were observed in the treated groups: the nuclei were hypertrophied, slight folds were on the nuclear envelope, the chromatin became concentrated, the mitochondrial cristae disappeared or were disorderly, most cells developed blebs, and fibrillar aggregation appeared and accumulated in the cytoplasm. Apoptosis of the larval hemocytes was detected by FCM at 6 h post-treatment; the percentage of early apoptotic cells in the SMC 5.5, 55, and 550 µg/mL treatment groups were 11.93%, 13.10%, and 18.42%, respectively. Late apoptosis first occurred at 12 h post-treatment; the highest rate of apoptosis was 36.54 ± 4.37% at 24 h post-treatment in the SMC 55 µg/mL treatment group. In general, the cellular apoptosis rate was positively correlated with the SMC concentration and the time post-treatment. These results indicate that secondary metabolites of B . brongniartii are able to attack the hemocytes of D . tabulaeformis larvae and induce cellular apoptosis, thereby providing new evidence that secondary metabolites of mycopathogens can act on host immune systems. PMID:23940771

  16. How do viruses control mitochondria-mediated apoptosis?

    PubMed

    Neumann, Simon; El Maadidi, Souhayla; Faletti, Laura; Haun, Florian; Labib, Shirin; Schejtman, Andrea; Maurer, Ulrich; Borner, Christoph

    2015-11-02

    There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. GSK-3β promotes PA-induced apoptosis through changing β-arrestin 2 nucleus location in H9c2 cardiomyocytes.

    PubMed

    Chang, Fen; Liu, Jing; Fu, Hui; Wang, Jinlan; Li, Fang; Yue, Hongwei; Li, Wenjing; Zhao, Jing; Yin, Deling

    2016-09-01

    Palmitic acid (PA), a type of saturated fatty acids, induces cardiovascular diseases by causing cardiomyocyte apoptosis with unclear mechanisms. Akt participates in PA-induced cardiomyocyte apoptosis. GSK-3β is a substrate of Akt, we investigated its role in PA-induced apoptosis. We reveal that PA inhibits GSK-3β phosphorylation accompanied by inactivation of Akt in H9c2 cardiomyocytes. We also reveal that inhibition the activity of GSK-3β by its inhibitor LiCl or knockdown by siRNA significantly attenuates PA-induced cardiomyocyte apoptosis, this suggesting that GSK-3β plays a pro-apoptotic role. To detect its downstream factors, we analyzed the roles of JNK, p38 MAPK and β-arrestin 2 (β-Arr2). Here, we report that GSK-3β regulate PA-induced cardiomyocyte apoptosis by affecting the distribution of β-Arr2. PA diminishes the protein level of β-Arr2 and changes its distribution from nucleus to cytoplasm. Either inhibition of β-Arr2 by its siRNA or overexpression of its protein level by transfection of β-Arr2 full-length plasmid promotes PA-induced cardiomyocyte apoptosis, which remind us to focus on the changes of its location. β-Arr2 siRNA decreased the background level of β-Arr2 in nucleus in normal H9c2 cells. Overexpression of β-Arr2 increased cytoplasm level of β-Arr2 as PA did. While LiCl, the inhibitor of GSK-3β decreased PA-induced apoptosis, accompany with increased nucleus level of β-Arr2. Then we concluded that GSK-3β is closely associated with cardiomyocyte apoptosis induced by PA, it performs its pro-apoptotic function by affecting the location of β-Arr2. LiCl inhibits PA-induced cardiomyocyte apoptosis, which might provide novel therapeutic for cardiovascular diseases induced by metabolic syndrome.

  18. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    PubMed

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  19. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    PubMed

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.

  20. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction

    PubMed Central

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-01-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  1. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway

    PubMed Central

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng

    2015-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia–reperfusion injury. PMID:26350953

  2. Anti-Fas antibody-induced apoptosis and its signal transduction in human gastric carcinoma cell lines.

    PubMed

    Adachi, Keiko; Osaki, Mitsuhiko; Kase, Satoru; Takeda, Ami; Ito, Hisao

    2003-09-01

    The Fas-Fas ligand system is one of the factors involved in cell death signaling. Aberrations in the signaling pathways leading to Fas-mediated apoptosis in tumor cells have been reported in a variety of human malignant tumors. However, the Fas-mediated apoptotic pathway has not been sufficiently elucidated in human gastric carcinomas. We examined the apoptotic pathway induced by anti-Fas antibody using seven human gastric carcinoma cell lines. Apoptosis was induced in a delayed fashion and the apoptotic indices (AI) after 48 h were approximately 30-40% in MKN-45 and KATO-III cells, which both showed cleavage of the Bid protein and release of Cytochrome c from the mitochondria. Our data also demonstrated no significant relationship between the expressions of various apoptosis-related proteins and the sensitivity or resistance to anti-Fas antibody-induced apoptosis, as far as we examined. Furthermore, the apoptosis signal was inhibited by treatment with Caspase-9 and -3 inhibitors in MKN-45 and KATO-III. These findings suggest that anti-Fas antibody induced apoptosis through the type II signaling pathway in the human gastric carcinoma cell lines, MKN-45 and KATO-III.

  3. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa.

    PubMed

    Kirschnek, S; Vier, J; Gautam, S; Frankenberg, T; Rangelova, S; Eitz-Ferrer, P; Grespi, F; Ottina, E; Villunger, A; Häcker, H; Häcker, G

    2011-11-01

    Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.

  4. Identification of a Raloxifene Analog That Promotes AhR-Mediated Apoptosis in Cancer Cells.

    PubMed

    Jang, Hyo Sang; Pearce, Martin; O'Donnell, Edmond F; Nguyen, Bach Duc; Truong, Lisa; Mueller, Monica J; Bisson, William H; Kerkvliet, Nancy I; Tanguay, Robert L; Kolluri, Siva Kumar

    2017-12-01

    We previously reported that raloxifene, an estrogen receptor modulator, is also a ligand for the aryl hydrocarbon receptor (AhR). Raloxifene induces apoptosis in estrogen receptor-negative human cancer cells through the AhR. We performed structure-activity studies with seven raloxifene analogs to better understand the structural requirements of raloxifene for induction of AhR-mediated transcriptional activity and apoptosis. We identified Y134 as a raloxifene analog that activates AhR-mediated transcriptional activity and induces apoptosis in MDA-MB-231 human triple negative breast cancer cells. Suppression of AhR expression strongly reduced apoptosis induced by Y134, indicating the requirement of AhR for Y134-induced apoptosis. Y134 also induced apoptosis in hepatoma cells without having an effect on cell cycle regulation. Toxicity testing on zebrafish embryos revealed that Y134 has a significantly better safety profile than raloxifene. Our studies also identified an analog of raloxifene that acts as a partial antagonist of the AhR, and is capable of inhibiting AhR agonist-induced transcriptional activity. We conclude that Y134 is a promising raloxifene analog for further optimization as an anti-cancer agent targeting the AhR.

  5. Sulfur mustard-induced apoptosis in hairless guinea pig skin.

    PubMed

    Kan, Robert K; Pleva, Christina M; Hamilton, Tracey A; Anderson, Dana R; Petrali, John P

    2003-01-01

    The present study was aimed to examine whether apoptosis is involved in the pathogenesis of sulfur mustard (SM)-induced basal cell death. Skin sites of the hairless guinea pig exposed to SM vapor for 8 minutes were harvested at 3, 6, 12, 24, and 48 hours postexposure. Immunohistochemical detection of basal cell apoptosis was performed using the ApopTag in situ apoptosis labeling kit. Only occasional apoptotic basal cells (BC)were observed in nonexposed and perilesional control sites. At lesional sites, apoptosis of BC was not detected at 3 hours postexposure. However, at 6 hours and 12 hours postexposure, 18% and 59% of BC were apoptotic, respectively. At 24 and 48 hours postexposure, individual apoptotic basal cells were not clearly recognizable due to necrosis. At the ultrastructural level, degenerating BC exhibited typical apoptotic morphology including nuclear condensation and chromatin margination. The results suggest that apoptotic cell death is a cytotoxic mechanism with the number of BC undergoing apoptosis significantly increasing from 6 to 12 hours postexposure. In addition, because necrosis is preferential at 24 hours postexposure, we believe that SM-induced cell death involves early apoptosis and late necrosis, which temporally overlap to produce a single cell death pathway along an apoptotic-necrotic continuum.

  6. Fisetin Induces Apoptosis Through p53-Mediated Up-Regulation of DR5 Expression in Human Renal Carcinoma Caki Cells.

    PubMed

    Min, Kyoung-Jin; Nam, Ju-Ock; Kwon, Taeg Kyu

    2017-08-02

    Fisetin is a natural compound found in fruits and vegetables such as strawberries, apples, cucumbers, and onions. Since fisetin can elicit anti-cancer effects, including anti-proliferation and anti-migration, we investigated whether fisetin induced apoptosis in human renal carcinoma (Caki) cells. Fisetin markedly induced sub-G1 population and cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of apoptosis, and increased caspase activation. We found that pan-caspase inhibitor (z-VAD-fmk) inhibited fisetin-induced apoptosis. In addition, fisetin induced death receptor 5 (DR5) expression at the transcriptional level, and down-regulation of DR5 by siRNA blocked fisetin-induced apoptosis. Furthermore, fisetin induced p53 protein expression through up-regulation of protein stability, whereas down-regulation of p53 by siRNA markedly inhibited fisetin-induced DR5 expression. In contrast, fisetin induced up-regulation of CHOP expression and reactive oxygen species production, which had no effect on fisetin-induced apoptosis. Taken together, our study demonstrates that fisetin induced apoptosis through p53 mediated up-regulation of DR5 expression at the transcriptional level.

  7. "Falling leaves": a survey of the history of apoptosis.

    PubMed

    Formigli, L; Conti, A; Lippi, D

    2004-04-01

    Cell death has long been defined using morphological criteria. A first important concept, "necrosis", was early identified by Areteo from Cappadocia and by Galen. The term apoptosis was introduced by Kerr in 1972 to indicate a particular form of death in which cells commit suicide by chopping themselves into membrane-bounded apoptotic bodies. Apoptosis is distinguished from necrosis, or accidental cell death, which is characterized by nuclear autolysis and cell disintegration. The aim of this study was an evaluation of the concepts of apoptosis and necrosis, starting from the first definition of cell death by Rudolph Virchow in 1859. In recent years substantial progress has been made in the understanding of apoptotic and necrotic cell death. In particular, cell death researchers have evolved a paradigm change, from one in which apoptosis and necrosis were considered distinct forms of cell demise, to one in which the 2 cell deaths share common features, as an integral part of a same cell death process. Since pure apoptosis and necrosis are only extremes in a continuum spectrum of aponecrotic response, a mixture of features associated with both apoptosis and necrosis represents the more typical tissue and cell response to damaging stimuli.

  8. Glutaredoxin 1 (GRX1) inhibits oxidative stress and apoptosis of chondrocytes by regulating CREB/HO-1 in osteoarthritis.

    PubMed

    Sun, Jie; Wei, Xuelei; Lu, Yandong; Cui, Meng; Li, Fangguo; Lu, Jie; Liu, Yunjiao; Zhang, Xi

    2017-10-01

    GRX1 (glutaredoxin1), a sulfhydryl disulfide oxidoreductase, is involved in many cellular processes, including anti-oxidation, anti-apoptosis, and regulation of cell differentiation. However, the role of GRX1 in the oxidative stress and apoptosis of osteoarthritis chondrocytes remains unclear, prompting the current study. Protein and mRNA expressions were measured by Western blot and RT-qPCR. Oxidative stress was detected by the measurement of MDA and SOD contents. Cells apoptosis were detected by Annexin V-FITC/PI and caspase-3 activity assays. We found that the mRNA and protein expressions of GRX1 were significantly down-regulated in osteoarthritis tissues and cells. GRX1 overexpression increased the mRNA and protein expression of CREB and HO-1. Meanwhile, GRX1 overexpression inhibited oxidative stress and apoptosis in osteoarthritis chondrocytes. Furthermore, we found that GRX1 overexpression regulated HO-1 by increasing CREB, and that HO-1 regulated oxidative stress and apoptosis in osteoarthritis chondrocytes. Thus, GRX1 overexpression constrains oxidative stress and apoptosis in osteoarthritis chondrocytes by regulating CREB/HO-1, providing a novel insight into the molecular mechanism and potential treatment of osteoarthritis. Copyright © 2017. Published by Elsevier Ltd.

  9. [Endoplasmic reticulum stress mediates lipopolysaccharide-induced apoptosis in rat hepatocyte].

    PubMed

    Ji, Ying-Lei; Yan, Jun; Wang, Yan-Sha; Liu, Yi-Chang; Gu, Zhen-Yong

    2014-02-01

    To investigate the role of endoplasmic reticulum stress (ERS) in lipopolysaccharide (LPS)-induced hepatocyte apoptosis. Cells of the rat hepatocyte line BRL were cultured. The hepatocytes were treated with LPS, ERS inducer thapsigargin (TG), and ERS inhibitor 4-phenylbutyric acid (4-PBA), respectively or in their different combination. The cell viability was measured by MTT assay. The cyto-nuclear morphological changes of apoptosis cells were detected by the fluorescent dye Hoechst 33258. The apoptosis rate was assessed by flow cytometry with Annexin V-FITC/PI double-staining. Expressions of GRP78 as ERS marker protein, CHOP, caspase-12 and cleaved-caspase-3 as ERS related protein were detected by Western blotting. LPS could cause a decrease in cell viability and an increase in apoptosis rate in a dose- and time-dependent manner. The expression of GRP78, CHOP, caspase-12 and cleaved-caspase-3 proteins were significantly increased with LPS treatment. TG led to a marked decrease in cell viability and an increase in apoptosis rate, which aggravated the hepatocyte injury induced by LPS; whereas 4-PBA alleviated LPS-induced apoptosis. ERS mediates LPS-induced hepatocyte injuries, indicating that ERS may play a vital role in the pathogenesis of LPS-induced hepatocyte injuries.

  10. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  11. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp; Oda, Hideaki

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116more » and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.« less

  12. Calcein+/PI- as an early apoptotic feature in Leishmania.

    PubMed

    Basmaciyan, Louise; Azas, Nadine; Casanova, Magali

    2017-01-01

    Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  13. [Apoptosis: cellular and clinical aspects].

    PubMed

    Løvschall, H; Mosekilde, L

    1997-04-01

    Removal of damaged cells is essential for the maintenance of life in multicellular organisms. The process of self destruction, apoptosis, eliminates surplus or damaged cells as part of the pathophysiological defence system. Apoptosis is essential in structural and functional organogenesis during embryological development. The physiological regulation of tissue kinetics is a product of both cell proliferation and cell death. Internal and external regulatory stimuli regulate the balance between apoptosis and mitosis by genetic interaction. Apoptosis is characterized by condensation of chromatine as a result of DNA degradation, formation of blebs in the plasma and nuclear membranes, condensation of cytoplasma, formation of vesicular apoptotic bodies, and phagocytosis by neighbouring cells without inflammatory response. A number of observations indicate that programmed cell death plays an important role in the regulation of cytofunctional homeostasis and defense against accumulation of damaged cells, eg with DNA alterations. Dysregulation of the apoptotic gene program, eg by mutations, may not only lead to loss or degeneration of tissue, but also to hyperproliferative and tumorigenic disorders. New evidence indicates that apoptosis regulation is important both in aging processes and diseases such as: neuropathies, immunopathies, viral infections, cancer, etc. Pharmacological intervention designed to modulate apoptosis seems to raise new possibilities in the treatment of disease.

  14. Death receptor 6 induces apoptosis not through type I or type II pathways, but via a unique mitochondria-dependent pathway by interacting with Bax protein.

    PubMed

    Zeng, Linlin; Li, Ting; Xu, Derek C; Liu, Jennifer; Mao, Guozhang; Cui, Mei-Zhen; Fu, Xueqi; Xu, Xuemin

    2012-08-17

    Cells undergo apoptosis through two major pathways, the extrinsic pathway (death receptor pathway) and the intrinsic pathway (the mitochondrial pathway). These two pathways can be linked by caspase-8-activated truncated Bid formation. Very recently, death receptor 6 (DR6) was shown to be involved in the neurodegeneration observed in Alzheimer disease. DR6, also known as TNFRSF21, is a relatively new member of the death receptor family, and it was found that DR6 induces apoptosis when it is overexpressed. However, how the death signal mediated by DR6 is transduced intracellularly is not known. To this end, we have examined the roles of caspases, apoptogenic mitochondrial factor cytochrome c, and the Bcl-2 family proteins in DR6-induced apoptosis. Our data demonstrated that Bax translocation is absolutely required for DR6-induced apoptosis. On the other hand, inhibition of caspase-8 and knockdown of Bid have no effect on DR6-induced apoptosis. Our results strongly suggest that DR6-induced apoptosis occurs through a new pathway that is different from the type I and type II pathways through interacting with Bax.

  15. Effect of Tongxinluo on Podocyte Apoptosis via Inhibition of Oxidative Stress and P38 Pathway in Diabetic Rats

    PubMed Central

    Cui, Fangqiang; Zhao, Wenjing; Zou, Dawei; Wu, Xiaoming; Tian, Nianxiu; Wang, Xiaolei; Liu, Jing; Tong, Yu

    2016-01-01

    Diabetic nephropathy (DN) has been the leading cause of end-stage renal disease (ESRD). Podocyte apoptosis is a main mechanism of progression of DN. It has been demonstrated that activated P38 and caspase-3 induced by oxidative stress mainly account for increased podocyte apoptosis and proteinuria in DN. Meanwhile, Tongxinluo (TXL) can ameliorate renal structure disruption and dysfunction in DN patients in our clinical practice. However, the effect of TXL on podocyte apoptosis and P38 pathway remains unclear. To explore the effect of TXL on podocyte apoptosis and its molecular mechanism in DN, our in vivo and in vitro studies were performed. TXL attenuated oxidative stress in podocyte in DN in our in vivo and in vitro studies. Moreover, TXL inhibited the activation of P38 and caspase-3. Bcl-2 and Bax expression was partially restored by TXL treatment in our in vivo and in vitro studies. More importantly, TXL decreased podocyte apoptosis in diabetic rats and high glucose cultured podocyte. In conclusion, TXL protects podocyte from apoptosis in DN, partially through its antioxidant effect and inhibiting of the activation of P38 and caspase-3. PMID:27672400

  16. In situ detection of inflammatory cytokines and apoptosis in pemphigus foliaceus patients.

    PubMed

    Rodrigues, Denise Bertulucci Rocha; Pereira, Sanivia Aparecida Lima; dos Reis, Marlene Antônia; Adad, Sheila Jorge; Caixeta, João Eduardo; Chiba, Angélica Maeda; Sousa, Richard Atila; Rodrigues, Virmondes

    2009-01-01

    Endemic pemphigus foliaceus, or fogo selvagem, is a chronic autoimmune disease characterized by the formation of intraepidermal blisters that reduce adhesion between keratinocytes. Endemic pemphigus foliaceus is associated with the presence of autoantibodies and high levels of cytokines involved in the inflammatory response. To evaluate the expression of the proinflammatory cytokines interleukin 1, interferon gamma, and tumor necrosis factor alpha; the proapoptotic inducers Fas and inducible nitric oxide synthase; and the apoptosis inhibitor Bcl-2; and to evaluate the presence of apoptosis. Skin biopsies from 13 patients with endemic pemphigus foliaceus and controls were evaluated by immunohistochemistry and apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Proinflammatory cytokines were only detected in cells of the inflammatory exudate. Inducible nitric oxide synthase, Fas, and Bcl-2 were expressed by both epithelial and inflammatory cells. Epithelial apoptosis was observed in 12 cases (92.3%), and subepithelial apoptosis in 11 cases (85%). This study suggests that apoptosis as well as the local production of proinflammatory cytokines are associated with endemic pemphigus foliaceus lesions. These results may contribute to the development of new therapeutic approaches to endemic pemphigus foliaceus.

  17. Jolkinolide B induces apoptosis in MDA-MB-231 cells through inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Lin, Yu; Cui, Hongxia; Xu, Huiyu; Yue, Liling; Xu, Hao; Jiang, Liyan; Liu, Jicheng

    2012-06-01

    The phosphoinositol-3-kinase (PI3K)/Akt signal transduction pathway is critically important for tumor cell growth, proliferation and apoptosis. Apoptosis activation has been reported to be a good target in cancer therapies. In this study, we have found that jolkinolide B (JB), a diterpenoid from the traditional Chinese medicinal herb Euphorbia fischeriana Steud, strongly inhibited the expression of the PI3K p85 subunit and the phosphorylation of Akt. Furthermore, we evaluated the effects of JB on the proliferation and apoptosis of MDA-MB-231 human breast cancer cells. Our results show significant induction of apoptosis in MDA-MB-231 cells incubated with JB. This effect was enhanced by combination with LY294002. In addition, treatment with JB could induce downregulation of the Bcl-2/Bax ratio, and subsequent promotion of mitochondrial release of cytochrome c and activation of caspase-3. Taken together, JB-induced apoptosis of MDA-MB-231 cells occurs through the mitochondrial pathway. Further, the PI3K/Akt signaling cascade plays a role in the induction of apoptosis in JB-treated cells. These observations suggest that JB may have therapeutic applications in the treatment of cancer.

  18. Apoptosis: a four-week laboratory investigation for advanced molecular and cellular biology students.

    PubMed

    DiBartolomeis, Susan M; Moné, James P

    2003-01-01

    Over the past decade, apoptosis has emerged as an important field of study central to ongoing research in many diverse fields, from developmental biology to cancer research. Apoptosis proceeds by a highly coordinated series of events that includes enzyme activation, DNA fragmentation, and alterations in plasma membrane permeability. The detection of each of these phenotypic changes is accessible to advanced undergraduate cell and molecular biology students. We describe a 4-week laboratory sequence that integrates cell culture, fluorescence microscopy, DNA isolation and analysis, and western blotting (immunoblotting) to follow apoptosis in cultured human cells. Students working in teams chemically induce apoptosis, and harvest, process, and analyze cells, using their data to determine the order of events during apoptosis. We, as instructors, expose the students to an environment closely simulating what they would encounter in an active cell or molecular biology research laboratory by having students coordinate and perform multiple tasks simultaneously and by having them experience experimental design using current literature, data interpretation, and analysis to answer a single question. Students are assessed by examination of laboratory notebooks for completeness of experimental protocols and analysis of results and for completion of an assignment that includes questions pertaining to data interpretation and apoptosis.

  19. Mammalian Ste20-like protein kinase 3 mediates trophoblast apoptosis in spontaneous delivery.

    PubMed

    Wu, Hung-Yi; Lin, Chia-Ying; Lin, Tze-Yi; Chen, Tai-Chang; Yuan, Chiun-Jye

    2008-02-01

    The placenta is essential in transferring gases and nutrients from the mother to the developing fetus. Trophoblast apoptosis may cause labor or other pregnancy-related disorders. This study demonstrated the essential role of Mst3, a human Ste20-like protein kinase, in the oxidative stress-induced apoptosis of trophoblasts of term placenta in normal spontaneous delivery. Oxidative stress, but not hormones released during labor such as prostaglandin E1, oxytocin or angiotensin II, induces the expression of Mst3 and apoptosis of human term placenta after elective Cesarean section without labor pain. The role of Mst3 in oxidative stress-induced apoptosis was further demonstrated in the 3A-sub-E, a human trophoblast cell line. The H2O2-induced apoptosis of 3A-sub-E cells was largely suppressed by overexpressed Mst3KR, the kinase-dead mutant or by selective knockdown of endogenous Mst3. Further studies showed that Jun N-terminal kinase (JNK) may participate in the signaling pathway of H2O2-induced apoptosis by mediating the level of Mst3. Subsequently, caspase 3 and other downstream apoptotic components may be activated by Mst3 and trigger the apoptotic process in human trophoblasts.

  20. The role of autophagy in THP-1 macrophages resistance to HIV- vpr-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hua-ying, E-mail: zhouhuaying_2004@126.com; Zheng, Yu-huang; He, Yan

    Macrophages are resistant to cell death and are one of HIV reservoirs. HIV viral protein Vpr has the potential to promote infection of and survival of macrophages, which could be a highly significant factor in the development and/or maintenance of macrophage viral reservoirs. However, the impact of vpr on macrophages resistance to apoptosis is yet to be comprehended. Autophagy is a cell survival mechanism under stress state. In this study, we investigated whether autophagy is involved in macrophages resistant to vpr-induced apoptosis. Using the THP1 macrophages, we studied the interconnection between macrophages resistance to apoptosis and autophagy. We found thatmore » vpr is able to trigger autophagy in transfected THP-1 macrophages confirmed by electron microscopy (EM) and western blot analysis, and inhibition of autophagy with 3MA increased vpr-induced apoptosis. The results indicate that autophagy may be responsible for maintenance of macrophage HIV reservoirs. - Highlights: • HIV Vpr is able to trigger autophagy in transfected THP-1 macrophages. • Autophagy inhibition increases vpr-transfected THP1-macrophages apoptosis. • Autophagy is involved in THP-1 macrophages resistant to vpr-induced apoptosis.« less

  1. c-Myc plays a key role in TADs-induced apoptosis and cell cycle arrest in human hepatocellular carcinoma cells

    PubMed Central

    Zhang, Dongdong; Qi, Junpeng; Liu, Rui; Dai, Bingling; Ma, Weina; Zhan, Yingzhuan; Zhang, Yanmin

    2015-01-01

    Cancer cell growth is complicated progression which is regulated and controlled by multiple factors including cell cycle, migration and apoptosis. In present study, we report that TADs, a novel derivative of taspine, has an essential role in resisting hepatocellular carcinoma growth (including arrest cell cycle) and migration, and inducing cell apoptosis. Our findings demonstrated that the TADs showed good inhibition on the hepatoma cell growth and migration, and good action on apoptosis induction. Using genome-wide microarray analysis, we found the down-regulated growth and apoptosis factors, and selected down-regulated genes were confirmed by Western blot. Knockdown of a checkpoint c-Myc by siRNA significantly attenuated tumor inhibition and apoptosis effects of TADs. Moreover, our results indicated TADs could simultaneously increase cyclin D1 protein levels and decrease amount of cyclin E, cyclin B1 and cdc2 of the cycle proteins, and also TADs reduced Bcl-2 expression, and upregulated Bad, Bak and Bax activities. In conclusion, these results illustrated that TADs is a key factor in growth and apoptosis signaling inhibitor, has potential in cancer therapy. PMID:26045987

  2. Human hepatocytes apoptosis induced by replication of hepatitis B virus subgenotypes F1b and F4: Role of basal core promoter and preCore mutations.

    PubMed

    Elizalde, María Mercedes; Sevic, Ina; González López Ledesma, María Mora; Campos, Rodolfo Héctor; Barbini, Luciana; Flichman, Diego Martin

    2018-01-01

    In the context of pathogenesis of HBV infection, HBV genotypes and mutants have been shown to affect the natural course of chronic infection and treatment outcomes. In this work, we studied the induction of apoptosis by the replication of HBV subgenotypes F1b and F4, and the naturally occurring mutants BCP and preCore. Both subgenotypes F1b and F4 HBV genome transfections induced cell death by apoptosis in human hepatocytes. The BCPdm (A1762T/G1764A) and preCore (G1896A) mutants induced higher levels of apoptosis than the wt virus. This increase in apoptosis was not associated with the enhanced viral replication of the variants. HBV-mediated apoptosis was independent of viral subgenotypes, and associated with the modulation of members of the regulatory Bcl-2 family proteins expression in the mitochondrial apoptotic pathway. Finally, the apoptosis induction increase observed for the preCore mutants suggests that HBeAg might have an anti-apoptotic effect in human hepatocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus).

    PubMed

    Liu, Bo; Cui, Yanting; Brown, Paul B; Ge, Xianping; Xie, Jun; Xu, Pao

    2015-12-01

    We determined the effect of enrofloxacin on the lactate dehydrogenase (LDH) release, reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), mitochondria membrane potential (ΔΨm) and apoptosis in the hepatic cell line of grass carp (Ctenopharyngodon idellus). Cultured cells were treated with different concentrations of enrofloxacin (12.5-200 ug/mL) for 24 h. We found that the cytotoxic effect of enrofloxacin was mediated by apoptosis, and that this apoptosis occurred in a dose-dependent manner. The doses of 50,100 and 200 μg/mL enrofloxacin increased the LDH release and MDA concentration, induced cell apoptosis and reduced the ΔΨm compared to the control. The highest dose of 200 ug/mL enrofloxacin also significantly induced apoptosis accompanied by ΔΨm disruption and ROS generation and significantly reduced T-AOC and increased MDA concentration compared to the control. Our results suggest that the dose of 200 ug/mL enrofloxacin exerts its cytotoxic effect and produced ROS via apoptosis by affecting the mitochondria of the hepatic cells of grass carp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein.

    PubMed

    Xu, Zhipeng; Chen, Jiamin; Shao, Liming; Ma, Wangqian; Xu, Dingting

    2015-09-01

    It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.

  5. THE ROLE OF APOPTOSIS IN NEUROTOXICOLOGY.

    EPA Science Inventory

    The role of apoptosis in neurodegeneration in developing animals and in adults has become increasingly apparent in the past ten years. Normal apoptosis occurs in the CNS from the embryonic stage through senescence, with different cells in each region of the nervous system having ...

  6. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32.

    PubMed Central

    Slee, E A; Zhu, H; Chow, S C; MacFarlane, M; Nicholson, D W; Cohen, G M

    1996-01-01

    Interleukin-1 beta converting enzyme (ICE)-like proteases, which are synthesized as inactive precursors, play a key role in the induction of apoptosis. We now demonstrate that benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK), an ICE-like protease inhibitor, inhibits apoptosis by preventing the processing of CPP32 to its active form. These results suggest that novel inhibitors of apoptosis can be developed which prevent processing of proforms of ICE-like proteases. PMID:8670109

  7. Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species

    DTIC Science & Technology

    2007-08-01

    ERDC/TN ANSRP-07-2 August 2007 Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species by J...4. TITLE AND SUBTITLE Detection of Apoptosis in Early Life Stages as a Tool to Evaluate Chemical Control of Invasive Species 5a. CONTRACT NUMBER 5b...heralding apoptosis . Data analysis. An apoptotic index (API) was established by calculating the percentage of embryos in each life stage with

  8. Tumor Suppression and Sensitization to Taxol Induces Apoptosis of EIA in Breast Cancer Cells

    DTIC Science & Technology

    2005-06-01

    participated in the regulation of apoptosis induced by ceramide, mistletoe lectin, and 4-hydroxynonenal, an aldehyde product of mem- brane lipid peroxidation... Mistletoe lectin induces apoptosis and telomerase inhibition in hu- man A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res 2004; 27:68-76...participated subunit of protein phosphatase 2A [PP2A (PP2A/C)l enhanced the activity in the regulation of apoptosis induced by ceramide, mistletoe lectin, of

  9. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway.

    PubMed

    Zhang, Yuanjun; Xia, Guanghao; Zhang, Yaqiong; Liu, Juxiang; Liu, Xiaowei; Li, Weihua; Lv, Yaya; Wei, Suhong; Liu, Jing; Quan, Jinxing

    2017-08-01

    Toll-like receptor 4 (TLR4) has been implicated in vascular inflammation, as well as in the pathogenesis of atherosclerosis and diabetes. Vascular smooth muscle cell (VSMC) apoptosis has been shown to induce plaque vulnerability in atherosclerosis. Previous studies reported that palmitate induced apoptosis in VSMCs; however, the role of TLR4 in palmitate-induced apoptosis in VSMCs has not yet been defined. In this study, we investigated whether or not palmitate-induced apoptosis depended on the activation of the TLR4 pathway. VSMCs were treated with or without palmitate, CRISPR/Cas9z-mediated genome editing methods were used to deplete TLR4 expression, while NADPH oxidase inhibitors were used to inhibit reactive oxygen species (ROS) generation. Cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, ROS was measured using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) method, the mRNA and protein expression levels of caspase 3, caspase 9, BCL-2 and p53 were studied by real-time polymerase chain reaction (RT-PCR) and ELISA. Palmitate significantly promotes VSMC apoptosis, ROS generation, and expression of caspase 3, caspase 9 and p53; while NADPH oxidase inhibitor pretreatment markedly attenuated these effects. Moreover, knockdown of TLR4 significantly blocked palmitate-induced ROS generation and VSMC apoptosis accompanied by inhibition of caspase 3, caspase 9, p53 expression and restoration of BCL-2 expression. Our results suggest that palmitate-induced apoptosis depends on the activation of the TLR4/ROS/p53 signaling pathway, and that TLR4 may be a potential therapeutic target for the prevention and treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Astrocytes Secrete Exosomes Enriched with Proapoptotic Ceramide and Prostate Apoptosis Response 4 (PAR-4)

    PubMed Central

    Wang, Guanghu; Dinkins, Michael; He, Qian; Zhu, Gu; Poirier, Christophe; Campbell, Andrew; Mayer-Proschel, Margot; Bieberich, Erhard

    2012-01-01

    Amyloid protein is well known to induce neuronal cell death, whereas only little is known about its effect on astrocytes. We found that amyloid peptides activated caspase 3 and induced apoptosis in primary cultured astrocytes, which was prevented by caspase 3 inhibition. Apoptosis was also prevented by shRNA-mediated down-regulation of PAR-4, a protein sensitizing cells to the sphingolipid ceramide. Consistent with a potentially proapoptotic effect of PAR-4 and ceramide, astrocytes surrounding amyloid plaques in brain sections of the 5xFAD mouse (and Alzheimer disease patient brain) showed caspase 3 activation and were apoptotic when co-expressing PAR-4 and ceramide. Apoptosis was not observed in astrocytes with deficient neutral sphingomyelinase 2 (nSMase2), indicating that ceramide generated by nSMase2 is critical for amyloid-induced apoptosis. Antibodies against PAR-4 and ceramide prevented amyloid-induced apoptosis in vitro and in vivo, suggesting that apoptosis was mediated by exogenous PAR-4 and ceramide, potentially associated with secreted lipid vesicles. This was confirmed by the analysis of lipid vesicles from conditioned medium showing that amyloid peptide induced the secretion of PAR-4 and C18 ceramide-enriched exosomes. Exosomes were not secreted by nSMase2-deficient astrocytes, indicating that ceramide generated by nSMase2 is critical for exosome secretion. Consistent with the ceramide composition in amyloid-induced exosomes, exogenously added C18 ceramide restored PAR-4-containing exosome secretion in nSMase2-deficient astrocytes. Moreover, isolated PAR-4/ceramide-enriched exosomes were taken up by astrocytes and induced apoptosis in the absence of amyloid peptide. Taken together, we report a novel mechanism of apoptosis induction by PAR-4/ceramide-enriched exosomes, which may critically contribute to Alzheimer disease. PMID:22532571

  11. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions.

    PubMed

    Miller, Antonia G; Smith, Dawn G; Bhat, Manjunatha; Nagaraj, Ram H

    2006-04-28

    Retinal capillary pericytes undergo premature death, possibly by apoptosis, during the early stages of diabetic retinopathy. The alpha-oxoaldehyde, methylglyoxal (MGO), has been implicated as a cause of cell damage in diabetes. We have investigated the role of MGO and its metabolizing enzyme, glyoxalase I, in high glucose-induced apoptosis (annexin V binding) of human retinal pericyte (HRP). HRP incubated with high glucose (30 mm d-glucose) for 7 days did not undergo apoptosis despite accumulation of MGO. However, treatment with a combination of high glucose and S-p-bromobenzylglutathione cyclopentyl diester, a competitive inhibitor of glyoxalase I, resulted in apoptosis along with a dramatic increase in MGO. Overexpression of glyoxalase I in HRP protected against S-p-bromobenzylglutathione cyclopentyl diester-induced apoptosis under high glucose conditions. Incubation of HRP with high concentrations of MGO resulted in an increase of apoptosis relative to untreated controls. We found an elevation of nitric oxide (NO.) in HRP that was incubated with high glucose when compared with those incubated with either the l-glucose or untreated controls. When HRP were incubated with an NO. donor, DETANONOATE ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), we observed both decreased glyoxalase I expression and activity relative to untreated control cells. Further studies showed that HRP underwent apoptosis when incubated with DETANONOATE and that apoptosis increased further on co-incubation with high glucose. Our findings indicate that glyoxalase I is critical for pericyte survival under hyperglycemic conditions, and its inactivation and/or down-regulation by NO. may contribute to pericyte death by apoptosis during the early stages of diabetic retinopathy.

  12. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway

    PubMed Central

    Huang, Z; Zhang, L; Chen, Y; Zhang, H; Zhang, Q; Li, R; Ma, J; Li, Z; Yu, C; Lai, Y; Lin, T; Zhao, X; Zhang, B; Ye, Z; Liu, S; Wang, W; Liang, X; Liao, R; Shi, W

    2016-01-01

    Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases. PMID:26986510

  13. Upregulation of miR-98 Inhibits Apoptosis in Cartilage Cells in Osteoarthritis.

    PubMed

    Wang, Gui-Long; Wu, Yu-Bo; Liu, Jia-Tian; Li, Cui-Yun

    2016-11-01

    We aimed to investigate the effects of microRNA-98 (miR-98) on apoptosis in cartilage cells of osteoarthritis (OA) patients. Knee cartilage tissue samples were collected from 31 OA patients, 21 autopsies, and 26 amputation patients due to trauma. The clinicopathological data were recorded. Quantitative real-time polymerase chain reaction was performed to compare the miR-98 expression levels from cartilage cells obtained from the OA and non-OA patients. Clinicopathological characteristics of the patients were also analyzed. Primary chondrocytes were separated from cartilage tissues and transfected with plasmids or siRNA to overexpress or inhibit miR-98. Annexin V-PI double staining and TUNEL assays were used to examine apoptosis in the primary chondrocytes after transfection. Finally, a rat OA model was used to confirm the effects of miR-98 on apoptosis in cartilage cells in vivo. Compared with the normal cartilage tissues, miR-98 expression was reduced in the OA cartilage tissues (p < 0.01). The miR-98 expression levels were also significantly correlated with the OA stage (p < 0.05). In vitro, transfection with the miR-98 inhibitor increased apoptosis in the cartilage cells (p < 0.05), and transfection with a miR-98 mimic inhibited apoptosis in cartilage cells (p < 0.05). In the OA rat model, exogenous injection of the miR-98 mimic inhibited apoptosis in the rat cartilage cells thus alleviating OA. MiR-98 expression is reduced in the cartilage cells of OA patients and the overexpression of miR-98 inhibits cartilage cell apoptosis, while inhibition of microRNA-98 leads to cartilage cell apoptosis. These findings provide a theoretical basis for the development of novel targeted therapies for OA.

  14. Inhibitive effect on apoptosis in splenic lymphocytes of mice pretreated with lingzhi (Ganoderma lucidum) spores.

    PubMed

    Wang, Quanxi; Huang, Yifan; Wu, Baocheng; Mei, Jingliang; Zhang, Honglei; Qi, Baomin

    2014-04-01

    To investigate how the pretreatment of mice with Ganoderma spores affected the apoptosis of their splenic lymphocytes induced by dexamethasone after 19 days treatment. Sixty Kunming mice were randomly divided into six groups: blank control groupdrenched with normal saline; a drug control group drenched with 150 mg/mL Ganoderma spores; a model group treated with saline; a low dose group with 50 mg/mL Ganoderma spores; a moderate dose group with 100 mg/mL Ganoderma spores; and a high dose group with 150 mg/mL Ganoderma spores. The effect of Ganoderma spores on apoptosis in spleen lymphocytes was analyzed. All groups were treated for 19 days. On day 20, the model group and the 3 treatment groups were intraperitoneally injected dexamethasone to induce apoptosis. Splenic index and apoptosis indes were employed to measure cell apoptosis. The results showed that Ganoderma spores reduced the splenic index to different degrees in each group and the best effect was seen in the high dose group (P < 0.05).Terminal dexynucleotidyl transferase (TdT)-mediated 2'-Deoxyuridine 5'-Triphosphate nick end labeling staining revealed that the apoptotic index in all groups administered Ganoderma spores differed significantly from the model group, and a dose-response was observed. Flow cytometric analysis indicated that spleen lymphocyte apoptosis in the model group was extensive. Each dose of Ganoderma spores inhibited dexamethasone-induced apoptosis in spleen lymphocytes, and a dose-response was observed as well. The highest dose of Ganoderma spores decreased Malondialdehyde content in serum induced by dexamethasone (P < 0.05). The findings imply that the pretreatment of the mice with Ganoderma spores could reduce the apoptosis rate induced by dexamethasone in their splenic lymphocytes.

  15. 20(S)-Ginsenoside Rh2 Induce the Apoptosis and Autophagy in U937 and K562 Cells.

    PubMed

    Zhuang, Jianjian; Yin, Juxin; Xu, Chaojian; Mu, Ying; Lv, Shaowu

    2018-03-08

    Acute myeloid leukemia (AML) and Chronic myelogenous leukemia (CML) are common leukemia in adults. 20(S)-GRh2 is an important bioactive substance that is present in Panax ginseng. However, there are no investigations that deal with the comparison of apoptosis, the occurrence of autophagy, and the relationship between apoptosis and autophagy after being treated with 20(S)-GRh2 in AML and CML. In this study, we explored the effect of 20(S)-GRh2 on the AML and CML (U937 and K562). Fluorescence microscopy, CCK-8, Quantitative realtime PCR, Western blot, transmission electron microscopy (TEM), and flow cytometric analysis were used to detect the occurrence of cell proliferation inhibition, apoptosis, and autophagy. By using the above methods, it was determined that apoptosis induced by 20(S)-GRh2 was more obvious in K562 than U937 cells and 20(S)-GRh2 could generate autophagy in K562 and U937 cells. When pretreated by a specific inhibitor of autophagy, (3-methyladenine), the 20(S)-GRh2-induced apoptosis was enhanced, which indicated that 20(S)-GRh2-induced autophagy may protect U937 and K562 cells from undergoing apoptotic cell death. On the other hand, pretreated by an apoptosis suppressor (Z-VAD-FMK), it greatly induced the autophagy and partially prevented 20(S)-GRh2 induced apoptosis. This phenomenon indicated that 20(S)-GRh2-induced autophagy may serve as a survival mechanism and apoptosis and autophagy could act as partners to induce cell death in a cooperative manner. These findings may provide a rationale for future clinical application by using 20(S)-GRh2 combined autophagy inhibitors for AML and CML.

  16. Evaluation of apoptosis indexes in currently used oral alpha- blockers in prostate: a pilot study

    PubMed Central

    Demir, Mehmet; Akin, Yigit; Terim, Kubra Asena Kapakin; Gulum, Mehmet; Buyukfirat, Evren; Ciftci, Halil; Yeni, Ercan

    2018-01-01

    ABSTRACT Objectives: Apoptosis effect of oral alpha-blockers is known in the prostate. Apoptosis index of silodosin has not been proved, yet. Aims are to present apoptosis index of silodosin in prostate and to compare this with other currently used alpha-blocker's apoptosis indexes together with their clinical effects. Materials and Methods: Benign prostatic hyperplasia (BPH) patients were enrolled among those admitted to urology outpatient clinic between June 2014 and June 2015. Study groups were created according to randomly prescribed oral alpha-blocker drugs as silodosin 8mg (Group 1; n=24), tamsulosin 0.4mg (Group 2; n=30), alfuzosin 10mg (Group 3; n=25), doxazosin 8mg (Group 4; n=22), terazosin 5mg (Group 5; n=15). Pa- tients who refused to use any alpha-blocker drug were included into Group 6 as control group (n=16). We investigated apoptosis indexes of the drugs in prostatic tissues that were taken from patient's surgery (transurethral resection of prostate) and/or prostate biopsies. Immunochemical dyeing, light microscope, and Image Processing and Analy- sis in Java were used for evaluations. Statistical significant p was p<0.05. Results: There were 132 patients with mean follow-up of 4.2±2.1 months. Pathologist researched randomly selected 10 areas in each microscope set. Group 1 showed statisti- cal significant difference apoptosis index in immunochemical TUNEL dyeing and im- age software (p<0.001). Moreover, we determined superior significant development in parameters as uroflowmetry, quality of life scores, and international prostate symptom score in Group 1. Conclusions: Silodosin has higher apoptosis effect than other alpha-blockers in prostate. Thus, clinic improvement with silodosin was proved by histologic studies. Besides, static factor of BPH may be overcome with creating apoptosis. PMID:29617082

  17. AMP-activated Protein Kinase Mediates Apoptosis in Response to Bioenergetic Stress through Activation of the Pro-apoptotic Bcl-2 Homology Domain-3-only Protein BMF*

    PubMed Central

    Kilbride, Seán M.; Farrelly, Angela M.; Bonner, Caroline; Ward, Manus W.; Nyhan, Kristine C.; Concannon, Caoimhín G.; Wollheim, Claes B.; Byrne, Maria M.; Prehn, Jochen H. M.

    2010-01-01

    Heterozygous loss-of-function mutations in the hepatocyte nuclear factor 1A (HNF1A) gene result in the pathogenesis of maturity-onset diabetes-of-the-young type 3, (HNF1A-MODY). This disorder is characterized by a primary defect in metabolism-secretion coupling and decreased beta cell mass, attributed to excessive beta cell apoptosis. Here, we investigated the link between energy stress and apoptosis activation following HNF1A inactivation. This study employed single cell fluorescent microscopy, flow cytometry, gene expression analysis, and gene silencing to study the effects of overexpression of dominant-negative (DN)-HNF1A expression on cellular bioenergetics and apoptosis in INS-1 cells. Induction of DN-HNF1A expression led to reduced ATP levels and diminished the bioenergetic response to glucose. This was coupled with activation of the bioenergetic stress sensor AMP-activated protein kinase (AMPK), which preceded the onset of apoptosis. Pharmacological activation of AMPK using aminoimidazole carboxamide ribonucleotide (AICAR) was sufficient to induce apoptosis in naive cells. Conversely, inhibition of AMPK with compound C or AMPKα gene silencing protected against DN-HNF1A-induced apoptosis. Interestingly, AMPK mediated the induction of the pro-apoptotic Bcl-2 homology domain-3-only protein Bmf (Bcl-2-modifying factor). Bmf expression was also elevated in islets of DN-HNF1A transgenic mice. Furthermore, knockdown of Bmf expression in INS-1 cells using siRNA was sufficient to protect against DN-HNF1A-induced apoptosis. Our study suggests that overexpression of DN-HNF1A induces bioenergetic stress and activation of AMPK. This in turn mediates the transcriptional activation of the pro-apoptotic Bcl-2-homology protein BMF, coupling prolonged energy stress to apoptosis activation. PMID:20841353

  18. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis.

    PubMed

    Giampietri, Claudia; Petrungaro, Simonetta; Padula, Fabrizio; D'Alessio, Alessio; Marini, Elettra Sara; Facchiano, Antonio; Filippini, Antonio; Ziparo, Elio

    2012-11-01

    TNF-alpha levels in prostate cancer correlate with the extent of disease and are significantly elevated in the metastatic stage. TNF receptor superfamily controls two distinct signalling cascades, leading to opposite effects, i.e. apoptosis and survival; in prostate cancer TNF-alpha-mediated signalling induces cell survival and resistance to therapy. The apoptosis of prostate epithelial cancer cells LNCaP and PC3 was investigated upon treatment with the autophagy inhibitor 3-methyladenine and the autophagy inducer rapamycin, in combination with TNF-alpha. Cells were exposed to these molecules for 18, 24 and 48 h. Autophagy was assessed via LC3 Western blot analysis; propidium iodide and TUNEL stainings followed by flow cytometry or caspase-8 and caspase-3 activation assays were performed to evaluate apoptosis. TNF-alpha-induced apoptosis was potentiated by 3-methyladenine in the androgen-responsive LNCaP cells, whereas no effect was observed in the androgen-insensitive PC3 cells. Interestingly such pro-apoptosis effect in LNCaP cells was associated with reduced c-Flip levels through proteasomal degradation via increased reactive oxygen species production and p38 activation; such c-Flip reduction was reversed in the presence of either the proteasome inhibitor MG132 or the reactive oxygen species scavenger N-acetyl-cysteine. Conversely in PC3 but not in LNCaP cells, rapamycin stimulated TNF-alpha-dependent apoptosis; such effect was associated with reduced c-Flip promoter activity and FoxO3a activation. We conclude that TNF-alpha-induced apoptosis may be potentiated, in prostate cancer epithelial cells, through autophagy modulators. Increased sensitivity to TNF-alpha-dependent apoptosis correlates with reduced c-Flip levels which are consequent to a post-transcriptional and a transcriptional mechanism in LNCaP and PC3 cells respectively.

  19. Murine Pancreatic Cancer Alters T Cell Activation and Apoptosis and Worsens Survival After Cecal Ligation and Puncture.

    PubMed

    Lyons, John D; Chen, Ching-Wen; Liang, Zhe; Zhang, Wenxiao; Chihade, Deena B; Burd, Eileen M; Farris, Alton B; Ford, Mandy L; Coopersmith, Craig

    2018-06-08

    Patients with cancer who develop sepsis have a markedly higher mortality than patients who were healthy prior to the onset of sepsis. Potential mechanisms underlying this difference have previously been examined in two preclinical models of cancer followed by sepsis. Both pancreatic cancer/pneumonia and lung cancer/cecal ligation and puncture (CLP) increase murine mortality, associated with alterations in lymphocyte apoptosis and intestinal integrity. However, pancreatic cancer/pneumonia decreases lymphocyte apoptosis and increases gut apoptosis while lung cancer/CLP increases lymphocyte apoptosis and decreases intestinal proliferation. These results cannot distinguish the individual roles of cancer versus sepsis since different models of each were used. We therefore created a new cancer/sepsis model to standardize each variable. Mice were injected with a pancreatic cancer cell line and three weeks later cancer mice and healthy mice were subjected to CLP. Cancer septic mice had a significantly higher 10-day mortality than previously healthy septic mice. Cancer septic mice had increased CD4 T cells and CD8 T cells, associated with decreased CD4 T cell apoptosis 24 hours after CLP. Further, splenic CD8+ T cell activation was decreased in cancer septic mice. In contrast, no differences were noted in intestinal apoptosis, proliferation or permeability, nor were changes noted in local bacterial burden, renal, liver or pulmonary injury. Cancer septic mice thus have consistently reduced survival compared to previously healthy septic mice, independent of the cancer or sepsis model utilized. Changes in lymphocyte apoptosis are common to cancer model and independent of sepsis model whereas gut apoptosis is common to sepsis model and independent of cancer model. The host response to the combination of cancer and sepsis is dependent, at least in part, on both chronic co-morbidity and acute illness.

  20. P143 proteins from heterologous nucleopolyhedroviruses induce apoptosis in BM-N cells derived from the silkworm Bombyx mori.

    PubMed

    Hamajima, Rina; Kobayashi, Michihiro; Ikeda, Motoko

    2017-04-02

    We previously demonstrated that ribosomal RNA (rRNA) of Bombyx mori BM-N cells is rapidly degraded upon infection with heterologous nucleopolyhedroviruses (NPVs), including Autographa californica multiple NPV (AcMNPV), Hyphantria cunea MNPV, Spodoptera exigua MNPV and S. litura MNPV, and that this response is triggered by viral P143 proteins. The transient expression of P143 proteins from heterologous NPVs was also shown to induce apoptosis and caspase-3-like protease activation in BM-N cells. In the present study, we conducted a transient expression assay using BM-N cells expressing mutant AcMNPV P143 (Ac-P143) proteins and demonstrated that five amino acid residues cooperatively participate in Ac-P143 protein-triggered apoptosis of BM-N cells. Notably, these five residues were previously shown to be required for triggering rRNA degradation in BM-N cells. As rRNA degradation in BM-N cells does not result from apoptosis, the present results suggest that Ac-P143-triggered rRNA degradation is the upstream signal for apoptosis induction in BM-N cells. We further showed that P143 protein-triggered apoptosis does not occur in S. frugiperda Sf9 or Lymantria dispar Ld652Y cells, indicating that apoptosis induction by heterologous P143 proteins is a BM-N cell-specific response. In addition, the observed induction of apoptosis in BM-N cells was found to be mediated by activation of the initiator caspase Bm-Dronc. Taken together, these results suggest that BM-N cells evolved a unique antiviral system that recognizes heterologous NPV P143 proteins to induce rRNA degradation and caspase-dependent apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim.

    PubMed

    Wu, Yanna; Ma, Shanshan; Xia, Yong; Lu, Yangpeng; Xiao, Shiyin; Cao, Yali; Zhuang, Sidian; Tan, Xiangpeng; Fu, Qiang; Xie, Longchang; Li, Zhiming; Yuan, Zhongmin

    2017-01-26

    Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.

  2. Tilmicosin-induced bovine neutrophil apoptosis is cell-specific and downregulates spontaneous LTB4 synthesis without increasing Fas expression.

    PubMed

    Lee, Wilson D; Flynn, Andrew N; LeBlanc, Justin M; Merrill, John K; Dick, Paul; Morck, Douglas W; Buret, Andre G

    2004-01-01

    The pathology of bacterial pneumonia, such as seen in the bovine lung infected with Mannheimia haemolytica, is due to pathogen virulence factors and to inflammation initiated by the host. Tilmicosin is a macrolide effective in treating bacterial pneumonia and recent findings suggest that this antibiotic may provide anti-inflammatory benefits by inducing polymorphonuclear neutrophilic leukocyte (PMN) apoptosis. Using an in vitro bovine system, we examined the cell-specificity of tilmicosin, characterized the changes in spontaneous leukotriene B4 (LTB4) synthesis by PMN exposed to the macrolide, and assessed its effects on PMN Fas expression. Previous findings demonstrated that tilmicosin is able to induce PMN apoptosis. These results were confirmed in this study by the Annexin-V staining of externalized phosphatidylserine and the analysis with flow cytometry. The cell-specificity of tilmicosin was assessed by quantification of apoptosis in bovine PMN, mononuclear leukocytes, monocyte-derived macrophages, endothelial cells, epithelial cells, and fibroblasts cultured with the macrolide. The effect of tilmicosin on spontaneous LTB4 production by PMN was evaluated via an enzyme-linked immunosorbent assay. Finally, the mechanisms of tilmicosin-induced PMN apoptosis were examined by assessing the effects of tilmicosin on surface Fas expression on PMN. Tilmicosin-induced apoptosis was found to be at least partially cell-specific, as PMN were the only cell type tested to die via apoptosis in response to incubation with tilmicosin. PMN incubated with tilmicosin under conditions that induce apoptosis spontaneously produced less LTB4, but did not exhibit altered Fas expression. In conclusion, tilmicosin-induced apoptosis is specific to PMN, inhibits spontaneous LTB4 production, and occurs through a pathway independent of Fas upregulation.

  3. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells

    PubMed Central

    Zhao, Zhe; Liu, Jinxin; Deng, Yiqin; Huang, Wen; Ren, Chunhua; Call, Douglas R.; Hu, Chaoqun

    2018-01-01

    ABSTRACT Vibrio alginolyticus is a Gram-negative bacterium that is an opportunistic pathogen of both marine animals and people. Its pathogenesis likely involves type III secretion system (T3SS) mediated induction of rapid apoptosis, cell rounding and osmotic lysis of infected eukaryotic cells. Herein, we report that effector proteins, Val1686 and Val1680 from V. alginolyticus, were responsible for T3SS-mediated death of fish cells. Val1686 is a Fic-domain containing protein that not only contributed to cell rounding by inhibiting Rho guanosine triphosphatases (GTPases), but was requisite for the induction of apoptosis because the deletion mutant (Δval1686) was severely weakened in its ability to induce cell rounding and apoptosis in fish cells. In addition, Val1686 alone was sufficient to induce cell rounding and apoptosis as evidenced by the transfection of Val1686 into fish cells. Importantly, the Fic-domain essential for cell rounding activity was equally important to activation of apoptosis of fish cells, indicating that apoptosis is a downstream event of Val1686-dependent GTPase inhibition. V. alginolyticus infection likely activates JNK and ERK pathways with sequential activation of caspases (caspase-8/-10, -9 and -3) and subsequent apoptosis. Val1680 contributed to T3SS-dependent lysis of fish cells in V. alginolyticus, but did not induce autophagy as has been reported for its homologue (VopQ) in V. parahaemolyticus. Together, Val1686 and Val1680 work together to induce apoptosis, cell rounding and cell lysis of V. alginolyticus-infected fish cells. These findings provide new insights into the mechanism of cell death caused by T3SS of V. alginolyticus. PMID:29252102

  4. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    PubMed

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Honokiol exerts dual effects on browning and apoptosis of adipocytes.

    PubMed

    Lone, Jameel; Yun, Jong Won

    2017-12-01

    Induction of brown adipocyte-like phenotype (browning) in white adipocytes and promotion of apoptosis by dietary and pharmacological compounds is considered a novel strategy against obesity. Here, we show that honokiol exerts dual modulatory effects on adipocytes via induction of browning in 3T3-L1 white adipocytes and apoptosis as well as activation of HIB1B brown adipocytes combined with inhibition of apoptosis. Honokiol-induced browning and apoptosis were investigated by determining expression levels of brown adipocyte-specific genes and proteins by RT-PCR and immunoblot analysis, respectively. Apoptotic data were validated by immunofluorescence and ROS levels were measured by FACS analysis. Honokiol treatment induced browning by elevating expression levels of brown adipocyte-specific genes such as Cidea, Cox8, Fgf21, Pgc-1α, and Ucp1. Honokiol promoted apoptosis of 3T3-L1 white adipocytes and inhibited apoptosis of HIB1B brown adipocytes via opposite regulation of the pro-apoptotic protein BAX and anti-apoptotic protein Bcl-2. Honokiol also significantly increased protein expression levels of ACOX1, CPT1, p-HSL, and p-PLIN and reduced ROS levels, suggesting its possible role in fat oxidation and lipid catabolism. Honokiol-induced browning could be mediated by activation of ERK, as inhibition of ERK by FR180204 abolished expression of PGC-1α and UCP1. Our findings suggest that honokiol exhibits a modulatory role in adipocytes via induction of browning and apoptosis in white adipocytes, promotion of catabolic lipid metabolism, as well as activation and inhibition of apoptosis in HIB1B brown adipocytes, thereby exhibiting therapeutic potential against obesity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  6. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70–Bax interaction in prostate cancer

    PubMed Central

    Shukla, Sanjeev; Fu, Pingfu; Gupta, Sanjay

    2014-01-01

    Dysfunction of the apoptotic pathway in prostate cancer cells confers apoptosis resistance towards various therapies. A novel strategy to overcome resistance is to directly target the apoptotic pathway in cancer cells. Apigenin, an anticancer agent, selectively toxic to cancer cells induces cell cycle arrest and apoptosis through mechanisms which are not fully explored. In the present study we provide novel insight into the mechanisms of apoptosis induction by apigenin. Treatment of androgen-refractory human prostate cancer PC-3 and DU145 cells with apigenin resulted in dose-dependent suppression of XIAP, c-IAP1, c-IAP2 and survivin protein levels. Apigenin treatment resulted in significant decrease in cell viability and apoptosis induction with the increase of cytochrome C in time-dependent manner. These effects of apigenin were accompanied by decrease in Bcl-xL and Bcl-2 and increase in the active form of Bax protein. The apigenin-mediated increase in Bax was due to dissociation of Bax from Ku70 which is essential for apoptotic activity of Bax. Apigenin treatment resulted in the inhibition of class I histone deacetylases and HDAC1 protein expression, thereby increasing the acetylation of Ku70 and the dissociation of Bax resulting in apoptosis of cancer cells. Furthermore, apigenin significantly reduced HDAC1 occupancy at the XIAP promoter, suggesting that histone deacetylation might be critical for XIAP downregulation. These results suggest that apigenin targets inhibitor of apoptosis proteins and Ku70–Bax interaction in the induction of apoptosis in prostate cancer cells and in athymic nude mouse xenograft model endorsing its in vivo efficacy. PMID:24563225

  7. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells.

    PubMed

    Chen, Haiyan; Wang, Ji-Ping; Santen, Richard J; Yue, Wei

    2015-06-01

    Estrogens stimulate growth of hormone-dependent breast cancer but paradoxically induce tumor regress under certain circumstances. We have shown that long-term estrogen deprivation (LTED) enhances the sensitivity of hormone dependent breast cancer cells to estradiol (E2) so that physiological concentrations of estradiol induce apoptosis in these cells. E2-induced apoptosis involve both intrinsic and extrinsic pathways but precise mechanisms remain unclear. We found that exposure of LTED MCF-7 cells to E2 activated AMP activated protein kinase (AMPK). In contrast, E2 inhibited AMPK activation in wild type MCF-7 cells where E2 prevents apoptosis. As a result of AMPK activation, the transcriptional activity of FoxO3, a downstream factor of AMPK, was up-regulated in E2 treatment of LTED. Increased activity of FoxO3 was demonstrated by up-regulation of three FoxO3 target genes, Bim, Fas ligand (FasL), and Gadd45α. Among them, Bim and FasL mediate intrinsic and extrinsic apoptosis respectively and Gadd45α causes cell cycle arrest at the G2/M phase. To further confirm the role of AMPK in apoptosis, we used AMPK activator AICAR in wild type MCF-7 cells and examined apoptosis, proliferation and expression of Bim, FasL, and Gadd45α. The effects of AICAR on these parameters recapitulated those observed in E2-treated LTED cells. Activation of AMPK by AICAR also increased expression of Bax in MCF-7 cells and its localization to mitochondria, which is a required process for apoptosis. These results reveal that AMPK is an important factor mediating E2-induced apoptosis in LTED cells, which is implicative of therapeutic potential for relapsing breast cancer after hormone therapy.

  8. Molecular mechanisms of celery seed extract induced apoptosis via s phase cell cycle arrest in the BGC-823 human stomach cancer cell line.

    PubMed

    Gao, Lin-Lin; Feng, Lei; Yao, Shu-Tong; Jiao, Peng; Qin, Shu-Cun; Zhang, Wei; Zhang, Ya-Bin; Li, Fu-Rong

    2011-01-01

    Mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. Loss of cell cycle control, leading to uncontrolled proliferation, is common in cancer. Therefore, the identification of potent and selective cyclin dependent kinase inhibitors is a priority for anti-cancer drug discovery. There are at least two major apoptotic pathways, initiated by caspase-8 and caspase-9, respectively, which can activate caspase cascades. Apoptosis triggered by activation of the mitochondrial-dependent caspase pathway represents the main programmed cell death mechanism. This is activated by various intracellular stresses that induce permeabilization of the mitochondrial membrane. Anti-tumor effects of celery seed extract (CSE) and related mechanisms regarding apoptosis were here investigated in human gastric cancer BGC-823 cells. CSE was produced by supercritical fluid extraction. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide (MTT) assay and apoptosis by flow cytometry using Annexin/PI staining and DAPI staining and a laser scanning confocal microscope (LSCM). Cell cycling was evaluated using PI staining with flow cytometry and expression of cell cycle and apoptosis-related proteins cyclin A, CDK2, bcl-2 and bax was assessed by immunohistochemical staining. CSE had an anti-proliferation effect on human gastric cancer BGC-823 cells in a dose- and time-dependent manner. After treatment, the apoptotic rate significantly increased, with morphological changes typical of apoptosis observed with LSCM by DAPI staining. Cell cycle and apoptosis related proteins, such as cyclin A, CDK2 and bcl-2 were all down-regulated, whereas bax was up-regulated. The molecular determinants of inhibition of cell proliferation as well as apoptosis of CSE may be associated with cycle arrest in the S phase.

  9. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Li; College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158; Huang, Yong

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressedmore » cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.« less

  10. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression.

    PubMed

    Xia, Zhengyuan; Liu, Min; Wu, Yong; Sharma, Vijay; Luo, Tao; Ouyang, Jingping; McNeill, John H

    2006-11-21

    The circulatory inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is increased in pathological conditions, such as diabetes, which initiate or exacerbate vascular endothelial injury. Both nitric oxide (NO) and reactive oxygen species may play a dual role (i.e., inhibiting or promoting) in TNF-alpha-induced endothelial cell apoptosis. We investigated the effects of the antioxidant N-acetylcysteine on TNF-alpha-induced apoptosis in human vascular endothelial cell (cell line ECV304) apoptosis, NO production and lipid peroxidation. Cultured vascular endothelial cell (ECV304) were either not treated (control), or treated with TNF-alpha (40 ng/ml) alone or TNF-alpha in the presence of N-acetylcysteine at 30 mmol/l or 1 mmol/l, respectively, for 24 h. Cell viability was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Cell apoptosis was assessed by flow cytometry. TNF-alpha-induced endothelial cell apoptosis was associated with increased inducible NO synthase but reduced endothelial NO synthase (eNOS) protein expression. NO production and the levels of the lipid peroxidation product malondialdehyde were concomitantly increased. Treatment with NAC at 30 mmol/l restored eNOS expression and further increased NO production as compared to TNF-alpha alone, resulting in improved cell viability and reduced apoptosis. This was accompanied by increased superoxide dismutase activity, increased glutathione peroxidase production and reduced malondialdehyde levels. N-acetylcysteine at 1 mmol/l, however, did not have significant effects on TNF-alpha-induced endothelial cell apoptosis and cell viability despite it slightly enhanced glutathione peroxidase production. N-acetylcysteine attenuation of TNF-alpha-induced human vascular endothelial cell apoptosis is associated with the restoration of eNOS expression.

  11. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting the NF-κB-dependent Fas/FasL pathway.

    PubMed

    Tian, Hua; Yao, Shu-Tong; Yang, Na-Na; Ren, Jie; Jiao, Peng; Zhang, Xiangjian; Li, Dong-Xuan; Zhang, Gong-An; Xia, Zhen-Fang; Qin, Shu-Cun

    2017-08-04

    This study was designed to explore the protective effect of D4F, an apolipoprotein A-I mimetic peptide, on nuclear factor-κB (NF-κB)-dependent Fas/Fas ligand (FasL) pathway-mediated apoptosis in macrophages induced by oxidized low-density lipoprotein (ox-LDL). Our results showed that ox-LDL induced apoptosis, NF-κB P65 nuclear translocation and the upregulation of Fas/FasL pathway-related proteins, including Fas, FasL, Fas-associated death domain proteins (FADD), caspase-8 and caspase-3 in RAW264.7 macrophages, whereas silencing of Fas blocked ox-LDL-induced macrophage apoptosis. Furthermore, silencing of P65 attenuated macrophage apoptosis and the upregulation of Fas caused by ox-LDL, whereas P65 expression was not significantly affected by treatment with Fas siRNA. D4F attenuated the reduction of cell viability and the increase in lactate dehydrogenase leakage and apoptosis. Additionally, D4F inhibited ox-LDL-induced P65 nuclear translocation and upregulation of Fas/FasL pathway-related proteins in RAW264.7 cells and in atherosclerotic lesions of apoE -/- mice. However, Jo2, a Fas-activating monoclonal antibody, reversed the inhibitory effect of D4F on ox-LDL-induced cell apoptosis and upregulation of Fas, FasL and FADD. These data indicate that NF-κB mediates Fas/FasL pathway activation and apoptosis in macrophages induced by ox-LDL and that D4F protects macrophages from ox-LDL-induced apoptosis by suppressing the activation of NF-κB and the Fas/FasL pathway.

  12. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells.

    PubMed

    Chow, Shu-Er; Chen, Yu-Wen; Liang, Chi-Ang; Huang, Yao-Kuan; Wang, Jong-Shyan

    2012-11-01

    Autophagy as well as apoptosis is an emerging target for cancer therapy. Wogonin, a flavonoid compound derived from the traditional Chinese medicine of Huang-Qin, has anticancer activity in many cancer cells including human nasopharyngeal carcinoma (NPC). However, the involvement of autophagy in the wogonin-induced apoptosis of NPC cells was still uninvestigated. In this study, we found wogonin-induced autophagy had interference on the process of apoptosis. Wogonin-induced autophagy formation evidenced by LC3 I/II cleavage, acridine orange (AO)-stained vacuoles and the autophagosome/autolysosome images of TEM analysis. Activation of autophagy with rapamycin resulted in increased wogonin-mediated autophagy via inhibition of mTOR/P70S6K pathway. The functional relevance of autophagy in the antitumor activity was investigated by annexin V-positive stained cells and PARP cleavage. Induction of autophagy by rapamycin ameliorated the wogonin-mediated apoptosis, whereas inhibition of autophagy by 3-methyladenine (3-MA) or bafilomycin A1 increased the apoptotic effect. Interestingly, this study also found, in addition the mTOR/P70S6K pathway, wogonin also inhibited Raf/ERK pathway, a variety of Akt pathways. Inactivation of PI(3) K/Akt by their inhibitors significantly induced apoptosis and markedly sensitized the NPC cells to wogonin-induced apoptosis. This anticancer effect of Akt was further confirmed by SH6, a specific inhibitor of Akt. Importantly, inactivation of its downstream molecule ERK by PD98059, a MEK inhibitor, also induced apoptosis. This study indicated wogonin-induced both autophagy and apoptosis through a variety of Akt pathways and suggested modulation of autophagy might provide profoundly the potential therapeutic effect. Copyright © 2012 Wiley Periodicals, Inc.

  13. Berberine protects HK-2 cells from hypoxia/reoxygenation induced apoptosis via inhibiting SPHK1 expression.

    PubMed

    Lu, Jianrao; Yi, Yang; Pan, Ronghua; Zhang, Chuanfu; Han, Haiyan; Chen, Jie; Liu, Wenrui

    2018-03-01

    Renal ischemia reperfusion injury (RIRI) refers to the irreversible damage for renal function when blood perfusion is recovered after ischemia for an extended period, which is common in clinical surgeries and has been regarded as a major risk for acute renal failures (ARF) that is accompanied with unimaginably high morbidity and mortality. Hypoxia during ischemia followed by reoxygenation via reperfusion serves as a major event contributing to cell apoptosis, which has been widely accepted as the vital pathogenesis in RIRI. Preventing apoptosis in renal tubular epithelial cell has been considered as effective method for blocking RIRI. In this paper, we established a hypoxia/reoxygenation (H/R) injury model in human proximal tubular epithelial HK-2 cells. Here, we found increased SPHK1 levels in H/R injured HK-2 cells, which could be significantly down regulated after berberine treatment. Berberine has been reported to exert a protective effect on H/R-induced apoptosis of HK-2 cells. So, in our present study, we planned to investigate whether SPHK1 participated in the anti-apoptosis process of berberine in H/R injured HK-2 cells. Our study confirmed the protective effect of berberine against H/R-induced apoptosis in HK-2 cells through promoting cells viability, inhibiting cells apoptosis, and down-regulating p-P38, caspase-3, caspase-9 as well as SPHK1, while up regulating the ratio of Bcl-2/Bax. However, SPHK1 overexpression in HK-2 cells induced severe apoptosis, which can be significantly ameliorated with additional berberine treatment. We concluded that berberine could remarkably prevent H/R-induced apoptosis in HK-2 cells through down-regulating SPHK1 expression levels, and the mechanisms included the suppression of p38 MAPK activation and mitochondrial stress pathways.

  14. Apoptosis and proliferation of oligodendrocyte progenitor cells in the irradiated rodent spinal cord

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atkinson, Shelley L.; Li Yuqing; Wong, C. Shun

    2005-06-01

    Purpose: Oligodendrocytes undergo early apoptosis after irradiation. The aim of this study was to determine the relationship between oligodendroglial apoptosis and proliferation of oligodendrocyte progenitor cells (OPC) in the irradiated central nervous system. Methods and Materials: Adult rats and p53 transgenic mice were given single doses of 2 Gy, 8 Gy, or 22 Gy to the cervical spinal cord. Apoptosis was assessed using TUNEL (Tdt-mediated dUTP terminal nick-end labeling) staining or by examining nuclear morphology. Oligodendrocyte progenitor cells were identified with an NG2 antibody or by in situ hybridization for platelet-derived growth factor receptor {alpha}. Proliferation of OPC was assessedmore » by in vivo bromodeoxyuridine (BrdU) labeling and subsequent immunohistochemistry. Because radiation-induced apoptosis of oligodendroglial cells is p53 dependent, p53 transgenic mice were used to study the relationship between apoptosis and cell proliferation. Results: Oligodendrocyte progenitor cells underwent apoptosis within 24 h of irradiation in the rat. That did not result in a change in OPC density at 24 h. Oligodendrocyte progenitor cell density was significantly reduced by 2-4 weeks, but showed recovery by 6 weeks after irradiation. An increase in BrdU-labeled cells was observed at 2 weeks after 8 Gy or 22 Gy, and proliferating cells in the rat spinal cord were immunoreactive for NG2. The mouse spinal cord showed a similar early cell proliferation after irradiation. No difference was observed in the proliferation response in the spinal cord of p53 -/- mice compared with wild type animals. Conclusions: Oligodendroglial cells undergo early apoptosis and OPC undergo early proliferation after ionizing radiation. However, apoptosis is not likely to be the trigger for early proliferation of OPC in the irradiated central nervous system.« less

  15. Age-Related Susceptibility to Apoptosis in Human Retinal Pigment Epithelial Cells Is Triggered by Disruption of p53–Mdm2 Association

    PubMed Central

    Bhattacharya, Sujoy; Chaum, Edward; Johnson, Dianna A.; Johnson, Leonard R.

    2012-01-01

    Purpose. Relatively little is known about the contribution of p53/Mdm2 pathway in apoptosis of retinal pigment epithelial (RPE) cells or its possible link to dysfunction of aging RPE or to related blinding disorders such as age-related macular degeneration (AMD). Methods. Age-associated changes in p53 activation were evaluated in primary RPE cultures from human donor eyes of various ages. Apoptosis was evaluated by activation of caspases and DNA fragmentation. Gene-specific small interfering RNA was used to knock down expression of p53. Results. We observed that the basal rate of p53-dependent apoptosis increased in an age-dependent manner in human RPE. The age-dependent increase in apoptosis was linked to alterations in several aspects of the p53 pathway. p53 phosphorylation Ser15 was increased through the stimulation of ATM-Ser1981. p53 acetylation Lys379 was increased through the inhibition of SIRT1/2. These two posttranslational modifications of p53 blocked the sequestration of p53 by Mdm2, thus resulting in an increase in free p53 and of p53 stimulation of apoptosis through increased expression of PUMA (p53 upregulated modulator of apoptosis) and activation of caspase-3. Aged RPE also had reduced expression of antiapoptotic Bcl-2, which contributed to the increase in apoptosis. Of particular interest in these studies was that pharmacologic treatments to block p53 phosphorylation, acetylation, or expression were able to protect RPE cells from apoptosis. Conclusions. Our studies suggest that aging in the RPE leads to alterations of specific checkpoints in the apoptotic pathway, which may represent important molecular targets for the treatment of RPE-related aging disorders such as AMD. PMID:23139272

  16. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  17. Long non-coding RNA HOTAIR promotes UVB-induced apoptosis and inflammatory injury by up-regulation of PKR in keratinocytes.

    PubMed

    Liu, Guo; Zhang, Wenhao

    2018-06-11

    Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.

  18. Assessment of neutrophil apoptosis ex vivo in hepatosplenic patients with neutropenia pre and post splenectomy.

    PubMed

    Aref, Salah E; Mahmoud, L A; El Refie, M F; Abdel Wahab, M; Abou Samara, N

    2003-08-01

    The pathophysiology of neutropenia seen in patients with schistosomiasis or hepatitis C infection that complicates the course of liver disease is poorly understood. We evaluated the neutrophil apoptosis before and after splenectomy to clarify the role of apoptosis and splenomegaly in the occurrence of neutropenia. Neutrophils were isolated from 23 hepato-splenic patients with neutropenia, 8 hepatosplenic patients with normal neutrophil counts, 7 patients who were post splenectomy, and a further ten normal control subjects. These were cultured for 24 h and the time course of neutrophil apoptosis was assessed by determination of Annexin V and propidium iodide binding by flow cytometry. Fas and Bcl2 expression were determined on fresh neutrophils using flow cytometry. Levels of tumor necrosis factor alpha, interleukin 3, and gamma interferon were evaluated using an immunosorbent assay. Neutrophil apoptosis was minimal in the fresh neutrophils, however, cultured neutrophils exhibited significantly greater apoptosis in neutropenic patients when compared to non-neutropenic patients (P=0.01 at 4 h and P<0.05 at 24 h) and control group (P<0.01 at 4 h and 24 h). After splenectomy, the percentage of neutrophil apoptosis declined to the normal control levels (P>0.05). Fas and Bcl2 expression on neutrophil were significantly higher in the neutropenic group as compared to normal controls (P<0.05, P=0.01 respectively). Serum TNF alpha, IL-3, and IFN gamma levels were not significantly different in all studied groups. Neutrophils from neutropenic hepatosplenic patients exhibit markedly accelerated apoptosis, which is normalized after splenectomy. Thus increased neutrophil apoptosis may in part be responsible for the occurrence of neutropenia.

  19. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts.

    PubMed

    Zhai, Yue; Wu, Bo; Li, Jia; Yao, Xi-ying; Zhu, Ping; Chen, Zhi-nan

    2016-01-01

    TNF is highly expressed in synovial tissue of rheumatoid arthritis (RA) patients, where it induces proinflammatory cytokine secretion. However, in other cases, TNF will cause cell death. Considering the abnormal proliferation and activation of rheumatoid arthritis synovioblasts, the proper rate of synovioblast apoptosis could possibly relieve arthritis. However, the mechanism mediating TNF-induced synovioblast survival versus cell death in RA is not fully understood. Our objective was to study the role of CD147 in TNF downstream pathway preference in RA synovioblasts. We found that overexpressing TNF in synovial tissue did not increase the apoptotic level and, in vitro, TNF-induced mild synovioblast apoptosis and promoted IL-6 secretion. CD147, which was highly expressed in rheumatoid arthritis synovial fibroblasts (RASFs), increased the resistance of synovioblasts to apoptosis under TNF stimulation. Downregulating CD147 both increased the apoptotic rate and inhibited IκB kinase (IKK)/IκB/NF-κB pathway-dependent proinflammatory cytokine secretion. Further, we determined that it was the extracellular portion of CD147 and not the intracellular portion that was responsible for synovioblast apoptosis resistance. CD147 monoclonal antibody inhibited TNF-induced proinflammatory cytokine production but had no effect on apoptotic rates. Thus, our study indicates that CD147 is resistant to TNF-induced apoptosis by promoting IKK/IκB/NF-κB pathway, and the extracellular portion of CD147 is the functional region. CD147 inhibits TNF-stimulated RASF apoptosis. CD147 knockdown decreases IKK expression and inhibits NF-κB-related cytokine secretion. CD147's extracellular portion is responsible for apoptosis resistance. CD147 antibody inhibits TNF-related cytokine secretion without additional apoptosis.

  20. CDB-4124 does not cause apoptosis in cultured fibroid cells.

    PubMed

    Roeder, Hilary; Jayes, Friederike; Feng, Liping; Leppert, Phyllis C

    2011-09-01

    Selective progesterone receptor modulators (SPRMs), such as asoprisnil (J867) and ulipristal (CDB-2914), have been shown to reduce fibroid volume in vivo and to induce apoptosis in vitro. CDB-4124 (telapristone), a SPRM with different side groups, also reduced fibroid volume in vivo, and we hypothesized that this SPRM would also cause apoptosis in cultured fibroid cells. Immortalized, progesterone receptor-positive fibroid cells, known to be capable of apoptosis, were grown to 80% confluence in serum-containing media. Cells were then treated for 48 hours in serum-free media with 0, 10, 100, or 1000 nmol/L CDB-4124. Actinomycin-D and staurosporine were used as positive controls to induce apoptosis. Apoptosis was quantified using a TUNEL-fluorescein kit. Images were captured with a widefield-fluorescence microscope and analyzed using MetaMorph image analysis software. To validate results, Western blots of total cell lysates were probed for cleaved caspase-3 (c-CASP3). Experiments were repeated 3 times using independent cell batches. Analysis of 19 712 nuclei indicated 14.8% ± 10.9% (mean ± SEM), 8.4% ± 4.6%, 8.2% ± 4.7%, and 9.3% ± 6.3% apoptosis in 0, 10, 100, and 1000 nmol/L CDB-4124-treated cells, respectively. There was no evidence of elevated c-CASP3 over vehicle control after treatment with CDB-4124. CDB-4124 did not significantly induce apoptosis in cultured fibroid cells under the conditions described suggesting apoptosis may not be the main pathway responsible for CDB-4124-induced fibroid shrinkage. Variations in SPRM biological effects may be due to differences in fibroid source cells, binding kinetics, or extracellular matrix characteristics, and can be exploited in further investigations of the mechanisms of action of SPRMs in fibroid biology.

  1. Virus-associated apoptosis of blood neutrophils as a risk factor for invasive meningococcal disease

    PubMed Central

    Smith, Harry; Rogers, Sharon L; Smith, Helen V; Gillis, David; Siskind, Victor; Smith, Judith A

    2013-01-01

    Aims To quantify a range of haematological indicators of viral infection (leucocyte apoptosis, cytopenia of normal lymphocytes, reactive lymphocyte increase, neutropenia) in patients with recent onset invasive meningococcal disease (IMD), with a view to test the association of viral infection with IMD and identify possible haematological risk factors for its development. Subjects and methods 88 patients with recent onset IMD, classified on clinical severity as fatal (n=14), septic shock survived (n=26) and no shock (n=48), and 50 healthy controls were studied. Blood film microscopy and leucocyte counts were used to quantify the virus-associated indicators. Cocci-containing neutrophils were also quantified. Results All viral parameters were significantly more frequent or higher in patients than controls, with leucocyte apoptosis found only in the patients. A significant gradient in accord with clinical severity was found for neutrophil and lymphocyte apoptosis, neutropenia and cocci-containing neutrophils. Crucially, apoptotic neutrophils did not contain cocci, and cocci-containing neutrophils were not apoptotic. Conclusions The correlation between magnitude of neutrophil apoptosis and severity of IMD suggests a cause–effect relationship. We propose that neutrophil apoptosis is more likely a facilitator rather than an effect of IMD for these reasons: (1) apoptotic neutrophils did not contain cocci and cocci-containing neutrophils were not apoptotic, (2) leucocyte apoptosis is a recognised viral effect and (3) Neisseria meningitidis is incapable of producing a Panton–Valentine type leucocidin. The lymphocyte apoptosis which accompanies neutrophil death may contribute to risk by impairing the generation of microbicidal antibody. Leucocyte apoptosis is a morphological expression of viral immunosuppression and, we suggest, is a likely contributor to a range of viral effects. PMID:23801496

  2. White Tea Extract Induces Apoptosis in Nonsmall Cell Lung Cancer Cells– The Role of PPAR-γ and 15-Lipoxygenases

    PubMed Central

    Mao, Jenny T.; Nie, Wen-Xian; Tsu, I-Hsien; Jin, Yu-Sheng; Rao, Jian yu; Lu, Qing-Yi; Zhang, Zuo-Feng; Go, Vay Liang W.; Serio, Kenneth J.

    2010-01-01

    Purpose Emerging preclinical data suggests that tea possess anticarcinogenic and antimutagenic properties. We therefore hypothesize that white tea extract (WTE) is capable of favorably modulating apoptosis, a mechanism associated with lung tumorigenesis. Experimental Design We examined the effects of physiologically relevant doses of WTE on the induction of apoptosis in the nonsmall cell lung cancer (NSCLC) cell lines, A549 (adenocarcinoma) and H520 (squamous cell carcinoma) cells. We further characterized the molecular mechanisms responsible for the WTE-induced apoptosis, including the induction of PPAR-γ and the 15-lipoxygenase (15-LOX) signaling pathway. Results We found that WTE was effective in inducing apoptosis in both A549 and H520 cells, and inhibition of PPAR-γ with GW 9662 partially reversed the WTE-induced apoptosis. We further demonstrate that WTE increased PPAR-γ activation and mRNA expression, concomitantly increased 15-HETE release, and up-regulated 15-LOX-1 and 2 mRNA expression by A549 cells. Inhibition of 15-LOX with NGDA, as well as caffeic acid, abrogated the WTE-induced PPAR-γ activation and up-regulation of PPAR-γ mRNA expression in A549 cells. WTE also induced cyclin-dependent kinase inhibitor 1A (CDKN1A) mRNA expression and activated caspase 3. Inhibition of caspase 3 abrogated the WTE-induced apoptosis. Conclusions Our findings indicate that WTE is capable of inducing apoptosis in NSCLC cell lines. The induction of apoptosis appears to be mediated, in part, through the up-regulation of the PPAR-γ and 15-LOX signaling pathways, with enhanced activation of caspase 3. Our findings support the future investigation of WTE as an antineoplastic and chemopreventive agent for lung cancer. PMID:20668019

  3. Evaluation of apoptosis indexes in currently used oral alpha-blockers in prostate: a pilot study.

    PubMed

    Demir, Mehmet; Akin, Yigit; Terim, Kubra Asena Kapakin; Gulum, Mehmet; Buyukfirat, Evren; Ciftci, Halil; Yeni, Ercan

    2018-01-01

    Apoptosis effect of oral alpha-blockers is known in the prostate. Apoptosis index of silodosin has not been proved, yet. Aims are to present apoptosis index of silodosin in prostate and to compare this with other currently used alpha-blocker's apoptosis indexes together with their clinical effects. Benign prostatic hyperplasia (BPH) patients were enrolled among those admitted to urology outpatient clinic between June 2014 and June 2015. Study groups were created according to randomly prescribed oral alpha-blocker drugs as silodosin 8mg (Group 1; n=24), tamsulosin 0.4mg (Group 2; n=30), alfuzosin 10mg (Group 3; n=25), doxazosin 8mg (Group 4; n=22), terazosin 5mg (Group 5; n=15). Patients who refused to use any alpha-blocker drug were included into Group 6 as control group (n=16). We investigated apoptosis indexes of the drugs in prostatic tissues that were taken from patient's surgery (transurethral resection of prostate) and/or prostate biopsies. Immunochemical dyeing, light microscope, and Image Processing and Analysis in Java were used for evaluations. Statistical significant p was p<0.05. There were 132 patients with mean follow-up of 4.2±2.1 months. Pathologist researched randomly selected 10 areas in each microscope set. Group 1 showed statistical significant difference apoptosis index in immunochemical TUNEL dyeing and image software (p<0.001). Moreover, we determined superior significant development in parameters as uroflowmetry, quality of life scores, and international prostate symptom score in Group 1. Silodosin has higher apoptosis effect than other alpha-blockers in prostate. Thus, clinic improvement with silodosin was proved by histologic studies. Besides, static factor of BPH may be overcome with creating apoptosis. Copyright® by the International Brazilian Journal of Urology.

  4. The role of Drosophila TNF Eiger in developmental and damage-induced neuronal apoptosis.

    PubMed

    Shklover, Jeny; Levy-Adam, Flonia; Kurant, Estee

    2015-04-02

    Eiger, the sole Drosophila TNF-alpha homolog, causes ectopic apoptosis through JNK pathway activation. Yet, its role in developmental apoptosis remains unclear. eiger mutant flies are viable and fertile but display compromised elimination of oncogenic cells and extracellular bacteria. Here we show that Eiger, specifically expressed in embryonic neurons and glia, is not involved in developmental neuronal apoptosis or in apoptotic cell clearance. Instead, we provide evidence that Eiger is required for damage-induced apoptosis in the embryonic CNS through regulation of the pro-apoptotic gene hid independently of the JNK pathway. Our study thus reveals a new requirement for Eiger in eliminating damaged cells during development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Interplay between apoptosis and autophagy in colorectal cancer.

    PubMed

    Qian, Hao-Ran; Shi, Zhao-Qi; Zhu, He-Pan; Gu, Li-Hu; Wang, Xian-Fa; Yang, Yi

    2017-09-22

    Autophagy and apoptosis are two pivotal mechanisms in mediating cell survival and death. Cross-talk of autophagy and apoptosis has been documented in the tumorigenesis and progression of cancer, while the interplay between the two pathways in colorectal cancer (CRC) has not yet been comprehensively summarized. In this study, we outlined the basis of apoptosis and autophagy machinery firstly, and then reviewed the recent evidence in cellular settings or animal studies regarding the interplay between them in CRC. In addition, several key factors that modulate the cross-talk between autophagy and apoptosis as well as its significance in clinical practice were discussed. Understanding of the interplay between the cell death mechanisms may benefit the translation of CRC treatment from basic research to clinical use.

  6. Interplay between apoptosis and autophagy in colorectal cancer

    PubMed Central

    Qian, Hao-Ran; Shi, Zhao-Qi; Zhu, He-Pan; Gu, Li-Hu; Wang, Xian-Fa; Yang, Yi

    2017-01-01

    Autophagy and apoptosis are two pivotal mechanisms in mediating cell survival and death. Cross-talk of autophagy and apoptosis has been documented in the tumorigenesis and progression of cancer, while the interplay between the two pathways in colorectal cancer (CRC) has not yet been comprehensively summarized. In this study, we outlined the basis of apoptosis and autophagy machinery firstly, and then reviewed the recent evidence in cellular settings or animal studies regarding the interplay between them in CRC. In addition, several key factors that modulate the cross-talk between autophagy and apoptosis as well as its significance in clinical practice were discussed. Understanding of the interplay between the cell death mechanisms may benefit the translation of CRC treatment from basic research to clinical use. PMID:28977986

  7. [Study on thaspine in inducing apoptosis of A549 cell].

    PubMed

    Zhang, Yan-min; He, Lang-chong

    2007-04-01

    To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.

  8. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy

    PubMed Central

    Huang, Shan-Shan; Ding, Da-Fa; Chen, Sheng; Dong, Cheng-Long; Ye, Xiao-Long; Yuan, Yang-Gang; Feng, Ya-Min; You, Na; Xu, Jia-Rong; Miao, Heng; You, Qiang; Lu, Xiang; Lu, Yi-Bing

    2017-01-01

    Podocyte apoptosis coincides with albuminuria onset and precedes podocytopenia in diabetic nephropathy. However, there is a lack of effective therapeutic drugs to protect podocytes from apoptosis. Here, we demonstrated that resveratrol relieved a series of indicators of diabetic nephropathy and attenuated apoptosis of podocytes in db/db diabetic model mice. In addition, resveratrol induced autophagy in both db/db mice and human podocytes. Furthermore, inhibition of autophagy by 3-methyladenine (3-MA) and autophagy gene 5 (Atg5) short hairpin RNA (shRNA) reversed the protective effects of resveratrol on podocytes. Finally, we found that resveratrol might regulate autophagy and apoptosis in db/db mice and podocytes through the suppression of microRNA-383-5p (miR-383-5p). Together, our results indicate that resveratrol effectively attenuates high glucose-induced apoptosis via the activation of autophagy in db/db mice and podocytes, which involves miR-383-5p. Thus, this study reveals a new possible strategy to treat diabetic nephropathy. PMID:28374806

  9. Serum levels of keratin-18 fragments [tissue polypeptide-specific antigen (TPS)] are correlated with hepatocyte apoptosis in alcoholic hepatitis.

    PubMed

    Gonzalez-Quintela, A; Abdulkader, I; Campos, J; Fernandez-Hernandez, L; Lojo, S

    2009-03-01

    Apoptosis is a major feature in alcoholic hepatitis. During apoptosis, the M30 neoepitope becomes exposed after keratin-18 cleavage. The tissue polypeptide-specific antigen (TPS) is a keratin-18 fragment that is routinely used as a tumor marker. Serum TPS levels are increased in patients with alcoholic hepatitis. The aim of this study was to investigate the possible relationship of TPS levels with hepatocyte apoptosis in alcoholic hepatitis. Thirty-one patients with alcoholic hepatitis and 22 with fatty liver were included. Hepatocyte apoptosis was evaluated by M30 immunostaining. Serum TPS levels were measured by a commercial immunoassay. The apoptotic score was higher in patients with alcoholic hepatitis than in patients with fatty liver. There was a significant correlation between the apoptotic score and TPS levels. The correlation of the apoptotic score with TPS levels was stronger than with standard liver tests. Serum TPS may be a marker of apoptosis in alcoholic hepatitis.

  10. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    PubMed

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  11. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis.

    PubMed

    Suda, Natsuno; Itoh, Takehiko; Nakato, Ryuichiro; Shirakawa, Daisuke; Bando, Masashige; Katou, Yuki; Kataoka, Kohsuke; Shirahige, Katsuhiko; Tickle, Cheryll; Tanaka, Mikiko

    2014-07-01

    Apoptosis is an important mechanism for sculpting morphology. However, the molecular cascades that control apoptosis in developing limb buds remain largely unclear. Here, we show that MafB was specifically expressed in apoptotic regions of chick limb buds, and MafB/cFos heterodimers repressed apoptosis, whereas MafB/cJun heterodimers promoted apoptosis for sculpting the shape of the limbs. Chromatin immunoprecipitation sequencing in chick limb buds identified potential target genes and regulatory elements controlled by Maf and Jun. Functional analyses revealed that expression of p63 and p73, key components known to arrest the cell cycle, was directly activated by MafB and cJun. Our data suggest that dimeric combinations of MafB, cFos and cJun in developing chick limb buds control the number of apoptotic cells, and that MafB/cJun heterodimers lead to apoptosis via activation of p63 and p73. © 2014. Published by The Company of Biologists Ltd.

  12. Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase.

    PubMed

    Bao, Lei; Zu, Jie; He, Qianqian; Zhao, Hui; Zhou, Su; Ye, Xinchun; Yang, Xinxin; Zan, Kun; Zhang, Zuohui; Shi, Hongjuan; Cui, Guiyun

    2017-01-01

    Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.

  13. Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation.

    PubMed

    Oh, Jung Hwa; Lee, Tae-Jin; Kim, Sang Hyun; Choi, Yung Hyun; Lee, Sang Han; Lee, Jin Man; Kim, Young-Ho; Park, Jong-Wook; Kwon, Taeg Kyu

    2008-12-01

    Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-gamma1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-kappaB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.

  14. Study on the apoptosis mediated by cytochrome c and factors that affect the activation of bovine longissimus muscle during postmortem aging.

    PubMed

    Zhang, Jiaying; Yu, Qunli; Han, Ling; Chen, Cheng; Li, Hang; Han, Guangxing

    2017-06-01

    This study investigates whether bovine longissimus muscle cell apoptosis occurs during postmortem aging and whether apoptosis is dependent on the mitochondria pathway. This study also determines the apoptosis process mediated by cytochrome c after its release from mitochondria and the factors that affect the activation processes. Results indicate that apoptotic nuclei were detected at 12 h postmortem. Cytochrome c release from the mitochondria to the cytoplasm activated the caspase-9 and caspase-3 at early postmortem aging and the activation of caspase-9 occurs before the activation of caspase-3. The pH level decreased during the first 48 h postmortem, whereas the mitochondria membrane permeability increased from 6 to 12 h. Results demonstrate that an apoptosis process of bovine muscle occurred during postmortem aging. Apoptosis was dependent on the mitochondria pathway and occurred at early postmortem aging. Increased mitochondria membrane permeability and low pH are necessary conditions for the release of cytochrome c during postmortem aging.

  15. Bupivacaine induces apoptosis via ROS in the Schwann cell line.

    PubMed

    Park, C J; Park, S A; Yoon, T G; Lee, S J; Yum, K W; Kim, H J

    2005-09-01

    Local anesthetics have been generally accepted as being safe. However, recent clinical trials and basic studies have provided strong evidence for the neurotoxicity of local anesthetics, especially through apoptosis. We hypothesized that local anesthetics cause neural complications through Schwann cell apoptosis. Among local anesthetics tested on the Schwann cell line, RT4-D6P2T, bupivacaine significantly induced cell death, measured by the methyl tetrazolium (MTT) assay, in a dose- (LD50 = 476 microM) and time-dependent manner. The bupivacaine-induced generation of reactive oxygen species (ROS), which was initiated within 5 hrs and preceded the activation of caspase-3 and poly ADP-ribose polymerase (PARP) degradation, was suggested to trigger apoptosis, exhibited by Hoechst 33258 nuclear staining and DNA fragmentation. Furthermore, concomitant block of ROS by anti-oxidants significantly inhibited bupivacaine-induced apoptosis. Among the local anesthetics for peripheral neural blocks, bupivacaine induced apoptosis in the Schwann cell line, which may be associated with ROS production.

  16. Necroptosis: Fifty shades of RIPKs.

    PubMed

    Ichim, Gabriel; Tait, Stephen Wg

    2015-01-01

    Apoptosis and necroptosis are 2 major, yet distinct, forms of regulated cell death. Whereas apoptosis requires caspase protease function, necroptosis requires activation of the receptor interacting protein kinases 1 (RIPK1) and RIPK3. Following activation, RIPK3 phosphorylates mixed-lineage kinase domain-like (MLKL), leading to cell death. Apoptosis and necroptosis are deeply intertwined such that a given death stimulus can often engage either form of cell death. Recent studies published in Cell Death and Differentiation by the Han, Oberst, and Vaux laboratories provide exciting new insights into necroptosis and how it interconnects with apoptosis. As we will discuss, their findings address key questions including: How does a cell choose between apoptosis or necroptosis? How can RIPK3 also induce apoptosis? What is the nature of the RIPK1-3 signaling cascade leading to necroptosis? Finally, data from the Oberst and Han groups strongly argue that RIPK1 is not only involved in executing necroptosis, but also protects against this process in some settings.

  17. Chemical Characterization and Antitumor Activities of Polysaccharide Extracted from Ganoderma lucidum

    PubMed Central

    Liang, Zengenni; Yi, Youjin; Guo, Yutong; Wang, Rencai; Hu, Qiulong; Xiong, Xingyao

    2014-01-01

    Ganoderma lucidum polysaccharide (GLP) is a biologically active substance reported to possess anti-tumor ability. Nonetheless, the mechanisms of GLP-stimulated apoptosis are still unclear. This study aims to determine the inhibitory and apoptosis-inducing effects of GLP on HCT-116 cells. We found that GLP reduced cell viability on HCT-116 cells in a time- and dose-dependent manner, which in turn, induced cell apoptosis. The observed apoptosis was characterized by morphological changes, DNA fragmentation, mitochondrial membrane potential decrease, S phase population increase, and caspase-3 and -9 activation. Furthermore, inhibition of c-Jun N-terminal kinase (JNK) by SP600125 led to a dramatic decrease of the GLP-induced apoptosis. Western blot analysis unveiled that GLP up-regulated the expression of Bax/Bcl-2, caspase-3 and poly (ADP-ribose) polymerase (PARP). These results demonstrate that apoptosis stimulated by GLP in human colorectal cancer cells is associated with activation of mitochondrial and mitogen-activated protein kinase (MAPK) pathways. PMID:24857920

  18. Acetaminophen and Metamizole Induce Apoptosis in HT 29 and SW 480 Colon Carcinoma Cell Lines In Vitro.

    PubMed

    Bundscherer, Anika C; Malsy, Manuela; Gruber, Michael A; Graf, Bernhard M; Sinner, Barbara

    2018-02-01

    The perioperative phase is supposed to be a period with high vulnerability for cancer dissemination. Acetaminophen and metamizole are common analgesics administered during this phase. We investigated the effect of acetaminophen, metamizole and 4-methylaminoantipyrine (MAA) on proliferation and apoptosis of colon carcinoma cell lines (SW 480 and HT 29). Proliferation was detected by cell proliferation ELISA BrdU, and apoptosis by Annexin V staining. Cytochrome c and caspase 3, 8 and 9 expression levels were detected by western blot. Acetaminophen, metamizole or MAA caused slight changes in proliferation. Acetaminophen, metamizole or the combination increased apoptosis in both cell lines. All agents decreased caspase 3 and 8 expression in SW480. Acetaminophen decreased caspase 9 expression in both cell lines. In clinically relevant doses, acetaminophen and/or metamizole induce apoptosis in both colon cancer cell lines. Both mitochondrial and death receptor pathways might be involved in acetaminophen-induced apoptosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis

    PubMed Central

    1993-01-01

    We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207

  20. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes.

    PubMed

    Guo, Wei-Xing; Pye, Quentin N; Williamson, Kelly S; Stewart, Charles A; Hensley, Kenneth L; Kotake, Yashige; Floyd, Robert A; Broyles, Robert H

    2005-09-01

    Our recent studies have demonstrated that generation of ROS is associated with choline deficiency (CD)-induced apoptosis in CWSV-1 cells, an immortalized rat hepatocyte that becomes tumorigenic by stepwise culturing in decreasing levels of choline. In the present study, we investigated the effect of CD on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by FASCAN assay. Our data demonstrate that MMP in CD-cultured cells was decreased in a time- and dose-dependent manner and that significant disruption occurred at 24 h, relative to high choline (HC, 70 microM) cultured cells. In order to investigate further the relationship among the CD-induced ROS, MMP collapse, and apoptosis, we examined the effects of different inhibitors on ROS production, MMP disruption, and apoptosis in CD or HC-cultured CWSV-1 cells. These data indicate that the disruption of MMP is an upstream event in CD-induced apoptosis, and mitochondrial dysfunction plays a key role in mediating CD-induced apoptosis in CWSV-1 cells.

  1. Nuclear pool of phosphatidylinositol 4 phosphate 5 kinase 1α is modified by polySUMO-2 during apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Rajarshi; Bhowmick, Debajit; Bhargava, Varsha

    2013-09-20

    Highlights: •Nuclear pool of PIP5K is SUMOylated. •Enhancement of SUMOylated nuclear PIP5K during apoptosis. •Nuclear PIP5K is modified by polySUMO-1 during apoptosis. •Nuclear PIP5K is modified by polySUMO-2 chain during apoptosis. -- Abstract: Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical and microscopic techniques, we have demonstrated that the nuclear pool of PIP5K is modified by SUMO-1 in HEK-293 cells stably expressing PIP5K. Moreover, this SUMOylated pool ofmore » PIP5K increased during apoptosis. PolySUMO-2 chain conjugated PIP5K was detected by pull-down experiment using affinity-tagged RNF4, a polySUMO-2 binding protein, during late apoptosis.« less

  2. Apoptosis in infection.

    PubMed

    Häcker, Georg

    2017-11-04

    Apoptosis is one of the principal responses that human cells have at their disposal when faced with changes in their environment. Microbial infection is a massive challenge to a cell, and it is unsurprising that the apoptosis apparatus has been implicated in numerous infections. However, looking at the available data, the impression is one of bewildering complexity. Microbial proteins and other molecules that are often poorly understood interact, with uncertain specificity, with host cell components of varying function, triggering signalling pathways that are ambiguously linked to the apoptotic machinery. Accordingly, many pathogens have been found in different studies both to induce and to inhibit apoptosis. I will here try to present some of the principles of apoptosis and of infection, and to provide a viewpoint on the question how the two are linked. I will further give the reasons for my personal opinion that apoptosis-induction is in most infections beneficial to the host. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Cold Inducible RNA Binding Protein Is Involved in Chronic Hypoxia Induced Neuron Apoptosis by Down-Regulating HIF-1α Expression and Regulated By microRNA-23a.

    PubMed

    Chen, Xiaoming; Liu, Xinqin; Li, Bin; Zhang, Qian; Wang, Jiye; Zhang, Wenbin; Luo, Wenjing; Chen, Jingyuan

    2017-01-01

    Background: Neuron apoptosis mediated by hypoxia inducible factor 1α (HIF-1α) in hippocampus is one of the most important factors accounting for the chronic hypobaric hypoxia induced cognitive impairment. As a neuroprotective molecule that is up-regulated in response to various environmental stress, CIRBP was reported to crosstalk with HIF-1α under cellular stress. However, its function under chronic hypobaric hypoxia remains unknown. Objective: In this study, we tried to identify the role of CIRBP in HIF-1α mediated neuron apoptosis under chronic hypobaric hypoxia and find a possible method to maintain its potential neuroprotective in long-term high altitude environmental exposure. Methods: We established a chronic hypobaric hypoxia rat model as well as a tissue culture model where SH-SY5Y cells were exposed to 1% hypoxia. Based on these models, we measured the expressions of HIF-1α and CIRBP under hypoxia exposure and examined the apoptosis of neurons by TUNEL immunofluorescence staining and western blot analysis of apoptosis related proteins. In addition, by establishing HIF-1α shRNA and pEGFP-CIRBP plasmid transfected cells, we confirmed the role of HIF-1α in chronic hypoxia induced neuron apoptosis and identified the influence of CIRBP over-expression upon HIF-1α and neuron apoptosis in the process of exposure. Furthermore, we measured the expression of the reported hypoxia related miRNAs in both models and the influence of miRNAs' over-expression/knock-down upon CIRBP in the process of HIF-1α mediated neuron apoptosis. Results: HIF-1α expression as well as neuron apoptosis was significantly elevated by chronic hypobaric hypoxia both in vivo and in vitro . CIRBP was induced in the early stage of exposure (3d/7d); however as the exposure was prolonged (21d), CIRBP level of the hypoxia group became significantly lower than that of control. In addition, HIF-1α knockdown significantly decreased neuron apoptosis under hypoxia, suggesting HIF-1α may be pro-apoptotic in the process of exposure. CIRBP over-expression significantly suppressed HIF-1α up-regulation in hypoxia and inhibited HIF-1α mediated neuron apoptosis. Interestingly, miR-23a was also induced by hypoxia exposure and showed the same changing tendency with CIRBP (increasing in 3d/7d, decreasing in 21d). In addition, over-expressing miR-23a up-regulated CIRBP, down-regulated HIF-1α and attenuated neuron apoptosis. Conclusion: Cold inducible RNA binding protein is involved in chronic hypoxia induced neuron apoptosis by down-regulating HIF-1α expression, and MiR-23a may be an important tool to maintain CIRBP level and function.

  4. Pneumolysin activates macrophage lysosomal membrane permeabilization and executes apoptosis by distinct mechanisms without membrane pore formation.

    PubMed

    Bewley, Martin A; Naughton, Michael; Preston, Julie; Mitchell, Andrea; Holmes, Ashleigh; Marriott, Helen M; Read, Robert C; Mitchell, Timothy J; Whyte, Moira K B; Dockrell, David H

    2014-10-07

    Intracellular killing of Streptococcus pneumoniae is complemented by induction of macrophage apoptosis. Here, we show that the toxin pneumolysin (PLY) contributes both to lysosomal/phagolysosomal membrane permeabilization (LMP), an upstream event programing susceptibility to apoptosis, and to apoptosis execution via a mitochondrial pathway, through distinct mechanisms. PLY is necessary but not sufficient for the maximal induction of LMP and apoptosis. PLY's ability to induce both LMP and apoptosis is independent of its ability to form cytolytic pores and requires only the first three domains of PLY. LMP involves TLR (Toll-like receptor) but not NLRP3/ASC (nucleotide-binding oligomerization domain [Nod]-like receptor family, pyrin domain-containing protein 3/apoptosis-associated speck-like protein containing a caspase recruitment domain) signaling and is part of a PLY-dependent but phagocytosis-independent host response that includes the production of cytokines, including interleukin-1 beta (IL-1β). LMP involves progressive and selective permeability to 40-kDa but not to 250-kDa fluorescein isothiocyanate (FITC)-labeled dextran, as PLY accumulates in the cytoplasm. In contrast, the PLY-dependent execution of apoptosis requires phagocytosis and is part of a host response to intracellular bacteria that also includes NO generation. In cells challenged with PLY-deficient bacteria, reconstitution of LMP using the lysomotrophic detergent LeuLeuOMe favored cell necrosis whereas PLY reconstituted apoptosis. The results suggest that PLY contributes to macrophage activation and cytokine production but also engages LMP. Following bacterial phagocytosis, PLY triggers apoptosis and prevents macrophage necrosis as a component of a broad-based antimicrobial strategy. This illustrates how a key virulence factor can become the focus of a multilayered and coordinated innate response by macrophages, optimizing pathogen clearance and limiting inflammation. Importance: Streptococcus pneumoniae, the commonest cause of bacterial pneumonia, expresses the toxin pneumolysin, which can make holes in cell surfaces, causing tissue damage. Macrophages, resident immune cells essential for responses to bacteria in tissues, activate a program of cell suicide called apoptosis, maximizing bacterial clearance and limiting harmful inflammation. We examined pneumolysin's role in activating this response. We demonstrate that pneumolysin did not directly form holes in cells to trigger apoptosis and show that pneumolysin has two distinct roles which require only part of the molecule. Pneumolysin and other bacterial factors released by bacteria that have not been eaten by macrophages activate macrophages to release inflammatory factors but also make the cell compartment containing ingested bacteria leaky. Once inside the cell, pneumolysin ensures that the bacteria activate macrophage apoptosis, rather than necrosis, enhancing bacterial killing and limiting inflammation. This dual response to pneumolysin is critical for an effective immune response to S. pneumoniae. Copyright © 2014 Bewley et al.

  5. Acceleration of Apoptosis by Extracellular Basic pH in a 3D Human Skin Equivalent System.

    PubMed

    Park, Gunhyuk; Oh, Dal-Seok; Kim, Yong-Ung; Park, Moon Ki

    2017-01-01

    Previously, we have shown that extracellular basic pH plays a significant role in both the direct and indirect regulation of cellular processes in a wound; this in turn affects the wound-healing process. Several studies have demonstrated the importance of apoptosis modulation in the wound-healing process, especially in removing inflammatory cells and in inhibiting scar formation. However, the effects of extracellular basic pH on wound healing-related skin damage are yet to be examined. Therefore, we investigated the induction of accelerated apoptosis by extracellular basic pH in skin. Apoptosis-related protein levels were measured using an array kit, target protein expression levels were detected by immunostaining, lactate dehydrogenase was analyzed spectrophotometrically, and Annexin V levels were measured by fluorescence staining. Basic pH (8.40) strongly upregulated extrinsic apoptosis proteins (Fas, high temperature requirement A, and p21) and slightly upregulated intrinsic apoptosis proteins (cytochrome c, B-cell lymphoma 2 [Bcl-2], Bcl-2-associated death promoter, and Bcl-2-like protein 4) in a 3D human skin equivalent system. Moreover, basic pH (8.40) induced heat shock protein (HSP) 60 and 70. In addition, basic pH-exposed Fas- and HSP60-knockdown cells showed significantly decreased levels of apoptosis. Taken together, these results indicate that extracellular basic pH increases early-stage apoptosis through Fas/FasL via modulation of HSP60 and HSP70. © 2017 S. Karger AG, Basel.

  6. Protective role of Osthole on myocardial cell apoptosis induced by doxorubicin in rats.

    PubMed

    Xu, Hongdang; Han, Yu; Zhang, Mengwei; Yan, Min; Gao, Chuanyu

    2015-01-01

    To explore the effect of Osthole on protecting myocardial cell apoptosis induced by doxorubicin during cardiac failure in rats. Myocardial cells isolated from the newborn SD rats were separated into three groups: cells treated with 1 μmol doxorubicin, cells treated with Osthole at three concentrations of 10, 20, and 40 μmol, cells treated neither with Osthole nor with doxorubicin were the control groups. Consequently, cell apoptosis of myocardial cells in each group was analyzed using TUNEL assay. Also, expressions of oxidase, NADPH, and ROS in myocardial cells were analyzed using different biological methods. Moreover, expressions of cell apoptosis associated proteins were analyzed using Western blotting. Compared with the controls, the results showed that cells received Osthole and doxorubicin treatments performed high percentage of cell apoptosis, suggesting that Osthole could anesis myocardial cell apoptosis induced by doxorubicin (P<0.05). Osthole of 10 μmol depressed the expressions of cell apoptosis associated proteins including Caspase-3 and Cytc, and enhancing expression of Bcl-XL expression (P<0.05). Osthole of 20 μmol significantly decreased the generation of intracellar superoxidase, NADPH, and NADPH activity in myocardial cells treated with doxorubicin (P<0.05). Moreover, Osthole of 20 μmol could significantly increase phosphorylated elF2α level in cells. Our study suggested that Osthole may play a protective role in suppressing myocardial apoptosis induced by doxorubicin through inhibiting NADPH and superoxidase production and downstream phosphorylated elF2α.

  7. Protective role of Osthole on myocardial cell apoptosis induced by doxorubicin in rats

    PubMed Central

    Xu, Hongdang; Han, Yu; Zhang, Mengwei; Yan, Min; Gao, Chuanyu

    2015-01-01

    Objective: To explore the effect of Osthole on protecting myocardial cell apoptosis induced by doxorubicin during cardiac failure in rats. Methods: Myocardial cells isolated from the newborn SD rats were separated into three groups: cells treated with 1 μmol doxorubicin, cells treated with Osthole at three concentrations of 10, 20, and 40 μmol, cells treated neither with Osthole nor with doxorubicin were the control groups. Consequently, cell apoptosis of myocardial cells in each group was analyzed using TUNEL assay. Also, expressions of oxidase, NADPH, and ROS in myocardial cells were analyzed using different biological methods. Moreover, expressions of cell apoptosis associated proteins were analyzed using Western blotting. Results: Compared with the controls, the results showed that cells received Osthole and doxorubicin treatments performed high percentage of cell apoptosis, suggesting that Osthole could anesis myocardial cell apoptosis induced by doxorubicin (P<0.05). Osthole of 10 μmol depressed the expressions of cell apoptosis associated proteins including Caspase-3 and Cytc, and enhancing expression of Bcl-XL expression (P<0.05). Osthole of 20 μmol significantly decreased the generation of intracellar superoxidase, NADPH, and NADPH activity in myocardial cells treated with doxorubicin (P<0.05). Moreover, Osthole of 20 μmol could significantly increase phosphorylated elF2α level in cells. Conclusion: Our study suggested that Osthole may play a protective role in suppressing myocardial apoptosis induced by doxorubicin through inhibiting NADPH and superoxidase production and downstream phosphorylated elF2α. PMID:26617794

  8. [Apoptosis and expression of apoptosis-related proteins in experimental different denervated guinea-pig facial muscle].

    PubMed

    Hui, Lian; Wei, Hong-Quan; Li, Xiao-Tian; Guan, Chao; Ren, Zhong

    2005-02-01

    To study apoptosis and expression of apoptosis-related proteins in experimental different denervated guinea-pig facial muscle. An experimental model was established with guinea pigs by compressing the facial nerve 30 second (reinnervated group) and resecting the facial nerve (denervated group). TUNEL method and immunohistochemical technique (SABC) were applied to detect the apoptosis and expression of apoptosis-related proteins bcl-2 and bax from 1st to 8th week after operation. Experimentally denervated facial muscle revealed consistently increase of DNA fragmentation, average from(34.4 +/- 4.6)% to (38.2 +/- 10.6)%, from 1st week to 8th week after operation; Reinnervated facial muscle showed a temporal increase of DNA fragmentation, and then the muscle fiber nuclei revealed decreased DNA fragmentation along with the function of facial nerve recovered, latterly normal, average from (32.0 +/- 8.03)% to (5.6 +/- 3.5)%, from 1st week to 8th week after operation. In denervated group, bcl-2 and bax were expressed strongly; in reinnervated group, bcl-2 expressed consistently, but bax disappeared latterly along with the function of facial nerve recovered. Expression of DNA fragmentation and apoptosis-related proteins in denervated muscle are general reaction to denervation. bcl-2 can prevent early apoptotic muscle fiber to survival until reinnervation. It is concluded that proteins control apoptosis may give information for possible therapeutic interventions to reduce the rate of muscle fiber death in denervated atrophy in absence of effective primary treatment.

  9. Apoptosis contributes to placode morphogenesis in the posterior placodal area of mice.

    PubMed

    Washausen, Stefan; Knabe, Wolfgang

    2013-05-01

    In the embryonic head of vertebrates, neurogenic and non-neurogenic ectodermal placodes arise from the panplacodal primordium. Whether and how growth processes of the ectodermal layer, changes in the transcriptional precursor cell profile, or positional changes among precursor cells contribute to interplacodal boundary formation is subject to intense investigation. We demonstrate that large scale apoptosis in the multiplacodal posterior placodal area (PPA) of C57BL/6 mice assists in the segregation of otic and epibranchial placodes. Complex patterns of interplacodal apoptosis precede and parallel the structural individualization of high-grade thickened placodes, with the fundamental separation between otic and epibranchial precursor cells being seemingly prevalent. Interplacodal apoptosis between the emerging epibranchial placodes, which express Neurogenin2 prior to their complete structural individualization, comes out most strongly between the epibranchial placodes 1 and 2. Apoptosis then moves from interplacodal to intraplacodal positions in dorsal and, with a delay, ventral parts of the epibranchial placodes. Intraplacodal apoptosis appears to exert corrective actions among premigratory neuroblasts, and helps to eliminate the epibranchial placodes. The present findings confirm and extend earlier observations in Tupaia belangeri (Washausen et al. in Dev Biol 278:86-102, 2005), regarded as an intermediate between primates and other eutherian orders. Having now available maps of apoptosis in the PPA of embryonic mice, further investigations into the functions of inter- and intraplacodal apoptosis can be carried out in an experimentally and genetically more accessible mammalian model organism.

  10. Regulation of programmed cell death or apoptosis in atherosclerosis.

    PubMed

    Geng, Y J

    1997-01-01

    Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.

  11. [Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β].

    PubMed

    Zhang, Xiangying; Guo, Yuanyuan; Zhang, Li; Wen, Tao; Piao, Zhengfu; Shi, Hongbo; Chen, Dexi; Duan, Zhongping; Ren, Feng

    2015-01-01

    To analyze the role of glycogen synthase kinase 3β (GSK3β) in hepatocyte apoptosis induced by oxidative stress. Human HL-7702 hepatoma cells were induced by H₂O₂/antimycin A to establish oxidative stress-induced cell apoptosis models. SB216763, a specific inhibitor of GSK3β, was given to the cells two hours before H₂O₂/antimycin A induction. Cell survival was observed using calcein acetoxymethyl ester/propidium iodide (PI) double staining, and cell apoptosis was detected using annexin V-FITC/PI staining combined with flow cytometry. In the meanwhile, the cell culture supernatant was subjected to lactate dehydrogenase (LDH) assay to evaluate the extent of cell death. The expressions of p-GSK3β, GSK3β, caspase-3, cleaved caspase-3, c-Jun N-terminal kinase (JNK) and cytochrome C (CytC) proteins were examined using Western blotting. Oxidative stress triggered by H₂O₂/antimycin A promoted GSK3β activity; inhibition of GSK3β activity by SB216763 relieved oxidative stress and reduced cell apoptosis induced by oxidative stress. Compared with the model groups, SB216763 intervened group showed that the cell apoptosis rate and the level of LDH were reduced significantly, and that the expressions of cleaved caspase-3, JNK, CytC proteins decreased. GSK3β is an important signaling molecule in the apoptosis pathway induced by oxidative stress. The inhibition on GSK3β may alleviate the oxidative stress-induced hepatocyte apoptosis.

  12. Paraquat induces extrinsic pathway of apoptosis in A549 cells by induction of DR5 and repression of anti-apoptotic proteins, DDX3 and GSK3 expression.

    PubMed

    Hathaichoti, Sasiphen; Visitnonthachai, Daranee; Ngamsiri, Pronrumpa; Niyomchan, Apichaya; Tsogtbayar, Oyu; Wisessaowapak, Churaibhon; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2017-08-01

    Paraquat (PQ) is a bipyridyl derivative herbicide known to cause lung toxicity partly through induction of apoptosis. Here we demonstrated that PQ caused apoptosis in A549 cells. PQ increased cleavage of caspase-8 and Bid, indicating caspase-8 activation and truncated Bid, the two key mediators of extrinsic apoptosis. Additionally, PQ treatment caused an increase in DR5 (death receptor-5) and caspase-8 interaction, indicating formation of DISC (death-inducing signaling complex). These results indicate that PQ induces apoptosis through extrinsic pathway in A549 cells. Moreover, PQ drastically increased DR5 expression and membrane localization. Furthermore, PQ caused prominent concentration dependent reductions of DDX3 (the DEAD box protein-3) and GSK3 (glycogen synthase kinase-3) which can associate with DR5 and prevent DISC formation. Additionally, PQ decreased DR5-DDX3 interaction, suggesting a reduction of DDX3/GSK3 anti-apoptotic complex. Inhibition of GSK3, which is known to promote extrinsic apoptosis by its pharmacological inhibitor, BIO accentuated PQ-induced apoptosis. Moreover, GSK3 inhibition caused a further decrease in PQ-reduced DR5-DDX3 interaction. Taken together, these results suggest that PQ may induce extrinsic pathway of apoptosis in A549 cells through upregulation of DR5 and repression of anti-apoptotic proteins, DDX3/GSK3 leading to reduction of anti-apoptotic complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway.

    PubMed

    Tong, Xuhui; Han, Xi; Yu, Binbin; Yu, Meiling; Jiang, Guojun; Ji, Jie; Dong, Shuying

    2015-01-01

    Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.

  14. Chloroquine inhibits autophagy and deteriorates the mitochondrial dysfunction and apoptosis in hypoxic rat neurons.

    PubMed

    Li, Peng; Hao, Lei; Guo, Yan-Yan; Yang, Guang-Lu; Mei, Hua; Li, Xiao-Hua; Zhai, Qiong-Xiang

    2018-06-01

    Mitochondrial dysfunction (MD) and apoptosis in the neurons are associated with neonatal hypoxic-ischemic (HI) encephalopathy (HIE). The present study was to explore the influence of autophagy on the induction of MD and apoptosis in the neurons in a neonatal HIE rats and in hypoxia-treated neurons in vitro. Ten-day-old HI rat pups were sacrificed for brain pathological examination and immunohistochemical analysis. The induction of autophagy, apoptosis and MD were also determined in the neurons under hypoxia, with or without autophagy inhibitor, chloroquine (CQ) treatment. HI treatment caused atrophy and apoptosis of neurons, with a significantly increased levels of apoptosis- and autophagy-associated proteins, such as cleaved caspase 3 and the B subunit of autophagy-related microtubule-associated protein 1 light chain 3 (LC3-B). in vitro experiments demonstrated that the hypoxia induced autophagy in neurons, as was inhibited by CQ. The hypoxia-induced cytochrome c release, cleaved caspase 3 and cleaved caspase 9 were aggravated by CQ. Moreover, there were higher levels of reactive oxygen species, more mitochondrial superoxide and less mitochondrial membrane potential in the CQ-treated neurons under hypoxia than in the neurons singularly under hypoxia. Apoptosis and autophagy were induced in HI neonatal rat neurons, autophagy inhibition deteriorates the hypoxia-induced neuron MD and apoptosis. It implies a neuroprotection of autophagy in the hypoxic-ischemic encephalopathy. Administration of autophagy inducer agents might be promising in HIE treatment. Copyright © 2018. Published by Elsevier Inc.

  15. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; King, Michael R.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents.

  16. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  17. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality.

    PubMed

    Yang, Pan; Gong, Ya-Jie; Wang, Yi-Xin; Liang, Xin-Xiu; Liu, Qing; Liu, Chong; Chen, Ying-Jun; Sun, Li; Lu, Wen-Qing; Zeng, Qiang

    2017-12-01

    Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V + /PI - spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of transforming growth factor-alpha on enterocyte apoptosis is correlated with EGF receptor expression along the villus-crypt axis during methotrexate-induced intestinal mucositis in a rat.

    PubMed

    Sukhotnik, Igor; Shteinberg, Dan; Ben Lulu, Shani; Bashenko, Yulia; Mogilner, Jorge G; Ure, Benno M; Shaoul, Ron; Coran, Arnold G

    2008-11-01

    The purpose of the present study was to evaluate the effect of transforming-growth factor-alpha (TGF-alpha) on enterocyte apoptosis following methotrexate (MTX) induced intestinal mucositis in a rat and in Caco-2 cells. Non-pretreated and pretreated with MTX Caco-2 cells were incubated with increasing concentrations of TGF-alpha. Cell apoptosis was determined by FACS cytometry. Adult rats were divided into four groups: Control, Control-TGF-alpha, MTX, and MTX- TGF-alpha rats. Three days later rats were sacrificed. Enterocyte apoptosis were measured at sacrifice. RT-PCR and Western Blotting was used to determine the level of Bax and Bcl-2 mRNA and protein. Real time PCR was used to measure epidermal growth factor receptor (EGFr) expression along the villus-crypt axis. The in vitro experiment has shown that treatment with TGF-alpha of Caco-2 cells results in a significant inhibition of cell apoptosis in a dose-dependent manner. In vivo experiment, a decreased levels of apoptosis in MTX- TGF-alpha rats corresponded with the decrease in Bax and with the increase in Bcl-2 at both mRNA and protein levels. The inhibiting effect of TGF-alpha on enterocyte apoptosis was strongly correlated with EGFr expression along the villus-crypt axis. In conclusion, treatment with TGF-alpha inhibits enterocyte apoptosis following MTX- injury in the rat.

  19. Ghrelin ameliorates the human alveolar epithelial A549 cell apoptosis induced by lipopolysaccharide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chunrong; Zheng, Haichong; He, Wanmei

    Ghrelin is a gastric acyl-peptide that plays an inhibitory role in cell apoptosis. Herein we investigate the protective effects of ghrelin in LPS-induced apoptosis of human alveolar epithelial A549 cells, along with the possible molecular mechanisms. LPS exposure impaired cell viability and increased apoptosis of A549 cells significantly in concentration- and time-dependent manners embodied in increased Bax and cleaved caspase-3 production, coupled with decreased Bcl-2 levels. Simultaneously, LPS remarkably decreased the expression of phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinas (ERK) in A549 cells. However, ghrelin'pretreatment ameliorated LPS-caused alterations in the ratio of Bax/Bcl-2 and cleaved caspase-3 expression, whereas activatedmore » the PI3K/Akt and ERK signaling. These results demonstrate that ghrelin lightens LPS-induced apoptosis of human alveolar epithelial cells partly through activating the PI3K/Akt and ERK pathway and thereby might benefit alleviating septic ALI. -- Graphical abstract: Ghrelin ameliorates the human alveolar epithelial A549 cells apoptosis induced by lipopolysaccharide partly through activating the PI3K/Akt and ERK pathway. Display Omitted -- Highlights: •It has been observed that LPS insult significantly increased apoptosis in A549 cells. •Both Akt and ERK signaling are critical adapter molecules to mediate the ghrelin-mediated proliferative effect. •Ghrelin may have a therapeutic effect in the prevention of LPS-induced apoptosis.« less

  20. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    PubMed

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  1. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis

    PubMed Central

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-01-01

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells. PMID:27796318

  2. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    PubMed

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  3. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    PubMed

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress

    PubMed Central

    Zhao, Min; Pan, Wei; Shi, Rui-zheng; Bai, Yong-ping; You, Bo-yang; Zhang, Kai; Fu, Qiong-mei; Schuchman, Edward H.

    2016-01-01

    Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway. PMID:26923251

  5. Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells.

    PubMed

    Chu, Naying; Yao, Guodong; Liu, Yuan; Cheng, Maosheng; Ikejima, Takashi

    2016-09-01

    Compound 8 (C8) is a newly synthesized bis-benzimidazole derivative and exerts significant anti-tumor activity in vitro. Previous studies demonstrated that C8 induced apoptosis and autophagy in human promyelocytic leukemia HL60 cells. However, cytotoxicity study on human peripheral blood mononuclear cells (hPBMC) showed that C8 exhibited less toxicity in normal cells. In this study, the molecular mechanism of C8 on human cervical carcinoma HeLa cells was investigated. The results showed that C8 inhibited the growth of HeLa cells and triggered both apoptotic and autophagic cell death. Subsequent experiment also indicated that reactive oxygen species (ROS) generation was induced in C8-treated HeLa cells. Since ROS scavenger decreased the ratio of apoptotic and autophagic cells, ROS generation contributed to C8-induced apoptosis and autophagy. Furthermore, inhibitors of apoptosis and autophagy also reduced ROS generation, respectively. Autophagy inhibition increased cell growth compared to C8-treated group and attenuated apoptotic cell death, indicating that C8-induced autophagy promoted apoptosis for cell death. However, the percentage of autophagic cells was enhanced when limiting apoptosis process. Taken together, C8 induced ROS-mediated apoptosis and autophagy in HeLa cells, autophagy promoted apoptosis but the former was antagonized by the latter. The data also gave us a new perspective on the anti-tumor effect of C8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dihydroartemisinin Enhances Apo2L/TRAIL-Mediated Apoptosis in Pancreatic Cancer Cells via ROS-Mediated Up-Regulation of Death Receptor 5

    PubMed Central

    Cheng, Zhuo-xin; Wang, Yong-wei; Mu, Ming; Wang, Shuang-jia; Pan, Shang-ha; Gao, Yue; Jiang, Hong-chi; Dong, De-li; Sun, Bei

    2012-01-01

    Background Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has recently shown antitumor activity in various cancer cells. Apo2 ligand or tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is regarded as a promising anticancer agent, but chemoresistance affects its efficacy as a treatment strategy. Apoptosis induced by the combination of DHA and Apo2L/TRAIL has not been well documented, and the mechanisms involved remain unclear. Methodology/Principal Findings Here, we report that DHA enhances the efficacy of Apo2L/TRAIL for the treatment of pancreatic cancer. We found that combined therapy using DHA and Apo2L/TRAIL significantly enhanced apoptosis in BxPC-3 and PANC-1 cells compared with single-agent treatment in vitro. The effect of DHA was mediated through the generation of reactive oxygen species, the induction of death receptor 5 (DR5) and the modulation of apoptosis-related proteins. However, N-acetyl cysteine significantly reduced the enhanced apoptosis observed with the combination of DHA and Apo2L/TRAIL. In addition, knockdown of DR5 by small interfering RNA also significantly reduced the amount of apoptosis induced by DHA and Apo2L/TRAIL. Conclusions/Significance These results suggest that DHA enhances Apo2L/TRAIL-mediated apoptosis in human pancreatic cancer cells through reactive oxygen species-mediated up-regulation of DR5. PMID:22666346

  7. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression.

    PubMed

    Huerta-Yepez, Sara; Vega, Mario; Jazirehi, Ali; Garban, Hermes; Hongo, Fumiya; Cheng, Genhong; Bonavida, Benjamin

    2004-06-24

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of downstream activation of caspases 9 and 3. However, the combination of DETANONOate and TRAIL resulted in activation of the mitochondrial pathway and activation of caspases 9 and 3, and induction of apoptosis. These findings demonstrate that DETANONOate-mediated sensitization of CaP to TRAIL-induced apoptosis is via inhibition of constitutive NF-kappa B activity and Bcl-(xL) expression.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.

    Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less

  9. Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome

    PubMed Central

    Ryerson, Melissa R.; Richards, Monique M.; Hawkins, Christine J.

    2017-01-01

    ABSTRACT Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1–procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions. IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as downstream procaspase-3 cleavage in several cell types and under multiple conditions. M1 is the first poxviral protein reported to associate with and prevent the function of the apoptosome, giving a more detailed picture of the threats VACV encounters during infection. Dysregulation of apoptosis is associated with several human diseases. One potential treatment of apoptosis-related diseases is through the use of designed ANK repeat proteins (DARPins), similar to M1, as caspase inhibitors. Thus, the study of the novel antiapoptosis effects of M1 via apoptosome association will be helpful for understanding how to control apoptosis using either natural or synthetic molecules. PMID:28904196

  10. RODENT AND HUMAN NEUROPROGENITOR CELLS FOR HIGH-CONTENT SCREENS OF CHEMICAL EFFECTS ON PROLIFERATION AND APOPTOSIS

    EPA Science Inventory

    The objective of these experiments is to develop high-throughput screens for proliferation and apoptosis in order to compare rodent and human neuroprogenitor cell responses to potential developmental neurotoxicants. Effects of 4 chemicals on proliferation and apoptosis in mouse c...

  11. The Microanatomic Segregation of Selection by Apoptosis in the Germinal Center

    PubMed Central

    Mayer, Christian T.; Gazumyan, Anna; Kara, Ervin E.; Gitlin, Alexander D.; Golijanin, Jovana; Viant, Charlotte; Pai, Joy; Oliveira, Thiago Y.; Wang, Qiao; Escolano, Amelia; Medina-Ramirez, Max; Sanders, Rogier W.; Nussenzweig, Michel C.

    2018-01-01

    B cells undergo rapid cell division and affinity maturation in anatomically distinct sites in lymphoid organs called germinal centers (GCs). Homeostasis is maintained in part by B-cell apoptosis. However, the precise contribution of apoptosis to GC biology and selection is not well defined. We developed apoptosis-indicator mice and used them to visualize, purify, and characterize dying GC B cells. Apoptosis is prevalent in the GC with up to half of all GC B cells dying every 6h. Moreover, programmed cell death is differentially regulated in the light zone (LZ) and the dark zone (DZ): LZ B cells die by default if they are not positively selected, whereas DZ cells die when their antigen receptors are damaged by activation-induced cytidine deaminase (AID). PMID:28935768

  12. Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Garcia-Barros, Monica; Paris, Francois; Cordon-Cardo, Carlos; Lyden, David; Rafii, Shahin; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2003-05-01

    About 50% of cancer patients receive radiation therapy. Here we investigated the hypothesis that tumor response to radiation is determined not only by tumor cell phenotype but also by microvascular sensitivity. MCA/129 fibrosarcomas and B16F1 melanomas grown in apoptosis-resistant acid sphingomyelinase (asmase)-deficient or Bax-deficient mice displayed markedly reduced baseline microvascular endothelial apoptosis and grew 200 to 400% faster than tumors on wild-type microvasculature. Thus, endothelial apoptosis is a homeostatic factor regulating angiogenesis-dependent tumor growth. Moreover, these tumors exhibited reduced endothelial apoptosis upon irradiation and, unlike tumors in wild-type mice, they were resistant to single-dose radiation up to 20 grays (Gy). These studies indicate that microvascular damage regulates tumor cell response to radiation at the clinically relevant dose range.

  13. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factor.

    PubMed

    Cario, Gunnar; Skokowa, Julia; Wang, Zheng; Bucan, Vesna; Zeidler, Cornelia; Stanulla, Martin; Schrappe, Martin; Welte, Karl

    2005-04-01

    Apoptosis is accelerated in the myeloid progenitor cells of patients with severe congenital neutropenia (CN). Granulocyte colony-stimulating factor (G-CSF) increases neutrophil numbers in most CN patients. The effect of G-CSF on apoptosis in CN was analysed by apoptosis rate and expression of anti- and pro-apoptotic factors. G-CSF-treated patients showed higher apoptosis frequency, lower expression of bcl-2 and bcl-xL, but higher expression of bfl-1/A1 and mcl-1. Caspase 9 was highly expressed in patients and controls after G-CSF administration. Thus, G-CSF acts on apoptosis regulation, but additional mechanisms leading to the increase of neutrophil numbers must be assumed.

  14. Apoptosis inhibitor of macrophage (AIM) reduces cell number in canine histiocytic sarcoma cell lines.

    PubMed

    Uchida, Mona; Saeki, Kohei; Maeda, Shingo; Tamahara, Satoshi; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-10-01

    Apoptosis inhibitor of macrophage (AIM) is initially reported to protect macrophages from apoptosis. In this study, we determined the effect of AIM on the macrophage-derived tumor, histiocytic sarcoma cell lines (HS) of dogs. Five HS and five other tumor cell lines were used. When recombinant canine AIM was applied to non-serum culture media, cell numbers of all the HS and two of other tumor cell lines decreased dose-dependently. The DNA fragmentation, TUNEL staining and flow cytometry tests revealed that AIM induced both of apoptosis and cell cycle arrest in the HS. Although AIM is known as an apoptosis inhibitor, these results suggest that a high dose of AIM could have an opposite function in HS and some tumor cell lines.

  15. Administration of the antitumor drug mitoguazone protects normal thymocytes against spontaneous and etoposide-induced apoptosis.

    PubMed

    Ferioli, M E; Bottone, M G; Soldani, C; Pellicciari, C

    2004-11-01

    The suggestion has been made that polyamines may be involved in the control of cell death, since exceedingly high or low levels induce apoptosis in different cell systems. For a deeper insight into the relationship between apoptosis and polyamine metabolism, we investigated in vitro the effect on rat thymocytes of mitoguazone (MGBG, which inhibits S-adenosylmethionine decarboxylase, i.e. a key enzyme in the polyamine biosynthetic pathway). Thymocytes were selected as an especially suitable model system, since they undergo spontaneous apoptosis in vivo and can be easily induced to apoptose in vitro by etoposide, used here as an apoptogenic agent. MGBG protected thymocytes from both spontaneous and drug-induced apoptosis, and this protective effect was associated with a decrease in polyamine oxidase activity and total polyamine levels.

  16. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites.

    PubMed

    Kaczanowski, Szymon; Sajid, Mohammed; Reece, Sarah E

    2011-03-25

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.

  17. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites

    PubMed Central

    2011-01-01

    Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities. PMID:21439063

  18. miR-520 promotes DNA-damage-induced trophoblast cell apoptosis by targeting PARP1 in recurrent spontaneous abortion (RSA).

    PubMed

    Dong, Xiujuan; Yang, Long; Wang, Hui

    2017-04-01

    The establishment and maintenance of successful pregnancy mainly depends on trophoblast cells. Their dysfunction has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy. However, the underlying mechanisms of trophoblasts dysfunction remain unclear. DNA-damage-induced cell apoptosis has been reported to play a vital role in cell death. In this study, we identified a novel microRNA (miR-520) in RSA progression via regulating trophoblast cell apoptosis. Microarray analysis showed that miR-520 was highly expressed in villus of RSA patients. By using flow cytometry analysis, we observed miR-520 expression was correlated with human trophoblast cell apoptosis in vitro, along with decreased poly (ADP-ribose) polymerase-1 (PARP1) expression. With the analysis of clinic samples, we observed that miR-520 level was negatively correlated with PARP1 level in RSA villus. In addition, overexpression of PARP1 restored the miR-520-induced trophoblast cell apoptosis in vitro. The status of chromosome in trophoblast implied that miR-520-promoted DNA-damage-induced cell apoptosis to regulate RSA progression. These results indicated that the level of miR-520 might associate with RSA by prompting trophoblast cell apoptosis via PARP1 dependent DNA-damage pathway.

  19. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    PubMed Central

    Parajuli, Keshab R.; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-01-01

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer. PMID:26006246

  20. NF-{kappa}B inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-07-15

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-{kappa}B) in this process. Exposure of rats to 80 mg/m{sup 3} tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-{kappa}Bmore » activity, noted by suppression of inhibitor of {kappa}B (I{kappa}B) kinase (IKK), accumulation of I{kappa}B{alpha}, decrease of NF-{kappa}B DNA binding activity, and downregulation of NF-{kappa}B-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-{kappa}B pathway in tobacco smoke-induced apoptosis.« less

  1. Bcl-2 prevents loss of mitochondria in CCCP-induced apoptosis.

    PubMed

    de Graaf, Aniek O; van den Heuvel, Lambert P; Dijkman, Henry B P M; de Abreu, Ronney A; Birkenkamp, Kim U; de Witte, Theo; van der Reijden, Bert A; Smeitink, Jan A M; Jansen, Joop H

    2004-10-01

    Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.

  2. CDIP, a novel pro-apoptotic gene, regulates TNFalpha-mediated apoptosis in a p53-dependent manner.

    PubMed

    Brown, Lauren; Ongusaha, Pat P; Kim, Hyung-Gu; Nuti, Shanthy; Mandinova, Anna; Lee, Ji Won; Khosravi-Far, Roya; Aaronson, Stuart A; Lee, Sam W

    2007-07-25

    We have identified a novel pro-apoptotic p53 target gene named CDIP (Cell Death Involved p53-target). Inhibition of CDIP abrogates p53-mediated apoptotic responses, demonstrating that CDIP is an important p53 apoptotic effector. CDIP itself potently induces apoptosis that is associated with caspase-8 cleavage, implicating the extrinsic cell death pathway in apoptosis mediated by CDIP. siRNA-directed knockdown of caspase-8 results in a severe impairment of CDIP-dependent cell death. In investigating the potential involvement of extrinsic cell death pathway in CDIP-mediated apoptosis, we found that TNF-alpha expression tightly correlates with CDIP expression, and that inhibition of TNF-alpha signaling attenuates CDIP-dependent apoptosis. We also demonstrate that TNF-alpha is upregulated in response to p53 and p53 inducing genotoxic stress, in a CDIP-dependent manner. Consistently, knockdown of TNF-alpha impairs p53-mediated stress-induced apoptosis. Together, these findings support a novel p53 --> CDIP --> TNF-alpha apoptotic pathway that directs apoptosis after exposure of cells to genotoxic stress. Thus, CDIP provides a new link between p53-mediated intrinsic and death receptor-mediated extrinsic apoptotic signaling, providing a novel target for cancer therapeutics aimed at maximizing the p53 apoptotic response of cancer cells to drug therapy.

  3. Role of intracellular Ca2+ signal in the ascorbate-induced apoptosis in a human hepatoma cell line.

    PubMed

    Lee, Yong Soo

    2004-12-01

    Although ascorbate (vitamin C) has been shown to have anti-cancer actions, its effect on human hepatoma cells has not yet been investigated, and thus, the exact mechanism of this action is not fully understood. In this study, the mechanism by which ascorbate induces apoptosis using HepG2 human hepatoblastoma cells is investigated. Ascorbate induced apoptotic cell death in a dose-dependent manner in the cells, was assessed through flow cytometric analysis. Contrary to expectation, ascorbate did not alter the cellular redox status, and treatment with antioxidants (N-acetyl cysteine and N,N-diphenyl-p-phenylenediamine) had no influence on the ascorbate-induced apoptosis. However, ascorbate induced a rapid and sustained increase in intracellular Ca2+ concentration. EGTA, an extracellular Ca2+ chelator did not significantly alter the ascorbate-induced intracellular Ca2+ increase and apoptosis, whereas dantrolene, an intracellular Ca2+ release blocker, completely blocked these actions of ascorbate. In addition, phospholipase C (PLC) inhibitors (U-73122 and manoalide) significantly suppressed the intracellular Ca2+ release and apoptosis induced by ascorbate. Collectively, these results suggest that ascorbate induced apoptosis without changes in the cellular redox status in HepG2 cells, and that the PLC-coupled intracellular Ca2+ release mechanism may mediate ascorbate-induced apoptosis.

  4. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes

    PubMed Central

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium-infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite. PMID:28220125

  5. HGF Secreted by Activated Kupffer Cells Induces Apoptosis of Plasmodium-Infected Hepatocytes.

    PubMed

    Gonçalves, Lígia Antunes; Rodo, Joana; Rodrigues-Duarte, Lurdes; de Moraes, Luciana Vieira; Penha-Gonçalves, Carlos

    2017-01-01

    Malaria liver stage infection is an obligatory parasite development step and represents a population bottleneck in Plasmodium infections, providing an advantageous target for blocking parasite cycle progression. Parasite development inside hepatocytes implies a gross cellular insult evoking innate host responses to counteract intra-hepatocytic infection. Using primary hepatocyte cultures, we investigated the role of Kupffer cell-derived hepatocyte growth factor (HGF) in malaria liver stage infection. We found that Kupffer cells from Plasmodium -infected livers produced high levels of HGF, which trigger apoptosis of infected hepatocytes through a mitochondrial-independent apoptosis pathway. HGF action in infected hepatocyte primary cultures results in a potent reduction of parasite yield by specifically sensitizing hepatocytes carrying established parasite exo-erythrocytic forms to undergo apoptosis. This apoptosis mechanism is distinct from cell death that is spontaneously induced in infected cultures and is governed by Fas signaling modulation through a mitochondrial-dependent apoptosis pathway. This work indicates that HGF and Fas signaling pathways are part of an orchestrated host apoptosis response that occurs during malaria liver stage infection, decreasing the success of infection of individual hepatocytes. Our results raise the hypothesis that paracrine signals derived from Kupffer cell activation are implicated in directing death of hepatocytes infected with the malaria parasite.

  6. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling.

    PubMed

    Wachter, Franziska; Grunert, Michaela; Blaj, Cristina; Weinstock, David M; Jeremias, Irmela; Ehrhardt, Harald

    2013-04-17

    The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

  7. Withaferin A induces apoptosis through the generation of thiol oxidation in human head and neck cancer cells.

    PubMed

    Park, Jong Won; Min, Kyoung-Jin; Kim, Dong Eun; Kwon, Taeg Kyu

    2015-01-01

    Withaferin A is a steroidal lactone purified from the Indian medicinal plant, Withania somnifera. Withaferin A has been shown to inhibit the proliferation, metastasis, invasion and angiogenesis of cancer cells. In the present study, we investigated whether withaferin A induces apoptosis in the human head and neck cancer cells, AMC-HN4. Withaferin A markedly increased the sub-G1 cell population and the cleavage of poly(ADP-ribose) polymerase (PARP), which are markers of apoptosis. Pan-caspase inhibitor, z-VAD-fmk (z-VAD), markedly inhibited the withaferin A-induced apoptosis. However, the withaferin A-induced increase in the expression of COX-2 was not affected by treatment with z-VAD. Furthermore, withaferin A upregulated cyclooxygenase-2 (COX-2) expression. The COX-2 inhibitor, NS-398, reduced the withaferin A-induced production of prostaglandin E2. However, treatment with NS-398 did not affect the sub-G1 population and the cleavage of PARP. In addition, the withaferin A-induced apoptosis was independent of reactive oxygen species production. Thiol donors [N-acetylcysteine (NAC) and dithiothreitol (DTT)] reversed withaferin A-induced apoptosis. Therefore, our data suggest that withaferin A induces apoptosis through the mechanism of thiol oxidation in head and neck carcinoma cells.

  8. HTLV-1 Tax protects against CD95-mediated apoptosis by induction of the cellular FLICE-inhibitory protein (c-FLIP).

    PubMed

    Krueger, Andreas; Fas, Stefanie C; Giaisi, Marco; Bleumink, Marc; Merling, Anette; Stumpf, Christine; Baumann, Sven; Holtkotte, Denise; Bosch, Valerie; Krammer, Peter H; Li-Weber, Min

    2006-05-15

    The HTLV-1 transactivator protein Tax is essential for malignant transformation of CD4 T cells, ultimately leading to adult T-cell leukemia/lymphoma (ATL). Malignant transformation may involve development of apoptosis resistance. In this study we investigated the molecular mechanisms by which HTLV-1 Tax confers resistance toward CD95-mediated apoptosis. We show that Tax-expressing T-cell lines derived from HTLV-1-infected patients express elevated levels of c-FLIP(L) and c-FLIP(S). The levels of c-FLIP correlated with resistance toward CD95-mediated apoptosis. Using an inducible system we demonstrated that both resistance toward CD95-mediated apoptosis and induction of c-FLIP are dependent on Tax. In addition, analysis of early cleavage of the BH3-only Bcl-2 family member Bid, a direct caspase-8 substrate, revealed that apoptosis is inhibited at a CD95 death receptor proximal level in Tax-expressing cells. Finally, using siRNA we directly showed that c-FLIP confers Tax-mediated resistance toward CD95-mediated apoptosis. In conclusion, our data suggest an important mechanism by which expression of HTLV-1 Tax may lead to immune escape of infected T cells and, thus, to persistent infection and transformation.

  9. Overexpression of the long noncoding RNA TUG1 protects against cold-induced injury of mouse livers by inhibiting apoptosis and inflammation.

    PubMed

    Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming

    2016-04-01

    Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.

  10. Down-regulation of ATF2 in the inhibition of T-2-toxin-induced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles

    NASA Astrophysics Data System (ADS)

    Han, Jing; Guo, Xiong

    2013-12-01

    Selenium chondroitin sulfate nanoparticles (SeCS) with a size range of 30-200 nm were obtained in our previous study. Meanwhile, the up-regulated expression of ATF2 mRNA and protein levels could be observed in the cartilage from Kashin-Beck disease (KBD) patients. In this paper, we investigated the inhibition effect of SeCS on T-2-toxin-induced apoptosis of chondrocyte from KBD patients. Here, we found that when the chondrocytes were treated with T-2 toxin, the chondrocyte apoptosis performed in a concentration-dependent manner. The apoptosis of chondrocyte induced by T-2 toxin involved the increased levels of ATF2, JNK and p38 mRNAs and related protein expression. SeCS could partly block the T-2-toxin-induced chondrocyte apoptosis by decreasing the expression of ATF2, JNK and p38 mRNAs and p-JNK, p-38, ATF2 and p-ATF2 proteins. JNK and p38 pathways involved in the apoptosis of chondrocyte induced by T-2 toxin, and SeCS was efficient in the inhibition of chondrocyte apoptosis by T-2 toxin. These results suggested that SeCS had a potential for further prevention and treatment for KBD as well as other selenium deficiency disease.

  11. Kinetics of apoptotic markers in exogeneously induced apoptosis of EL4 cells.

    PubMed

    Jessel, Robert; Haertel, Steffen; Socaciu, Carmen; Tykhonova, Svetlana; Diehl, Horst A

    2002-01-01

    We investigated the time-dependence of apoptotic events in EL4 cells by monitoring plasma membrane changes in correlation to DNA fragmentation and cell shrinkage. We applied three apoptosis inducers (staurosporine, tubericidine and X-rays) and we looked at various markers to follow the early-to-late apoptotic events: phospholipid translocation (identified through annexin V-fluorescein assay and propidium iodide), lipid package (via merocyanine assay), membrane fluidity and anisotropy (via fluorescent measurements), DNA fragmentation by the fluorescence-labeling test and cell size measurements. The different apoptotic inducers caused different reactions of the cells: staurosporine induced apoptosis most rapidly in a high number of cells, tubercidine triggered apoptosis only in the S phase cells, while X-rays caused a G2/M arrest and subsequently apoptosis. Loss of lipid asymmetry is promptly detectable after one hour of incubation time. The phosphatidylserine translocation, decrease of lipid package and anisotropy, and the increase of membrane fluidity appeared to be based on the same process of lipid asymmetry loss. Therefore, the DNA fragmentation and the cell shrinkage appear to be parallel and independent processes running on different time scales but which are kinetically inter-related. The results indicate different signal steps to apoptosis dependent on inducer characteristics but the kinetics of "early-to-late" apoptosis appears to be a fixed program.

  12. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells.

    PubMed

    Kaewpiboon, Chutima; Boonnak, Nawong; Kaowinn, Sirichat; Chung, Young-Hwa

    2018-02-15

    Multidrug resistance (MDR) cancer toward cancer chemotherapy is one of the obstacles in cancer therapy. Therefore, it is of interested to use formoxanthone C (1,3,5,6-tetraoxygenated xanthone; XanX), a natural compound, which showed cytotoxicity against MDR human A549 lung cancer (A549RT-eto). The treatment with XanX induced not only apoptosis- in A549RT-eto cells, but also autophagy-cell death. Inhibition of apoptosis did not block XanX-induced autophagy in A549RT-eto cells. Furthermore, suppression of autophagy by beclin-1 small interfering RNAs (siRNAs) did not interrupt XanX-induced apoptosis, indicating that XanX can separately induce apoptosis and autophagy. Of interest, XanX treatment reduced levels of histone deacetylase 4 (HDAC4) protein overexpressed in A549RT-etocells. The co-treatment with XanX and HDAC4 siRNA accelerated both autophagy and apoptosis more than that by XanX treatment alone, suggesting survival of HDAC4 in A549RT-eto cells. XanX reverses etoposide resistance in A549RT-eto cells by induction of both autophagy and apoptosis, and confers cytotoxicity through down-regulation of HDAC4. Copyright © 2017. Published by Elsevier Ltd.

  13. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells.

    PubMed

    Han, Min Ae; Min, Kyoung-Jin; Woo, Seon Min; Seo, Bo Ram; Kwon, Taeg Kyu

    2016-10-04

    Eupafolin, a flavone found in Artemisia princeps, has been reported for its anti-tumor activity in several cancer cells. In this study, we examined whether eupafolin could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that eupafolin alone and TRAIL alone had no effect on apoptosis. However, combined treatment with eupafolin and TRAIL markedly induced apoptosis in human renal carcinoma (Caki) cells, glioma cells (U251MG), and prostate cancer cells (DU145), but not normal cells [mesangial cells (MC) and normal mouse kidney cells (TCMK-1)]. Eupafolin induced down-regulation of Mcl-1 expression at the post-translational levels in cathepsin S-dependent manner, and over-expression of Mcl-1 markedly blocked apoptosis induced by combined treatment with eupafolin and TRAIL. In addition, eupafolin increased Bim expression at the post-translational levels via AMP-activated protein kinase (AMPK)-mediated inhibition of proteasome activity. Knock-down of Bim expression by siRNA inhibited eupafolin plus TRAIL-induced apoptosis. Furthermore, combined treatment with eupafolin and TRAIL reduced tumor growth in xenograft models. Taken together, these results suggest that eupafolin enhanced TRAIL-mediated apoptosis via down-regulation of Mcl-1 and up-regulation of Bim in renal carcinoma Caki cells.

  14. Eupafolin enhances TRAIL-mediated apoptosis through cathepsin S-induced down-regulation of Mcl-1 expression and AMPK-mediated Bim up-regulation in renal carcinoma Caki cells

    PubMed Central

    Woo, Seon Min; Seo, Bo Ram; Kwon, Taeg Kyu

    2016-01-01

    Eupafolin, a flavone found in Artemisia princeps, has been reported for its anti-tumor activity in several cancer cells. In this study, we examined whether eupafolin could sensitize TRAIL-mediated apoptosis in human renal carcinoma Caki cells. We found that eupafolin alone and TRAIL alone had no effect on apoptosis. However, combined treatment with eupafolin and TRAIL markedly induced apoptosis in human renal carcinoma (Caki) cells, glioma cells (U251MG), and prostate cancer cells (DU145), but not normal cells [mesangial cells (MC) and normal mouse kidney cells (TCMK-1)]. Eupafolin induced down-regulation of Mcl-1 expression at the post-translational levels in cathepsin S-dependent manner, and over-expression of Mcl-1 markedly blocked apoptosis induced by combined treatment with eupafolin and TRAIL. In addition, eupafolin increased Bim expression at the post-translational levels via AMP-activated protein kinase (AMPK)-mediated inhibition of proteasome activity. Knock-down of Bim expression by siRNA inhibited eupafolin plus TRAIL-induced apoptosis. Furthermore, combined treatment with eupafolin and TRAIL reduced tumor growth in xenograft models. Taken together, these results suggest that eupafolin enhanced TRAIL-mediated apoptosis via down-regulation of Mcl-1 and up-regulation of Bim in renal carcinoma Caki cells. PMID:27582546

  15. MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins

    PubMed Central

    Li, Hui; Wang, Rong; Gan, Yong

    2017-01-01

    Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305

  16. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    PubMed

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  17. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H.

    1998-01-01

    Alteration in cytoskeletal organization appears to underlie mechanisms of gravity sensitivity in space-flown cells. Human T lymphoblastoid cells (Jurkat) were flown on the Space Shuttle to test the hypothesis that growth responsiveness is associated with microtubule anomalies and mediated by apoptosis. Cell growth was stimulated in microgravity by increasing serum concentration. After 4 and 48 h, cells filtered from medium were fixed with formalin. Post-flight, confocal microscopy revealed diffuse, shortened microtubules extending from poorly defined microtubule organizing centers (MTOCs). In comparable ground controls, discrete microtubule filaments radiated from organized MTOCs and branched toward the cell membrane. At 4 h, 30% of flown, compared to 17% of ground, cells showed DNA condensation characteristic of apoptosis. Time-dependent increase of the apoptosis-associated Fas/ APO-1 protein in static flown, but not the in-flight 1 g centrifuged or ground controls, confirmed microgravity-associated apoptosis. By 48 h, ground cultures had increased by 40%. Flown populations did not increase, though some cells were cycling and actively metabolizing glucose. We conclude that cytoskeletal alteration, growth retardation, and metabolic changes in space-flown lymphocytes are concomitant with increased apoptosis and time-dependent elevation of Fas/APO-1 protein. We suggest that reduced growth response in lymphocytes during spaceflight is linked to apoptosis.

  18. Increased lung neutrophil apoptosis and inflammation resolution in nonresponding pneumonia.

    PubMed

    Moret, I; Lorenzo, M J; Sarria, B; Cases, E; Morcillo, E; Perpiñá, M; Molina, J M; Menéndez, R

    2011-11-01

    Neutrophil activation state and its relationship with an inflammatory environment in community-acquired pneumonia (CAP) remain insufficiently elucidated. We aimed to evaluate the neutrophil apoptosis and cytokine pattern in CAP patients after 72 h of treatment, and their impact on infection resolution. Apoptosis of blood and bronchoalveolar lavage (BAL) neutrophils was measured in nonresponding CAP (NCAP), in responding CAP (blood only) and in patients without infection (control). Pro-inflammatory (interleukin (IL)-6, IL-8) and anti-inflammatory (IL-10) cytokines were measured. Main outcomes were clinical stability and days of hospitalisation. Basal neutrophil apoptosis was higher in the BAL and blood of NCAP, whereas spontaneous apoptosis (after 24 h culture) was lower. Cytokines in NCAP were higher than in responding CAP and control: IL-6 was increased in BAL and blood, IL-8 in BAL and IL-10 in blood. An increased basal apoptosis (≥20%) in BAL of NCAP was associated with lower systemic IL-10 (p<0.01), earlier clinical stability (p=0.05) and shorter hospital stay (p=0.02). A significant correlation was found for systemic IL-6 and IL-10 with days to reach stability and length of stay. After 72 h of treatment, an increased basal alveolar neutrophil apoptosis might contribute to downregulation of inflammation and to faster clinical stability.

  19. Targeting gastrin-releasing peptide as a new approach to treat aggressive refractory neuroblastomas.

    PubMed

    Paul, Pritha; Gillory, Lauren A; Kang, JungHee; Qiao, Jingbo; Chung, Dai H

    2011-03-01

    The overall survival for neuroblastoma remains dismal, in part due to the emergence of resistance to chemotherapeutic drugs. We have demonstrated that gastrin-releasing peptide (GRP), a gut peptide secreted by neuroblastoma, acts as an autocrine growth factor. We hypothesized that knockdown of GRP will induce apoptosis in neuroblastoma cells and potentiate the cytotoxic effects of chemotherapeutic agents. The human neuroblastoma cell lines (JF, SK-N-SH) were transfected with small interfering (si) RNA targeted at GRP. Apoptosis was assessed by DNA fragmentation assay. Immunoblotting was used to confirm molecular markers of apoptosis, and flow cytometry was performed to determine cell cycle arrest after GRP knockdown. siGRP resulted in an increase in apoptosis in the absence of chemotherapeutic interventions. A combination of GRP silencing and chemotherapeutic drugs resulted in enhanced apoptosis when compared to either of the treatments alone. GRP silencing led to increased expression of proapoptotic proteins, p53 and p21. Silencing of GRP induces apoptosis in neuroblastoma cells; it acts synergistically with chemotherapeutic effects of etoposide and vincristine. GRP knockdown-mediated apoptosis appears to be associated with upregulation of p53 in neuroblastoma cells. Targeting GRP may be postulated as a potential novel agent for combinational treatment to treat aggressive neuroblastomas. Copyright © 2011 Mosby, Inc. All rights reserved.

  20. Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome.

    PubMed

    Zheng, Qing-Qing; Zhao, You-Shan; Guo, Juan; Zhao, Si-da; Song, Lu-Xi; Fei, Cheng-Ming; Zhang, Zheng; Li, Xiao; Chang, Chun-Kang

    2017-07-01

    Erythroid apoptosis increases significantly in myelodysplastic syndrome (MDS) patients with iron overload, but the underlying mechanism is not fully clear. In this study, we aim to explore the effect of HIF-1a/ROS on erythroid apoptosis in MDS patients with iron overload. We found that iron overload injured cellular functions through up-regulating ROS levels in MDS/AML cells, including inhibited cell viability, increased cell apoptosis and blocked cell cycle at G0/G1 phase. Interestingly, overexpression of hypoxia inducible factor-1a (HIF-1a), which was under-expressed in iron overload models, reduced ROS levels and attenuated cell damage caused by iron overload in MDS/AML cells. And gene knockdown of HIF-1a got the similar results as iron overload in MDS/AML cells. Furthermore, iron overload caused high erythroid apoptosis was closely related with ROS in MDS patients. Importantly, the HIF-1a protein levels of erythrocytes elevated obviously after incubation with desferrioxamine (DFO) from MDS patients with iron overload, accompanied by ROS levels inhibited and erythroid apoptosis reduced. Taken together, our findings determine that the HIF-1a/ROS signaling pathway plays a key role in promoting erythroid apoptosis in MDS patients with iron overload. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top