Science.gov

Sample records for apoptosis limits dna

  1. Antivesicant Strategies Based on DNA Repair and Apoptosis

    DTIC Science & Technology

    2005-10-01

    blood agents, hydrogen cyanide and cyanogen chloride; and respiratory agents, phosgene and diphosgene. Here we discuss sulfur mustard (SM), which...associated events such as oxidative stress, protease stimulation, lipid peroxidation etc., and (e) DNA damage-induced apoptosis via increase in PARP, p53 and...HEK (Rosenthal et al., 1998), and the p53 inhibitor curcumin inhibits SM-induced apoptosis in HEK (Ray et al., 2001). As will be explained later, we

  2. Apoptosis and DNA damage in human spermatozoa

    PubMed Central

    Aitken, R John; Koppers, Adam J

    2011-01-01

    DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apoptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy. PMID:20802502

  3. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.

    PubMed

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Dagvadorj, Jargalsaikhan; Chiba, Norika; Chen, Shuang; Ramanujan, V Krishnan; Wolf, Andrea J; Vergnes, Laurent; Ojcius, David M; Rentsendorj, Altan; Vargas, Mario; Guerrero, Candace; Wang, Yinsheng; Fitzgerald, Katherine A; Underhill, David M; Town, Terrence; Arditi, Moshe

    2012-03-23

    We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1β (IL-1β). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The antiapoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1β production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1β secretion could be competitively inhibited by the oxidized nucleoside 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome.

  4. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome During Apoptosis

    PubMed Central

    Shimada, Kenichi; Crother, Timothy R.; Karlin, Justin; Dagvadorj, Jargalsaikhan; Chiba, Norika; Chen, Shuang; Ramanujan, V. Krishnan; Wolf, Andrea J.; Vergnes, Laurent; Ojcius, David M.; Rentsendorj, Altan; Vargas, Mario; Guerrero, Candace; Wang, Yinsheng; Fitzgerald, Katherine A.; Underhill, David M.; Town, Terrence; Arditi, Moshe

    2012-01-01

    SUMMARY We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1β (IL-1β). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The anti-apoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1β production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1β secretion could be competitively inhibited by the oxidized nucleoside, 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome. PMID:22342844

  5. Active Depletion of Host Cell Inhibitor-of-Apoptosis Proteins Triggers Apoptosis upon Baculovirus DNA Replication▿

    PubMed Central

    Vandergaast, Rianna; Schultz, Kimberly L. W.; Cerio, Rebecca J.; Friesen, Paul D.

    2011-01-01

    Apoptosis is an important antivirus defense by virtue of its impact on virus multiplication and pathogenesis. To define molecular mechanisms by which viruses are detected and the apoptotic response is initiated, we examined the antiviral role of host inhibitor-of-apoptosis (IAP) proteins in insect cells. We report here that the principal IAPs, DIAP1 and SfIAP, of the model insects Drosophila melanogaster and Spodoptera frugiperda, respectively, are rapidly depleted and thereby inactivated upon infection with the apoptosis-inducing baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Virus-induced loss of these host IAPs triggered caspase activation and apoptotic death. Elevation of IAP levels by ectopic expression repressed caspase activation. Loss of host IAP in both species was triggered by AcMNPV DNA replication. By using selected inhibitors, we found that virus-induced IAP depletion was mediated in part by the proteasome but not by caspase cleavage. Consistent with this conclusion, mutagenic disruption of the SfIAP RING motif, which acts as an E3 ubiquitin ligase, stabilized SfIAP during infection. Importantly, SfIAP was also stabilized upon the removal of its 99-residue N-terminal leader, which serves as a critical determinant of IAP turnover. These data indicated that a host pathway initiated by virus DNA replication and acting through instability motifs embedded within IAP triggers IAP depletion and thereby causes apoptosis. Taken together, the results of our study suggest that host modulation of cellular IAP levels is a conserved mechanism by which insects mount an apoptotic antiviral response. Thus, host IAPs may function as critical sentinels of virus invasion in insects. PMID:21653668

  6. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis.

    PubMed

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-06-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  7. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    PubMed Central

    Samarghandian, Saeed; Shabestari, Mahmoud M

    2013-01-01

    Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron) in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3). Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5) cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent. PMID:24082436

  8. Probing the elastic limit of DNA bending.

    PubMed

    Le, Tung T; Kim, Harold D

    2014-01-01

    Sharp bending of double-stranded DNA (dsDNA) plays an essential role in genome structure and function. However, the elastic limit of dsDNA bending remains controversial. Here, we measured the opening rates of small dsDNA loops with contour lengths ranging between 40 and 200 bp using single-molecule Fluorescence Resonance Energy Transfer. The relationship of loop lifetime to loop size revealed a critical transition in bending stress. Above the critical loop size, the loop lifetime changed with loop size in a manner consistent with elastic bending stress, but below it, became less sensitive to loop size, indicative of softened dsDNA. The critical loop size increased from ∼ 60 bp to ∼ 100 bp with the addition of 5 mM magnesium. We show that our result is in quantitative agreement with the kinkable worm-like chain model, and furthermore, can reproduce previously reported looping probabilities of dsDNA over the range between 50 and 200 bp. Our findings shed new light on the energetics of sharply bent dsDNA.

  9. Mitochondrial DNA damage induces apoptosis in senescent cells

    PubMed Central

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-01-01

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells. PMID:23868060

  10. Mitochondrial DNA damage induces apoptosis in senescent cells.

    PubMed

    Laberge, R-M; Adler, D; DeMaria, M; Mechtouf, N; Teachenor, R; Cardin, G B; Desprez, P-Y; Campisi, J; Rodier, F

    2013-07-18

    Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV-HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.

  11. Regulation of DNA damage-induced apoptosis by the c-Abl tyrosine kinase

    PubMed Central

    Yuan, Zhi-Min; Huang, Yinyin; Ishiko, Takatoshi; Kharbanda, Surender; Weichselbaum, Ralph; Kufe, Donald

    1997-01-01

    Activation of the c-Abl protein tyrosine kinase by certain DNA-damaging agents contributes to down-regulation of Cdk2 and G1 arrest by a p53-dependent mechanism. The present work investigates the potential role of c-Abl in apoptosis induced by DNA damage. Transient transfection studies with wild-type, but not kinase-inactive, c-Abl demonstrate induction of apoptosis. Cells that stably express inactive c-Abl exhibit resistance to ionizing radiation-induced loss of clonogenic survival and apoptosis. Cells null for c-abl are also impaired in the apoptotic response to ionizing radiation. We further show that cells deficient in p53 undergo apoptosis in response to expression of c-Abl and exhibit decreases in radiation-induced apoptosis when expressing inactive c-Abl. These findings suggest that c-Abl kinase regulates DNA damage-induced apoptosis. PMID:9037071

  12. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  13. Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis.

    PubMed

    Huang, Xuan; Halicka, H Dorota; Traganos, Frank; Tanaka, Toshiki; Kurose, Akira; Darzynkiewicz, Zbigniew

    2005-08-01

    Reviewed are the methods aimed to detect DNA damage in individual cells, estimate its extent and relate it to cell cycle phase and induction of apoptosis. They include the assays that reveal DNA fragmentation during apoptosis, as well as DNA damage induced by genotoxic agents. DNA fragmentation that occurs in the course of apoptosis is detected by selective extraction of degraded DNA. DNA in chromatin of apoptotic cells shows also increased propensity to undergo denaturation. The most common assay of DNA fragmentation relies on labelling DNA strand breaks with fluorochrome-tagged deoxynucleotides. The induction of double-strand DNA breaks (DSBs) by genotoxic agents provides a signal for histone H2AX phosphorylation on Ser139; the phosphorylated H2AX is named gammaH2AX. Also, ATM-kinase is activated through its autophosphorylation on Ser1981. Immunocytochemical detection of gammaH2AX and/or ATM-Ser1981(P) are sensitive probes to reveal induction of DSBs. When used concurrently with analysis of cellular DNA content and caspase-3 activation, they allow one to correlate the extent of DNA damage with the cell cycle phase and with activation of the apoptotic pathway. The presented data reveal cell cycle phase-specific patterns of H2AX phosphorylation and ATM autophosphorylation in response to induction of DSBs by ionizing radiation, topoisomerase I and II inhibitors and carcinogens. Detection of DNA damage in tumour cells during radio- or chemotherapy may provide an early marker predictive of response to treatment.

  14. Parvovirus B19 Nonstructural Protein-Induced Damage of Cellular DNA and Resultant Apoptosis

    PubMed Central

    Poole, Brian D.; Kivovich, Violetta; Gilbert, Leona; Naides, Stanley J.

    2011-01-01

    Parvovirus B19 is a widespread virus with diverse clinical presentations. The viral nonstructural protein, NS1, binds to and cleaves the viral genome, and induces apoptosis when transfected into nonpermissive cells, such as hepatocytes. We hypothesized that the cytotoxicity of NS1 in such cells results from chromosomal DNA damage caused by the DNA-nicking and DNA-attaching activities of NS1. Upon testing this hypothesis, we found that NS1 covalently binds to cellular DNA and is modified by PARP, an enzyme involved in repairing single-stranded DNA nicks. We furthermore discovered that the DNA nick repair pathway initiated by poly(ADPribose)polymerase and the DNA repair pathways initiated by ATM/ATR are necessary for efficient apoptosis resulting from NS1 expression. PMID:21278893

  15. The Role of Mitochondrial DNA in Mediating Alveolar Epithelial Cell Apoptosis and Pulmonary Fibrosis

    PubMed Central

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P.; Williams, David B.; Kamp, David W.

    2015-01-01

    Convincing evidence has emerged demonstrating that impairment of mitochondrial function is critically important in regulating alveolar epithelial cell (AEC) programmed cell death (apoptosis) that may contribute to aging-related lung diseases, such as idiopathic pulmonary fibrosis (IPF) and asbestosis (pulmonary fibrosis following asbestos exposure). The mammalian mitochondrial DNA (mtDNA) encodes for 13 proteins, including several essential for oxidative phosphorylation. We review the evidence implicating that oxidative stress-induced mtDNA damage promotes AEC apoptosis and pulmonary fibrosis. We focus on the emerging role for AEC mtDNA damage repair by 8-oxoguanine DNA glycosylase (OGG1) and mitochondrial aconitase (ACO-2) in maintaining mtDNA integrity which is important in preventing AEC apoptosis and asbestos-induced pulmonary fibrosis in a murine model. We then review recent studies linking the sirtuin (SIRT) family members, especially SIRT3, to mitochondrial integrity and mtDNA damage repair and aging. We present a conceptual model of how SIRTs modulate reactive oxygen species (ROS)-driven mitochondrial metabolism that may be important for their tumor suppressor function. The emerging insights into the pathobiology underlying AEC mtDNA damage and apoptosis is suggesting novel therapeutic targets that may prove useful for the management of age-related diseases, including pulmonary fibrosis and lung cancer. PMID:26370974

  16. DNA-PK-mediated phosphorylation of EZH2 regulates the DNA damage-induced apoptosis to maintain T-cell genomic integrity

    PubMed Central

    Wang, Y; Sun, H; Wang, J; Wang, H; Meng, L; Xu, C; Jin, M; Wang, B; Zhang, Y; Zhang, Y; Zhu, T

    2016-01-01

    EZH2 is a histone methyltransferase whose functions in stem cells and tumor cells are well established. Accumulating evidence shows that EZH2 has critical roles in T cells and could be a promising therapeutic target for several immune diseases. To further reveal the novel functions of EZH2 in human T cells, protein co-immunoprecipitation combined mass spectrometry was conducted and several previous unknown EZH2-interacting proteins were identified. Of them, we focused on a DNA damage responsive protein, Ku80, because of the limited knowledge regarding EZH2 in the DNA damage response. Then, we demonstrated that instead of being methylated by EZH2, Ku80 bridges the interaction between the DNA-dependent protein kinase (DNA-PK) complex and EZH2, thus facilitating EZH2 phosphorylation. Moreover, EZH2 histone methyltransferase activity was enhanced when Ku80 was knocked down or DNA-PK activity was inhibited, suggesting DNA-PK-mediated EZH2 phosphorylation impairs EZH2 histone methyltransferase activity. On the other hand, EZH2 inhibition increased the DNA damage level at the late phase of T-cell activation, suggesting EZH2 involved in genomic integrity maintenance. In conclusion, our study is the first to demonstrate that EZH2 is phosphorylated by the DNA damage responsive complex DNA-PK and regulates DNA damage-mediated T-cell apoptosis, which reveals a novel functional crosstalk between epigenetic regulation and genomic integrity. PMID:27468692

  17. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    PubMed Central

    Zhao, Wuli; Zhang, Caixia; Bi, Chongwen; Ye, Cheng; Song, Danqing; Liu, Xiujun; Shao, Rongguang

    2016-01-01

    Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1) activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. PMID:27274276

  18. Bak and Bax Function To Limit Adenovirus Replication through Apoptosis Induction

    PubMed Central

    Cuconati, Andrea; Degenhardt, Kurt; Sundararajan, Ramya; Anschel, Alan; White, Eileen

    2002-01-01

    Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level. PMID:11932420

  19. Bak and Bax function to limit adenovirus replication through apoptosis induction.

    PubMed

    Cuconati, Andrea; Degenhardt, Kurt; Sundararajan, Ramya; Anschel, Alan; White, Eileen

    2002-05-01

    Adenovirus infection and expression of E1A induces both proliferation and apoptosis, the latter of which is blocked by the adenovirus Bcl-2 homologue E1B 19K. The mechanism of apoptosis induction and the role that it plays in productive infection are not known. Unlike apoptosis mediated by death receptors, infection with proapoptotic E1B 19K mutant viruses did not induce cleavage of Bid but nonetheless induced changes in Bak and Bax conformation, Bak-Bax interaction, caspase 9 and 3 activation, and apoptosis. In wild-type-adenovirus-infected cells, in which E1B 19K inhibits apoptosis, E1B 19K was bound to Bak, precluding Bak-Bax interaction and changes in Bax conformation. Infection with E1B 19K mutant viruses induced apoptosis in wild-type and Bax- or Bak-deficient baby mouse kidney cells but not in those deficient for both Bax and Bak. Furthermore, Bax and Bak deficiency dramatically increased E1A expression and virus replication. Thus, Bax- and Bak-mediated apoptosis severely limits adenoviral replication, demonstrating that Bax and Bak function as an antiviral response at the cellular level.

  20. Mitochondrial DNA depletion causes decreased ROS production and resistance to apoptosis

    PubMed Central

    Chen, Hulin; Wang, Junling; Liu, Zhongrong; Yang, Huilan; Zhu, Yingjie; Zhao, Minling; Liu, Yan; Yan, Miaomiao

    2016-01-01

    Mitochondrial DNA (mtDNA) depletion occurs frequently in many diseases including cancer. The present study was designed in order to examine the hypothesis that mtDNA-depleted cells are resistant to apoptosis and to explore the possible mechanisms responsible for this effect. Parental human osteosarcoma 143B cells and mtDNA-deficient (Rho° or ϱ°) 206 cells (derived from 143B cells) were exposed to different doses of solar-simulated ultraviolet (UV) radiation. The effects of solar irradiation on cell morphology were observed under both light and fluorescence microscopes. Furthermore, apoptosis, mitochondrial membrane potential (MMP) disruption and reactive oxygen species (ROS) production were detected and measured by flow cytometry. In both cell lines, apoptosis and ROS production were clearly increased, whereas MMP was slightly decreased. However, apoptosis and ROS production were reduced in the Rho°206 cells compared with the 143B cells. We also performed western blot analysis and demonstrated the increased release of cytosolic Cyt c from mitochondria in the 143B cells compared with that in the Rho°206 cells. Thus, we concluded that Rho°206 cells exhibit more resistance to solar-simulated UV radiation-induced apoptosis at certain doses than 143B cells and this is possibly due to decreased ROS production. PMID:27499009

  1. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans

    PubMed Central

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-01-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline. PMID:21233842

  2. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.

    PubMed

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-07-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.

  3. Cerebral ischemia produces laddered DNA fragments distinct from cardiac ischemia and archetypal apoptosis.

    PubMed

    MacManus, J P; Fliss, H; Preston, E; Rasquinha, I; Tuor, U

    1999-05-01

    The electrophoretic pattern of laddered DNA fragments which has been observed after cerebral ischemia is considered to indicate that neurons are dying by apoptosis. Herein the authors directly demonstrate using ligation-mediated polymerase chain reaction methods that 99% of the DNA fragments produced after either global or focal ischemia in adult rats, or produced after hypoxia-ischemia in neonatal rats, have staggered ends with a 3' recess of approximately 8 to 10 nucleotides. This is in contrast to archetypal apoptosis in which the DNA fragments are blunt ended as seen during developmental programmed cell death in dying cortical neurons, neuroblastoma, or thymic lymphocytes. It is not simply ischemia that results in staggered ends in DNA fragments because ischemic myocardium is similar to archetypal apoptosis with a vast majority of blunt-ended fragments. It is concluded that the endonucleases that produce this staggered fragmentation of the DNA backbone in ischemic brain must be different than those of classic or type I apoptosis.

  4. Effects of Fluoride on DNA Damage and Caspase-Mediated Apoptosis in the Liver of Rats.

    PubMed

    Song, Guo Hua; Huang, Fu Bing; Gao, Ji Ping; Liu, Mao Lin; Pang, Wen Biao; Li, Wei bin; Yan, Xiao Yan; Huo, Mei Jun; Yang, Xia

    2015-08-01

    Fluoride compounds are abundant and widely distributed in the environment at a variety of concentrations. Further, fluoride induces toxic effects in target organs such as the liver. In this study, we investigated liver histopathology, DNA damage, apoptosis, and the mRNA and protein expressions of caspase-3 and -9 in the rat livers by administering varying concentrations of fluoride (0, 50, 100, 200 mg/L ) for 120 days. The results showed fluoride-induced morphological changes and significantly increased apoptosis and DNA damage in rats exposed to fluoride, especially in response to higher doses. The immunohistochemical and qRT-PCR results indicated that caspase-3, caspase-9 protein positive expression and mRNA relative expression enhanced with increasing NaF concentration. In summary, our findings suggest that chronic exposure to fluoride causes damages to liver histopathology and leads to liver apoptosis through caspase-mediated pathways.

  5. The degree of apoptosis as an immunostimulant for a DNA vaccine against HIV-1 infection.

    PubMed

    Kojima, Yoshitsugu; Jounai, Nao; Takeshita, Fumihiko; Nakazawa, Masatoshi; Okuda, Kentaro; Watabe, Setsuko; Xin, Ke-Qin; Okuda, Kenji

    2007-01-05

    To regulate the expression of the apoptotic gene, we constructed bicistronic DNA vaccines that encode for HIV env and caspase-3 mutant (casp 3m) that are expressed via the encephalomyocarditis virus internal ribosomal entry site (IRES) or cytomegalovirus (CMV) promoter-dependent translations. While IRES-casp 3m induced weak apoptosis and caused little reduction in antigen expression, CMV-casp 3m elicited strong apoptosis and led to a marked decrease in the antigen expression. Therefore, IRES-casp 3m augmented HIV-specific immune responses, and IRES-casp 3m induced significant protection against the vaccinia-HIV chimeric virus. These results suggest that the appropriate level of apoptosis is important for DNA vaccine development.

  6. Viral Single-Strand DNA Induces p53-Dependent Apoptosis in Human Embryonic Stem Cells

    PubMed Central

    Hirsch, Matthew L.; Fagan, B. Matthew; Dumitru, Raluca; Bower, Jacquelyn J.; Yadav, Swati; Porteus, Matthew H.; Pevny, Larysa H.; Samulski, R. Jude

    2011-01-01

    Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction, host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a telomeric sequence within the AAV origin of replication. PMID:22114676

  7. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  8. Berberine induces apoptosis and DNA damage in MG-63 human osteosarcoma cells

    PubMed Central

    ZHU, YU; MA, NAN; LI, HUI-XIANG; TIAN, LIN; BA, YU-FENG; HAO, BIN

    2014-01-01

    Berberine, an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, has been found to exhibit marked anticancer effects on a panel of established cancer cells. Among the human osteosarcoma lines treated, MG-63 cells were found to be the most sensitive. The present study investigated the potential genotoxic effect of berberine on MG-63 human osteosarcoma cells. The effect of berberine on cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell apoptosis was analyzed by flow cytometry and a DNA ladder assay. γH2AX focus formation was used to detect DNA damage in MG-63 cells. Berberine induced a significant increase in apoptosis in MG-63 cells in a concentration- and time-dependent manner, as determined by DNA fragmentation analysis and flow cytometry. Furthermore, berberine induced significant concentration- and time-dependent increases in DNA damage compared with that in the negative control. In conclusion, these observations indicated that berberine induced apoptosis and DNA damage in MG-63 cells. PMID:25050485

  9. Berberine induces apoptosis and DNA damage in MG‑63 human osteosarcoma cells.

    PubMed

    Zhu, Yu; Ma, Nan; Li, Hui-Xiang; Tian, Lin; Ba, Yu-Feng; Hao, Bin

    2014-10-01

    Berberine, an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, has been found to exhibit marked anticancer effects on a panel of established cancer cells. Among the human osteosarcoma lines treated, MG‑63 cells were found to be the most sensitive. The present study investigated the potential genotoxic effect of berberine on MG‑63 human osteosarcoma cells. The effect of berberine on cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5‑diphenyltetrazolium bromide assay and cell apoptosis was analyzed by flow cytometry and a DNA ladder assay. γH2AX focus formation was used to detect DNA damage in MG-63 cells. Berberine induced a significant increase in apoptosis in MG-63 cells in a concentration- and time-dependent manner, as determined by DNA fragmentation analysis and flow cytometry. Furthermore, berberine induced significant concentration- and time-dependent increases in DNA damage compared with that in the negative control. In conclusion, these observations indicated that berberine induced apoptosis and DNA damage in MG‑63 cells.

  10. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    PubMed Central

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  11. Induction of ROS Overload by Alantolactone Prompts Oxidative DNA Damage and Apoptosis in Colorectal Cancer Cells.

    PubMed

    Ding, Yushuang; Wang, Hongge; Niu, Jiajing; Luo, Manyu; Gou, Yangmei; Miao, Lining; Zou, Zhihua; Cheng, Ying

    2016-04-14

    Cancer cells typically display higher than normal levels of reactive oxygen species (ROS), which may promote cancer development and progression but may also render the cancer cells more vulnerable to further ROS insult. Indeed, many of the current anticancer therapeutics kill cancer cells via induction of oxidative stress, though they target both cancer and normal cells. Recently, alantolactone (ATL), a natural sesquiterpene lactone, has been shown to induce apoptosis by increasing ROS levels specifically in cancer cells; however, the molecular mechanisms linking ROS overproduction to apoptosis remain unclear. Here we show that the ATL-induced ROS overload in human SW480 and SW1116 colorectal cancer cells was followed by a prominent accumulation of cellular oxidized guanine (8-oxoG) and immediate increase in the number of DNA strand breaks, indicating that increased ROS resulted in extensive oxidative DNA damage. Consequently, the G₁/S-CDK suppresser CDKN1B (p21) and pro-apoptotic proteins Bax and activated caspase-3 were upregulated, while anti-apoptotic Bcl-2 was downregulated, which were followed by cell cycle arrest at G₁ and marked apoptosis in ATL-treated cancer but not non-cancer cells. These results suggest that the ATL-induced ROS overload triggers cell death through induction of massive oxidative DNA damage and subsequent activation of the intrinsic apoptosis pathway.

  12. DNA-ligase IV and DNA-protein kinase play a critical role in deficient caspases activation in apoptosis-resistant cancer cells by using doxorubicin.

    PubMed

    Friesen, Claudia; Uhl, Miriam; Pannicke, Ulrich; Schwarz, Klaus; Miltner, Erich; Debatin, Klaus-Michael

    2008-08-01

    Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.

  13. Stress-induced DNA damage biomarkers: applications and limitations

    PubMed Central

    Nikitaki, Zacharenia; Hellweg, Christine E.; Georgakilas, Alexandros G.; Ravanat, Jean-Luc

    2015-01-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism's endogenous processes such as replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damage plays a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g., X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e., single, complex DNA lesions etc. that can be used as DNA damage biomarkers. We critically compare DNA damage detection methods and their limitations. In addition, we suggest the use of DNA repair gene products as biomarkes for identification of different types of stresses i.e., radiation, oxidative, or replication stress, based on bioinformatic approaches and meta-analysis of literature data. PMID:26082923

  14. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  15. Stress-induced DNA Damage biomarkers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  16. The role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma

    PubMed Central

    Maes, Ken; Smedt, Eva De; Lemaire, Miguel; Raeve, Hendrik De; Menu, Eline; Van Valckenborgh, Els; McClue, Steve

    2014-01-01

    DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) are under investigation for the treatment of cancer, including the plasma cell malignancy multiple myeloma (MM). Evidence exists that DNA damage and repair contribute to the cytotoxicity mediated by the DNMTi decitabine. Here, we investigated the DNA damage response (DDR) induced by decitabine in MM using 4 human MM cell lines and the murine 5T33MM model. In addition, we explored how the HDACi JNJ-26481585 affects this DDR. Decitabine induced DNA damage (gamma-H2AX foci formation), followed by a G0/G1- or G2/M-phase arrest and caspase-mediated apoptosis. JNJ-26481585 enhanced the anti-MM effect of decitabine both in vitro and in vivo. As JNJ-26481585 did not enhance decitabine-mediated gamma-H2AX foci formation, we investigated the DNA repair response towards decitabine and/or JNJ-26481585. Decitabine augmented RAD51 foci formation (marker for homologous recombination (HR)) and/or 53BP1 foci formation (marker for non-homologous end joining (NHEJ)). Interestingly, JNJ-26481585 negatively affected basal or decitabine-induced RAD51 foci formation. Finally, B02 (RAD51 inhibitor) enhanced decitabine-mediated apoptosis. Together, we report that decitabine-induced DNA damage stimulates HR and/or NHEJ. JNJ-26481585 negatively affects RAD51 foci formation, thereby providing an additional explanation for the combinatory effect between decitabine and JNJ-26481585. PMID:24833108

  17. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage.

    PubMed

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta; Gniadecki, Robert

    2015-03-01

    The tumor suppressor p53 is often mutated in human cancers. Restoring its antitumor activity has been shown to be a promising therapeutic approach for cancer treatment. Here we analyzed the activity and mechanism of a p53 reactivator, ellipticine, in a cellular model of cutaneous T-cell lymphoma (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage. Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma.

  18. The small molecule calactin induces DNA damage and apoptosis in human leukemia cells.

    PubMed

    Lee, Chien-Chih; Lin, Yi-Hsiung; Chang, Wen-Hsin; Wu, Yang-Chang; Chang, Jan-Gowth

    2012-09-01

    We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.

  19. High Pressure-Induced mtDNA Alterations in Retinal Ganglion Cells and Subsequent Apoptosis

    PubMed Central

    Zhang, Sheng-Hai; Gao, Feng-Juan; Sun, Zhong-Mou; Xu, Ping; Chen, Jun-Yi; Sun, Xing-Huai; Wu, Ji-Hong

    2016-01-01

    Purpose: Our previous study indicated that mitochondrial DNA (mtDNA) damage and mutations are crucial to the progressive loss of retinal ganglion cells (RGCs) in a glaucomatous rat model. In this study, we examined whether high pressure could directly cause mtDNA alterations and whether the latter could lead to mitochondrial dysfunction and RGC death. Methods: Primary cultured rat RGCs were exposed to 30 mm Hg of hydrostatic pressure (HP) for 12, 24, 48, 72, 96 and 120 h. mtDNA alterations and mtDNA repair/replication enzymes OGG1, MYH and polymerase gamma (POLG) expressions were also analyzed. The RGCs were then infected with a lentiviral small hairpin RNA (shRNA) expression vector targeting POLG (POLG-shRNA), and mtDNA alterations as well as mitochondrial function, including complex I/III activities and ATP production were subsequently studied at appropriate times. Finally, RGC apoptosis and the mitochondrial-apoptosis pathway-related protein cleaved caspase-3 were detected using a Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and western blotting, respectively. Results: mtDNA damage was observed as early as 48 h after the exposure of RGCs to HP. At 120 h after HP, mtDNA damage and mutations significantly increased, reaching >40% and 4.8 ± 0.3-fold, respectively, compared with the control values. Twelve hours after HP, the expressions of OGG1, MYH and POLG mRNA in the RGCs were obviously increased 5.02 ± 0.6-fold (p < 0.01), 4.3 ± 0.2-fold (p < 0.05), and 0.8 ± 0.09-fold (p < 0.05). Western blot analysis showed that the protein levels of the three enzymes decreased at 72 and 120 h after HP (p < 0.05). After interference with POLG-shRNA, the mtDNA damage and mutations were significantly increased (p < 0.01), while complex I/III activities gradually decreased (p < 0.05). Corresponding decreases in membrane potential and ATP production appeared at 5 and 6 days after POLG-shRNA transfection respectively (p < 0.05). Increases in the

  20. Mitochondrial DNA toxicity in forebrain neurons causes apoptosis, neurodegeneration, and impaired behavior.

    PubMed

    Lauritzen, Knut H; Moldestad, Olve; Eide, Lars; Carlsen, Harald; Nesse, Gaute; Storm, Johan F; Mansuy, Isabelle M; Bergersen, Linda H; Klungland, Arne

    2010-03-01

    Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the forebrain neurons of adult mice. This is achieved by CaMKIIalpha-regulated inducible expression of a mutated version of the mitochondrial UNG DNA repair enzyme (mutUNG1). This enzyme is capable of removing thymine from the mitochondrial genome. We demonstrate that a continual generation of apyrimidinic sites causes apoptosis and neuronal death. These defects are associated with behavioral alterations characterized by increased locomotor activity, impaired cognitive abilities, and lack of anxietylike responses. In summary, whereas mitochondrial base substitution and deletions previously have been shown to correlate with premature and natural aging, respectively, we show that a high level of apyrimidinic sites lead to mitochondrial DNA cytotoxicity, which causes apoptosis, followed by neurodegeneration.

  1. Phagocytosis of crocidolite asbestos induces oxidative stress, DNA damage, and apoptosis in mesothelial cells.

    PubMed

    Liu, W; Ernst, J D; Broaddus, V C

    2000-09-01

    Phagocytosis of asbestos fibers may be a necessary step for asbestos-induced injury to mesothelial cells, but this has not been established because quantification of fiber uptake is difficult and ways to increase fiber phagocytosis without also increasing total dose were not available. We quantified phagocytosis by counting intracellular fibers after removing adherent fibers with trypsin; we selectively increased fiber phagocytosis by coating crocidolite asbestos fibers with the adhesive serum protein vitronectin (VN), which we have shown increases fiber uptake via integrins. We measured various aspects of asbestos-induced cytotoxicity: intracellular oxidation by the shift of fluorescence of cells loaded with an oxidative probe, DNA strand breakage by the alkaline unwinding ethidium bromide fluorometric assay, apoptosis by annexin V binding and by nuclear morphology, and cell-cycle progression. We found that, compared with control fibers or particles, asbestos increased intracellular oxidation, DNA strand breakage, and apoptosis. Selective increases in fiber uptake by VN-coating of the fibers further increased the oxidation, DNA strand breakage, and apoptosis, and induced a cell-cycle arrest in G2/M. Selective decreases in fiber uptake by cytochalasin or by integrin blockade with RGD peptides inhibited several of these measures of injury. We conclude that phagocytosis is important and perhaps necessary for asbestos-induced injury to mesothelial cells.

  2. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage

    PubMed Central

    McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2005-01-01

    Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions. PMID:15933716

  3. DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    PubMed Central

    Montero, Juan A.; Sanchez-Fernandez, Cristina; Lorda-Diez, Carlos I.; Garcia-Porrero, Juan A.; Hurle, Juan M.

    2016-01-01

    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of γH2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells γH2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of γH2AX-only cells increases after caspase inhibition while the relative number of TUNEL-only cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration. PMID:27752097

  4. Subclinical Carbon Monoxide Limits Apoptosis in the Developing Brain After Isoflurane Exposure

    PubMed Central

    Cheng, Ying; Levy, Richard J.

    2014-01-01

    BACKGROUND Volatile anesthetics cause widespread apoptosis in the developing brain. Carbon monoxide (CO) has antiapoptotic properties, and exhaled endogenous CO is commonly rebreathed during low-flow anesthesia in infants and children, resulting in subclinical CO exposure. Thus, we aimed to determine whether CO could limit isoflurane-induced apoptosis in the developing brain. METHODS Seven-day-old male CD-1 mouse pups underwent 1-hour exposure to 0 (air), 5, or 100 ppm CO in air with or without isoflurane (2%). We assessed carboxyhemoglobin levels, cytochrome c peroxidase activity, and cytochrome c release from forebrain mitochondria after exposure and quantified the number of activated caspase-3 positive cells and TUNEL positive nuclei in neocortex, hippocampus, and hypothalamus/thalamus. RESULTS Carboxyhemoglobin levels approximated those expected in humans after a similar time-weighted CO exposure. Isoflurane significantly increased cytochrome c peroxidase activity, cytochrome c release, the number of activated caspase-3 cells, and TUNEL positive nuclei in the forebrain of air-exposed mice. CO, however, abrogated isoflurane-induced cytochrome c peroxidase activation and cytochrome c release from forebrain mitochondria and decreased the number of activated caspase-3 positive cells and TUNEL positive nuclei after simultaneous exposure with isoflurane. CONCLUSIONS Taken together, the data indicate that CO can limit apoptosis after isoflurane exposure via inhibition of cytochrome c peroxidase depending on concentration. Although it is unknown whether CO directly inhibited isoflurane-induced apoptosis, it is possible that low-flow anesthesia designed to target rebreathing of specific concentrations of CO may be a desired strategy to develop in the future in an effort to prevent anesthesia-induced neurotoxicity in infants and children. PMID:24413549

  5. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  6. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health

  7. Cloning of apoptosis-related genes by representational difference analysis of cDNA.

    PubMed

    Hubank, Michael; Bryntesson, Fredrik; Regan, Jennifer; Schatz, David G

    2004-01-01

    Apoptosis is frequently triggered by events that alter the expression of key target genes. Under these circumstances, the genes involved can be identified by techniques that analyze gene expression. Researchers now have a choice of reliable and effective methods for differential gene expression analysis. Comparative approaches, including gene microarray analysis, serial analysis of gene expression, and differential display provide global information about expression levels. Subtractive approaches like complementary DNA representational difference analysis (cDNA RDA) and suppression subtraction polymerase chain reaction identify a focused set of differentially expressed genes. The most suitable technique to apply depends on individual circumstances. cDNA RDA is particularly useful in nonstandard model organisms for which comprehensive gene microarrays are not available and is best used for the identification of genes with a large difference in expression levels between two populations. The technique involves the generation of amplified mixtures of cDNA fragments that are typically smaller than 1000 base pairs and represent >86% of mRNA species from each starting population. Transcriptional differences between two populations can then be identified by subtraction of cDNA amplicons followed by further polymerase chain reaction amplification. The technique is capable of detecting differences for genes expressed at less than one copy per cell and is achievable using standard laboratory apparatus. cDNA RDA can identify genes not previously described in the database, can detect low abundance transcripts (e.g., from mixed cell populations), and is best applied in experiments where relatively few differentially expressed genes are expected. Here, we describe the application of cDNA RDA to the identification of apoptosis-related genes.

  8. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils.

    PubMed

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Kostrzewa, Artur; Łuczak, Michał; Jagodziński, Paweł P; Baer-Dubowska, Wanda

    2012-06-01

    The aim of this study was to evaluate the effect of betanin, one of the beetroot major components, on ROS production, DNA damage and apoptosis in human resting and stimulated with phorbol 12-myristate13-acetate polymorphonuclear neutrophils, one of the key elements of the inflammatory response. Incubation of neutrophils with betanin in the concentration range 2-500 µM resulted in significant inhibition of ROS production (by 15-46%, depending on the ROS detection assay). The antioxidant capacity of betanin was most prominently expressed in the chemiluminescence measurements. This compound decreased also the percentage of DNA in comet tails in stimulated neutrophils, but only at the 24 h time point. In resting neutrophils an increased level of DNA in comet tails was observed. Betanin did not affect the activity of caspase-3, in resting neutrophils, but significantly enhanced the enzyme activity in stimulated neutrophils. The western blot analysis showed, however, an increased level of caspase-3 cleavage products as a result of betanin treatment both in resting and stimulated neutrophils. The results indicate that betanin may be responsible for the effect of beetroot products on neutrophil oxidative metabolism and its consequences, DNA damage and apoptosis. The dose and time dependent effects on these processes require further studies.

  9. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis.

    PubMed

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-03-18

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells.

  10. DNA damage, apoptosis and langerhans cells--Activators of UV-induced immune tolerance.

    PubMed

    Timares, Laura; Katiyar, Santosh K; Elmets, Craig A

    2008-01-01

    Solar UVR is highly mutagenic but is only partially absorbed by the outer stratum corneum of the epidermis. UVR can penetrate into the deeper layers of the epidermis, depending on melanin content, where it induces DNA damage and apoptosis in epidermal cells, including those in the germinative basal layer. The cellular decision to initiate either cellular repair or undergo apoptosis has evolved to balance the acute need to maintain skin barrier function with the long-term risk of retaining precancerous cells. Langerhans cells (LCs) are positioned suprabasally, where they may sense UV damage directly, or indirectly through recognition of apoptotic vesicles and soluble mediators derived from surrounding keratinocytes. Apoptotic vesicles will contain UV-induced altered proteins that may be presented to the immune system as foreign. The observation that UVR induces immune tolerance to skin-associated antigens suggests that this photodamage response has evolved to preserve the skin barrier by protecting it from autoimmune attack. LC involvement in this process is not clear and controversial. We will highlight some basic concepts of photobiology and review recent advances pertaining to UV-induced DNA damage, apoptosis regulation, novel immunomodulatory mechanisms and the role of LCs in generating antigen-specific regulatory T cells.

  11. Biphasic effect of falcarinol on caco-2 cell proliferation, DNA damage, and apoptosis.

    PubMed

    Young, Jette F; Duthie, Susan J; Milne, Lesley; Christensen, Lars P; Duthie, Garry G; Bestwick, Charles S

    2007-02-07

    The polyacetylene falcarinol, isolated from carrots, has been shown to be protective against chemically induced colon cancer development in rats, but the mechanisms are not fully understood. In this study CaCo-2 cells were exposed to falcarinol (0.5-100 microM) and the effects on proliferation, DNA damage, and apoptosis investigated. Low-dose falcarinol exposure (0.5-10 microM) decreased expression of the apoptosis indicator caspase-3 concomitantly with decreased basal DNA strand breakage. Cell proliferation was increased (1-10 microM), whereas cellular attachment was unaffected by <10 microM falcarinol. At concentrations above 20 microM falcarinol, proliferation of CaCo-2 cells decreased and the number of cells expressing active caspase-3 increased simultaneously with increased cell detachment. Furthermore, DNA single-strand breakage was significantly increased at concentrations above 10 microM falcarinol. Thus, the effects of falcarinol on CaCo-2 cells appear to be biphasic, inducing pro-proliferative and apoptotic characteristics at low and high concentrations of falcarinol, respectively.

  12. MTOR inhibition attenuates DNA damage and apoptosis through autophagy-mediated suppression of CREB1.

    PubMed

    Wang, Ying; Hu, Zhongdong; Liu, Zhibo; Chen, Rongrong; Peng, Haiyong; Guo, Jing; Chen, Xinxin; Zhang, Hongbing

    2013-12-01

    Hyperactivation of mechanistic target of rapamycin (MTOR) is a common feature of human cancers, and MTOR inhibitors, such as rapamycin, are thus becoming therapeutics in targeting certain cancers. However, rapamycin has also been found to compromise the efficacy of chemotherapeutics to cells with hyperactive MTOR. Here, we show that loss of TSC2 or PTEN enhanced etoposide-induced DNA damage and apoptosis, which was blunted by suppression of MTOR with either rapamycin or RNA interference. cAMP response element-binding protein 1 (CREB1), a nuclear transcription factor that regulates genes involved in survival and death, was positively regulated by MTOR in mouse embryonic fibroblasts (MEFs) and cancer cell lines. Silencing Creb1 expression with siRNA protected MTOR-hyperactive cells from DNA damage-induced apoptosis. Furthermore, loss of TSC2 or PTEN impaired either etoposide or nutrient starvation-induced autophagy, which in turn, leads to CREB1 hyperactivation. We further elucidated an inverse correlation between autophagy activity and CREB1 activity in the kidney tumor tissue obtained from a TSC patient and the mouse livers with hepatocyte-specific knockout of PTEN. CREB1 induced DNA damage and subsequent apoptosis in response to etoposide in autophagy-defective cells. Reactivation of CREB1 or inhibition of autophagy not only improved the efficacy of rapamycin but also alleviated MTOR inhibition-mediated chemoresistance. Therefore, autophagy suppression of CREB1 may underlie the MTOR inhibition-mediated chemoresistance. We suggest that inhibition of MTOR in combination with CREB1 activation may be used in the treatment of cancer caused by an abnormal PI3K-PTEN-AKT-TSC1/2-MTOR signaling pathway. CREB1 activators should potentiate the efficacy of chemotherapeutics in treatment of these cancers.

  13. Arginine methylation of hnRNPK negatively modulates apoptosis upon DNA damage through local regulation of phosphorylation

    PubMed Central

    Yang, Jen-Hao; Chiou, Yi-Ying; Fu, Shu-Ling; Shih, I-Yun; Weng, Tsai-Hsuan; Lin, Wey-Jinq; Lin, Chao-Hsiung

    2014-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA-binding protein involved in chromatin remodeling, RNA processing and the DNA damage response. In addition, increased hnRNPK expression has been associated with tumor development and progression. A variety of post-translational modifications of hnRNPK have been identified and shown to regulate hnRNPK function, including phosphorylation, ubiquitination, sumoylation and methylation. However, the functional significance of hnRNPK arginine methylation remains unclear. In the present study, we demonstrated that the methylation of two essential arginines, Arg296 and Arg299, on hnRNPK inhibited a nearby Ser302 phosphorylation that was mediated through the pro-apoptotic kinase PKCδ. Notably, the engineered U2OS cells carrying an Arg296/Arg299 methylation-defective hnRNPK mutant exhibited increased apoptosis upon DNA damage. While such elevated apoptosis can be diminished through addition with wild-type hnRNPK, we further demonstrated that this increased apoptosis occurred through both intrinsic and extrinsic pathways and was p53 independent, at least in part. Here, we provide the first evidence that the arginine methylation of hnRNPK negatively regulates cell apoptosis through PKCδ-mediated signaling during DNA damage, which is essential for the anti-apoptotic role of hnRNPK in apoptosis and the evasion of apoptosis in cancer cells. PMID:25104022

  14. Ginsenoside-Rg5 induces apoptosis and DNA damage in human cervical cancer cells

    PubMed Central

    LIANG, LI-DAN; HE, TAO; DU, TING-WEI; FAN, YONG-GANG; CHEN, DIAN-SEN; WANG, YAN

    2015-01-01

    Panax ginseng is traditionally used as a remedy for cancer, inflammation, stress and aging, and ginsenoside-Rg5 is a major bioactive constituent of steamed ginseng. The present study aimed to evaluate whether ginsenoside-Rg5 had any marked cytotoxic, apoptotic or DNA-damaging effects in human cervical cancer cells. Five human cervical cancer cell lines (HeLa, MS751, C33A, Me180 and HT-3) were used to investigate the cytotoxicity of ginsenoside-Rg5 using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Additionally, the effects of ginsenoside-Rg5 on the apoptosis of HeLa and MS751 cells were detected using DNA ladder assays and flow cytometry. DNA damage was assessed in the HeLa and MS751 cells using alkaline comet assays and by detection of γH2AX focus formation. The HeLa and MS751 cells were significantly more sensitive to ginsenoside-Rg5 treatment compared with the C-33A, HT-3 and Me180 cells. As expected, ginsenoside-Rg5 induced significant concentration- and time-dependent increases in apoptosis. In addition, ginsenoside-Rg5 induced significant concentration-dependent increases in the level of DNA damage compared with the negative control. Consistent with the comet assay data, the percentage of γH2AX-positive HeLa and MS751 cells also revealed that ginsenoside-Rg5 caused DNA double-strands to break in a concentration-dependent manner. In conclusion, ginsenoside-Rg5 had marked genotoxic effects in the HeLa and MS751 cells and, thus, demonstrates potential as a genotoxic or cytotoxic drug for the treatment of cervical cancer. PMID:25355274

  15. Synthesis and biological evaluation of benzimidazole acridine derivatives as potential DNA-binding and apoptosis-inducing agents.

    PubMed

    Gao, Chunmei; Li, Bin; Zhang, Bin; Sun, Qinsheng; Li, Lulu; Li, Xi; Chen, Changjun; Tan, Chunyan; Liu, Hongxia; Jiang, Yuyang

    2015-04-15

    The discovery of new effective DNA-targeted antitumor agent is needed because of their clinical significance. As acridines can intercalate into DNA and benzimidazoles have the ability to bind in the DNA minor groove, a series of novel benzimidazole acridine derivatives were designed and synthesized to be new DNA-targeted compounds. MTT assay indicated that most of the synthesized compounds displayed good antiproliferative activity, among which compound 8l demonstrated the highest activity against both K562 and HepG-2 cells. Further experiments showed that 8l displayed good DNA-binding capability and inhibited topoisomerase I activity. Moreover, compound 8l could induce apoptosis in K562 cell lines through mitochondrial pathway. These data suggested that compound 8l might be potential as new DNA-binding and apoptosis-inducing antitumor agents.

  16. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell

    SciTech Connect

    Li, Ze-xin; Li, Jian; Li, Yan; You, Kun; Xu, Hongwei; Wang, Jianguo

    2015-08-21

    The inhibitory effect of DNA topoisomerase (Top I) by isoliquiritigenin(ISO) were investigated and their interaction mechanism was evaluated using methods including UV–vis absorption, fluorescence, coupled with molecular simulation, and using the MTT method of inhibition rate of HCC tumor cell SNU475 proliferation assay, finally, the interaction of ISO with calf thymus DNA was investigated by melting measurements and molecular docking studies. It was found that isoliquiritigenin reversibly inhibited DNA Top I in a competitive manner with the concentrations of ISO resulting in 50% activity lost (IC{sub 50}) were estimated to be 0.178 ± 0.12 mM. Isoliquiritigenin exhibited a strong ability to quench the intrinsic fluorescence of Top I through a static quenching procedure. The positive values of enthalpy change and entropy change suggested that the binding of isoliquiritigenin to Top I was driven mainly by hydrophobic interactions. The molecular docking results revealed isoliquiritigenin actually interacted with the primary amino acid residues on the active site of Top I, and the detection results of fluorescence staining and the inhibitory effect on the growth of HCC SUN475 showed that isoliquiritigenin induced the apoptosis cells increased gradually. The interaction of ISO with DNA can cause the denaturation temperature to be increased, which indicated that the stabilization of the DNA helix was increased in the presence of ISO, which indicated that the results provide strong evidence for intercalative binding of ISO with DNA. - Highlights: • ISO reversibly inhibits TOP I activity in an A dose dependent manner. • Hydrophobic interactions play a major role in ISO–TOP I interaction. • ISO has a high affinity close to the active site pocket of TOP I. • The binding of ISO to DNA induces the stability of the structure of DNA.

  17. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    PubMed

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program.

  18. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress.

    PubMed

    Skipper, Anthony; Sims, Jennifer N; Yedjou, Clement G; Tchounwou, Paul B

    2016-01-02

    Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium. Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG₂) cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet) assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay). The result of MTT assay indicated that cadmium chloride induces toxicity to HepG₂ cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05) increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG₂ cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05) was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG₂) cells.

  19. Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis.

    PubMed

    Bergmann-Leitner, Elke S; Leitner, Wolfgang W; Duncan, Elizabeth H; Savranskaya, Tatyana; Angov, Evelina

    2009-09-18

    Malaria represents a major global health problem but despite extensive efforts, no effective vaccine is available. Various vaccine candidates have been developed that provide protection in animal models, such as a gene gun-delivered DNA vaccine encoding the circumsporozoite protein (CSP) of Plasmodium berghei. A common shortcoming of most malaria vaccines is the requirement for multiple immunizations leaving room for improvement even for established vaccine candidates such as the CSP-DNA vaccine. In this study, we explored whether regulating apoptosis in DNA vaccine transfected host cells could accelerate the onset of protective immunity and provide significant protection after a single immunization. A pro-apoptotic gene (Bax) was used as a molecular adjuvant in an attempt to mimic the immunostimulatory apoptosis triggered by viral or virus-derived vaccines, while anti-apoptotic genes such as Bcl-XL may increase the life span of transfected cells thus prolonging antigen production. Surprisingly, co-delivery of either Bax or Bcl-XL greatly reduced CSP-DNA vaccine efficacy after a single immunization. Co-delivery of Bax for three immunizations still had a detrimental effect on protective immunity, while repeated co-delivery of Bcl-XL had no negative impact. The fine characterization of humoral and cellular immune response modulated by these two molecular adjuvants revealed a previously unknown effect, i.e., a shift in the Th-profile. These results demonstrate that pro- or anti-apoptotic molecules should not be used as molecular adjuvants without careful evaluation of the resulting immune response. This finding represents yet another example that strategies to enhance vaccine efficacy developed for other model systems such as viral diseases cannot easily be applied to any vaccine.

  20. Does sperm DNA fragmentation affect the developmental potential and the incidence of apoptosis following blastomere biopsy?

    PubMed

    Haghpanah, Tahereh; Salehi, Mohammad; Ghaffari Novin, Marefat; Masteri Farahani, Reza; Fadaei-Fathabadi, Fatemeh; Dehghani-Mohammadabadi, Maryam; Azimi, Hadi

    2016-01-01

    Common methods employed in assisted reproduction technology (ART) include intracytoplasmic sperm injection (ICSI) with an unspecified level of sperm DNA fragmentation (SDF) and preimplantation genetic diagnosis (PGD). The aim of this study was to investigate the impact of SDF on human preimplantation embryo development and the incidence of apoptosis following a single blastomere biopsy. Using sperm chromatin dispersion (SCD) to assess SDF, a total of 20 processed semen samples were categorized into two groups; group I: SDF ≤30% and group II: SDF >30%. After ICSI, fertilization, cleavage, and embryo quality score were assessed. A single blastomere was biopsied from day 3 embryos and development was monitored on day 4. The frequency of apoptosis in biopsied embryos was assayed by TUNEL and the level of BCL-2, BAX, hsa-mir-15a, and hsa-mir-16-1 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). SCD was found to be negatively correlated with sperm motility and normal form spermatozoa (p < 0.05). The rate of fertilization, cleavage, and embryo quality score were not significantly different between the two groups (all p > 0.05). SDF >30% had no negative effect on potential development and did not increase the proportion of apoptotic cells and the level of apoptosis-related genes and microRNAs (miRNAs) in group II vs. group I (p > 0.05). It appears that at the levels assessed paternal genome damage had little if any negative effect on preimplantaton embryo development and apoptosis following single blastomere biopsy. This may reflect the selection of morphologically normal sperm for ICSI and the repair capacity of the oocyte.

  1. Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema.

    PubMed

    Matsuyama, Shigemi; Palmer, James; Bates, Adam; Poventud-Fuentes, Izmarie; Wong, Kelvin; Ngo, Justine; Matsuyama, Mieko

    2016-06-01

    Cells with DNA damage undergo apoptosis or cellular senescence if the damage cannot be repaired. Recent studies highlight that cellular senescence plays a major role in aging. However, age-associated diseases, including emphysema and neurodegenerative disorders, are caused by apoptosis of lung alveolar epithelial cells and neurons, respectively. Therefore, enhanced apoptosis also promotes aging and shortens the life span depending on the cell type. Recently, we reported that ku70(-) (/) (-)bax(-) (/) (-) and ku70(-) (/) (-)bax(+/) (-) mice showed significantly extended life span in comparison with ku70(-) (/) (-)bax(+/+) mice. Ku70 is essential for non-homologous end joining pathway for DNA double strand break repair, and Bax plays an important role in apoptosis. Our study suggests that Bax-induced apoptosis has a significant impact on shortening the life span of ku70(-) (/) (-) mice, which are defective in one of DNA repair pathways. The lung alveolar space gradually enlarges during aging, both in mouse and human, and this age-dependent change results in the decrease of respiration capacity during aging that can lead to emphysema in more severe cases. We found that emphysema occurred in ku70(-) (/) (-) mice at the age of three-months old, and that Bax deficiency was able to suppress it. These results suggest that Bax-mediated apoptosis induces emphysema in ku70(-) (/) (-) mice. We also found that the number of cells, including bronchiolar epithelial cells and type 2 alveolar epithelial cells, shows a higher DNA double strand break damage response in ku70 KO mouse lung than in wild type. Recent studies suggest that non-homologous end joining activity decreases with increased age in mouse and rat model. Together, we hypothesize that the decline of Ku70-dependent DNA repair activity in lung alveolar epithelial cells is one of the causes of age-dependent decline of lung function resulting from excess Bax-mediated apoptosis of lung alveolar epithelial cells (and their

  2. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA.

    PubMed

    Zhao, Hong; Halicka, H Dorota; Li, Jiangwei; Biela, Ewa; Berniak, Krzysztof; Dobrucki, Jurek; Darzynkiewicz, Zbigniew

    2013-11-01

    The "click chemistry" approach utilizing 5-ethynyl-2'-deoxyuridine (EdU) as a DNA precursor was recently introduced to assess DNA replication and adapted to flow- and imaging-cytometry. In the present study, we observed that EdU, once incorporated into DNA, induces DNA damage signaling (DDS) such as phosphorylation of ATM on Ser1981, of histone H2AX on Ser139, of p53 on Ser15, and of Chk2 on Thr68. It also perturbs progression of cells through the cell cycle and subsequently induces apoptosis. These effects were observed in non-small cell lung adenocarcinoma A549 as well as in B-cell human lymphoblastoid TK6 and WTK1 cells, differing in the status of p53 (wt versus mutated). After 1 h EdU pulse-labeling, the most affected was cells progression through the S phase subsequent to that at which they had incorporated EdU. This indicates that DNA replication using the template containing incorporated EdU is protracted and triggers DDS. Furthermore, progression of cells having DNA pulse-labeled with EdU led to accumulation of cells in G2 , likely by activating G2 checkpoint. Consistent with the latter was activation of p53 and Chk2. Although a correlation was observed in A549 cells between the degree of EdU incorporation and the extent of γH2AX induction, such correlation was weak in TK6 and WTK1 cells. The degree of perturbation of the cell cycle kinetics by the incorporated EdU was different in the wt p53 TK6 cells as compared to their sister WTK1 cell line having mutated p53. The data are thus consistent with the role of p53 in modulating activation of cell cycle checkpoints in response to impaired DNA replication. The confocal microscopy analysis of the 3D images of cells exposed to EdU for 1 h pulse and then grown for 24 or 48 h revealed an increased number of colocalized γH2AX and p53BP1 foci considered to be markers of DNA double-strand breaks and enlarged nuclei.

  3. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives

    SciTech Connect

    Barros, Francisco W.A.; Bezerra, Daniel P.; Ferreira, Paulo M.P.; Cavalcanti, Bruno C.; Silva, Teresinha G.; Pitta, Marina G.R.; Lima, Maria do C.A. de; Galdino, Suely L.; Pitta, Ivan da R.; Costa-Lotufo, Letícia V.; Moraes, Manoel O.; Burbano, Rommel R.; Guecheva, Temenouga N.; Henriques, João A.P.; Pessoa, Cláudia

    2013-04-01

    Thiazacridine derivatives (ATZD) are a novel class of cytotoxic agents that combine an acridine and thiazolidine nucleus. In this study, the cytotoxic action of four ATZD were tested in human colon carcinoma HCT-8 cells: (5Z)-5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione — AC-4; (5ZE)-5-acridin-9-ylmethylene-3-(4-bromo-benzyl)-thiazolidine-2,4-dione — AC-7; (5Z)-5-(acridin-9-ylmethylene)-3-(4-chloro-benzyl) -1,3-thiazolidine-2,4-dione — AC-10; and (5ZE)-5-(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2, 4-dione — AC-23. All of the ATZD tested reduced the proliferation of HCT-8 cells in a concentration- and time-dependent manner. There were significant increases in internucleosomal DNA fragmentation without affecting membrane integrity. For morphological analyses, hematoxylin–eosin and acridine orange/ethidium bromide were used to stain HCT-8 cells treated with ATZD, which presented the typical hallmarks of apoptosis. ATZD also induced mitochondrial depolarisation and phosphatidylserine exposure and increased the activation of caspases 3/7 in HCT-8 cells, suggesting that this apoptotic cell death was caspase-dependent. In an assay using Saccharomyces cerevisiae mutants with defects in DNA topoisomerases 1 and 3, the ATZD showed enhanced activity, suggesting an interaction between ATZD and DNA topoisomerase enzyme activity. In addition, ATZD inhibited DNA topoisomerase I action in a cell-free system. Interestingly, these ATZD did not cause genotoxicity or inhibit the telomerase activity in human lymphocyte cultures at the experimental levels tested. In conclusion, the ATZD inhibited the DNA topoisomerase I activity and induced tumour cell death through apoptotic pathways. - Highlights: ► Thiazacridine derivatives induce mitochondrial-dependent apoptotic cell death. ► Thiazacridine derivatives inhibit DNA topoisomerase I action. ► Thiazacridine derivatives failed to cause genotoxicity on human lymphocytes.

  4. DNA Damage Signaling Assessed in Individual Cells in Relation to the Cell Cycle Phase and Induction of Apoptosis

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H. Dorota; Rybak, Paulina; Dobrucki, Jurek; Wlodkowic, Donald

    2012-01-01

    Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion. PMID:23137030

  5. Histone H1 Limits DNA Methylation in Neurospora crassa.

    PubMed

    Seymour, Michael; Ji, Lexiang; Santos, Alex M; Kamei, Masayuki; Sasaki, Takahiko; Basenko, Evelina Y; Schmitz, Robert J; Zhang, Xiaoyu; Lewis, Zachary A

    2016-07-07

    Histone H1 variants, known as linker histones, are essential chromatin components in higher eukaryotes, yet compared to the core histones relatively little is known about their in vivo functions. The filamentous fungus Neurospora crassa encodes a single H1 protein that is not essential for viability. To investigate the role of N. crassa H1, we constructed a functional FLAG-tagged H1 fusion protein and performed genomic and molecular analyses. Cell fractionation experiments showed that H1-3XFLAG is a chromatin binding protein. Chromatin-immunoprecipitation combined with sequencing (ChIP-seq) revealed that H1-3XFLAG is globally enriched throughout the genome with a subtle preference for promoters of expressed genes. In mammals, the stoichiometry of H1 impacts nucleosome repeat length. To determine if H1 impacts nucleosome occupancy or nucleosome positioning in N. crassa, we performed micrococcal nuclease digestion in the wild-type and the [Formula: see text]hH1 strain followed by sequencing (MNase-seq). Deletion of hH1 did not significantly impact nucleosome positioning or nucleosome occupancy. Analysis of DNA methylation by whole-genome bisulfite sequencing (MethylC-seq) revealed a modest but global increase in DNA methylation in the [Formula: see text]hH1 mutant. Together, these data suggest that H1 acts as a nonspecific chromatin binding protein that can limit accessibility of the DNA methylation machinery in N. crassa.

  6. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis.

    PubMed

    Rudolf, Emil; Cervinka, Miroslav

    2006-09-25

    Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.

  7. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    PubMed

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  8. Role for Caspase-Mediated Cleavage of Rad51 in Induction of Apoptosis by DNA Damage

    PubMed Central

    Huang, YinYin; Nakada, Shuji; Ishiko, Takatoshi; Utsugisawa, Taiju; Datta, Rakesh; Kharbanda, Surender; Yoshida, Kiyotsugu; Talanian, Robert V.; Weichselbaum, Ralph; Kufe, Donald; Yuan, Zhi-Min

    1999-01-01

    We report here that the Rad51 recombinase is cleaved in mammalian cells during the induction of apoptosis by ionizing radiation (IR) exposure. The results demonstrate that IR induces Rad51 cleavage by a caspase-dependent mechanism. Further support for involvement of caspases is provided by the finding that IR-induced proteolysis of Rad51 is inhibited by Ac-DEVD-CHO. In vitro studies show that Rad51 is cleaved by caspase 3 at a DVLD/N site. Stable expression of a Rad51 mutant in which the aspartic acid residues were mutated to alanines (AVLA/N) confirmed that the DVLD/N site is responsible for the cleavage of Rad51 in IR-induced apoptosis. The functional significance of Rad51 proteolysis is supported by the finding that, unlike intact Rad51, the N- and C-terminal cleavage products fail to exhibit recombinase activity. In cells, overexpression of the Rad51(D-A) mutant had no effect on activation of caspase 3 but did abrogate in part the apoptotic response to IR exposure. We conclude that proteolytic inactivation of Rad51 by a caspase-mediated mechanism contributes to the cell death response induced by DNA damage. PMID:10082566

  9. Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection.

    PubMed

    Zhang, Hua; Li, Fengqi; Pan, Ziye; Wu, Zhijun; Wang, Yanhong; Cui, Yudong

    2014-11-04

    Apoptosis is frequently induced to inhibit virus replication during infection of Enterovirus 71 (EV71). On the contrary, anti-apoptotic pathway, such as PI3K/Akt pathway, is simultaneously exploited by EV71 to accomplish the viral life cycle. The relationship by which EV71-induced apoptosis and PI3K/Akt signaling pathway remains to be elucidated. In this study, we demonstrated that EV71 infection altered Bax conformation and triggered its redistribution from the cytosol to mitochondria in RD cells. Subsequently, cytochrome c was released from mitochondria to cytosol. We also found that c-Jun NH2-terminal kinase (JNK) was activated during EV71 infection. The JNK specific inhibitor significantly inhibited Bax activation and cytochrome c release, suggesting that EV71-induced apoptosis was involved into a JNK-dependent manner. Meanwhile, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Inhibition of the PI3K/Akt pathway enhanced JNK phosphorylation and the JNK-mediated apoptosis upon EV71 infection. Moreover, PI3K/Akt pathway phosphorylated apoptosis signal-regulating kinase 1 (ASK1) and negatively regulated the ASK1 activity. Knockdown of ASK1 significantly decreased JNK phosphorylation, which implied that ASK1 phosphorylation by Akt inhibited ASK1-mediated JNK activation. Collectively, these data reveal that activation of the PI3K/Akt pathway limits JNK-mediated apoptosis by phosphorylating and inactivating ASK1 during EV71 infection.

  10. Characterization of HIFU ablation using DNA fragmentation labeling as apoptosis stain

    NASA Astrophysics Data System (ADS)

    Anquez, Jeremie; Corréas, Jean-Michel; Pau, Bernard; Lacoste, François; Yon, Sylvain

    2012-11-01

    The goal of this work was to compare modalities to precisely quantify the extent of thermally induced lesions: gross pathology vs. histopathology vs. devascularization. Liver areas of 14 rabbits were targeted with HIFU and RF ablations in an acute study. Contrast enhanced computorized tomography (CE-CT) scan images were acquired two hours after HIFU and RF treatment to obtain the devascularized volumes of the livers. The animals were then euthanized and deep frozen. The livers were sliced and each slice was photographed and stacked yielding a volume of gross pathology. The volume VGP of the HIFU lesions were derived. The area AGP of the lesions were computed on a particular slice. The lesions were segmented as hypo intense (devascularized) regions on CE-CT images and their volumes VC were computed. The ratios VC/VGP were computed for all the HIFU lesions on all the 14 subjects with a mean value of 1.2. Histology was performed on the livers using Hematoxyline Eosine Staining (HES) and DNA Fragmentation labeling (TUNEL® technology) which characterizes apoptosis. Apoptotic regions of area AT were segmented on the images stained by TUNEL®. No necrosis was identified on the HES data. While TUNEL® did not mark the cores of the RF lesions as apoptotic, the periphery of HIFU and RF lesions was always recognized with TUNEL® as apoptotic. The ratio AGP/AT was computed. The mean value was 0.95 and 0.25 for HIFU and RF lesions respectively. These findings show that the devascularized territory seen on CE-CT scan coincide with the coagulated territories seen with gross pathology. Those actually correspond to cells in apoptosis. It is confirmed that HES stain does not show necrosis 2 hours after thermal ablation. TUNEL® technology for DNA fragmentation labeling appears as a useful marker for thermally induced acute lesions in the liver.

  11. Cytotoxicity, apoptosis and DNA damage induced by Alpinia galanga rhizome extract.

    PubMed

    Muangnoi, P; Lu, M; Lee, J; Thepouyporn, A; Mirzayans, R; Le, X C; Weinfeld, M; Changbumrung, S

    2007-07-01

    Alpinia galanga, or galangal, has been a popular condiment used in Thai and Asian cuisine for many years. However, relatively little is known of the potential beneficial or adverse health effects of this spice. This study was conducted to analyze the capacity of galangal extract to induce cytotoxicity and DNA damage in six different human cell lines including normal and p53-inactive fibroblasts, normal epithelial and tumour mammary cells and a lung adenocarcinoma cell line. We deliberately focused on treatment with the crude aqueous extract of galangal rhizomes, rather than compounds extracted into an organic solvent, to more closely reflect the mode of dietary consumption of galangal. The cell lines displayed a broad range of cytotoxicity. There was no evidence for preferential cytotoxicity of tumour cells, but there was an indication that p53-active cell lines may be more sensitive than their p53-inactive counterparts. The contribution of apoptosis to total cell killing was only appreciable after exposure to 300 microg/mL of extract. Apoptosis appeared to be independent of p53 expression. Exposure to as little as 100 microg/mL galangal extract generated a significant level of DNA single-strand breaks as judged by the single-cell gel electrophoresis technique (comet assay). The three major UV-absorbing compounds in the aqueous extract were identified by mass spectrometry as 1'-acetoxychavicol acetate and its deacetylated derivatives. However, when tested in A549 human lung adenocarcinoma cells, these compounds were not responsible for the cytotoxicity induced by the complete aqueous extract.

  12. Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis.

    PubMed

    Jou, Mei-Jie; Peng, Tsung-I; Yu, Pai-Zu; Jou, Shuo-Bin; Reiter, Russel J; Chen, Jin-Yi; Wu, Hong-Yueh; Chen, Chih-Chun; Hsu, Lee-Fen

    2007-11-01

    Defected mitochondrial respiratory chain (RC), in addition to causing a severe ATP deficiency, often augments reactive oxygen species (ROS) generation in mitochondria (mROS) which enhances pathological conditions and diseases. Previously, we demonstrated a potent endogenously RC defect-augmented mROS associated dose-dependently with a commonly seen large-scale deletion of 4977 base pairs of mitochondrial DNA (mtDNA), i.e. the common deletion (CD). As current treatments for CD-associated diseases are rather supplementary and ineffective, we investigated whether melatonin, a potential mitochondrial protector, provides beneficial protection for CD-augmented mitochondrial oxidative stress and apoptosis particularly upon the induction of a secondary oxidative stress. Detailed mechanistic investigations were performed by using laser scanning dual fluorescence imaging microscopy to provide precise spatial and temporal resolution of mitochondrial events at single cell level. We demonstrate, for the first time, that melatonin significantly prevents CD-augmented mROS formation under basal conditions as well as at early time-points upon secondary oxidative stress induced by H2O2 exposure. Thus, melatonin prevents mROS-mediated depolarization of mitochondrial membrane potential (DeltaPsim) and subsequent opening of the mitochondrial permeability transition pore (MPTP) and cytochrome c release. Moreover, melatonin prevents depletion of cardiolipin which appears to be crucial for postponing later MPTP opening, disruption of the mitochondrial membrane and apoptosis. Finally, the protection provided by melatonin is superior to those caused by the suppression of mitochondrial Ca2+ regulators including the mitochondrial Na+-Ca2) exchanger, the MPTP, and the mitochondrial Ca2+ uniporter and by antioxidants including vitamin E and mitochondria-targeted coenzyme Q, MitoQ. As RC defect-augmented endogenous mitochondrial oxidative stress is centrally involved in a variety of pathological

  13. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage.

    PubMed

    Song, Guo Hua; Gao, Ji Ping; Wang, Chun Fang; Chen, Chao Yang; Yan, Xiao Yan; Guo, Min; Wang, Yu; Huang, Fu Bing

    2014-09-01

    Long-term excessive sodium fluoride (NaF) intake can cause many bone diseases and nonskeletal fluorosis. The kidneys are the primary organs involved in the excretion and retention of NaF. The objective of the present study was to determine the effects of NaF treatment on renal cell apoptosis, DNA damage, and the protein expression levels of cytosolic cytochrome C (Cyt C) and cleaved caspases 9, 8, and 3 in vivo. Male Sprague-Dawley rats were divided randomly into four groups (control, low fluoride, medium fluoride, and high fluoride) and administered 0, 50, 100, and 200 mg/L of NaF, respectively, via drinking water for 120 days. Histopathological changes in the kidneys were visualized using hematoxylin and eosin staining. Renal cell apoptosis was examined using flow cytometry, and renal cell DNA damage was detected using the comet assay. Cytosolic Cyt C and cleaved caspases 9, 8, and 3 protein expression levels were visualized using immunohistochemistry and Western blotting. The results showed that NaF treatment increased apoptosis and DNA damage. In addition, NaF treatment increased the protein expression levels of cytosolic Cyt C and cleaved caspases 9, 8, and 3. These results indicated that NaF induces apoptosis in the kidney of rats through caspase-mediated pathway, and DNA damage may be involved in this process.

  14. Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation.

    PubMed

    Hook, Graham J; Zhang, Peng; Lagroye, I; Li, Li; Higashikubo, Ryuji; Moros, Eduardo G; Straube, William L; Pickard, William F; Baty, Jack D; Roti Roti, Joseph L

    2004-02-01

    To determine whether exposure to radiofrequency (RF) radiation can induce DNA damage or apoptosis, Molt-4 T lymphoblastoid cells were exposed with RF fields at frequencies and modulations of the type used by wireless communication devices. Four types of frequency/modulation forms were studied: 847.74 MHz code-division multiple-access (CDMA), 835.62 MHz frequency-division multiple-access (FDMA), 813.56 MHz iDEN(R) (iDEN), and 836.55 MHz time-division multiple-access (TDMA). Exponentially growing cells were exposed to RF radiation for periods up to 24 h using a radial transmission line (RTL) exposure system. The specific absorption rates used were 3.2 W/kg for CDMA and FDMA, 2.4 or 24 mW/kg for iDEN, and 2.6 or 26 mW/kg for TDMA. The temperature in the RTLs was maintained at 37 degrees C +/- 0.3 degrees C. DNA damage was measured using the single-cell gel electrophoresis assay. The annexin V affinity assay was used to detect apoptosis. No statistically significant difference in the level of DNA damage or apoptosis was observed between sham-treated cells and cells exposed to RF radiation for any frequency, modulation or exposure time. Our results show that exposure of Molt-4 cells to CDMA, FDMA, iDEN or TDMA modulated RF radiation does not induce alterations in level of DNA damage or induce apoptosis.

  15. Liver fluke-induced hepatic oxysterols stimulate DNA damage and apoptosis in cultured human cholangiocytes.

    PubMed

    Jusakul, Apinya; Loilome, Watcharin; Namwat, Nisana; Haigh, W Geoffrey; Kuver, Rahul; Dechakhamphu, Somkid; Sukontawarin, Pradit; Pinlaor, Somchai; Lee, Sum P; Yongvanit, Puangrat

    2012-03-01

    Oxysterols are cholesterol oxidation products that are generated by enzymatic reactions through cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols have been identified in bile in the setting of chronic inflammation, suggesting that biliary epithelial cells are chronically exposed to these compounds in certain clinical settings. We hypothesized that biliary oxysterols resulting from liver fluke infection participate in cholangiocarcinogenesis. Using gas chromatography/mass spectrometry, we identified oxysterols in livers from hamsters infected with Opisthorchis viverrini that develop cholangiocarcinoma. Five oxysterols were found: 7-keto-cholesta-3,5-diene (7KD), 3-keto-cholest-4-ene (3K4), 3-keto-cholest-7-ene (3K7), 3-keto-cholesta-4,6-diene (3KD), and cholestan-3β,5α,6β-triol (Triol). Triol and 3K4 were found at significantly higher levels in the livers of hamsters with O. viverrini-induced cholangiocarcinoma. We therefore investigated the effects of Triol and 3K4 on induction of cholangiocarcinogenesis using an in vitro human cholangiocyte culture model. Triol- and 3K4-treated cells underwent apoptosis. Western blot analysis showed significantly increased levels of Bax and decreased levels of Bcl-2 in these cells. Increased cytochrome c release from mitochondria was found following treatment with Triol and 3K4. Triol and 3K4 also induced formation of the DNA adducts 1,N(6)-etheno-2'-deoxyadenosine, 3,N(4)-etheno-2'-deoxycytidine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in cholangiocytes. The data suggest that Triol and 3K4 cause DNA damage via oxidative stress. Chronic liver fluke infection increases production of the oxysterols Triol and 3K4 in the setting of chronic inflammation in the biliary system. These oxysterols induce apoptosis and DNA damage in cholangiocytes. Insufficient and impaired DNA repair of such mutated cells may enhance clonal expansion and further drive the change in

  16. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

    PubMed Central

    Srivastava, Shikha; Somasagara, Ranganatha R.; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  17. PI3K/AKT Mediated P53 Down-Regulation Participates in CpG DNA Inhibition of Spontaneous B Cell Apoptosis

    PubMed Central

    Zhou, Yongxin; Zhen, Huiling; Mei, Yunqing; Wang, Yongwu; Feng, Jing; Xu, Shuchang; Fu, Xiaoying

    2009-01-01

    The unmethylated CpG DNA can prevent spontaneous apoptosis of B cells. However, the precise mechanisms by which CpG DNA blocks apoptosis remain unclear. In this study, we showed B cell apoptosis was significantly inhibited by addition of CpG DNA. Treatment of CpG DNA could reduce the expression of caspase 3, increase IAP and Bcl-xL expressions, and inhibit p53 protein expression which level was increased in B cell spontaneous apoptosis at 24 h. AKT kinase activity was increased with the incubation of CpG DNA. The wortmannin and Ly294002 could abrogate the protection of B cell from apoptosis by CpG DNA. The up-regulations of Bcl-xL and IAP by CpG DNA were not inhibited when blocking PI3K by specific inhibitor Ly294002, while the inhibition of p53 by CpG DNA could be blocked by Ly294002. These results demonstrated that the inhibition of spontaneous B cell apoptosis by CpG DNA was correlated to up-regulation of Bcl-xL, IAP and down-regulation of p53 and caspase 3. CpG DNA inhibition of p53 is mediated through PI3K/AKT signaling. PMID:19567200

  18. PI3K/AKT mediated p53 down-regulation participates in CpG DNA inhibition of spontaneous B cell apoptosis.

    PubMed

    Zhou, Yongxin; Zhen, Huiling; Mei, Yunqing; Wang, Yongwu; Feng, Jing; Xu, Shuchang; Fu, Xiaoying

    2009-06-01

    The unmethylated CpG DNA can prevent spontaneous apoptosis of B cells. However, the precise mechanisms by which CpG DNA blocks apoptosis remain unclear. In this study, we showed B cell apoptosis was significantly inhibited by addition of CpG DNA. Treatment of CpG DNA could reduce the expression of caspase 3, increase IAP and Bcl-xL expressions, and inhibit p53 protein expression which level was increased in B cell spontaneous apoptosis at 24 h. AKT kinase activity was increased with the incubation of CpG DNA. The wortmannin and Ly294002 could abrogate the protection of B cell from apoptosis by CpG DNA. The up-regulations of Bcl-xL and IAP by CpG DNA were not inhibited when blocking PI3K by specific inhibitor Ly294002, while the inhibition of p53 by CpG DNA could be blocked by Ly294002. These results demonstrated that the inhibition of spontaneous B cell apoptosis by CpG DNA was correlated to up-regulation of Bcl-xL, IAP and down-regulation of p53 and caspase 3. CpG DNA inhibition of p53 is mediated through PI3K/AKT signaling.

  19. A Limited Number of Globin Genes in Human DNA

    PubMed Central

    Gambino, Roberto; Kacian, Daniel; O'Donnell, Joyce; Ramirez, Francesco; Marks, Paul A.; Bank, Arthur

    1974-01-01

    The number of globin genes in human cells was determined by hybridizing DNA from human spleens to 3H-labeled DNA complementary to human globin mRNA. Assuming the rates of reannealing of complementary DNA and cellular DNA are similar, the extent of hybridization of complementary DNA at various ratios of cellular DNA to complementary DNA indicate that there are fewer than 10 globin gene copies per haploid human genome. An alternative analysis of the data, which introduces no assumptions concerning the relative rates of reaction of complementary DNA and cellular DNA, indicates fewer than 20 globin gene copies are present. DNA isolated from the spleen of a patient with β+ thalassemia contained a number of globin gene copies similar to that of normal DNA. PMID:4530276

  20. Cadmium Induced Cell Apoptosis, DNA Damage, Decreased DNA Repair Capacity, and Genomic Instability during Malignant Transformation of Human Bronchial Epithelial Cells

    PubMed Central

    Zhou, Zhiheng; Wang, Caixia; Liu, Haibai; Huang, Qinhai; Wang, Min; Lei, Yixiong

    2013-01-01

    Cadmium and its compounds are well-known human carcinogens, but the mechanisms underlying the carcinogenesis are not entirely understood. Our study was designed to elucidate the mechanisms of DNA damage in cadmium-induced malignant transformation of human bronchial epithelial cells. We analyzed cell cycle, apoptosis, DNA damage, gene expression, genomic instability, and the sequence of exons in DNA repair genes in several kinds of cells. These cells consisted of untreated control cells, cells in the fifth, 15th, and 35th passage of cadmium-treated cells, and tumorigenic cells from nude mice using flow cytometry, Hoechst 33258 staining, comet assay, quantitative real-time polymerase chain reaction (PCR), Western blot analysis, random amplified polymorphic DNA (RAPD)-PCR, and sequence analysis. We observed a progressive increase in cell population of the G0/G1 phase of the cell cycle and the rate of apoptosis, DNA damage, and cadmium-induced apoptotic morphological changes in cerebral cortical neurons during malignant transformation. Gene expression analysis revealed increased expression of cell proliferation (PCNA), cell cycle (CyclinD1), pro-apoptotic activity (Bax), and DNA damage of the checkpoint genes ATM, ATR, Chk1, Chk2, Cdc25A. Decreased expression of the anti-apoptotic gene Bcl-2 and the DNA repair genes hMSH2, hMLH1, ERCC1, ERCC2, and hOGG1 was observed. RAPD-PCR revealed genomic instability in cadmium-exposed cells, and sequence analysis showed mutation of exons in hMSH2, ERCC1, XRCC1, and hOGG1 in tumorigenic cells. This study suggests that Cadmium can increase cell apoptosis and DNA damage, decrease DNA repair capacity, and cause mutations, and genomic instability leading to malignant transformation. This process could be a viable mechanism for cadmium-induced cancers. PMID:24046522

  1. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression.

    PubMed

    Roth, Felix; De La Fuente, Adriana C; Vella, Jennifer L; Zoso, Alessia; Inverardi, Luca; Serafini, Paolo

    2012-03-15

    In addition to promoting tumor progression and metastasis by enhancing angiogenesis and invasion, myeloid-derived suppressor cells (MDSC) and tumor-associated macrophage (TAM) also inhibit antitumor T-cell functions and limit the efficacy of immunotherapeutic interventions. Despite the importance of these leukocyte populations, a simple method for their specific depletion has not been developed. In this study, we generated an RNA aptamer that blocks the murine or human IL-4 receptor-α (IL4Rα or CD124) that is critical for MDSC suppression function. In tumor-bearing mice, this anti-IL4Rα aptamer preferentially targeted MDSCs and TAM and unexpectedly promoted their elimination, an effect that was associated with an increased number of tumor-infiltrating T cells and a reduction in tumor growth. Mechanistic investigations of aptamer-triggered apoptosis in MDSCs confirmed the importance of IL4Ra-STAT6 pathway activation in MDSC survival. Our findings define a straightforward strategy to deplete MDSCs and TAMs in vivo, and they strengthen the concept that IL4Rα signaling is pivotal for MDSC survival. More broadly, these findings suggest therapeutic strategies based on IL4Rα signaling blockades to arrest an important cellular mechanism of tumoral immune escape mediated by MDSCs and TAM in cancer.

  2. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation.

    PubMed

    Chung, Woo-Hyun

    2016-01-01

    Atmospheric pressure plasma has been developed for a variety of biomedical applications due to its chemically reactive components. Recently, the plasma has emerged as a promising novel cancer therapy based on its ability to selectively ablate cancer cells while leaving normal cells essentially unaffected. The therapeutic effect of plasma is attributed to intracellular generation of reactive oxygen/nitrogen species (ROS/RNS) leading to mitochondria-mediated apoptosis and to activation of the DNA damage checkpoint signaling pathway via severe DNA strand break formation. However, the biochemical mechanisms responsible for appropriate activation of these physiological events and which pathway is more crucial for plasma-mediated cytotoxicity have not been clarified. Understanding the molecular link between ROS/RNS-mediated apoptosis and DNA damage-involved chromosome instability is critical for the development of more efficacious therapeutic strategies for selective killing of diverse cancer cells.

  3. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    SciTech Connect

    Tan, Wei; Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. Black-Right-Pointing-Pointer Chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Zebularine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 {mu}M accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  4. Myricetin induces apoptosis via endoplasmic reticulum stress and DNA double-strand breaks in human ovarian cancer cells

    PubMed Central

    XU, YE; XIE, QI; WU, SHAOHUA; YI, DAN; YU, YANG; LIU, SHIBING; LI, SONGYAN; LI, ZHIXIN

    2016-01-01

    The mechanisms underlying myricetin-induced cancer cell apoptosis remain to be elucidated. Certain previous studies have shown that myricetin induces apoptosis through the mitochondrial pathway. Apoptosis, however, can also be induced by other classical pathways, including endoplasmic reticulum (ER) stress and DNA double-strand breaks (DSBs). The aim of the present study was to assess whether these two apoptotic pathways are involved in myricetin-induced cell death in SKOV3 ovarian cancer cells. The results revealed that treatment with myricetin inhibited viability of SKOV3 cells in a dose-dependent manner. Myricetin induced nuclear chromatin condensation and fragmentation, and also upregulated the protein levels of active caspase 3 in a time-dependent manner. In addition, myricetin upregulated ER stress-associated proteins, glucose-regulated protein-78 and C/EBP homologous protein in SKOV3 cells. Phosphorylation of H2AX, a marker of DNA DSBs, was revealed to be upregulated in myricetin-treated cells. The data indicated that myricetin induces DNA DSBs and ER stress, which leads to apoptosis in SKOV3 cells. PMID:26782830

  5. Mechanistic modelling suggests that the size of preneoplastic lesions is limited by intercellular induction of apoptosis in oncogenically transformed cells

    PubMed Central

    Kundrát, Pavel; Bauer, Georg; Jacob, Peter; Friedland, Werner

    2012-01-01

    Selective removal of oncogenically transformed cells by apoptosis induced via signalling by surrounding cells has been suggested to represent a natural anticarcinogenic process. To investigate its potential effect in detail, a mechanistic model of this process is proposed. The model is calibrated against in vitro data on apoptosis triggered in transformed cells by defined external inducers as well as through signalling by normal cells under coculture conditions. The model predicts that intercellular induction of apoptosis is capable of balancing the proliferation of oncogenically transformed cells and limiting the size of their populations over long times, even if their proliferation per se were unlimited. Experimental research is desired to verify whether the predicted stable population of transformed cells corresponds to a kind of dormancy during early-stage carcinogenesis (dormant preneoplastic lesions), and how this process relates to other anticarcinogenic mechanisms taking place under in vivo conditions. PMID:22045028

  6. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    PubMed

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  7. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis

    SciTech Connect

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D.; Aneja, Ritu

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ∼ 72% upon daily oral administration of 150 mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management. - Highlights: • HC perturbs cell-cycle progression by induction of reactive oxygen species (ROS). • HC mediated cytotoxicity by ROS-induced DNA damage leading to

  8. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    SciTech Connect

    Zhang, Bingzhen; Shen, Chunzi; Yang, Liu; Li, Chunhui; Yi, Anji; Wang, Zhiping

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  9. DNA double helix unwinding triggers transcription block-dependent apoptosis: a semiquantitative probe of the response of ATM, RNAPII, and p53 to two DNA intercalators.

    PubMed

    Zhang, Zhichao; Wang, Yuanyuan; Song, Ting; Gao, Jin; Wu, Guiye; Zhang, Jing; Qian, Xuhong

    2009-03-16

    We have previously shown the binding modes of two DNA interacting analogues (1)a {3-(4-methyl-piperazin)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} and (3)a {3-(3-dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} with the DNA double helix. In this study, we have determined the notably different DNA damage signal pathway elicited by (1)a and (3)a due to the different extents to which they unwind the DNA double helix. First, we have identified that ataxia-telangiectasia-mutated (ATM) protein kinase can respond to DNA double helix unwinding caused by both (1)a and (3)a. In addition, the amount of ATM activation is consistent with the degree to which the DNA double helix was unwound. Consequently, we used (1)a and (3)a to semiquantitatively probe the response of RNA polymerase II (RNAPII) and p53 toward DNA double helix unwinding in vivo. By means of flow cytometry, immunocytochemistry, ChIP, quantitative real-time polymerase chain reaction, and Western blot analyses, we measured the level of p53 and RNAPII phosphorylation, in addition to the dynamics of the RNAPII distribution along the c-Myc gene. These results provided novel evidence for the impact of subtle DNA structural changes on the activity of RNAPII and p53. Moreover, DNA double helix conformational damage-dependent apoptosis was studied for the first time. These results indicated that (1)a can induce transcriptional blockage following a shift of the unphosphorylated IIa form of RNAPII to the phosphorylated IIo form, while (3)a is unable to induce the same effect. Subsequently, p53 accumulation and phosphorylation events occur that lead to apoptosis in the case of (1)a exposure. This suggests that the transcriptional blockage is also correlated to the degree of double helix unwinding. Furthermore, we found that the degree of DNA conformational damage determines whether or not apoptosis occurs through transcriptional blockage. Under our experimental conditions, ATM does not

  10. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an "off-target" effect?

    PubMed

    Havelka, Aleksandra Mandic; Berndtsson, Maria; Olofsson, Maria Hägg; Shoshan, Maria C; Linder, Stig

    2007-10-01

    DNA damage induces apoptosis of cells of hematological origin. Apoptosis is also widely believed to be the major antiproliferative mechanism of DNA damaging anticancer drugs in other cell types, and a large number of laboratories have studied drug-induced acute apoptosis (within 24 hours) of carcinoma cells. It is, however, often overlooked that induction of apoptosis of carcinoma cells generally requires drug concentrations that are at least one order of magnitude higher than those required for loss of clonogenicity. This is true for different DNA damaging drugs such as cisplatin, doxorubicin and camptothecin. We here discuss apoptosis induction by DNA damaging agents using cisplatin as an example. Recent studies have shown that cisplatin induces caspase activation in enucleated cells (cytoplasts lacking a cell nucleus). Cisplatin-induced apoptosis in both cells and cytoplasts is associated with rapid induction of cellular reactive oxygen species and increases in [Ca(2+)](i). Cisplatin has also been reported to induce clustering of Fas/CD95 in the plasma membrane. Available data suggest that the primary responses to cisplatin-induced DNA damage are induction of long-term growth arrest ("premature cell senescence") and mitotic catastrophe, whereas acute apoptosis may be due to "off-target effects" not necessarily involving DNA damage.

  11. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo.

    PubMed

    Tan, Wei; Zhou, Wei; Yu, Hong-gang; Luo, He-Sheng; Shen, Lei

    2013-01-04

    DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigated by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 μM accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.

  12. Oxidative DNA Damage Mediated by Intranuclear MMP Activity Is Associated with Neuronal Apoptosis in Ischemic Stroke.

    PubMed

    Kimura-Ohba, Shihoko; Yang, Yi

    2016-01-01

    Evidence of the pathological roles of matrix metalloproteinases (MMPs) in various neurological disorders has made them attractive therapeutic targets. MMPs disrupt the blood-brain barrier and cause neuronal death and neuroinflammation in acute cerebral ischemia and are critical for angiogenesis during recovery. However, some challenges have to be overcome before MMPs can be further validated as drug targets in stroke injury. Identifying in vivo substrates of MMPs should greatly improve our understanding of the mechanisms of ischemic injury and is critical for providing more precise drug targets. Recent works have uncovered nontraditional roles for MMPs in the cytosol and nucleus. These have shed light on intracellular targets and biological actions of MMPs, adding additional layers of complexity for therapeutic MMP inhibition. In this review, we discussed the recent advances made in understanding nuclear location of MMPs, their regulation of intranuclear sorting, and their intranuclear proteolytic activity and substrates. In particular, we highlighted the roles of intranuclear MMPs in oxidative DNA damage, neuronal apoptosis, and neuroinflammation at an early stage of stroke insult. These novel data point to new putative MMP-mediated intranuclear actions in stroke-induced pathological processes and may lead to novel approaches to treatment of stroke and other neurological diseases.

  13. The Sesquiterpene Lactone Dehydroleucodine Triggers Senescence and Apoptosis in Association with Accumulation of DNA Damage Markers

    PubMed Central

    Costantino, Valeria V.; Mansilla, Sabrina F.; Speroni, Juliana; Amaya, Celina; Cuello-Carrión, Darío; Ciocca, Daniel R.; Priestap, Horacio A.; Barbieri, Manuel A.; Gottifredi, Vanesa; Lopez, Luis A.

    2013-01-01

    Sesquiterpene lactones (SLs) are plant-derived compounds that display anti-cancer effects. Some SLs derivatives have a marked killing effect on cancer cells and have therefore reached clinical trials. Little is known regarding the mechanism of action of SLs. We studied the responses of human cancer cells exposed to various concentrations of dehydroleucodine (DhL), a SL of the guaianolide group isolated and purified from Artemisia douglasiana (Besser), a medicinal herb that is commonly used in Argentina. We demonstrate for the first time that treatment of cancer cells with DhL, promotes the accumulation of DNA damage markers such as phosphorylation of ATM and focal organization of γH2AX and 53BP1. This accumulation triggers cell senescence or apoptosis depending on the concentration of the DhL delivered to cells. Transient DhL treatment also induces marked accumulation of senescent cells. Our findings help elucidate the mechanism whereby DhL triggers cell cycle arrest and cell death and provide a basis for further exploration of the effects of DhL in in vivo cancer treatment models. PMID:23341930

  14. PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2.

    PubMed

    Chakraborti, Soumyananda; Chakraborty, Samik; Saha, Shilpi; Manna, Argha; Banerjee, Shruti; Adhikary, Arghya; Sarwar, Shamila; Hazra, Tapas K; Das, Tanya; Chakrabarti, Pinak

    2017-02-01

    We find that PEG functionalized ZnO nanoparticles (NP) have anticancer properties primarily because of ROS generation. Detailed investigation revealed two consequences depending on the level of ROS - either DNA damage repair or apoptosis - in a time-dependent manner. At early hours of treatment, NP promote NEIL2-mediated DNA repair process to counteract low ROS-induced DNA damage. However, at late hours these NP produce high level of ROS that inhibits DNA repair process, thereby directing the cell towards apoptosis. Mechanistically at low ROS conditions, transcription factor Sp1 binds to the NEIL2 promoter and facilitates its transcription for triggering a 'fight-back mechanism' thereby resisting cancer cell apoptosis. In contrast, as ROS increase during later hours, Sp1 undergoes oxidative degradation that decreases its availability for binding to the promoter thereby down-regulating NEIL2 and impairing the repair mechanism. Under such conditions, the cells strategically switch to the p53-dependent apoptosis.

  15. Induced overexpression of CD44 associated with resistance to apoptosis on DNA damage response in human head and neck squamous cell carcinoma cells.

    PubMed

    Ohkoshi, Emika; Umemura, Naoki

    2017-02-01

    CD44 is a marker of cancer stem cells in head and neck squamous cell carcinoma, and CD44 expression is related to prognosis in cancer patients. We examined whether herbal medicine components affect CD44 expression and induce cancer cell apoptosis. Baicalin enhanced apoptosis with no effect on CD44 levels, while baicalein did not enhance apoptosis and upregulated CD44 in head and neck squamous cell carcinoma. Furthermore, baicalein induced phosphorylation of CHK1, as a marker of DNA damage response to S-to-G2/M phase arrest. Our results clearly demonstrated that baicalein enhanced expression of CD44 and accordingly enhanced the DNA damage response. These data suggest that induction of CD44 inhibited cancer cell induction of apoptosis by increasing the DNA damage response. Together, our findings suggest that CD44 expression in head and neck squamous cell carcinoma plays a role in enhancing the DNA damage response.

  16. Induced overexpression of CD44 associated with resistance to apoptosis on DNA damage response in human head and neck squamous cell carcinoma cells

    PubMed Central

    Ohkoshi, Emika; Umemura, Naoki

    2017-01-01

    CD44 is a marker of cancer stem cells in head and neck squamous cell carcinoma, and CD44 expression is related to prognosis in cancer patients. We examined whether herbal medicine components affect CD44 expression and induce cancer cell apoptosis. Baicalin enhanced apoptosis with no effect on CD44 levels, while baicalein did not enhance apoptosis and upregulated CD44 in head and neck squamous cell carcinoma. Furthermore, baicalein induced phosphorylation of CHK1, as a marker of DNA damage response to S-to-G2/M phase arrest. Our results clearly demonstrated that baicalein enhanced expression of CD44 and accordingly enhanced the DNA damage response. These data suggest that induction of CD44 inhibited cancer cell induction of apoptosis by increasing the DNA damage response. Together, our findings suggest that CD44 expression in head and neck squamous cell carcinoma plays a role in enhancing the DNA damage response. PMID:28035370

  17. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.

    PubMed

    Ford, James B; Baturin, Dmitry; Burleson, Tamara M; Van Linden, Annemie A; Kim, Yong-Mi; Porter, Christopher C

    2015-09-29

    While some children with acute lymphoblastic leukemia (ALL) have excellent prognoses, the prognosis for adults and children with T cell ALL is more guarded. Treatment for T-ALL is heavily dependent upon antimetabolite chemotherapeutics, including cytarabine. Targeted inhibition of WEE1 with AZD1775 has emerged as a strategy to sensitize cancer cells to cytarabine and other chemotherapeutics. We sought to determine if this strategy would be effective for T-ALL with clinically relevant anti-leukemia agents. We found that AZD1775 sensitizes T-ALL cells to several traditional anti-leukemia agents, acting synergistically with cytarabine by enhancing DNA damage and apoptosis. In addition to increased phosphorylation of H2AX at serine 139 (γH2AX), AZD1775 led to increased phosphorylation of H2AX at tyrosine 142, a signaling event associated with promotion of apoptosis over DNA repair. In a xenograft model of T-ALL, the addition of AZD1775 to cytarabine slowed leukemia progression and prolonged survival. Inhibition of WEE1 with AZD1775 sensitizes T-ALL to several anti-leukemia agents, particularly cytarabine and that mechanistically, AZD1775 promotes apoptosis over DNA repair in cells treated with cytarabine. These data support the development of clinical trials including AZD1775 in combination with conventional chemotherapy for acute leukemia.

  18. A novel ruthenium(II)-polypyridyl complex inhibits cell proliferation and induces cell apoptosis by impairing DNA damage repair.

    PubMed

    Yang, Qingyuan; Zhang, Zhao; Mei, Wenjie; Sun, Fenyong

    2014-08-01

    Ruthenium complexes are widely recognized as one of the most promising DNA damaging chemotherapeutic drugs. The main goal of this study was to explore the anticancer activity and underlying mechanisms of [Ru(phen)(2)(p-BrPIP)](ClO(4))(2), a novel chemically synthesized ruthenium (Ru) complex. To this end, we employed MTT assays to determine the anticancer activity of the complex, and performed single-cell gel electrophoresis (SCGE) and Western blotting to evaluate DNA damage. Our results showed that the Ru(II)-poly complex caused severe DNA damage, possibly by downregulating key factors involved in DNA repair pathways, such as proliferating cell nuclear antigen (PCNA) and ring finger protein 8 (RNF8). In addition, this complex induced cell apoptosis by upregulating both p21 and p53. Taken together, our findings demonstrate that the Ru(II)-poly complex exhibits antitumour activity by inducing cell apoptosis, which results from the accumulation of large amounts of unrepaired DNA damage.

  19. Low-Dose Methylmercury-Induced Apoptosis and Mitochondrial DNA Mutation in Human Embryonic Neural Progenitor Cells

    PubMed Central

    Yan, Mengling; Zhao, Lina; Wu, Qing; Wu, Chunhua

    2016-01-01

    Methylmercury (MeHg) is a long-lasting organic pollutant primarily found in the aquatic environment. The developing brain is particularly sensitive to MeHg due to reduced proliferation of neural stem cell. Although several mechanisms of MeHg-induced apoptosis have been defined in culture models, it remains unclear whether mitochondrial DNA (mtDNA) mutation is involved in the toxic effect of MeHg, especially in the neural progenitor cells. In the present study, the ReNcell CX cell, a human neural progenitor cells (hNPCs) line, was exposed to nanomolar concentrations of MeHg (≤50 nM). We found that MeHg altered mitochondrial metabolic function and induced apoptosis. In addition, we observed that MeHg induced ROS production in a dose-dependent manner in hNPCs cells, which was associated with significantly increased expressions of ND1, Cytb, and ATP6. To elucidate the mechanism underlying MeHg toxicity on mitochondrial function, we examined the ATP content and mitochondrial membrane potential in MeHg-treated hNPCs. Our study showed that MeHg exposure led to decreased ATP content and reduced mitochondrial membrane potential, which failed to match the expansion in mtDNA copy number, suggesting impaired mtDNA. Collectively, these results demonstrated that MeHg induced toxicity in hNPCs through altering mitochondrial function and inducing oxidative damage to mtDNA. PMID:27525052

  20. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation

    PubMed Central

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    2016-01-01

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF-κB)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF-κB-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF-κB activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents. PMID:27833761

  1. E1A enhances cellular sensitivity to DNA-damage-induced apoptosis through PIDD-dependent caspase-2 activation.

    PubMed

    Radke, Jay R; Siddiqui, Zeba K; Figueroa, Iris; Cook, James L

    2016-01-01

    Expression of the adenoviral protein, E1A, sensitizes mammalian cells to a wide variety of apoptosis-inducing agents through multiple cellular pathways. For example, E1A sensitizes cells to apoptosis induced by TNF-superfamily members by inhibiting NF-kappa B (NF-κB)-dependent gene expression. In contrast, E1A sensitization to nitric oxide, an inducer of the intrinsic apoptotic pathway, is not dependent upon repression of NF-κB-dependent transcription but rather is dependent upon caspase-2 activation. The latter observation suggested that E1A-induced enhancement of caspase-2 activation might be a critical factor in cellular sensitization to other intrinsic apoptosis pathway-inducing agents. Etoposide and gemcitabine are two DNA damaging agents that induce intrinsic apoptosis. Here we report that E1A-induced sensitization to both of these agents, like NO, is independent of NF-κB activation but dependent on caspase-2 activation. The results show that caspase-2 is a key mitochondrial-injuring caspase during etoposide and gemcitabine-induced apoptosis of E1A-positive cells, and that caspase-2 is required for induction of caspase-3 activity by both chemotherapeutic agents. Expression of PIDD was required for caspase-2 activation, mitochondrial injury and enhanced apoptotic cell death. Furthermore, E1A-enhanced sensitivity to injury-induced apoptosis required PIDD cleavage to PIDD-CC. These results define the PIDD/caspase-2 pathway as a key apical, mitochondrial-injuring mechanism in E1A-induced sensitivity of mammalian cells to chemotherapeutic agents.

  2. Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis.

    PubMed

    Gundala, Sushma Reddy; Yang, Chunhua; Mukkavilli, Rao; Paranjpe, Rutugandha; Brahmbhatt, Meera; Pannu, Vaishali; Cheng, Alice; Reid, Michelle D; Aneja, Ritu

    2014-10-01

    Dietary phytochemicals are excellent ROS-modulating agents and have been shown to effectively enhance ROS levels beyond toxic threshold in cancer cells to ensure their selective killing while leaving normal cells unscathed. Here we demonstrate that hydroxychavicol (HC), extracted and purified from Piper betel leaves, significantly inhibits growth and proliferation via ROS generation in human prostate cancer, PC-3 cells. HC perturbed cell-cycle kinetics and progression, reduced clonogenicity and mediated cytotoxicity by ROS-induced DNA damage leading to activation of several pro-apoptotic molecules. In addition, HC treatment elicited a novel autophagic response as evidenced by the appearance of acidic vesicular organelles and increased expression of autophagic markers, LC3-IIb and beclin-1. Interestingly, quenching of ROS with tiron, an antioxidant, offered significant protection against HC-induced inhibition of cell growth and down regulation of caspase-3, suggesting the crucial role of ROS in mediating cell death. The collapse of mitochondrial transmembrane potential by HC further revealed the link between ROS generation and induction of caspase-mediated apoptosis in PC-3 cells. Our data showed remarkable inhibition of prostate tumor xenografts by ~72% upon daily oral administration of 150mg/kg bw HC by quantitative tumor volume measurements and non-invasive real-time bioluminescent imaging. HC was well-tolerated at this dosing level without any observable toxicity. This is the first report to demonstrate the anti-prostate cancer efficacy of HC in vitro and in vivo, which is perhaps attributable to its selective prooxidant activity to eliminate cancer cells thus providing compelling grounds for future preclinical studies to validate its potential usefulness for prostate cancer management.

  3. Cytosolic dsDNA triggers apoptosis and pro-inflammatory cytokine production in normal human melanocytes.

    PubMed

    Wang, Suiquan; Liu, Dongyin; Ning, Weixuan; Xu, Aie

    2015-04-01

    Considerable evidence implicates that viral infection might be a participant factor in the pathogenesis of vitiligo. However, it is still unclear how viral infection leads to the melanocyte destruction. To elucidate the effects of viral dsDNA on the viability and cytokine synthesis of normal human melanocytes and to explore the underlying mechanisms, primary cultured normal human melanocytes were transfected with poly(dA:dT). The results demonstrated that poly(dA:dT) triggered apoptosis instead of pyroptosis in melanocytes. Knocking down AIM2 or RIG-I by RNA interference partially reduced the poly(dA:dT)-induced LDH release, suggesting the involvement of both nucleic acid sensors in the process of melanocyte death. Poly(dA:dT) induced the expression of pro-inflammatory cytokine genes including IFN-β, TNF-α, IL-6 and IL-8 as well, whereas the pro-inflammatory cytokine production was suppressed by RIG-I siRNA, but not by AIM2 siRNA. Poly(dA:dT) treatment increased the phosphorylation of p38 and JNK and NFκB. Accordingly, NFκB inhibitor Bay 11-7082 and JNK inhibitor SP600125 blocked the induction of the cytokine genes except IFN-β. The production of IL6 and IL8 was also suppressed by p38 inhibitor SB203580. On the contrary, the Poly(dA:dT)-induced melanocyte death was only decreased by SP600125. This study provides the possible mechanism of melanocyte destruction and immuno-stimulation in vitiligo by innate immune response following viral infection.

  4. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    PubMed

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.

  5. An Integrated Approach for Analysis of the DNA Damage Response in Mammalian Cells: NUCLEOTIDE EXCISION REPAIR, DNA DAMAGE CHECKPOINT, AND APOPTOSIS.

    PubMed

    Choi, Jun-Hyuk; Kim, So-Young; Kim, Sook-Kyung; Kemp, Michael G; Sancar, Aziz

    2015-11-27

    DNA damage by UV and UV-mimetic agents elicits a set of inter-related responses in mammalian cells, including DNA repair, DNA damage checkpoints, and apoptosis. Conventionally, these responses are analyzed separately using different methodologies. Here we describe a unified approach that is capable of quantifying all three responses in parallel using lysates from the same population of cells. We show that a highly sensitive in vivo excision repair assay is capable of detecting nucleotide excision repair of a wide spectrum of DNA lesions (UV damage, chemical carcinogens, and chemotherapeutic drugs) within minutes of damage induction. This method therefore allows for a real-time measure of nucleotide excision repair activity that can be monitored in conjunction with other components of the DNA damage response, including DNA damage checkpoint and apoptotic signaling. This approach therefore provides a convenient and reliable platform for simultaneously examining multiple aspects of the DNA damage response in a single population of cells that can be applied for a diverse array of carcinogenic and chemotherapeutic agents.

  6. Nuclear DNA fragmentation in Creutzfeldt-Jakob disease: does a mere positive in situ nuclear end-labeling indicate apoptosis?

    PubMed

    Ferrer, I

    1999-01-01

    The method of in situ end-labeling of nuclear DNA fragmentation was used in the study of ten patients (two biopsies, eight autopsies) with sporadic Creutzfeldt-Jakob disease (CJD). All the patients had the typical morphological lesions including neuron loss, spongiform change and astrocytosis. Four of them also showed prion protein (PrP) deposits in the cerebral cortex, and two of them kuru-like plaques in the cerebellum. A few cells with DNA breaks were found in the two biopsy cases; one of them, suffering from a panencephalopathic form of the disease, showed positive nuclei not only in the cerebral cortex but also in the subcortical white matter. Variable numbers of positive nuclei were observed in the gray and white matter in the eight autopsy cases, in which, although the distribution of positive cells roughly correlated with the distribution of neuron loss, no clear relationship was found as regards the distribution and degree of cell labeling and the degree of neuron loss. Furthermore, large numbers of positive cells were concentrated in a particular area, whereas a few cells were seen in a neighboring equally affected area. Positive glial cells in the plexiform layer of the CA1 area of the hippocampus, and in the frontal white matter were frequently encountered. Staining of the cytoplasm in a minority of cells was interpreted as the result of nuclear DNA leakage. None of the stained cells had the typical morphology of apoptosis; most particularly, peripheral chromatin condensation and formation of apoptotic bodies were not seen in any case. PrP deposits did not result in an increase of nuclear DNA breaks either within the area or in adjacent regions. Although positive cells were also observed in autopsy cases of controls which were processed in the same way, positive labeling as a whole was higher in CJD than in age-matched controls. These results show that brain nuclear DNA is vulnerable in CJD, and suggest that increased DNA vulnerability has a role in

  7. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  8. G226, a new epipolythiodioxopiperazine derivative, triggers DNA damage and apoptosis in human cancer cells in vitro via ROS generation

    PubMed Central

    He, Peng-xing; Zhang, Jie; Che, Yong-sheng; He, Qiao-jun; Chen, Yi; Ding, Jian

    2014-01-01

    Aim: G226 is a novel derivative of epipolythiodioxopiperazines with potent inhibitory activity against cancer cells. Here, we sought to identify potential targets involved in the anti-cancer activity of G226. Methods: Cell proliferation assay was conducted in a panel of 12 human cancer cell lines. The activities of topoisomerase I (Topo I) and Topo II were studied using supercoiled pBR322 DNA relaxation and kDNA decatenation assays. ROS production was assessed with probes DCFH-DA and H&E. Western blot analysis and flow cytometry were used to examine DNA damage, apoptosis and cell cycle changes. Results: G226 displayed potent cytotoxicity in the 12 human cancer cell lines with a mean IC50 value of 92.7 nmol/L. This compound (1–100 μmol/L) selectively inhibited the activity of Topo II, and elevated the expression of phosphorylated-H2AX in a dose-dependent manner. In Topo II-deficient HL60/MX2 cells, however, G226-induced DNA damage, apoptosis and cytotoxicity were only partially reduced, suggesting that Topo II was not essential for the anti-tumor effects of G226. Furthermore, G226 (0.125–2 μmol/L) dose-dependently elevated the intracellular levels of H2O2 and in the cancer cells, and pretreatment with GSH, NAC or DTT not only blocked G226-induced intracellular accumulation of ROS, but also abrogated G226-mediated phosphorylation of H2AX, apoptosis and cytotoxicity. Conclusion: G226-mediated ROS production contributes to the anti-cancer activity of this compound. PMID:25468822

  9. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest

    SciTech Connect

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B.; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest. - Highlights: • Autophagy inhibitors enhanced the cytotoxicity of a DNA alkylating agent, BO-1012. • BO-1012-induced S phase arrest was a CHK1-dependent pro-survival response. • Autophagy inhibition enhanced BO-1012 cytotoxicity via disrupting the S phase arrest.

  10. DNA charge transfer: Hot holes break the speed limit

    NASA Astrophysics Data System (ADS)

    Beratan, D. N.; Waldeck, D. H.

    2016-11-01

    Charge transfer through DNA has been well studied over recent decades from both a biological and electronics perspective. It has now been shown that charge transfer can be accelerated one hundredfold by using highly energetic 'hot holes', revealing a new mechanism that could help to create useful electronic biomaterials.

  11. Neo-tanshinlactone D-ring modified novel analogues induce apoptosis in human breast cancer cell via DNA damage.

    PubMed

    Banerji, Biswadip; Killi, Sunil Kumar; Katarkar, Atul; Chatterjee, Satadru; Tangella, Yellaiah; Prodhan, Chandraday; Chaudhuri, Keya

    2017-01-01

    Neo-tanshinlactone (NTL) a natural product is known for its specificity and selectivity towards the breast cancer cells. By NTL D-ring modification approach, 13 new analogues were synthesized (1A-1M). Among them 1J showed the best anticancer activity in MCF-7 (ER+, PR+/-, HER2-), SKBR3 (ER-, PR-, HER2+) and MDA-MB-231 (ER-, PR-, HER2-) cells lines with IC50 value 11.98nM, 23.71nM, and 62.91nM respectively. 1J showed minor grove binding interaction with DNA at AT-rich region and induced DNA double strand breaks (DDSBs). This had triggered several key molecular events involving, activation of ATM, Chk2 and p53, reduction in mitochondrial potential (Δψm) leading to caspase-3 and PARP cleavage mediated apoptosis. These results along with other biochemical studies strongly suggest that novel NTL analogue 1J caused DNA cleavage mediated apoptosis in the breast cancer cells and this may serve as potential lead for future breast cancer treatment.

  12. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  13. Effects of Berberine on Cell Cycle, DNA, Reactive Oxygen Species, and Apoptosis in L929 Murine Fibroblast Cells

    PubMed Central

    Gu, Manman; Xu, Jing; Han, Chunyang; Kang, Youxi; Liu, Tengfei; He, Yanfei; Huang, Yanfei; Liu, Cuiyan

    2015-01-01

    Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines (TCM), exhibits a strong antimicrobial activity in the treatment of diarrhea. However, it causes human as well as animal toxicity from heavy dosage. The present study was conducted to investigate the cytotoxicity of berberine and its possible trigger mechanisms resulting in cell cycle arrest, DNA damage, ROS (reactive oxygen species) level, mitochondrial membrane potential change, and cell apoptosis in L929 murine fibroblast (L929) cells. The cells were cultured in vitro and treated with different concentrations of berberine for 24 h. The results showed that cell viability was significantly decreased in a subjected dose-dependent state; berberine concentrations were higher than 0.05 mg/mL. Berberine at a concentration above 0.1 mg/mL altered the morphology of L929 cells. Cells at G2/M phase were clear that the level of ROS and cell apoptosis rates increased in 0.1 mg/mL group. Each DNA damage indicator score (DIS) increased in groups where concentration of berberine was above 0.025 mg/mL. The mitochondrial membrane potential counteractive balance mechanics were significantly altered when concentrations of berberine were above 0.005 mg/mL. In all, the present study suggested that berberine at high dosage exhibited cytotoxicity on L929 which was related to resultant: cell cycle arrest; DNA damage; accumulation of intracellular ROS; reduction of mitochondrial membrane potential; and cell apoptosis. PMID:26508985

  14. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions

    PubMed Central

    Cristina Kenney, M.; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres-del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis; Michal Jazwinski, S.; Miceli, Michael; Wallace, Douglas C.; Udar, Nitin

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other ‘modifiers’ may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt–nuclear interactions. PMID:24584571

  15. Nucleolar Targeting by Platinum: p53-Independent Apoptosis Follows rRNA Inhibition, Cell-Cycle Arrest, and DNA Compaction

    PubMed Central

    2015-01-01

    TriplatinNC is a highly positively charged, substitution-inert derivative of the phase II clinical anticancer drug, BBR3464. Such substitution-inert complexes form a distinct subset of polynuclear platinum complexes (PPCs) interacting with DNA and other biomolecules through noncovalent interactions. Rapid cellular entry is facilitated via interaction with cell surface glycosoaminoglycans and is a mechanism unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS) showed rapid distribution within cytoplasmic and nucleolar compartments, but not the nucleus. In this article, the downstream effects of nucleolar localization are described. In human colon carcinoma cells, HCT116, the production rate of 47S rRNA precursor transcripts was dramatically reduced as an early event after drug treatment. Transcriptional inhibition of rRNA was followed by a robust G1 arrest, and activation of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent manner. Using cell synchronization and flow cytometry, it was determined that cells treated while in G1 arrest immediately, but cells treated in S or G2 successfully complete mitosis. Twenty-four hours after treatment, the majority of cells finally arrest in G1, but nearly one-third contained highly compacted DNA; a distinct biological feature that cannot be associated with mitosis, senescence, or apoptosis. This unique effect mirrored the efficient condensation of tRNA and DNA in cell-free systems. The combination of DNA compaction and apoptosis by TriplatinNC treatment conferred striking activity in platinum-resistant and/or p53 mutant or null cell lines. Taken together, our results support that the biological activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert compound not reactive to sulfur nucleophiles), high cellular accumulation, and novel consequences of high-affinity noncovalent DNA binding, producing a new profile and a further shift in the structure

  16. Inhibition of autophagy enhances DNA damage-induced apoptosis by disrupting CHK1-dependent S phase arrest.

    PubMed

    Liou, Jong-Shian; Wu, Yi-Chen; Yen, Wen-Yen; Tang, Yu-Shuan; Kakadiya, Rajesh B; Su, Tsann-Long; Yih, Ling-Huei

    2014-08-01

    DNA damage has been shown to induce autophagy, but the role of autophagy in the DNA damage response and cell fate is not fully understood. BO-1012, a bifunctional alkylating derivative of 3a-aza-cyclopenta[a]indene, is a potent DNA interstrand cross-linking agent with anticancer activity. In this study, BO-1012 was found to reduce DNA synthesis, inhibit S phase progression, and induce phosphorylation of histone H2AX on serine 139 (γH2AX) exclusively in S phase cells. Both CHK1 and CHK2 were phosphorylated in response to BO-1012 treatment, but only depletion of CHK1, but not CHK2, impaired BO-1012-induced S phase arrest and facilitated the entry of γH2AX-positive cells into G2 phase. CHK1 depletion also significantly enhanced BO-1012-induced cell death and apoptosis. These results indicate that BO-1012-induced S phase arrest is a CHK1-dependent pro-survival response. BO-1012 also resulted in marked induction of acidic vesicular organelle (AVO) formation and microtubule-associated protein 1 light chain 3 (LC3) processing and redistribution, features characteristic of autophagy. Depletion of ATG7 or co-treatment of cells with BO-1012 and either 3-methyladenine or bafilomycin A1, two inhibitors of autophagy, not only reduced CHK1 phosphorylation and disrupted S phase arrest, but also increased cleavage of caspase-9 and PARP, and cell death. These results suggest that cells initiate S phase arrest and autophagy as pro-survival responses to BO-1012-induced DNA damage, and that suppression of autophagy enhances BO-1012-induced apoptosis via disruption of CHK1-dependent S phase arrest.

  17. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc.

  18. Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity

    PubMed Central

    1996-01-01

    Camptothecin is an S-phase-specific anticancer agent that inhibits the activity of the enzyme DNA topoisomerase-I (topo-I). Irreversible DNA double-strand breaks are produced during DNA synthesis in the presence of camptothecin, suggesting that this agent should not be toxic to nondividing cells, such as neurons. Unexpectedly, camptothecin induced significant, dose-dependent cell death of postmitotic rat cortical neurons in vitro; astrocytes were more resistant. Aphidicolin, an inhibitor of DNA polymerase alpha, did not prevent camptothecin-induced neuronal death, while death was prevented by actinomycin D and 5,6- dichloro-1-beta-D-ribofuranosyl benzimidazole as well as cycloheximide and anisomycin, inhibitors of RNA and protein synthesis, respectively. Camptothecin-induced neuronal death was apoptotic, as characterized by chromatin condensation, cytoplasmic shrinking, plasma membrane blebbing, and fragmentation of neurites. DNA fragmentation was also confirmed by the use of the in situ DNA end labeling assay. In addition, aurintricarboxylic acid, an inhibitor of the apoptotic endonuclease, partially protected against camptothecin-induced neuronal death. The toxicity of stereoisomers of a camptothecin analogue was stereospecific, demonstrating that toxicity was a result of inhibition of topo-I. The difference in sensitivity to camptothecin between neurons and astrocytes correlated with their transcriptional activity and level of topo-I protein expression. These data indicate important roles for topo-I in postmitotic neurons and suggest that topo-I inhibitors can induce apoptosis independent of DNA synthesis. We suggest a model based on transcriptionally mediated DNA damage, a novel mechanism of action of topo-I poisons. PMID:8707853

  19. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis

    SciTech Connect

    Reich, Charles F.; Pisetsky, David S.

    2009-03-10

    Microparticles are small membrane-bound vesicles that are released from apoptotic cells during blebbing. These particles contain DNA and RNA and display important functional activities, including immune system activation. Furthermore, nucleic acids inside the particle can be analyzed as biomarkers in a variety of disease states. To elucidate the nature of microparticle nucleic acids, DNA and RNA released in microparticles from the Jurkat T and HL-60 promyelocytic cell lines undergoing apoptosis in vitro were studied. Microparticles were isolated from culture media by differential centrifugation and characterized by flow cytometry and molecular approaches. In these particles, DNA showed laddering by gel electrophoresis and was present in a form that allowed direct binding by a monoclonal anti-DNA antibody, suggesting antigen accessibility even without fixation. Analysis of RNA by gel electrophoresis showed intact 18s and 28s ribosomal RNA bands, although lower molecular bands consistent with 28s ribosomal RNA degradation products were also present. Particles also contained messenger RNA as shown by RT-PCR amplification of sequences for {beta}-actin and GAPDH. In addition, gel electrophoresis showed the presence of low molecular weight RNA in the size range of microRNA. Together, these results indicate that microparticles from apoptotic Jurkat and HL-60 cells contain diverse nucleic acid species, indicating translocation of both nuclear and cytoplasmic DNA and RNA as particle release occurs during death.

  20. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    SciTech Connect

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru . E-mail: motoyama@nils.go.jp

    2005-07-29

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR.

  1. Renal podocyte apoptosis in Zucker diabetic fatty rats: involvement of methylglyoxal-induced oxidative DNA damage.

    PubMed

    Kim, J; Sohn, E; Kim, C-S; Kim, J S

    2011-01-01

    Methylglyoxal (MGO) is a cytotoxic metabolite produced by in-vivo glycolysis that may result in diabetic complications. The aim of this study was to determine whether MGO and oxidative stress caused apoptosis of renal podocytes in the Zucker diabetic fatty (ZDF) rat, an animal model of type 2 diabetes mellitus. Male ZDF rats aged 21 weeks developed marked hyperglycaemia with proteinuria and albuminuria. Immunohistochemical evaluation of sections of kidney demonstrated expression of MGO and 8-hydroxydeoxyguanosine (8-OHdG) in the podocytes of both normoglycaemic and diabetic rats. Podocyte apoptosis was shown through application of the TUNEL method. These findings suggest that expression of MGO and 8-OHdG is caused by hyperglycaemia, and that this expression is associated with the observed apoptosis of podocytes and is related to diabetic nephropathy.

  2. Nickel-Refining Fumes Induced DNA Damage and Apoptosis of NIH/3T3 Cells via Oxidative Stress

    PubMed Central

    Wang, Yue; Wang, Sheng-Yuan; Jia, Li; Zhang, Lin; Ba, Jing-Chong; Han, Dan; Yu, Cui-Ping; Wu, Yong-Hui

    2016-01-01

    Although there have been numerous studies examining the toxicity and carcinogenicity of nickel compounds in humans and animals, its molecular mechanisms of action are not fully elucidated. In our research, NIH/3T3 cells were exposed to nickel-refining fumes at the concentrations of 0, 6.25, 12.50, 25, 50 and 100 μg/mL for 24 h. Cell viability, cell apoptosis, reactive oxygen species (ROS) level, lactate dehydrogenase (LDH) assay, the level of glutathione (GSH), activities of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) level were detected. The exposure of NIH/3T3 cells to nickel-refining fumes significantly reduced cell viability and induced cell apoptotic death in a dose-dependent manner. Nickel-refining fumes significantly increased ROS levels and induced DNA damage. Nickel-refining fumes may induce the changes in the state of ROS, which may eventually initiate oxidative stress, DNA damage and apoptosis of NIH/3T3 cells. PMID:27347984

  3. The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells

    PubMed Central

    Ruiz-Magaña, María J.; Martínez-Aguilar, Rocío; Lucendo, Estefanía; Campillo-Davo, Diana; Schulze-Osthoff, Klaus; Ruiz-Ruiz, Carmen

    2016-01-01

    Epigenetic therapies have emerged as promising anticancer approaches, since epigenetic modifications play a major role in tumor initiation and progression. Hydralazine, an approved vasodilator and antihypertensive drug, has been recently shown to act as a DNA methylation inhibitor. Even though hydralazine is already tested in clinical cancer trials, its mechanism of antitumor action remains undefined. Here, we show that hydralazine induced caspase-dependent apoptotic cell death in human p53-mutant leukemic T cells. Moreover, we demonstrate that hydralazine triggered the mitochondrial pathway of apoptosis by inducing Bak activation and loss of the mitochondrial membrane potential. Hydralazine treatment further resulted in the accumulation of reactive oxygen species, whereas a superoxide dismutase mimetic inhibited hydralazine-induced cell death. Interestingly, caspase-9-deficient Jurkat cells or Bcl-2- and Bcl-xL-overexpressing cells were strongly resistant to hydralazine treatment, thereby demonstrating the dependence of hydralazine-induced apoptosis on the mitochondrial death pathway. Furthermore, we demonstrate that hydralazine treatment triggered DNA damage which might contribute to its antitumor effect. PMID:26942461

  4. Assessment of extent of apoptosis and DNA defragmentation in chilled semen of stallions during the breeding season.

    PubMed

    Krakowski, L; Obara, J; Wąchocka, A; Piech, T; Bartoszek, P; Kostro, K; Tatara, M R

    2013-10-01

    The objective of the study was to assess apoptosis and DNA defragmentation in equine semen diluted and chilled to +4°C. Semen was collected from nine fertile stallions, including four Arabian thoroughbreds and five coldbloods. Examinations were carried out immediately after semen collection (0) and at five storage times (24, 48, 72, 96 and 120 h). The basic semen evaluation was performed in terms of volume, sperm concentration, viable sperm percentage, progressive motility and morphology. Using flow cytometry, DNA defragmentation and cell membrane integrity of spermatozoa were determined. The results of basic tests did not demonstrate significant differences amongst stallions, except for progressive sperm motility, which was significantly higher (p < 0.05) in the semen of Arabian stallions. In the semen of the same stallions, a significant decrease in the percentage of alive spermatozoa was observed at 72, 96 and 120 h of storage, whereas a significant increase in the number of spermatozoa with DNA defragmentation was found after 24 h storage. In the semen of coldblood stallions, significantly reduced live spermatozoa percentage was observed at 96 and 120 h, while increased DNA defragmentation was observed at 48 h. These findings demonstrated that the semen of Arabian stallions chilled to +4°C retained original characteristics until 24 h of storage, whereas in coldbloods, these were preserved up to 48 h of storage.

  5. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    SciTech Connect

    Luzhna, Lidia; Kovalchuk, Olga

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  6. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress

    PubMed Central

    Jiao, Yang; Ma, Sai; Wang, Yirong; Li, Jing; Shan, Lequn; Sun, Jinlong; Chen, Jihua

    2016-01-01

    The polymerizable antibacterial monomer methacryloxylethyl cetyl ammonium chloride (DMAE-CB) has provided an effective strategy to combat dental caries. However, the application of such material raises the question about the biological safety and the question remains open. The mechanism of this toxic action, however, is not yet clearly understood. The present study aims at providing novel insight into the possible causal link between cellular oxidative stress and DNA damage, as well as apoptosis in human dental pulp cells exposed to DMAE-CB. The enhanced formation of reactive oxygen species and depletion of glutathione, as well as differential changes in activities of superoxide dismutase, glutathione peroxidase, and catalase in DMAE-CB-treated cells indicated oxidative stress. By using substances that can alter GSH synthesis, we found that GSH was the key component in the regulation of cell response towards oxidative stress induced by DMAE-CB. The increase in oxidative stress-sensitive 8-Oxo-2'-deoxyguanosine (8-OHdG) content, formation of γ-H2AX and cell cycle G1 phase arrest indicated that DNA damage occurred as a result of the interaction between DNA base and ROS beyond the capacities of antioxidant mechanisms in cells exposed to DMAE-CB. Such oxidative DNA damage thus triggers the activation of ataxia telangiectasia-mutated (ATM) signaling, the intrinsic apoptotic pathway, and destruction of mitochondrial morphology and function. PMID:27143955

  7. Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation.

    PubMed

    Nair, Jagadeesan; Strand, Susanne; Frank, Norbert; Knauft, Jutta; Wesch, Horst; Galle, Peter R; Bartsch, Helmut

    2005-07-01

    Long-Evans Cinnamon (LEC) rats, a model for human Wilson's disease, develop chronic hepatitis and liver tumors owing to accumulation of copper and induced oxidative stress. Lipid peroxidation (LPO)-induced etheno-DNA adducts in nuclear- and mitochondrial-DNA along with apoptosis was measured in LEC rat liver. Levels of etheno-DNA adducts (1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine) increased with age reaching a peak at 8 and 12 weeks in nuclear and mitochondrial DNA, respectively. This is the first demonstration that etheno-DNA adducts are also formed in mitochondrial DNA. Apoptosis was assessed by TUNEL+ cells in liver sections. CD95L RNA expression was also measured by in situ hybridization in the same sections. The highest nuclear DNA adduct levels coincided with a reduced apoptotic rate at 8 weeks. Mitochondrial-DNA adducts peaked at 12 weeks that coincided with the highest apoptotic rate, suggesting a link of etheno-DNA adducts in mitochondrial DNA to apoptosis. The DNA damage in liver was further enhanced and sustained by 0.5% curcumin in the diet. Treatment for 2 weeks elevated etheno-DNA adducts 9- to 25-fold in nuclear DNA and 3- to 4-fold in mitochondrial-DNA, providing a plausible explanation as to why in our earlier study [Frank et al. (2003) Mutat. Res., 523-524, 127-135], curcumin failed to prevent liver tumors in LEC rats. Our results also confirm the reported in vitro DNA damaging potential of curcumin in the presence of copper ions by reactive oxygen species. LPO-induced adduct formation in nuclear and mitochondrial DNA appear as early lesions in LEC rat liver carcinogenesis and are discussed in relation to apoptotic events in the progression of malignant disease.

  8. E2F1-mediated DNA damage is implicated in 8-Cl-adenosine-induced chromosome missegregation and apoptosis in human lung cancer H1299 cells.

    PubMed

    Han, Yu-Ying; Zhou, Zhe; Cao, Ji-Xiang; Jin, Ya-Qiong; Li, Shu-Yan; Ni, Ju-Hua; An, Guo-Shun; Zhang, Yu-Xiang; Jia, Hong-Ti

    2013-12-01

    Although E2F1-mediated DNA double-stranded breaks (DSBs) and tetraploid have been extensively studied, the role of E2F1 in mitotic catastrophe is still unknown. We have previously shown that 8-chloro-adenosine (8-Cl-Ado) induces DNA DSBs and aberrant mitosis in human lung cancer cells, followed by delayed apoptosis. Here, we demonstrate that E2F1-mediated DNA damage is implicated in 8-Cl-Ado-induced chromosome missegregation and apoptosis in lung cancer H1299 cells. We showed that E2F1 was accumulated upon 8-Cl-Ado-induced DNA DSBs. Induction of E2F1 by 8-Cl-Ado caused DNA damage in cycling cells including M cells. In contrast, silencing of E2F1 expression decreased 8-Cl-Ado-induced DNA DSBs, particularly eliminated E2F1-mediated mitotic DNA damage. Over-expression of E2F1 and/or 8-Cl-Ado exposure resulted in aberrant mitotic spindles and chromosome segregation errors. Furthermore, over-expression of E2F1 expression enhanced 8-Cl-Ado-induced apoptosis. Together, our data indicate that E2F1-mediated DNA damage, in particular mitotic DNA damage, is an important fraction of 8-Cl-Ado-induced DNA damage, which is implicated in 8-Cl-Ado-induced mitotic catastrophe and delayed apoptosis. Induction of E2F1 by 8-Cl-Ado may contribute at least partly to the drug-inhibited proliferation of cancer cells.

  9. Nanomicelle curcumin-induced DNA fragmentation in testicular tissue; Correlation between mitochondria dependent apoptosis and failed PCNA-related hemostasis.

    PubMed

    Moshari, Sana; Nejati, Vahid; Najafi, Gholamreza; Razi, Mazdak

    2017-04-03

    Current study was done to assess possible anti-proliferative effect of nanomicelle curcumin (NMCM) against germ cells in testicular tissue. For this purpose, 24 mature male Wistar rats were divided into control and test groups. The animals in test groups received 7.5mg/kg, 15mg/kg and 30mg/kg of NMC (NO=6 rats in each group). Following 48days, the expression of Bcl-2, Bax, caspase-3, P53 and proliferating cell nuclear antigen (PCNA) were evaluated by using reverse transcription-PCR and immunohistochemistry. Histological changes, tubular differentiation index (TDI), tissue cellularity and serum level of testosterone were analyzed. Finally, the DNA laddering test was used to assess the DNA fragmentation as hallmark for apoptosis. The NMCM significantly (P<0.05) diminished the Bcl-2, p53 and PCNA and enhanced the Bax and caspase-3 mRNA levels. The NMCM significantly (P<0.05) elevated the percentage of Bax and caspase-3-positive tubules and remarkably reduced the percentage of tubules with positive reaction for Bcl-2, p53 and PCNA. The NCMN-received animals exhibited remarkable (P<0.05) reduction in cell population, TDI ratio and serum level of testosterone. Severe DNA fragmentation was observed in 30mg/kg NMCM-received group. In conclusion, the NMCM by reducing the testicular endocrine status, down-regulating Bcl-2 expression and by enhancing the Bax and caspase-3 expression initiates the intrinsic apoptosis pathway. On the other hand, inhibited expression of p53 and PCNA (at dose level of 30mg/kg) suppresses the p53 and PCNA-related hemostasis/preservative reactions. All these alterations adversely affect the spermatogenesis.

  10. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis.

    PubMed

    Oya, Elisabeth; Ovrevik, Johan; Arlt, Volker M; Nagy, Eszter; Phillips, David H; Holme, Jørn A

    2011-11-01

    Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) are mutagenic and carcinogenic environmental pollutants found in diesel exhaust and on urban air pollution particles. In the present study, human bronchial epithelial BEAS-2B cells were exposed to 2-nitrobenzanthrone (2-NBA) and 3-nitrobenzanthrone (3-NBA). DNA damage responses were compared to those observed after exposure to 1-nitropyrene (1-NP) and benzo[a]pyrene (B[a]P). Examination by microscopy revealed that 3-NBA was the most potent toxic compound while weaker responses were observed with 1-NP and B[a]P. Most interestingly, 2-NBA did not induce cell death or any other stress-related responses. 3-NBA induced a typical apoptotic cell death judged by nuclear condensation and little plasma membrane damage as well as cleavage of caspase 3 and poly-(ADP-ribose) polymerase (PARP). Exposure to 3-NBA resulted in an accumulation of cells in S-phase, and further analysis by Western blotting, immunocytochemistry and flow cytometry revealed that 3-NBA induced a DNA damage response characterized by phosphorylation of ATM (ataxia-telangiectasia mutated), checkpoint kinase (Chk) 2/Chk1, H2AX and p53. The p53 inhibitor pifithrin-α inhibited 3-NBA-induced apoptosis while small effects were seen using pifithrin-μ, suggesting that 3-NBA-induced cell death is a result of transcriptional activation of p53. In conclusion, 3-NBA is a potent inducer of apoptosis, which seemed to be triggered by the DNA damage response. Furthermore, a change of the nitro-group to the second position (i.e. 2-NBA) dramatically changed the cellular reactivity of the compound.

  11. DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia.

    PubMed

    Su, J H; Nichol, K E; Sitch, T; Sheu, P; Chubb, C; Miller, B L; Tomaselli, K J; Kim, R C; Cotman, C W

    2000-05-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease which affects mainly the frontal and anterior temporal cortex. It is associated with neuronal loss, gliosis, and microvacuolation of lamina I to III in these brain regions. In previous studies we have described neurons with DNA damage in the absence of tangle formation and suggested this may result in tangle-independent mechanisms of neurodegeneration in the AD brain. In the present study, we sought to examine DNA fragmentation and activated caspase-3 expression in FTD brain where tangle formation is largely absent. The results demonstrate that numerous nuclei were TdT positive in all FTD brains examined. Activated caspase-3 immunoreactivity was detected in both neurons and astrocytes and was elevated in FTD cases as compared to control cases. A subset of activated caspase-3-positive cells were also TdT positive. In addition, the cell bodies of a subset of astrocytes showed enlarged, irregular shapes, and vacuolation and their processes appeared fragmented. These degenerating astrocytes were positive for activated caspase-3 and colocalized with robust TdT-labeled nuclei. These findings suggest that a subset of astrocytes exhibit degeneration and that DNA damage and activated caspase-3 may contribute to neuronal cell death and astrocyte degeneration in the FTD brain. Our results suggest that apoptosis may be a mechanism of neuronal cell death in FTD as well as in AD (228).

  12. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    PubMed

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR.

  13. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells.

    PubMed

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2017-02-01

    Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1-1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125-0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.

  14. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma.

    PubMed

    Dai, Lu; Trillo-Tinoco, Jimena; Cao, Yueyu; Bonstaff, Karlie; Doyle, Lisa; Del Valle, Luis; Whitby, Denise; Parsons, Chris; Reiss, Krzysztof; Zabaleta, Jovanny; Qin, Zhiqiang

    2015-12-24

    Kaposi sarcoma-associated herpesvirus (KSHV) is a principal causative agent of primary effusion lymphoma (PEL) with a poor prognosis in immunocompromised patients. However, it still lacks effective treatment which urgently requires the identification of novel therapeutic targets for PEL. Here, we report that the hepatocyte growth factor (HGF)/c-MET pathway is highly activated by KSHV in vitro and in vivo. The selective c-MET inhibitor, PF-2341066, can induce PEL apoptosis through cell cycle arrest and DNA damage, and suppress tumor progression in a xenograft murine model. By using microarray analysis, we identify many novel genes that are potentially controlled by HGF/c-MET within PEL cells. One of the downstream candidates, ribonucleoside-diphosphate reductase subunit M2 (RRM2), also displays the promising therapeutic value for PEL treatment. Our findings provide the framework for development of HGF/c-MET-focused therapy and implementation of clinical trials for PEL patients.

  15. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma

    PubMed Central

    Dai, Lu; Trillo-Tinoco, Jimena; Cao, Yueyu; Bonstaff, Karlie; Doyle, Lisa; Del Valle, Luis; Whitby, Denise; Parsons, Chris; Reiss, Krzysztof; Zabaleta, Jovanny

    2015-01-01

    Kaposi sarcoma–associated herpesvirus (KSHV) is a principal causative agent of primary effusion lymphoma (PEL) with a poor prognosis in immunocompromised patients. However, it still lacks effective treatment which urgently requires the identification of novel therapeutic targets for PEL. Here, we report that the hepatocyte growth factor (HGF)/c-MET pathway is highly activated by KSHV in vitro and in vivo. The selective c-MET inhibitor, PF-2341066, can induce PEL apoptosis through cell cycle arrest and DNA damage, and suppress tumor progression in a xenograft murine model. By using microarray analysis, we identify many novel genes that are potentially controlled by HGF/c-MET within PEL cells. One of the downstream candidates, ribonucleoside-diphosphate reductase subunit M2 (RRM2), also displays the promising therapeutic value for PEL treatment. Our findings provide the framework for development of HGF/c-MET–focused therapy and implementation of clinical trials for PEL patients. PMID:26531163

  16. DNA polymerase eta undergoes alternative splicing, protects against UV sensitivity and apoptosis, and suppresses Mre11-dependent recombination.

    PubMed

    Thakur, M; Wernick, M; Collins, C; Limoli, C L; Crowley, E; Cleaver, J E

    2001-11-01

    Polymerase eta (pol eta) is a low-fidelity DNA polymerase that is the product of the gene, POLH, associated with the human XP variant disorder in which there is an extremely high level of solar-induced skin carcinogenesis. The complete human genomic sequence spans about 40 kb containing 10 coding exons and a cDNA of 2.14 kb; exon I is untranslated and is 6 kb upstream from the first coding exon. Using bacterial artificial chromosomes (BACs), the gene was mapped to human chromosome band 6p21 and mouse band 17D. The gene is expressed in most tissues, except for very low or undetectable levels in peripheral lymphocytes, fetal spleen, and adult muscle; exon II, however, is frequently spliced out in normal cells and in almost half the transcripts in the testis and fetal liver. Expression of POLH in a multicopy episomal vector proved nonviable, suggesting that overexpression is toxic. Expression from chromosomally integrated linear copies using either an EF1-alpha or CMV promoter was functional, resulting in cell lines with low or high levels of pol eta protein, respectively. Point mutations in the center of the gene and in a C-terminal cysteine and deletion of exon II resulted in inactivation, but addition of a terminal 3 amino acid C-terminal tag, or an N- or C-terminal green fluorescent protein, had no effect on function. A low level of expression of pol eta eliminated hMre11 recombination and partially restored UV survival, but did not prevent UV-induced apoptosis, which required higher levels of expression. Polymerase eta is therefore involved in S-phase checkpoint and signal transduction pathways that lead to arrest in S, apoptosis, and recombination. In normal cells, the predominant mechanism of replication of UV damage involves pol eta-dependent bypass, and Mre11-dependent recombination that acts is a secondary, backup mechanism when cells are severely depleted of pol eta.

  17. PTH1–34 Blocks Radiation-induced Osteoblast Apoptosis by Enhancing DNA Repair through Canonical Wnt Pathway*

    PubMed Central

    Chandra, Abhishek; Lin, Tiao; Zhu, Ji; Tong, Wei; Huo, Yanying; Jia, Haoruo; Zhang, Yejia; Liu, X. Sherry; Cengel, Keith; Xia, Bing; Qin, Ling

    2015-01-01

    Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1–34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1–34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/β-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the β-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1–34 or Wnt agonist as possible therapy for radiation-induced osteoporosis. PMID:25336648

  18. Puerarin protects the rat liver against oxidative stress-mediated DNA damage and apoptosis induced by lead.

    PubMed

    Liu, Chan-Min; Ma, Jie-Qiong; Sun, Yun-Zhi

    2012-09-01

    Puerarin (PU), a natural flavonoid, has been reported to have many benefits and medicinal properties. In this study, we valuated the protective effect of puerarin against lead-induced oxidative DNA damage and apoptosis in rat liver. A total of forty male Wistar rats (8-week-old) was divided into 4 groups: control group; lead-treated group (500 mg Pb/l as the only drinking fluid); lead+puerarin treated group (500 mg Pb/l as the only drinking fluid plus 400 mg PU/kg bwt intra-gastrically once daily); and puerarin-treated group (400 mg PU/kg bwt intra-gastrically once daily). The experimental period was lasted for 75 successive days. Our data showed that puerarin significantly effectively improved the lead-induced histology changes in rat liver and decreased the serum ALT and AST activities in lead-treated rats. Puerarin markedly restored Cu/Zn-SOD, CAT and GPx activities and the GSH/GSSG ratio in the liver of lead-treated rat. Furthermore, the increase of 8-hydroxydeoxyguanosine induced by lead was effectively suppressed by puerarin. The enhanced caspase-3 activity in the rat liver induced by lead was also inhibited by puerarin. TUNEL assay showed that lead-induced apoptosis in rat liver was significantly inhibited by puerarin, which might be attributed to its antioxidant property. In conclusion, these results suggested that puerarin could protect the rat liver against lead-induced injury by reducing ROS production, renewing the activities of antioxidant enzymes and decreasing DNA oxidative damage.

  19. Mutagen Sensitivity, Apoptosis, and Polymorphism in DNA Repair as Measures of Prostate Cancer Risk

    DTIC Science & Technology

    2006-02-01

    Cancer 1-1-1998;82(1):168-75. 8. Wood, R. D., Mitchell, M., Sgouros, J., and Lindahl, T. Human DNA Repair Genes. Science 2001;291:1284-1289. 9. Shen...Professor of Oncology and Medicine, Director of Cancer Genetics and Epidemiology Division, and Associate Director for Population Sciences . Dr. Shields...Recurrence After Surgery. Cancer 1-1-1998;82(1):168-75. 8. Wood, R. D., Mitchell, M., Sgouros, J., and Lindahl, T. Human DNA Repair Genes. Science

  20. DNA damage and apoptosis in mononuclear cells from glucose-6-phosphate dehydrogenase-deficient patients (G6PD Aachen variant) after UV irradiation.

    PubMed

    Efferth, T; Fabry, U; Osieka, R

    2001-03-01

    Patients affected with X chromosome-linked, hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency suffer from life-threatening hemolytic crises after intake of certain drugs or foods. G6PD deficiency is associated with low levels of reduced glutathione. We analyzed mononuclear white blood cells (MNC) of three males suffering from the German G6PD Aachen variant, four heterozygote females of this family, one G6PD-deficient male from another family coming from Iran, and six healthy male volunteers with respect to their DNA damage in two different genes (G6PD and T-cell receptor-delta) and their propensity to enter apoptosis after UV illumination (0.08-5.28 J/cm2). As determined by PCR stop assays, there was more UV-induced DNA damage in MNC of G6PD-deficient male patients than in those of healthy subjects. MNC of G6PD-deficient patients showed a higher rate of apoptosis after UV irradiation than MNC of healthy donors. MNC of heterozygote females showed intermediate rates of DNA damage and apoptosis. It is concluded that increased DNA damage may be a result of deficient detoxification of reactive oxygen species by glutathione and may ultimately account for the higher rate of apoptosis in G6PD-deficient MNC.

  1. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: Involvement of the oxidative mechanism

    SciTech Connect

    Calviello, Gabriella . E-mail: g.calviello@rm.unicatt.it; Piccioni, Elisabetta; Boninsegna, Alma; Tedesco, Beatrice; Maggiano, Nicola; Serini, Simona; Wolf, Federica I.; Palozza, Paola

    2006-03-01

    The DNA damaging and proapoptotic effects of Mancozeb, a widely used fungicide of the ethylene-bis-dithiocarbamate (EBDC) group, were studied in RAT-1 fibroblasts cultured in vitro and in peripheral blood mononucleated cells (PBMC) isolated from Wistar rats. After 1 h exposition to Mancozeb (up to 500 ng/ml), cells produced a dose-dependent induction in DNA single strand break (SSB) formation, measured by single cell gel electrophoresis (SCGE). Concomitantly, a concentration-dependent increase in the levels of the oxidative markers of DNA oxidation, the DNA adduct 8-hydroxy-2'-deoxyguanosine (8-OHdG) and of reactive oxygen species (ROS) were observed, suggesting a prooxidant action of Mancozeb. PBMC were less responsive than fibroblasts to the oxidative insult carried out by Mancozeb, as shown by the lower increase in the levels of ROS, 8-OHdG adducts and SSB measured in these cells after exposure to the pesticide. A 4-h treatment with Mancozeb induced also apoptosis in both PBMC and RAT-1 cells, even though leukocytes were less sensitive than fibroblasts to the proapoptotic action. This effect was dose-dependent and was inhibited by the action of the antioxidant {alpha}-tocopherol. The proapoptotic effect was accompanied by the altered expression of several proteins involved in the regulation of apoptosis, such as the prosurvival protein BCL-2 and the proapoptotic protein c-MYC. Exposition of cells to higher concentrations of Mancozeb or for longer periods (>4 h) caused post-apoptotic, necrotic alterations in cell membrane integrity. The data herein presented demonstrate the oxidative effect of Mancozeb and suggest that its prooxidant action may be involved in the proapoptotic effect exerted by this compound in rat cells. It appears possible that the observed oxidative and genotoxic damage may be involved in the pathogenesis of various pathologies associated with the chronic exposition to Mancozeb, including cancer. On the other hand, the proapoptotic effect of

  2. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism.

    PubMed

    Calviello, Gabriella; Piccioni, Elisabetta; Boninsegna, Alma; Tedesco, Beatrice; Maggiano, Nicola; Serini, Simona; Wolf, Federica I; Palozza, Paola

    2006-03-01

    The DNA damaging and proapoptotic effects of Mancozeb, a widely used fungicide of the ethylene-bis-dithiocarbamate (EBDC) group, were studied in RAT-1 fibroblasts cultured in vitro and in peripheral blood mononucleated cells (PBMC) isolated from Wistar rats. After 1 h exposition to Mancozeb (up to 500 ng/ml), cells produced a dose-dependent induction in DNA single strand break (SSB) formation, measured by single cell gel electrophoresis (SCGE). Concomitantly, a concentration-dependent increase in the levels of the oxidative markers of DNA oxidation, the DNA adduct 8-hydroxy-2'-deoxyguanosine (8-OHdG) and of reactive oxygen species (ROS) were observed, suggesting a prooxidant action of Mancozeb. PBMC were less responsive than fibroblasts to the oxidative insult carried out by Mancozeb, as shown by the lower increase in the levels of ROS, 8-OHdG adducts and SSB measured in these cells after exposure to the pesticide. A 4-h treatment with Mancozeb induced also apoptosis in both PBMC and RAT-1 cells, even though leukocytes were less sensitive than fibroblasts to the proapoptotic action. This effect was dose-dependent and was inhibited by the action of the antioxidant alpha-tocopherol. The proapoptotic effect was accompanied by the altered expression of several proteins involved in the regulation of apoptosis, such as the prosurvival protein BCL-2 and the proapoptotic protein c-MYC. Exposition of cells to higher concentrations of Mancozeb or for longer periods (>4 h) caused post-apoptotic, necrotic alterations in cell membrane integrity. The data herein presented demonstrate the oxidative effect of Mancozeb and suggest that its prooxidant action may be involved in the proapoptotic effect exerted by this compound in rat cells. It appears possible that the observed oxidative and genotoxic damage may be involved in the pathogenesis of various pathologies associated with the chronic exposition to Mancozeb, including cancer. On the other hand, the proapoptotic effect of

  3. Protein kinase C-δ isoform mediates lysosome labilization in DNA damage-induced apoptosis

    PubMed Central

    PARENT, NICOLAS; SCHERER, MAX; LIEBISCH, GERHARD; SCHMITZ, GERD; BERTRAND, RICHARD

    2013-01-01

    A lysosomal pathway, characterized by the partial rupture or labilization of lysosomal membranes (LLM) and cathepsin release into the cytosol, is evoked during the early events of 20-S-camptothecin lactone (CPT)-induced apoptosis in human cancer cells, including human histiocytic lymphoma U-937 cells. These lysosomal events begin rapidly and simultaneously with mitochondrial permeabilization and caspase activation within 3 h after drug treatment. Recently, in a comparative proteomics analysis performed on highly-enriched lysosomal extracts, we identified proteins whose translocation to lysosomes correlated with LLM induction after CPT treatment, including protein kinase C-δ (PKC-δ). In this study, we show that the PKC-δ translocation to lysosomes is required for LLM, as silencing its expression with RNA interference or suppressing its activity with the inhibitor, rottlerin, prevents CPT-induced LLM. PKC-δ translocation to lysosomes is associated with lysosomal acidic sphingomyelinase (ASM) phosphorylation and activation, which in turn leads to an increase in ceramide (CER) content in lysosomes. The accumulation of endogenous CER in lysosomes is a critical event for CPT-induced LLM as suppressing PKC-δ or ASM activity reduces both the CPT-mediated CER generation in lysosomes and CPT-induced LLM. These findings reveal a novel mechanism by which PKC-δ mediates ASM phosphorylation/activation and CER accumulation in lysosomes in CPT-induced LLM, rapidly activating the lysosomal pathway of apoptosis after CPT treatment. PMID:21174057

  4. Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis.

    PubMed

    Raderschall, Elke; Bazarov, Alex; Cao, Jiangping; Lurz, Rudi; Smith, Avril; Mann, Wolfgang; Ropers, Hans-Hilger; Sedivy, John M; Golub, Efim I; Fritz, Eberhard; Haaf, Thomas

    2002-01-01

    After exposure of mammalian cells to DNA damage, the endogenous Rad51 recombination protein is concentrated in multiple discrete foci, which are thought to represent nuclear domains for recombinational DNA repair. Overexpressed Rad51 protein forms foci and higher-order nuclear structures, even in the absence of DNA damage, in cells that do not undergo DNA replication synthesis. This correlates with increased expression of the cyclin-dependent kinase (Cdk) inhibitor p21. Following DNA damage, constitutively Rad51-overexpressing cells show reduced numbers of DNA breaks and chromatid-type chromosome aberrations and a greater resistance to apoptosis. In contrast, Rad51 antisense inhibition reduces p21 protein levels and sensitizes cells to etoposide treatment. Downregulation of p21 inhibits Rad51 foci formation in both normal and Rad51-overexpressing cells. Collectively, our results show that Rad51 expression, Rad51 foci formation and p21 expression are interrelated, suggesting a functional link between mammalian Rad51 protein and p21-mediated cell cycle regulation. This mechanism may contribute to a highly effective recombinational DNA repair in cell cycle-arrested cells and protection against DNA damage-induced apoptosis.

  5. Mitochondrial DNA deletions sensitize cells to apoptosis at low heteroplasmy levels

    SciTech Connect

    Schoeler, S.; Szibor, R.; Gellerich, F.N.; Wartmann, T.; Mawrin, C.; Dietzmann, K.; Kirches, E. . E-mail: elmar.kirches@medizin.uni-magdeburg.de

    2005-06-24

    A heterogeneous group of multisystem disorders affecting various tissues and often including neuromuscular symptoms is caused by mutations of the mitochondrial genome, which codes 13 polypeptides of oxidative phosphorylation (OXPHOS) complexes and 22 tRNA genes needed for their translation. Since the link between OXPHOS dysfunction and clinical phenotype remains enigmatic in many diseases, a possible role of enhanced apoptosis is discussed besides bioenergetic crisis of affected cells. We analyzed the proapoptotic impact of the mitochondrial 5 kb common deletion (CD), affecting five tRNA genes, in transmitochondrial cybrid cell lines and found a slightly enhanced sensitivity to exogenous oxidative stress (H{sub 2}O{sub 2}) and a pronounced sensitization against death receptor stimulation (TRAIL) at a rather low CD heteroplasmy level of 22%. Mitochondrial deletions confer enhanced susceptibility against proapoptotic signals to proliferating cells, which might explain the elimination of deletions from hematopoietic stem cells.

  6. Molecular responses to photogenotoxic stress induced by the antibiotic lomefloxacin in human skin cells: from DNA damage to apoptosis.

    PubMed

    Marrot, Laurent; Belaïdi, Jean Phillipe; Jones, Christophe; Perez, Phillipe; Riou, Lydia; Sarasin, Alain; Meunier, Jean Roch

    2003-09-01

    Photo-unstable chemicals sometimes behave as phototoxins in skin, inducing untoward clinical side-effects when exposed to sunlight. Some drugs, such as psoralens or fluoroquinolones, can damage genomic DNA, thus increasing the risk of photocarcinogenesis. Here, lomefloxacin, an antibiotic from the fluoroquinolone family known to be involved in skin tumor development in photoexposed mice, was studied using normal human skin cells in culture: fibroblasts, keratinocytes, and Caucasian melanocytes. When treated cells were exposed to simulated solar ultraviolet A (320-400 nm), lomefloxacin induced damage such as strand breaks and pyrimidine dimers in genomic DNA. Lomefloxacin also triggered various stress responses: heme-oxygenase-1 expression in fibroblasts, changes in p53 status as shown by the accumulation of p53 and p21 proteins or the induction of MDM2 and GADD45 genes, and stimulation of melanogenesis by increasing the tyrosinase activity in melanocytes. Lomefloxacin could also lead to apoptosis in keratinocytes exposed to ultraviolet A: caspase-3 was activated and FAS-L gene was induced. Moreover, keratinocytes were shown to be the most sensitive cell type to lomefloxacin phototoxic effects, in spite of the well-established effectiveness of their antioxidant equipment. These data show that the phototoxicity of a given drug can be driven by different mechanisms and that its biologic impact varies according to cell type.

  7. Antileukemia component, dehydroeburicoic acid from Antrodia camphorata induces DNA damage and apoptosis in vitro and in vivo models.

    PubMed

    Du, Ying-Chi; Chang, Fang-Rong; Wu, Tung-Ying; Hsu, Yu-Ming; El-Shazly, Mohamed; Chen, Chieh-Fu; Sung, Ping-Jyun; Lin, Yan-Yu; Lin, Yi-Hsin; Wu, Yang-Chang; Lu, Mei-Chin

    2012-06-15

    Antrodia camphorata (AC) is a native Taiwanese mushroom which is used in Asian folk medicine as a chemopreventive agent. The triterpenoid-rich fraction (FEA) was obtained from the ethanolic extract of AC and characterized by high performance liquid chromatography (HPLC). FEA caused DNA damage in leukemia HL 60 cells which was characterized by phosphorylation of H2A.X and Chk2. It also exhibited apoptotic effect which was correlated to the enhancement of PARP cleavage and to the activation of caspase 3. Five major triterpenoids, antcin K (1), antcin C (2), zhankuic acid C (3), zhankuic acid A (4), and dehydroeburicoic acid (5) were isolated from FEA. The cytotoxicity of FEA major components (1-5) was investigated showing that dehydroeburicoic acid (DeEA) was the most potent cytotoxic component. DeEA activated DNA damage and apoptosis biomarkers similar to FEA and also inhibited topoisomerase II. In HL 60 cells xenograft animal model, DeEA treatment resulted in a marked decrease of tumor weight and size without any significant decrease in mice body weights. Taken together, our results provided the first evidence that pure AC component inhibited tumor growth in vivo model backing the traditional anticancer use of AC in Asian countries.

  8. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species.

    PubMed

    Farah, Mohammad Abul; Ali, Mohammad Ajmal; Chen, Shen-Ming; Li, Ying; Al-Hemaid, Fahad Mohammad; Abou-Tarboush, Faisal Mohammad; Al-Anazi, Khalid Mashay; Lee, Joongku

    2016-05-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterial used for a wide range of industrial and biomedical applications. Adenium obesum is a plant of the family Apocynaceae that is rich in toxic cardiac glycosides; however, there is scarce information on the anticancer potential of its AgNPs. We herein report the novel biosynthesis of AgNPs using aqueous leaf extract of A. obesum (AOAgNPs). The synthesis of AOAgNPs was monitored by color change and ultraviolet-visible spectroscopy (425 nm). It was further characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The FTIR spectra for the AOAgNPs indicated the presence of terpenoids, long chain fatty acids, secondary amide derivatives and proteins that could be responsible for the reduction and capping of the formed AOAgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The TEM images revealed mostly spherical particles in the size range of 10-30 nm. The biological properties of novel AOAgNPs were investigated on MCF-7 breast cancer cells. Cell viability was determined by the MTT assay. Generation of reactive oxygen species (ROS), DNA damage, induction of apoptosis and autophagy were assessed. A dose-dependent decrease in the cell viability was observed. The IC50 value was calculated as 217 μg/ml. Both qualitative and quantitative evaluation confirmed about a 2.5 fold increase in the generation of ROS at the highest concentration of 150 μg/ml. A significant (p<0.05) increase in the DNA damage evaluated by comet assay was evident. Flow cytometry revealed an increase in the apoptotic cells (24%) in the AOAgNPs treated group compared to the control. Acridine orange staining of acidic vesicles in exposed cells confirmed the induction of autophagy. These findings suggest that AOAgNPs increased the level of ROS resulting in heightened the DNA damage, apoptosis and autophagy in MCF-7 cells.

  9. Mutagen Sensitivity, Apoptosis, and Polymorphism in DNA Repair as Measures of Prostate Cancer Risk

    DTIC Science & Technology

    2005-02-01

    adducts (dGMDA) in peripheral blood lymphocytes and prostate tumors. HPLC methods will be used for all assays. DNA repair consists of two major... Ibuprofen (Tylenol is not an NSAID)? ( )0 No (Skip to D) ( )I Occasionally (Skip to D) ( )2 Weekly (Skip to D) ( )3 Daily C4. For what reason did you

  10. Switching from single-stranded to double-stranded DNA limits the unwinding processivity of ring-shaped T7 DNA helicase.

    PubMed

    Jeong, Yong-Joo; Rajagopal, Vaishnavi; Patel, Smita S

    2013-04-01

    Phage T7 helicase unwinds double-stranded DNA (dsDNA) by encircling one strand while excluding the complementary strand from its central channel. When T7 helicase translocates on single-stranded DNA (ssDNA), it has kilobase processivity; yet, it is unable to processively unwind linear dsDNA, even 60 base-pairs long. Particularly, the GC-rich dsDNAs are unwound with lower amplitudes under single-turnover conditions. Here, we provide evidence that T7 helicase switches from ssDNA to dsDNA during DNA unwinding. The switching propensity is higher when dsDNA is GC-rich or when the 3'-overhang of forked DNA is <15 bases. Once helicase encircles dsDNA, it travels along dsDNA and dissociates from the end of linear DNA without strand separation, which explains the low unwinding amplitude of these substrates. Trapping the displaced strand with ssDNA binding protein or changing its composition to morpholino oligomer that does not interact with helicase increases the unwinding amplitude. We conclude that the displaced strand must be continuously excluded and kept away from the central channel for processive DNA unwinding. The finding that T7 helicase can switch from ssDNA to dsDNA binding mode during unwinding provides new insights into ways of limiting DNA unwinding and triggering fork regression when stalled forks need to be restarted.

  11. JA, a new type of polyunsaturated fatty acid isolated from Juglans mandshurica Maxim, limits the survival and induces apoptosis of heptocarcinoma cells.

    PubMed

    Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin

    2016-03-01

    Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.

  12. Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray.

    PubMed

    Shang, Hung-Sheng; Shih, Yung-Luen; Lee, Ching-Hsiao; Hsueh, Shu-Ching; Liu, Jia-You; Liao, Nien-Chieh; Chen, Yung-Liang; Huang, Yi-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2017-01-01

    Sulforaphane (SFN), one of the isothiocyanates, is a biologically active compound extracted from cruciferous vegetables, and has been shown to induce cytotoxic effects on many human cancer cells including human leukemia cells. However, the exact molecular mechanism and altered gene expression associated with apoptosis is unclear. In this study, we investigated SFN-induced cytotoxic effects and whether or not they went through cell-cycle arrest and induction of apoptosis and further examined molecular mechanism and altered gene expression in human leukemia HL-60 cells. Cell viability, cell-cycle distribution, sub-G1 (apoptosis), reactive oxygen species (ROS) and Ca(2+) production, levels of mitochondrial membrane potential (ΔΨm ), and caspase-3, -8, and -9 activities were assayed by flow cytometry. Apoptosis-associated proteins levels and gene expressions were examined by Western blotting and cDNA microarray assays, respectively. Results indicated that SFN decreased viable cells, induced G2/M phase arrest and apoptosis based on sub-G1 phase development. Furthermore, SFN increased ROS and Ca(2+) production and decreased the levels of ΔΨm and activated caspase-3, -8, and -9 activities in HL-60 cells. SFN significantly upregulated the expression of BAX, Bid, Fas, Fas-L, caspase-8, Endo G, AIF, and cytochrome c, and inhibited the antiapoptotic proteins such as Bcl-x and XIAP, that is associated with apoptosis. We also used cDNA microarray to confirm several gene expressions such as caspase -8, -3, -4, -6, and -7 that are affected by SFN. Those results indicated that SFN induced apoptosis in HL-60 cells via Fas- and mitochondria-dependent pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 311-328, 2017.

  13. NSC666715 and Its Analogs Inhibit Strand-Displacement Activity of DNA Polymerase β and Potentiate Temozolomide-Induced DNA Damage, Senescence and Apoptosis in Colorectal Cancer Cells.

    PubMed

    Jaiswal, Aruna S; Panda, Harekrushna; Law, Brian K; Sharma, Jay; Jani, Jitesh; Hromas, Robert; Narayan, Satya

    2015-01-01

    Recently approved chemotherapeutic agents to treat colorectal cancer (CRC) have made some impact; however, there is an urgent need for newer targeted agents and strategies to circumvent CRC growth and metastasis. CRC frequently exhibits natural resistance to chemotherapy and those who do respond initially later acquire drug resistance. A mechanism to potentially sensitize CRC cells is by blocking the DNA polymerase β (Pol-β) activity. Temozolomide (TMZ), an alkylating agent, and other DNA-interacting agents exert DNA damage primarily repaired by a Pol-β-directed base excision repair (BER) pathway. In previous studies, we used structure-based molecular docking of Pol-β and identified a potent small molecule inhibitor (NSC666715). In the present study, we have determined the mechanism by which NSC666715 and its analogs block Fen1-induced strand-displacement activity of Pol-β-directed LP-BER, cause apurinic/apyrimidinic (AP) site accumulation and induce S-phase cell cycle arrest. Induction of S-phase cell cycle arrest leads to senescence and apoptosis of CRC cells through the p53/p21 pathway. Our initial findings also show a 10-fold reduction of the IC50 of TMZ when combined with NSC666715. These results provide a guide for the development of a target-defined strategy for CRC chemotherapy that will be based on the mechanisms of action of NSC666715 and TMZ. This combination strategy can be used as a framework to further reduce the TMZ dosages and resistance in CRC patients.

  14. [Liquid biopsy analysis using cell-free DNA (cfDNA): Opportunities and limitations].

    PubMed

    Dahl, E; Kloten, V

    2015-11-01

    Molecular biological analysis of nucleic acids in blood or other bodily fluids (i.e. liquid biopsy analyses) may supplement the pathologists' diagnostic armamentarium in a reasonable way-particularly in cancer precision medicine. Within the field of oncology, liquid biopsy can potentially be used to monitor tumor burden in the blood and to early detect emerging resistance in the course of targeted cancer therapies. An already approved application of liquid biopsy is the detection of epidermal growth factor receptor (EGFR) driver mutations in blood samples of lung cancer patients in those cases where no tissue biopsy is available. However, there is still currently considerable insecurity associated with blood-based DNA analytic methods that must be solved before liquid biopsy can be implemented for broader routine application in the diagnosis of cancer. In this article, the current state of development of liquid biopsy in molecular diagnostics from a pathology point of view is presented.

  15. Antiproliferative activity of goniothalamin enantiomers involves DNA damage, cell cycle arrest and apoptosis induction in MCF-7 and HB4a cells.

    PubMed

    Semprebon, Simone Cristine; Marques, Lilian Areal; D'Epiro, Gláucia Fernanda Rocha; de Camargo, Elaine Aparecida; da Silva, Glenda Nicioli; Niwa, Andressa Megumi; Macedo Junior, Fernando; Mantovani, Mário Sérgio

    2015-12-25

    (R)-goniothalamin (R-GNT) is a styryl lactone that exhibits antiproliferative property against several tumor cell lines. (S)-goniothalamin (S-GNT) is the synthetic enantiomer of R-GNT, and their biological properties are poorly understood. The aim of this study was to evaluate the antiproliferative mechanisms of (R)-goniothalamin and (S)-goniothalamin in MCF-7 breast cancer cells and HB4a epithelial mammary cells. To determine the mechanisms of cell growth inhibition, we analyzed the ability of R-GNT and S-GNT to induce DNA damage, cell cycle arrest and apoptosis. Moreover, the gene expression of cell cycle components, including cyclin, CDKs and CKIs, as well as of genes involved in apoptosis and the DNA damage response were evaluated. The natural enantiomer R-GNT proved more effective in both cell lines than did the synthetic enantiomer S-GNT, inhibiting cell proliferation via cell cycle arrest and apoptosis induction, likely in response to DNA damage. The cell cycle inhibition caused by R-GNT was mediated through the upregulation of CIP/KIP cyclin-kinase inhibitors and through the downregulation of cyclins and CDKs. S-GNT, in turn, was able to cause G0/G1 cell cycle arrest and DNA damage in MCF-7 cells and apoptosis induction only in HB4a cells. Therefore, goniothalamin presents potent antiproliferative activity to breast cancer cells MCF-7. However, exposure to goniothalamin brings some undesirable effects to non-tumor cells HB4a, including genotoxicity and apoptosis induction.

  16. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

    PubMed Central

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology. PMID:27144304

  17. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    SciTech Connect

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.; Kumar-Sinha, Chandan

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  18. Digital droplet multiple displacement amplification (ddMDA) for whole genome sequencing of limited DNA samples

    DOE PAGES

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; ...

    2016-05-04

    Here, multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently,more » the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.« less

  19. Obtusilactone A and (-)-sesamin induce apoptosis in human lung cancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints.

    PubMed

    Wang, Hui-Min; Cheng, Kuo-Chen; Lin, Cheng-Jung; Hsu, Shu-Wei; Fang, Wei-Cheng; Hsu, Tai-Feng; Chiu, Chien-Chih; Chang, Hsueh-Wei; Hsu, Chun-Hua; Lee, Alan Yueh-Luen

    2010-12-01

    Several compounds from Cinnamomum kotoense show anticancer activities. However, the detailed mechanisms of most compounds from C. kotoense remain unknown. In this study, we investigated the anticancer activity of obtusilactone A (OA) and (-)-sesamin in lung cancer. Our results show that human Lon is upregulated in non-small-cell lung cancer (NSCLC) cell lines, and downregulation of Lon triggers caspase-3 mediated apoptosis. Through enzyme-based screening, we identified two small-molecule compounds, obtusilactone A (OA) and (-)-sesamin from C. kotoense, as potent Lon protease inhibitors. Obtusilactone A and (-)-sesamin interact with Ser855 and Lys898 residues in the active site of the Lon protease according to molecular docking analysis. Thus, we suggest that cancer cytotoxicity of the compounds is partly due to the inhibitory effects on Lon protease. In addition, the compounds are able to cause DNA double-strand breaks and activate checkpoints. Treatment with OA and (-)-sesamin induced p53-independent DNA damage responses in NSCLC cells, including G(1) /S checkpoint activation and apoptosis, as evidenced by phosphorylation of checkpoint proteins (H2AX, Nbs1, and Chk2), caspase-3 cleavage, and sub-G(1) accumulation. In conclusion, OA and (-)-sesamin act as both inhibitors of human mitochondrial Lon protease and DNA damage agents to activate the DNA damage checkpoints as well induce apoptosis in NSCLC cells. These dual functions open a bright avenue to develop more selective chemotherapy agents to overcome chemoresistance and sensitize cancer cells to other chemotherapeutics.

  20. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    PubMed Central

    2012-01-01

    Background Alcohol use disorders (AUDs) lead to alterations in central nervous system (CNS) architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs) produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs) of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP) assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1) was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5) showed a highly significant correlation with AUD-induced decreases in the volume of the left parietal supramarginal

  1. All-trans-retinal induces Bax activation via DNA damage to mediate retinal cell apoptosis

    PubMed Central

    Sawada, Osamu; Perusek, Lindsay; Kohno, Hideo; Howell, Scott J.; Maeda, Akiko; Matsuyama, Shigemi; Maeda, Tadao

    2014-01-01

    The current study investigates the cellular events which trigger activation of proapoptotic Bcl-2-associated X protein (Bax) in retinal cell death induced by all-trans-retinal (atRAL). Cellular events which activate Bax, such as DNA damage by oxidative stress and phosphorylation of p53, were evaluated by immunochemical and biochemical methods using ARPE-19 cells, 661W cells, cultured neural retinas and a retinal degeneration model, Abca4−/−Rdh8−/− mice. atRAL-induced Bax activation in cultured neural retinas was examined by pharmacological and genetic methods. Other Bax-related cellular events were also evaluated by pharmacological and biochemical methods. Production of 8-OHdG, a DNA damage indicator, and the phosphorylation of p53 at Ser 46 were detected prior to Bax activation in ARPE-19 cells incubated with atRAL. Light exposure to Abca4−/−Rdh8−/− mice also caused the above mentioned events in conditions of short term intense light exposure and regular room lighting conditions. Incubation with Bax inhibiting peptide and deletion of the Bax gene partially protected retinal cells from atRAL toxicity in cultured neural retina. Necrosis was demonstrated not to be the main pathway in atRAL mediated cell death. Bcl-2-interacting mediator and Bcl-2 expression levels were not altered by atRAL in vitro. atRAL-induced oxidative stress results in DNA damage leading to the activation of Bax by phosphorylated p53. This cascade is closely associated with an apoptotic cell death mechanism rather than necrosis. PMID:24726920

  2. Diethylstilbestrol induces oxidative DNA damage, resulting in apoptosis of spermatogonial stem cells in vitro.

    PubMed

    Habas, Khaled; Brinkworth, Martin H; Anderson, Diana

    2017-03-14

    The spermatogonial stem cells (SSCs) are the only germline stem cells in adults that are responsible for the transmission of genetic information from mammals to the next generation. SSCs play a very important role in the maintenance of progression of spermatogenesis and help provide an understanding of the reproductive biology of future gametes and a strategy for diagnosis and treatment of infertility and male reproductive toxicity. Androgens/oestrogens are very important for the suitable maintenance of male germ cells. There is also evidence confirming the damaging effects of oestrogen-like compounds on male reproductive health. We investigated the effects in vitro, of diethylstilbestrol (DES) on mouse spermatogonial stem cells separated using Staput unit-gravity velocity sedimentation, evaluating any DNA damage using the Comet assay and apoptotic cells in the TUNEL assay. Immunocytochemistry assays showed that the purity of isolated mouse spermatogonial cells was 90%, and the viability of these isolated cells was over 96%. Intracellular superoxide anion production (O2(-)) in SSCs was detected using p-Nitro Blue Tetrazolium (NBT) assay. The viability of cells after DES treatment was examined in the CCK8 (cell counting kit-8) cytotoxicity assay. The results showed that DES-induced DNA damage causes an increase in intracellular superoxide anions which are reduced by the flavonoid, quercetin. Investigating the molecular mechanisms and biology of SSCs provides a better understanding of spermatogonial stem cell regulation in the testis.

  3. Transcriptional profiling of breast cancer cells in response to mevinolin: Evidence of cell cycle arrest, DNA degradation and apoptosis

    PubMed Central

    MAHMOUD, ALI M.; ABOUL-SOUD, MOURAD A.M.; HAN, JUNKYU; AL-SHEIKH, YAZEED A.; AL-ABD, AHMED M.; EL-SHEMY, HANY A.

    2016-01-01

    The merging of high-throughput gene expression techniques, such as microarray, in the screening of natural products as anticancer agents, is considered the optimal solution for gaining a better understanding of the intervention mechanism. Red yeast rice (RYR), a Chinese dietary product, contains a mixture of hypocholesterolemia agents such as statins. Typically, statins have this effect via the inhibition of HMG-CoA reductase, the key enzyme in the biosynthesis of cholesterol. Recently, statins have been shown to exhibit various beneficial antineoplastic properties through the disruption of tumor angiogenesis and metastatic processes. Mevinolin (MVN) is a member of statins and is abundantly present in RYR. Early experimental trials suggested that the mixed apoptotic/necrotic cell death pathway is activated in response to MVN exposure. In the current study, the cytotoxic profile of MVN was evaluated against MCF-7, a breast cancer-derived cell line. The obtained results indicated that MVN-induced cytotoxicity is multi-factorial involving several regulatory pathways in the cytotoxic effects of MVN on breast cancer cell lines. In addition, MVN-induced transcript abundance profiles inferred from microarrays showed significant changes in some key cell processes. The changes were predicted to induce cell cycle arrest and reactive oxygen species generation but inhibit DNA repair and cell proliferation. This MVN-mediated multi-factorial stress triggered specific programmed cell death (apoptosis) and DNA degradation responses in breast cancer cells. Taken together, the observed MVN-induced effects underscore the potential of this ubiquitous natural compound as a selective anticancer activity, with broad safety margins and low cost compared to benchmarked traditional synthetic chemotherapeutic agents. Additionally, the data support further pre-clinical and clinical evaluations of MVN as a novel strategy to combat breast cancer and overcome drug resistance. PMID:26983896

  4. Transcriptional profiling of breast cancer cells in response to mevinolin: Evidence of cell cycle arrest, DNA degradation and apoptosis.

    PubMed

    Mahmoud, Ali M; Aboul-Soud, Mourad A M; Han, Junkyu; Al-Sheikh, Yazeed A; Al-Abd, Ahmed M; El-Shemy, Hany A

    2016-05-01

    The merging of high-throughput gene expression techniques, such as microarray, in the screening of natural products as anticancer agents, is considered the optimal solution for gaining a better understanding of the intervention mechanism. Red yeast rice (RYR), a Chinese dietary product, contains a mixture of hypocholesterolemia agents such as statins. Typically, statins have this effect via the inhibition of HMG‑CoA reductase, the key enzyme in the biosynthesis of cholesterol. Recently, statins have been shown to exhibit various beneficial antineoplastic properties through the disruption of tumor angiogenesis and metastatic processes. Mevinolin (MVN) is a member of statins and is abundantly present in RYR. Early experimental trials suggested that the mixed apoptotic/necrotic cell death pathway is activated in response to MVN exposure. In the current study, the cytotoxic profile of MVN was evaluated against MCF‑7, a breast cancer‑derived cell line. The obtained results indicated that MVN‑induced cytotoxicity is multi‑factorial involving several regulatory pathways in the cytotoxic effects of MVN on breast cancer cell lines. In addition, MVN‑induced transcript abundance profiles inferred from microarrays showed significant changes in some key cell processes. The changes were predicted to induce cell cycle arrest and reactive oxygen species generation but inhibit DNA repair and cell proliferation. This MVN‑mediated multi‑factorial stress triggered specific programmed cell death (apoptosis) and DNA degradation responses in breast cancer cells. Taken together, the observed MVN‑induced effects underscore the potential of this ubiquitous natural compound as a selective anticancer activity, with broad safety margins and low cost compared to benchmarked traditional synthetic chemotherapeutic agents. Additionally, the data support further pre‑clinical and clinical evaluations of MVN as a novel strategy to combat breast cancer and overcome drug resistance.

  5. A series of oxyimine-based macrocyclic dinuclear zinc(II) complexes enhances phosphate ester hydrolysis, DNA binding, DNA hydrolysis, and lactate dehydrogenase inhibition and induces apoptosis.

    PubMed

    Anbu, Sellamuthu; Kamalraj, Subban; Varghese, Babu; Muthumary, Johnpaul; Kandaswamy, Muthusamy

    2012-05-21

    that the DNA cleavage acceleration promoted by 1-6 are due to the efficient cooperative catalysis of the two close proximate zinc(II) cation centers. The ligand L(1), dizinc(II) complexes 1, 3, and 6 showed cytotoxicity in human hepatoma HepG2 cancer cells, giving IC(50) values of 117, 37.1, 16.5, and 8.32 μM, respectively. The results demonstrated that 6, a dizinc(II) complex with potent antiproliferative activity, is able to induce caspase-dependent apoptosis in human cancer cells. Cytotoxicity of the complexes was further confirmed by the lactate dehydrogenase enzyme level in HepG2 cell lysate and content media.

  6. Identification by DNA macroarray of nur77 as a gene induced by di-n-butyltin dichloride: its role in organotin-induced apoptosis.

    PubMed

    Gennari, Alessandra; Bleumink, Rob; Viviani, Barbara; Galli, Corrado Lodovico; Marinovich, Marina; Pieters, Raymond; Corsini, Emanuela

    2002-05-15

    The thymotoxic organotin compounds di-n-butyltin dichloride (DBTC) and tri-n-butyltin chloride (TBTC) are known to induce apoptosis in vitro in rat thymocytes. They also affect macromolecular synthesis, inhibiting DNA synthesis and increasing RNA synthesis. Since these RNA molecules, likely to be involved in the initiation of the apoptotic process, have not been identified yet, the purpose of this research was to characterize by a cDNA macroarray the expression of genes involved in DBTC-induced apoptosis. We found that nur77 was rapidly transcripted in vitro following exposure of freshly isolated rat thymocytes to 3 microM DBTC. nur77 induction has also been observed in vivo after treatment of rats with apoptotic doses (60 mg/kg body wt) of DBTC. The products of nur77 are known to be involved in the apoptotic process, as nur77 is a transcription factor expressed in response to T-cell receptor-mediated apoptosis in immature T cells. Antisense oligonucleotide inhibition of nur77 expression prevented apoptosis induced by DBTC, supporting a role for nur77 in organotin-induced apoptotic cell death.

  7. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells

    PubMed Central

    Liao, Yuanhong; Ling, Jianya; Zhang, Guoying; Liu, Fengjun; Tao, Shengce; Han, Zeguang; Chen, Saijuan; Chen, Zhu; Le, Huangying

    2015-01-01

    Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells. PMID:25590866

  8. Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2.

    PubMed

    Antushevich, Hanna; Krawczynska, Agata; Kapica, Malgorzata; Herman, Andrzej Przemyslaw; Zabielski, Romuald

    2014-01-01

    Apelin is a regulatory peptide, identified as an endogenous ligand of the Apelin receptor (APJ). Both the apelin and the APJ were detected in brain, lung, heart, mammary gland, kidney, placenta, adipose tissues and the gastrointestinal tract. Apelin is considered an important regulatory gut peptide with a potential physiological role in gastrointestinal cytoprotection, regulation of food intake and drinking behaviour. The aim of the present study was to assess the effect of the apelin on mitosis, apoptosis and the expression of DNA repair enzyme (OGG 1/2), and APJ receptor in intestinal cell lines: rat crypt (IEC-6) and human enterocyte model (Caco-2). The cell cultures were incubated with the apelin-12 (10-8 M) for 4, 6, 12, 24 and 48 h and the apoptosis (caspase 3), mitosis (Ki-67) and DNA repair enzyme (OGG1/2) markers were studied by Real-Time qRT-PCR and immunofluorescent methods. The results of Real-Time qRT-PCR and immunocytochemical analysis showed that the levels of mRNAs were inversely related to the expression level of corresponding proteins. Immunofluorescent studies revealed inhibitory effect of apelin-12 on apoptosis, mitosis and the expression of OGG1/2 in the intestinal crypt cell line IEC-6. However, in the enterocyte model Caco-2 cells apelin stimulated apoptosis and mitosis, and reduced OGG1/2 expression. These findings suggest that apelin may be involved in the control of epithelial cell turnover in the gastrointestinal tract.

  9. Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes.

    PubMed

    Mishra, Pradyumna Kumar; Panwar, Hariom; Bhargava, Arpit; Gorantla, Venkata Raghuram; Jain, Subodh Kumar; Banerjee, Smita; Maudar, Kewal Krishan

    2008-01-01

    Isocyanates, a group of low molecular weight aromatic and aliphatic compounds containing the isocyanate group (-NCO), are important raw materials with diverse industrial applications; however, pathophysiological implications resulting from occupational and accidental exposures of these compounds are hitherto unknown. Although preliminary evidence available in the literature suggests that isocyanates and their derivatives may have deleterious health effects including immunotoxicity, but molecular mechanisms underlying such an effect have never been addressed. The present study was carried out to assess the immunotoxic response of methyl isocyanate (MIC) on cultured human lymphocytes isolated from healthy human volunteers. Studies were conducted to evaluate both dose-dependent and time-course response (n = 3), using N-succinimidyl N-methylcarbamate, a surrogate chemical substitute to MIC. Evaluation of DNA damage by ataxia telangiectasia mutated (ATM) and gamma H2AX protein phosphorylation states; measure of apoptotic index through annexin-V/PI assay, apoptotic DNA ladder assay, and mitochondrial depolarization; induction of oxidative stress by CM-H2DCFDA and formation of 8-hydroxy-2' deoxy guanosine; levels of antioxidant defense system enzyme glutathione reductase; and multiplex cytometric bead array analysis to quantify the secreted levels of inflammatory cytokines, interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, tumor necrosis factor, and interleukin-12p70 parameters were carried out. The results of the study showed a dose- and time-dependent response, providing evidence to hitherto unknown molecular mechanisms of immunotoxic consequences of isocyanate exposure at a genomic level. We anticipate these data along with other studies reported in the literature would help to design better approaches in risk assessment of occupational and accidental exposure to isocyanates.

  10. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation

    PubMed Central

    Bailon-Moscoso, Natalia; González-Arévalo, Gabriela; Velásquez-Rojas, Gabriela; Malagon, Omar; Vidari, Giovanni; Zentella-Dehesa, Alejandro; Ratovitski, Edward A.; Ostrosky-Wegman, Patricia

    2015-01-01

    Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment. PMID:26309132

  11. Measuring the DNA Content of Cells in Apoptosis and at Different Cell-Cycle Stages by Propidium Iodide Staining and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Chojnowski, Grace; Waterhouse, Nigel J

    2016-10-03

    All cells are created from preexisting cells. This involves complete duplication of the parent cell to create two daughter cells by a process known as the cell cycle. For this process to be successful, the DNA of the parent cell must be faithfully replicated so that each daughter cell receives a full copy of the genetic information. During the cell cycle, the DNA content of the parent cell increases as new DNA is synthesized (S phase). When there are two full copies of the DNA (G2/M phase), the cell splits to form two new cells (G0/G1 phase). As such, cells in different stages of the cell cycle have different DNA contents. The cell cycle is tightly regulated to safeguard the integrity of the cell and any cell that is defective or unable to complete the cell cycle is programmed to die by apoptosis. When this occurs, the DNA is fragmented into oligonucleosomal-sized fragments that are disposed of when the dead cell is removed by phagocytosis. Consequently apoptotic cells have reduced DNA content compared with living cells. This can be measured by staining cells with propidium iodide (PI), a fluorescent molecule that intercalates with DNA at a specific ratio. The level of PI fluorescence in a cell is, therefore, directly proportional to the DNA content of that cell. This protocol describes the use of PI staining to determine the percentage of cells in each phase of the cell cycle and the percentage of apoptotic cells in a sample.

  12. Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents.

    PubMed

    Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Porcuna, Jesús; Villanueva-Paz, Marina; Fernández-Vega, Alejandro; de la Mata, Mario; de Lavera, Isabel; Rivero, Juan Miguel Suarez; Luzón-Hidalgo, Raquel; Álvarez-Córdoba, Mónica; Cotán, David; Zaderenko, Ana Paula; Cordero, Mario D; Sánchez-Alcázar, José A

    2017-03-01

    Cell cytoskeleton makes profound changes during apoptosis including the organization of an Apoptotic Microtubule Network (AMN). AMN forms a cortical structure which plays an important role in preserving plasma membrane integrity during apoptosis. Here, we examined the cytoskeleton rearrangements during apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. Using fixed and living cell imaging, we showed that CPT induced two dose- and cell cycle-dependent types of apoptosis characterized by different cytoskeleton reorganizations, time-dependent caspase activation and final apoptotic cell morphology. In the one referred as "slow" (~h) or round-shaped, apoptosis was characterized by a slow contraction of the actinomyosin ring and late caspase activation. In "slow" apoptosis the γ-tubulin complexes were not disorganized and microtubules were not depolymerized at early stages. In contrast, "fast" (~min) or irregular-shaped apoptosis was characterized by early caspase activation followed by full contraction of the actinomyosin ring. In fast apoptosis γ-tubulin complexes were disorganized and microtubules were initially depolymerized. However, after actinomyosin contraction, microtubules were reformed adopting a cortical but irregular disposition near plasma membrane. In addition to distinctive cytoskeleton reorganization kinetics, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocytes response. Our results suggest that the knowledge and modulation of the type of apoptosis promoted by genotoxic agents may be important for deciding a better therapeutic option and predicting the immune response in cancer treatment.

  13. Induction and repair of DNA double-strand breaks using constant-field gel electrophoresis and apoptosis as predictive markers for sensitivity of cancer cells to cisplatin.

    PubMed

    Saleh, Ekram M; El-Awady, Raafat A; Anis, Noha; El-Sharkawy, Nahla

    2012-10-01

    This study was designed to evaluate some parameters that may play a role in the prediction of cancer cells sensitivity to cisplatin (CIS). Sensitivity, induction and repair of DNA double-strand breaks (DSB), cell cycle regulation and induction of apoptosis were measured in four cancer cell lines with different sensitivities to CIS. Using a sulphorhodamine-B assay, the cervical carcinoma cells (HeLa) were found to be the most sensitive to CIS followed by breast carcinoma cells (MCF-7) and liver carcinoma cells (HepG2). Colon carcinoma HCT116 cells were the most resistant. As measured by constant-field gel electrophoresis (CFGE), DSB induction, but not residual DSB exhibited a significant correlation with the sensitivity of cells to CIS. Flow cytometric DNA ploidy analysis revealed that 67% of HeLa cells and 10% of MCF-7 cells shift to sub-G1 phase after incubation with CIS. Additionally, CIS induced the arrest of MCF-7 cells in S-phase and the arrest of HepG2 and HCT116 cells in both S phase and G2/M phase. Determination of the Fas-L level and Caspase-9 activity indicated that CIS-induced apoptosis results from the mitochondrial (intrinsic) pathway. These results, if confirmed using clinical samples, indicate that the induction of DNA DSB as measured by CFGE and the induction of apoptosis should be considered, along with other predictive markers, in future clinical trials to develop predictive assays for platinum -based therapy.

  14. A novel 4-arm DNA/RNA Nanoconstruct triggering Rapid Apoptosis of Triple Negative Breast Cancer Cells within 24 hours.

    PubMed

    Tung, Joline; Tew, Lih Shin; Hsu, Yuan-Man; Khung, Yit Lung

    2017-04-11

    Measuring at ~30 nm, a fully customizable holliday junction DNA nanoconstruct, was designed to simultaneously carry three unmodified SiRNA strands for apoptosis gene knockout in cancer cells without any assistance from commercial transfection kits. In brief, a holliday junction structure was intelligently designed to present one arm with a cell targeting aptamer (AS1411) while the remaining three arms to carry different SiRNA strands by means of DNA/RNA duplex for inducing apoptosis in cancer cells. By carrying the three SiRNA strands (AKT, MDM2 and Survivin) into triple negative breast MDA-MB-231 cancer cells, cell number had reduced by up to ~82% within 24 hours solely from one single administration of 32 picomoles. In the immunoblotting studies, up-elevation of phosphorylated p53 was observed for more than 8 hours while the three genes of interest were suppressed by nearly half by the 4-hour mark upon administration. Furthermore, we were able to demonstrate high cell selectivity of the nanoconstruct and did not exhibit usual morphological stress induced from liposomal-based transfection agents. To the best of the authors' knowledge, this system represents the first of its kind in current literature utilizing a short and highly customizable holliday DNA junction to carry SiRNA for apoptosis studies.

  15. Histone H4 expression is cooperatively maintained by IKKβ and Akt1 which attenuates cisplatin-induced apoptosis through the DNA-PK/RIP1/IAPs signaling cascade

    PubMed Central

    Wang, Ruixue; Zheng, Xuelian; Zhang, Lei; Zhou, Bin; Hu, Huaizhong; Li, Zhiping; Zhang, Lin; Lin, Yong; Wang, Xia

    2017-01-01

    While chromatin remodeling mediated by post-translational modification of histone is extensively studied in carcinogenesis and cancer cell’s response to chemotherapy and radiotherapy, little is known about the role of histone expression in chemoresistance. Here we report a novel chemoresistance mechanism involving histone H4 expression. Extended from our previous studies showing that concurrent blockage of the NF-κB and Akt signaling pathways sensitizes lung cancer cells to cisplatin-induced apoptosis, we for the first time found that knockdown of Akt1 and the NF-κB-activating kinase IKKβ cooperatively downregulated histone H4 expression, which increased cisplatin-induced apoptosis in lung cancer cells. The enhanced cisplatin cytotoxicity in histone H4 knockdown cells was associated with proteasomal degradation of RIP1, accumulation of cellular ROS and degradation of IAPs (cIAP1 and XIAP). The cisplatin-induced DNA-PK activation was suppressed in histone H4 knockdown cells, and inhibiting DNA-PK reduced expression of RIP1 and IAPs in cisplatin-treated cells. These results establish a novel mechanism by which NF-κB and Akt contribute to chemoresistance involving a signaling pathway consisting of histone H4, DNA-PK, RIP1 and IAPs that attenuates ROS-mediated apoptosis, and targeting this pathway may improve the anticancer efficacy of platinum-based chemotherapy. PMID:28139737

  16. Single-primer-limited amplification: a method to generate random single-stranded DNA sub-library for aptamer selection.

    PubMed

    He, Chao-Zhu; Zhang, Kun-He; Wang, Ting; Wan, Qin-Si; Hu, Piao-Ping; Hu, Mei-Di; Huang, De-Qiang; Lv, Nong-Hua

    2013-09-01

    The amplification of a random single-stranded DNA (ssDNA) library by polymerase chain reaction (PCR) is a key step in each round of aptamer selection by systematic evolution of ligands by exponential enrichment (SELEX), but it can be impeded by the amplification of by-products due to the severely nonspecific hybridizations among various sequences in the PCR system. To amplify a random ssDNA library free from by-products, we developed a novel method termed single-primer-limited amplification (SPLA), which was initiated from the amplification of minus-stranded DNA (msDNA) of an ssDNA library with reverse primer limited to 5-fold molar quantity of the template, followed by the amplification of plus-stranded DNA (psDNA) of the msDNA with forward primer limited to 10-fold molar quantity of the template and recovery of psDNA by gel excision. We found that the amount of by-products increased with the increase of template amount and thermal cycle number. With the optimized template amount and thermal cycle, SPLA could amplify target ssDNA without detectable by-products and nonspecific products and could produce psDNA 16.1 times as much as that by asymmetric PCR. In conclusion, SPLA is a simple and feasible method to efficiently generate a random ssDNA sub-library for aptamer selection.

  17. NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells.

    PubMed

    Lin, Jie Jessie; Milhollen, Michael A; Smith, Peter G; Narayanan, Usha; Dutta, Anindya

    2010-12-15

    MLN4924 is a first-in-class experimental cancer drug that inhibits the NEDD8-activating enzyme, thereby inhibiting cullin-RING E3 ubiquitin ligases and stabilizing many cullin substrates. The mechanism by which MLN4924 inhibits cancer cell proliferation has not been defined, although it is accompanied by DNA rereplication and attendant DNA damage. Here we show that stabilization of the DNA replication factor Cdt1, a substrate of cullins 1 and 4, is critical for MLN4924 to trigger DNA rereplication and inhibit cell proliferation. Even only 1 hour of exposure to MLN4924, which was sufficient to elevate Cdt1 for 4-5 hours, was found to be sufficient to induce DNA rereplication and to activate apoptosis and senescence pathways. Cells in S phase were most susceptible, suggesting that MLN4924 will be most toxic on highly proliferating cancers. Although MLN4924-induced cell senescence seems to be dependent on induction of p53 and its downstream effector p21(Waf1), we found that p53(-/-) and p21(-/-) cells were even more susceptible than wild-type cells to MLN4924. Our results suggested that apoptosis, not senescence, might be more important for the antiproliferative effect of MLN4924. Furthermore, our findings show that transient exposure to this new investigational drug should be useful for controlling p53-negative cancer cells, which often pose significant clinical challenge.

  18. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence

    SciTech Connect

    Park, Jun; Jo, Yong Hwa; Cho, Chang Hoon; Choe, Wonchae; Kang, Insug; Baik, Hyung Hwan; Yoon, Kyung-Sik

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer A-T cells were not hypersensitive to low levels of DNA DSBs. Black-Right-Pointing-Pointer A-T cells have enhanced Akt but defect in activation of p53 and apoptotic proteins. Black-Right-Pointing-Pointer A-T cells underwent premature senescence after DNA damage accumulated. Black-Right-Pointing-Pointer Chemotherapeutic effect in cancer therapy may be associated with premature senescence. -- Abstract: DNA DSBs are induced by IR or radiomimetic drugs such as doxorubicin. It has been indicated that cells from ataxia-telangiectasia patients are highly sensitive to radiation due to defects in DNA repair, but whether they have impairment in apoptosis has not been fully elucidated. A-T cells showed increased sensitivity to high levels of DNA damage, however, they were more resistant to low doses. Normal cells treated with combination of KU55933, a specific ATM kinase inhibitor, and doxorubicin showed increased resistance as they do in a similar manner to A-T cells. A-T cells have higher viability but more DNA breaks, in addition, the activations of p53 and apoptotic proteins (Bax and caspase-3) were deficient, but Akt expression was enhanced. A-T cells subsequently underwent premature senescence after treatment with a low dose of doxorubicin, which was confirmed by G2 accumulation, senescent morphology, and SA-{beta}-gal positive until 15 days repair incubation. Finally, A-T cells are radio-resistant at low doses due to its defectiveness in detecting DNA damage and apoptosis, but the accumulation of DNA damage leads cells to premature senescence.

  19. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications

    PubMed Central

    Arbeithuber, Barbara; Makova, Kateryna D.; Tiemann-Boege, Irene

    2016-01-01

    The need in cancer research or evolutionary biology to detect rare mutations or variants present at very low frequencies (<10−5) poses an increasing demand on lowering the detection limits of available methods. Here we demonstrated that amplifiable DNA lesions introduce important error sources in ultrasensitive technologies such as single molecule PCR (smPCR) applications (e.g. droplet-digital PCR), or next-generation sequencing (NGS) based methods. Using templates with known amplifiable lesions (8-oxoguanine, deaminated 5-methylcytosine, uracil, and DNA heteroduplexes), we assessed with smPCR and duplex sequencing that templates with these lesions were amplified very efficiently by proofreading polymerases (except uracil), leading to G->T, and to a lesser extent, to unreported G->C substitutions at 8-oxoguanine lesions, and C->T transitions in amplified uracil containing templates. Long heat incubations common in many DNA extraction protocols significantly increased the number of G->T substitutions. Moreover, in ∼50-80% smPCR reactions we observed the random amplification preference of only one of both DNA strands explaining the known ‘PCR jackpot effect’, with the result that a lesion became indistinguishable from a true mutation or variant. Finally, we showed that artifactual mutations derived from uracil and 8-oxoguanine could be significantly reduced by DNA repair enzymes. PMID:27477585

  20. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications.

    PubMed

    Arbeithuber, Barbara; Makova, Kateryna D; Tiemann-Boege, Irene

    2016-12-01

    The need in cancer research or evolutionary biology to detect rare mutations or variants present at very low frequencies (<10(-5)) poses an increasing demand on lowering the detection limits of available methods. Here we demonstrated that amplifiable DNA lesions introduce important error sources in ultrasensitive technologies such as single molecule PCR (smPCR) applications (e.g. droplet-digital PCR), or next-generation sequencing (NGS) based methods. Using templates with known amplifiable lesions (8-oxoguanine, deaminated 5-methylcytosine, uracil, and DNA heteroduplexes), we assessed with smPCR and duplex sequencing that templates with these lesions were amplified very efficiently by proofreading polymerases (except uracil), leading to G->T, and to a lesser extent, to unreported G->C substitutions at 8-oxoguanine lesions, and C->T transitions in amplified uracil containing templates. Long heat incubations common in many DNA extraction protocols significantly increased the number of G->T substitutions. Moreover, in ∼50-80% smPCR reactions we observed the random amplification preference of only one of both DNA strands explaining the known 'PCR jackpot effect', with the result that a lesion became indistinguishable from a true mutation or variant. Finally, we showed that artifactual mutations derived from uracil and 8-oxoguanine could be significantly reduced by DNA repair enzymes.

  1. DNA damage triggers imbalance of proliferation and apoptosis during development of preneoplastic foci in the liver of Long-Evans Cinnamon rats.

    PubMed

    Jia, Guang; Tohyama, Chiharu; Sone, Hideko

    2002-10-01

    The mutant strain Long-Evans Cinnamon (LEC) rat accumulates copper, resulting in spontaneous hepatitis and subsequent development of hepatocellular carcinomas (HCCs) in the liver, providing a promising model for investigation of the relationship between hepatitis induced by oxidative stress and hepatocarcinogenesis. We examined DNA strand breaks in peripheral blood cells and p53 expression in livers during acute and chronic hepatitis in LEC rats, along with preneoplastic lesions, and cell proliferation and apoptosis in non-cancerous portions of livers from LEC rats aged 7-115 weeks. Immunohistochemistry using antibodies against glutathione S-transferase placental-form (GST-P), proliferating cell nuclear antigen (PCNA), and in situ DNA nick labeling (TUNEL) were used. Long-Evans Agouti (LEA) rats, a sibling line of the LEC strain, were used as controls. In the LEC rats, DNA strand breaks and expression of p53 were significantly higher than that of LEA rats at 24 weeks of age. The number of GST-P-positive (GST-P+) foci/cm2 increased and peaked at 48 weeks old, and the areas rapidly expanded thereafter. The level of cell proliferation increased with the development of hepatitis and was highest at about 48 weeks old. The induction of apoptosis in LEC rats was transiently higher than that in LEA rats during the period from 24 to 34 weeks of age. However, the ratio of PCNA-positive cells to the apoptotic index showed a growth imbalance in favor of cell proliferation, supporting sustained net growth in LEC rats. These findings suggest that DNA damage, reflected in DNA strand breaks, plays a critical role in the development of hepatocellular preneoplastic foci, with an imbalance between high proliferation and relatively low apoptosis.

  2. Bufalin alters gene expressions associated DNA damage, cell cycle, and apoptosis in human lung cancer NCI-H460 cells in vitro.

    PubMed

    Wu, Shin-Hwar; Hsiao, Yung-Ting; Chen, Jaw-Chyum; Lin, Ju-Hwa; Hsu, Shu-Chun; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2014-05-13

    Lung cancer is the leading cause of cancer related death and there is no effective treatment to date. Bufalin has been shown effective in inducing apoptosis and DNA damage in lung cancer cells. However, the genetic mechanisms underlying these actions have not been elucidated yet. Cultured NCI-H460 cells were treated with or without 2 μM of bufalin for 24 h. The total RNA was extracted from each treatment for cDNA synthesis and labeling, microarray hybridization, and then followed by flour-labeled cDNA hybridized on chip. The localized concentrations of fluorescent molecules were detected and quantitated and analyzed by Expression Console software (Affymetrix) with default RMA parameters. The key genes involved and their possible interaction pathways were mapped by GeneGo software. About 165 apoptosis-related genes were affected. CASP9 was up-regulated by 5.51 fold and THAP1 by 2.75-fold while CCAR1 was down-regulated by 2.24 fold. 107 genes related to DNA damage/repair were affected. MDC1 was down-regulated by 2.22-fold, DDIT4 by 2.52 fold while GADD45B up-regulated by 3.72 fold. 201 genes related to cell cycles were affected. CCPG1 was down-regulated by 2.11 fold and CDCA7L by 2.71 fold. Many genes about apoptosis, cell cycle regulation and DNA repair are changed significantly following bufalin treatment in NCI-H460 cells. These changes provide an in depth understanding of cytotoxic mechanism of bufalin in genetic level and also offer many potentially useful biomarkers for diagnosis and treatment of lung cancer in future.

  3. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.

    PubMed

    Hsieh, Yi-Hsien; Lee, Chien-Hsing; Chen, Hsiao-Yun; Hsieh, Shu-Ching; Lin, Chia-Liang; Tsai, Jen-Pi

    2015-09-01

    Nimbolide is a tetranortriterpenoid isolated from the leaves and flowers of Azadirachta indica which has been shown to exhibit anticancer, antioxidant, anti-inflammatory, and anti-invasive properties in a variety of cancer cells. However, the anti-tumor effect on human renal cell carcinoma (RCC) cells is unknown. In this study, we found that nimbolide treatment had a cytotoxic effect on 786-O and A-498 RCC cells in a dose-dependent manner. According to flow cytometric analysis, nimbolide treatment resulted in G2/M arrest in 786-O and A-498 cells accompanied with an increase in the phosphorylation status of p53, cdc2, cdc25c, and decreased expressions of cyclin A, cyclin B, cdc2, and cdc25c. Nimbolide also caused DNA damage in a dose-dependent manner as determined by comet assay and measurement of γ-H2AX. In addition, apoptotic cells were observed in an Annexin V-FITC/propidium iodide double-stained assay. The activities of caspase-3, -9, and poly ADP-ribose polymerase (PARP) were increased, and the expression of pro-caspase-8 was decreased in nimbolide-treated 786-O and A-498 cells. Western blot analysis revealed that the levels of intrinsic-related apoptotic proteins Bax and extrinsic-related proteins (DR5, CHOP) were significantly increased in nimbolide-treated 786-O and A-498 cells. In addition, the expressions of Bcl-2 and Mcl-1 were decreased in 786-O and A-498 cells after nimbolide treatment. We conclude that nimbolide can inhibit the growth of human RCC cells by inducing G2/M phase arrest by modulating cell cycle-related proteins and cell apoptosis by regulating intrinsic and extrinsic caspase signaling pathways. Nimbolide may be a promising therapeutic strategy for the treatment of RCC.

  4. NAD+ treatment can prevent rotenone-induced increases in DNA damage, Bax levels and nuclear translocation of apoptosis-inducing factor in differentiated PC12 cells.

    PubMed

    Hong, Yunyi; Nie, Hui; Wei, Xunbin; Fu, Shen; Ying, Weihai

    2015-04-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays critical roles in energy metabolism, mitochondrial functions, calcium homeostasis and immunological functions. Our previous studies have found that NAD(+) administration can profoundly decrease ischemic brain injury and traumatic brain injury. Our recent study has also provided first direct evidence indicating that NAD(+) treatment can decrease cellular apoptosis, while the mechanisms underlying this protective effect remain unclear. In our current study, we determined the effects of NAD(+) treatment on several major factors in apoptosis and necrosis, including levels of Bax and nuclear translocation of apoptosis-inducing factor (AIF), as well as levels of DNA double-strand breaks (DSBs) and intracellular ATP in rotenone-treated differentiated PC12 cells. We found that NAD(+) treatment can markedly attenuate the rotenone-induced increases in the levels of Bax and nuclear translocation of AIF in the cells. We further found that NAD(+) treatment can significantly attenuate the rotenone-induced increase in the levels of DSBs and decrease in the intracellular ATP levels. Collectively, our study has suggested mechanisms underlying the preventive effects of NAD(+) on apoptosis, which has highlighted the therapeutic potential of NAD(+) for decreasing apoptotic changes in multiple major diseases.

  5. Tumor suppressor p53 induces miR-15a processing to inhibit neuronal apoptosis inhibitory protein (NAIP) in the apoptotic response DNA damage in breast cancer cell

    PubMed Central

    Yang, Li; Zhao, Wei; Wei, Ping; Zuo, Wenshu; Zhu, Shouhui

    2017-01-01

    This study was aimed to investigate the functional role of miR-15a in breast cancer cells in response to DNA damage and to illustrate the possible potential underlying molecular mechanism(s). Human breast cancer cell lines MCF-7 cells and/or MDA-MB-231 cells were pre-treated with or without bleomycin. Cells were transfected with corresponding vectors. qRT-PCR was used to detect the expression of mRNA or miRNA, and immunoprecipitation and immunoblot analysis were performed to explore the status of protein association. Cell apoptosis was analyzed with flow cytometry. The results showed that neuronal apoptosis inhibitory protein (NAIP) was negatively regulated by p53 in MCF-7 cells, and NAIP expression was still high in bleomycin-treated MCF-7 cells. In addition, we observed that miR-15a expression was regulated by p53, and the effects of miR-15a on DNA damage was also mediated by p53. Furthermore, the results revealed that the cell apoptosis was mediated by miR-15a. Taken together, this study reveals that p53 negatively regulates NAIP expression by targeting miR-15a processing from primary into precursor miRNA in breast cancer. PMID:28337296

  6. Cdk5 activator-binding protein C53 regulates apoptosis induced by genotoxic stress via modulating the G2/M DNA damage checkpoint.

    PubMed

    Jiang, Hai; Luo, Shouqing; Li, Honglin

    2005-05-27

    In response to DNA damage, the cellular decision of life versus death involves an intricate network of multiple factors that play critical roles in regulation of DNA repair, cell cycle, and cell death. DNA damage checkpoint proteins are crucial for maintaining DNA integrity and normal cellular functions, but they may also reduce the effectiveness of cancer treatment. Here we report the involvement of Cdk5 activator p35-binding protein C53 in regulation of apoptosis induced by genotoxic stress through modulating Cdk1-cyclin B1 function. C53 was originally identified as a Cdk5 activator p35-binding protein and a caspase substrate. Importantly, our results demonstrated that C53 deficiency conferred partial resistance to genotoxic agents such as etoposide and x-ray irradiation, whereas ectopic expression of C53 rendered cells susceptible to multiple genotoxins that usually trigger G(2)/M arrest. Furthermore, we found that Cdk1 activity was required for etoposide-induced apoptosis of HeLa cells. Overexpression of C53 promoted Cdk1 activity and nuclear accumulation of cyclin B1, whereas C53 deficiency led to more cytoplasmic retention of cyclin B1, suggesting that C53 acts as a pivotal player in modulating the G(2)/M DNA damage checkpoint. Finally, C53 and cyclin B1 co-localize and associate in vivo, indicating a direct role of C53 in regulating the Cdk1-cyclin B1 complex. Taken together, our results strongly indicate that in response to genotoxic stress, C53 serves as an important regulatory component of the G(2)/M DNA damage checkpoint. By overriding the G(2)/M checkpoint-mediated inhibition of Cdk1-cyclin B1 function, ectopic expression of C53 may represent a novel approach for chemo- and radio-sensitization of cancer cells.

  7. A platinum(II) complex of liriodenine from traditional Chinese medicine (TCM): Cell cycle arrest, cell apoptosis induction and telomerase inhibition activity via G-quadruplex DNA stabilization.

    PubMed

    Li, Yu-Lan; Qin, Qi-Pin; Liu, Yan-Cheng; Chen, Zhen-Feng; Liang, Hong

    2014-08-01

    Liriodenine (L), an antitumor active ingredient from the traditional Chinese medicine (TCM), Zanthoxylum nitidum, afforded a platinum(II) complex (1) of L, cis-[PtCl2(L)(DMSO)], which previously reported for its in vitro antitumor activity and intercalative binding with DNA. In this study, complex 1 was further discussed for its antitumor mechanism and structure-activity relationship, comparing with L and cisplatin. Towards the most sensitive BEL-7404 human hepatoma cells, complex 1 significantly induced cell cycle arrest at both G2/M phase and S phase. It suggests that double helix DNA is not the simplex intracellular target for 1. On the other hand, the BEL-7404 cells incubated with 1 and stained by Hoechst 33258 and AO/EB showed typical cell apoptosis in dose-dependent manner. The BEL-7404 cells incubated with 1 and stained by JC-1 were also characteristic for cell apoptosis on the loss of mitochondrial membrane potential. Furthermore, the G-quadruplex DNA binding property of complex 1 was also investigated by spectroscopic analyses, fluorescent indicator displacement (FID) assay and fluorescence resonance energy transfer (FRET) assay. The results indicated that 1 stabilized the human telomeric G4-HTG21 DNA better than L. The telomerase inhibition ratio of 1 ((62.50±0.03)%), which was examined by telomerase polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA), was much higher than L ((21.77±0.01)%). It can be ascribed to the better G4-HTG21 DNA stabilization of 1 than L. The results suggested that the nuclei, mitochondria and telomerase via G-quadruplex DNA stabilization all should be key targets for the antitumor mechanism of 1, in which the central platinum(II) played a key role.

  8. Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells.

    PubMed

    El-Awady, Raafat A; Semreen, Mohammad H; Saber-Ayad, Maha M; Cyprian, Farhan; Menon, Varsha; Al-Tel, Taleb H

    2016-01-01

    DNA damage response machinery (DDR) is an attractive target of cancer therapy. Modulation of DDR network may alter the response of cancer cells to DNA damaging anticancer drugs such as doxorubicin. The aim of the present study is to investigate the effects of a newly developed imidazopyridine (IAZP) derivative on the DDR after induction of DNA damage in cancer cells by doxorubicin. Cytotoxicity sulphrhodamine-B assay showed a weak anti-proliferative effect of IAZP alone on six cancer cell lines (MCF7, A549, A549DOX11, HepG2, HeLa and M8) and a normal fibroblast strain. Combination of IAZP with doxorubicin resulted in synergism in lung (A549) and breast (MCF7) cancer cells but neither in the other cancer cell lines nor in normal fibroblasts. Molecular studies revealed that synergism is mediated by modulation of DNA damage response and induction of apoptosis. Using constant-field gel electrophoresis and immunofluorescence detection of γ-H2AX foci, IAZP was shown to inhibit the repair of doxorubicin-induced DNA damage in A549 and MCF7 cells. Immunoblot analysis showed that IAZP suppresses the phosphorylation of the ataxia lelangiectasia and Rad3 related (ATR) protein, which is an important player in the response of cancer cells to chemotherapy-induced DNA damage. Moreover, IAZP augmented the doxorubicin-induced degradation of p21, activation of p53, CDK2, caspase 3/7 and phosphorylation of Rb protein. These effects enhanced doxorubicin-induced apoptosis in both cell lines. Our results indicate that IAZP is a promising agent that may enhance the cytotoxic effects of doxorubicin on some cancer cells through targeting the DDR. It is a preliminary step toward the clinical application of IAZP in combination with anticancer drugs and opens the avenue for the development of compounds targeting the DDR pathway that might improve the therapeutic index of anticancer drugs and enhance their cure rate.

  9. DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage.

    PubMed

    Mayle, Ryan; Campbell, Ian M; Beck, Christine R; Yu, Yang; Wilson, Marenda; Shaw, Chad A; Bjergbaek, Lotte; Lupski, James R; Ira, Grzegorz

    2015-08-14

    Most spontaneous DNA double-strand breaks (DSBs) result from replication-fork breakage. Break-induced replication (BIR), a genome rearrangement-prone repair mechanism that requires the Pol32/POLD3 subunit of eukaryotic DNA Polδ, was proposed to repair broken forks, but how genome destabilization is avoided was unknown. We show that broken fork repair initially uses error-prone Pol32-dependent synthesis, but that mutagenic synthesis is limited to within a few kilobases from the break by Mus81 endonuclease and a converging fork. Mus81 suppresses template switches between both homologous sequences and diverged human Alu repetitive elements, highlighting its importance for stability of highly repetitive genomes. We propose that lack of a timely converging fork or Mus81 may propel genome instability observed in cancer.

  10. Cyanidin suppresses amyloid beta-induced neurotoxicity by inhibiting reactive oxygen species-mediated DNA damage and apoptosis in PC12 cells

    PubMed Central

    Wang, Yi; Fu, Xiao-ting; Li, Da-wei; Wang, Kun; Wang, Xin-zhi; Li, Yuan; Sun, Bao-liang; Yang, Xiao-yi; Zheng, Zun-cheng; Cho, Nam Chun

    2016-01-01

    Amyloid beta (Aβ)-induced oxidative stress is a major pathologic hallmark of Alzheimer's disease. Cyanidin, a natural flavonoid compound, is neuroprotective against oxidative damage-mediated degeneration. However, its molecular mechanism remains unclear. Here, we investigated the effects of cyanidin pretreatment against Aβ-induced neurotoxicity in PC12 cells, and explored the underlying mechanisms. Cyanidin pretreatment significantly attenuated Aβ-induced cell mortality and morphological changes in PC12 cells. Mechanistically, cyanidin effectively blocked apoptosis induced by Aβ, by restoring the mitochondrial membrane potential via upregulation of Bcl-2 protein expression. Moreover, cyanidin markedly protected PC12 cells from Aβ-induced DNA damage by blocking reactive oxide species and superoxide accumulation. These results provide evidence that cyanidin suppresses Aβ-induced cytotoxicity, by preventing oxidative damage mediated by reactive oxide species, which in turn inhibits mitochondrial apoptosis. Our study demonstrates the therapeutic potential of cyanidin in the prevention of oxidative stress-mediated Aβ neurotoxicity. PMID:27335564

  11. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation

    PubMed Central

    Villar, Victor H.; Nguyen, Tra Ly; Delcroix, Vanessa; Terés, Silvia; Bouchecareilh, Marion; Salin, Bénédicte; Bodineau, Clément; Vacher, Pierre; Priault, Muriel; Soubeyran, Pierre; Durán, Raúl V.

    2017-01-01

    A master coordinator of cell growth, mTORC1 is activated by different metabolic inputs, particularly the metabolism of glutamine (glutaminolysis), to control a vast range of cellular processes, including autophagy. As a well-recognized tumour promoter, inhibitors of mTORC1 such as rapamycin have been approved as anti-cancer agents, but their overall outcome in patients is rather poor. Here we show that mTORC1 also presents tumour suppressor features in conditions of nutrient restrictions. Thus, the activation of mTORC1 by glutaminolysis during nutritional imbalance inhibits autophagy and induces apoptosis in cancer cells. Importantly, rapamycin treatment reactivates autophagy and prevents the mTORC1-mediated apoptosis. We also observe that the ability of mTORC1 to activate apoptosis is mediated by the adaptor protein p62. Thus, the mTORC1-mediated upregulation of p62 during nutrient imbalance induces the binding of p62 to caspase 8 and the subsequent activation of the caspase pathway. Our data highlight the role of autophagy as a survival mechanism upon rapamycin treatment. PMID:28112156

  12. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro.

  13. Tenuifolide B from Cinnamomum tenuifolium Stem Selectively Inhibits Proliferation of Oral Cancer Cells via Apoptosis, ROS Generation, Mitochondrial Depolarization, and DNA Damage

    PubMed Central

    Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei

    2016-01-01

    The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N-acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of

  14. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells.

    PubMed

    Zhang, Ting; Wang, Yiqing; Kong, Lu; Xue, Yuying; Tang, Meng

    2015-10-26

    Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts.

  15. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells

    PubMed Central

    Zhang, Ting; Wang, Yiqing; Kong, Lu; Xue, Yuying; Tang, Meng

    2015-01-01

    Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts. PMID:26516873

  16. Analyses of apoptosis and DNA damage in bovine cumulus cells after in vitro maturation with different copper concentrations: consequences on early embryo development.

    PubMed

    Rosa, D E; Anchordoquy, J M; Anchordoquy, J P; Sirini, M A; Testa, J A; Mattioli, G A; Furnus, C C

    2016-12-01

    The aim of this study was to investigate the influence of copper (Cu) during in vitro maturation (IVM) on apoptosis and DNA integrity of cumulus cells (CC); and oocyte viability. Also, the role of CC in the transport of Cu during IVM was evaluated on oocyte developmental capacity. Damage of DNA was higher in CC matured without Cu (0 µg/dl Cu, P < 0.01) with respect to cells treated with Cu for cumulus-oocyte complexes (COCs) exposed to 0, 20, 40, or 60 µg/dl Cu). The percentage of apoptotic cells was higher in CC matured without Cu than in CC matured with Cu. Cumulus expansion and viability of CC did not show differences in COC treated with 0, 20, 40, or 60 µg/dl Cu during IVM. After in vitro fertilization (IVF), cleavage rates were higher in COC and DO + CC (denuded oocytes + CC) with or without Cu than in DO. Independently of CC presence (COC, DO + CC or DO) the blastocyst rates were higher when 60 µg/dl Cu was added to IVM medium compared to medium alone. These results indicate that Cu supplementation to IVM medium: (i) decreased DNA damage and apoptosis in CC; (ii) did not modify oocyte viability and cumulus expansion; and (iii) improved subsequent embryo development up to blastocyst stage regardless of CC presence during IVM.

  17. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    PubMed

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future.

  18. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    NASA Astrophysics Data System (ADS)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  19. Artesunate-enhanced apoptosis of human high-risk myelodysplastic cells induced by the DNA methyltransferase inhibitor decitabine.

    PubMed

    Wang, Ying; Wang, Fuxu; Wen, Shupeng; Guo, Yujie; Liu, Xuan; Zhang, Xuejun; Pan, Ling

    2015-06-01

    The present study aimed to investigate whether artesunate (ART) could enhance the rate of apoptosis induced by decitabine (DAC) in the high-risk myelodysplastic syndrome (MDS) SKM-1 cell line, and examine the potential underlying mechanisms. The cytotoxicity and effect upon the apoptosis of ART and DAC in the SKM-1 cells was detected using the cell counting kit-8 assay and flow cytometry, respectively. The SKM-1 protein expression levels of activated caspase-3, -9 and -8, cleaved poly(ADP-ribose) polymerase and apoptosis-inducing factor (AIF) were measured by western blotting. The laser confocal microscope analysis revealed AIF transfer to the nucleus. The growth inhibition and apoptosis rates of the ART- and DAC-treated SKM-1 cells were significantly increased compared with those of the single agent-treated SKM-1 cells (P<0.05). In addition, ART and DAC induced caspase-dependent apoptosis, while ART, but not DAC, induced caspase-independent apoptosis via AIF transfer from the mitochondria to the nucleus. In addition, ART-DAC-induced cell death was not attenuated by the caspase-3/7 inhibitor, Ac-DEVD-CHO. The results of the present study suggested that the ART-DAC combination exhibited increased effectiveness compared with the single-agent therapy, in vitro. The ART-DAC combined therapy not only activated a caspase-dependent apoptotic pathway, but also a caspase-independent mitochondrial pathway.

  20. Friend Leukemia Virus Infection Enhances DNA Damage-Induced Apoptosis of Hematopoietic Cells, Causing Lethal Anemia in C3H Hosts

    PubMed Central

    Kitagawa, Masanobu; Yamaguchi, Shuichi; Hasegawa, Maki; Tanaka, Kaoru; Sado, Toshihiko; Hirokawa, Katsuiku; Aizawa, Shiro

    2002-01-01

    Exposure of hematopoietic progenitors to gamma irradiation induces p53-dependent apoptosis. However, host responses to DNA damage are not uniform and can be modified by various factors. Here, we report that a split low-dose total-body irradiation (TBI) (1.5 Gy twice) to the host causes prominent apoptosis in bone marrow cells of Friend leukemia virus (FLV)-infected C3H mice but not in those of FLV-infected DBA mice. In C3H mice, the apoptosis occurs rapidly and progressively in erythroid cells, leading to lethal host anemia, although treatment with FLV alone or TBI alone induced minimal apoptosis in bone marrow cells. A marked accumulation of P53 protein was demonstrated in bone marrow cells from FLV-infected C3H mice 12 h after treatment with TBI. Although a similar accumulation of P53 was also observed in bone marrow cells from FLV-infected DBA mice treated with TBI, the amount appeared to be parallel to that of mice treated with TBI alone and was much lower than that of FLV- plus TBI-treated C3H mice. To determine the association of p53 with the prominent enhancement of apoptosis in FLV- plus TBI-treated C3H mice, p53 knockout mice of the C3H background (C3H p53−/−) were infected with FLV and treated with TBI. As expected, p53 knockout mice exhibited a very low frequency of apoptosis in the bone marrow after treatment with FLV plus TBI. Further, C3H p53−/− → C3H p53+/+ bone marrow chimeric mice treated with FLV plus TBI survived even longer than the chimeras treated with FLV alone. These findings indicate that infection with FLV strongly enhances radiation-induced apoptotic cell death of hematopoietic cells in host animals and that the apoptosis occurs through a p53-associated signaling pathway, although the response was not uniform in different host strains. PMID:12097591

  1. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes

    PubMed Central

    Mallet, Justin D.; Bastien, Nathalie; Gendron, Sébastien P.; Rochette, Patrick J.

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6–4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  2. Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields

    PubMed Central

    Saha, Shreya; Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Ricket, Nicole; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2014-01-01

    The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10–200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1–5 mGy X-rays. PMID:25209403

  3. Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields.

    PubMed

    Saha, Shreya; Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Ricket, Nicole; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2014-11-06

    The use of X-rays for medical diagnosis is enhancing exposure to low radiation doses. Exposure to extremely low-frequency electromagnetic or magnetic fields is also increasing. Epidemiological studies show consistent associations of childhood leukaemia with exposure to magnetic fields but any causal relationship is unclear. A limitation in assessing the consequence of such exposure is the availability of sensitive assays. The embryonic neuronal stem and progenitor cell compartments are radiosensitive tissues. Using sensitive assays, we report a statistically significant increase in DNA double-strand break (DSB) formation and apoptosis in the embryonic neuronal stem cell compartment following in utero exposure to 10-200 mGy X-rays. Both endpoints show a linear response. We also show that DSB repair is delayed following exposure to doses below 50 mGy compared with 100 mGy. Thus, we demonstrate in vivo consequences of low-dose radiation. In contrast to these impacts, we did not observe any significant induction of DSBs or apoptosis following exposure to 50 Hz magnetic fields (100 or 300 µT). We conclude that any DSB induction by treatment with magnetic fields is lower than following exposure to 10 mGy X-rays. For comparison, certain procedures involving computed tomography scanning are equivalent to 1-5 mGy X-rays.

  4. Molecular mechanism underlying differential apoptosis between human melanoma cell lines UACC903 and UACC903(+6) revealed by mitochondria-focused cDNA microarrays.

    PubMed

    Zhang, Qiuyang; Wu, Jun; Nguyen, Anhthu; Wang, Bi-Dar; He, Ping; Laurent, Georges St; Rennert, Owen M; Su, Yan A

    2008-08-01

    Human malignant melanoma cell line UACC903 is resistant to apoptosis while chromosome 6-mediated suppressed cell line UACC903(+6) is sensitive. Here, we describe identification of differential molecular pathways underlying this difference. Using our recently developed mitochondria-focused cDNA microarrays, we identified 154 differentially expressed genes including proapoptotic (BAK1 [6p21.3], BCAP31, BNIP1, CASP3, CASP6, FAS, FDX1, FDXR, TNFSF10 and VDAC1) and antiapoptotic (BCL2L1, CLN3 and MCL1) genes. Expression of these pro- and anti-apoptotic genes was higher in UACC903(+6) than in UACC903 before UV treatment and was altered after UV treatment. qRT-PCR and Western blots validated microarray results. Our bioinformatic analysis mapped these genes to differential molecular pathways that predict resistance and sensitivity of UACC903 and UACC903(+6) to apoptosis respectively. The pathways were functionally confirmed by the FAS ligand-induced cell death and by siRNA knockdown of BAK1 protein. These results demonstrated the differential molecular pathways underlying survival and apoptosis of UACC903 and UACC903(+6) cell lines.

  5. Herbal Formulation C168 Attenuates Proliferation and Induces Apoptosis in HCT 116 Human Colorectal Carcinoma Cells: Role of Oxidative Stress and DNA Damage

    PubMed Central

    Leong, Lek Mun; Chan, Kok Meng; Hamid, Asmah; Latip, Jalifah; Rajab, Nor Fadilah

    2016-01-01

    The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME) on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action. PMID:26884792

  6. A novel approach using C. elegans DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries

    PubMed Central

    Papaluca, Arturo; Ramotar, Dindial

    2016-01-01

    Organic cation transporter (OCT) function is critical for cellular homeostasis. C. elegans lacking OCT-1 displays a shortened lifespan and increased susceptibility to oxidative stress. We show that these phenotypes can be rescued by downregulating the OCT-1 paralogue, OCT-2. Herein, we delineate a biochemical pathway in C. elegans where uptake of genotoxic chemotherapeutics such as doxorubicin and cisplatin, and subsequent DNA damage-induced apoptosis of germ cells, are dependent exclusively upon OCT-2. We characterized OCT-2 as the main uptake transporter for doxorubicin, as well as a number of other therapeutic agents and chemical compounds, some identified through ligand-protein docking analyses. We provide insights into the conserved features of the structure and function and gene regulation of oct-1 and oct-2 in distinct tissues of C. elegans. Importantly, our innovative approach of exploiting C. elegans uptake transporters in combination with defective DNA repair pathways will have broad applications in medicinal chemistry. PMID:27786254

  7. Pleiotropic Effects of the Trichloroethylene-Associated P81S VHL Mutation on Metabolism, Apoptosis, and ATM-Mediated DNA Damage Response

    PubMed Central

    2013-01-01

    Background The risk relevance of the P81S von Hippel-Lindau (VHL) gene hotspot mutation identified in clear cell renal cell carcinoma from individuals exposed occupationally to trichloroethylene (TCE) is not known. VHL mutations in hereditary VHL syndrome strongly correlate with phenotypic associations, but specific sporadic mutations in VHL that uniquely alter its protein function may provide a selective growth advantage for somatic cells harboring these mutations. Methods VHL deficient (Vhl -/-) mouse embryonic stem cells were generated that stably express wild-type, P81S, or R167Q human VHL protein. Under hypoxic conditions, cell lines were examined for hypoxia-inducible transcription factor family (HIF) stabilization and E3-ubiquitin ligase complex interactions. In vivo, teratomas were examined for tumor size, proliferation, apoptosis, and immunohistochemistry and subjected to gene expression analysis. Wild-type, R167Q, and P81S VHL-expressing teratomas were also exposed to 5 Gy ionizing radiation to quantify apoptotic response. Proliferation and apoptosis and teratoma growth were analyzed by either Student t test or analysis of variance with Bonferroni correction. All statistical tests were two-sided. Results The P81S VHL mutation produces deregulation of HIF factors in cell culture but exhibits a growth advantage in the tumor microenvironment, in part because of suppression of apoptosis (P81S mean = 0.9%, 95% confidence interval = 0.6 to 1.2%; WT mean = 7.6%; 95% confidence interval = 6.4 to 8.8%; P < .001) coupled with sustained proliferation. Transcriptional analysis of P81S teratomas revealed the induction of metabolic pathways, antiapoptotic genes, and global suppression of key DNA damage response genes not observed in VHL wild-type or R167Q mutants. In vivo irradiation exposure showed that P81S mutant is resistant to ionizing radiation–induced apoptosis. Conclusions The TCE-associated P81S VHL mutation can initiate a unique adaptive response required

  8. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes.

    PubMed

    Covo, Shay; Westmoreland, James W; Gordenin, Dmitry A; Resnick, Michael A

    2010-07-01

    Double-strand break (DSB) repair through homologous recombination (HR) is an evolutionarily conserved process that is generally error-free. The risk to genome stability posed by nonallelic recombination or loss-of-heterozygosity could be reduced by confining HR to sister chromatids, thereby preventing recombination between homologous chromosomes. Here we show that the sister chromatid cohesion complex (cohesin) is a limiting factor in the control of DSB repair and genome stability and that it suppresses DNA damage-induced interactions between homologues. We developed a gene dosage system in tetraploid yeast to address limitations on various essential components in DSB repair and HR. Unlike RAD50 and RAD51, which play a direct role in HR, a 4-fold reduction in the number of essential MCD1 sister chromatid cohesion subunit genes affected survival of gamma-irradiated G(2)/M cells. The decreased survival reflected a reduction in DSB repair. Importantly, HR between homologous chromosomes was strongly increased by ionizing radiation in G(2)/M cells with a single copy of MCD1 or SMC3 even at radiation doses where survival was high and DSB repair was efficient. The increased recombination also extended to nonlethal doses of UV, which did not induce DSBs. The DNA damage-induced recombinants in G(2)/M cells included crossovers. Thus, the cohesin complex has a dual role in protecting chromosome integrity: it promotes DSB repair and recombination between sister chromatids, and it suppresses damage-induced recombination between homologues. The effects of limited amounts of Mcd1and Smc3 indicate that small changes in cohesin levels may increase the risk of genome instability, which may lead to genetic diseases and cancer.

  9. Myristicin from nutmeg induces apoptosis via the mitochondrial pathway and down regulates genes of the DNA damage response pathways in human leukaemia K562 cells.

    PubMed

    Martins, Célia; Doran, Carolina; Silva, Inês C; Miranda, Claudia; Rueff, José; Rodrigues, António S

    2014-07-25

    Myristicin, an allylbenzene, is a major active component of various spices, such as nutmeg and cinnamon, plants from the Umbelliferae family or in some essential oils, such as oils of clove or marjoram. Human exposure to myristicin is low but widespread due to consumption of these spices and essential oils, added to food (e.g. cola drinks) or in traditional medicine. Occasionally high dose exposure occurs, leading to various clinical symptoms, however the molecular mechanisms underlying them are unknown. Our previous studies revealed that myristicin is not genotoxic and yet presented apoptotic activity. Therefore, in this work we assessed the apoptotic mechanisms induced by myristicin in human leukaemia cells. In order to gain further insight on the potential of myristicin to modulate gene expression we also analysed alterations in expression of 84 genes associated with the DNA damage response pathway. The results obtained show that myristicin can induce apoptosis as characterised by alterations in the mitochondrial membrane potential, cytochrome c release, caspase-3 activation, PARP-cleavage and DNA fragmentation. The gene expression profile revealed an overall down regulation of DNA damage response genes after exposure to myristicin, with significant under-expression of genes associated with nucleotide excision repair (ERCC1), double strand break repair (RAD50, RAD51) and DNA damage signalling (ATM) and stress response (GADD45A, GADD45G). On the whole, we demonstrate that myristicin can alter mitochondrial membrane function, induce apoptosis and modulate gene expression in human leukaemia K562 cells. This study provides further detail on the molecular mechanisms underlying the biological activity of myristicin.

  10. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  11. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.

  12. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    DOE PAGES

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; ...

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levelsmore » of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.« less

  13. In Vivo Bystander Effect: Cranial X-Irradiation Leads to Elevated DNA Damage, Altered Cellular Proliferation and Apoptosis, and Increased p53 Levels in Shielded Spleen

    SciTech Connect

    Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga

    2008-02-01

    Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis.

  14. The influence of Trp53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells.

    PubMed

    Lemon, Jennifer A; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R

    2014-07-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  15. T cells from baxalpha transgenic mice show accelerated apoptosis in response to stimuli but do not show restored DNA damage-induced cell death in the absence of p53.

    PubMed Central

    Brady, H J; Salomons, G S; Bobeldijk, R C; Berns, A J

    1996-01-01

    Baxalpha was isolated due to its interaction with Bcl-2. Baxalpha overexpression in an interleukin (IL)-3 dependent cell line accelerates apoptosis upon removal of the cytokine. The ratio of Baxalpha to Bcl-2 appears to be crucial for the effect. To study the action of the bax gene product in vivo, we have generated transgenic mice overexpressing Baxalpha specifically in T cells. Such T cells show accelerated apoptosis in response to gamma-radiation, dexamethasone and etoposide. By crossing baxalpha mice with bcl-2 transgenics we show that the critical nature of the Baxalpha:Bcl-2 ratio holds in primary T cells and that it can be manipulated to elicit a strong response to previously resisted stimuli. p53 has a role in the regulation of apoptosis in response to DNA-damaging agents. p53 directly activates transcription of the bax gene. The presence of the baxalpha transgene accelerated apoptosis in thymocytes from both p53-l- and p53+l- mice in response to dexamethasone. Thymocytes from p53-l- mice with the baxalpha transgene showed similar resistance to apoptosis by DNA-damaging agents as did p53-l- mice without the transgene. Baxalpha overexpression alone cannot restore the DNA damage apoptosis pathway, suggesting that p53 is required to induce or activate other factor(s) to reconstitute the response fully. Images PMID:8635454

  16. Silibinin inhibits ultraviolet B radiation-induced DNA-damage and apoptosis by enhancing interleukin-12 expression in JB6 cells and SKH-1 hairless mouse skin.

    PubMed

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2014-06-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer.

  17. Inhibitors of Apoptosis Affect DNA Degradation and Repair in Sulfur Mustard (HD)-Exposed Human Epidermal Keratinocytes (HEK)

    DTIC Science & Technology

    2003-07-01

    accompanied by DNA ligase I activation via DNA-dependent protein kinase (DNA-PK) mediated phosphorylation, and is retarded in the presence of a poly (ADP...ATCC No. HB 11726). Bovine DNA ligase I monoclonal antibody was a kind gift from Dr. Tomas Lindahl of the Imperial Cancer Research Fund, UK...metabolic 33P labeling of DNA ligase in HEK and other cells: The experimental and control cells were washed with 37oC saline and then exposed to 1 mM HD

  18. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  19. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    PubMed Central

    2010-01-01

    Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063

  20. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  1. Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly

    PubMed Central

    Takamura-Enya, Takeji; Watanabe, Masahiko; Totsuka, Yukari; Kanazawa, Takashi; Matsushima-Hibiya, Yuko; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji

    2001-01-01

    Pierisin-1 is a potent apoptosis-inducing protein derived from the cabbage butterfly, Pieris rapae. It has been shown that pierisin-1 has an A⋅B structure–function organization like cholera or diphtheria toxin, where the “A” domain (N-terminal) exhibits ADP-ribosyltransferase activity. The present studies were designed to identify the target molecule for ADP-ribosylation by pierisin-1 in the presence of β-[adenylate-32P]NAD, and we found DNA as the acceptor, but not protein as is the case with other bacteria-derived ADP-ribosylating toxins. ADP-ribosylation of tRNAs from yeast was also catalyzed by pierisin-1, but the efficiency was around \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\frac{1}{10}\\end{equation*}\\end{document} of that for calf thymus DNA. Pierisin-1 efficiently catalyzed the ADP-ribosylation of double-stranded DNA containing dG⋅dC, but not dA⋅dT pairs. The ADP-ribose moiety of NAD was transferred to the amino group at N2 of 2′-deoxyguanosine to yield N2-(α-ADP-ribos-1-yl)-2′-deoxyguanosine and its β form, which were determined by several spectral analyses including 1H- and 13C-NMR and mass spectrometry. The chemical structures were also ascertained by the independent synthesis of N2-(D-ribos-1-yl)-2′-deoxyguanosine, which is the characteristic moiety of ADP-ribosylated dG. Using the 32P-postlabeling method, ADP-ribosylated dG could be detected in DNA from pierisin-1-treated HeLa cells, in which apoptosis was easily induced. Thus, the targets for ADP-ribosylation by pierisin-1 were concluded to be 2′-deoxyguanosine residues in DNA. This finding may open a new field regarding the biological significance of ADP-ribosylation. PMID:11592983

  2. Caspase-activated DNase is necessary and sufficient for oligonucleosomal DNA breakdown, but not for chromatin disassembly during caspase-dependent apoptosis of LN-18 glioblastoma cells.

    PubMed

    Sánchez-Osuna, María; Garcia-Belinchón, Mercè; Iglesias-Guimarais, Victoria; Gil-Guiñón, Estel; Casanelles, Elisenda; Yuste, Victor J

    2014-07-04

    Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.

  3. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis.

    PubMed

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-10-16

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  4. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis

    PubMed Central

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-01-01

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  5. Arene-Ru(II)-Chloroquine Complexes Interact With DNA, Induce Apoptosis on Human Lymphoid Cell Lines and Display Low Toxicity to Normal Mammalian Cells

    PubMed Central

    Martínez, Alberto; Rajapakse, Chandima S.K.; Varela-Ramírez, Armando; Lema, Carolina; Aguilera, Renato J.; Sánchez-Delgado, Roberto A.

    2010-01-01

    The complexes [Ru(η6-p-cymene)(CQ)Cl2] (1), [Ru(η6-benzene)(CQ)Cl2] (2), [Ru(η6-p-cymene)(CQ)(H2O)2][BF4]2 (3), [Ru(η6- p-cymene)(en)(CQ)][PF6]2 (4), [Ru(η6-p-cymene)(η6-CQDP)][BF4]2 (5) (CQ = chloroquine base; CQDP = chloroquine diphosphate; en = ethylenediamine) interact with DNA to a comparable extent to that of CQ and in analogous intercalative manner with no evidence for any direct contribution of the metal, as shown by spectrophotometric and fluorimetric titrations, thermal denaturation measurements, circular dichroism spectroscopy and electrophoresis mobility shift assays. Complexes 1–5 induced cytotoxicity in Jurkat and SUP-T1 cancer cells primarily via apoptosis. Despite the similarities in the DNA binding behavior of complexes 1–5 with those of CQ the antitumor properties of the metal drugs do not correlate with those of CQ, indicating that DNA is not the principal target in the mechanism of cytotoxicity of these compounds. Importantly, the Ru-CQ complexes are generally less toxic toward normal mouse splenocytes and human foreskin fibroblast cells than the standard antimalarial drug CQDP and therefore this type of compound shows promise for drug development. PMID:20605217

  6. Dihydroxyacetone, the active browning ingredient in sunless tanning lotions, induces DNA damage, cell-cycle block and apoptosis in cultured HaCaT keratinocytes.

    PubMed

    Petersen, Anita B; Wulf, Hans Christian; Gniadecki, Robert; Gajkowska, Barbara

    2004-06-13

    Dihydroxyacetone (DHA), the active substance in sunless tanning lotions reacts with the amino groups of proteins to form a brown-colored complex. This non-enzymatic glycation, known as the Maillard reaction, can also occur with free amino groups in DNA, raising the possibility that DHA may be genotoxic. To address this issue we investigated the effects of DHA on cell survival and proliferation of a human keratinocyte cell line, HaCaT. Dose- and time-dependent morphological changes, chromatin condensation, cytoplasmic budding and cell detachment were seen in cells treated with DHA. Several dead cells were observed after long-time (24 h) incubation with 25 mM DHA or more. Furthermore, an extensive decline in proliferation was observed 1 day after DHA exposure for 24 h. When applied in different concentrations (5-50 mM) and for different time periods (1, 3 or 24 h) DHA caused a G(2)/M block after the cyclin B(1) restriction point. Exit from this cell-cycle block was associated with massive apoptosis, as revealed by a clonogenic assay, TUNEL staining and electron microscopy. Furthermore, DHA caused DNA damage as revealed by the alkaline comet assay. Preincubation with antioxidants prevented the formation of DNA strand breaks. The DHA toxicity may be caused by direct redox reactions, with formation of ROS as the crucial intermediates. The genotoxic capacity of DHA raises a question about the long-term clinical consequences of treatment of the skin with this commonly used compound.

  7. A novel synthetic protoapigenone analogue, WYC02-9, induces DNA damage and apoptosis in DU145 prostate cancer cells through generation of reactive oxygen species.

    PubMed

    Chen, Huei-Mei; Chang, Fang-Rong; Hsieh, Ya-Ching; Cheng, Yu-Jen; Hsieh, Kun-Chou; Tsai, Lih-Min; Lin, An-Shen; Wu, Yang-Chang; Yuan, Shyng-Shiou

    2011-05-01

    The protoapigenone analogue WYC02-9, a novel synthetic flavonoid, has been shown to act against a variety of experimental tumors. However, its effects on prostate cancer and its mechanism of action are unknown. Thus, WYC02-9 was investigated for its cytotoxicity against DU145 prostate cancer cells, as was the underlying mechanisms by which WYC02-9 might induce DNA damage and apoptotic cell death through reactive oxygen species (ROS). WYC02-9 inhibited the cell growth of three prostate cancer cell lines, especially DU145 cells. In DU145 cells, WYC02-9 increased the generation of intracellular ROS, followed by induction of DNA damage and activation of the ATM-p53-H2A.X pathway and checkpoint-related signals Chk1/Chk2, which led to increased numbers of cells in the S and G2/M phases of the cell cycle. Furthermore, WYC02-9 induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9, caspase-3, and PARP. The above effects were all prevented by the ROS scavenger N-acetylcysteine. Administration of WYC02-9 in a nude mouse DU145 xenograft model further identified the anti-cancer activity of WYC02-9. These findings therefore suggest that WYC02-9-induced DNA damage and mitochondria-dependent cell apoptosis in DU145 cells are mediated via ROS generation.

  8. Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme.

    PubMed

    Lv, Linlin; Zheng, Lingli; Dong, Deshi; Xu, Lina; Yin, Lianhong; Xu, Youwei; Qi, Yan; Han, Xu; Peng, Jinyong

    2013-09-01

    Dioscin, a natural product obtained from medicinal plants shows lipid-lowering, anti-cancer and hepatoprotective effects. However, the effect of it on glioblastoma is unclear. In this study, dioscin significantly inhibited proliferation of C6 glioma cells and caused reactive oxygen species (ROS) generation and Ca²⁺ release. ROS accumulation affected levels of malondialdehyde, nitric oxide, glutathione disulfide and glutathione, and caused cell apoptosis. In addition, ROS generation caused mitochondrial damage including structural changes, increased mitochondrial permeability transition and decreased mitochondria membrane potential, which led to the release of cytochrome C, nuclear translation of programmed cell death-5 and increased activities of caspase-3,9. Simultaneously, dioscin down-regulated protein expression of Bcl-2, Bcl-xl, up-regulated expression of Bak, Bax, Bid and cleaved poly (ADP-ribose) polymerase. Also, oxygen stress induced S-phase arrest of cancer cells by way of regulating expression of DNA Topo I, p53, CDK2 and Cyclin A and caused DNA damage. In a rat allograft model, dioscin significantly inhibited tumor size and extended the life cycle of the rats. In conclusion, dioscin shows noteworthy anti-cancer activity on glioblastoma cells by promoting ROS accumulation, inducing DNA damage and activating mitochondrial signal pathways. Ultimately, we believe dioscin has promise as a new therapy for the treatment of glioblastoma.

  9. Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway.

    PubMed

    Liu, Chan-Min; Zheng, Gui-Hong; Ming, Qing-Lei; Chao, Cheng; Sun, Jian-Mei

    2013-02-06

    Sesamin (Ses), one of the major lignans in sesame seeds and oil, has been reported to have many benefits and medicinal properties. However, its protective effects against nickel (Ni)-induced injury in liver have not been clarified. The aim of the present study was to investigate the effects of sesamin on hepatic oxidative DNA injury and apoptosis in mice exposed to nickel. Kunming mice were exposed to nickel sulfate with or without sesamin coadministration for 20 days. The data showed that sesamin significantly prevented nickel-induced hepatotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of liver damage (serum aminotransferase activities) and histopathological analysis. Moreover, nickel-induced profound elevation of reactive oxygen species (ROS) production and oxidative stress, as evidenced by an increase of the lipid peroxidation level and depletion of the intracellular reduced glutathione (GSH) level in liver, were suppressed by treatment with sesamin. Sesamin also restored the activities of antioxidant enzymes (T-SOD, CAT, and GPx) and decreased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in nickel-treated mice. Furthermore, a TUNEL assay showed that nickel-induced apoptosis in mouse liver was significantly inhibited by sesamin. Exploration of the underlying mechanisms of sesamin action revealed that activities of caspase-3 were markedly inhibited by the treatment of sesamin in the liver of nickel-treated mice. Sesamin increased expression levels of phosphoinositide-3-kinase (PI3K) and phosphorylated protein kinase B (PBK/Akt) in liver, which in turn inactivated pro-apoptotic signaling events, restoring the balance between pro- and anti-apoptotic Bcl-2 proteins in the liver of nickel-treated mice. In conclusion, these results suggested that the inhibition of nickel-induced apoptosis by sesamin is due at least in part to its antioxidant activity and its ability to modulate the PI3K-Akt signaling pathway.

  10. Decreased Expression of Inhibitor of DNA-binding (Id) Proteins and Vascular Endothelial Growth Factor and Increased Apoptosis in Ovarian Aging.

    PubMed

    Park, Min Jung; Park, Sea Hee; Moon, Sung Eun; Koo, Ja Seong; Moon, Hwa Sook; Joo, Bo Sun

    2013-03-01

    This study examined the expression of inhibitor of DNA-binding (Id) proteins and vascular endothelial growth factor (VEGF) in the ovary according to female age using a mice model as the first step in investigating the potential role of Ids and VEGF in ovarian aging. C57BL inbred female mice of three age groups (6-9, 14-16, and 23-26 weeks) were injected with 5 IU pregnant mare's serum gonadotropin (PMSG) in order to synchronize the estrus cycle. After 48 h, ovarian expression of Ids and VEGF was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. Ovarian apoptosis was examined by ovarian expression of Bcl-2 and Bcl-xL. Expression of Id-1 and VEGF was decreased with advancing female age, but not Id-2, Id-3, and Id-4. In particular, their expressions were significantly decreased in aged mice of 23-26 weeks compared with the young mice of 6-9 weeks (p < 0.05). In contrast, ovarian apoptosis was greatly increased in the aged mice compared to the young mice. This result suggests that Id-1 may have an implicated role in ovarian aging by associating with VEGF.

  11. Flavonoid-enriched apple fraction AF4 induces cell cycle arrest, DNA topoisomerase II inhibition, and apoptosis in human liver cancer HepG2 cells.

    PubMed

    Sudan, Sudhanshu; Rupasinghe, H P Vasantha

    2014-01-01

    Apples are a major source of dietary phytochemicals such as flavonoids in the Western diet. Here we report anticancer properties and possible mechanism of action of apple flavonoid-enriched fraction (AF4) isolated from the peels of Northern Spy apples in human hepatocellular carcinoma cells, HepG2. Treatment with AF4 induced cell growth inhibition in HepG2 cells in time- and dose-dependent manner. Concentration of 50 μg/ml (50 μg total monomeric polyphenols/ml) AF4 was sufficient to induce a significant reduction in cell viability within 6 h of treatment (92%, P < 0.05) but had very low toxicity (minimum 4% to maximum 16%) on primary liver and lung cells, which was significantly lower than currently prescribed chemotherapy drug Sorafenib (minimum 29% to maximum 49%, P < 0.05). AF4 induced apoptosis in HepG2 cells within 6 h of treatment via activation of caspase-3. Cell cycle analysis via flow-cytometer showed that AF4 induced G2/M phase arrest. Further, results showed that AF4 acts as a strong DNA topoisomerase II catalytic inhibitor, which may be a plausible reason to drive the cells to apoptosis. Overall, our data suggests that AF4 possesses a significantly stronger antiproliferative and specific action than Sorafenib in vitro and is a potential natural chemotherapy agent for treatment of liver cancer.

  12. Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity.

    PubMed

    Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Ramaswamy, Babu Rajendran; Akbarsha, Mohammad Abdulkader

    2017-05-01

    The mechanisms underlying cobalt toxicity in aquatic species in general and cnidarians in particular remain poorly understood. Herein we investigated cobalt toxicity in a Hydra model from morphological, histological, developmental, and molecular biological perspectives. Hydra, exposed to cobalt (0-60 mg/L), were altered in morphology, histology, and regeneration. Exposure to standardized sublethal doses of cobalt impaired feeding by affecting nematocytes, which in turn affected reproduction. At the cellular level, excessive ROS generation, as the principal mechanism of action, primarily occurred in the lysosomes, which was accompanied by the upregulation of expression of the antioxidant genes SOD, GST, GPx, and G6PD. The number of Hsp70 and FoxO transcripts also increased. Interestingly, the upregulations were higher in the 24-h than in the 48-h time-point group, indicating that ROS overwhelmed the cellular defense mechanisms at the latter time-point. Comet assay revealed DNA damage. Cell cycle analysis indicated the induction of apoptosis accompanied or not by cell cycle arrest. Immunoblot analyses revealed that cobalt treatment triggered mitochondria-mediated apoptosis as inferred from the modulation of the key proteins Bax, Bcl-2, and caspase-3. From this data, we suggest the use of Hydra as a model organism for the risk assessment of heavy metal pollution in aquatic ecosystems.

  13. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    SciTech Connect

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R.

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  14. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice.

    PubMed

    Yang, Hsin-Ling; Korivi, Mallikarjuna; Chen, Cheng-Hsien; Peng, Wei-Jung; Chen, Chee-Shan; Li, Mei-Ling; Hsu, Li-Sung; Liao, Jiunn-Wang; Hseu, You-Cheng

    2017-04-03

    Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases.

  15. Generation of reactive oxygen species by polyenylpyrroles derivatives causes DNA damage leading to G2/M arrest and apoptosis in human oral squamous cell carcinoma cells.

    PubMed

    Hua, Kuo-Feng; Liao, Pei-Chun; Fang, Zhanxiong; Yang, Feng-Ling; Yang, Yu-Liang; Chen, Yi-Lin; Chiu, Yi-Chich; Liu, May-Lan; Lam, Yulin; Wu, Shih-Hsiung

    2013-01-01

    Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study we have investigated the efficacy and associated mechanisms of polyenylpyrroles and their analogs in both in vitro cell culture and in vivo nude mice xenografts. Auxarconjugatin B (compound 1a) resulted in cell cycle arrest in the G2/M phase and caspase-dependent apoptosis in OEC-M1 and HSC-3 cells by activating DNA damage and mitochondria dysfunction through the loss of mitochondrial membrane potential, release of cytochrome c, increase in B-cell lymphoma-2-associated X protein level, and decrease in B-cell lymphoma-2 level. Compound 1a-induced generation of intracellular reactive oxygen species through cytochrome P450 1A1 was identified as a major mechanism of its effect for DNA damage, mitochondria dysfunction and apoptosis, which was reversed by antioxidant N-acetylcysteine as well as cytochrome P450 1A1 inhibitor and specific siRNA. Furthermore, compound 1a-treated nude mice showed a reduction in the OEC-M1 xenograft tumor growth and an increase in the caspase-3 activation in xenograft tissue. These results provide promising insights as to how compound 1a mediates cytotoxicity and may prove to be a molecular rationale for its translation into a potential therapeutic against OSCC.

  16. FLOW CYTOMETRIC DETECTION OF SUBHAPLOID NUCLEI IN HUMAN SPERM AS A MEASURE OF DNA FRAGMENTATION AND APOPTOSIS.

    PubMed

    Gröbner, S; Franz, M; Hoberg, U; Wetzka, B; Schweizer, T

    2015-01-01

    The use of assisted reproductive technologies (ARTs) is increasing worldwide. In order to predict the rate of pregnancy after ART the DNA fragmentation index (DFI) of ejaculated spermatocytes may be a better marker than conventional semen quality parameters. Spermatocytes with fragmented DNA are associated with apoptotic stages and are characterized by a low DNA content. The subhaploid nuclei of DNA-damaged spermatocytes can be easily detected by flow cytometry. We here analyzed the percentage of subhaploid nuclei of semen samples from 163 patients aged 26 to 74 years who consulted one of the ten centres for reproductive medicine which routinely send sperm samples to our laboratory in order to determine special sperm parameters. The percentage of subhaploid nuclei indicating the DFI of spermatocytes did not correlate with age and sperm volume, but inversely correlated with sperm concentration and the percentage of motile spermatocytes. This is in concordance with previous studies which demonstrated that DNA damage of spermatozoa correlates with conventional semen quality parameters. Since DNA-damaged spermatocytes are associated with an impaired outcome of assisted conception technologies, this method could help to monitor sperm quality of subfertile men after measures to increase sperm quality and to improve selection criteria of cryopreserved sperm samples in assisted reproduction medicine.

  17. The chemopreventive activity of the histone deacetylase inhibitor tributyrin in colon carcinogenesis involves the induction of apoptosis and reduction of DNA damage

    SciTech Connect

    Heidor, Renato; Furtado, Kelly Silva; Ortega, Juliana Festa; Oliveira, Tiago Franco de; Tavares, Paulo Eduardo Latorre Martins; Vieira, Alessandra; Miranda, Mayara Lilian Paulino; Purgatto, Eduardo; Moreno, Fernando Salvador

    2014-04-15

    The chemopreventive activity of the histone deacetylase inhibitor (HDACi) tributyrin (TB), a prodrug of butyric acid (BA), was evaluated in a rat model of colon carcinogenesis. The animals were treated with TB (TB group: 200 mg/100 g of body weight, b.w.) or maltodextrin (MD isocaloric control group: 300 mg/100 g b.w.) daily for 9 consecutive weeks. In the 3rd and 4th weeks of treatment, the rats in the TB and MD groups were given DMH (40 mg/kg b.w.) twice a week. After 9 weeks, the animals were euthanized, and the distal colon was examined. Compared with the control group (MD group), TB treatment reduced the total number of aberrant crypt foci (ACF; p < 0.05) as well as the ACF with ≥ 4 crypts (p < 0.05), which are considered more aggressive, but not inhibited the formation of DMH-induced O6-methyldeoxyguanosine DNA adducts. The TB group also showed a higher apoptotic index (p < 0.05) and reduced DNA damage (p < 0.05) compared with MD group. TB acted as a HDACi, as rats treated with the prodrug of BA had higher levels of histone H3K9 acetylation compared with the MD group (p < 0.05). TB administration resulted in increased colonic tissue concentrations of BA (p < 0.05) compared with the control animals. These results suggest that TB can be considered a promising chemopreventive agent for colon carcinogenesis because it reduced the number of ACF, including those that were more aggressive. Induction of apoptosis and reduction of DNA damage are cellular mechanisms that appear to be involved in the chemopreventive activity of TB. - Highlights: • Tributyrin is a chemopreventive agent for rat colon aberrant crypt foci. • Tributyrin increased apoptosis in an experimental rat colon carcinogenesis model. • Tributyrin treatment in a rat colon carcinogenesis model decreased DNA damage. • Tributyrin treatment induced H3K9 acetylation in a rat colon carcinogenesis model.

  18. Effects of Cinnamon (C. zeylanicum) Bark Oil Against Taxanes-Induced Damages in Sperm Quality, Testicular and Epididymal Oxidant/Antioxidant Balance, Testicular Apoptosis, and Sperm DNA Integrity.

    PubMed

    Sariözkan, Serpil; Türk, Gaffari; Güvenç, Mehmet; Yüce, Abdurrauf; Özdamar, Saim; Cantürk, Fazile; Yay, Arzu Hanım

    2016-01-01

    The aim of this study was to investigate whether cinnamon bark oil (CBO) has protective effect on taxanes-induced adverse changes in sperm quality, testicular and epididymal oxidant/antioxidant balance, testicular apoptosis, and sperm DNA integrity. For this purpose, 88 adult male rats were equally divided into 8 groups: control, CBO, docetaxel (DTX), paclitaxel (PTX), DTX+PTX, DTX+CBO, PTX+CBO, and DTX+PTX+CBO. CBO was given by gavage daily for 10 weeks at the dose of 100 mg/kg. DTX and PTX were administered by intraperitoneal injection at the doses of 5 and 4 mg/kg/week, respectively, for 10 weeks. DTX+PTX and DTX+PTX+CBO groups were treated with DTX during first 5 weeks and PTX during next 5 weeks. DTX, PTX, and their mixed administrations caused significant decreases in absolute and relative weights of all reproductive organs, testosterone level, sperm motility, concentration, glutathione level, and catalase activity in testicular and epididymal tissues. They also significantly increased abnormal sperm rate, testicular and epididymal malondialdehyde level, apoptotic germ cell number, and sperm DNA fragmentation and significantly damaged the histological structure of testes. CBO consumption by DTX-, PTX-, and DTX+PTX-treated rats provided significant ameliorations in decreased relative weights of reproductive organs, decreased testosterone, decreased sperm quality, imbalanced oxidant/antioxidant system, increased apoptotic germ cell number, rate of sperm with fragmented DNA, and severity of testicular histopathological lesions induced by taxanes. In conclusion, taxanes cause impairments in sperm quality, testicular and epididymal oxidant/antioxidant balance, testicular histopathological structure, and sperm DNA integrity, and long-term CBO consumption protects male reproductive system of rats.

  19. DNA sensor model based on a carbon nanotube network in the degenerate limit

    NASA Astrophysics Data System (ADS)

    Abadi, H. Karimi Feiz; Webb, J. F.; Ahmadi, M. T.; Rahmani, M.; Saeidmanesh, M.; Khalid, M.; Ismail, R.

    2012-11-01

    An analytical model of a possible DNA sensor based on a carbon nanotube network that functions as a selective detector of DNA molecules is presented. The ability to implement label-free electronic detection using a DNA sensor based on a carbon nanotube network constitutes an important step towards low-cost, highly sensitive, simple and accurate molecular diagnostics. In particular, there is an urgent need for a simple method of detection of DNA molecules as this will provided a new and efficient way to diagnosis genetic or pathogenic diseases. Bio-compatibility and high sensitivity towards environmental perturbations make graphene nanomaterials a good choice for a sensing layer in an electronic DNA sensor. In this study, a conductance model of a DNA sensor based on a carbon nanotube network is suggested and the performance of the model is evaluated by calculating current-voltage characteristics.

  20. How many novel eukaryotic 'kingdoms'? Pitfalls and limitations of environmental DNA surveys

    PubMed Central

    Berney, Cédric; Fahrni, José; Pawlowski, Jan

    2004-01-01

    Background Over the past few years, the use of molecular techniques to detect cultivation-independent, eukaryotic diversity has proven to be a powerful approach. Based on small-subunit ribosomal RNA (SSU rRNA) gene analyses, these studies have revealed the existence of an unexpected variety of new phylotypes. Some of them represent novel diversity in known eukaryotic groups, mainly stramenopiles and alveolates. Others do not seem to be related to any molecularly described lineage, and have been proposed to represent novel eukaryotic kingdoms. In order to review the evolutionary importance of this novel high-level eukaryotic diversity critically, and to test the potential technical and analytical pitfalls and limitations of eukaryotic environmental DNA surveys (EES), we analysed 484 environmental SSU rRNA gene sequences, including 81 new sequences from sediments of the small river, the Seymaz (Geneva, Switzerland). Results Based on a detailed screening of an exhaustive alignment of eukaryotic SSU rRNA gene sequences and the phylogenetic re-analysis of previously published environmental sequences using Bayesian methods, our results suggest that the number of novel higher-level taxa revealed by previously published EES was overestimated. Three main sources of errors are responsible for this situation: (1) the presence of undetected chimeric sequences; (2) the misplacement of several fast-evolving sequences; and (3) the incomplete sampling of described, but yet unsequenced eukaryotes. Additionally, EES give a biased view of the diversity present in a given biotope because of the difficult amplification of SSU rRNA genes in some taxonomic groups. Conclusions Environmental DNA surveys undoubtedly contribute to reveal many novel eukaryotic lineages, but there is no clear evidence for a spectacular increase of the diversity at the kingdom level. After re-analysis of previously published data, we found only five candidate lineages of possible novel high-level eukaryotic

  1. Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: efforts to limit DNA damage by particle surface modification

    NASA Astrophysics Data System (ADS)

    Serpone, Nick; Salinaro, Angela; Emeline, A.

    2001-06-01

    Sunlight can have deleterious effects on humans: causes sunburns and is the principal cause of skin cancers. Usage of TiO2 (and ZnO) in sunscreen lotions, widely used as UVA/UVB blockers, and intended to prevent sunburns and to protect consumers from skin cancers (carcinomas and melanomas) is examined. Although used to mineralize many undesired organic pollutants, TiO2 is considered to be a safe physical sunscreen agent because it reflects and scatters both UVB (290-320 nm) and UVA (320-400 nm) sunlight; however, it also absorbs substantial UV radiation which, in aqueous media, yields hydroxyl radial ((DOT)OH) species. These species cause substantial damage to DNA (J. Photochem.Photobio.A:Chem.,111(1997)205). Most importantly, sunlight-illuminated sunscreen TiO2 particles catalyze DNA damage both in vitro and in human cells (FEBS Letters, 418 (1997)87). These results raise concerns on the overall effects of sunscreens and raise the question on the suitability of photoactive TiO2 as a sunscreen component without further studies. The photocatalytically active nature of these metal oxides necessitates some changes since even the TiO2 specimens currently used in suncreams cause significant DNA strand breaks.

  2. Limitations and recommendations for successful DNA extraction from forensic soil samples: a review.

    PubMed

    Young, Jennifer M; Rawlence, Nicolas J; Weyrich, Laura S; Cooper, Alan

    2014-05-01

    Soil is commonly used in forensic casework to provide discriminatory power to link a suspect to a crime scene. Standard analyses examine the intrinsic properties of soils, including mineralogy, geophysics, texture and colour; however, soils can also support a vast amount of organisms, which can be examined using DNA fingerprinting techniques. Many previous genetic analyses have relied on patterns of fragment length variation produced by amplification of unidentified taxa in the soil extract. In contrast, the development of advanced DNA sequencing technologies now provides the ability to generate a detailed picture of soil microbial communities and the taxa present, allowing for improved discrimination between samples. However, DNA must be efficiently extracted from the complex soil matrix to achieve accurate and reproducible DNA sequencing results, and extraction efficacy is highly dependent on the soil type and method used. As a result, a consideration of soil properties is important when estimating the likelihood of successful DNA extraction. This would include a basic understanding of soil components, their interactions with DNA molecules and the factors that affect such interactions. This review highlights some important considerations required prior to DNA extraction and discusses the use of common chemical reagents in soil DNA extraction protocols to achieve maximum efficacy. Together, the information presented here is designed to facilitate informed decisions about the most appropriate sampling and extraction methodology, relevant both to the soil type and the details of a specific forensic case, to ensure sufficient DNA yield and enable successful analysis.

  3. Efimov-like phase of a three-stranded DNA and the renormalization-group limit cycle

    NASA Astrophysics Data System (ADS)

    Pal, Tanmoy; Sadhukhan, Poulomi; Bhattacharjee, Somendra M.

    2015-04-01

    A three-stranded DNA with short range base pairings only is known to exhibit a classical analog of the quantum Efimov effect, viz., a three-chain bound state at the two-chain melting point where no two are bound. By using a nonperturbative renormalization-group method for a rigid duplex DNA and a flexible third strand, with base pairings and strand exchange, we show that the Efimov-DNA is associated with a limit cycle type behavior of the flow of an effective three-chain interaction. The analysis also shows that thermally generated bubbles play an essential role in producing the effect. A toy model for the flow equations shows the limit cycle in an extended three-dimensional parameter space of the two-chain coupling and a complex three-chain interaction.

  4. Approaching the limit: can one DNA strand assemble into defined nanostructures?

    PubMed

    Tian, Cheng; Zhang, Chuan; Li, Xiang; Hao, Chenhui; Ye, Shuaijiang; Mao, Chengde

    2014-05-27

    This article reports a simple, symmetrical DNA building block (motif): a bulged DNA duplex consisting of two short, identical strands. Multiple copies of the same motif can interact with each other through T junctions. The resulting superstructures include predesigned 1D and 2D arrays that have been visualized by atomic force microscopy (AFM).

  5. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.

  6. Limitations on geminivirus genome size imposed by plasmodesmata and virus-encoded movement protein: insights into DNA trafficking.

    PubMed

    Gilbertson, Robert L; Sudarshana, Mysore; Jiang, Hao; Rojas, Maria R; Lucas, William J

    2003-11-01

    Animals and plants evolved systems to permit non-cell-autonomous trafficking of RNA, whereas DNA plays a cell-autonomous role. In plants, plasmodesmata serve as the conduit for this phenomenon, and viruses have evolved to use this pathway for the spread of infectious nucleic acids. In this study, a plant DNA virus was used to explore the constraints imposed on the movement of DNA through this endogenous RNA trafficking pathway. The combined properties of the geminivirus-encoded movement protein and plasmodesmata were shown to impose a strict limitation on the size of the viral genome at the level of cell-to-cell movement. Size-increased viral genome components underwent homologous and nonhomologous recombination to overcome this strict limitation. Our results provide insights into the genetic mechanisms that underlie viral evolution and provide a likely explanation for why relatively few types of plant DNA viruses have evolved: they would have had to overcome the constraints imposed by an endogenous system operating to ensure that DNA acts in a cell-autonomous manner.

  7. Limitations on Geminivirus Genome Size Imposed by Plasmodesmata and Virus-Encoded Movement Protein: Insights into DNA Trafficking

    PubMed Central

    Gilbertson, Robert L.; Sudarshana, Mysore; Jiang, Hao; Rojas, Maria R.; Lucas, William J.

    2003-01-01

    Animals and plants evolved systems to permit non-cell-autonomous trafficking of RNA, whereas DNA plays a cell-autonomous role. In plants, plasmodesmata serve as the conduit for this phenomenon, and viruses have evolved to use this pathway for the spread of infectious nucleic acids. In this study, a plant DNA virus was used to explore the constraints imposed on the movement of DNA through this endogenous RNA trafficking pathway. The combined properties of the geminivirus-encoded movement protein and plasmodesmata were shown to impose a strict limitation on the size of the viral genome at the level of cell-to-cell movement. Size-increased viral genome components underwent homologous and nonhomologous recombination to overcome this strict limitation. Our results provide insights into the genetic mechanisms that underlie viral evolution and provide a likely explanation for why relatively few types of plant DNA viruses have evolved: they would have had to overcome the constraints imposed by an endogenous system operating to ensure that DNA acts in a cell-autonomous manner. PMID:14555695

  8. Apoptosis in metanephric development

    PubMed Central

    1992-01-01

    During metanephric development, non-polarized mesenchymal cells are induced to form the epithelial structures of the nephron following interaction with extracellular matrix proteins and factors produced by the inducing tissue, ureteric bud. This induction can occur in a transfilter organ culture system where it can also be produced by heterologous cells such as the embryonic spinal cord. We found that when embryonic mesenchyme was induced in vitro and in vivo, many of the cells surrounding the new epithelium showed morphological evidence of programmed cell death (apoptosis) such as condensed nuclei, fragmented cytoplasm, and cell shrinking. A biochemical correlate of apoptosis is the transcriptional activation of a calcium-sensitive endonuclease. Indeed, DNA isolated from uninduced mesenchyme showed progressive degradation, a process that was prevented by treatment with actinomycin- D or cycloheximide and by buffering intracellular calcium. These results demonstrate that the metanephric mesenchyme is programmed for apoptosis. Incubation of mesenchyme with a heterologous inducer, embryonic spinal cord prevented this DNA degradation. To investigate the mechanism by which inducers prevented apoptosis we tested the effects of protein kinase C modulators on this process. Phorbol esters mimicked the effects of the inducer and staurosporine, an inhibitor of this protein kinase, prevented the effect of the inducer. EGF also prevented DNA degradation but did not lead to differentiation. These results demonstrate that conversion of mesenchyme to epithelial requires at least two steps, rescue of the mesenchyme from apoptosis and induction of differentiation. PMID:1447305

  9. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells.

    PubMed

    Kiziltepe, Tanyel; Hideshima, Teru; Ishitsuka, Kenji; Ocio, Enrique M; Raje, Noopur; Catley, Laurence; Li, Chun-Qi; Trudel, Laura J; Yasui, Hiroshi; Vallet, Sonia; Kutok, Jeffery L; Chauhan, Dharminder; Mitsiades, Constantine S; Saavedra, Joseph E; Wogan, Gerald N; Keefer, Larry K; Shami, Paul J; Anderson, Kenneth C

    2007-07-15

    Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO(*)) following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient-derived MM cells. JS-K induced apoptosis in MM cells, which was associated with PARP, caspase-8, and caspase-9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; and Bcl-2 phosphorylation, as well as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (EndoG) release. Moreover, JS-K overcame the survival advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K-induced cytotoxicity was mediated via NO(*) in MM cells. Furthermore, JS-K induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated c-Jun NH(2)-terminal kinase (JNK) in MM cells; conversely, inhibition of JNK markedly decreased JS-K-induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K-induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in a human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.

  10. Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation.

    PubMed

    Pariente, Roberto; Pariente, José A; Rodríguez, Ana B; Espino, Javier

    2016-01-01

    Melatonin has antitumor activity via several mechanisms including its antiproliferative and pro-apoptotic effects as well as its potent antioxidant actions, although recent evidence has indicated that melatonin may perform pro-oxidant actions in tumor cells. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs. This study was intended to evaluate the in vitro effect of melatonin on the cytotoxic and pro-apoptotic actions of various chemotherapeutic agents in cervical cancer HeLa cells. Herein, we found that both melatonin and three of the chemotherapeutic drugs tested, namely cisplatin (CIS), 5-fluorouracil (5-FU), and doxorubicin, induced a decrease in HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of such chemotherapeutic agents. Consistently, costimulation of HeLa cells with any chemotherapeutic agent in the presence of melatonin further increased caspase-3 activation, particularly in CIS- and 5-FU-challenged cells. Likewise, concomitant treatments with melatonin and CIS significantly enhanced the ratio of cells entering mitochondrial apoptosis due to reactive oxygen species (ROS) overproduction, substantially augmented the population of apoptotic cells, and markedly enlarged DNA fragmentation compared to the treatments with CIS alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in 5-FU-stimulated HeLa cells, as suggested by slight increments in the percentage of cells stimulated for ROS production and in the proportion of early apoptotic cells compared to the treatments with 5-FU alone. In summary, our findings provided evidence that in vitro melatonin strongly enhances CIS-induced cytotoxicity and apoptosis in HeLa cells and, hence, the indoleamine could be potentially applied to cervical cancer treatment as a powerful synergistic agent.

  11. Sex-Limited Mitochondrial DNA Transmission in the Marine Mussel Mytilus Edulis

    PubMed Central

    Skibinski, DOF.; Gallagher, C.; Beynon, C. M.

    1994-01-01

    Mitochondrial DNA (mtDNA) was thought to be inherited maternally in animals, although paternal leakage has been reported in mice and Drosophila. Recently, direct evidence of extensive paternal inheritance of mtDNA has been found in the marine mussel Mytilus. We give evidence that whereas female mussels are homoplasmic for a genome that is transmitted to eggs, male mussels are heteroplasmic for this genome and for a second genome that is transmitted preferentially to sperm. The results provide support for the existence of separate male and female routes of mtDNA inheritance in mussels. The two genomes show a base sequence divergence exceeding 20% at three protein coding genes, consistent with long term maintenance of the heteroplasmic state. We propose that the two genomes differ in fitness in males and females, possibly as a result of interaction with nuclear genes. PMID:7851776

  12. DNA-damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells by 2-hydroxyethyl methacrylate (HEMA).

    PubMed

    Ansteinsson, V; Solhaug, A; Samuelsen, J T; Holme, J A; Dahl, J E

    2011-08-16

    The methacrylate monomer 2-hydroxyethyl methacrylate (HEMA) is commonly used in resin-based dental restorative materials. These materials are cured in situ and HEMA and other monomers have been identified in ambient air during dental surgery. In vitro studies have demonstrated a toxic potential of methacrylates, and concerns have been raised regarding possible health effects due to inhalation. In this study we have investigated the mechanisms of HEMA-induced toxicity in the human lung epithelial cell line BEAS-2B. Depletion of cellular glutathione (GSH) and an increased level of reactive oxygen species (ROS) were seen after 2h of exposure, but the levels were restored to control levels after 12h. After 24h, inhibited cell proliferation and apoptotic cell death were found. The results of the Comet assay and the observed phosphorylation of DNA-damage-associated signalling proteins including Chk2, H2AX, and p53 suggest that the toxicity of HEMA is mediated by DNA damage. Further, the antioxidant trolox did not counteract the HEMA-induced cell-cycle arrest, which indicates that the DNA damage is of non-oxidative origin.

  13. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  14. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination

    PubMed Central

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C.

    2014-01-01

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved. PMID:25414342

  15. Rad51/Dmc1 paralogs and mediators oppose DNA helicases to limit hybrid DNA formation and promote crossovers during meiotic recombination.

    PubMed

    Lorenz, Alexander; Mehats, Alizée; Osman, Fekret; Whitby, Matthew C

    2014-12-16

    During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.

  16. Ectopic expression of DREF induces DNA synthesis, apoptosis, and unusual morphogenesis in the Drosophila eye imaginal disc: possible interaction with Polycomb and trithorax group proteins.

    PubMed

    Hirose, F; Ohshima, N; Shiraki, M; Inoue, Y H; Taguchi, O; Nishi, Y; Matsukage, A; Yamaguchi, M

    2001-11-01

    The promoters of Drosophila genes encoding DNA replication-related proteins contain transcription regulatory element DRE (5'-TATCGATA) in addition to E2F recognition sites. A specific DRE-binding factor, DREF, positively regulates DRE-containing genes. In addition, it has been reported that DREF can bind to a sequence in the hsp70 scs' chromatin boundary element that is also recognized by boundary element-associated factor, and thus DREF may participate in regulating insulator activity. To examine DREF function in vivo, we established transgenic flies in which ectopic expression of DREF was targeted to the eye imaginal discs. Adult flies expressing DREF exhibited a severe rough eye phenotype. Expression of DREF induced ectopic DNA synthesis in the cells behind the morphogenetic furrow, which are normally postmitotic, and abolished photoreceptor specifications of R1, R6, and R7. Furthermore, DREF expression caused apoptosis in the imaginal disc cells in the region where commitment to R1/R6 cells takes place, suggesting that failure of differentiation of R1/R6 photoreceptor cells might cause apoptosis. The DREF-induced rough eye phenotype was suppressed by a half-dose reduction of the E2F gene, one of the genes regulated by DREF, indicating that the DREF overexpression phenotype is useful to screen for modifiers of DREF activity. Among Polycomb/trithorax group genes, we found that a half-dose reduction of some of the trithorax group genes involved in determining chromatin structure or chromatin remodeling (brahma, moira, and osa) significantly suppressed and that reduction of Distal-less enhanced the DREF-induced rough eye phenotype. The results suggest a possibility that DREF activity might be regulated by protein complexes that play a role in modulating chromatin structure. Genetic crosses of transgenic flies expressing DREF to a collection of Drosophila deficiency stocks allowed us to identify several genomic regions, deletions of which caused enhancement or

  17. DNA methyltransferase inhibition may limit cancer cell growth by disrupting ribosome biogenesis.

    PubMed

    Moss, Tom

    2011-02-01

    "Mutations" in the pattern of CpG methylation imprinting of the human genome have been correlated with a number of diseases including cancer. In particular, aberrant imprinting of tumor suppressor genes by gain of CpG methylation has been observed in many cancers and thus represents an important alternative pathway to gene "mutation" and tumor progression. Inhibitors of DNA methylation display therapeutic effects in the treatment of certain cancers, and it has been assumed these effects are due to the reversal of "mutant" gene imprinting. However, significant reactivation of imprinted tumor suppressor genes is rarely observed in vivo following treatment with DNA methylation inhibitors. A recent study revealed an unexpected requirement for CpG methylation in the synthesis and assembly of the ribosome, an essential function for cell growth and proliferation. As such, the data provide an unforeseen explanation of the action of DNA methylation inhibitors in restricting cancer cell growth.

  18. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph- acute lymphoblastic leukemia cells.

    PubMed

    Scuto, Anna; Kirschbaum, Mark; Kowolik, Claudia; Kretzner, Leo; Juhasz, Agnes; Atadja, Peter; Pullarkat, Vinod; Bhatia, Ravi; Forman, Stephen; Yen, Yun; Jove, Richard

    2008-05-15

    We investigated the mechanism of action of LBH589, a novel broad-spectrum HDAC inhibitor belonging to the hydroxamate class, in Philadelphia chromosome-negative (Ph(-)) acute lymphoblastic leukemia (ALL). Two model human Ph(-) ALL cell lines (T-cell MOLT-4 and pre-B-cell Reh) were treated with LBH589 and evaluated for biologic and gene expression responses. Low nanomolar concentrations (IC(50): 5-20 nM) of LBH589 induced cell-cycle arrest, apoptosis, and histone (H3K9 and H4K8) hyperacetylation. LBH589 treatment increased mRNA levels of proapoptosis, growth arrest, and DNA damage repair genes including FANCG, FOXO3A, GADD45A, GADD45B, and GADD45G. The most dramatically expressed gene (up to 45-fold induction) observed after treatment with LBH589 is GADD45G. LBH589 treatment was associated with increased histone acetylation at the GADD45G promoter and phosphorylation of histone H2A.X. Furthermore, treatment with LBH589 was active against cultured primary Ph(-) ALL cells, including those from a relapsed patient, inducing loss of cell viability (up to 70%) and induction of GADD45G mRNA expression (up to 35-fold). Thus, LBH589 possesses potent growth inhibitory activity against including Ph(-) ALL cells associated with up-regulation of genes critical for DNA damage response and growth arrest. These findings provide a rationale for exploring the clinical activity of LBH589 in the treatment of patients with Ph(-) ALL.

  19. Benzo[a]pyrene induced p53-mediated cell cycle arrest, DNA repair, and apoptosis pathways in Chinese rare minnow (Gobiocypris rarus).

    PubMed

    Yuan, Lilai; Lv, Biping; Zha, Jinmiao; Wang, Zijian

    2017-03-01

    The p53 pathways play an important role in carcinogenesis. In mammals, p53 and p53 target genes have been extensively studied, but little is known about their functions and regulation in fish. In this study, the cDNA fragments of p53 network genes, including p53, p21, mdm2, gadd45α, gadd45β, igfbp-3, and bax, were cloned from Chinese rare minnow (Gobiocypris rarus). These genes displayed high amino acid sequence identities with their zebrafish orthologs. The mRNA levels of p53 network genes and pathological changes in the liver were determined after adult rare minnow were exposed to 0.4, 2, and 10 µg/L of benzo[a]pyrene (BaP) for 28 days. The results showed that p53, p21, mdm2, gadd45α, and bax mRNA expressions in the livers from males and females were significantly upregulated compared with those of the controls (p < 0.05), but gadd45β and igfbp-3 expression was not significantly changed. Microphotographs revealed enlargement of the cell nuclei and cellular degeneration in males, while atrophy and vacuolization of hepatocytes were observed in females (10 µg/L). These results suggested that BaP induced liver DNA repair and apoptosis pathways and caused adverse pathological changes in rare minnow. The strongly responsive p53 network genes in the livers suggest that rare minnow is suitable as an experimental fish to screen environmental carcinogens. In addition, the p53 network genes in rare minnow could feasibly be used to identify the mechanism of environmental carcinogenesis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 979-988, 2017.

  20. Anti-proliferative effect of methanolic extract of Gracilaria tenuistipitata on oral cancer cells involves apoptosis, DNA damage, and oxidative stress

    PubMed Central

    2012-01-01

    Background Methanolic extracts of Gracilaria tenuistipitata (MEGT) were obtained from the edible red algae. Previously, we found that water extract of G. tenuistipitata was able to modulate oxidative stress-induced DNA damage and its related cellular responses. Methods In this study, the methanol extraction product MEGT was used to evaluate the cell growth inhibition in oral cancer cells and its possible mechanism was investigated. Results The cell viability of MEGT treated Ca9-22 oral cancer cell line was significantly decreased in a dose–response manner (p < 0.05). The sub-G1 population and annexin V intensity of MEGT-treated Ca9-22 cancer cells were significantly increased in a dose–response manner (p < 0.0005 and p < 0.001, respectively). The γH2AX intensities of MEGT-treated Ca9-22 cancer cells were significantly increased in a dose–response manner (p < 0.05). The reactive oxygen species (ROS) and glutathione (GSH)-positive intensities of MEGT-treated Ca9-22 oral cancer cells were significantly increased and decreased, respectively, in a dose–response manner (p < 0.05). The DiOC2(3) intensity for mitochondrial membrane potential (MMP) of MEGT-treated Ca9-22 cancer cells was significantly decreased in a dose–response manner (p < 0.05). Conclusions These results indicated that MEGT had apoptosis-based cytotoxicity against oral cancer cells through the DNA damage, ROS induction, and mitochondrial depolarization. Therefore, MEGT derived from the edible algae may have potential therapeutic effects against oral squamous cell carcinoma (OSCC). PMID:22937998

  1. Trichodermin induces c-Jun N-terminal kinase-dependent apoptosis caused by mitotic arrest and DNA damage in human p53-mutated pancreatic cancer cells and xenografts.

    PubMed

    Chien, Ming-Hsien; Lee, Tzong-Huei; Lee, Wei-Jiunn; Yeh, Yen-Hsiu; Li, Tsai-Kun; Wang, Po-Chuan; Chen, Jih-Jung; Chow, Jyh-Ming; Lin, Yung-Wei; Hsiao, Michael; Wang, Shih-Wei; Hua, Kuo-Tai

    2017-03-01

    Pancreatic cancer is an aggressive malignancy, which generally responds poorly to chemotherapy. In this study, trichodermin, an endophytic fungal metabolite from Nalanthamala psidii, was identified as a potent and selective antitumor agent in human pancreatic cancer. Trichodermin exhibited antiproliferative effects against pancreatic cancer cells, especially p53-mutated cells (MIA PaCa-2 and BxPC-3) rather than normal pancreatic epithelial cells. We found that trichodermin induced caspase-dependent and mitochondrial intrinsic apoptosis. Trichodermin also increased apoptosis through mitotic arrest by activating Cdc2/cyclin B1 complex activity. Moreover, trichodermin promoted the activation of c-Jun N-terminal kinase (JNK), and inhibition of JNK by its inhibitor, shRNA, or siRNA significantly reversed trichodermin-mediated caspase-dependent apoptosis. Trichodermin triggered DNA damage stress to activate p53 function for executing apoptosis in p53-mutated cells. Importantly, we demonstrated that trichodermin with efficacy similar to gemcitabine, profoundly suppressed tumor growth through inducing intratumoral DNA damage and JNK activation in orthotopic pancreatic cancer model. Based on these findings, trichodermin is a potential therapeutic agent worthy of further development into a clinical trial candidate for treating cancer, especially the mutant p53 pancreatic cancer.

  2. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity

    PubMed Central

    Wu, Deng-Pan; Lin, Tian-Yu; Lv, Jin-Yan; Chen, Wen-Ya; Bai, Li-Ru; Zhou, Yan

    2017-01-01

    Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity. PMID:28250789

  3. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity.

    PubMed

    Wu, Deng-Pan; Lin, Tian-Yu; Lv, Jin-Yan; Chen, Wen-Ya; Bai, Li-Ru; Zhou, Yan; Huang, Jin-Lan; Zhong, Zhen-Guo

    2017-01-01

    Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  4. Fern plant-derived protoapigenone leads to DNA damage, apoptosis, and G(2)/m arrest in lung cancer cell line H1299.

    PubMed

    Chiu, Chien-Chih; Chang, Hsueh-Wei; Chuang, Da-Wei; Chang, Fang-Rong; Chang, Yu-Ching; Cheng, Yu-Shan; Tsai, Ming-Tz; Chen, Wan-Yu; Lee, Su-Shuo; Wang, Chih-Kuang; Chen, Jeff Yi-Fu; Wang, Hui-Min; Chen, Chao-Chieh; Liu, Yin-Chang; Wu, Yang-Chang

    2009-10-01

    Protoapigenone, isolated from the native fern plant Thelypteris torresiana, has anticancer activity against some cancer cells. However, the toxicological mechanism for protoapigenone is still unknown. Here, we investigated the anticancer effect of protoapigenone on human lung cancer cell lines. The comet assay showed that DNA damage induced by protoapigenone is dose-dependent. Trypan blue exclusion showed that the cell killing by protoapigenone is both time and dose dependent. The IC(50) of protoapigenone for 12, 24, and 48 h in H1299 cells is 6.11, 2.74, and 1.49 microM, respectively. Flow cytometry showed cell cycle perturbation such as sub-G(1) accumulation (at 1.57 microM for 48 h and at 3.57 microM for 12 and 24 h) and G(2)/M arrest (at 3.57 microM for 12 and 24 h) for protoapigenone. The sub-G(1) accumulation phenomena in the 3.57 microM for 24 h sample were shown to be apoptosis using Annexin V-immunofluorescence/propidium iodide staining. These results suggest protoapigenone is a potential chemotherapeutic agent for lung cancers.

  5. cDNA microarray analysis of the effect of cantharidin on DNA damage, cell cycle and apoptosis-associated gene expression in NCI-H460 human lung cancer cells in vitro.

    PubMed

    Hsia, Te-Chun; Yu, Chien-Chih; Hsu, Shu-Chun; Tang, Nou-Ying; Lu, Hsu-Feng; Yu, Chun-Shu; Wu, Shin-Hwar; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-07-01

    Cantharidin (CTD) induces cytotoxic effects in different types of human cancer cell; however, to date, there have been no studies on the effects of CTD on gene expression in human lung cancer cells and the potential associated signaling pathways. Therefore, the present study aimed to investigate how CTD affects the expression of key genes and functional pathways of human H460 lung cancer cells using complementary DNA microarray analysis. Human H460 lung cancer cells were cultured for 24 h in the presence or absence of 10 µM CTD; gene expression was then examined using microarray analysis. The results indicated that 8 genes were upregulated > 4-fold, 29 genes were upregulated >3-4-fold and 156 genes were upregulated >2-3-fold. In addition, 1 gene was downregulated >4 fold, 14 genes were downregulated >3-4-fold and 150 genes were downregulated >2-3 fold in H460 cells following exposure to CTD. It was found that CTD affected DNA damage genes, including DNIT3 and GADD45A, which were upregulated 2.26- and 2.60-fold, respectively, as well as DdiT4, which was downregulated 3.14-fold. In addition, the expression of genes associated with the cell cycle progression were altered, including CCND2, CDKL3 and RASA4, which were upregulated 2.72-, 2.19- and 2.72-fold, respectively; however, CDC42EP3 was downregulated 2.16-fold. Furthermore, apoptosis-associated genes were differentially expressed, including CARD6, which was upregulated 3.54-fold. In conclusion, the present study demonstrated that CTD affected the expression of genes associated with DNA damage, cell cycle progression and apoptotic cell death in human lung cancer H460 cells.

  6. UVB-induced inflammatory cytokine release, DNA damage and apoptosis of human oral compared with skin tissue equivalents.

    PubMed

    Breger, Joyce; Baeva, Larissa; Agrawal, Anant; Shindell, Eli; Godar, Dianne E

    2013-01-01

    People can get oral cancers from UV (290-400 nm) exposures. Besides high outdoor UV exposures, high indoor UV exposures to oral tissues can occur when consumers use UV-emitting tanning devices to either tan or whiten their teeth. We compared the carcinogenic risks of skin to oral tissue cells after UVB (290-320 nm) exposures using commercially available 3D-engineered models for human skin (EpiDerm™), gingival (EpiGing™) and oral (EpiOral™) tissues. To compare the relative carcinogenic risks, we investigated the release of cytokines, initial DNA damage in the form of cyclobutane pyrimidine dimers (CPDs), repair of CPDs and apoptotic cell numbers. We measured cytokine release using cytometric beads with flow cytometry and previously developed a fluorescent immunohistochemical assay to quantify simultaneously CPD repair rates and apoptotic cell numbers. We found that interleukin-8 (IL-8) release and the initial CPDs are significantly higher, whereas the CPD repair rates and apoptotic cell numbers are significantly lower for oral compared with skin tissue cells. Thus, the increased release of the inflammatory cytokine IL-8 along with inefficient CPD repair and decreased death rates for oral compared with skin tissue cells suggests that mutations are accumulating in the surviving population of oral cells increasing people's risks for getting oral cancers.

  7. Limited performance of DNA barcoding in a diverse community of tropical butterflies

    PubMed Central

    Elias, Marianne; Hill, Ryan I; Willmott, Keith R; Dasmahapatra, Kanchon K; Brower, Andrew V.Z; Mallet, James; Jiggins, Chris D

    2007-01-01

    DNA ‘barcoding’ relies on a short fragment of mitochondrial DNA to infer identification of specimens. The method depends on genetic diversity being markedly lower within than between species. Closely related species are most likely to share genetic variation in communities where speciation rates are rapid and effective population sizes are large, such that coalescence times are long. We assessed the applicability of DNA barcoding (here the 5′ half of the cytochrome c oxidase I) to a diverse community of butterflies from the upper Amazon, using a group with a well-established morphological taxonomy to serve as a reference. Only 77% of species could be accurately identified using the barcode data, a figure that dropped to 68% in species represented in the analyses by more than one geographical race and at least one congener. The use of additional mitochondrial sequence data hardly improved species identification, while a fragment of a nuclear gene resolved issues in some of the problematic species. We acknowledge the utility of barcodes when morphological characters are ambiguous or unknown, but we also recommend the addition of nuclear sequence data, and caution that species-level identification rates might be lower in the most diverse habitats of our planet. PMID:17785265

  8. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    NASA Astrophysics Data System (ADS)

    Glasgow, Ben J.

    2016-02-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain sub-diffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.

  9. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    PubMed Central

    2016-01-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain subdiffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules. PMID:27307653

  10. DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotoxicity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins

    SciTech Connect

    Wang Huiyan; Yadav, Jagjit S. . E-mail: Jagjit.Yadav@uc.edu

    2006-08-01

    Spore-extracted toxins of the indoor mold Stachybotrys chartarum (SC) caused cytotoxicity (release of lactate dehydrogenase), inhibition of cell proliferation, and cell death in murine alveolar macrophage cell line MH-S in a dose- and time-dependent manner. Apoptotic cell death, confirmed based on morphological changes, DNA ladder formation, and caspase 3/7 activation, was detectable as early as at 3 h during treatment with a toxin concentration of 1 spore equivalent/macrophage and was preceded by DNA damage beginning at 15 min, as evidenced by DNA comet formation in single cell gel electrophoresis assay. The apoptotic dose of SC toxins did not induce detectable nitric oxide and pro-inflammatory cytokines (IL-1{beta}, IL-6, and TNF-{alpha}) but showed exacerbated cytotoxicity in presence of a non-apoptotic dose of the known pro-inflammatory agent LPS (10 ng/ml). Intracellular reduced glutathione (GSH) level showed a significant decrease beginning at 9 h of the toxin treatment whereas oxidized glutathione (GSSG) showed a corresponding significant increase, indicating a delayed onset of oxidative stress in the apoptosis process. The toxin-treated macrophages accumulated p53, an indicator of DNA damage response, and showed activation of the stress-inducible MAP kinases, JNK, and p38, in a time-dependent manner. Chemical blocking of either p38 or p53 inhibited in part the SC toxin-induced apoptosis whereas blocking of JNK did not show any such effect. This study constitutes the first report on induction of DNA damage and associated p53 activation by SC toxins, and demonstrates the involvement of p38- and p53-mediated signaling events in SC toxin-induced apoptosis of alveolar macrophages.

  11. Cationic Pd(II)/Pt(II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: Synthesis, structures,DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis.

    PubMed

    Icsel, Ceyda; Yilmaz, Veysel T; Kaya, Yunus; Durmus, Selvi; Sarimahmut, Mehmet; Buyukgungor, Orhan; Ulukaya, Engin

    2015-11-01

    Four new cationic Pd(II) and Pt(II) 5,5-diethylbarbiturate (barb) complexes, [M(barb)(bpma)]X·H2O [M = Pd(II), X = Cl (1); M = Pt(II), X = NO3(-) (2)] and [M(barb)(terpy)]NO3·0.5H2O [M = Pd(II) (3); M = Pt(II) (4)], where bpma = bis(2-pyridylmethyl)amine and terpy = terpyridine, were synthesized and characterized by elemental analysis, IR, UV–vis, NMR, ESI-MS and X-ray crystallography. The DNA binding properties of the cationic complexes were investigated by spectroscopic titrations, displacement experiments, viscosity, DNA melting and electrophoresis measurements. The results revealed that the complexes effectively bind to FS-DNA (fish sperm DNA) via intercalative/minor groove binding modes with intrinsic binding constants (Kb) in the range of 0.50 × 10(4)–1.67 × 10(5) M(-1). Absorption, emission and synchronous fluorescence measurements showed strong association of the complexes with protein (BSA) through a static mechanism. The mode of interaction of complexes towards DNA and protein was also supported by molecular docking. Complexes 1 and 3 showed significant nuclear uptake in HT-29 cells. In addition, 1 and 3 showed higher inhibition than cisplatin on the growth of MCF-7 and HT-29 cells and induced apoptosis on these cells much more effectively than the rest of the complexes as evidenced by pyknotic nuclear morphology. The levels of caspase-cleaved cytokeratin 18 (M30 antigen) in HT-29 cells treated with 1 and 3 increased in a dose-dependent manner, suggesting apoptosis. Moreover, qRT-PCR experiments showed that 1 and 3 caused significant increases in the expression of TNFRSF10B in HT-29 cells, indicating the initiation of apoptosis via cell surface death receptors.

  12. Anti-lung cancer potential of pure esteric-glycoside condurangogenin A against nonsmall-cell lung cancer cells in vitro via p21/p53 mediated cell cycle modulation and DNA damage-induced apoptosis

    PubMed Central

    Sikdar, Sourav; Mukherjee, Avinaba; Khuda-Bukhsh, Anisur Rahman

    2015-01-01

    Background: Marsdenia condurango (condurango) is a tropical woody vine native to South America. Our earlier study was limited to evaluation of anti-cancer potentials of crude condurango extract and its glycoside-rich components in vitro on lung cancer. Objective: This study aims at evaluating the effect of the single isolated active ingredient condurangogenin A (ConA; C32H42O7) on A549, H522 and H460-nonsmall-cell lung cancer cells. Materials and Methods: ConA was isolated by column chromatography and analyzed by mass spectroscopy, Fourier transform infrared spectroscopy and proton-nuclear magnetic resonance. diphenyltetrazolium bromide assays were conducted on three cell-types using 6%-alcohol as control. Critical studies on cellular morphology, cell-cycle regulation, reactive oxygen species, mitochondrial membrane potential, and DNA-damage were made, and expressions of related signaling markers studied. Results: As IC50 doses of ConA proved to be too high and toxic to both A549 and H522 cells, all experimental studies were carried out on H460 cells with the IC50 dose (32 μg/ml − 24 h). Cellular morphology revealed typical apoptotic features after ConA treatment. At early treatment hours (2 h-12 h), maximum cells were arrested at G0/G1 phase that could be correlated with reduced level of cyclin D1-CDK with p21 up-regulation. At 18 h − 24 h, sub G0/G1 cell population was increased gradually, as revealed from cytochrome-c release and caspase-3 activation, further confirming the apoptosis-inducing ability of ConA at later phases. Gradual increase of TUNEL-positive cells with significant modulation of mitochondria-dependent apoptotic markers at longer time-points would establish apoptosis-induction property of ConA, indicating its potential as a strong candidate for anti-cancer drug formulation. Conclusion: Further studies are warranted against other types of cancer cells and animal models before its possible human use. PMID:26109778

  13. Spaceflight Associated Apoptosis

    NASA Technical Reports Server (NTRS)

    Ichiki, Albert T.; Gibson, Linda A.; Allebban, Zuhair

    1996-01-01

    Lymphoid tissues have been shown to atrophy in rats flown on Russian spaceflights. Histological examination indicated evidence for cell degradation. Lymphoid tissues from rats flown on Spacelab Life Sciences-2 mission were analyzed for apoptosis by evidence of fragmented lymphocytes, which could be engulfed by macrophages, or DNA strand breaks using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Apoptosis was not detected in the thymus and spleen collected inflight or from the synchronous ground rats but was detected in the thymus, spleen and inguinal lymph node of the flight animals on recovery. These results indicate that the apoptosis observed in the lymphatic tissues of the rats on recovery could have been induced by the gravitational stress of reentry, corroborating the findings from the early space-flight observations.

  14. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology.

    PubMed

    Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P

    2010-02-25

    Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments.

  15. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution.

    PubMed

    Ke, Yuwen; Huh, Jae-Wan; Warrington, Ross; Li, Bing; Wu, Nan; Leng, Mei; Zhang, Junmei; Ball, Haydn L; Li, Bing; Yu, Hongtao

    2011-07-08

    Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution.

  16. Tubular cell apoptosis and cidofovir-induced acute renal failure.

    PubMed

    Ortiz, Alberto; Justo, Pilar; Sanz, Ana; Melero, Rosa; Caramelo, Carlos; Guerrero, Manuel Fernández; Strutz, Frank; Müller, Gerhard; Barat, Antonio; Egido, Jesus

    2005-01-01

    Cidofovir is an antiviral drug with activity against a wide array of DNA viruses including poxvirus. The therapeutic use of cidofovir is marred by a dose-limiting side effect, nephrotoxicity, leading to proximal tubular cell injury and acute renal failure. Treatment with cidofovir requires the routine use of prophylactic measures. A correct knowledge of the cellular and molecular mechanisms of cidofovir toxicity may lead to the development of alternative prophylactic strategies. We recently cared for a patient with irreversible acute renal failure due to cidofovir. Renal biopsy showed tubular cell apoptosis. Cidofovir induced apoptosis in primary cultures of human proximal tubular cells in a temporal (peak apoptosis at 7 days) and concentration (10-40 microg/ml) pattern consistent with that of clinical toxicity. Apoptosis was identified by the presence of hypodiploid cells, by the exposure of annexin V binding sites and by morphological features and was associated with the appearance of active caspase-3 fragments. Cell death was specific as it was also present in a human proximal tubular epithelial cell line (HK-2), but not in a human kidney fibroblast cell line, and was prevented by probenecid. An inhibitor of caspase-3 (DEVD) prevented cidofovir apoptosis. The survival factors present in serum, insulin-like growth factor-1 and hepatocyte growth factor, were also protective. The present data suggest that apoptosis induction is a mechanism contributing to cidofovir nephrotoxicity. The prophylactic administration of factors with survival activity for tubular epithelium should be further explored in cidofovir renal injury.

  17. Condurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo.

    PubMed

    Sikdar, Sourav; Mukherjee, Avinaba; Ghosh, Samrat; Khuda-Bukhsh, Anisur Rahman

    2014-01-01

    Chemotherapeutic potential of Condurango glycoside-rich components (CGS) was evaluated in NSCLC, in vitro and in BaP-intoxicated rats, in vivo. NSCLC cells were treated with different concentrations of CGS to test their effect on cell viability. Cellular morphology, DNA-damage, AnnexinV-FITC/PI, cell cycle regulation, ROS-accumulation, MMP, and expressions of related signalling genes were critically analysed. 0.22 μg/μl CGS (IC₅₀ dose at 24 h) was selected for the study. CGS-induced apoptosis via DNA damage was evidenced by DNA-ladder formation, increase of AnnexinV-positive cells, cell cycle arrest at subG0/G1 and differential expressions of apoptotic genes. ROS-elevation and MMP-depolarization with significant caspase-3 activation might lead to apoptotic cell death. Anti-proliferative activity was confirmed by EGFR-expression modulation. ROS accumulation and DNA-nick formation with tissue damage-repair activity after post-cancerous CGS treatment, in vivo, supported the in vitro findings. Overall results advocate considerable apoptosis-inducing potential of CGS against NSCLC, validating its use against lung cancer by CAM practitioners.

  18. Functional cDNA expression cloning: Pushing it to the limit

    PubMed Central

    OKAYAMA, Hiroto

    2012-01-01

    The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538

  19. Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci.

    PubMed

    Kloosterman, Ate D; Kersbergen, Paula

    2003-01-01

    In this study, we have evaluated the efficacy and the validity of the AmpFISTR SGM plus multiplex PCR typing system when Low Copy Number (LCN) amounts of DNA are processed. The characteristics of SGM plus profiles produced under LCN conditions were studied on the basis of heterozygote balance, between loci balance and stutter proportion based on profiles that were obtained from a variety of mock casework samples. These experiments clearly showed that LCN DNA profiles carry their own characteristic features, which must be taken into account during interpretation. Herewith, we confirmed the data of recent other studies that a comprehensive interpretation strategy is dependent upon multiple replication of the PCR using the same extract together with the proper use of extraction and amplification controls. The limitations of LCN DNA analysis were further studied in a series of single cell PCR experiments using an amplification regime of 34 PCR cycles. The allele dropout phenomenon was demonstrated to its full extent when single cells were analysed. However, the "consensus profile" which was obtained from separate single cell PCR experiments matched the actual profile of the cell donor. Single cell PCR experiments also showed that a further increase of the number of PCR cycles did not result in enhanced sensitivity and had a highly negative effect on the balance of this multiplex PCR system which hampered correct interpretation of the profile. Also, the potential of LCN typing in analysing mixtures of DNA was investigated. It was clearly shown that LCN typing had no advantages over 28 cycles amplification in the detection of the minor component of DNA-mixtures. In addition to the 34 cycles PCR amplification regime, the utility of a new approach that involved reamplification of the 28 cycle SGM plus PCR products with an extra 6 PCR cycles after the addition of fresh AmpliTaq Gold DNA Polymerase was investigated. This approach provides the scientist with an extra typing

  20. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  1. Abutilon mosaic virus DNA B component supports mechanical virus transmission, but does not counteract begomoviral phloem limitation in transgenic plants.

    PubMed

    Wege, Christina; Pohl, Diana

    2007-08-15

    Different Nicotiana benthamiana lines stably transformed with Abutilon mosaic virus (AbMV) dimeric DNA B were capable of systemically spreading complete bipartite AbMV genomes, following agroinoculation of DNA A alone. Constitutively expressed viral movement protein (BC1) did not induce any persistent disease phenotype, but plants developed transient morphological abnormalities such as radially symmetric leaves after kanamycin withdrawal. Systemic AbMV infection produced symptoms and virus titers indistinguishable from those in non-transgenic plants. In systemically invaded leaves, the begomovirus remained phloem-limited, whereas the plants' susceptibility to mechanical transmission of AbMV was enhanced by a factor of three to five, as compared to non-transgenic controls. Hence, DNA B-encoded movement functions can complement local movement to the phloem after mechanical transmission, but fail to support viral invasion of non-phloem cells in systemically infected organs, indicating that the phloem restriction of AbMV does not result predominantly from a lack of transport competence in mesophyll tissues.

  2. Soil DNA metabarcoding and high-throughput sequencing as a forensic tool: considerations, potential limitations and recommendations.

    PubMed

    Young, J M; Austin, J J; Weyrich, L S

    2017-02-01

    Analysis of physical evidence is typically a deciding factor in forensic casework by establishing what transpired at a scene or who was involved. Forensic geoscience is an emerging multi-disciplinary science that can offer significant benefits to forensic investigations. Soil is a powerful, nearly 'ideal' contact trace evidence, as it is highly individualistic, easy to characterise, has a high transfer and retention probability, and is often overlooked in attempts to conceal evidence. However, many real-life cases encounter close proximity soil samples or soils with low inorganic content, which cannot be easily discriminated based on current physical and chemical analysis techniques. The capability to improve forensic soil discrimination, and identify key indicator taxa from soil using the organic fraction is currently lacking. The development of new DNA sequencing technologies offers the ability to generate detailed genetic profiles from soils and enhance current forensic soil analyses. Here, we discuss the use of DNA metabarcoding combined with high-throughput sequencing (HTS) technology to distinguish between soils from different locations in a forensic context. Specifically, we provide recommendations for best practice, outline the potential limitations encountered in a forensic context and describe the future directions required to integrate soil DNA analysis into casework.

  3. Water-soluble oxoglaucine-Y(III), Dy(III) complexes: in vitro and in vivo anticancer activities by triggering DNA damage, leading to S phase arrest and apoptosis.

    PubMed

    Wei, Jian-Hua; Chen, Zhen-Feng; Qin, Jiao-Lan; Liu, Yan-Cheng; Li, Zhu-Quan; Khan, Taj-Malook; Wang, Meng; Jiang, Yan-Hua; Shen, Wen-Ying; Liang, Hong

    2015-07-07

    Complexes of yttrium(III) and dysprosium(III) with the traditional Chinese medicine active ingredient oxoglaucine (OG), namely [Y(OG)2(NO3)3]·CH3OH (1) and [Dy(OG)2(NO3)3]·H2O (2), were synthesized and characterized by elemental analysis, IR, ESI-MS, (1)H and (13)C NMR as well as single-crystal X-ray diffraction analysis. In vitro the complexes exhibited higher anticancer activity than the free ligand OG against the tested cancer cell lines. Among the tested cell lines, HepG2 is the most sensitive to the complexes. Complex 2 can trigger DNA damage in HepG2 cells, resulting in cell cycle arrest in the S phase and leading to cell apoptosis. The S phase cell-cycle arrest is caused via the ATM (ataxia-telangiectasia mutated)-Chk2-Cdc25A pathway. Chk2 is phosphorylated and activated in an ATM-dependent manner. It, in turn, phosphorylates Cdc25A phosphatise on serine124, causing the inactivation of Cdc25A in ubiquitin-mediated proteolytic degradation. The cyclin-Cdk complexes of the S phase could also be inhibited by limited supply of cyclins A and E. This irreversible cell cycle arrest process ultimately induces mitochondria-involved apoptotic cell death via the activation of Bcl-2 protein. Complex e2 ffectively inhibited tumour growth in the BEL-7402 xenograft mouse model and exhibited higher safety in vivo than cisplatin.

  4. Limiting Dilution Bisulfite Pyrosequencing®: A Method for Methylation Analysis of Individual DNA Molecules in a Single or a Few Cells.

    PubMed

    Hajj, Nady El; Kuhtz, Juliane; Haaf, Thomas

    2015-01-01

    Bisulfite-based methods for DNA methylation analysis of small amounts of DNA from a limited number of cells are technologically challenging. Degradation of genomic DNA by bisulfite treatment, contamination with foreign DNA, and biases in the amplification of individual DNA molecules can generate results, which are not representative of the starting sample. Limiting dilution (LD) bisulfite Pyrosequencing(®) (BSP) is a relatively simple technique to circumvent these problems. The bisulfite-treated DNA of a single or a few cells is diluted to an extent, that only a single DNA target molecule is present in the reaction. Then each individual DNA molecule in the starting sample is separately amplified and analyzed by Pyrosequencing. This allows the detection of rare alleles that are easily masked when pools of DNA target molecules are analyzed. Amplicons containing a heterozygous single nucleotide polymorphism (SNP) allow one to delineate the parental origin of the recovered molecules in addition to their methylation status. The number of cells (DNA target molecules) in the starting sample determines the dilution level and the number of reactions that have to be performed. LD-BSP allows methylation analysis of small cell pools (i.e., 5-10 microdissected cells) and even individual cells. The primers and PCR conditions described here have been successfully employed to analyze the methylation status of up to eight target genes in individual 2-16 cell embryos, germinal vesicle (GV) oocytes, and haploid sperms.

  5. Stabilization of c-myc G-Quadruplex DNA, inhibition of telomerase activity, disruption of mitochondrial functions and tumor cell apoptosis by platinum(II) complex with 9-amino-oxoisoaporphine.

    PubMed

    Qin, Jiao-Lan; Qin, Qi-Pin; Wei, Zu-Zhuang; Yu, Yan-Cheng; Meng, Ting; Wu, Chen-Xuan; Liang, Yue-Lan; Liang, Hong; Chen, Zhen-Feng

    2016-11-29

    [Pd(L)(DMSO)Cl2] (1) and [Pt(L)(DMSO)Cl2] (2) with 9-amino-oxoisoaporphine (L), were synthesized and characterized. 1 and 2 are more selectively cytotoxic to Hep-G2 cells versus normal liver cells (HL-7702). Various experiments showed that 2 acted as telomerase inhibitors targeting G4-DNA and triggered cell apoptosis by interacting with c-myc G4-DNA. Furthermore, 2 significantly induced cell cycle arrest at both G2/M and S phase, which leading to the down-regulation of cdc25 A, cyclin D, cyclin B, cyclin A and CDK2 and the up-regulation of p53, p27, p21,chk1 and chk2. In addition, 2 also caused mitochondrial dysfunction. Taken together, we found that 2 exerted its cytotoxic activity mainly via inhibiting telomerase by interaction with c-myc G4-DNA and disruption of mitochondrial function.

  6. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability

    PubMed Central

    de Vere, Natasha; Jones, Laura E.; Gilmore, Tegan; Moscrop, Jake; Lowe, Abigail; Smith, Dan; Hegarty, Matthew J.; Creer, Simon; Ford, Col R.

    2017-01-01

    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet. PMID:28205632

  7. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability.

    PubMed

    de Vere, Natasha; Jones, Laura E; Gilmore, Tegan; Moscrop, Jake; Lowe, Abigail; Smith, Dan; Hegarty, Matthew J; Creer, Simon; Ford, Col R

    2017-02-16

    Understanding which flowers honey bees (Apis mellifera) use for forage can help us to provide suitable plants for healthy honey bee colonies. Accordingly, honey DNA metabarcoding provides a valuable tool for investigating pollen and nectar collection. We investigated early season (April and May) floral choice by honey bees provided with a very high diversity of flowering plants within the National Botanic Garden of Wales. There was a close correspondence between the phenology of flowering and the detection of plants within the honey. Within the study area there were 437 genera of plants in flower during April and May, but only 11% of these were used. Thirty-nine plant taxa were recorded from three hives but only ten at greater than 1%. All three colonies used the same core set of native or near-native plants, typically found in hedgerows and woodlands. The major plants were supplemented with a range of horticultural species, with more variation in plant choice between the honey bee colonies. We conclude that during the spring, honey bees need access to native hedgerows and woodlands to provide major plants for foraging. Gardens provide supplementary flowers that may increase the nutritional diversity of the honey bee diet.

  8. Drug-Induced Reactivation of Apoptosis Abrogates HIV-1 Infection

    PubMed Central

    Hanauske-Abel, Hartmut M.; Saxena, Deepti; Palumbo, Paul E.; Hanauske, Axel-Rainer; Luchessi, Augusto D.; Cambiaghi, Tavane D.; Hoque, Mainul; Spino, Michael; Gandolfi, Darlene D'Alliessi; Heller, Debra S.; Singh, Sukhwinder; Park, Myung Hee; Cracchiolo, Bernadette M.; Tricta, Fernando; Connelly, John; Popowicz, Anthony M.; Cone, Richard A.; Holland, Bart; Pe’ery, Tsafi; Mathews, Michael B.

    2013-01-01

    HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal

  9. DNA Barcoding Reveals Limited Accuracy of Identifications Based on Folk Taxonomy

    PubMed Central

    Martin, Gary; Abbad, Abdelaziz; Kool, Anneleen

    2014-01-01

    Background The trade of plant roots as traditional medicine is an important source of income for many people around the world. Destructive harvesting practices threaten the existence of some plant species. Harvesters of medicinal roots identify the collected species according to their own folk taxonomies, but once the dried or powdered roots enter the chain of commercialization, accurate identification becomes more challenging. Methodology A survey of morphological diversity among four root products traded in the medina of Marrakech was conducted. Fifty-one root samples were selected for molecular identification using DNA barcoding using three markers, trnH-psbA, rpoC1, and ITS. Sequences were searched using BLAST against a tailored reference database of Moroccan medicinal plants and their closest relatives submitted to NCBI GenBank. Principal Findings Combining psbA-trnH, rpoC1, and ITS allowed the majority of the market samples to be identified to species level. Few of the species level barcoding identifications matched the scientific names given in the literature, including the most authoritative and widely cited pharmacopeia. Conclusions/Significance The four root complexes selected from the medicinal plant products traded in Marrakech all comprise more than one species, but not those previously asserted. The findings have major implications for the monitoring of trade in endangered plant species as morphology-based species identifications alone may not be accurate. As a result, trade in certain species may be overestimated, whereas the commercialization of other species may not be recorded at all. PMID:24416210

  10. Cyclooxygenase-2 Inhibition Limits Angiotensin II-Induced DNA Oxidation and Protein Nitration in Humans

    PubMed Central

    Pialoux, Vincent; Poulin, Marc J.; Hemmelgarn, Brenda R.; Muruve, Daniel A.; Chirico, Erica N.; Faes, Camille; Sola, Darlene Y.; Ahmed, Sofia B.

    2017-01-01

    Compared to other cyclooxygenase-2 inhibitors, celecoxib is associated with a lower cardiovascular risk, though the mechanism remains unclear. Angiotensin II is an important mediator of oxidative stress in the pathophysiology of vascular disease. Cyclooxygenase-2 may modify the effects of angiotensin II though this has never been studied in humans. The purpose of the study was to test the effects of selective cyclooxygenase-2 inhibition on plasma measures of oxidative stress, the vasoconstrictor endothelin-1, and nitric oxide metabolites, both at baseline and in respose to Angiotensin II challenge in healthy humans. Measures of 8-hydroxydeoxyguanosine, advanced oxidation protein products, nitrotyrosine, endothelin-1, and nitric oxide metabolites were assessed from plasma samples drawn at baseline and in response to graded angiotensin II infusion (3 ng/kg/min × 30 min, 6 ng/kg/min × 30 min) before and after 14 days of cyclooxygenase-2 inhibition in 14 healthy subjects (eight male, six female) in high salt balance, a state of maximal renin angiotensin system suppression. Angiotensin II infusion significantly increased plasma oxidative stress compared to baseline (8-hydroxydeoxyguanosine; +17%; advanced oxidation protein products; +16%), nitrotyrosine (+76%). Furthermore, levels of endothelin-1 levels were significantly increased (+115%) and nitric oxide metabolites were significantly decreased (−20%). Cycloxygenase-2 inhibition significantly limited the increase in 8-hydroxydeoxyguanosine, nitrotyrosine and the decrease in nitric oxide metabolites induced by angiotensin II infusion, though no changes in advanced oxidation protein products and endothelin-1 concentrations were observed. Cyclooxygenase-2 inhibition with celecoxib partially limited the angiotensin II-mediated increases in markers of oxidative stress in humans, offering a potential physiological pathway for the improved cardiovascular risk profile of this drug. PMID:28344559

  11. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods.

    PubMed

    Piñol, J; Mir, G; Gomez-Polo, P; Agustí, N

    2015-07-01

    The quantification of the biological diversity in environmental samples using high-throughput DNA sequencing is hindered by the PCR bias caused by variable primer-template mismatches of the individual species. In some dietary studies, there is the added problem that samples are enriched with predator DNA, so often a predator-specific blocking oligonucleotide is used to alleviate the problem. However, specific blocking oligonucleotides could coblock nontarget species to some degree. Here, we accurately estimate the extent of the PCR biases induced by universal and blocking primers on a mock community prepared with DNA of twelve species of terrestrial arthropods. We also compare universal and blocking primer biases with those induced by variable annealing temperature and number of PCR cycles. The results show that reads of all species were recovered after PCR enrichment at our control conditions (no blocking oligonucleotide, 45 °C annealing temperature and 40 cycles) and high-throughput sequencing. They also show that the four factors considered biased the final proportions of the species to some degree. Among these factors, the number of primer-template mismatches of each species had a disproportionate effect (up to five orders of magnitude) on the amplification efficiency. In particular, the number of primer-template mismatches explained most of the variation (~3/4) in the amplification efficiency of the species. The effect of blocking oligonucleotide concentration on nontarget species relative abundance was also significant, but less important (below one order of magnitude). Considering the results reported here, the quantitative potential of the technique is limited, and only qualitative results (the species list) are reliable, at least when targeting the barcoding COI region.

  12. dcDegenerate oligonucleotide primed-PCR for multilocus, genome-wide analysis from limited quantities of DNA.

    PubMed

    Bonnette, Michelle D; Pavlova, Victoria R; Rodier, Denise N; Thompson, Lindsay P; Boone, Edward L; Brown, Kelly L; Meyer, Kristin M; Trevino, Michelle B; Champagne, Jarrod R; Cruz, Tracey Dawson

    2009-09-01

    This study modified the degenerate oligonucleotide primed-polymerase chain reaction (DOP-PCR)-based whole genome amplification method for improvement of downstream genome-wide analysis of low copy number DNA samples (DNA quantities were examined for the primer and the cycle number studies using standard DOP-PCR parameters. The optimized DOP-PCR technique was then implemented for the polymerase study. All DOP-PCR products were amplified by using a multiplex microsatellite amplification kit to evaluate products from multiple chromosomes, followed by separation and detection by capillary electrophoresis. The 10 N primer, 12 nonspecific cycles, and the addition of the DeepVent proofreading enzyme all significantly increased the number of short tandem repeat alleles successfully amplified. All modifications also lowered the rate of allele drop-in, or sporadic additional allele occurrence, when compared with DOP-PCR results published earlier. Further, an average of > 0.50 intralocus heterozygote peak ratios were observed for most DNA input quantities examined. These results show that modifications of the traditional DOP-PCR reaction (dcDOP-PCR) to include the use of a more degenerate primer (10 N), 12 nonspecific cycles, and a proofreading enzyme allows for a more complete, balanced chromosome amplification from limited and/or compromised clinical and biological samples.

  13. Running on empty: does mitochondrial DNA mutation limit replicative lifespan in yeast?: Mutations that increase the division rate of cells lacking mitochondrial DNA also extend replicative lifespan in Saccharomyces cerevisiae.

    PubMed

    Dunn, Cory D

    2011-10-01

    Mitochondrial DNA (mtDNA) mutations escalate with increasing age in higher organisms. However, it has so far been difficult to experimentally determine whether mtDNA mutation merely correlates with age or directly limits lifespan. A recent study shows that budding yeast can also lose functional mtDNA late in life. Interestingly, independent studies of replicative lifespan (RLS) and of mtDNA-deficient cells show that the same mutations can increase both RLS and the division rate of yeast lacking the mitochondrial genome. These exciting, parallel findings imply a potential causal relationship between mtDNA mutation and replicative senescence. Furthermore, these results suggest more efficient methods for discovering genes that determine lifespan.

  14. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  15. [Apoptosis: cellular and clinical aspects].

    PubMed

    Løvschall, H; Mosekilde, L

    1997-04-01

    Removal of damaged cells is essential for the maintenance of life in multicellular organisms. The process of self destruction, apoptosis, eliminates surplus or damaged cells as part of the pathophysiological defence system. Apoptosis is essential in structural and functional organogenesis during embryological development. The physiological regulation of tissue kinetics is a product of both cell proliferation and cell death. Internal and external regulatory stimuli regulate the balance between apoptosis and mitosis by genetic interaction. Apoptosis is characterized by condensation of chromatine as a result of DNA degradation, formation of blebs in the plasma and nuclear membranes, condensation of cytoplasma, formation of vesicular apoptotic bodies, and phagocytosis by neighbouring cells without inflammatory response. A number of observations indicate that programmed cell death plays an important role in the regulation of cytofunctional homeostasis and defense against accumulation of damaged cells, eg with DNA alterations. Dysregulation of the apoptotic gene program, eg by mutations, may not only lead to loss or degeneration of tissue, but also to hyperproliferative and tumorigenic disorders. New evidence indicates that apoptosis regulation is important both in aging processes and diseases such as: neuropathies, immunopathies, viral infections, cancer, etc. Pharmacological intervention designed to modulate apoptosis seems to raise new possibilities in the treatment of disease.

  16. UNDERSTANDING NITROGEN LIMITATION IN AUREOCOCCUS ANOPHAGEFFERENS (PELAGOPHYCEAE) THROUGH cDNA AND qRT-PCR ANALYSIS(1).

    PubMed

    Berg, Gry Mine; Shrager, Jeff; Glöckner, Gernot; Arrigo, Kevin R; Grossman, Arthur R

    2008-10-01

    Brown tides of the marine pelagophyte Aureococcus anophagefferens Hargraves et Sieburth have been investigated extensively for the past two decades. Its growth is fueled by a variety of nitrogen (N) compounds, with dissolved organic nitrogen (DON) being particularly important during blooms. Characterization of a cDNA library suggests that A. anophagefferens can assimilate eight different forms of N. Expression of genes related to the sensing, uptake, and assimilation of inorganic and organic N, as well as the catabolic process of autophagy, was assayed in cells grown on different N sources and in N-limited cells. Growth on nitrate elicited an increase in the relative expression of nitrate and ammonium transporters, a nutrient stress-induced transporter, and a sensory kinase. Growth on urea increased the relative expression of a urea and a formate/nitrite transporter, while growth on ammonium resulted in an increase in the relative expression of an ammonium transporter, a novel ATP-binding cassette (ABC) transporter and a putative high-affinity phosphate transporter. N limitation resulted in a 30- to 110-fold increase in the relative expression of nitrate, ammonium, urea, amino acid/polyamine, and formate/nitrite transporters. A. anophagefferens demonstrated the highest relative accumulation of a transcript encoding a novel purine transporter, which was highly expressed across all N sources. This finding suggests that purines are an important source of N for the growth of this organism and could possibly contribute to the initiation and maintenance of blooms in the natural environment.

  17. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  18. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  19. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402

    SciTech Connect

    Wang Shuiliang; Lan Fenghua; Huang Lianghu; Dong Lihong; Zhu Zhongyong; Li Zonghai; Xie Youhua; Fu Jiliang . E-mail: fu825@mail.tongji.edu.cn

    2005-08-05

    RNA interference (RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of mRNA. A DNA vector-based approach has been shown to be able to trigger RNA interference in mammalian cells successfully. LRH-1 is an orphan nuclear receptor predominantly expressed in tissues of endodermal origin, where it controls development and cholesterol homeostasis. In the present study, we demonstrated that the expression of hLRH-1 and cyclin E1 in BEL-7402 cells could be suppressed by up to {approx}80% via DNA vector-based RNA interference. The suppression of hLRH-1 resulted in cell cycle arrest mediated by the down-regulation of cyclin E1. Induction of apoptosis and down-regulation of Gadd45{beta} were also shown in hLRH-1 knock down BEL-7402 cells. These results, together with the findings that Gadd45{beta} remained unchanged in cyclin E1 RNAi cells, suggested that the induction of apoptosis by knock down of hLRH-1 was closely related to the down-regulation of Gadd45{beta}.

  20. Patulin causes DNA damage leading to cell cycle arrest and apoptosis through modulation of Bax, p{sup 53} and p{sup 21/WAF1} proteins in skin of mice

    SciTech Connect

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul; Dhawan, Alok; Dwivedi, Premendra D.; Das, Mukul

    2009-01-15

    Patulin (PAT), a mycotoxin found in apples, grapes, oranges, pear and peaches, is a potent genotoxic compound. WHO has highlighted the need for the study of cutaneous toxicity of PAT as manual labour is employed during pre and post harvest stages, thereby causing direct exposure to skin. In the present study cutaneous toxicity of PAT was evaluated following topical application to Swiss Albino mice. Dermal exposure of PAT, to mice for 4 h resulted in a dose (40-160 {mu}g/animal) and time (up to 6 h) dependent enhancement of ornithine decarboxylase (ODC), a marker enzyme of cell proliferation. The ODC activity was found to be normal after 12 and 24 h treatment of patulin. Topical application of PAT (160 {mu}g/100 {mu}l acetone) for 24-72 h caused (a) DNA damage in skin cells showing significant increase (34-63%) in olive tail moment, a parameter of Comet assay (b) significant G 1 and S-phase arrest along with induction of apoptosis (2.8-10 folds) as shown by annexin V and PI staining assay through flow cytometer. Moreover PAT leads to over expression of p{sup 21/WAF1} (3.6-3.9 fold), pro apoptotic protein Bax (1.3-2.6) and tumor suppressor wild type p{sup 53} (2.8-3.9 fold) protein. It was also shown that PAT induced apoptosis was mediated through mitochondrial intrinsic pathway as revealed through the release of cytochrome C protein in cytosol leading to enhancement of caspase-3 activity in skin cells of mice. These results suggest that PAT has a potential to induce DNA damage leading to p{sup 53} mediated cell cycle arrest along with intrinsic pathway mediated apoptosis that may also be correlated with enhanced polyamine production as evident by induction of ODC activity, which may have dermal toxicological implications.

  1. P53-Mediated Rapid Induction of Apoptosis Conveys Resistance to Viral Infection in Drosophila melanogaster

    PubMed Central

    Liu, Bo; Behura, Susanta K.; Clem, Rollie J.; Schneemann, Anette; Becnel, James; Severson, David W.; Zhou, Lei

    2013-01-01

    Arthropod-borne pathogens account for millions of deaths each year. Understanding the genetic mechanisms controlling vector susceptibility to pathogens has profound implications for developing novel strategies for controlling insect-transmitted infectious diseases. The fact that many viruses carry genes that have anti-apoptotic activity has long led to the hypothesis that induction of apoptosis could be a fundamental innate immune response. However, the cellular mechanisms mediating the induction of apoptosis following viral infection remained enigmatic, which has prevented experimental verification of the functional significance of apoptosis in limiting viral infection in insects. In addition, studies with cultured insect cells have shown that there is sometimes a lack of apoptosis, or the pro-apoptotic response happens relatively late, thus casting doubt on the functional significance of apoptosis as an innate immunity. Using in vivo mosquito models and the native route of infection, we found that there is a rapid induction of reaper-like pro-apoptotic genes within a few hours following exposure to DNA or RNA viruses. Recapitulating a similar response in Drosophila, we found that this rapid induction of apoptosis requires the function of P53 and is mediated by a stress–responsive regulatory region upstream of reaper. More importantly, we showed that the rapid induction of apoptosis is responsible for preventing the expression of viral genes and blocking the infection. Genetic changes influencing this rapid induction of reaper-like pro-apoptotic genes led to significant differences in susceptibility to viral infection. PMID:23408884

  2. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-{kappa}B-STAT3-directed gene expression

    SciTech Connect

    Ivanov, Vladimir N. Ghandhi, Shanaz A.; Zhou, Hongning; Huang, Sarah X.; Chai, Yunfei; Amundson, Sally A.; Hei, Tom K.

    2011-07-01

    Mitochondrial DNA depleted ({rho}{sup 0}) human skin fibroblasts (HSF) with suppressed oxidative phosphorylation were characterized by significant changes in the expression of 2100 nuclear genes, encoding numerous protein classes, in NF-{kappa}B and STAT3 signaling pathways, and by decreased activity of mitochondrial death pathway, compared to the parental {rho}{sup +} HSF. In contrast, the extrinsic TRAIL/TRAIL-Receptor mediated death pathway remained highly active, and exogenous TRAIL in a combination with cycloheximide (CHX) induced higher levels of apoptosis in {rho}{sup 0} cells compared to {rho}{sup +} HSF. Global gene expression analysis using microarray and qRT-PCR demonstrated that mRNA expression levels of many growth factors and their adaptor proteins (FGF13, HGF, IGFBP4, IGFBP6, and IGFL2), cytokines (IL6, {Oota}L17{Beta}, {Oota}L18, {Oota}L19, and {Oota}L28{Beta}) and cytokine receptors (IL1R1, IL21R, and IL31RA) were substantially decreased after mitochondrial DNA depletion. Some of these genes were targets of NF-{kappa}B and STAT3, and their protein products could regulate the STAT3 signaling pathway. Alpha-irradiation further induced expression of several NF-{kappa}B/STAT3 target genes, including IL1A, IL1B, IL6, PTGS2/COX2 and MMP12, in {rho}{sup +} HSF, but this response was substantially decreased in {rho}{sup 0} HSF. Suppression of the IKK-NF-{kappa}B pathway by the small molecular inhibitor BMS-345541 and of the JAK2-STAT3 pathway by AG490 dramatically increased TRAIL-induced apoptosis in the control and irradiated {rho}{sup +} HSF. Inhibitory antibodies against IL6, the main activator of JAK2-STAT3 pathway, added into the cell media, also increased TRAIL-induced apoptosis in HSF, especially after alpha-irradiation. Collectively, our results indicated that NF-{kappa}B activation was partially lost in {rho}{sup 0} HSF resulting in downregulation of the basal or radiation-induced expression of numerous NF-{kappa}B targets, further suppressing IL6

  3. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53.

    PubMed Central

    Bialik, S; Geenen, D L; Sasson, I E; Cheng, R; Horner, J W; Evans, S M; Lord, E M; Koch, C J; Kitsis, R N

    1997-01-01

    Significant numbers of myocytes die by apoptosis during myocardial infarction. The molecular mechanism of this process, however, remains largely unexplored. To facilitate a molecular genetic analysis, we have developed a model of ischemia-induced cardiac myocyte apoptosis in the mouse. Surgical occlusion of the left coronary artery results in apoptosis, as indicated by the presence of nucleosome ladders and in situ DNA strand breaks. Apoptosis occurs mainly in cardiac myocytes, and is shown for the first time to be limited to hypoxic regions during acute infarction. Since hypoxia-induced apoptosis in other cell types is dependent on p53, and p53 is induced by hypoxia in cardiac myocytes, we investigated the necessity of p53 for myocyte apoptosis during myocardial infarction. Myocyte apoptosis occurs as readily, however, in the hearts of mice nullizygous for p53 as in wild-type littermates. These data demonstrate the existence of a p53-independent pathway that mediates myocyte apoptosis during myocardial infarction. PMID:9294101

  4. Apoptosis in canine distemper.

    PubMed

    Moro, L; de Sousa Martins, A; de Moraes Alves, C; de Araújo Santos, F G; dos Santos Nunes, J E; Carneiro, R A; Carvalho, R; Vasconcelos, A C

    2003-01-01

    Canine distemper is a systemic viral disease characterized by immunosuppression followed by secondary infections. Apoptosis is observed in several immunosuppressive diseases and its occurrence on canine distemper in vivo has not been published. In this study, the occurrence of apoptosis was determined in lymphoid tissues of thirteen naturally infected dogs and nine experimentally inoculated puppies. Healthy dogs were used as negative controls. Samples of lymph nodes, thymus, spleen and brain were collected for histopathological purposes. Sections, 5 microm thick, of retropharingeal lymph nodes were stained by HE, Shorr, Methyl Green-Pyronin and TUNEL reaction. Shorr stained sections were further evaluated by morphometry. Canine distemper virus nucleoprotein was detected by immunohistochemistry. Retropharingeal lymph nodes of naturally and experimentally infected dogs had more apoptotic cells per field than controls. In addition, DNA from thymus of infected dogs were more fragmented than controls. Therefore, apoptosis is increased in lymphoid depletion induced by canine distemper virus and consequently play a role in the immunosuppression seen in this disease.

  5. Single-step procedure for labeling DNA strand breaks with fluorescein- or BODIPY-conjugated deoxynucleotides: Detection of apoptosis and bromodeoxyuridine incorporation

    SciTech Connect

    Xun Li; Traganos, F.; Melamed, M.R.; Darzynkiewicz, Z.

    1995-06-01

    The methods of in situ labeling of DNA strand breaks have been used to identify apoptotic cells and/or DNA replicating cells. While discrimination of apoptotic cells is based on the inherent presence of numerous DNA strand breaks in their chromatin, DNA proliferating cells can be discriminated by the selective DNA strand break induction by photolysis (SBIP) methodology at the sites that contain incorporated bromodeoxyuridine (BrdUrd) or iododeoxyuridine (IdUrd). In both instances, DNA strand breaks are labeled with biotin- or digoxygenin-conjugated deoxynucleotides, preferably in the reaction catalyzed by exogenous terminal deoxynucleotidyl transferase; fluorescein tagged avidin (streptavidin) or digoxygenin antibody is used in the second step of the reaction. In the present study, DNA strand break labeling was simplified by using directly labeled deoxynucleotides, in a single-step reaction. Apoptotic cells in HL-60 cultures treated with camptothecin or in primary cultures of non-Hodgkin`s lymphoma cells treated with prednisolone were easily identified utilizing BODIPY-conjugated dUTP (B-dUTP). The single-step procedure, requiring fewer centrifugation steps, resulted in less cell loss compared to the two-step cell labeling technique. The morphology of cells subjected to SBIP was excellent, allowing visualization of distinct DNA replication points. Because, unlike the immunocytochemical methods used to detect BrdUrd incorporation, the SBIP methodology does not require DNA denaturation by heat or acid, nuclear proteins are expected to remain undenatured in situ, allowing one to study colocalization of various constituents, detected immunocytochemically, at the DNA replication points. 30 refs., 7 figs.

  6. Inhibition of small HA fragment activity and stimulation of A2A adenosine receptor pathway limit apoptosis and reduce cartilage damage in experimental arthritis.

    PubMed

    Campo, Giuseppe M; Micali, Antonio; Avenoso, Angela; D'Ascola, Angela; Scuruchi, Michele; Pisani, Antonina; Bruschetta, Antongiulio; Calatroni, Alberto; Puzzolo, Domenico; Campo, Salvatore

    2015-05-01

    Recent studies have found that the inactivation of small hyaluronan (HA) fragments originating from native HA during inflammation reduced the inflammatory response in models of experimental arthritis. The stimulation of adenosine receptors A2A reduced inflammation by inhibiting NF-kB activation. The combination of both treatments was significantly more effective than either of the individual treatments. The aim of this study was to further investigate the effects of a combined treatment using the HA inhibitor Pep-1 and a selective A2AR agonist (CV-1808) on the structure and ultrastructure of the articular cartilage and on apoptosis in a model of collagen-induced arthritis (CIA) in mice. Arthritic mice were treated with Pep-1 and/or CV-1808 intraperitoneally daily for 20 days. At day 35, the hind limbs were processed for light microscopy (hematoxylin/eosin and Safranin-O-Fast Green) and for transmission and scanning electron microscopy. CIA increased IL-6, caspase-3 and caspase-7 mRNA expression and the related protein levels in arthritic articular cartilage, and significantly increased concentrations of Bcl-2-associated X protein (Bax), while B cell-lymphoma-2 protein (Bcl-2) was markedly reduced. The combined Pep-1/CV-1808 treatment significantly reduced CIA injury, particularly at the highest doses, demonstrated by the presence of Safranin-O-positive cartilage, with a smooth surface and normal chondrocytes in the superficial, intermediate and deep zones. Morphological data and histological scoring were strongly supported by the reduction in inflammation and apoptotic markers. The results further support the role of HA degradation and A2A receptors in arthritis.

  7. DNA Hypermethylation of CREB3L1 and Bcl-2 Associated with the Mitochondrial-Mediated Apoptosis via PI3K/Akt Pathway in Human BEAS-2B Cells Exposure to Silica Nanoparticles

    PubMed Central

    Zou, Yang; Li, Qiuling; Jiang, Lizhen; Guo, Caixia; Li, Yanbo; Yu, Yang; Li, Yang; Duan, Junchao; Sun, Zhiwei

    2016-01-01

    The toxic effects of silica nanoparticles (SiNPs) are raising concerns due to its widely applications in biomedicine. However, current information about the epigenetic toxicity of SiNPs is insufficient. In this study, the epigenetic regulation of low-dose exposure to SiNPs was evaluated in human bronchial epithelial BEAS-2B cells over 30 passages. Cell viability was decreased in a dose- and passage-dependent manner. The apoptotic rate, the expression of caspase-9 and caspase-3, were significantly increased induced by SiNPs. HumanMethylation450 BeadChip analysis identified that the PI3K/Akt as the primary apoptosis-related pathway among the 25 significant altered processes. The differentially methylated sites of PI3K/Akt pathway involved 32 differential genes promoters, in which the CREB3L1 and Bcl-2 were significant hypermethylated. The methyltransferase inhibitor, 5-aza, further verified that the DNA hypermethylation status of CREB3L1 and Bcl-2 were associated with downregulation of their mRNA levels. In addition, mitochondrial-mediated apoptosis was triggered by SiNPs via the downregulation of PI3K/Akt/CREB/Bcl-2 signaling pathway. Our findings suggest that long-term low-dose exposure to SiNPs could lead to epigenetic alterations. PMID:27362941

  8. DNA vaccine encoding type IV pilin of Actinobacillus pleuropneumoniae induces strong immune response but confers limited protective efficacy against serotype 2 challenge.

    PubMed

    Lu, Yu-Chun; Li, Min-Chen; Chen, Yi-Min; Chu, Chun-Yen; Lin, Shuen-Fuh; Yang, Wen-Jen

    2011-10-13

    Actinobacillus pleuropneumoniae is a gram-negative bacterial pathogen that causes swine pleuropneumonia, a highly contagious and often fatal disease that occurs worldwide. Our previous study showed that DNA vaccines encoding Apx exotoxin structural proteins ApxIA and/or ApxIIA, are a promising novel approach for immunization against the lethal challenge of A. pleuropneumoniae serotype 1. Vaccination against A. pleuropneumoniae is impeded by the lack of vaccines inducing reliable cross-serotype protection. Type IV fimbrial protein ApfA has been shown to be present and highly conserved in various serotypes of A. pleuropneumoniae. A novel DNA vaccine encoding ApfA (pcDNA-apfA) was constructed to evaluate the protective efficacy against infection with A. pleuropneumoniae serotype 2. A significant antibody response against pilin was generated following pcDNA-apfA immunization, suggesting that it was expressed in vivo. The IgG subclass (IgG1 and IgG2a) analysis indicates that the pcDNA-apfA vaccine induces both Th1 and Th2 immune responses. The IgA analysis shows that mucosal immunity could be enhanced by this DNA vaccine. Nevertheless, the strong antibody response induced by pcDNA-apfA vaccine only provided limited 30% protective efficacy against the serotype 2 challenge. These results in this study do not coincide with that the utility of type IV pilin is a good vaccine candidate against other infectious pathogens. It indicates that pilin should play a limited role in the development of a vaccine against A. pleuropneumoniae infection.

  9. The simultaneous detection of mitochondrial DNA damage from sun-exposed skin of three whale species and its association with UV-induced microscopic lesions and apoptosis.

    PubMed

    Bowman, Amy; Martinez-Levasseur, Laura M; Acevedo-Whitehouse, Karina; Gendron, Diane; Birch-Machin, Mark A

    2013-07-01

    Due to life history and physiological constraints, cetaceans (whales) are unable to avoid prolonged exposure to external environmental insults, such as solar ultraviolet radiation (UV). The majority of studies on the effects of UV on skin are restricted to humans and laboratory animals, but it is important to develop tools to understand the effects of UV damage on large mammals such as whales, as these animals are long-lived and widely distributed, and can reflect the effects of UV across a large geographical range. We and others have used mitochondrial DNA (mtDNA) as a reliable marker of UV-induced damage particularly in human skin. UV-induced mtDNA strand breaks or lesions accumulate throughout the lifespan of an individual, thus constituting an excellent biomarker for cumulative exposure. Based on our previous studies in human skin, we have developed for the first time in the literature a quantitative real-time PCR methodology to detect and quantify mtDNA lesions in skin from sun-blistered whales. Furthermore the methodology allows for simultaneous detection of mtDNA damage in different species. Therefore using 44 epidermal mtDNA samples collected from 15 blue whales, 10 fin whales, and 19 sperm whales from the Gulf of California, Mexico, we quantified damage across 4.3 kilobases, a large region of the ~16,400 base pair whale mitochondrial genome. The results show a range of mtDNA damage in the skin of the three different whale species. This previously unreported observation was correlated with apoptotic damage and microscopic lesions, both of which are markers of UV-induced damage. As is the case in human studies, this suggests the potential use of mtDNA as a biomarker for measuring the effect of cumulative UV exposure in whales and may provide a platform to help understand the effects of changing global environmental conditions.

  10. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  11. Early Combination Antiretroviral Therapy Limits Exposure to HIV-1 Replication and Cell-Associated HIV-1 DNA Levels in Infants

    PubMed Central

    McManus, Margaret; Mick, Eric; Hudson, Richard; Mofenson, Lynne M.; Sullivan, John L.; Somasundaran, Mohan; Luzuriaga, Katherine

    2016-01-01

    The primary aim of this study was to measure HIV-1 persistence following combination antiretroviral therapy (cART) in infants and children. Peripheral blood mononuclear cell (PBMC) HIV-1 DNA was quantified prior to and after 1 year of cART in 30 children, stratified by time of initiation (early, age <3 months, ET; late, age >3 months-2 years, LT). Pre-therapy PBMC HIV-1 DNA levels correlated with pre-therapy plasma HIV-1 levels (r = 0.59, p<0.001), remaining statistically significant (p = 0.002) after adjustment for prior perinatal antiretroviral exposure and age at cART initiation. PBMC HIV-1 DNA declined significantly after 1 year of cART (Overall: -0.91±0.08 log10 copies per million PBMC, p<0.001; ET: -1.04±0.11 log10 DNA copies per million PBMC, p<0.001; LT: -0.74 ±0.13 log10 DNA copies per million PBMC, p<0.001) but rates of decline did not differ significantly between ET and LT. HIV-1 replication exposure over the first 12 months of cART, estimated as area-under-the-curve (AUC) of circulating plasma HIV-1 RNA levels, was significantly associated with PBMC HIV-1 DNA at one year (r = 0.51, p = 0.004). In 21 children with sustained virologic suppression after 1 year of cART, PBMC HIV-1 DNA levels continued to decline between years 1 and 4 (slope -0.21 log10 DNA copies per million PBMC per year); decline slopes did not differ significantly between ET and LT. PBMC HIV-1 DNA levels at 1 year and 4 years of cART correlated with age at cART initiation (1 year: p = 0.04; 4 years: p = 0.03) and age at virologic control (1 and 4 years, p = 0.02). Altogether, these data indicate that reducing exposure to HIV-1 replication and younger age at cART initiation are associated with lower HIV-1 DNA levels at and after one year of age, supporting the concept that HIV-1 diagnosis and cART initiation in infants should occur as early as possible. PMID:27104621

  12. Myocardial apoptosis in heart disease: does the emperor have clothes?

    PubMed

    Jose Corbalan, J; Vatner, Dorothy E; Vatner, Stephen F

    2016-05-01

    Since the discovery of a novel mechanism of cell death that differs from traditional necrosis, i.e., apoptosis, there have been numerous studies concluding that increased apoptosis augments myocardial infarction and heart failure and that limiting apoptosis protects the heart. Importantly, the vast majority of cells in the heart are non-myocytes with only roughly 30 % myocytes, yet almost the entire field studying apoptosis in the heart has disregarded non-myocyte apoptosis, e.g., only 4.7 % of 423 studies on myocardial apoptosis in the past 3 years quantified non-myocyte apoptosis. Accordingly, we reviewed the history of apoptosis in the heart focusing first on myocyte apoptosis, followed by the history of non-myocyte apoptosis in myocardial infarction and heart failure. Apoptosis of several of the major non-myocyte cell types in the heart (cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages and leukocytes) may actually be responsible for affecting the severity of myocardial infarction and heart failure. In summary, even though it is now known that the majority of apoptosis in the heart occurs in non-myocytes, very little work has been done to elucidate the mechanisms by which non-myocyte apoptosis might be responsible for the adverse effects of apoptosis in myocardial infarction and heart failure. The goal of this review is to provide an impetus for future work in this field on non-myocyte apoptosis that will be required for a better understanding of the role of apoptosis in the heart.

  13. Inferring the Number of Contributors to Complex DNA Mixtures Using Three Methods: Exploring the Limits of Low-Template DNA Interpretation.

    PubMed

    Alfonse, Lauren E; Tejada, Genesis; Swaminathan, Harish; Lun, Desmond S; Grgicak, Catherine M

    2017-03-01

    In forensic DNA casework, the interpretation of an evidentiary profile may be dependent upon the assumption on the number of individuals from whom the evidence arose. Three methods of inferring the number of contributors-NOCIt, maximum likelihood estimator, and maximum allele count, were evaluated using 100 test samples consisting of one to five contributors and 0.5-0.016 ng template DNA amplified with Identifiler(®) Plus and PowerPlex(®) 16 HS. Results indicate that NOCIt was the most accurate method of the three, requiring 0.07 ng template DNA from any one contributor to consistently estimate the true number of contributors. Additionally, NOCIt returned repeatable results for 91% of samples analyzed in quintuplicate, while 50 single-source standards proved sufficient to calibrate the software. The data indicate that computational methods that employ a quantitative, probabilistic approach provide improved accuracy and additional pertinent information such as the uncertainty associated with the inferred number of contributors.

  14. Clinical Application of Picodroplet Digital PCR Technology for Rapid Detection of EGFR T790M in Next-Generation Sequencing Libraries and DNA from Limited Tumor Samples.

    PubMed

    Borsu, Laetitia; Intrieri, Julie; Thampi, Linta; Yu, Helena; Riely, Gregory; Nafa, Khedoudja; Chandramohan, Raghu; Ladanyi, Marc; Arcila, Maria E

    2016-11-01

    Although next-generation sequencing (NGS) is a robust technology for comprehensive assessment of EGFR-mutant lung adenocarcinomas with acquired resistance to tyrosine kinase inhibitors, it may not provide sufficiently rapid and sensitive detection of the EGFR T790M mutation, the most clinically relevant resistance biomarker. Here, we describe a digital PCR (dPCR) assay for rapid T790M detection on aliquots of NGS libraries prepared for comprehensive profiling, fully maximizing broad genomic analysis on limited samples. Tumor DNAs from patients with EGFR-mutant lung adenocarcinomas and acquired resistance to epidermal growth factor receptor inhibitors were prepared for Memorial Sloan-Kettering-Integrated Mutation Profiling of Actionable Cancer Targets sequencing, a hybrid capture-based assay interrogating 410 cancer-related genes. Precapture library aliquots were used for rapid EGFR T790M testing by dPCR, and results were compared with NGS and locked nucleic acid-PCR Sanger sequencing (reference high sensitivity method). Seventy resistance samples showed 99% concordance with the reference high sensitivity method in accuracy studies. Input as low as 2.5 ng provided a sensitivity of 1% and improved further with increasing DNA input. dPCR on libraries required less DNA and showed better performance than direct genomic DNA. dPCR on NGS libraries is a robust and rapid approach to EGFR T790M testing, allowing most economical utilization of limited material for comprehensive assessment. The same assay can also be performed directly on any limited DNA source and cell-free DNA.

  15. Signal transduction and metabolic changes during tumor cell apoptosis following phthalocyanine-sensitized photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Agarwal, Munna L.; Berger, Nathan A.; Cheng, Ming-Feng; Chatterjee, Satadel; He, Jin; Kenney, Malcolm E.; Larkin, Hedy E.; Mukhter, Hasan; Rihter, Boris D.; Zaidi, Syed I. A.

    1993-06-01

    Mechanisms of cell death have been explored in cells and tumors treated with photodynamic therapy (PDT). Photosensitizers used for these studies were Photofrin, tetrasulfonated and nonsulfonated aluminum phthalocyanine, and a new silicon phthalocyanine [SiPc(OH)OSi(CH3)2(CH2)3N(CH3)2], referred to as PcIV. In mouse lymphoma L5178Y cells, a dose of PDT sensitized by PcIV which causes a 90% loss of cell survival induces apoptosis (programmed cell death) over a several-hour time course, beginning within 10 minutes of irradiation. Apoptosis is a metabolic process initiated by PDT-induced damage to membranes and triggered by the activation of phospholipases A2 and C and the release of Ca++ from intracellular stores. An endogenous endonuclease is activated and cleaves nuclear DNA in the internucleosomal region of chromatin. Subsequent metabolic events now appear to cause the loss of cellular NAD and ATP, the former a result of the activation of a second nuclear enzyme, poly(ADP-ribose) polymerase, by the endonucleolytically generated DNA strand breaks. Loss of ATP follows upon the loss of NAD needed for energy metabolism. Although the induction of apoptosis is efficiently produced by direct PDT damage to L5178Y cells, we now find that apoptosis is also produced by treatment of certain other lymphoid-derived cells and cells of epithelial origin. Under the limited set of conditions tested, there was no evidence for PDT-induced apoptosis in a fibroblast cell line, in mouse fibrosarcoma RIF-1 and L929 cells, in human adenocarcinoma A549 cells, or in human squamous cell carcinoma cells in culture. The evidence suggests that apoptosis, a form of metabolic cell death, is an important mechanism of tumor ablation in PDT-treated tumors, and that the induction of apoptosis may involve the interaction of direct PDT damage to malignant cells with factors produced by PDT action on vascular and other host cells.

  16. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway.

    PubMed

    Chang, Jae Won; Kang, Sung Un; Shin, Yoo Seob; Kim, Kang Il; Seo, Seong Jin; Yang, Sang Sik; Lee, Jong-Soo; Moon, Eunpyo; Baek, Seung Jae; Lee, Keunho; Kim, Chul-Ho

    2014-03-01

    Recent advances in physics have made possible the use of non-thermal atmospheric pressure plasma (NTP) in cancer research. Although increasing evidence suggests that NTP induces death of various cancer cell types, thus offering a promising alternative treatment, the mechanism of its therapeutic effect is little understood. In this study, we report for the first time that NTP led to apoptotic cell death in oral cavity squamous cell carcinoma (OSCC). Interestingly, NTP induced a sub-G(1) arrest in p53 wild-type OSCCs, but not in p53-mutated OSCCs. In addition, NTP increased the expression levels of ATM, p53 (Ser 15, 20 and 46), p21, and cyclin D1. A comet assay, Western blotting and immunocytochemistry of γH2AX suggested that NTP-induced apoptosis and sub-G(1) arrest were associated with DNA damage and the ATM/p53 signaling pathway in SCC25 cells. Moreover, ATM knockdown using siRNA attenuated the effect of NTP on cell death, sub-G(1) arrest and related signals. Taken together, these results indicate that NTP induced apoptotic cell death in p53 wild-type OSCCs through a novel mechanism involving DNA damage and triggering of sub-G(1) arrest via the ATM/p53 pathway. These findings show the therapeutic potential of NTP in OSCC.

  17. Resveratrol-3-O-glucuronide and resveratrol-4’-O-glucuronide reduce DNA strand breakage but not apoptosis in Jurkat T cells treated with camptothecin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resveratrol has been reported to inhibit or induce DNA damage depending upon the type of cell and experimental conditions. Dietary resveratrol is present in the body mostly as metabolites and little is known about the activities of these metabolic products. We evaluated physiologically obtainable ...

  18. Defining the Optimal Selenium Dose for Prostate Cancer Risk Reduction: Insights from the U-Shaped Relationship Between Selenium Status, DNA Damage, and Apoptosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our work in dogs has revealed a U-shaped dose response between selenium status and prostatic DNA damage that remarkably parallels the relationship between dietary selenium and prostate cancer risk in men, suggesting that more selenium is not necessarily better. Herein, we extend this canine work to ...

  19. Mechanisms of Neuronal Apoptosis In Vivo

    DTIC Science & Technology

    2004-02-01

    agents , radiation, viruses, and after seizures, trauma, limb amputation, and hypoxic-ischemia caused by cardiac arrest, stroke, asphyxiation, and...acid), and chemical warfare agents such as organophosphate compounds (soman) and mycotoxins (T-2 toxin). Acute neurological injury is also caused by...apoptosis Cells that have sustained DNA damage from reactive oxygen species (ROS) and other genotoxic agents undergo apoptosis by engaging molecular cascades

  20. Blockage of Autophagy in C6 Glioma Cells Enhanced Radiosensitivity Possibly by Attenuating DNA-PK-Dependent DSB Due to Limited Ku Nuclear Translocation and DNA Binding.

    PubMed

    Liu, C; He, W; Jin, M; Li, H; Xu, H; Liu, H; Yang, K; Zhang, T; Wu, G; Ren, J

    2015-01-01

    Glioblastoma multiforme (GBM) is the most lethal brain tumor and notorious for its resistance to ionizing radiation (IR). Recent evidence suggests that one possible mechanism that enables resistance to IR and protects cells against therapeutic stress is cellular autophagy. The molecular basis for this pro-survival function, however, remains elusive. Herein, we report a molecular mechanism by which IR-induced autophagy accelerates the repair of DNA double-strand breaks (DSB). We demonstrate that IR induces the accumulation of autophagosomes, which is accompanied by elevated expression of autophagyrelated genes beclin-1, atg5, atg7, and atg12. Beclin-1 knockdown impaired the induction of IR-mediated autophagy and significantly sensitized glioma cells to radiation therapy in vitro and in vivo. Furthermore, our data is the first to demonstrate that the radiosensitizing effect of beclin-1 knockdown may result from the disruption of nuclear translocation and DNA binding activity of Ku proteins and consequent attenuation of DSB repair. Our findings help advance our understanding of the molecular mechanisms underlying IR-induced autophagy and provide a promising adjunctive therapeutic strategy for the radiosensitization of malignant glioma.

  1. Between the Balkans and the Baltic: Phylogeography of a Common Vole Mitochondrial DNA Lineage Limited to Central Europe

    PubMed Central

    Stojak, Joanna; McDevitt, Allan D.; Herman, Jeremy S.; Kryštufek, Boris; Uhlíková, Jitka; Purger, Jenő J.; Lavrenchenko, Leonid A.; Searle, Jeremy B.; Wójcik, Jan M.

    2016-01-01

    The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential ‘northern glacial refugium’, i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe. PMID:27992546

  2. Between the Balkans and the Baltic: Phylogeography of a Common Vole Mitochondrial DNA Lineage Limited to Central Europe.

    PubMed

    Stojak, Joanna; McDevitt, Allan D; Herman, Jeremy S; Kryštufek, Boris; Uhlíková, Jitka; Purger, Jenő J; Lavrenchenko, Leonid A; Searle, Jeremy B; Wójcik, Jan M

    2016-01-01

    The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential 'northern glacial refugium', i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe.

  3. Isolation of cDNA clones specifying the fourth component of mouse complement and its isotype, sex-limited protein.

    PubMed Central

    Nonaka, M; Takahashi, M; Natsuume-Sakai, S; Nonaka, M; Tanaka, S; Shimizu, A; Honjo, T

    1984-01-01

    cDNA clones specific for the fourth component of mouse complement (C4) and its hormonally regulated isotype, sex-linked protein (Slp), were isolated using as a probe a 20-mer synthetic oligonucleotide corresponding to a known sequence of human C4 cDNA. Two types of clones, one specific for C4 (pFC4/10, with a 3.7 kilobase insert) and one specific for Slp (pFSlp/1, with a 4.7 kilobase insert), were isolated from liver cDNA libraries constructed from the Slp-producing FM mouse strain. The cDNA inserts of these clones shared 70% of the restriction sites determined. Only one type of clone was isolated from the Slp-negative DBA/1 strain; this type showed restriction maps indistinguishable from that of pFC4/10. pFC4/10 and pFSlp/1 displayed extensive homology: 94% nucleotide homology and 89% derived amino acid homology in the C4a region and 92% nucleotide homology and 89% derived amino acid homology in the thiol-ester region. An Arg-Gln-Lys-Arg sequence in the beta-alpha junction and a Cys-Ala-Glu-Gln sequence in the thiol-ester site were identified for both proteins. A remarkable divergency between C4 and Slp sequences was recognized in the region immediately following the C4a sequence. PMID:6208559

  4. Probing the rate-limiting step for intramolecular transfer of a transcription factor between specific sites on the same DNA molecule by (15)Nz-exchange NMR spectroscopy.

    PubMed

    Ryu, Kyoung-Seok; Tugarinov, Vitali; Clore, G Marius

    2014-10-15

    The kinetics of translocation of the homeodomain transcription factor HoxD9 between specific sites of the same or opposite polarities on the same DNA molecule have been studied by (15)Nz-exchange NMR spectroscopy. We show that exchange occurs by two facilitated diffusion mechanisms: a second-order intermolecular exchange reaction between specific sites located on different DNA molecules without the protein dissociating into free solution that predominates at high concentrations of free DNA, and a first-order intramolecular process involving direct transfer between specific sites located on the same DNA molecule. Control experiments using a mixture of two DNA molecules, each possessing only a single specific site, indicate that transfer between specific sites by full dissociation of HoxD9 into solution followed by reassociation is too slow to measure by z-exchange spectroscopy. Intramolecular transfer with comparable rate constants occurs between sites of the same and opposing polarity, indicating that both rotation-coupled sliding and hopping/flipping (analogous to geminate recombination) occur. The half-life for intramolecular transfer (0.5-1 s) is many orders of magnitude larger than the calculated transfer time (1-100 μs) by sliding, leading us to conclude that the intramolecular transfer rates measured by z-exchange spectroscopy represent the rate-limiting step for a one-base-pair shift from the specific site to the immediately adjacent nonspecific site. At zero concentration of added salt, the intramolecular transfer rate constants between sites of opposing polarity are smaller than those between sites of the same polarity, suggesting that hopping/flipping may become rate-limiting at very low salt concentrations.

  5. EWS Knockdown and Taxifolin Treatment Induced Differentiation and Removed DNA Methylation from p53 Promoter to Promote Expression of Puma and Noxa for Apoptosis in Ewing’s Sarcoma

    PubMed Central

    Hossain, Mohammad Motarab; Ray, Swapan Kumar

    2016-01-01

    Ewing’s sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. Malignant characteristics of Ewing’s sarcoma are correlated with expression of EWS oncogene. We achieved knockdown of EWS expression using a plasmid vector encoding EWS short hairpin RNA (shRNA) to increase anti-tumor mechanisms of taxifolin (TFL), a new flavonoid, in human Ewing’s sarcoma cells in culture and animal models. Immunofluorescence microscopy and flow cytometric analysis showed high expression of EWS in human Ewing’s sarcoma SK-N-MC and RD-ES cell lines. EWS shRNA plus TFL inhibited 80% cell viability and caused the highest decreases in EWS expression at mRNA and protein levels in both cell lines. Knockdown of EWS expression induced morphological features of differentiation. EWS shRNA plus TFL caused more alterations in molecular markers of differentiation than either agent alone. EWS shRNA plus TFL caused the highest decreases in cell migration with inhibition of survival, angiogenic and invasive factors. Knockdown of EWS expression was associated with removal of DNA methylation from p53 promoter, promoting expression of p53, Puma, and Noxa. EWS shRNA plus TFL induced the highest amounts of apoptosis with activation of extrinsic and intrinsic pathways in both cell lines in culture. EWS shRNA plus TFL also inhibited growth of Ewing’s sarcoma tumors in animal models due to inhibition of differentiation inhibitors and angiogenic and invasive factors and also induction of activation of caspase-3 for apoptosis. Collectively, knockdown of EWS expression increased various anti-tumor mechanisms of TFL in human Ewing’s sarcoma in cell culture and animal models. PMID:27547487

  6. FTY720 induces apoptosis in B16F10-NEX2 murine melanoma cells, limits metastatic development in vivo, and modulates the immune system

    PubMed Central

    Pereira, Felipe V.; Arruda, Denise C.; Figueiredo, Carlos R.; Massaoka, Mariana H.; Matsuo, Alisson L.; Bueno, Valquiria; Rodrigues, Elaine G.

    2013-01-01

    OBJECTIVE: Available chemotherapy presents poor control over the development of metastatic melanoma. FTY720 is a compound already approved by the Food and Drug Administration for the treatment of patients with multiple sclerosis. It has also been observed that FTY720 inhibits tumor growth in vivo (experimental models) and in vitro (animal and human tumor cells). The aim of this study was to evaluate the effects of FTY720 on a metastatic melanoma model and in tumor cell lines. METHODS: We analyzed FTY720 efficacy in vivo in a syngeneic murine metastatic melanoma model, in which we injected tumor cells intravenously into C57BL/6 mice and then treated the mice orally with the compound for 7 days. We also treated mice and human tumor cell lines with FTY720 in vitro, and cell viability and death pathways were analyzed. RESULTS: FTY720 treatment limited metastatic melanoma growth in vivo and promoted a dose-dependent decrease in the viability of murine and human tumor cells in vitro. Melanoma cells treated with FTY720 exhibited characteristics of programmed cell death, reactive oxygen species generation, and increased β-catenin expression. In addition, FTY720 treatment resulted in an immunomodulatory effect in vivo by decreasing the percentage of Foxp3+ cells, without interfering with CD8+ T cells or lymphocyte-producing interferon-gamma. CONCLUSION: Further studies are needed using FTY720 as a monotherapy or in combined therapy, as different types of cancer cells would require a variety of signaling pathways to be extinguished. PMID:23917669

  7. Local anesthetics induce human renal cell apoptosis.

    PubMed

    Lee, H Thomas; Xu, Hua; Siegel, Cory D; Krichevsky, Igor E

    2003-01-01

    Renal cell apoptosis contributes significantly to the pathogenesis of acute renal failure. Local anesthetics induce apoptosis in neuronal and lymphocytic cell lines. We examined the effects of chronic (48 h) local anesthetic treatment (lidocaine, bupivacaine and tetracaine) on human proximal tubular (HK-2) cells. Apoptosis induction was assessed by detecting poly(ADP)-ribose polymerase fragmentation, caspase activation, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining, DNA laddering and by cellular morphology. Cell death was quantified by measuring neutral red dye uptake and lactate dehydrogenase released into the cell culture medium. All 3 local anesthetics caused concentration-dependent cell death, induced HK-2 cell apoptosis and potentiated TNF-alpha induced apoptosis. Local anesthetics induced HK-2 cell apoptosis by activation of caspases 3, 6, 7, 8 and 9. ZVAD-fmk, a pan-caspase inhibitor, blocked the local anesthetic induced HK-2 cell apoptosis. Local anesthetics also inhibited the activities of anti-apoptotic kinases protein kinase B (Akt) and extracellular signal regulated mitrogen-activated protein kinase. Local anesthetic's pro-apoptotic effects are independent of sodium channel inhibition as tetrodotoxin, a selective voltage-gated sodium channel blocker, failed to mimic local anesthetic-mediated induction or potentiation of HK-2 cell apoptosis. We conclude that local anesthetics induce human renal cell apoptotic signaling by caspase activation and via inhibition of pro-survival signaling pathways.

  8. DNA cyclization and looping in the wormlike limit: Normal modes and the validity of the harmonic approximation.

    PubMed

    Giovan, Stefan M; Hanke, Andreas; Levene, Stephen D

    2015-09-01

    For much of the last three decades, Monte Carlo-simulation methods have been the standard approach for accurately calculating the cyclization probability, J, or J factor, for DNA models having sequence-dependent bends or inhomogeneous bending flexibility. Within the last 10 years approaches based on harmonic analysis of semi-flexible polymer models have been introduced, which offer much greater computational efficiency than Monte Carlo techniques. These methods consider the ensemble of molecular conformations in terms of harmonic fluctuations about a well-defined elastic-energy minimum. However, the harmonic approximation is only applicable for small systems, because the accessible conformation space of larger systems is increasingly dominated by anharmonic contributions. In the case of computed values of the J factor, deviations of the harmonic approximation from the exact value of J as a function of DNA length have not been characterized. Using a recent, numerically exact method that accounts for both anharmonic and harmonic contributions to J for wormlike chains of arbitrary size, we report here the apparent error that results from neglecting anharmonic behavior. For wormlike chains having contour lengths less than four times the persistence length, the error in J arising from the harmonic approximation is generally small, amounting to free energies less than the thermal energy, kB T. For larger systems, however, the deviations between harmonic and exact J values increase approximately linearly with size.

  9. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells.

    PubMed

    Kumar, Devbrat; Basu, Soumya; Parija, Lucy; Rout, Deeptimayee; Manna, Sanjeet; Dandapat, Jagneshwar; Debata, Priya Ranjan

    2016-07-01

    Cervical cancer and precancerous lesions of the cervix continue to be a global health issue, and the medication for the treatment for chronic HPV infection so far has not been effective. Potential anticancer and anti HPV activities of two known phytochemicals, Curcumin and Ellagic acid were evaluated in HeLa cervical cancer cells. Curcumin is a natural compound found in the root of Curcuma longa plant and Ellagic acid a polyphenol found in fruits of strawberries, raspberries and walnuts. The combination of Curcumin and Ellagic acid at various concentrations showed better anticancer properties than either of the drug when used alone as evidenced by MTT assay. Besides this, Curcumin and Ellagic acid also restore p53, induce ROS formation and DNA damage. Mechanistic study further indicated that Curcumin and Ellagic acid show anti-HPV activity as evidenced by decrease in the HPV E6 oncoprotein on HeLa cells.

  10. miR-326 targets antiapoptotic Bcl-xL and mediates apoptosis in human platelets.

    PubMed

    Yu, Shifang; Huang, Huicong; Deng, Gang; Xie, Zuoting; Ye, Yincai; Guo, Ruide; Cai, Xuejiao; Hong, Junying; Qian, Dingliang; Zhou, Xiangjing; Tao, Zhihua; Chen, Bile; Li, Qiang

    2015-01-01

    Platelets play crucial roles in hemostasis, thrombosis, wound healing, inflammation, angiogenesis, and tumor metastases. Because they are anucleated blood cells, platelets lack nuclear DNA, but they do contain mitochondrial DNA, which plays a key role in regulating apoptosis. Recent evidence has suggested that miRNAs are also involved in regulating gene expression and apoptosis in platelets. Our previous study showed that the expression of miR-326 increased visibly when apheresis platelets were stored in vitro. The antiapoptotic Bcl-2 family regulator Bcl-xL has been identified as a putative target of miR-326. In the present study, dual reporter luciferase assays were used to characterize the function of miR-326 in the regulation of the apoptosis of platelet cells. These assays demonstrated that miR-326 bound to the 3'-translated region of Bcl-xL. To directly assess the functional effects of miR-326 expression, levels of Bcl-xL and the apoptotic status of stored apheresis platelets were measured after transfection of miR-326 mimic or inhibitor. Results indicated that miR-326 inhibited Bcl-xL expression and induced apoptosis in stored platelets. Additionally, miR-326 inhibited Bcl-2 protein expression and enhanced Bak expression, possibly through an indirect mechanism, though there was no effect on the expression of Bax. The effect of miR-326 appeared to be limited to apoptosis, with no significant effect on platelet activation. These results provide new insight into the molecular mechanisms affecting differential platelet gene regulation, which may increase understanding of the role of platelet apoptosis in multiple diseases.

  11. A form of cell death with some features resembling apoptosis in the amitochondrial unicellular organism Trichomonas vaginalis.

    PubMed

    Chose, Olivier; Noël, Christophe; Gerbod, Delphine; Brenner, Catherine; Viscogliosi, Eric; Roseto, Alberto

    2002-05-15

    One of hallmarks of apoptosis is the degradation and concomitant compaction of chromatin. It is assumed that caspases and caspase-independent pathways are rate limiting for the development of nuclear apoptosis. The caspase-independent pathway involves apoptosis-inducing factor (AIF) and leads to DNA fragmentation and peripheral chromatin condensation. Both pathways are the result of activation of death signals that the mitochondrion receives, integrates, and responds to with the release of various molecules (e.g., cytochrome c and AIF). In fact, both pathways have in common the final point of the DNA fragmentation and the mitochondrial origin of molecules that initiate the apoptotic events. Here, we examine the question of whether apoptosis or apoptotic-like processes exist in a unicellular organism that lacks mitochondria. We herein show that a form of cell death with some features resembling apoptosis is indeed present in Trichomonas vaginalis. Characterization of morphological aspects implicated in this event together with the preliminary biochemical data provided may lead to new insight about the evolutionary relationships between the different forms of programmed cell death identified so far.

  12. C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes.

    PubMed

    Khan, Mahmood; Varadharaj, Saradhadevi; Shobha, Jagdish C; Naidu, Madireddi U; Parinandi, Narasimham L; Kutala, Vijay Kumar; Kuppusamy, Periannan

    2006-01-01

    Doxorubicin (DOX), a potent antineoplastic agent, poses limitations for its therapeutic use due to the associated risk of developing cardiomyopathy and congestive heart failure. The cardiotoxicity of doxorubicin is associated with oxidative stress and apoptosis. We have recently shown that Spirulina, a blue-green alga with potent antioxidant properties, offered significant protection against doxorubicin-induced cardiotoxicity in mice. The aim of the present study was to establish the possible protective role of C-phycocyanin, one of the active ingredients of Spirulina, against doxorubicin-induced oxidative stress and apoptosis. The study was carried out using cardiomyocytes isolated from adult rat hearts. Doxorubicin significantly enhanced the formation of reactive oxygen species (ROS) in cells as measured by the 2',7'-dichlorodihydrofluorescein diacetate and dihydroethidium fluorescence. The doxorubicin-induced reactive oxygen species formation was significantly attenuated in cells pretreated with C-phycocyanin. It was further observed that the doxorubicin-induced DNA fragmentation and apoptosis, as assayed by TUNEL assay and flow cytometry coupled with BrdU-FITC/propidium iodide staining, were markedly attenuated by C-phycocyanin. C-phycocyanin also significantly attenuated the doxorubicin-induced increase in the expression of Bax protein, release of cytochrome c, and increase in the activity of caspase-3 in cells. In summary, C-phycocyanin ameliorated doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes. This study further supports the crucial role of the antioxidant nature of C-phycocyanin in its cardioprotection against doxorubicin-induced oxidative stress and apoptosis.

  13. Detection and quantification of apoptosis in primary cells using Taqman® protein assay.

    PubMed

    Pfister, Christina; Pfrommer, Heike; Tatagiba, Marcos S; Roser, Florian

    2015-01-01

    There are several methods to detect apoptosis using cleaved caspase-3 and each harbors its own advantages and disadvantages. When primary cell cultures are used, the disadvantages of the standard methods can make apoptosis detection difficult due to their slow growth rate and replicative senescence, thereby limiting the available cell number and experiment time span. In this chapter, we describe apoptosis detection and quantification using an innovative method named TaqMan(®) protein assay. TaqMan(®) protein assay uses antibodies and proximity ligation for quantitative real-time PCR. Biotinylated antibodies are labeled with oligonucleotides. When the labeled antibodies bind in close proximity, the oligonucleotides are connected using DNA ligase. The ligation product is amplified and detected using Taqman(®) based Real-Time PCR. Using this technique, we can not only detect apoptosis with a 1,000-fold higher sensitivity than western blot, but we can also exactly quantify cleaved caspase-3 expression. Thereby apoptosis can be determined and quantified in a fast reliable manner.

  14. Synergistic Effects Induced by a Low Dose of Diesel Particulate Extract and Ultraviolet-A in Caenorhabditis elegans: DNA Damage-Triggered Germ Cell Apoptosis

    PubMed Central

    2015-01-01

    Diesel exhaust has been classified as a potential carcinogen and is associated with various health effects. A previous study showed that the doses for manifesting the mutagenetic effects of diesel exhaust could be reduced when coexposed with ultraviolet-A (UVA) in a cellular system. However, the mechanisms underlying synergistic effects remain to be clarified, especially in an in vivo system. In the present study, using Caenorhabditis elegans (C. elegans) as an in vivo system we studied the synergistic effects of diesel particulate extract (DPE) plus UVA, and the underlying mechanisms were dissected genetically using related mutants. Our results demonstrated that though coexposure of wild type worms at young adult stage to low doses of DPE (20 μg/mL) plus UVA (0.2, 0.5, and 1.0 J/cm2) did not affect worm development (mitotic germ cells and brood size), it resulted in a significant induction of germ cell death. Using the strain of hus-1::gfp, distinct foci of HUS-1::GFP was observed in proliferating germ cells, indicating the DNA damage after worms were treated with DPE plus UVA. Moreover, the induction of germ cell death by DPE plus UVA was alleviated in single-gene loss-of-function mutations of core apoptotic, checkpoint HUS-1, CEP-1/p53, and MAPK dependent signaling pathways. Using a reactive oxygen species (ROS) probe, it was found that the production of ROS in worms coexposed to DPE plus UVA increased in a time-dependent manner. In addition, employing a singlet oxygen (1O2) trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron spin resonance analysis, we demonstrated the increased 1O2 production in worms coexposed to DPE plus UVA. These results indicated that UVA could enhance the apoptotic induction of DPE at low doses through a DNA damage-triggered pathway and that the production of ROS, especially 1O2, played a pivotal role in initiating the synergistic process. PMID:24841043

  15. Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals.

    PubMed

    Chaube, Shail K; Shrivastav, Tulsidas G; Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ajai K

    2014-01-01

    Neem (Azadirachta indica L.) leaf has been widely used in ayurvedic system of medicine for fertility regulation for a long time. The molecular mechanism by which neem leaf regulates female fertility remains poorly understood. Animal studies suggest that aqueous neem leaf extract (NLE) induces reactive oxygen species (ROS) - mediated granulosa cell apoptosis. Granulosa cell apoptosis deprives oocytes from nutrients, survival factors and cell cycle proteins required for the achievement of meiotic competency of follicular oocytes prior to ovulation. Under this situation, follicular oocyte becomes more susceptible towards apoptosis after ovulation. The increased level of hydrogen peroxide (H2O2) inside the follicular fluid results in the transfer of H2O2 from follicular fluid to the oocyte. The increased level of H2O2 induces p53 activation and over expression of Bax protein that modulates mitochondrial membrane potential and trigger cytochrome c release. The increased cytosolic cytochrome c level induces caspase-9 and caspase-3 activities that trigger destruction of structural and specific proteins leading to DNA fragmentation and thereby oocyte apoptosis. Based on these animal studies, we propose that NLE induces generation of ROS and mitochondria-mediated apoptosis both in granulosa cells as well as in follicular oocyte. The induction of apoptosis deteriorates oocyte quality and thereby limits reproductive outcome in mammals.

  16. 3-β-Εrythrodiol isolated from Conyza canadensis inhibits MKN‑45 human gastric cancer cell proliferation by inducing apoptosis, cell cycle arrest, DNA fragmentation, ROS generation and reduces tumor weight and volume in mouse xenograft model.

    PubMed

    Liu, Kai; Qin, Yue-Hong; Yu, Jian-Yong; Ma, Heng; Song, Xi-Lin

    2016-04-01

    The objective of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of 3-β-erythrodiol, a plant-derived triterpene against MKN-45 human gastric cancer cells. In addition, effects on cellular morphology, cell cycle phase distribution, DNA fragmentation, and ROS generation were also elucidated in the current research work. Cytotoxic activity of 3-β-erythrodiol was demonstrated by MTT cell viability and LDH assay. Cellular morphological study was carried out using phase contrast, fluorescence and scanning electron microscopy. Cell cycle analysis was evaluated by flow cytometry and gel electrophoresis was used to evaluate DNA fragmentation pattern. The results of the present study revealed that 3-β-erythrodiol induced dose-dependent as well as time-dependent anticancer effects in MKN-45 gastric cancer cells. Cellular morphological changes in MKN-45 cells as indicated by fluorescence and scanning electron microscopy were induced by 3-β-erythrodiol. This triterpene induced both early and late apoptotic features in these cancer cells. 3-β-Erythrodiol treatment led to sub-G1 cell cycle arrest with a corresponding decrease in S-phase cells and an increase in G2/M phase cells. DNA fragments were evident in gel electrophoresis experiment following 3-β-erythrodiol treatment. It was observed that 0.50 and 1.0 µg/g 3-β-erythrodiol injection reduced the tumor weight from 1.4 g in PBS-treated group (control) to 0.61 and 0.22 g, respectively. Similarly, 0.50 and 1.0 µg/g 3-β-erythrodiol injection reduced the tumor volume from 1.5 cm3 in PBS-treated group (control) to 0.91 and 0.31 cm3, respectively. The present investigation indicates that 3-β-erythrodiol exerts anti-proliferative effects in human gastric cancer by inducing early and late apoptosis, cell cycle arrest, and ROS generation. It also decreased the tumor volume and tumor weight in male Balb/c nude mice.

  17. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  18. [Apoptosis modulation by human papillomavirus].

    PubMed

    Jave-Suárez, Luis Felipe; Ratkovich-González, Sarah; Olimón-Andalón, Vicente; Aguilar-Lemarroy, Adriana

    2015-01-01

    One of the most important processes to keep the homeostasis in organisms is the apoptosis, also called programmed cell death. This mechanism works through two pathways: The intrinsic or mitochondrial, which responds to DNA damage and extern agents like UV radiation; and the extrinsic or receptor-mediated, which binds to their ligands to initiate the apoptotic trail. The evasion of apoptosis is one of the main causes of cellular transformation to malignity. Many viruses had shown capacity to modify the apoptotic process; among them is the human papillomavirus, which, by means of its oncoproteins, interferes in pathways, reacting with the receptors and molecules and participating in the death mechanism. This creates ideal conditions for cancer development.

  19. Molecular mechanisms of UV-induced apoptosis.

    PubMed

    Kulms, D; Schwarz, T

    2000-10-01

    Sunburn cells, single standing cells with typical morphologic features occurring in UV-exposed skin, have been recognized as keratinocytes undergoing apoptosis following UV irradiation. Induction of apoptosis following UV exposure appears to be a protective mechanism, getting rid off severely damaged cells that bear the risk of malignant transformation. UV-mediated apoptosis is a highly complex process in which different molecular pathways are involved. These include DNA damage, activation of the tumor suppressor gene p53, triggering of cell death receptors either directly by UV or by autocrine release of death ligands, mitochondrial damage and cytochrome C release. Detailed knowledge about the interplay between these pathways will increase our understanding of photocarcinogenesis. This review briefly discusses recent findings concerning the molecular mechanisms underlying UV-induced apoptosis.

  20. Phytosphingosine induced mitochondria-involved apoptosis.

    PubMed

    Nagahara, Yukitoshi; Shinomiya, Takahisa; Kuroda, Sachiko; Kaneko, Naoki; Nishio, Reiji; Ikekita, Masahiko

    2005-02-01

    Sphingolipids are putative intracellular signal mediators in cell differentiation, growth inhibition, and apoptosis. Sphingosine, sphinganine, and phytosphingosine are structural analogs of sphingolipids and are classified as long-chain sphingoid bases. Sphingosine and sphinganine are known to play important roles in apoptosis. In the present study, we examined the phytosphingosine-induced apoptosis mechanism, focusing on mitochondria in human T-cell lymphoma Jurkat cells. Phytosphingosine significantly induced chromatin DNA fragmentation, which is a hallmark of apoptosis. Enzymatic activity measurements of caspases revealed that caspase-3 and caspase-9 are activated in phytosphingosine-induced apoptosis, but there is little activation of caspase-8 suggesting that phytosphingosine influences mitochondrial functions. In agreement with this hypothesis, a decrease in DeltaPsi(m) and the release of cytochrome c to the cytosol were observed upon phytosphingosine treatment. Furthermore, overexpression of mitochondria-localized anti-apoptotic protein Bcl-2 prevented phytosphingosine apoptotic stimuli. Western blot assays revealed that phytosphingosine decreases phosphorylated Akt and p70S6k. Dephosphorylation of Akt was partially inhibited by protein phosphatase inhibitor OA and OA attenuated phytosphingosine-induced apoptosis. Moreover, using a cell-free system, phytosphingosine directly reduced DeltaPsi(m). These results indicate that phytosphingosine perturbs mitochondria both directly and indirectly to induce apoptosis.

  1. Apoptosis in human chorionic villi and decidua in normal and ectopic pregnancy.

    PubMed

    Kokawa, K; Shikone, T; Nakano, R

    1998-01-01

    To investigate possible effects of implantation on apoptosis, we examined the cleavage of DNA in human chorionic villi and decidua in intrauterine and ectopic pregnancy. Very limited but detectable cleavage of DNA was recognized in the chorionic villi and decidua in normal pregnancy. A ladder pattern, characteristic of the apoptotic breakdown of DNA, was present in the villi in tubal pregnancy. High molecular weight DNA was predominant in the decidua in tubal pregnancy. Quantitative analysis of low molecular weight fragments of DNA revealed a significant increase in the villous tissue, together with a significant decrease in the decidual tissue, in tubal pregnancy as compared to those in normal pregnancy. An analysis in situ revealed that apoptotic cells were predominant in the syncytiotrophoblast in tubal pregnancy. In decidual tissue, labelled cells were occasionally seen in normal pregnancy, and their numbers decreased in tubal pregnancy. The present study demonstrates that apoptosis occurs in the villi, but not in the decidua in tubal pregnancy, unlike the situation in normal pregnancy. Our results suggest that the implantation site might affect the occurrence of apoptotic changes in early pregnancy of humans.

  2. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukaemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation.

    PubMed

    Blum, Kristie A; Liu, Zhongfa; Lucas, David M; Chen, Ping; Xie, Zhiliang; Baiocchi, Robert; Benson, Donald M; Devine, Steven M; Jones, Jeffrey; Andritsos, Leslie; Flynn, Joseph; Plass, Christoph; Marcucci, Guido; Chan, Kenneth K; Grever, Michael R; Byrd, John C

    2010-07-01

    Targeting aberrant DNA hypermethylation in chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma (NHL) with decitabine may reverse epigenetic silencing in B-cell malignancies. Twenty patients were enrolled in two phase I trials to determine the minimum effective pharmacological dose of decitabine in patients with relapsed/refractory CLL (n = 16) and NHL (n = 4). Patients received 1-3 cycles of decitabine. Dose-limiting toxicity (DLT) was observed in 2 of 4 CLL and 2 of 2 NHL patients receiving decitabine at 15 mg/m(2) per d days 1-10, consisting of grade 3-4 thrombocytopenia and hyperbilirubinaemia. Six patients with CLL received decitabine at 10 mg/m(2) per d days 1-10 without DLT; however, re-expression of methylated genes or changes in global DNA methylation were not observed. Therefore, a 5-day decitabine schedule was examined. With 15 mg/m(2) per d decitabine days 1-5, DLT occurred in 2 of 6 CLL and 2 of 2 NHL patients, consisting of grade 3-4 neutropenia, thrombocytopenia, and febrile neutropenia. Eight patients had stable disease. In 17 patients, there were no significant changes in genome-wide methylation or in target gene re-expression. In conclusion, dose-limiting myelosuppression and infectious complications prevented dose escalation of decitabine to levels associated with changes in global methylation or gene re-expression in CLL and NHL.

  3. Endoplasmic reticulum stress and IRE-1 signaling cause apoptosis in colon cancer cells in response to andrographolide treatment

    PubMed Central

    Banerjee, Aditi; Ahmed, Hafiz; Yang, Peixin; Czinn, Steven J.; Blanchard, Thomas G.

    2016-01-01

    The plant metabolite andrographolide induces cell cycle arrest and apoptosis in cancer cells. The mechanism(s) by which andrographolide induces apoptosis however, have not been elucidated. The present study was performed to determine the molecular events that promote apoptosis in andrographolide treated cells using T84, HCT116 and COLO 205 colon cancer cell lines. Andrographolide was determined to limit colony formation and Ki67 expression, alter nuclear morphology, increase cytoplasmic histone-associated-DNA-fragments, and increase cleaved caspase-3 levels. Andrographolide also induced significantly higher expression of endoplasmic reticulum (ER) stress proteins GRP-78 and IRE-1 by 48 h but not PERK or ATF6. Apoptosis signaling molecules BAX, spliced XBP-1 and CHOP were also significantly increased. Moreover, chemical inhibition of ER stress or IRE-1 depletion with siRNA in andrographolide treated cells significantly limited expression of IRE-1 and CHOP as determined by immunofluorescence staining, real time PCR, or immunobloting. This was accompanied by a decreased BAX/Bcl-2 ratio. Andrographolide significantly promotes cancer cell death compared to normal cells. These data demonstrate that andrographolide associated ER stress contributes to apoptosis through the activation of a pro-apoptotic GRP-78/IRE-1/XBP-1/CHOP signaling pathway. PMID:27166181

  4. Mechanism of Hepatocyte Apoptosis

    PubMed Central

    Cao, Lei; Quan, Xi-Bing; Zeng, Wen-Jiao; Yang, Xiao-Ou; Wang, Ming-Jie

    2016-01-01

    Hepatocyte apoptosis plays important roles in both the removal of external microorganisms and the occurrence and development of liver diseases. Different conditions, such as virus infection, fatty liver disease, hepatic ischemia reperfusion, and drug-induced liver injury, are accompanied by hepatocyte apoptosis. This review summarizes recent research on the mechanism of hepatocyte apoptosis involving the classical extrinsic and intrinsic apoptotic pathways, endoplasmic reticulum stress, and oxidative stress-induced apoptosis. We emphasized the major causes of apoptosis according to the characteristics of different liver diseases. Several concerns regarding future research and clinical application are also raised. PMID:28058033

  5. Evaluation of Apoptosis in Immunotoxicity Testing

    PubMed Central

    Nagarkatti, Mitzi; Rieder, Sadiye Amcaoglu; Vakharia, Dilip; Nagarkatti, Prakash S.

    2014-01-01

    Immunotoxicity testing is important in determining the toxic effects of chemical substances, medicinal products, airborne pollutants, cosmetics, medical devices, and food additives. The immune system of the host is a direct target of these toxicants, and the adverse effects include serious health complications such as susceptibility to infections, cancer, allergic reactions, and autoimmune diseases. One way to investigate the harmful effects of different chemicals is to study apoptosis in immune cell populations. Apoptosis is defined as the programmed cell death, and in general, this process helps in development and maintains homeostasis. However, in the case of an insult by a toxicant, apoptosis of the immune cells can lead to immunosuppression resulting in the development of cancer and the inability to fight infections. Apoptosis is characterized by cell shrinkage, nuclear condensation, changes in cell membrane and mitochondria, DNA fragmentation into 200 base oligomers, and protein degradation by caspases. Various methods are employed in order to investigate apoptosis. These methods include direct measurement of apoptotic cells with flow cytometry and in situ labeling, as well as RNA, DNA, and protein assays that are indicative of apoptotic molecules. PMID:19967519

  6. Evaluation of apoptosis in immunotoxicity testing.

    PubMed

    Nagarkatti, Mitzi; Rieder, Sadiye Amcaoglu; Vakharia, Dilip; Nagarkatti, Prakash S

    2010-01-01

    Immunotoxicity testing is important in determining the toxic effects of chemical substances, medicinal products, airborne pollutants, cosmetics, medical devices, and food additives. The immune system of the host is a direct target of these toxicants, and the adverse effects include serious health complications such as susceptibility to infections, cancer, allergic reactions, and autoimmune diseases. One way to investigate the harmful effects of different chemicals is to study apoptosis in immune cell populations. Apoptosis is defined as the programmed cell death, and in general, this process helps in development and maintains homeostasis. However, in the case of an insult by a toxicant, apoptosis of the immune cells can lead to immunosuppression resulting in the development of cancer and the inability to fight infections. Apoptosis is characterized by cell shrinkage, nuclear condensation, changes in cell membrane and mitochondria, DNA fragmentation into 200 base oligomers, and protein degradation by caspases. Various methods are employed in order to investigate apoptosis. These methods include direct measurement of apoptotic cells with flow cytometry and in situ labeling, as well as RNA, DNA, and protein assays that are indicative of apoptotic molecules.

  7. Pre-Columbian origins of Native American dog breeds, with only limited replacement by European dogs, confirmed by mtDNA analysis

    PubMed Central

    van Asch, Barbara; Zhang, Ai-bing; Oskarsson, Mattias C. R.; Klütsch, Cornelya F. C.; Amorim, António; Savolainen, Peter

    2013-01-01

    Dogs were present in pre-Columbian America, presumably brought by early human migrants from Asia. Studies of free-ranging village/street dogs have indicated almost total replacement of these original dogs by European dogs, but the extent to which Arctic, North and South American breeds are descendants of the original population remains to be assessed. Using a comprehensive phylogeographic analysis, we traced the origin of the mitochondrial DNA lineages for Inuit, Eskimo and Greenland dogs, Alaskan Malamute, Chihuahua, xoloitzcuintli and perro sín pelo del Peru, by comparing to extensive samples of East Asian (n = 984) and European dogs (n = 639), and previously published pre-Columbian sequences. Evidence for a pre-Columbian origin was found for all these breeds, except Alaskan Malamute for which results were ambigous. No European influence was indicated for the Arctic breeds Inuit, Eskimo and Greenland dog, and North/South American breeds had at most 30% European female lineages, suggesting marginal replacement by European dogs. Genetic continuity through time was shown by the sharing of a unique haplotype between the Mexican breed Chihuahua and ancient Mexican samples. We also analysed free-ranging dogs, confirming limited pre-Columbian ancestry overall, but also identifying pockets of remaining populations with high proportion of indigenous ancestry, and we provide the first DNA-based evidence that the Carolina dog, a free-ranging population in the USA, may have an ancient Asian origin. PMID:23843389

  8. Pre-Columbian origins of Native American dog breeds, with only limited replacement by European dogs, confirmed by mtDNA analysis.

    PubMed

    van Asch, Barbara; Zhang, Ai-bing; Oskarsson, Mattias C R; Klütsch, Cornelya F C; Amorim, António; Savolainen, Peter

    2013-09-07

    Dogs were present in pre-Columbian America, presumably brought by early human migrants from Asia. Studies of free-ranging village/street dogs have indicated almost total replacement of these original dogs by European dogs, but the extent to which Arctic, North and South American breeds are descendants of the original population remains to be assessed. Using a comprehensive phylogeographic analysis, we traced the origin of the mitochondrial DNA lineages for Inuit, Eskimo and Greenland dogs, Alaskan Malamute, Chihuahua, xoloitzcuintli and perro sín pelo del Peru, by comparing to extensive samples of East Asian (n = 984) and European dogs (n = 639), and previously published pre-Columbian sequences. Evidence for a pre-Columbian origin was found for all these breeds, except Alaskan Malamute for which results were ambigous. No European influence was indicated for the Arctic breeds Inuit, Eskimo and Greenland dog, and North/South American breeds had at most 30% European female lineages, suggesting marginal replacement by European dogs. Genetic continuity through time was shown by the sharing of a unique haplotype between the Mexican breed Chihuahua and ancient Mexican samples. We also analysed free-ranging dogs, confirming limited pre-Columbian ancestry overall, but also identifying pockets of remaining populations with high proportion of indigenous ancestry, and we provide the first DNA-based evidence that the Carolina dog, a free-ranging population in the USA, may have an ancient Asian origin.

  9. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity.

    PubMed

    Hoskisson, Paul A; Sumby, Paul; Smith, Margaret C M

    2015-03-01

    The phage growth limitation system of Streptomyces coelicolor A3(2) is an unusual bacteriophage defence mechanism. Progeny ϕC31 phage from an initial infection are thought to be modified such that subsequent infections are attenuated in a Pgl(+) host but normal in a Pgl(-) strain. Earlier work identified four genes required for phage resistance by Pgl. Here we demonstrate that Pgl is an elaborate and novel phage restriction system that, in part, comprises a toxin/antitoxin system where PglX, a DNA methyltransferase is toxic in the absence of a functional PglZ. In addition, the ATPase activity of PglY and a protein kinase activity in PglW are shown to be essential for phage resistance by Pgl. We conclude that on infection of a Pgl(+) cell by bacteriophage ϕC31, PglW transduces a signal, probably via phosphorylation, to other Pgl proteins resulting in the activation of the DNA methyltransferase, PglX and this leads to phage restriction.

  10. ΔNp63 activates the Fanconi anemia DNA repair pathway and limits the efficacy of cisplatin treatment in squamous cell carcinoma.

    PubMed

    Bretz, Anne Catherine; Gittler, Miriam P; Charles, Joël P; Gremke, Niklas; Eckhardt, Ines; Mernberger, Marco; Mandic, Robert; Thomale, Jürgen; Nist, Andrea; Wanzel, Michael; Stiewe, Thorsten

    2016-04-20

    TP63, a member of the p53 gene family gene, encodes the ΔNp63 protein and is one of the most frequently amplified genes in squamous cell carcinomas (SCC) of the head and neck (HNSCC) and lungs (LUSC). Using an epiallelic series of siRNAs with intrinsically different knockdown abilities, we show that the complete loss of ΔNp63 strongly impaired cell proliferation, whereas partial ΔNp63 depletion rendered cells hypersensitive to cisplatin accompanied by an accumulation of DNA damage. Expression profiling revealed wide-spread transcriptional regulation of DNA repair genes and in particular Fanconi anemia (FA) pathway components such as FANCD2 and RAD18 - known to be crucial for the repair of cisplatin-induced interstrand crosslinks. In SCC patients ΔNp63 levels significantly correlate with FANCD2 and RAD18 expression confirming ΔNp63 as a key activator of the FA pathway in vivo Mechanistically, ΔNp63 bound an upstream enhancer of FANCD2 inactive in primary keratinocytes but aberrantly activated by ΔNp63 in SCC. Consistently, depletion of FANCD2 sensitized to cisplatin similar to depletion of ΔNp63. Together, our results demonstrate that ΔNp63 directly activates the FA pathway in SCC and limits the efficacy of cisplatin treatment. Targeting ΔNp63 therefore would not only inhibit SCC proliferation but also sensitize tumors to chemotherapy.

  11. Limited DNA methylation variation and the transcription of MET1 and DDM1 in the genus Chrysanthemum (Asteraceae): following the track of polyploidy

    PubMed Central

    Wang, Haibin; Qi, Xiangyu; Chen, Sumei; Fang, Weimin; Guan, Zhiyong; Teng, Nianjun; Liao, Yuan; Jiang, Jiafu; Chen, Fadi

    2015-01-01

    Polyploidy has been recognized as a widespread and common phenomenon among flowering plants. DNA-5′-CCGG site cytosine methylation (C-methylation) is one of the major and immediate epigenetic responses of the plant genome. Elucidating the ways in which altered C-methylation patterns, either at the whole genomic level or at specific sites can affect genome stability in polyploidy will require substantial additional investigation. Methylation sensitive amplification polymorphism profiling was used to evaluate variation in C-methylation among a set of 20 Chrysanthemum species and their close relatives of varying ploidy levels from diploid to decaploid. The range in relative C-methylation level was within 10%, and there was no significant difference neither between different ploidy levels nor between different species in the same ploidy level (U-values < 1.96). The transcript abundances of MET1 and DDM1 genes, which both involved in the regulation of C-methylation at CpG sites, were enhanced with increased ploidy level, but only MET1 was positively correlated with the nuclear DNA content. Considering the key role and efficiency of MET1 in maintaining CpG methylation, the limited variation observed with respect to C-methylation may reflect a balance between the increased activity of MET1 in the higher ploidy genomes and the larger number of CpG dinucleotide sites available for methylation. PMID:26379692

  12. Apoptosis as a Mechanism for Liver Disease Progression

    PubMed Central

    Guicciardi, Maria Eugenia; Gores, Gregory J.

    2011-01-01

    Hepatocyte injury is ubiquitous in clinical practice, and the mode of cell death associated with this injury is often apoptosis, especially by death receptors. Information from experimental systems demonstrates that hepatocyte apoptosis is sufficient to cause liver hepatic fibrogenesis. The mechanisms linking hepatocyte apoptosis to hepatic fibrosis remain incompletely understood, but likely relate to engulfment of apoptotic bodies by professional phagocytic cells and stellate cells, and release of mediators by cells undergoing apoptosis. Inhibition of apoptosis with caspase inhibitors has demonstrated beneficial effects in murine models of hepatic fibrosis. Recent studies implicating Toll-like receptor 9 (TLR9) in liver injury and fibrosis are also of particular interest. Engulfment of apoptotic bodies is one mechanism by which the TLR9 ligand (CpG DNA motifs) could be delivered to this intracellular receptor. These concepts suggest therapy focused on interrupting the cellular mechanisms linking apoptosis to fibrosis would be useful in human liver diseases. PMID:20960379

  13. Optimizing Infant HIV Diagnosis in Resource-Limited Settings: Modeling the Impact of HIV DNA PCR Testing at Birth

    PubMed Central

    Chiu, Alexander; Modi, Surbhi; Rivadeneira, Emilia D.; Koumans, Emilia H.

    2017-01-01

    Background Early antiretroviral therapy (ART) initiation in HIV-infected infants significantly improves survival but is often delayed in resource-limited settings. Adding HIV testing of infants at birth to the current recommendation of testing at age 4–6 weeks may improve testing rates and decrease time to ART initiation. We modeled the benefit of adding HIV testing at birth to the current 6-week testing algorithm. Methods Microsoft Excel was used to create a decision-tree model of the care continuum for the estimated 1,400,000 HIV-infected women and their infants in sub-Saharan Africa in 2012. The model assumed average published rates for facility births (42.9%), prevention of mother-to-child HIV transmission utilization (63%), mother-to-child-transmission rates based on prevention of mother-to-child HIV transmission regimen (5%–40%), return of test results (41%), enrollment in HIV care (52%), and ART initiation (54%). We conducted sensitivity analyses to model the impact of key variables and applied the model to specific country examples. Results Adding HIV testing at birth would increase the number of infants on ART by 204% by age 18 months. The greatest increase is seen in early ART initiations (543% by age 3 months). The increase would lead to a corresponding increase in survival at 12 months of age, with 5108 fewer infant deaths (44,550, versus 49,658). Conclusion Adding HIV testing at birth has the potential to improve the number and timing of ART initiation of HIV-infected infants, leading to a decrease in infant mortality. Using this model, countries should investigate a combination of HIV testing at birth and during the early infant period. PMID:27792684

  14. X-ray-induced cell death: Apoptosis and necrosis

    SciTech Connect

    Nakano, Hisako; Shinohara, Kunio

    1994-10-01

    X-ray-induced cell death in MOLT-4N1, a subclone of MOLT-4 cells, and M10 cells was studied with respect to their modes of cell death, apoptosis and necrosis. MOLT-4N1 cells showed radiosensitivity similar to that of M10 cells, a radiosensitive mutant of L5178Y, as determined by the colony formation assay. Analysis of cell size demonstrated that MOLT-4N1 cells increased in size at an early stage after irradiation and then decreased to a size smaller than that of control cells, whereas the size of irradiated M10 cells increased continuously. Apoptosis detected by morphological changes and DNA ladder formation (the cleavage of DNA into oligonucleosomal fragments) occurred in X-irradiated MOLT-4N1 cells but not in M10 cells. Pulsed-field gel electrophoresis showed that the ladder formation involved an intermediate-sized DNA (about 20 kbp). Most of the DNA was detected at the origin in both methods of electrophoresis in the case of M10 cells, though a trace amount of ladder formation was observed. Heat treatment of M10 cells induced apoptosis within 30 min after treatment, in contrast to MOLT-4N1 cells. The results suggest that apoptosis and necrosis are induced by X rays in a manner which is dependent on the cell line irrespective of the capability of the cells to develop apoptosis. DNA fragmentation was the earliest change observed in the development of apoptosis. 27 refs., 8 figs., 1 tab.

  15. DPI induces mitochondrial superoxide-mediated apoptosis.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-02-15

    The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide.

  16. Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice.

    PubMed

    Park, Jung Yoon; Cho, Mi-Ook; Leonard, Shanique; Calder, Brent; Mian, I Saira; Kim, Woo Ho; Wijnhoven, Susan; van Steeg, Harry; Mitchell, James; van der Horst, Gijsbertus T J; Hoeijmakers, Jan; Cohen, Pinchas; Vijg, Jan; Suh, Yousin

    2008-06-11

    Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.

  17. Extremely low frequency magnetic fields induce spermatogenic germ cell apoptosis: possible mechanism.

    PubMed

    Lee, Sang-Kon; Park, Sungman; Gimm, Yoon-Myoung; Kim, Yoon-Won

    2014-01-01

    The energy generated by an extremely low frequency electromagnetic field (ELF-EMF) is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF) is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010) for limiting exposure to time-varying MF (1 Hz to 100 kHz), overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  18. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    PubMed Central

    Lee, Sang-Kon; Park, Sungman; Gimm, Yoon-Myoung; Kim, Yoon-Won

    2014-01-01

    The energy generated by an extremely low frequency electromagnetic field (ELF-EMF) is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF) is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010) for limiting exposure to time-varying MF (1 Hz to 100 kHz), overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF. PMID:25025060

  19. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies

    PubMed Central

    Pistritto, Giuseppa; Trisciuoglio, Daniela; Ceci, Claudia; Garufi, Alessia; D'Orazi, Gabriella

    2016-01-01

    Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed. PMID:27019364

  20. [Apoptosis in allergic disease].

    PubMed

    Rojas Ramos, E; Martínez Jiménez, N E; Martínez Aguilar, N E; Garfias Becerra, J

    2000-01-01

    Apoptosis (cell programmed death) it is a mechanism that implicate a physiological suicide, to keep the cellular homeostasis in big amount of tissues. Fas (APO-1; CD95) system is one of the most important cellular responsible via to induce apoptosis on different tissues. Eosinophillia on peripheral blood and tissues are the main characteristics on allergic like asthma. Eosinophil apoptosis is upper regulated in those diseases by IL-5 y GM-CSF. Corticoids, teophyllin and some macrolids have been used like apoptosis inductors on eosinophills, these could be a novel mechanism to promote a better solution on inflammatory allergic diseases.

  1. ATM promotes apoptosis and suppresses tumorigenesis in response to Myc

    NASA Astrophysics Data System (ADS)

    Pusapati, Raju V.; Rounbehler, Robert J.; Hong, Sungki; Powers, John T.; Yan, Mingshan; Kiguchi, Kaoru; McArthur, Mark J.; Wong, Paul K.; Johnson, David G.

    2006-01-01

    Overexpression of the c-myc oncogene contributes to the development of a significant number of human cancers. In response to deregulated Myc activity, the p53 tumor suppressor is activated to promote apoptosis and inhibit tumor formation. Here we demonstrate that p53 induction in response to Myc overexpression requires the ataxia-telangiectasia mutated (ATM) kinase, a major regulator of the cellular response to DNA double-strand breaks. In a transgenic mouse model overexpressing Myc in squamous epithelial tissues, inactivation of Atm suppresses apoptosis and accelerates tumorigenesis. Deregulated Myc expression induces DNA damage in primary transgenic keratinocytes and the formation of H2AX and phospho-SMC1 foci in transgenic tissue. These findings suggest that Myc overexpression causes DNA damage in vivo and that the ATM-dependent response to this damage is critical for p53 activation, apoptosis, and the suppression of tumor development. p53 | DNA damage

  2. Fasciola hepatica: histological demonstration of apoptosis in the reproductive organs of flukes of triclabendazole-sensitive and triclabendazole-resistant isolates, and in field-derived flukes from triclabendazole-treated hosts, using in situ hybridisation to visualise endonuclease-generated DNA strand breaks.

    PubMed

    Hanna, R E B; Forster, F I; Brennan, G P; Fairweather, I

    2013-01-31

    Investigation of the triclabendazole (TCBZ) resistance status of populations of Fasciola hepatica in field cases of fasciolosis, where treatment failure has been reported, can be supported by histological examination of flukes collected from recently treated hosts. In TCBZ-sensitive flukes (TCBZ-S) exposed to TCBZ metabolites for 1-4days in vivo, but not in TCBZ-resistant flukes (TCBZ-R), morphological changes suggestive of apoptosis occur in cells undergoing meiosis or mitosis in the testis, ovary and vitelline follicles. In order to verify or refute the contention that efficacy of TCBZ treatment is associated with apoptosis in the reproductive organs of flukes, histological sections of TCBZ-S (Cullompton isolate) flukes and TCBZ-R (Sligo isolate) flukes were subjected to the TdT-mediated dUDP nick end labelling (TUNEL) in situ hybridisation method, a commercially available test specifically designed to label endonuclease-induced DNA strand breaks associated with apoptosis. Additionally, sections of in vivo-treated and untreated flukes originating from field outbreaks of suspected TCBZ-S and TCBZ-R fasciolosis were labelled by the TUNEL method. It was found that in treated TCBZ-S flukes, strong positive labelling indicating apoptosis was associated with morphologically abnormal cells undergoing mitosis or meiosis in the testis, ovary and vitelline follicles. Background labelling in the positive testis sections was attributed to heterophagy of cell debris by the sustentacular tissue. The triggering of apoptosis was probably related to failure of spindle formation at cell division, supporting the contention that TCBZ inhibits microtubule formation. In treated TCBZ-R (Sligo Type 1) flukes, and in treated flukes from field outbreaks of suspected TCBZ-R fasciolosis, no significant labelling was observed, while sections of fluke derived from a field case of fasciolosis where TCBZ resistance was not suspected were heavily labelled. Light labelling was associated with the

  3. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey.

    PubMed

    Spice, Erin K; Goodman, Damon H; Reid, Stewart B; Docker, Margaret F

    2012-06-01

    Most species with lengthy migrations display some degree of natal homing; some (e.g. migratory birds and anadromous salmonids) show spectacular feats of homing. However, studies of the sea lamprey (Petromyzon marinus) indicate that this anadromous species locates spawning habitat based on pheromonal cues from larvae rather than through philopatry. Previous genetic studies in the anadromous Pacific lamprey (Entosphenus tridentatus) have both supported and rejected the hypothesis of natal homing. To resolve this, we used nine microsatellite loci to examine the population structure in 965 Pacific lamprey from 20 locations from central British Columbia to southern California and supplemented this analysis with mitochondrial DNA restriction fragment length polymorphism analysis on a subset of 530 lamprey. Microsatellite analysis revealed (i) relatively low but often statistically significant genetic differentiation among locations (97% pairwise F(ST) values were <0.04 but 73.7% were significant); and (ii) weak but significant isolation by distance (r(2) = 0.0565, P = 0.0450) but no geographic clustering of samples. The few moderate F(ST) values involved comparisons with sites that were geographically distant or far upstream. The mtDNA analysis--although providing less resolution among sites (only 4.7%F(ST) values were significant)--was broadly consistent with the microsatellite results: (i) the southernmost site and some sites tributary to the Salish Sea were genetically distinct; and (ii) southern sites showed higher haplotype and private haplotype richness. These results are inconsistent with philopatry, suggesting that anadromous lampreys are unusual among species with long migrations, but suggest that limited dispersal at sea precludes panmixia in this species.

  4. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa

    PubMed Central

    Maddukuri, Leena; Ketkar, Amit; Eddy, Sarah; Zafar, Maroof K.; Eoff, Robert L.

    2014-01-01

    Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner's syndrome cells. PMID:25294835

  5. The Werner syndrome protein limits the error-prone 8-oxo-dG lesion bypass activity of human DNA polymerase kappa.

    PubMed

    Maddukuri, Leena; Ketkar, Amit; Eddy, Sarah; Zafar, Maroof K; Eoff, Robert L

    2014-10-29

    Human DNA polymerase kappa (hpol κ) is the only Y-family member to preferentially insert dAMP opposite 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) during translesion DNA synthesis. We have studied the mechanism of action by which hpol κ activity is modulated by the Werner syndrome protein (WRN), a RecQ helicase known to influence repair of 8-oxo-dG. Here we show that WRN stimulates the 8-oxo-dG bypass activity of hpol κ in vitro by enhancing the correct base insertion opposite the lesion, as well as extension from dC:8-oxo-dG base pairs. Steady-state kinetic analysis reveals that WRN improves hpol κ-catalyzed dCMP insertion opposite 8-oxo-dG ∼10-fold and extension from dC:8-oxo-dG by 2.4-fold. Stimulation is primarily due to an increase in the rate constant for polymerization (kpol), as assessed by pre-steady-state kinetics, and it requires the RecQ C-terminal (RQC) domain. In support of the functional data, recombinant WRN and hpol κ were found to physically interact through the exo and RQC domains of WRN, and co-localization of WRN and hpol κ was observed in human cells treated with hydrogen peroxide. Thus, WRN limits the error-prone bypass of 8-oxo-dG by hpol κ, which could influence the sensitivity to oxidative damage that has previously been observed for Werner's syndrome cells.

  6. Apoptosis in the aged dog brain.

    PubMed

    Kiatipattanasakul, W; Nakamura, S; Hossain, M M; Nakayama, H; Uchino, T; Shumiya, S; Goto, N; Doi, K

    1996-09-01

    Apoptosis similar to that seen in Alzheimer's disease patients was found in the brain of aged dogs by the TUNEL method of detecting in situ DNA fragmentation. Apoptosis was observed in both neurons and glial cells, and was morphologically characterized by round and swollen cytoplasm and aggregated nuclear chromatin, although these changes were slight. Neurons and astrocytes in the gray matter and oligodendrocytes in the white matter were affected. The number of ApopTag-positive brain cells increased slightly with age, but was not correlated to the number of senile plaques. A good correlation between the number of ApopTag-positive cells and the dementia index was clearly found. The present study indicates that brain cell apoptosis could account for dementia in aged dogs and suggested that aged dogs may be useful as a simplified animal model for Alzheimer's disease in man.

  7. HYPOXIA-INDUCED GROWTH LIMITATION OF JUVENILE FISHES IN AN ESTUARINE NURSERY: ASSESSMENT OF SMALL-SCALE TEMPORAL DYNAMICS USING RNA:DNA

    EPA Science Inventory

    The ratio of RNA to DNA (RNA:DNA) in white muscle tissue of juvenile summer flounder (Paralichthys dentatus) and weakfish (Cynoscion regalis) was used as a proxy for recent growth rate in an estuarine nursery. Variability in RNA:DNA was examined relative to temporal changes in te...

  8. Identification of a novel cyclin required for the intrinsic apoptosis pathway in lymphoid cells.

    PubMed

    Roig, M B; Roset, R; Ortet, L; Balsiger, N A; Anfosso, A; Cabellos, L; Garrido, M; Alameda, F; Brady, H J M; Gil-Gómez, G

    2009-02-01

    We have identified an early step common to pathways activated by different forms of intrinsic apoptosis stimuli. It requires de novo synthesis of a novel cyclin, cyclin O, that forms active complexes primarily with Cdk2 upon apoptosis induction in lymphoid cells. Cyclin O expression precedes glucocorticoid and gamma-radiation-induced apoptosis in vivo in mouse thymus and spleen, and its overexpression induces caspase-dependent apoptosis in cultured cells. Knocking down the endogenous expression of cyclin O by shRNA leads to the inhibition of glucocorticoid and DNA damage-induced apoptosis due to a failure in the activation of apical caspases while leaving CD95 death receptor-mediated apoptosis intact. Our data demonstrate that apoptosis induction in lymphoid cells is one of the physiological roles of cyclin O and it does not act by perturbing a normal cellular process such as the cell cycle, the DNA damage checkpoints or transcriptional response to glucocorticoids.

  9. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    PubMed

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  10. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.

  11. Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis

    PubMed Central

    Bojarski, C; Gitter, A H; Bendfeldt, K; Mankertz, J; Schmitz, H; Wagner, S; Fromm, M; Schulzke, J D

    2001-01-01

    The barrier function of colonic epithelia is challenged by apoptotic loss of enterocytes. In monolayers of human colonic HT-29/B6 cells, apoptosis induced by camptothecin was assessed by poly-(ADP-ribose)-polymerase (PARP) cleavage, histone ELISA and DNA-specific fluorochrome staining (with 4′,6′-diamidino-2′-phenylindoladihydrochloride (DAPI)). Epithelial barrier function was studied in Ussing chambers by measuring transepithelial conductivity and unidirectional tracer fluxes. The ion permeability associated with single cell apoptoses was investigated with the conductance scanning technique. The spontaneous rate of apoptotic cells was 3.5 ± 0.3 % with an overall epithelial conductivity of 3.2 ± 0.1 mS cm−2. Camptothecin induced a time- and dose-dependent increase of apoptosis and permeability. With 20 μg ml−1 of camptothecin for 48 h, apoptosis increased 4.1-fold to 14.3 ± 1.5 % and the conductivity doubled to 6.4 ± 1.0 mS cm−2. While 3H-mannitol flux increased 3.8-fold and 3H-lactulose flux increased 2.6-fold, the flux of 3H-polyethylene glycol 4000 remained unchanged. Hence, the higher permeability was limited to molecules < 4000 Da. The local epithelial conductivity was higher at the sites of apoptosis than in non-apoptotic areas. With camptothecin the leaks associated with apoptosis became more numerous and more conductive, while in non-apoptotic areas the conductivity remained at control level. Hence, the camptothecin-induced increase in epithelial conductivity reflected the opening of apoptotic leaks and thus the results described, for the first time, epithelial permeability as a function of apoptosis only. The conductivity of apoptotic leaks contributed 5.5 % to the epithelial conductivity of controls and 60 % to the conductivity of monolayers treated with 20 μg ml−1 of camptothecin. Thus apoptosis increased the contribution of paracellular pathways to the overall epithelial permeability. Under control conditions the paracellular

  12. Bystander Macrophage Apoptosis after Mycobacterium tuberculosis H37Ra Infection▿

    PubMed Central

    Kelly, Deirdre M.; ten Bokum, Annemieke M. C.; O'Leary, Seonadh M.; O'Sullivan, Mary P.; Keane, Joseph

    2008-01-01

    Human macrophages infected with Mycobacterium tuberculosis may undergo apoptosis. Macrophage apoptosis contributes to the innate immune response against M. tuberculosis by containing and limiting the growth of mycobacteria and also by depriving the bacillus of its niche cell. Apoptosis of infected macrophages is well documented; however, bystander apoptosis of uninfected macrophages has not been described in the setting of M. tuberculosis. We observed that uninfected human macrophages underwent significant bystander apoptosis 48 and 96 h after they came into contact with macrophages infected with avirulent M. tuberculosis. The bystander apoptosis was significantly greater than the background apoptosis observed in uninfected control cells cultured for the same length of time. There was no evidence of the involvement of tumor necrosis factor alpha, Fas, tumor necrosis factor-related apoptosis-inducing ligand, transforming growth factor β, Toll-like receptor 2, or MyD88 in contact-mediated bystander apoptosis. This newly described phenomenon may further limit the spread of M. tuberculosis by eliminating the niche cells on which the bacillus relies. PMID:17954721

  13. Apoptosis in oral lichen planus.

    PubMed

    Neppelberg, E; Johannessen, A C; Jonsson, R

    2001-10-01

    Apoptotic cell death may be a contributory cause of basal cell destruction in oral lichen planus (OLP). Therefore. the purpose of this study was to investigate the rate of apoptosis in OLP and the expression of two proteins (FasR and FasL) regulating this process. Biopsies from 18 patients with histologically diagnosed OLP were investigated, with comparison to normal oral mucosa of healthy persons. For visualisation of DNA fragmentation, the TUNEL method was used. In order to characterise the infiltrating cell population (CD3. CD4, CD8) and expression of FasR and FasL, we used an immunohistochemical technique. The results showed that T cells dominated in the subepithelial cell infiltrate. Within the epithelium the apoptotic cells were confined to the basal cell layer, and more apoptotic cells were seen in areas with basal cell degeneration and atrophic epithelium. There was a prominent expression of FasR/FasL in OLP. with a rather uniform distribution throughout the inflammatory cell infiltrate. In the epithelium, the FasR/FasL expression was more abundant in the basal cell area compared to the suprabasal cell layer. In conclusion, apoptosis within the epithelium is significantly increased in situ in OLP compared to normal oral mucosa, and seems to be related to the epithelial thickness.

  14. Pushing the limit: synthesis, photophysical and DNA binding studies of a NIR-emitting Ru(II)-polypyridyl probe with 'light switch' behaviour.

    PubMed

    Elmes, Robert B P; Kitchen, Jonathan A; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2012-06-14

    The new Ru(II) polypyridyl complex 1 was synthesised using microwave irradiation from the new polypyridyl ligand 2'DipyTAP', and its photophysical properties, and DNA binding abilities were investigated using various spectroscopic techniques; and 1 was shown to act as a 'NIR molecular light switch' for DNA with an emission window between 680 and 860 nm.

  15. Hyperglycemia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response

    PubMed Central

    Moreli, Jusciele B.; Santos, Janine H.; Lorenzon-Ojea, Aline Rodrigues; Corrêa-Silva, Simone; Fortunato, Rodrigo S.; Rocha, Clarissa Ribeiro; Rudge, Marilza V.; Damasceno, Débora C.; Bevilacqua, Estela; Calderon, Iracema M.

    2016-01-01

    Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for

  16. Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut.

    PubMed

    Becker, Stephen M; Cho, Kyou-Nam; Guo, Xiaoti; Fendig, Kirsten; Oosman, Mohammed N; Whitehead, Robert; Cohn, Steven M; Houpt, Eric R

    2010-03-01

    Entamoeba histolytica is the protozoan parasite that causes amebic colitis. The parasite triggers apoptosis on contact with host cells; however, the biological significance of this event during intestinal infection is unclear. We examined the role of apoptosis in a mouse model of intestinal amebiasis. Histopathology revealed that abundant epithelial cell apoptosis occurred in the vicinity of amoeba in histological specimens. Epithelial cell apoptosis occurred rapidly on co-culture with amoeba in vitro as measured by annexin positivity, DNA degradation, and mitochondrial dysfunction. Administration of the pan caspase inhibitor ZVAD decreased the rate and severity of amebic infection in CBA mice by all measures (cecal culture positivity, parasite enzyme-linked immunosorbent assay, and histological scores). Similarly, caspase 3 knockout mice on the resistant C57BL/6 background exhibited even lower cecal parasite antigen burden and culture positive rates than wild type mice. The permissive effect of apoptosis on infection could be tracked to the epithelium, in that transgenic mice that overexpressed Bcl-2 in epithelial cells were more resistant to infection as measured by cecal parasite enzyme-linked immunosorbent assay and histological scores. We concluded that epithelial cell apoptosis in the intestine facilitates amebic infection in this mouse model. The parasite's strategy for inducing apoptosis may point to key virulence factors, and therapeutic maneuvers to diminish epithelial apoptosis may be useful in amebic colitis.

  17. Cadmium induces apoptosis and genotoxicity in rainbow trout hepatocytes through generation of reactive oxygene species.

    PubMed

    Risso-de Faverney, C; Devaux, A; Lafaurie, M; Girard, J P; Bailly, B; Rahmani, R

    2001-06-01

    Cadmium poses a serious environmental threat in aquatic ecosystems but the mechanisms of its toxicity remain unclear. The purpose of this work was first to determine whether cadmium induced apoptosis in trout hepatocytes, second to determine whether or not reactive oxygen species (ROS) were involved in cadmium-induced apoptosis and genotoxicity. Hepatocytes exposed to increasing cadmium concentrations (in the range of 1-10 microM) showed a molecular hallmark of apoptosis which is the fragmentation of the nuclear DNA into oligonucleosomal-length fragments, resulting from an activation of endogenous endonucleases and recognized as a 'DNA ladder' on conventional agarose gel electrophoresis. Exposure of hepatocytes to cadmium led clearly to the DEVD-dependent protease activation, acting upstream from the endonucleases and considered as central mediators of apoptosis. DNA strand breaks in cadmium-treated trout hepatocytes was assessed using the comet assay, a rapid and sensitive single-cell gel electrophoresis technique used to detect DNA primary damage in individual cells. Simultaneous treatment of trout hepatocytes with cadmium and the nitroxide radical TEMPO used as a ROS scavenger, reduced significantly DNA fragmentation, DEVD-related protease activity and DNA strand breaks formation. These results lead to a working hypothesis that cadmium-induced apoptosis and DNA strand breaks in trout hepatocytes are partially triggered by the generation of ROS. Additional studies are required for proposing a mechanistic model of cadmium-induced apoptosis and genotoxicity in trout liver cells, in underlying the balance between DNA damage and cellular defence systems in fish.

  18. Sensitive apoptosis induced by microcystins in the crucian carp (Carassius auratus) lymphocytes in vitro.

    PubMed

    Zhang, Jianying; Zhang, Hangjun; Chen, Yingxu

    2006-08-01

    Microcystins including leucine-arginine l-amino acid (MCLR) and arginine-arginine l-amino acid (MCRR) can inhibit several serine/threonine protein phosphatases. In this study, we focused on the efficient biomarker for analyzing toxic cyanobacteria blooms using in vitro apoptosis bioassay. We explored the existence of sensitive apoptosis induced by MCLR and MCRR on isolated lymphocytes of the crucian carp (Carassius auratus) at a low exposure level. Apoptosis was detected in vitro and was clearly distinguished by condensation of nuclear chromatin and formation of apoptotic bodies, after 2 h exposure at 1, 5, 10 nM MCLR and MCRR, respectively. Agarose gel electrophoresis further revealed DNA fragmentation (DNA ladder) caused by apoptosis. We found that MCLR and MCRR can induce lymphocyte apoptosis in a dose- and time-dependent manner with flow cytometry analysis. Our study provides the first evidence that microcystins can induce fish lymphocytes apoptosis and may impair fish immune function.

  19. Nelfinavir, an HIV-1 Protease Inhibitor, Induces Oxidative Stress–Mediated, Caspase-Independent Apoptosis in Leishmania Amastigotes

    PubMed Central

    Kumar, Pranav; Lodge, Robert; Trudel, Nathalie; Ouellet, Michel; Ouellette, Marc; Tremblay, Michel J.

    2010-01-01

    Background Visceral leishmaniasis has now emerged as an important opportunistic disease in patients coinfected with human immunodeficiency virus type-1 (HIV-1). Although the effectiveness of HIV-1 protease inhibitors, such as nelfinavir, in antiretroviral therapies is well documented, little is known of the impact of these drugs on Leishmania in coinfected individuals. Methodology and Principal Findings Here, we show that nelfinavir generates oxidative stress in the parasite, leading to altered physiological parameters such as an increase in the sub-G1 DNA content, nuclear DNA fragmentation and loss of mitochondrial potential, which are all characteristics of apoptosis. Pretreatment of axenic amastigotes with the caspase inhibitor z-VAD-fmk did not inhibit the increase in sub-G1 DNA content in nelfinavir-treated parasites, suggesting therefore that this antiviral agent does not kill Leishmania amastigotes in a caspase-dependent manner. Furthermore, we observed that the mitochondrial resident protein endonuclease G is involved. We also demonstrate that parasites overexpressing GSH1 (the rate limiting enzyme of glutathione biosynthesis) were more resistant to nelfinavir when compared to untransfected controls. Conclusions and Significance These data suggest that nelfinavir induces oxidative stress in Leishmania amastigotes, culminating in caspase-independent apoptosis, in which DNA is degraded by endonuclease G. This study provides a rationale for future, long-term design of new therapeutic strategies to test nelfinavir as a potential antileishmanial agent as well as for possible future use in Leishmania/HIV-1 coinfections. PMID:20361030

  20. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro.

    PubMed

    Spallarossa, Paolo; Garibaldi, Silvano; Altieri, Paola; Fabbi, Patrizia; Manca, Valeria; Nasti, Sabina; Rossettin, Pierfranco; Ghigliotti, Giorgio; Ballestrero, Alberto; Patrone, Franco; Barsotti, Antonio; Brunelli, Claudio

    2004-10-01

    The clinical use of doxorubicin, a highly active anticancer drug, is limited by its severe cardiotoxic side effects. Increased oxidative stress and apoptosis have been implicated in the cardiotoxicity of doxorubicin. Carvedilol is an adrenergic blocking agent with potent anti-oxidant activity. In this study we investigated whether carvedilol has protective effects against doxorubicin-induced free radical production and apoptosis in cultured cardiac muscle cells, and we compared the effects of carvedilol to atenolol, a beta-blocker with no anti-oxidant activity. Reactive oxygen species (ROS) generation in cultured cardiac muscle cells (H9c2 cells) was evaluated by flow cytometry using dichlorofluorescein (DCF) and hydroethidine (HE). Apoptosis was assessed by measuring annexin V-FITC/propidium iodide double staining, DNA laddering, levels of expression of the pro-apoptotic protein Bax-alpha and the anti-apoptotic protein Bcl-2, and caspase-3 activity. Pre-treatment with carvedilol significantly attenuated the doxorubicin-induced increases in DCF (P < 0.001 compared to cells not pre-treated with carvedilol) and HE (P < 0.01) fluorescence. Doxorubicin increased the fraction of annexin V-FITC-positive fluorescent cells, while pre-treatment with carvedilol reduced the number of positive fluorescent cells (P < 0.01). Doxorubicin-induced DNA fragmentation to a clear ladder pattern, while carvedilol prevented DNA fragmentation. Doxorubicin-induced a fall in mRNA expression of the anti-apoptotic Bcl-2 and an increase in the expression of the pro-apoptotic Bax-alpha. Carvedilol pre-treatment blunted both the decrease of Bcl-2 (P < 0.01) and the increase of Bax-alpha mRNA expression (P < 0.01). Caspase-3 activity significantly increased after the addition of doxorubicin. Concurrently, carvedilol partially inhibited the doxorubicin-induced activation of caspase-3 (P < 0.01). Atenolol did not produce any effect in preventing doxorubicin-induced ROS generation and cardiac

  1. Targeting DNA repair with aphidicolin sensitizes primary chronic lymphocytic leukemia cells to purine analogs

    PubMed Central

    Starczewska, Eliza; Beyaert, Maxime; Michaux, Lucienne; Vekemans, Marie-Christiane; Saussoy, Pascale; Bol, Vanesa; Echarri, Ainhoa Arana; Smal, Caroline; Van Den Neste, Eric; Bontemps, Françoise

    2016-01-01

    Purine analogs are among the most effective chemotherapeutic drugs for the treatment of chronic lymphocytic leukemia (CLL). However, chemoresistance and toxicity limit their clinical use. Here, we report that the DNA polymerase inhibitor aphidicolin, which displayed negligible cytotoxicity as a single agent in primary CLL cells, markedly synergizes with fludarabine and cladribine via enhanced apoptosis. Importantly, synergy was recorded regardless of CLL prognostic markers. At the molecular level, aphidicolin enhanced purine analog-induced phosphorylation of p53 and accumulation of γH2AX, consistent with increase in DNA damage. In addition, aphidicolin delayed γH2AX disappearance that arises after removal of purine analogs, suggesting that aphidicolin causes an increase in DNA damage by impeding DNA damage repair. Similarly, aphidicolin inhibited UV-induced DNA repair known to occur primarily through the nucleotide excision repair (NER) pathway. Finally, we showed that fludarabine induced nuclear import of XPA, an indispensable factor for NER, and that XPA silencing sensitized cell lines to undergo apoptosis in response to fludarabine. Together, our data indicate that aphidicolin potentiates the cytotoxicity of purine analogs by inhibiting a DNA repair pathway that involves DNA polymerases, most likely NER, and provide a rationale for manipulating it to therapeutic advantage. PMID:27223263

  2. A radiation-induced acute apoptosis involving TP53 and BAX precedes the delayed apoptosis and neoplastic transformation of CGL1 human hybrid cells.

    PubMed

    Mendonca, Marc S; Mayhugh, Brendan M; McDowell, Berry; Chin-Sinex, Helen; Smith, Martin L; Dynlacht, Joseph R; Spandau, Dan F; Lewis, Davina A

    2005-06-01

    Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.

  3. The complete genome sequence of the Alphaentomopoxvirus Anomala cuprea entomopoxvirus, including its terminal hairpin loop sequences, suggests a potentially unique mode of apoptosis inhibition and mode of DNA replication.

    PubMed

    Mitsuhashi, Wataru; Miyamoto, Kazuhisa; Wada, Sanae

    2014-03-01

    Complete genome sequence of Anomala cuprea entomopoxvirus, which belongs to the genus Alphaentomopoxvirus, including its terminal hairpin loop sequences, is reported. This is the first genome sequence of Alphaentomopoxvirus reported, and hairpin loops in entomopoxviruses have not previously been sequenced. The genome is 245,717 bp, which is smaller than had previously been estimated for Alphaentomopoxvirus. The inverted terminal repeats are quite long, and experimental results suggest that one genome molecule has one type of hairpin at one end and another type at the other end. The genome contains unexpected ORFs, e.g., that for the ubiquitin-conjugating enzyme E2 of eukaryotes. The BIR and RING domains found in a single ORF for an inhibitor of apoptosis in baculoviruses and entomopoxviruses occurred in two different, widely separated ORFs. Furthermore, an ORF in the genome contains a serpin domain that was previously found in vertebrate poxviruses for apoptosis inhibition but not in insect viruses.

  4. Apoptosis of human seminoma cells upon disruption of their microenvironment.

    PubMed Central

    Olie, R. A.; Boersma, A. W.; Dekker, M. C.; Nooter, K.; Looijenga, L. H.; Oosterhuis, J. W.

    1996-01-01

    One of the main obstacles encountered when trying to culture human seminoma (SE) cells in vitro is massive degeneration of the tumour cells. We investigated whether dissociation of tumour tissue, to obtain single-cell suspensions for in vitro culture, results in the onset of apoptosis. Using morphological analysis and in situ end labelling, less than 4% of apoptotic tumour cells were detected in intact tissue from 11 out of 14 SEs. In these 11 tumours, apoptosis-specific DNA ladders, indicative of internucleosomal double-strand DNA cleavage, were not detected on electrophoresis gels. In contrast, three SEs with over 12% of apoptotic tumour cells in the intact tissue and all analysed (pure) SE cell suspensions, obtained after mechanical dissociation of intact tumour tissue, showed DNA ladders. Flow cytometric analysis of end labelled SE suspensions showed DNA breaks in up to 85% of the tumour cells. As indicated by cell morphology and DNA degradation, SE cells appear to rapidly enter the apoptotic pathway upon mechanical disruption of their microenvironment. No expression of p53 and of the apoptosis-inhibitor bcl-2 was detectable in intact SE tissue or cell suspensions. Our data suggest that abrogation of apoptosis might be crucial to succeed in culturing human SE cells in vitro. Images Figure 1 Figure 2 Figure 4 PMID:8624259

  5. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1

    PubMed Central

    Erdal, Erkin; Haider, Syed; Rehwinkel, Jan; Harris, Adrian L.

    2017-01-01

    Radiotherapy and chemotherapy are effective treatment methods for many types of cancer, but resistance is common. Recent findings indicate that antiviral type I interferon (IFN) signaling is induced by these treatments. However, the underlying mechanisms still need to be elucidated. Expression of a set of IFN-stimulated genes comprises an IFN-related DNA damage resistance signature (IRDS), which correlates strongly with resistance to radiotherapy and chemotherapy across different tumors. Classically, during viral infection, the presence of foreign DNA in the cytoplasm of host cells can initiate type I IFN signaling. Here, we demonstrate that DNA-damaging modalities used during cancer therapy lead to the release of ssDNA fragments from the cell nucleus into the cytosol, engaging this innate immune response. We found that the factors that control DNA end resection during double-strand break repair, including the Bloom syndrome (BLM) helicase and exonuclease 1 (EXO1), play a major role in generating these DNA fragments and that the cytoplasmic 3′–5′ exonuclease Trex1 is required for their degradation. Analysis of mRNA expression profiles in breast tumors demonstrates that those with lower Trex1 and higher BLM and EXO1 expression levels are associated with poor prognosis. Targeting BLM and EXO1 could therefore represent a novel approach for circumventing the IRDS produced in response to cancer therapeutics. PMID:28279982

  6. A novel method for detection of apoptosis

    SciTech Connect

    Zagariya, Alexander M.

    2012-04-15

    There are two different Angiotensin II (ANG II) peptides in nature: Human type (ANG II) and Bovine type (ANG II*). These eight amino acid peptides differ only at position 5 where Valine is replaced by Isoleucine in the Bovine type. They are present in all species studied so far. These amino acids are different by only one atom of carbon. This difference is so small, that it will allow any of ANG II, Bovine or Human antibodies to interact with all species and create a universal method for apoptosis detection. ANG II concentrations are found at substantially higher levels in apoptotic, compared to non-apoptotic, tissues. ANG II accumulation can lead to DNA damage, mutations, carcinogenesis and cell death. We demonstrate that Bovine antiserum can be used for universal detection of apoptosis. In 2010, the worldwide market for apoptosis detection reached the $20 billion mark and significantly increases each year. Most commercially available methods are related to Annexin V and TUNNEL. Our new method based on ANG II is more widely known to physicians and scientists compared to previously used methods. Our approach offers a novel alternative for assessing apoptosis activity with enhanced sensitivity, at a lower cost and ease of use.

  7. Steroid receptor coactivator-interacting protein (SIP) inhibits caspase-independent apoptosis by preventing apoptosis-inducing factor (AIF) from being released from mitochondria.

    PubMed

    Wang, Dandan; Liang, Jing; Zhang, Yu; Gui, Bin; Wang, Feng; Yi, Xia; Sun, Luyang; Yao, Zhi; Shang, Yongfeng

    2012-04-13

    Apoptosis-inducing factor (AIF) is a caspase-independent death effector. Normally residing in the mitochondrial intermembrane space, AIF is released and translocated to the nucleus in response to proapoptotic stimuli. Nuclear AIF binds to DNA and induces chromatin condensation and DNA fragmentation, characteristics of apoptosis. Until now, it remained to be clarified how the mitochondrial-nuclear translocation of AIF is regulated. Here we report that steroid receptor coactivator-interacting protein (SIP) interacts directly with AIF in mitochondria and specifically inhibits caspase-independent and AIF-dependent apoptosis. Challenging cells with apoptotic stimuli leads to rapid degradation of SIP, and subsequently AIF is liberated from mitochondria and translocated to the nucleus to induce apoptosis. Together, our data demonstrate that SIP is a novel regulator in caspase-independent and AIF-mediated apoptosis.

  8. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    PubMed Central

    Anglada, Teresa; Terradas, Mariona; Hernández, Laia; Genescà, Anna; Martín, Marta

    2016-01-01

    In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative) carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis. PMID:27057549

  9. Apoptosis: A Four-Week Laboratory Investigation for Advanced Molecular and Cellular Biology Students

    ERIC Educational Resources Information Center

    DiBartolomeis, Susan M.; Mone, James P.

    2003-01-01

    Over the past decade, apoptosis has emerged as an important field of study central to ongoing research in many diverse fields, from developmental biology to cancer research. Apoptosis proceeds by a highly coordinated series of events that includes enzyme activation, DNA fragmentation, and alterations in plasma membrane permeability. The detection…

  10. Glutathione and apoptosis

    PubMed Central

    Circu, Magdalena L.; Yee Aw, Tak

    2011-01-01

    Apoptosis or programmed cell death represents a physiologically conserved mechanism of cell death that is pivotal in normal development and tissue homeostasis in all organisms. As a key modulator of cell functions, the most abundant non-protein thiol, glutathione (GSH), has important roles in cellular defense against oxidant aggression, redox regulation of proteins thiols and maintaining redox homeostasis that is critical for proper function of cellular processes, including apoptosis. Thus, a shift in the cellular GSH-to-GSSG redox balance in favour of the oxidized species, GSSG, constitutes an important signal that could decide the fate of a cell. The current review will focus on three main areas: (1) general description of cellular apoptotic pathways, (2) cellular compartmentation of GSH and the contribution of mitochondrial GSH and redox proteins to apoptotic signalling and (3) role of redox mechanisms in the initiation and execution phases of apoptosis. PMID:18671159

  11. The biochemistry of apoptosis.

    PubMed

    Hengartner, M O

    2000-10-12

    Apoptosis--the regulated destruction of a cell--is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

  12. DNA prime Listeria boost induces a cellular immune response to SIV antigens in the rhesus macaque model that is capable of limited suppression of SIV239 viral replication.

    PubMed

    Boyer, Jean D; Robinson, Tara M; Maciag, Paulo C; Peng, Xiaohui; Johnson, Ross S; Pavlakis, George; Lewis, Mark G; Shen, Anding; Siliciano, Robert; Brown, Charles R; Weiner, David B; Paterson, Yvonne

    2005-03-01

    DNA vaccines and recombinant Listeria monocytogenes that express and secrete SIV Gag and Env antigens were combined in a nonhuman primate prime-boost immunogenicity study followed by a challenge with SIV239. We report that recombinant DNA vaccine delivered intramuscularly, and recombinant L. monocytogenes delivered orally each individually have the ability to induce CD8+ and CD4+ T cell immune responses in a nonhuman primate. Four rhesus monkeys were immunized at weeks 0, 4, 8, and 12 with the pCSIVgag and pCSIVenv DNA plasmids and boosted with SIV expressing L. monocytogenes vaccines at weeks 16, 20, and 28. Four rhesus monkeys received only the L. monocytogenes vaccines at weeks 16, 20, and 28. A final group of monkeys served as a control group. Blood samples were taken before vaccination and 2 weeks post each injection and analyzed by ELISPOT for CD4+ and CD8+ T cell responses. Moderate vaccine induced SIV-specific cellular immune responses were observed following immunization with either DNA or L. monocytogenes vectors. However, the SIV antigen-specific immune responses were significantly increased when Rhesus macaques were primed with SIV DNA vaccines and boosted with the SIV expressing L. monocytogenes vectors. In addition, the combined vaccine was able to impact SIV239 viral replication following an intrarectal challenge. This study demonstrates for the first time that oral L. monocytogenes can induce a cellular immune response in a nonhuman primate and is able to enhance the efficacy of a DNA vaccine as well as provide modest protection against SIV239 challenge.

  13. Development of Novel Bifunctional Compounds that Induce Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2006-02-01

    to identify the signaling events that lead from DNA adducts to activation of the apoptotic program. Finally we have obtained encouraging results...apoptosis – implying that activation of apoptosis by 11β cells is dependent upon the formation of intra- or inter-strand crosslinks in 5 DNA. This...receptor affinity (both molecules bound to the AR with affinities of approximately 25% that of dihydrotestosterone) or the biological activities of 11β

  14. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    SciTech Connect

    Al-Gubory, Kais H. . E-mail: kais.algubory@jouy.inra.fr

    2005-11-01

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals.

  15. Part I: Minicircle vector technology limits DNA size restrictions on ex vivo gene delivery using nanoparticle vectors: Overcoming a translational barrier in neural stem cell therapy.

    PubMed

    Fernandes, Alinda R; Chari, Divya M

    2016-09-28

    Genetically engineered neural stem cell (NSC) transplant populations offer key benefits in regenerative neurology, for release of therapeutic biomolecules in ex vivo gene therapy. NSCs are 'hard-to-transfect' but amenable to 'magnetofection'. Despite the high clinical potential of this approach, the low and transient transfection associated with the large size of therapeutic DNA constructs is a critical barrier to translation. We demonstrate for the first time that DNA minicircles (small DNA vectors encoding essential gene expression components but devoid of a bacterial backbone, thereby reducing construct size versus conventional plasmids) deployed with magnetofection achieve the highest, safe non-viral DNA transfection levels (up to 54%) reported so far for primary NSCs. Minicircle-functionalized magnetic nanoparticle (MNP)-mediated gene delivery also resulted in sustained gene expression for up to four weeks. All daughter cell types of engineered NSCs (neurons, astrocytes and oligodendrocytes) were transfected (in contrast to conventional plasmids which usually yield transfected astrocytes only), offering advantages for targeted cell engineering. In addition to enhancing MNP functionality as gene delivery vectors, minicircle technology provides key benefits from safety/scale up perspectives. Therefore, we consider the proof-of-concept of fusion of technologies used here offers high potential as a clinically translatable genetic modification strategy for cell therapy.

  16. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes.

    PubMed

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-11-30

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.

  17. Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes

    PubMed Central

    Wang, Yue; Gao, Hong; Na, Xiao-Lin; Dong, Shu-Ying; Dong, Hong-Wei; Yu, Jia; Jia, Li; Wu, Yong-Hui

    2016-01-01

    The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes. PMID:27916916

  18. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis.

    PubMed

    Liu, Gang; Beri, Rohinee; Mueller, Amanda; Kamp, David W

    2010-11-05

    Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.

  19. Reactive oxygen species regulate a balance between mitotic catastrophe and apoptosis.

    PubMed

    Sorokina, Irina V; Denisenko, Tatiana V; Imreh, Gabriela; Gogvadze, Vladimir; Zhivotovsky, Boris

    2016-12-01

    Mitotic catastrophe (MC) is a sequence of events resulting from premature or inappropriate entry of cells into mitosis that can be caused by chemical or physical stresses. There are several observations permitting to define MC as an oncosuppressive mechanism. MC can end up in apoptosis, necrosis or senescence. Here we show that the anticancer drug doxorubicin triggers DNA damage and MC independently of ROS production. In contrast, doxorubicin-induced apoptosis was found to be ROS-dependent. Antioxidants NAC or Trolox suppressed apoptosis, but facilitated MC development. Our data demonstrate that evasion of apoptosis and subsequent stimulation of MC can contribute to tumor cell elimination improving anticancer therapy.

  20. Role of apoptosis in mediating diclofenac-induced teratogenesis: An in vitro approach.

    PubMed

    Singh, Gyanendra; Maurya, Ranjeeta; Kumar, Akhilesh; Sinha, Neeraj

    2015-07-01

    Diclofenac (DCF) is among the most commonly used nonsteroidal anti-inflammatory drugs worldwide for the treatment of various conditions in postpubertal women. However, very limited information is available regarding its safety during pregnancy and teratogenecity. The present study was designed to elucidate the effects of DCF on the developing rat embryos during the major organogenesis period and investigate the critical role of apoptosis in bringing about these congenital anomalies. Embryos were exposed in vitro to various concentrations of DCF, that is, 0, 3.75, 7.5 and 15 µg/ml for 24 h, respectively, and examined for the growth and differentiation at the end of the culture period for the presence of any specific malformations. Growth and developmental parameters such as weight of embryos, crown-rump length and number of somites were found to be lower in the embryos exposed to high concentrations of DCF (7.5 and 15.0 μg/ml) when compared with the untreated control. However, no significant difference in growth parameters was found between embryos exposed to 3.75 µg/ml and the control group. In parallel to this, flow cytometric analysis and DNA quantitation of cultured rat embryos were performed to verify the involvement of apoptosis in mediating DCF-induced teratogenesis. A concentration-dependent increase in apoptosis in embryos suggests a possible engagement of apoptosis in the role of DCF as a teratogenic agent. A detailed analysis of the actual effect of DCF on cellular apoptotic machinery necessitates further evaluation.

  1. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells.

    PubMed

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis

  2. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    PubMed Central

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti-apoptosis

  3. Photoelectric measurements of s-BLM/nucleoli: a new technique for studying apoptosis.

    PubMed

    Feng, J; Zhang, C Y; Ottova, A L; Tien, H T

    2000-06-01

    A new method based on photoelectric measurement for analyzing apoptosis of cell-free MCF-7 nucleoli is reported. Supported bilayer lipid membrane (s-BLM) was used to enclose nucleoli in biological environment. The s-BLM was self-assembled on the wall of a super-thin cell. During the apoptosis induced by Taxol, the photoelectric current of the self-assembled s-BLM/nucleoli was found decreasing with time, suggesting the degradation of nucleus DNA. Electron transfer along the DNA double helix and along nuclear skeleton is assumed in the interpretation. This novel photoelectric analytical method may provide a rapid and sensitive technique to evaluate apoptosis.

  4. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    PubMed

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  5. Enzyme-Activated G-Quadruplex Synthesis for in Situ Label-Free Detection and Bioimaging of Cell Apoptosis.

    PubMed

    Liu, Zhuoliang; Luo, Xingyu; Li, Zhu; Huang, Yan; Nie, Zhou; Wang, Hong-Hui; Yao, Shouzhuo

    2017-02-07

    Fluorogenic probes targeting G-quadruplex structures have emerged as the promising toolkit for functional research of G-quadruplex and biosensor development. However, their biosensing applications are still largely limited in in-tube detection. Herein, we proposed a fluorescent bioimaging method based on enzyme-generated G-quadruplexes for detecting apoptotic cells at the cell and tissue level, namely, terminal deoxynucleotidyl transferase (TdT)-activated de novo G-quadruplex synthesis (TAGS) assay. The detection target is genomic DNA fragmentation, a biochemical hallmark of apoptosis. The TAGS assay can efficiently "tag" DNA fragments via using their DNA double-strand breaks (DSBs) to initiate the de novo synthesis of G-quadruplexes by TdT with an unmodified G-rich dNTP pool, followed by a rapid fluorescent readout upon the binding of thioflavin T (ThT), a fluorogenic dye highly specific for G-quadruplex. The feasibility of the TAGS assay was proved by in situ sensitive detection of individual apoptotic cells in both cultured cells and tissue sections. The TAGS assay has notable advantages, including being label-free and having quick detection, high sensitivity and contrast, mix-and-read operation without tedious washing, and low cost. This method not only shows the feasibility of G-quadruplex in tissue bioanalysis but also provides a promising tool for basic research of apoptosis and drug evaluation for antitumor therapy.

  6. Matrix protein CCN1 induced by bacterial DNA and CpG ODN limits lung inflammation and contributes to innate immune homeostasis.

    PubMed

    Moon, H-G; Qin, Z; Quan, T; Xie, L; Dela Cruz, C S; Jin, Y

    2015-03-01

    To defend against pulmonary infections, lung epithelial cells are equipped with complex innate immunity closely linked to inflammation. Dysregulated innate immunity/inflammation leads to self-perpetuating lung injury. The CpG motif in bacterial DNA is one of the factors involved in bacterial infection-associated inflammation. Bacterial DNA and synthetic CpG oligonucleotide (ODN) induced CCN1 secretion from lung epithelial cells, functioning as a potential "braking" signal to prevent uncontrolled inflammatory responses. CpG ODN-induced endoplasmic reticulum (ER) stress resulted in Src-Y527 phosphorylation (pY527) and Src/CCN1 vWF domain dissociation. Src-Y527 activated caveolin-1 (cav-1) phosphorylation at Y14 and then modulated CCN1 secretion via pCav-1 interaction with the CCN1 IGFbp domain. Functionally, secreted CCN1 promoted anti-inflammatory cytokine interleukin (IL)-10 release from epithelial cells via integrin αVβ6-PKC, and this subsequently suppressed tumor necrosis factor (TNF)-α, macrophage inflammatory protein 2 (MIP-2)-2 secretion and neutrophil infiltration in the lungs. Collectively, bacterial DNA/CpG ODN-stimulated CCN1 secretion via the BiP/GRP78-Src(Y527)-JNK-Cav-1(Y14) pathway and CpG-induced CCN1 conferred anti-inflammatory roles. Our studies suggested a novel paradigm by which the lung epithelium maintains innate immune homeostasis after bacterial infection.

  7. Transcriptional transactivation functions localized to the glucocorticoid receptor N terminus are necessary for steroid induction of lymphocyte apoptosis.

    PubMed Central

    Dieken, E S; Miesfeld, R L

    1992-01-01

    Genetic studies have suggested that transcriptional regulation of specific target genes (by either induction or repression) is the molecular basis of glucocorticoid-mediated lymphocyte apoptosis. To examine the role of transcriptional regulation more directly, we developed a complementation assay utilizing stable transfection of wild-type (wt) and mutant (nti) glucocorticoid receptor (GR) cDNA constructs into a GR-deficient S49 murine cell line (7r). Our data confirm that the level of functional GR is rate limiting for S49 apoptosis and moreover that the GR amino terminus (N terminus), which as been deleted from the nti GR, is absolutely required for complementation in this system. Surprisingly, we found that at physiological levels of receptor, expression of the nti GR in cells containing wt GR results in enhanced dexamethasone sensitivity rather than a dominant negative phenotype. One interpretation of these data is that DNA binding by wt-nti heterodimers may be functionally similar to that of wt-wt homodimers, indicating that GRE occupancy by at least one transactivation domain may be sufficient to induce the hormonal response. To determine whether acidic activating sequences such as those localized to the GR N terminus are important in the induction of lymphocyte apoptosis, we tested the activity of a chimeric receptor in which we replaced the entire GR N terminus with sequences from the herpes simplex virus VP16 protein. Our results demonstrate that 7r cells expressing VP-GR fusions are indeed steroid sensitive, strongly supporting the idea that S49 apoptosis is dependent on transcriptional regulation of specific genes which respond to acidic activating domains, implying that induction, rather than repression, may be the critical initiating event. Images PMID:1310148

  8. Mortalin, Apoptosis, and Neurodegeneration

    PubMed Central

    Londono, Carolina; Osorio, Cristina; Gama, Vivian; Alzate, Oscar

    2012-01-01

    Mortalin is a highly conserved heat-shock chaperone usually found in multiple subcellular locations. It has several binding partners and has been implicated in various functions ranging from stress response, control of cell proliferation, and inhibition/prevention of apoptosis. The activity of this protein involves different structural and functional mechanisms, and minor alterations in its expression level may lead to serious biological consequences, including neurodegeneration. In this article we review the most current data associated with mortalin’s binding partners and how these protein-protein interactions may be implicated in apoptosis and neurodegeneration. A complete understanding of the molecular pathways in which mortalin is involved is important for the development of therapeutic strategies for cancer and neurodegenerative diseases. PMID:24970131

  9. Syntheses, characterization, interaction with DNA, cytotoxic and apoptosis of two novel complexes of Zn(II) and Mn(II) with 2-methyl-1H-4,5-imidazoledicarboxylic acid.

    PubMed

    Li, Ling-Feng; Wang, Han; Zhang, Jie; Ma, Chi; Li, Ying-Ying; Wang, Lu; Liang, Shi-Kai; Jin, Hai-Tao; Liu, Si-Jia; Zhu, Ming-Chang; Gao, En-Jun

    2015-03-06

    Two new complexes, Zn(L)2(H2O)2 (1) and Mn(L)2(H2O)2 (2) [L = 2-Methyl-1H-4,5-imidazoledicarboxylic acid] were synthesized and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction. Intramolecular weak interactions, such as hydrogen-bond and intermolecular interactions were presented in the complexes. The activities of the complexes binding with DNA, and cytotoxic activities were studied. The binding of complexes with fish sperm DNA (FS-DNA) was investigated by fluorescence spectra. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pBR322 plasmid DNA. The cytotoxic activities of the complexes were tested against the KB cell line. Cytotoxic activity studies showed the two complexes exhibited significant cancer cell inhibitory rate. The most active compound was complex 1 with IC50 and CC50value of 36.5, 429, with the selectivity index (SI = 11.75) among the tested compounds.

  10. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  11. Analogs of farnesylcysteine induce apoptosis in HL-60 cells.

    PubMed

    Pérez-Sala, D; Gilbert, B A; Rando, R R; Cañada, F J

    1998-04-24

    S-Farnesyl-thioacetic acid (FTA), a competitive inhibitor of isoprenylated protein methyltransferase, potently suppressed the growth of HL-60 cells and induced apoptosis, as evidenced by the development of increased annexin-V binding, decreased binding of DNA dyes and internucleosomal DNA degradation. FTA did not impair the membrane association of ras proteins, conversely, it brought about a decrease in the proportion of ras present in the cytosolic fraction. Farnesylated molecules which are weak inhibitors of the methyltransferase also induced DNA laddering and reduced the proportion of cytosolic ras. These findings suggest that neither inhibition of isoprenylated protein methylation nor impairment of ras membrane association are essential for apoptosis induced by farnesylcysteine analogs.

  12. The effect of HBx gene on the apoptosis of hepatic cells.

    PubMed

    Ye, Lu; Qi, Junying; Li, Gaopeng; Tao, Deding; Song, Shihui

    2007-04-01

    To study the effect of HBx gene on the apoptosis of the cell lines (L02, HepG2) and the interaction between HBx and X-linked inhibitor of apoptosis protein (XIAP), the apoptosis of pcDNA3.1-HBx transiently transfected cell lines (L02, HepG2) was detected by flow cytometry and the mRNA expression of XIAP was assayed by real-time RT-PCR. Our study showed (1) the morphology of L02/pcDNA3.1-HBx was changed and the appearance of the cells mimicked that of HepG2 cells; (2) HBx gene could be detected in L02/pcDNA3.1-HBx and HepG2/ pcDNA3.1-HBx; (3) the apoptosis rate of L02/pcDNA 3.1-HBx was higher than that of L02 cells (P<0.01) and the apoptosis rate of HepG2/pcDNA3.1-HBx was lower than that of HepG2 cells (P<0.05); (4) the XIAP expression in L02 was about 3 times that in L02/pcDNA3.1-HBx cells (P<0.01), and the expression of XIAP in HepG2/pcDNA3.1-HBx was about 4 times that in HepG2 (P<0.01). It is concluded that HBx gene may promote the apoptosis of normal hepatocytes and inhibit the apoptosis of cells of hepatic carcinoma by regulating the expression of XIAP.

  13. Increased small intestinal apoptosis in coeliac disease.

    PubMed Central

    Moss, S F; Attia, L; Scholes, J V; Walters, J R; Holt, P R

    1996-01-01

    BACKGROUND: Coeliac disease (CD) mucosa is flattened despite epithelial hyperproliferation. AIMS: To establish mechanisms of cell loss in CD. PATIENTS: 14 controls, 17 active CD patients, and 16 maintained with gluten free diet. METHODS: Programmed cell death was examined in small intestinal biopsy specimens by staining fragmented DNA using terminal uridine deoxynucleotidyl nick end labelling (TUNEL), in comparison with haematoxylin and eosin stained adjacent sections. Double staining with anti-CD45 antibodies determined the origin of apoptotic cells. Apoptosis was graded from 1-3 (< 5, 5-20, > 20% respectively). Proliferating cells, immunostained by Ki-67 (MIB-1) antibody, were counted. RESULTS: Apoptotic cells were seen rarely by haematoxylin and eosin but more readily by TUNEL. In controls, 1.4 +/- 0.2% of epithelial cells were apoptotic (mean grade 1.1), mainly located in the upper villus. In active CD, frequent apoptotic cells were distributed throughout the crypt-villus unit (mean grade 2.4), decreasing after treatment to 1.1 (p < 0.001) even when still histologically abnormal. CD45 antibodies rarely stained apoptotic cells in active CD. The number of TUNEL positive cells correlated with proliferating cell number (p < 0.001). CONCLUSION: Enterocyte apoptosis is greatly increased in untreated CD, correlates with proliferation, and falls to normal with a gluten free diet, before histological improvement. Increased apoptosis may be responsible for villous atrophy in CD. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9038662

  14. Protection against apoptosis in chicken bursa and thymus cells by phorbol ester in vitro

    SciTech Connect

    Asakawa, J.; Thorbecke, G.J. )

    1991-03-15

    Programmed suicide or apoptosis, due to activation of endogenous nucleases, occurs in immature CD4{sup {minus}}85{sup {minus}} mammalian thymus cells. Like the thymus, the bursa of Fabricius is a site of massive lymphopoiesis accompanied by cell death in vivo. In the present study the authors have, therefore, examined whether chicken bursa and thymus cells exhibit apoptosis. Bursa and thymus cells from SC chickens, 4-10 weeks of age, were incubated for 8-24 hrs with various reagents. Genomic DNA was isolated, electrophoresed in 3% Nusieve agarose gels, and examined for patterns of DNA fragmentation. A laddering of DNA in multiples of 200 base pairs, indicative of apoptosis, was observed with both bursa and thymus cells. These patterns of DNA fragmentation from bursa cells could be prevented by adding phorbol myristic acetate during culture and, more effectively, by PMA plus ionomycin, but not by ionomycin alone or by anti-{mu}. PMA did not affect the patterns of DNA fragmentation seen with spleen cells. Addition of the protein kinase C inhibitor staurosporin inhibited the preventive effect of PMA on apoptosis. PMA also greatly promoted the survival of bursa cells in culture, as assayed by percentage cell death and by {sup 3}H-thymidine incorporation. It is concluded that bursa and thymus cells from the chicken exhibit apoptosis. The data further suggest that protein kinase C activation protects apoptosis in cultured bursa cells.

  15. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    SciTech Connect

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  16. A review and appraisal of the DNA damage theory of ageing.

    PubMed

    Freitas, Alex A; de Magalhães, João Pedro

    2011-01-01

    Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster depletion of stem cells, which in turn contributes to accelerated ageing. Genetic manipulations of DNA repair pathways in mice further strengthen this view and also indicate that disruption of specific pathways, such as nucleotide excision repair and non-homologous end joining, is more strongly associated with premature ageing phenotypes. Delaying ageing in mice by decreasing levels of DNA damage, however, has not been achieved yet, perhaps due to the complexity inherent to DNA repair and DNA damage response pathways. Another open question is whether DNA repair optimization is involved in the evolution of species longevity, and we suggest that the way cells from different organisms respond to DNA damage may be crucial in species differences in ageing. Taken together, the data suggest a major role of DNA damage in the modulation of longevity, possibly through effects on cell dysfunction and loss, although understanding how to modify DNA damage repair and response systems to delay ageing remains a crucial challenge.

  17. The mitochondrial respiratory chain is a modulator of apoptosis

    PubMed Central

    Kwong, Jennifer Q.; Henning, Matthew S.; Starkov, Anatoly A.; Manfredi, Giovanni

    2007-01-01

    Mitochondrial dysfunction and dysregulation of apoptosis are implicated in many diseases such as cancer and neurodegeneration. We investigate here the role of respiratory chain (RC) dysfunction in apoptosis, using mitochondrial DNA mutations as genetic models. Although some mutations eliminate the entire RC, others target specific complexes, resulting in either decreased or complete loss of electron flux, which leads to impaired respiration and adenosine triphosphate (ATP) synthesis. Despite these similarities, significant differences in responses to apoptotic stimuli emerge. Cells lacking RC are protected against both mitochondrial- and endoplasmic reticulum (ER) stress–induced apoptosis. Cells with RC, but unable to generate electron flux, are protected against mitochondrial apoptosis, although they have increased sensitivity to ER stress. Finally, cells with a partial reduction in electron flux have increased apoptosis under both conditions. Our results show that the RC modulates apoptosis in a context-dependent manner independent of ATP production and that apoptotic responses are the result of the interplay between mitochondrial functional state and environmental cues. PMID:18086914

  18. Ponicidin Inhibits Monocytic Leukemia Cell Growth by Induction of Apoptosis

    PubMed Central

    Liu, Jia-Jun; Zhang, Yong; Guang, Wei-Bin; Yang, Hong-Zhi; Lin, Dong-Jun; Xiao, Ruo-Zhi

    2008-01-01

    In this study two monocytic leukemia cell lines, U937 and THP-1 cells, were used to investigate the anti-proliferation effects caused by ponicidin. Cell viability was measured by an MTT assay. Cell apoptosis was assessed by flow cytometry as well as DNA fragmentation analysis. Cell morphology was observed using an inverted microscope and Hoechst 33258 staining. RT-PCR and Western blot analysis were used to detect survivin as well as Bax and Bcl-2 expressions after the cells were treated with different concentrations of ponicidin. The results revealed that ponicidin could inhibit the growth of U937 and THP-1 cells significantly by induction of apoptosis. The suppression was in both time- and dose-dependent manner. Marked morphological changes of cell apoptosis were observed clearly after the cells were treated with ponicidin for 48∼72 h. RT-PCR and Western blot analysis demonstrated that both survivin and Bcl-2 expressions were down-regulated remarkably while Bax expression remained constant before and after apoptosis occurred. We therefore conclude that ponicidin has significant anti-proliferation effects by inducing apoptosis on leukemia cells in vitro, downregulation of survivin as well as Bcl-2 expressions may be the important apoptosis inducing mechanisms. The results suggest that ponicidin may serve as potential therapeutic agent for leukemia. PMID:19330074

  19. Preventive effects of bicarbonate on cerivastatin-induced apoptosis.

    PubMed

    Kobayashi, Masaki; Kaido, Fumie; Kagawa, Toshiki; Itagaki, Shirou; Hirano, Takeshi; Iseki, Ken

    2007-08-16

    Although HMG-CoA reductase inhibitors such as statins are the most widely used cholesterol-lowering agents, there is a risk of myopathy or rhabdmyolysis occurring in patients taking these drugs. It has been reported that a number of lipophilic statins cause apoptosis in various cells, but it is still not clear whether intracellular acidification is involved in statin-induced apoptosis. There have been few studies aimed at identifying compounds that suppress statin-induced myotoxicity. In the present study, we examined the relationship between cerivastatin-induced apoptosis and intracellular acidification and the effect of bicarbonate on cerivastatin-induced apoptosis using an RD cell line as a model of in vitro skeletal muscle. Cerivastatin reduced the number of viable cells and caused dramatic morphological changes and DNA fragmentation in a concentration-dependent manner. Moreover, cerivastatin-induced apoptosis was associated with intracellular acidification and caspase-9 and -3/7 activation. On the other hand, bicarbonate suppressed cerivastatin-induced pH alteration, caspase activation, morphological change and reduction of cell viability. Accordingly, bicarbonate suppressed statin-induced apoptosis. The strategy to combine statins with bicarbonate can lead to reduction in the chance of the severe adverse events including myopathy or rhabdmyolysis.

  20. Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.

    PubMed

    Zheng, Xingnan; He, Kan; Zhang, Lin; Yu, Jian

    2013-05-01

    Oncogenic alterations in MET or anaplastic lymphoma kinase (ALK) have been identified in a variety of human cancers. Crizotinib (PF02341066) is a dual MET and ALK inhibitor and approved for the treatment of a subset of non-small cell lung carcinoma and in clinical development for other malignancies. Crizotinib can induce apoptosis in cancer cells, whereas the underlying mechanisms are not well understood. In this study, we found that crizotinib induces apoptosis in colon cancer cells through the BH3-only protein PUMA. In cells with wild-type p53, crizotinib induces rapid induction of PUMA and Bim accompanied by p53 stabilization and DNA damage response. The induction of PUMA and Bim is mediated largely by p53, and deficiency in PUMA or p53, but not Bim, blocks crizotinib-induced apoptosis. Interestingly, MET knockdown led to selective induction of PUMA, but not Bim or p53. Crizotinib also induced PUMA-dependent apoptosis in p53-deficient colon cancer cells and synergized with gefitinib or sorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and therapeutic responses to crizotinib in xenograft models. These results establish a critical role of PUMA in mediating apoptotic responses of colon cancer cells to crizotinib and suggest that mechanisms of oncogenic addiction to MET/ALK-mediated survival may be cell type-specific. These findings have important implications for future clinical development of crizotinib.

  1. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Lewis, M. L.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H.

    1998-01-01

    Alteration in cytoskeletal organization appears to underlie mechanisms of gravity sensitivity in space-flown cells. Human T lymphoblastoid cells (Jurkat) were flown on the Space Shuttle to test the hypothesis that growth responsiveness is associated with microtubule anomalies and mediated by apoptosis. Cell growth was stimulated in microgravity by increasing serum concentration. After 4 and 48 h, cells filtered from medium were fixed with formalin. Post-flight, confocal microscopy revealed diffuse, shortened microtubules extending from poorly defined microtubule organizing centers (MTOCs). In comparable ground controls, discrete microtubule filaments radiated from organized MTOCs and branched toward the cell membrane. At 4 h, 30% of flown, compared to 17% of ground, cells showed DNA condensation characteristic of apoptosis. Time-dependent increase of the apoptosis-associated Fas/ APO-1 protein in static flown, but not the in-flight 1 g centrifuged or ground controls, confirmed microgravity-associated apoptosis. By 48 h, ground cultures had increased by 40%. Flown populations did not increase, though some cells were cycling and actively metabolizing glucose. We conclude that cytoskeletal alteration, growth retardation, and metabolic changes in space-flown lymphocytes are concomitant with increased apoptosis and time-dependent elevation of Fas/APO-1 protein. We suggest that reduced growth response in lymphocytes during spaceflight is linked to apoptosis.

  2. [Biochemical changes in apoptosis and methods for their determination (review)].

    PubMed

    Sedláková, A; Kohút, A; Kalina, I

    1999-08-01

    Apoptosis or programmed cell death is a physiological process which occurs at different biological states as well as at disease process. Morphologically it is characterized by the chromatine condensation and other changes with preserved integrity of plasmatic membrane. The major and most frequently studied biochemical characteristic of apoptosis is a DNA fragmentation. In our paper attention is directed to the early biochemical changes in cell membranes, i.g., the externalization of phosphatidylserine, hydrolysis of sphingomyeline on the ceramide and activation of phospholipases especially phospholipase A2. In one part we described the changes of cysteine proteases (caspases), which play a key role in the execution of apoptosis. These biochemical changes are associated with ceramide signalization of apoptosis. Briefly are presented also some dates about apoptosis induction with reactive oxygen radicals and the role of the arachidonic acid metabolites in this process. We consider the investigation and determination of these changes as important parameters of apoptosis at some diseases, e.g., cancer or degenerative diseases, and of their treatment.

  3. The Walker B motif in avian FANCM is required to limit sister chromatid exchanges but is dispensable for DNA crosslink repair

    PubMed Central

    Rosado, Ivan V.; Niedzwiedz, Wojciech; Alpi, Arno F.; Patel, Ketan J.

    2009-01-01

    FANCM, the most highly conserved component of the Fanconi Anaemia (FA) pathway can resolve recombination intermediates and remodel synthetic replication forks. However, it is not known if these activities are relevant to how this conserved protein activates the FA pathway and promotes DNA crosslink repair. Here we use chicken DT40 cells to systematically dissect the function of the helicase and nuclease domains of FANCM. Our studies reveal that these domains contribute distinct roles in the tolerance of crosslinker, UV light and camptothecin-induced DNA damage. Although the complete helicase domain is critical for crosslink repair, a predicted inactivating mutation of the Walker B box domain has no impact on FA pathway associated functions. However, this mutation does result in elevated sister chromatid exchanges (SCE). Furthermore, our genetic dissection indicates that FANCM functions with the Blm helicase to suppress spontaneous SCE events. Overall our results lead us to reappraise the role of helicase domain associated activities of FANCM with respect to the activation of the FA pathway, crosslink repair and in the resolution of recombination intermediates. PMID:19465393

  4. HIV-1 protease-induced apoptosis

    PubMed Central

    2014-01-01

    Background Apoptosis is one of the presumptive causes of CD4+ T cell depletion during HIV infection and progression to AIDS. However, the precise role of HIV-1 in this process remains unexplained. HIV-1 protease (PR) has been suggested as a possible factor, but a direct link between HIV-1 PR enzymatic activity and apoptosis has not been established. Results Here, we show that expression of active HIV-1 PR induces death in HeLa and HEK-293 cells via the mitochondrial apoptotic pathway. This conclusion is based on in vivo observations of the direct localization of HIV-1 PR in mitochondria, a key player in triggering apoptosis. Moreover, we observed an HIV-1 PR concentration-dependent decrease in mitochondrial membrane potential and the role of HIV-1 PR in activation of caspase 9, PARP cleavage and DNA fragmentation. In addition, in vitro data demonstrated that HIV-1 PR mediates cleavage of mitochondrial proteins Tom22, VDAC and ANT, leading to release of AIF and Hsp60 proteins. By using yeast two-hybrid screening, we also identified a new HIV-1 PR interaction partner, breast carcinoma-associated protein 3 (BCA3). We found that BCA3 accelerates p53 transcriptional activity on the bax promoter, thus elevating the cellular level of pro-apoptotic Bax protein. Conclusion In summary, our results describe the involvement of HIV-1 PR in apoptosis, which is caused either by a direct effect of HIV-1 PR on mitochondrial membrane integrity or by its interaction with cellular protein BCA3. PMID:24886575

  5. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    PubMed

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  6. Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes

    PubMed Central

    Smith, Lindsay K.; Cidlowski, John A.

    2016-01-01

    Glucocorticoids exert a wide range of physiological effects, including the induction of apoptosis in lymphocytes. The progression of glucocorticoid-induced apoptosis is a multi-component process requiring contributions from both genomic and cytoplasmic signaling events. There is significant evidence indicating that the transactivation activity of the glucocorticoid receptor is required for the initiation of glucocorticoid-induced apoptosis. However, the rapid cytoplasmic effects of glucocorticoids may also contribute to the glucocorticoid-induced apoptosis-signaling pathway. Endogenous glucocorticoids shape the T-cell repertoire through both the induction of apoptosis by neglect during thymocyte maturation and the antagonism of T-cell receptor (TCR)-induced apoptosis during positive selection. Owing to their ability to induce apoptosis in lymphocytes, synthetic glucocorticoids are widely used in the treatment of haematological malignancies. Glucocorticoid chemotherapy is limited, however, by the emergence of glucocorticoid resistance. The development of novel therapies designed to overcome glucocorticoid resistance will dramatically improve the efficacy of glucocorticoid therapy in the treatment of haematological malignancies. PMID:20541659

  7. Triggering of dendritic cell apoptosis by xanthohumol.

    PubMed

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian

    2010-07-01

    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  8. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  9. [DNA methylation and epigenetics].

    PubMed

    Vaniushin, B F

    2006-09-01

    In eukaryotic cells, nuclear DNA is subject to enzymatic methylation with the formation of 5-methylcytosine residues, mostly within the CG and CNG sequences. In plants and animals this DNA methylation is species-, tissue-, and organelle-specific. It changes (decreases) with age and is regulated by hormones. On the other hand, genome methylation can control hormonal signal. Replicative and post-replicative DNA methylation types are distinguished. They are mediated by multiple DNA methyltransferases with different site-specificity. Replication is accompanied by the appearance of hemimethylated DNA sites. Pronounced asymmetry of the DNA strand methylation disappears to the end of the cell cycle. A model of methylation-regulated DNA replication is proposed. DNA methylation controls all genetic processes in the cell (replication, transcription, DNA repair, recombination, and gene transposition). It is the mechanism of cell differentiation, gene discrimination and silencing. In animals, suppression of DNA methylation stops development (embryogenesis), switches on apoptosis, and is usually lethal. Disruption of DNA methylation pattern results in the malignant cell transformation and serves as one of the early diagnostic features of carcinogenesis. In malignant cell the pattern of DNA methylation, as well as the set of DNA methyltransferase activities, differs from that in normal cell. In plants inhibition of DNA methylation is accompanied by the induction of seed storage and florescence genes. In eukaryotes one and the same gene can be simultaneously methylated both at cytosine and adenine residues. It can be thus suggested, that the plant cell contains at least two different, and probably, interdependent systems of DNA methylation. The first eukaryotic adenine DNA methyltransferase was isolated from plants. This enzyme methylates DNA with the formation of N6-methyladenine residues in the sequence TGATCA (TGATCA-->TGm6ATCA). Plants possess AdoMet-dependent endonucleases

  10. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    SciTech Connect

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-20

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae

  11. Pathophysiological Significance of Hepatic Apoptosis

    PubMed Central

    Wang, Kewei; Lin, Bingliang

    2013-01-01

    Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases. PMID:27335822

  12. Two new Neuratelia Rondani (Diptera, Mycetophilidae) species from Western Palaearctic: a case of limited congruence between morphology and DNA sequence data