Science.gov

Sample records for appalachian basin exploration

  1. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect

    Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

    2004-04-01

    Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core

  2. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect

    Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

    2005-04-01

    The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the

  3. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin

  4. Creating a Geologic Play Book for Trenton-Black River Appalachian Basin Exploration

    SciTech Connect

    Douglas G. Patchen; Taury Smith; Ron Riley; Mark Baranoski; David Harris; John Hickman; John Bocan; Michael Hohn

    2005-09-30

    Preliminary isopach and facies maps, combined with a literature review, were used to develop a sequence of basin geometry, architecture and facies development during Cambrian and Ordovician time. The main architectural features--basins, sub basins and platforms--were identified and mapped as their positions shifted with time. This is significant because a better understanding of the control of basin geometry and architecture on the distribution of key facies and on subsequent reservoir development in Ordovician carbonates within the Trenton and Black River is essential for future exploration planning. Good exploration potential is thought to exist along the entire platform margin, where clean grainstones were deposited in skeletal shoals from Indiana thorough Ohio and Ontario into Pennsylvania. The best reservoir facies for the development of hydrothermal dolomites appears to be these clean carbonates. This conclusion is supported by observations taken in existing fields in Indiana, Ontario, Ohio and New York. In contrast, Trenton-Black River production in Kentucky and West Virginia has been from fractured, but non-dolomitized, limestone reservoirs. Facies maps indicate that these limestones were deposited under conditions that led to a higher argillaceous content than the cleaner limestones deposited in higher-energy environments along platform margins. However, even in the broad area of argillaceous limestones, clean limestone buildups have been observed in eastern outcrops and, if present and dolomitized in the subsurface, may provide additional exploration targets. Structure and isopach maps developed as part of the structural and seismic study supported the basin architecture and geometry conclusions, and from them some structural control on the location of architectural features may be inferred. This portion of the study eventually will lead to a determination of the timing relative to fracturing, dolomitization and hydrocarbon charging of reservoirs in the

  5. Trapping models for the Lower Silurian Medina Sandstone Group - A comparison of trapping styles and exploration methodology for both deep and shallow medina plays in the Appalachian basin

    SciTech Connect

    Zagorski, W.A. )

    1991-08-01

    The Lower Silurian Medina Sandstone Group has been a major oil and gas producer in the Appalachian basin since the late 1800s and remains a primary objective in parts of New York, Ohio, and Pennsylvania. Although classified as a stratigraphic trap, production from the Medina is obtained from a wide variety of trapping conditions ranging from pure stratigraphic to structural stratigraphic in the shallower producing areas of the Medina to deep basin (i.e., Elmworth field, western Canada) trapping in the deeper producing regions of strategies must be employed for optimum prospect development and maximum economic success ratios. Several producing areas of the Medina are presented to compare and contrast these various trapping mechanisms together with suggested exploration models applicable to each trap type.

  6. Atlas of major Appalachian basin gas plays

    SciTech Connect

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  7. Selecting major Appalachian basin gas plays

    SciTech Connect

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  8. Selecting major Appalachian basin gas plays

    SciTech Connect

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  9. Bulge Migration and Pinnacle Reef Development, Devonian Appalachian Foreland Basin.

    PubMed

    Ver Straeten CA; Brett

    2000-05-01

    Detailed stratigraphic analyses of Late Emsian and Early Eifelian (Lower to Middle Devonian) carbonate-dominated strata in the northern Appalachian Basin indicate anomalous, locally varying relative sea level changes and inversions of topography. The distribution of a major basal-bounding unconformity, basinal pinnacle reefs, local absence of parasequences, and eastward migration of shallow marine carbonate lithofacies and related biofacies in the Onondaga Limestone and underlying strata mark the retrograde migration of an elongate, northeast-southwest-trending area of positive relief, bordered on its cratonward side by a similarly migrating basin of intermediate depth. These features are thought to represent the forebulge and back-bulge basin of the Appalachian foreland basin system as it developed during a time of relative quiescence within the Acadian Orogeny. However, the relatively small size of the bulgelike feature (ca. 80-100-km-wide, 20-50-m positive relief), its great distance from the probable deformation front (>400 km), and the lack of a well-developed foredeep immediately adjacent to the bulgelike feature may indicate that it represents a smaller-scale flexural high ("flexural welt") superposed over the cratonward edge of the larger-scale classical forebulge of the basin. Development of shallow-water reefs on the crest of the bulge during sea level lowstand, followed by migration of the bulge and widespread transgression, permitted growth of economically significant pinnacle reefs in the deep basin center. Further subsurface reef exploration should concentrate along the projected position of the bulge during the basal Onondaga lowstand.

  10. Oil and Gas Development in the Appalachian Basin

    EPA Pesticide Factsheets

    EPA seeks applications for multidisciplinary research that will foster a better understanding of how the rapid increase of OGD activities in the Appalachian Basin may impact the surrounding environment and public health

  11. Early history of the Michigan basin: Subsidence and Appalachian tectonics

    SciTech Connect

    Howell, P.D.; van der Pluijm, B.A. )

    1990-12-01

    Geometries of Cambrian to Silurian stratigraphic sequences in the Michigan basin record discrete episodes of basin-centered subsidence separated by periods of regional tilting. Backstripping reveals irregular subsidence rates that argue against a simple thermal contraction model. Depositional facies architecture also reflects episodic subsidence patterns, basin-centered facies tracts dominating during subsidence reactivations. These three lines of evidence indicate that subsidence cessations and reactivations characterize the early history of the Michigan basin. Periods of episodic subsidence correlate temporally with orogenic events in the Appalachians, suggesting that reactivation of basin subsidence is related to tectonic activity. The authors propose that Appalachian orogenic activity caused the episodic subsidence of the Michigan basin, possibly through weakening of the lower crust and reactivation of a preexisting upper-crustal isotatic imbalance.

  12. Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Professional Paper 1708 is intended primarily for geoscientists in academia, industry, and government who are interested in Appalachian basin geology and its coal and petroleum resources. Other users, however, may find the topics, papers, and digital images valuable for land-use and policy planning. Among the anticipated benefits of the report are improvements in (1) resource assessment estimates and methodology, (2) exploration strategies, (3) basin models, and (4) energy use policies.

  13. Coal-bed methane potential of central Appalachian basin

    SciTech Connect

    Kelafant, J.R.; Kuuskraa, V.A.; Wicks, D.E.

    1988-08-01

    Coal-bed methane in the Central Appalachian basin represents a significant potential source of natural gas. The numerous relatively thick coal beds of attractive rank and depth offer the promise of large, low-cost reserves of natural gas. The proximity of the supply source to northeastern and mid-Atlantic markets and the established pipeline infrastructure in the basin will afford a premium for Appalachian basin gas, which will enhance the area's economic outlook. ICF-Lewin Energy, under the sponsorship of the Gas Research Institute, is completing a resource economics study of coal-bed methane in the Central Appalachian basin. As part of this study, five major Pennsylvanian age coal beds that hold the most potential for containing large volumes of gas are being studied in detail. These coal beds are the Pocahontas No. 3 Pocahontas No. 4, Beckley, Sewell, and Jawbone. The preliminary estimate of gas in place for the Central Appalachian basin is between 20 and 40 tcf, with a considerable portion of this resource potentially economic at today's gas prices. A more refined estimate will emerge upon completion of the study. Multiple completions will probably be the most economic means of completing the coal-bed wells, as several of the target coal beds can be found in a vertical sequence.

  14. Pennsylvanian gastropod Pseudozygopleura (Pseudozygopleura) from the Appalachian basin: II

    SciTech Connect

    Hoare, R.E.; Sturgeon, M.T.

    1985-01-01

    Twenty-five additional taxa to those described by Hoare and Sturgeon (1981) of the gastropod Pseudozygopleura (Pseudozygopleura) are described from the Pennsylvania System of the Appalachian Basin. A key for identification of known Pennsylvanian species from this region is included.

  15. Appalachian basin coal-bed methane: Elephant or flea

    SciTech Connect

    Hunt, A.M. )

    1991-08-01

    Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

  16. Coal bed methane potential of northern Appalachian basin

    SciTech Connect

    Kelafant, J.; Wicks, D.; Kuuskraa, V.

    1987-09-01

    Coal-bed methane in the northern part of the Appalachian basin represents a significant potential source of natural gas for the northeastern US. The numerous, relatively thick and areally extensive coal beds of attractive rank and depth offer the promise of large, low-cost reserves of natural gas. The proximity of the supply source to northeastern markets and the location of the basin within an established pipeline infrastructure further enhance its economic outlook. Lewin and Associations, Inc., under the sponsorship of the Gas Research Institute and with participation of numerous basin geologists, completed a resource economics study of coal bed methane in the northern part of the Appalachian basin. As part of this study, six major coal seams and groups have been targeted as holding the most potential for containing large volumes of gas: the Brookville-Clarion, Kittanning, Freeport, Pittsburgh, Sewickley, and Waynesburg coals. In addition to these major seams and groups, several less areally extensive coals are economical on a local level, particularly the Brush Creek and Mahoning coals in Pennsylvania. The preliminary estimate of gas in place for the northern part of the Appalachian basin is between 50-100 tcf, with a considerable portion of this resource potentially economic at today's gas prices. The coal seams considered by this resource assessment study are at 12 in. thick and with greater than 400 ft of overburden.

  17. Effects of Hydrocarbon Extraction on Landscapes of the Appalachian Basin

    USGS Publications Warehouse

    Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Kalaly, Siddiq S.

    2015-09-30

    The need for energy resources has created numerous economic opportunities for hydrocarbon extraction in the Appalachian basin. The development of alternative energy natural gas resources from deep-shale drilling techniques, along with conventional natural gas extraction methods, has created a flurry of wells, roads, pipelines, and related infrastructure across many parts of the region. An unintended and sometimes overlooked consequence of these activities is their effect on the structure and function of the landscape and ecosystems. The collective effect of over 100,000 hydrocarbon extraction permits for oil, coal bed methane, Marcellus and Utica Shale natural gas wells, and other types of hydrocarbon gases and their associated infrastructure has saturated much of the landscape and disturbed the natural environment in the Appalachian basin. The disturbance created by the sheer magnitude of the development of these collective wells and infrastructure directly affects how the landscape and ecosystems function and how they provide ecological goods and services. 

  18. The central and northern Appalachian Basin-a frontier region for coalbed methane development

    USGS Publications Warehouse

    Lyons, P.C.

    1998-01-01

    The Appalachian basin is the world's second largest coalbed-methane (CBM) producing basin. It has nearly 4000 wells with 1996 annual production at 147.8 billion cubic feet (Bcf). Cumulative CBM production is close to 0.9 trillion cubic feet (Tcf). The Black Warrior Basin of Alabama in the southern Appalachian basin (including a very minor amount from the Cahaba coal field) accounts for about 75% of this annual production and about 75% of the wells, and the remainder comes from the central and northern Appalachian basin. The Southwest Virginia coal field accounts for about 95% of the production from the central and northern parts of the Appalachian basin. Production data and trends imply that several of the Appalachian basin states, except for Alabama and Virginia, are in their infancy with respect to CBM development. Total in-place CBM resources in the central and northern Appalachian basin have been variously estimated at 66 to 76 trillion cubic feet (Tcf), of which an estimated 14.55 Tcf (~ 20%) is technically recoverable according to a 1995 U.S. Geological Survey assessment. For comparison in the Black Warrior basin of the 20 Tcf in-place CBM resources, 2.30 Tcf (~ 12%) is technically recoverable. Because close to 0.9 Tcf of CBM has already been produced from the Black Warrior basin and the proved reserves are about 0.8 Tcf for 1996 [Energy Information Administration (EIA), 1997]. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 1996 Annual Report. U.S. Department of Energy DOE/EIA-0216(96), 145 pp.], these data imply that the central and northern Appalachian basin could become increasingly important in the Appalachian basin CBM picture as CBM resources are depleted in the southern Appalachian basin (Black Warrior Basin and Cahaba Coal Field). CBM development in the Appalachian states could decrease the eastern U.S.A.'s dependence on coal for electricity. CBM is expected to provide over the next few decades a virtually untapped source of

  19. Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002

    SciTech Connect

    Milici, R.C.; Hatch, J.R.

    2004-09-15

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

  20. Upper Cambrian Intrashelf Basin, Nolichucky formation, southwest Virginia Appalachians

    SciTech Connect

    Markello, J.R.; Read, J.F.

    1982-07-01

    An intrashelf basin located on the Upper Cambrian carbonate-rimmed shelf (miogeocline) of the Appalachian orogene, appears to have controlled facies distribution during deposition of the Nolichucky Formation (0 to 985 ft; 0 to 300 m thick). The intrashelf basin was bordered along strike and toward the regional shelf edge by a rim of peritidal carbonates and by nearshore clastics toward the craton. The peritidal carbonates passed into the intrashelf basin by way of a gently sloping carbonate ramp. Development of the Late Cambrian carbonate-rimmed shelf and its intrashelf ramp and basin may have been influenced by high carbonate production along the regional shelf edge, by tectonic subsidence associated with a major shelf depocenter, and by influx of terrigenous sediments which suppressed carbonate deposition in the basin. Understanding the Nolichucky facies within a ramp to intrashelf basin model provides a framework for understanding similar continental-shelf facies which are widely distributed in the lower Paleozoic and in the subsurface of the Mesozoic. Recognition of basins located on pericratonic shelves is important because such basins influence the distribution of potential petroleum source beds and reservoir facies whose trends may be unrelated to regional shelf-edge trends. (JMT)

  1. Appalachian coal assessment: Defining the coal systems of the Appalachian basin

    USGS Publications Warehouse

    Milici, R.C.

    2005-01-01

    The coal systems concept may be used to organize the geologic data for a relatively large, complex area, such as the Appalachian basin, in order to facilitate coal assessments in the area. The concept is especially valuable in subjective assessments of future coal production, which would require a detailed understanding of the coal geology and coal chemistry of the region. In addition, subjective assessments of future coal production would be enhanced by a geographical information system that contains the geologic and geochemical data commonly prepared for conventional coal assessments. Coal systems are generally defined as one or more coal beds or groups of coal beds that have had the same or similar genetic history from their inception as peat deposits, through their burial, diagenesis, and epigenesis to their ultimate preservation as lignite, bituminous coal, or anthracite. The central and northern parts of the Appalachian basin contain seven coal systems (Coal Systems A-G). These systems may be defined generally on the following criteria: (1) on the primary characteristics of their paleopeat deposits, (2) on the stratigraphic framework of the Paleozoic coal measures, (3) on the relative abundance of coal beds within the major stratigraphic groupings, (4) on the amount of sulfur related to the geologic and climatic conditions under which paleopeat deposits accumulated, and (5) on the rank of the coal (lignite to anthracite). ??2005 Geological Society of America.

  2. Microfabric analysis of the Appalachian basin Williamson and Willowvale shales

    SciTech Connect

    Burkins, D.L.; Woodard, M. . Geology Dept.)

    1993-03-01

    Shale samples from the Williamson and Willovale formations (Upper Llandoverian, Silurian) were studied to determine the relationship of microfabric (particle orientation) to sedimentary environment and processes. The shales were sampled along a traverse from Utica to Rochester, New York in the Appalachian foreland basin. Samples were taken from proximal and distal parts of the basin and analyzed using a scanning electron microscope (SEM) and using thin sections to determine the relationship between microfabric and basin position. Results show samples taken from the proximal part of the basin contain large amounts of silt grains, random orientation of clay flakes, and a high degree of bioturbation. Basinward, the samples become less silty, less bioturbated, and have more preferred orientation of clay flakes. The samples at the basin axis show the highest degree of preferred orientation and contain no silt grains. It can be concluded that the shale fabrics vary basinward and microfabric analysis is useful in determining the relative position of samples within a sedimentary basin.

  3. Geology of the Devonian black shales of the Appalachian basin

    USGS Publications Warehouse

    Roen, J.B.

    1983-01-01

    Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.

  4. Opportunities for visual resource management in the Southern Appalachian Coal Basin

    Treesearch

    John W. Simpson

    1979-01-01

    This paper outlines the opportunities for visual resource management (VRM) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses upon VRM as a regulatory activity that works to insure the proper enforcement of the law and effective development of its implementation programs. VRM for Appalachian surface mining...

  5. Coalbed methane resources of the Appalachian Basin, eastern USA

    USGS Publications Warehouse

    Milici, Robert C.; Hatch, Joseph R.; Pawlewicz, Mark J.

    2010-01-01

    In 2002, the U.S. Geological Survey (USGS) assessed the technically recoverable, undiscovered coalbed-gas resources in the Appalachian basin and Black Warrior basin Assessment Provinces as about 15.5 trillion cubic feet. Although these resources are almost equally divided between the two areas, most of the production occurs within relatively small areas within these Provinces, where local geological and geochemical attributes have resulted in the generation and retention of large amounts of methane within the coal beds and have enhanced the producibility of the gas from the coal. In the Appalachian basin, coalbed methane (CBM) tests are commonly commercial where the cumulative coal thickness completed in wells is greater than three meters (10 ft), the depth of burial of the coal beds is greater than 100 m (350 ft), and the coal is in the thermogenic gas window. In addition to the ubiquitous cleating within the coal beds, commercial production may be enhanced by secondary fracture porosity related to supplemental fracture systems within the coal beds. In order to release the methane from microporus coal matrix, most wells are dewatered prior to commercial production of gas. Two Total Petroleum Systems (TPS) were defined by the USGS during the assessment: the Pottsville Coal-bed gas TPS in Alabama, and the Carboniferous Coal-bed Gas TPS in Pennsylvania, Ohio, West Virginia, eastern Kentucky, Virginia, Tennessee, and Alabama. These were divided into seven assessment units, of which three had sufficient data to be assessed. Production rates are higher in most horizontal wells drilled into relatively thick coal beds, than in vertical wells; recovery per unit area is greater, and potential adverse environmental impact is decreased.

  6. Geology of the Devonian black shales of the Appalachian Basin

    USGS Publications Warehouse

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  7. Executive summary: Chapter A.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This publication supplements and updates older USGS regional studies of Appalachian basin coal and petroleum resources such as those by Arndt and others (1968) and the numerous contributors to USGS Miscellaneous Map Series I−917 (for example, Harris and others, 1978), respectively. USGS Professional Paper 1708 is intended primarily for geoscientists in academia, industry, and government who are interested in Appalachian basin geology and its coal and petroleum resources. Other users, however, may find the wide variety of topics, papers, and digital images of value for landuse and policy planning issues. Among the anticipated benefits of the report are improvements in (1) resource assessment estimates and methodology, (2) exploration strategies, (3) basin models, and (4) energy use policies.

  8. Overview of the potential and identified petroleum source rocks of the Appalachian basin, eastern United States: Chapter G.13 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Coleman, James L.; Ryder, Robert T.; Milici, Robert C.; Brown, Stephen; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin is the oldest and longest producing commercially viable petroleum-producing basin in the United States. Source rocks for reservoirs within the basin are located throughout the entire stratigraphic succession and extend geographically over much of the foreland basin and fold-and-thrust belt that make up the Appalachian basin. Major source rock intervals occur in Ordovician, Devonian, and Pennsylvanian strata with minor source rock intervals present in Cambrian, Silurian, and Mississippian strata.

  9. Coalbed-methane production in the Appalachian basin: Chapter G.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the northern, central, and southern Appalachian basin coal regions, which extend almost continuously from Pennsylvania southward to Alabama. Most commercial CBM production in the Appalachian basin is from three structural subbasins: (1) the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; (2) the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and (3) part of the Black Warrior basin in Alabama. The cumulative CBM production in the Dunkard basin through 2005 was 17 billion cubic feet (BCF), the production in the Pocahontas basin through 2006 was 754 BCF, and the production in the part of the Black Warrior basin in Alabama through 2007 was 2.008 TCF. CBM development may be regarded as mature in Alabama, where annual production from 1998 through 2007 was relatively constant and ranged from 112 to 121 BCF. An opportunity still exists for additional growth in the Pocahontas basin. In 2005, annual CBM production in the Pocahontas basin in Virginia and West Virginia was 85 BCF. In addition, opportunities are emerging for producing the large, diffuse CBM resources in the Dunkard basin as additional wells are drilled and technology improves.

  10. Paleozoic unconformities favorable for uranium concentration in northern Appalachian basin

    SciTech Connect

    Dennison, J.M.

    1986-05-01

    Unconformities can redistribute uranium from protore rock as ground water moves through poorly consolidated strata beneath the erosion surface, or later moves along the unconformity. Groundwater could migrate farther than in present-day lithified Paleozoic strata in the Appalachian basin, now locally deformed by the Taconic and Allegheny orogenies. Several paleoaquifer systems could have developed uranium geochemical cells. Sandstone mineralogy, occurrences of fluvial strata, and reduzate facies are important factors. Other possibilities include silcrete developed during desert exposure, and uranium concentrated in paleokarst. Thirteen unconformities are evaluated to determine favorable areas for uranium concentration. Cambrian Potsdam sandstone (New York) contains arkoses and possible silcretes just above crystalline basement. Unconformities involving beveled sandstones and possible fluvial strata include Cambrian Hardyston sandstone (New Jersey), Cambrian Potsdam Sandstone (New York), Ordovician Oswego and Juniata formations (Pennsylvania and New York), Silurian Medina Group (New York), and Silurian Vernon, High Falls, and Longwood formations (New York and New Jersey). Devonian Catskill Formation is beveled by Pennsylvanian strata (New York and Pennsylvania). The pre-Pennsylvanian unconformity also bevels Lower Mississippian Pocono, Knapp, and Waverly strata (Pennsylvania, New York, and Ohio), truncates Upper Mississippian Mauch Chunk Formation (Pennsylvania), and forms paleokarst on Mississippian Loyalhanna Limestone (Pennsylvania) and Maxville Limestone (Ohio). Strata associated with these unconformities contain several reports of uranium. Unconformities unfavorable for uranium concentration occur beneath the Middle Ordovician (New York), Middle Devonian (Ohio and New York), and Upper Devonian (Ohio and New York); these involve marine strata overlying marine strata and probably much submarine erosion.

  11. Organic content of Devonian shale in western Appalachian basin.

    USGS Publications Warehouse

    Schmoker, J.W.

    1980-01-01

    In the organic-rich facies of the Devonian shale in the western part of the Appalachian basin, the distribution of organic matter provides an indirect measure of both gas in place and the capacity of the shale to supply gas to permeable pathways.The boundary between organic-rich ('black') and organic-poor ('gray') facies is defined here as 2% organic content by volume. The thickness of organic-rich facies ranges from 200ft in central Kentucky to 1000ft along the Kentucky-West Virginia border. The average content of the organic-rich facies increases from 5% by volume on the edge to 16% in central Kentucky. The net thickness of organic matter in the organic-rich facies shows the amount of organic material in the shale, and is the most fundamental of the organic-content characterizations. Net thickness of organic matter ranges between 20 and 80ft (6.1 and 24.4m) within the mapped area.-from Author

  12. Appalachian Basin Low-Permeability Sandstone Reservoir Characterizations

    SciTech Connect

    Ray Boswell; Susan Pool; Skip Pratt; David Matchen

    1993-04-30

    A preliminary assessment of Appalachian basin natural gas reservoirs designated as 'tight sands' by the Federal Energy Regulatory Commission (FERC) suggests that greater than 90% of the 'tight sand' resource occurs within two groups of genetically-related units; (1) the Lower Silurian Medina interval, and (2) the Upper Devonian-Lower Mississippian Acadian clastic wedge. These intervals were targeted for detailed study with the goal of producing geologic reservoir characterization data sets compatible with the Tight Gas Analysis System (TGAS: ICF Resources, Inc.) reservoir simulator. The first phase of the study, completed in September, 1991, addressed the Medina reservoirs. The second phase, concerned with the Acadian clastic wedge, was completed in October, 1992. This report is a combined and updated version of the reports submitted in association with those efforts. The Medina interval consists of numerous interfingering fluvial/deltaic sandstones that produce oil and natural gas along an arcuate belt that stretches from eastern Kentucky to western New York. Geophysical well logs from 433 wells were examined in order to determine the geologic characteristics of six separate reservoir-bearing intervals. The Acadian clastic wedge is a thick, highly-lenticular package of interfingering fluvial-deltaic sandstones, siltstones, and shales. Geologic analyses of more than 800 wells resulted in a geologic/engineering characterization of seven separate stratigraphic intervals. For both study areas, well log and other data were analyzed to determine regional reservoir distribution, reservoir thickness, lithology, porosity, water saturation, pressure and temperature. These data were mapped, evaluated, and compiled into various TGAS data sets that reflect estimates of original gas-in-place, remaining reserves, and 'tight' reserves. The maps and data produced represent the first basin-wide geologic characterization for either interval. This report outlines the methods and

  13. Coal and coalbed-methane resources in the Appalachian and Black Warrior basins: maps showing the distribution of coal fields, coal beds, and coalbed-methane fields: Chapter D.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Milici, Robert C.; Kinney, Scott A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The study area for most reports in this volume is the Appalachian basin. The term “Appalachian basin study area” (shortened from “Appalachian basin geologic framework study area”) includes all of the Appalachian Basin Province (Province 67) and part of the neighboring Black Warrior Basin Province (Province 65) of Dolton and others (1995). The boundaries for these two provinces and the study area are shown on figure 1.

  14. Use of stable isotopes to identify sources of methane in Appalachian Basin shallow groundwaters: a review.

    PubMed

    Hakala, J Alexandra

    2014-09-20

    Development of unconventional shale gas reservoirs in the Appalachian Basin has raised questions regarding the potential for these activities to affect shallow groundwater resources. Geochemical indicators, such as stable carbon and hydrogen isotopes of methane, stable carbon isotopes of ethane, and hydrocarbon ratios, have been used to evaluate methane sources however their utility is complicated by influences from multiple physical (e.g., mixing) and geochemical (e.g., redox) processes. Baseline sampling of shallow aquifers prior to development, and measurement of additional geochemical indicators within samples from across the Appalachian Basin, may aid in identifying natural causes for dissolved methane in shallow groundwater versus development-induced pathways.

  15. Hydrocarbon generation and brine migration in the central Appalachian basin

    SciTech Connect

    Evans, M.A. )

    1991-08-01

    Fluid inclusions in mineralized natural fractures from six Devonian shale cores were used to document hydrocarbon generation and brine migration in the central Appalachian basin. The sequence of formation of four regional fracture sets containing the inclusions was used to constrain the relative timing of fluid evolution. The earliest formed fluid inclusions are single-phase liquid inclusions containing a complex mixture of methane, ethane, higher hydrocarbons, and nitrogen. These inclusions formed during burial of the Devonian shales and early hydrocarbon generation in the oil window. As burial proceeded to a maximum and hydrocarbon generation entered the gas phase, later formed fluid inclusions record the presence of a more methane-rich fluid with minor ethane and nitrogen. Either during maximum burial or early uplift of the Devonian shale section, regional stress relaxation was accompanied by regional brine migration. Fluid inclusions record the influx of a methane-saturated, sodium chloride-rich brine and subsequent mixing with a presumably in situ-calcium-rich brine and subsequent mixing with a presumably in-situ calcium-rich brine. The migration pathway is presumed to be the Devonian shale detachment zone and underlying Devonian Oriskany Sandstone. This migration may be related to the fluids forming Mississippi Valley-type ore deposits. Present-day brine compositions reflect this ancient mixing. Brines from deep Cambrian through Silurian rocks are more calcium-chloride rich than brines from shallower Devonian and younger rocks. The sodium chloride-rich brines from Upper Devonian through Pennsylvanian rocks become more dilute as a result of mixing with meteoric water.

  16. Devonian shales of central Appalachian basin: geological controls on gas production

    SciTech Connect

    Lowry, P.H.; Hamilton-Smith, T.; Peterson, R.M. )

    1989-03-01

    Gas reserves of the Devonian shales of the Appalachian basin constitute a large, underdeveloped resource producing from fractured reservoirs. As part of ongoing Gas Research Institute research, K and A Energy Consultants, Inc., is identifying geological controls on gas production. Preliminary findings indicate that local gas production is controlled by a combination of structure and stratigraphy. Regional geological review indicates that Devonian sedimentation and structure is influenced by repeated reactivation of basement faults. Site-specific geologic studies indicate that depositional and structural mechanisms vary substantially throughout the basin. Gas production on the eastern margin of the producing area is controlled by an Alleghenian thrust front located by Grenville normal faults. High-capacity wells are associated with tear faults in the thrust sheets. To the southwest, deformation is controlled by both Grenville and Rome trough basement faults. Reactivation of these faults during later orogenic events produced a complex of high-angle reverse and strike-slip faults. Fracturing in the Devonian shales is produced by shearing and flexure associated with these structures. Syndepositional movement of the basement structures influenced the deposition of coarser grained turbidites and tempestites. The combination of fractures and coarser clastic beds provides effective reservoir systems. The shale contains abundant organic material consisting of terrestrial plant debris and marine algal remains. Thermal maturation of this material produced gas which charged the lower reservoir systems. Exploration along reactivated structural trends is an effective strategy for locating Devonian shale gas accumulations. This approach may also apply to other producing strata in the basin.

  17. Assessment of Undiscovered Oil and Gas Resources of the Appalachian Basin Province, 2002

    USGS Publications Warehouse

    Appalachian Basin Province Assessment Team: Milici, Robert C.; Ryder, Robert T.; Swezey, Christopher S.; Charpentier, Ronald R.; Cook, Troy A.; Crovelli, Robert A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2003-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 70.2 trillion cubic feet of undiscovered natural gas, a mean of 54 million barrels of undiscovered oil, and a mean of 872 million barrels of undiscovered natural gas liquids in the Appalachian Basin Province.

  18. Eustatic and tectonic control of sedimentation in the Pennsylvanian strata of the Central Appalachian Basin

    SciTech Connect

    Chesnut, D.R. Jr. . Kentucky Geological Survey)

    1992-01-01

    Analysis of the Breathitt Group of the Central Appalachian Basin reveals three orders of depositional cycles or trends. The Breathitt coarsening-upward trend (20 million years (my)) represents increasing intensity of the Alleghenian Orogeny. The major transgression (MT) cycle (2.5 my) was controlled by an unknown eustatic or tectonic mechanism. The major coal beds and intervening strata make up the coal-clastic cycle (CC cycle) (=Appalachian cyclothem) which has a 0.4 my periodicity. This periodicity supports eustatic control of sedimentation modulated by an orbital periodicity. Extensive coastal peats deposited at lowstand (CC cycle) were preserved as coals, whereas highstand peats were eroded during the subsequent drop in sea level. Autocyclic processes such as delta switching and avulsion occurred within CC cycles. An Early Pennsylvanian unconformity represents uplift and erosion of mid-Carboniferous foreland basin deposits. Alluvial deposits (Breathitt Group) derived from the highlands were transported to the northwest toward the forebulge. During lowstand, the only outlet available to further sediment transport (Lee sandstones) was toward the southwest (Ouachita Trough), along the Black Warrior-Appalachian foreland basins. The Middle Pennsylvanian marks a period of intermittent overfilling of the foreland basin and cresting of the forebulge. Marine transgressions entered through the foreland basins and across saddles in the forebulge. After the Ouachita Trough was destroyed during the late Middle Pennsylvanian, marine transgressions migrated only across saddles in the forebulge. In the Late Pennsylvanian, marine waters entered the basin only across the diminished forebulge north of the Jessamine Dome.

  19. Preliminary stratigraphic cross section showing radioactive zones in the Devonian dark shales in the eastern part of the Appalachian Basin

    USGS Publications Warehouse

    West, Mareta N.

    1978-01-01

    The U.S. Geological Survey (USGS), in a cooperative agreement with the U.S. Department of Energy (DOE), is participating in the Eastern Gas Shales Project. The purpose of the DOE project is to increase the production of natural gas from eastern United States shales in petroliferous basins through improved exploration and extraction techniques. The USGS participation includes stratigraphic studies which will contribute to the characterization and appraisal of the natural gas resources of Devonian shale in the Appalachian basin.This cross section differs from others in this series partly because many of the shales in the eastern part of the basin are less radioactive than those farther west and because in this area shales that may be gas-productive are not necessarily highly radioactive and black.

  20. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    SciTech Connect

    Potter, P.E.; Maynard, J.B.; Pryor, W.A.

    1981-01-01

    The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

  1. Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.

    2002-01-01

    Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.

  2. Coal resources of selected coal beds and zones in the Northern and Central Appalachian Basin

    USGS Publications Warehouse

    Ruppert, Leslie; Tewalt, Susan; Bragg, Linda

    2002-01-01

    The Appalachian Basin is one of the most important coal-producing regions in the world. Bituminous coal has been mined in the basin for the last three centuries, and the cumulative production is estimated at 34.5 billion short tons. Annual production in 1998 was about 452 million short tons; the basin's production is mostly in the northern (32 percent) and central (63 percent) coal regions. The coal is used primarily within the Eastern United States for electric power generation, but some of it is suitable for metallurgical uses. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment of five coal-producing regions of the United States, including the Appalachian Basin. The USGS, in cooperation with the State geological surveys of Kentucky, Maryland, Ohio, Pennsylvania, Virginia, and West Virginia, has completed a digital coal resource assessment of five of the top-producing coal beds and coal zones in the northern and central Appalachian Basin coal regions -- the Pittsburgh coal bed, the Upper Freeport coal bed, the Fire Clay and Pond Creek coal zones, and the Pocahontas No. 3 coal bed. Of the 93 billion short tons of original coal in these units, about 66 billion short tons remain.

  3. Assessment of Appalachian Basin Oil and Gas Resources: Utica-Lower Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Ryder, Robert T.

    2008-01-01

    The Utica-Lower Paleozoic Total Petroleum System (TPS) is an important TPS identified in the 2002 U.S. Geological Survey (USGS) assessment of undiscovered, technically recoverable oil and gas resources in the Appalachian basin province (Milici and others, 2003). The TPS is named for the Upper Ordovician Utica Shale, which is the primary source rock, and for multiple lower Paleozoic sandstone and carbonate units that are the important reservoirs. Upper Cambrian through Upper Silurian petroleum-bearing strata that constitute the Utica-Lower Paleozoic TPS thicken eastward from about 2,700 ft at the western margin of the Appalachian basin to about 12,000 ft at the thrust-faulted eastern margin of the Appalachian basin. The Utica-Lower Paleozoic TPS covers approximately 170,000 mi2 of the Appalachian basin from northeastern Tennessee to southeastern New York and from central Ohio to eastern West Virginia. The boundary of the TPS is defined by the following geologic features: (1) the northern boundary (from central Ontario to northeastern New York) extends along the outcrop limit of the Utica Shale-Trenton Limestone; (2) the northeastern boundary (from southeastern New York, through southeastern Pennsylvania-western Maryland-easternmost West Virginia, to northern Virginia) extends along the eastern limit of the Utica Shale-Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (3) the southeastern boundary (from west-central and southwestern Virginia to eastern Tennessee) extends along the eastern limit of the Trenton Limestone in the thrust-faulted eastern margin of the Appalachian basin; (4) the southwestern boundary (from eastern Tennessee, through eastern Kentucky, to southwestern Ohio) extends along the approximate facies change from the Trenton Limestone with thin black shale interbeds (on the east) to the equivalent Lexington Limestone without black shale interbeds (on the west); (5) the northern part of the boundary in southwestern Ohio

  4. Enhancement of the TORIS data base of Appalachian basin oil fields. Final report

    SciTech Connect

    1996-01-31

    The Tertiary Oil Recovery Information System, or TORIS, was developed by the Department of Energy in the early 1980s with a goal of accounting for 70% of the nation`s original oil in place (OOIP). More than 3,700 oil reservoirs were included in TORIS, but coverage in the Appalachian basin was poor. This TORIS enhancement project has two main objectives: to increase the coverage of oil fields in the Appalachian basin; and to evaluate data for reservoirs currently in TORIS, and to add, change or delete data as necessary. Both of these objectives have been accomplished. The geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia have identified 113 fields in the Appalachian basin to be included in TORIS that collectively contained 80% of the original oil in place in the basin. Furthermore, data in TORIS at the outset of the project was checked and additional data were added to the original 20 TORIS oil fields. This final report is organized into four main sections: reservoir selection; evaluation of data already in TORIS; industry assistance; and data base creation and validation. Throughout the report the terms pool and reservoir may be used in reference to a single zone of oil accumulation and production within a field. Thus, a field is composed of one or more pools at various stratigraphic levels. These pools or reservoirs also are referred to as pay sands that may be individually named sandstones within a formation or group.

  5. Geographic information system (GIS)-based maps of Appalachian basin oil and gas fields: Chapter C.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previously named fields that were originally treated as conventional fields have evolved into large, commonly unnamed continuous-type accumulations. These new digital maps will facilitate a comparison between EUR values from recently drilled, unnamed parts of continuous accumulations and EUR values from named fields discovered early during the exploration cycle of continuous accumulations.

  6. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect

    Hatcher, Robert D

    2005-11-30

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our

  7. Assessment of Appalachian Basin Oil and Gas Resources: Carboniferous Coal-bed Gas Total Petroleum System

    USGS Publications Warehouse

    Milici, Robert C.

    2004-01-01

    The Carboniferous Coal-bed Gas Total Petroleum System, lies within the central and northern parts of the Appalachian coal field. It consists of five assessment units (AU): the Pocahontas Basin in southwestern Virginia, southern West Virginia, and eastern Kentucky, the Central Appalachian Shelf in Tennessee, eastern Kentucky and southern West Virginia, East Dunkard (Folded) in western Pennsylvania and northern West Virginia, West Dunkard (Unfolded) in Ohio and adjacent parts of Pennsylvania and West Virginia, and the Appalachian Anthracite and Semi-Anthracite AU in Pennsylvania and Virginia. Of these, only the Pocahontas Basin and West Dunkard (Folded) AU were assessed quantitatively by the U.S. Geological survey in 2002 as containing about 3.6 and 4.8 Tcf of undiscovered, technically recoverable gas, respectively (Milici and others, 2003). In general, the coal beds of this Total Petroleum System, which are both the source rock and reservoir, were deposited together with their associated sedimentary strata in Mississippian and Pennsylvanian (Carboniferous) time. The generation of biogenic (microbial) gas probably began almost immediately as the peat deposits were first formed. Microbial gas generation is probably occurring at present to some degree throughout the basin, where the coal beds are relatively shallow and wet. With sufficient depth of burial, compaction, and coalification during the late Paleozoic and Early Mesozoic, the coal beds were heated sufficiently to generate thermogenic gas in the eastern part of the Appalachian basin. Trap formation began initially with the deposition of the paleopeat deposits during the Mississippian, and continued into the Late Pennsylvanian and Permian as the Appalachian Plateau strata were deformed during the Alleghanian orogeny. Seals are the connate waters that occupy fractures and larger pore spaces within the coal beds as well as the fine-grained siliciclastic sedimentary strata that are intercalated with the coal. The

  8. Upper Devonian transitional shale facies of western Appalachian basin of southeastern Ohio

    SciTech Connect

    Baranoski, M.T.; Riley, R.A.

    1987-09-01

    Transitional facies have been mapped in five Upper Devonian shale units using geophysical logs from southeastern Ohio. Each facies is a north-northeast-trending zone that parallels the paleodepositional strike of the Appalachian basin during the Late Devonian. The facies are defined by the interfingering of gray and greenish-gray siltstones and shales from the east with black shale from the west. Structure and isopach mapping indicate penecontemporaneous faulting and subsequent filling along faults with sediments in the form of coalescing lobate bodies. Penecontemporaneous faulting may be related to sediment loading of the Catskill delta. The relative position of the transitional facies may indicate the western penetration of far-distal turbidites of the Catskill delta into an anoxic portion of the Appalachian basin.

  9. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  10. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  11. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect

    Robert Jacobi

    2005-05-31

    The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. We have switched oil and gas exploration and production companies, and are now in continued negotiations with Fortuna concerning a plan to retrieve 18 m of horizontal core across a gas-charged zone in the Trenton/Black River in central New York State, the ''hottest'' play in the Appalachian Basin. We completed analysis of remote sensing images to determine, by using the weights-of-evidence method, which images and processing techniques result in lineaments that best reflect the fractures found in outcrop. The conclusions do not differ from the preliminary conclusions reported in the previous progress report. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, and soil gas and seismic allows us to extrapolate Trenton-Black River trends away from confirmatory seismic lines.

  12. Thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins of North America

    USGS Publications Warehouse

    East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.

    2012-01-01

    Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).

  13. Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins

    SciTech Connect

    Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

    1987-09-01

    In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

  14. Average discharge, perennial flow initiation, and channel initiation - small southern Appalachian basins

    Treesearch

    B. Lane Rivenbark; C. Rhett Jackson

    2004-01-01

    Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged strttams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the...

  15. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  16. Apatite fission-track thermochronology of the central and southern Appalachian Basin

    SciTech Connect

    Roden, M.K.

    1989-01-01

    Samples were collected in west to east transects across the Appalachian Basin of Pennsylvania, Maryland, West Virginia, and Virginia. These samples locations were chosen to test the concept of increasing paleotemperature due to increasing burial from west to east across the Appalachian Basin and to detect any thermal anomalies that exist. Calculated time-temperature (tT) paths based on apatite fission-track apparent ages and confined track length distributions for samples from this study indicate that both the Pennsylvania and southern Appalachian had complex uplift and cooling histories. In Pennsylvania, the Tioga and Kalkberg ash bed samples from central Pennsylvania yield modelled tT paths that indicate early post-Alleghanian (285-270 Ma) cooling with uplift estimated at beginning at {approx}251 {plus minus} 25 Ma. Samples from the western Allegheny Plateau and Allegheny Front contain apatites which have reset to give fission-track ages and track lengths consistent with tT histories beginning at <200 Ma. In northeastern Pennsylvania on the Allegheny Plateau, the modelled tT paths show rapid cooling from temperatures in the range of 110{degree}-120{degree} C at 170-160 Ma. In the southern Appalachian Basin, calculated tT paths indicate that uplift in the northern section was immediately post-Alleghanian folding with uplift beginning first in the northwestern section on the Cumberland Plateau at {approx}226 {plus minus} 23 Ma and progressing to the eastern Valley and Ridge Province of Virginia at {approx}119 {plus minus} 12 Ma. The samples from southwestern Virginia yield a mean apatite fission-track apparent age of 175 {plus minus} 11 Ma which may be the result of a higher heat flow, higher paleogeothermal gradient during the Upper Jurassic-Early Cretaceous extension along the Atlantic Coast.

  17. Nested Paleozoic successor basins in the southern Appalachian Blue Ridge

    SciTech Connect

    Tull, J.F.; Groszos, M.S. )

    1990-11-01

    Field studies in the southern Appalachian Blue Ridge and its southwest extension, the Talladega belt, indicate that in at least three regions, polydeformed and metamorphosed turbidite-dominated sequences unconformably overlie rifted-margin continental-terrace wedge clastic rocks and overlying carbonate-platform deposits. These sequences are (1) the Talladega Group (in the Talladega belt), (2) the Walden Creek Group (along the west flank of the Blue Ridge), and (3) the Mineral Bluff Formation (within the core of the Blue Ridge). Paleontologic evidence indicates that the Talladega and Walden Creek Groups are in part as young as Silurian-Devonian. The presence of these anomalously young sequences unconformably above the trailing-margin stratigraphy in the Blue Ridge brings into question conventional ideas of the timing and nature of the tectonic evolution of the ancient continental margin.

  18. Nested Paleozoic "successor" basins in the southern Appalachian Blue Ridge

    NASA Astrophysics Data System (ADS)

    Tull, James F.; Groszos, Mark S.

    1990-11-01

    Field studies in the southern Appalachian Blue Ridge and its southwest extension, the Talladega belt, indicate that in at least three regions, polydeformed and metamorphosed turbidite-dominated sequences unconformably overlie rifted-margin continental-terrace wedge clastic rocks and overlying carbonate-platform deposits. These sequences are (1) the Talladega Group (in the Talladega belt), (2) the Walden Creek Group (along the west flank of the Blue Ridge), and (3) the Mineral Bluff Formation (within the core of the Blue Ridge). Paleontologic evidence indicates that the Talladega and Walden Creek Groups are in part as young as Silurian-Devonian. The presence of these anomalously young sequences unconformably above the trailing-margin stratigraphy in the Blue Ridge brings into question conventional ideas of the timing and nature of the tectonic evolution of the ancient continental margin.

  19. Seismic Texture Applied to Well Calibration and Reservoir Property Prediction in the North Central Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Ghosh, Amartya Ghosh

    Enhancing seismic interpretation capabilities often relies on the application of object oriented attributes to better understand subsurface geology. This research intends to extract and calibrate seismic texture attributes with well log data for better characterization of the Marcellus gas shale in north central Appalachian basin. Seismic texture refers to the lateral and vertical variations in reflection amplitude and waveform at a specific sample location in the 3-D seismic domain. Among various texture analysis algorithms, here seismic texture is characterized via an algorithm called waveform model regression utilizing model-derived waveforms for reservoir property calibration. Altering the calibrating waveforms facilitates the conversion of amplitude volumes to purpose-driven texture volumes to be calibrated with well logs for prediction of reservoir properties in untested regions throughout the reservoir. Seismic data calibration is crucial due to the resolution and uncertainty in the interpretation of the data. Because texture is a more unique descriptor of seismic data than amplitude, it provides more statistically and geologically significant correlations to well data. Our new results show that seismic texture is a viable attribute not only for reservoir feature visualization and discrimination, but also for reservoir property calibration and prediction. Comparative analysis indicates that the new results help better define seismic signal properties that are important in predicting the heterogeneity of the unconventional reservoir in the basin. Provisions of this research include a case study applying seismic texture attributes and an assessment of the viability of the attributes to be calibrated with well data from the Marcellus Shale in the north central Appalachian basin. Examples from this study will provide insight in its capabilities in practical applications of seismic texture attributes in unconventional reservoirs in the Appalachian basin and other

  20. Seismic exploration in Raton basin

    SciTech Connect

    Applegate, J.K.; Rose, P.R.

    1985-05-01

    Exploration in the Raton basin has delineated complex mountain-front structure in the asymmetric basin, and defined possible basin-centered gas. Exploration has included subsurface and surface geology, remote sensing, and seismic reflection. The Raton basin is a north-south-trending structural basin straddling the Colorado-New Mexico boundary. It is bounded on the west by the Sangre de Cristo Mountains, on the north and northeast by the Wet Mountains and Apishapa arch, and the Sierra Grande uplift on the south and southeast. The basin is asymmetric with transcurrent faulting and thrusting associated with the steeper western flank of the basin. Rocks range from Devonian-Mississippian overlying Precambrian basement to Miocene volcanics associated with the Spanish Peaks. Principal targets include the Entrada, Dakota, Codell, and Trinidad Sandstones and the Purgatoire and Raton Formations. Seismic data include explosive and Vibroseis data. Data quality is good in the basin center and is fair in the thrusted areas. Correlations are difficult from line to line. However, a strike line in the disturbed area would probably be more disrupted by out-of-the-plane reflections than the dip lines would be. Significant stratigraphic changes are seen in both the Trinidad and Dakota intervals. Integrated seismic and geological studies are keys to exploration in the basin. Subsequent work will rely heavily on improved seismic information.

  1. Allogenic processes, sediment flux, and Carboniferous stratigraphy in the Appalachian basin

    SciTech Connect

    Cecil, C.B.; Dulong, F.T.; Edgar, N.T. )

    1992-01-01

    The origin of Carboniferous strata in the central Appalachian basin is being evaluated as a function of paleoclimatic, eustatic, and tectonic processes. Of these processes, paleoclimate has, in the past, received the least attention but appears to be of primary importance as a control on stratigraphy. For example, Upper Mississippian strata include both marine carbonates and marine dark gray to black shales. The marine carbonate units are underlain and overlain by paleosols that contain calcic peds, pseudomorphs of gypsum, and rhizoconcretions with vertical root structures suggesting low soil moisture. The marine limestone generally is in sharp contact with an underlying paleosol. The lithostratigraphy of such a sequence is consistent with a transgressive-regressive cycle under relatively dry (semiarid) climatic conditions, which limits siliciclastic influx. In contrast, the marine gray and black shales are bounded by leached paleosols containing horizontal rhizomorphs and coal beds suggestive of wet soil conditions. Terrestrial organic matter in marine shales indicate relatively high terrestrial organic productivity, and the shale units are in gradational contact with underling strata. The lithostratigraphy of the marine shale sequences is consistent with deposition under relatively wet climatic regimes (probably seasonal and subhumid), which increased siliciclastic and terrestrial organic matter input. Relatively short-term climate cycles were a primary control on sediment flux within Carboniferous deposystems in the Appalachian basin. Long-term climate change also occurred as eastern North America moved from relatively dry latitudes of the southern hemisphere through the tropical rainy belt into drier latitudes of the northern hemisphere. Long-term tectonic change provided accommodation space. Such controls can readily be observed throughout Carboniferous strata in the Appalachian basin.

  2. Bituminous coal production in the Appalachian Basin; past, present, and future

    USGS Publications Warehouse

    Milici, R.C.

    1999-01-01

    This report on Appalachian basin coal production consists of four maps and associated graphs and tables, with links to the basic data that were used to construct the maps. Plate 1 shows the time (year) of maximum coal production, by county. For illustration purposes, the years of maximum production are grouped into decadal units. Plate 2 shows the amount of coal produced (tons) during the year of maximum coal production for each county. Plate 3 illustrates the cumulative coal production (tons) for each county since about the beginning of the 20th century. Plate 4 shows 1996 annual production by county. During the current (third) cycle of coal production in the Appalachian basin, only seven major coal-producing counties (those with more than 500 million tons cumulative production), including Greene County, Pa.; Boone, Kanawha, Logan, Mingo, and Monongalia Counties, W.Va.; and Pike County, Ky., exhibit a general increase in coal production. Other major coal-producing counties have either declined to a small percentage of their maximum production or are annually maintaining a moderate level of production. In general, the areas with current high coal production have large blocks of coal that are suitable for mining underground with highly efficient longwall methods, or are occupied by very large scale, relatively low cost surface mining operations. The estimated cumulative production for combined bituminous and anthracite coal is about 100 billion tons or less for the Appalachian basin. In general, it is anticipated that the remaining resources will be progressively of lower quality, will cost more to mine, and will become economical only as new technologies for extraction, beneficiation, and consumption are developed, and then only if prices for coal increase.

  3. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.

    2010-01-01

    Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale

  4. Stratigraphic framework of Cambrian and Ordovician rocks across Rome Trough, central Appalachian basin

    SciTech Connect

    Ryder, R.T.

    1987-09-01

    Restored stratigraphic cross sections drawn primarily through the subsurface of parts of Pennsylvania, Ohio, West Virginia, Kentucky, and Tennessee provide new detailed information to further the understanding of Cambrian and Ordovician sedimentation and tectonics associated with the Rome trough sector of the Appalachian basin. Drilled thickness of the Cambrian and Ordovician sequence ranges from a maximum of about 14,500 ft (4.5 km) along the axis of the trough to a minimum of about 3500 ft (1 km) on the western flank.

  5. Geologic framework for the coal-bearing rocks of the Central Appalachian Basin

    USGS Publications Warehouse

    Chesnut, D.R.

    1996-01-01

    Coal production has been an important economic factor in the Central Appalachian Basin. However, regional stratigraphic and structural relationships of the coal-bearing rocks of the basin have been poorly understood due to numerous separate nomenclatural schemes employed by various states. In order to estimate coal resources and understand mechanisms controlling the distribution of coal within the basin, a reliable geologic framework is necessary. Seven detailed cross sections across the Central Appalachian Basin were constructed in order to examine the stratigraphic and structural framework of the coal-bearing rocks in the basin. The cross sections were based on more than 1000 oil and gas well logs, measured sections, and borehole information from Kentucky, Ohio, Tennessee, Virginia and West Virginia. The cross sections revealed three main points discussed here: southeast thickening of the Pennsylvanian strata, unconformable northwestward onlapping relationship of Lower Pennsylvanian strata over underlying Lower Pennsylvanian and Mississippian strata and regional continuity of beds. The cross sections, geologic mapping, coal-resource studies, extensive new highway exposures and the occurrence of tonstein beds indicate that many coal beds and marine strata are laterally extensive, albeit locally variable across the basin. Certain quartzose sandstone bodies are also extensive over large areas of the basin. Existing stratigraphic nomenclature schemes obscured the geologic framework of the basin, so a new unified nomenclature scheme was devised to better describe stratigraphic features of the basin. The new stratigraphic nomenclature, now only formalized for Kentucky, was based on key stratigraphic units that proved to be extensive across the basin. Lower and Middle Pennsylvanian rocks are now recognized as the Breathitt Group (the Breathitt Formation was elevated to group rank). The Breathitt Group was subdivided into eight coal-bearing formations by relatively thick

  6. Diagenesis of Coeymans (Lower Devonian) patch reefs, northern Appalachian basin

    SciTech Connect

    Precht, W.F.

    1984-12-01

    Fourteen Coeymans-age patch reefs and biotherms have been identified along the Silurian-Devonian outcrop belt in northeastern Pennsylvania, northwestern New Jersey, and central New York. Detailed petrographic analysis of samples from five reefs has led to development of a regional diagenetic model. The model developed in this study leads us to infer that Coeymans reefs found in the shallow subsurface would not be favorable hydrocarbon reservoirs. The possibility does exist that localized porosity development occurs in untested reefs within the deeper subsurface portions of the basin.

  7. Sequence stratigraphy and depositional systems of the Lower Silurian Medina Group, northern Appalachian basin

    SciTech Connect

    Castle, J.W. )

    1991-08-01

    Detailed sedimentological analysis of 3500 ft of continuous core from 44 wells in Pennsylvania, Ohio, Ontario, New York, and West Virginia, combined with regional study of geophysical logs, results in new interpretations of sequence stratigraphy and depositional systems in Lower Silurian siliciclastic rocks of the northern Appalachian basin. Above a type-1 sequence boundary at the base of the Medina Group are a lowstand systems tract and a transgressive systems tract that are represented, respectively, by the Whirlpool Sandstone and by the overlying Cabot Head Shale. The thickest sandstones in the Medina Group occur in the Grimsby Sandstone, which is interpreted as a highstand systems tract with basinward-prograding parasequences. Sea level rise after Grimsby parasequence deposition is represented by marine-shelf shale in the uppermost part of the Medina Group. Based on facies successions in the cores, four mappable depositional systems are interpreted for the Grimsby Sandstone and correlative sandstone units; (1) wave-dominated middle shelf, (2) wave- and tide-influenced inner shelf, (3) tide dominated shoreline, and (4) fluvial. The wave-dominated middle-shelf system, which includes very fine-grained shelf-ridge sandstones encased in marine shale, is the most basinward system, occurring from Ontario through parts of eastern Ohio. Shoreward, across the northern Appalachian basin, the influence of tidal processes relative to wave processes generally increased, which may have been related to distance across the shelf, water depth, and shoreline configuration. The shoreline may have been deltaic in some areas and straight in other areas.

  8. Petrology and depositional significance of Conemaugh marine units in the Appalachian Basin

    SciTech Connect

    Fahrer, T.R.; Heckel, P.H. . Dept. Geology)

    1992-01-01

    The Conemaugh Group contains the last appearance of Pennsylvanian marine units in the Appalachian basin. The marine units range from argillaceous/silty/sandy skeletal limestones to fossiliferous, dark to light gray shales, calcareous siltstones and sandstones. Limestones are present at least locally in all units and are conspicuous in most units. They commonly contain a more abundant and diverse fauna including abundant conodonts, and frequently contain glaucony and phosphorite, indicating long-term slowdown of deposition. They are typically overlain by fossiliferous shales that generally decrease in fossil abundance and diversity upward, locally contain siderite concretions, and coarsen upward to siltstones that lend diffuse upper boundaries to the marine unit. All the marine units appear to represent transgressive-regressive events extensive enough to reach this area from the Midcontinent where marine deposition is more prominent throughout the interval. Initial transgression produced swampy conditions locally permitting formation of coal, which was eventually overwhelmed by marine sediments. At maximum highstand, when clastic supply was reduced, limestones consisting mainly of skeletal debris and containing abundant conodonts were deposited as a condensed interval in which glaucony and phophorite formed slowly in the absence of detrital or carbonate dilution. These limestones are oxygenated shallow-water counterparts to the dark phosphatic, conodont-rich core shale member of the Midcontinent cyclothem. Regression reintroduced clastics readily into the system in the Appalachian basin, greatly diluting skeletal carbonate grains, thus terminating limestone deposition, and decreasing faunal abundance and diversity upward in the overlying detrital part of the marine unit.

  9. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  10. Central Appalachian basin natural gas database: distribution, composition, and origin of natural gases

    USGS Publications Warehouse

    Román Colón, Yomayra A.; Ruppert, Leslie F.

    2015-01-01

    The U.S. Geological Survey (USGS) has compiled a database consisting of three worksheets of central Appalachian basin natural gas analyses and isotopic compositions from published and unpublished sources of 1,282 gas samples from Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The database includes field and reservoir names, well and State identification number, selected geologic reservoir properties, and the composition of natural gases (methane; ethane; propane; butane, iso-butane [i-butane]; normal butane [n-butane]; iso-pentane [i-pentane]; normal pentane [n-pentane]; cyclohexane, and hexanes). In the first worksheet, location and American Petroleum Institute (API) numbers from public or published sources are provided for 1,231 of the 1,282 gas samples. A second worksheet of 186 gas samples was compiled from published sources and augmented with public location information and contains carbon, hydrogen, and nitrogen isotopic measurements of natural gas. The third worksheet is a key for all abbreviations in the database. The database can be used to better constrain the stratigraphic distribution, composition, and origin of natural gas in the central Appalachian basin.

  11. Apatite fission-track thermochronology of the southern Appalachian Basin: Maryland, West Virginia, and Virginia

    SciTech Connect

    Roden, M.K. )

    1991-01-01

    Apatite fission-track apparent ages (246 {plus minus} 37 to 95 {plus minus} 18 Ma) for 26 samples of upper Devonian (Hampshire and Chemung Formations) and middle Devonian age (Tioga Ash Bed) from the southern Appalachian Basin of Maryland, Virginia, and West Virginia, along with confined track length distributions for 13 of these samples, suggest that uplift was contemporaneous with Triassic-Jurassic extension along the Atlantic continental margin. Uplift, as measured by apatite fission-track analysis, began earliest in the northwestern section on the Cumberland Plateau at {approximately}225 {plus minus} 25 Ma. This area probably required the least amount of erosional unroofing ({approximately}3.1 km). Samples from the Valley and Ridge Province of northern West Virginia, Virginia, and Maryland yield progressively younger apatite fission-track apparent ages to the east (ranging from 163 {plus minus} 10 to 95 {plus minus} 18 Ma). This is consistent with deeper burial in the eastern Appalachian Basin as indicated by increasing CAI indices and geodynamic modeling. The southwestern Virginia samples yield a mean apatite fission-track apparent age of 176 {plus minus} 11 Ma, which agrees with the Middle Jurassic apatite fission-track ages to the north.

  12. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    USGS Publications Warehouse

    Groshong, R.H.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  13. Determining the source and genetic fingerprint of natural gases using noble gas geochemistry: a northern Appalachian Basin case study

    USGS Publications Warehouse

    Hunt, Andrew G.; Darrah, Thomas H.; Poreda, Robert J.

    2012-01-01

    Silurian and Devonian natural gas reservoirs present within New York state represent an example of unconventional gas accumulations within the northern Appalachian Basin. These unconventional energy resources, previously thought to be noneconomically viable, have come into play following advances in drilling (i.e., horizontal drilling) and extraction (i.e., hydraulic fracturing) capabilities. Therefore, efforts to understand these and other domestic and global natural gas reserves have recently increased. The suspicion of fugitive mass migration issues within current Appalachian production fields has catalyzed the need to develop a greater understanding of the genetic grouping (source) and migrational history of natural gases in this area. We introduce new noble gas data in the context of published hydrocarbon carbon (C1,C2+) (13C) data to explore the genesis of thermogenic gases in the Appalachian Basin. This study includes natural gases from two distinct genetic groups: group 1, Upper Devonian (Marcellus shale and Canadaway Group) gases generated in situ, characterized by early mature (13C[C1  C2][13C113C2]: –9), isotopically light methane, with low (4He) (average, 1  103 cc/cc) elevated 4He/40Ar and 21Ne/40Ar (where the asterisk denotes excess radiogenic or nucleogenic production beyond the atmospheric ratio), and a variable, atmospherically (air-saturated–water) derived noble gas component; and group 2, a migratory natural gas that emanated from Lower Ordovician source rocks (i.e., most likely, Middle Ordovician Trenton or Black River group) that is currently hosted primarily in Lower Silurian sands (i.e., Medina or Clinton group) characterized by isotopically heavy, mature methane (13C[C1 – C2] [13C113C2]: 3), with high (4He) (average, 1.85  103 cc/cc) 4He/40Ar and 21Ne/40Ar near crustal production levels and elevated crustal noble gas content (enriched 4He,21Ne, 40Ar). Because the release of each crustal noble gas (i.e., He, Ne, Ar

  14. Palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin

    USGS Publications Warehouse

    Eble, C.F.

    2002-01-01

    Fossil spores and pollen have long been recognized as valuable tools for identifying and correlating coal beds. This paper describes the palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin with emphasis on forms that assist both intra- and interbasinal coal bed correlation. Stratigraphically important palynomorphs that originate in late Middle Pennsylvanian strata include Torispora securis, Murospora kosankei, Triquitrites minutus, Cadiospora magna, Mooreisporites inusitatus, and Schopfites dimorphus. Taxa that terminate in the late Middle Pennsylvanian include Radiizonates difformis, Densosporites annulatus, Dictyotriletes bireticulatus, Vestispora magna, and Savitrisporites nux. Species of Lycospora, Cirratriradites, Vestispora, and Thymospora, as well as Granasporites medius, Triquitrites sculptilis, and T. securis and their respective ranges slightly higher, in earliest Late Pennsylvanian age strata. Late Middle Pennsylvanian and earliest Late Pennsylvanian strata in the Appalachian Basin correlate with the Radiizonates difformis (RD), Mooreisporites inusitatus (MI), Schopfites colchesterensis-S. dimorphus (CP), and Lycospora granulata-Granasporites medius (GM) spore assemblage zones of the Eastern Interior, or Illinois Basin. In the Western Interior Basin, these strata correlate with the middle-upper portion of the Torispora securis-Laevigatosporites globosus (SG) and lower half of the Thymospora pseudothiessenii-Schopfites dimorphus (PD) assemblage zones. In western Europe, late Middle Pennsylvanian and earliest Late Pennsylvanian strata correlate with the middle-upper portion of the Torispora securis-T. laevigata (SL) and the middle part of the Thymospora obscura-T. thiessenii (OT) spore assemblage zones. Allegheny Formation coal beds also correlate with the Torispora securis (X) and Thymospora obscura (XI) spore assemblages, which were developed for coal beds in Great Britain. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Geologic controls on thermal maturity patterns in Pennsylvanian coal-bearing rocks in the Appalachian basin

    USGS Publications Warehouse

    Ruppert, L.F.; Hower, J.C.; Ryder, R.T.; Levine, J.R.; Trippi, M.H.; Grady, W.C.

    2010-01-01

    Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin were determined by compiling and contouring published and unpublished vitrinite reflectance (VR) measurements. VR isograd values range from 0.6% in eastern Ohio and eastern Kentucky (western side of the East Kentucky coal field) to greater than 5.5% in eastern Pennsylvania (Southern Anthracite field, Schuylkill County), corresponding to ASTM coal rank classes of high volatile C bituminous to meta-anthracite. VR isograds show that thermal maturity of Pennsylvanian coals generally increases from west to east across the basin. The isograds patterns, which are indicative of maximum temperatures during burial, can be explained by variations in paleodepth of burial, paleogeothermal gradient, or a combination of both. However, there are at least four areas of unusually high-rank coal in the Appalachian basin that depart from the regional trends and are difficult to explain by depth of burial alone: 1) a west-northwestward salient centered in southwestern Pennsylvania; 2) an elliptically-shaped, northeast-trending area centered in southern West Virginia and western Virginia; 3) the eastern part of Black Warrior coal field, Alabama; and 4) the Pennsylvania Anthracite region, in eastern Pennsylvania. High-rank excursions in southwest Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland, associated with Alleghanian deformation. In addition to higher heat flow from fluids, the Pennsylvania Anthracite region also experienced greater depth of burial. The high-rank excursion in southwest Virginia was probably primarily controlled by overburden thickness, but may also have been influenced by higher geothermal gradients.

  16. The Frasnian-Famennian boundary (Upper Devonian) in black shale sequences: US Southern Midcontinent, Illinois Basin, and northern Appalachian Basin

    SciTech Connect

    Over, D.J. . Dept. of Geological Sciences)

    1994-04-01

    The Frasnian-Famennian (F/F) boundary in the Woodford Shale of the US southern Midcontinent, Sweetland Creek Shale of the Illinois Basin, and the Hanover Shale of the northern Appalachian Basin is recognized to a discrete horizon. In each locality the boundary is marked by evidence of a disconformity: phosphate nodules, concentration of conodonts, or coated and corroded grains. The Woodford Shale consists of finely laminated pyritic organic-rich shale containing interbeds of greenish shale and chert. The F/F boundary horizon is marked by a concentration of conodonts and phosphatic nodules. The boundary lag horizon contains Pa. linguliformis, Pa. subperlobtata, Pa. delicatula delicatula, and Pa. triangularis. Underlying laminations contain Ancyrognathus ubiquitus and Pa. triangularis indicating that the disconformity is within the uppermost MN Zone 13 or Lower triangularis Zone. The upper portion of the Type Sweetland Creek Shale consists of dark organic-rich shales. The F/F boundary is located within an interval containing three green shale interbeds. Palmatolepis triangularis in the absence of Frasnian species first occurs in the middle green shale. In the thick Upper Devonian clastic sequence of the northern Appalachian Basin the F/F boundary is within an interval of interbedded pyritic green and organic-rich silty shales of the Hanover Shale. At Irish Gulf strata containing Pa. triangularis overlie finely laminated dark shales containing Pa. bogartensis, Pa. triangularis, Pa. winchell, Ancyrodella curvata, and Icriodus alternatus. The conodont fauna transition is below a conodont-rich laminae containing a Famennian fauna that marks the boundary horizon.

  17. Stratigraphic analysis of the carboniferous rocks of the Central Appalachian Basin

    SciTech Connect

    Chesnut, D.R. Jr.

    1988-01-01

    A series of seven cross sections was constructed across part of the Central Appalachian Basin in Kentucky, Tennessee, Virginia, West Virginia, and Ohio. Information used to make these sections included well logs, coal-company core descriptions, measured sections, and mapped surface geology. Newly discovered surface and subsurface structural features such as faults, folds, and flexures, are described. A new, unofficial lithostratigraphic nomenclature was introduced to illustrate the stratigraphic framework, and a regional unconformity was interpreted to occur between the Pennsylvanian Pocahontas Formation and the Pennsylvanian New River Formation. The cross sections reveal that sequential truncation of formations below the unconformity occurs t the northwest in the basin. A regional unconformity and biostratigraphic evidence indicate that the Carboniferous rocks were deposited in a series of several small-scale environmental continua. Pennsylvanian rocks overlying the regional unconformity sequentially overlap the underlying rocks to the northwest in the basin. Belts of quartzose sandstones (Lee Formation) within the overlying rocks, are oriented northeast-southwest. Succeeding sandstone belts onlap the unconformity to the northwest within the basin. A fluvial origin is suggested for the quartzose, conglomeratic sands of the Lee Formation. The source for these sands may have been reworked sediments derived from the Old Red Sandstone continent to the northwest in Canada. The remaining Pennsylvanian coal-bearing clastic rocks (Breathitt Group) were deposited as clastic wedges derived from the east and southeast on coastal lowlands.

  18. INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASIN

    SciTech Connect

    Robert Jacobi; John Fountain

    2005-03-01

    The primary goal was to enter Phase 2 by analyzing geophysical logs and sidewall cores from a verification well drilled into the Trenton/Black River section along lineaments. However, the well has not yet been drilled; Phase 2 has therefore not been accomplished. We have switched oil and gas exploration and production companies, and are now, in conjunction with Fortuna, planning to retrieve 18 m of horizontal core across a gas-charged zone in the Trenton/Black River in central New York State, the ''hottest'' play in the Appalachian Basin. Secondary goals in Phase I were also completed in previous reporting period. Although new structural data were collected and analyzed for a few regions where we had no data, the results did not change the previous conclusions. We have also continued analyzing remote sensing images to determine, by using the weights-of-evidence method, which images and processing techniques result in lineaments that best reflect the fractures found in outcrop. We have tested the lineaments from EarthSat (1997), as well as lineaments we identified on Landsat and ASTER images. For fracture intensification domains (FIDs) along Seneca Lake, we found that lineaments identified on a fused image of Landsat and ASTER images produced better correlation to FIDs than lineaments from EarthSat (1997) and ASTER alone. This relationship held true for all orientations of FIDs except E-striking FIDs, which showed a better correlation with lineaments observed on ASTER lineaments than on the fused Landsat and ASTER image lineaments. For Cayuga Lake FIDs, lineaments identified on a fused image of Landsat and ASTER images also produced significantly better correlation to FIDs than lineaments from ASTER alone for NW- and NNW-striking FIDs. However, for NE-, ENE- and E-striking FIDs, ASTER lineaments generally showed the closest match. These data continue to demonstrate that integration of aeromagnetic and remote sensing lineaments, surface structure, soil gas and

  19. Nature, origin, and production characteristics of the Lower Silurian regional oil and gas accumulation, central Appalachian basin, United States

    USGS Publications Warehouse

    Ryder, R.; Zagorski, W.A.

    2003-01-01

    Low-permeability sandstones of the Lower Silurian regional oil and gas accumulation cover about 45,000 mi2 (117,000 km2) of the Appalachian basin and may contain as much as 30 tcf of recoverable gas resources. Major reservoirs consist of the "Clinton" sandstone and Medina Group sandstones. The stratigraphically equivalent Tuscarora Sandstone increases the area of the Lower Silurian regional accumulation (LSRA) by another 30,000 mi2 (78,000 km2). Approximately 8.7 tcf of gas and 400 million bbl of oil have been produced from the Clinton/Medina reservoirs since 1880. The eastern predominantly gas-bearing part of the LSRA is a basin-center gas accumulation, whereas the western part is a conventional oil and gas accumulation with hybrid features of a basin-center accumulation. The basin-center accumulations have pervasive gas saturation, water near irreducible saturation, and generally low fluid pressures. In contrast, the hybrid-conventional accumulations have less-pervasive oil and gas saturation, higher mobile-water saturation, and both normal and abnormally low fluid pressures. High mobile-water saturation in the hybrid-conventional reservoirs form the updip trap for the basin-center gas creating a broad transition zone, tens of miles wide, that has characteristics of both end-member accumulation types. Although the Tuscarora Sandstone part of the basin-center gas accumulation is pervasively saturated with gas, most of its constituent sandstone beds have low porosity and permeability. Commercial gas fields in the Tuscarora Sandstone are trapped in naturally fractured, faulted anticlines. The origin of the LSRA includes (1) generation of oil and gas from Ordovician black shales, (2) vertical migration through an overlying 1000-ft (305-m)-thick Ordovician shale; (3) abnormally high fluid pressure created by oil-to-gas transformation; (4) updip displacement of mobile pore water by overpressured gas; (5) entrapment of pervasive gas in the basin center; (6) postorogenic

  20. Distinguishing the Source of Natural Gas Accumulations with a Combined Gas and Co-produced Formation Water Geochemical Approach: a Case Study from the Appalachian Basin

    EPA Pesticide Factsheets

    The purpose of this study is to discuss the use of gas and co-produced formation water geochemistry for identifying the source of natural gas and present gas geochemistry for the northern Appalachian Basin.

  1. Low Temperature Geothermal Play Fairway Analysis For The Appalachian Basin: Phase 1 Revised Report November 18, 2016

    SciTech Connect

    Jordan, Teresa E.; Richards, Maria C.; Horowitz, Franklin G.; Camp, Erin; Smith, Jared D.; Whealton, Calvin A.; Stedinger, Jery R.; Hornbach, Matthew J.; Frone, Zachary S.; Tester, Jefferson W.; Anderson, Brian; Welcker, Kelydra; Chickering Pace, Catherine; He, Xiaoning; Magnani, Maria Beatrice; Bolat, Rahmi

    2016-11-18

    Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of the resource base to warrant their time and financial resources. The Geothermal Play Fairway Analysis of the Appalachian Basin evaluated risk metrics that communicate the favorability of potential low-temperature geothermal energy resources in reservoirs more than 1000 m below the surface. This analysis is focused on the direct use of the heat, rather than on electricity production. Four risk factors of concern for direct-use geothermal plays in the Appalachian Basin portions of New York, Pennsylvania, and West Virginia are examined individually, and then in combination: 1) thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities. Uncertainty in the risk estimation is quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty assessment. Three methods with which to combine the four risk factors were used. Among these, the averaging of the individual risk factors indicates the most favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis (dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the New York counties of Chemung and Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway), and the Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New York (together, the Meadville–Jamestown play fairway). These higher priority regions are surrounded by broader medium priority zones. Also worthy of additional exploration is a broad region near Pittsburgh

  2. Geologic summary of the Appalachian Basin, with reference to the subsurface disposal of radioactive waste solutions

    USGS Publications Warehouse

    Colton, G.W.

    1962-01-01

    The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where

  3. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect

    Robert D. Hatcher

    2004-05-31

    This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician

  4. Linked sequence development and global climate change: The Upper Mississippian record in the Appalachian basin

    NASA Astrophysics Data System (ADS)

    Miller, Daniel J.; Eriksson, Kenneth A.

    1999-01-01

    The character and relative stratigraphic position of paleoclimatic indicators within Upper Mississippian strata of southern West Virginia suggest a link between eustasy and patterns of continental- to global-scale atmospheric circulation. At the cyclothem scale, annual rhythms in marine facies, and paleovertisols and lacustrine carbonates in terrestrial units indicate that seasonal, semiarid climatic conditions prevailed during highstand progradation. In contrast, leached paleosols and coals that underlie sequence boundaries and occur within transgressive heterolithic facies are suggestive of humid climatic conditions during late highstand through early transgression. Milankovitch-band, glacial-interglacial cyclicity may explain both sequence development and the evidence for Late Mississippian climate fluctuations in the Appalachian basin. Shifts from seasonal to humid climatic conditions are attributed to systematic variation in monsoonal circulation, whereby seasonal moisture became restricted to the equatorial belt during the lowstands of each ˜400 k.y. glacial-interglacial cycle.

  5. Munsell color value as related to organic carbon in Devonian shale of Appalachian basin

    USGS Publications Warehouse

    Hosterman, J.W.; Whitlow, S.I.

    1981-01-01

    Comparison of Munsell color value with organic carbon content of 880 samples from 50 drill holes in Appalachian basin shows that a power curve is the best fit for the data. A color value below 3 to 3.5 indicates the presence of organic carbon but is meaningless in determining the organic carbon content because a large increase in amount of organic carbon causes only a minor decrease in color value. Above 4, the color value is one of the factors that can be used in calculating the organic content. For samples containing equal amounts of organic carbon, calcareous shale containing more than 5% calcite is darker than shale containing less than 5% calcite.-Authors

  6. Linked sequence development and global climate change: The Upper Mississippian record in the Appalachian basin

    SciTech Connect

    Miller, D.J.; Eriksson, K.A.

    1999-01-01

    The character and relative stratigraphic position of paleoclimatic indicators within Upper Mississippian strata of southern West Virginia suggest a link between eustasy and patterns of continental- to global-scale atmospheric circulation. At the cyclothem scale, annual rhythms in marine facies, and paleovertisols and lacustrine carbonates in terrestrial units indicate that seasonal, semiarid climatic conditions prevailed during highstand progradation. In contrast, leached paleosols and coals that underlie sequence boundaries and occur within transgressive heterolithic facies are suggestive of humid climatic conditions during late highstand through early transgression. Milankovitch-band, glacial-interglacial cyclicity may explain both sequence development and the evidence for Late Mississippian climate fluctuations in the Appalachian basin. Shifts from seasonal to humid climatic conditions are attributed to systematic variation in monsoonal circulation, whereby seasonal moisture became restricted to the equatorial belt during the lowstands of each {approximately}400 k.y. glacial-interglacial cycle.

  7. Distribution of maximum burial temperatures across northern Appalachian Basin and implications for Carboniferous sedimentation patterns

    SciTech Connect

    Johnsson, M.J.

    1986-05-01

    Clay-mineral diagenesis and apatite fission-track age data indicate that the maximum burial temperatures to which the Middle Devonian Tioga metabentonite was exposed rise abruptly from low values in western New York State to higher values in the east. The highest temperatures, which approach 175/sup 0/C, were reached just west of Syracuse. Neither the pattern nor the magnitude of burial temperatures can be explained solely by burial of the metabentonite beneath Upper Devonian sediments. Although spatial variations in the geothermal gradient could have produced the observed pattern of burial temperatures, it is more likely that Carboniferous sediments, no longer preserved in the area, were responsible for the indicated burial. The inferred presence of thick Carboniferous sequences in western New York State suggests that the Allegheny orogeny had a stronger influence on sedimentation in the northern Appalachian Basin than has been previously recognized. 25 references, 2 figures, 2 tables.

  8. Magnetic fabric determined from ARM and IRM anisotropies in paleozoic carbonates, Southern Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Lu, Gang; McCabe, Chad

    1993-06-01

    We have undertaken a comparative study of ARM and IRM anisotropies in Paleozoic carbonate rocks from the Nashville and Jessamine Domes in the Southern Appalachian Basin. The ARMA ellipsoids differ markedly from the IRMA ellipsoids. ARMA appears to reflect a predeformation magnetic fabric due to deposition and/or compaction with minimum axes near vertical and a weak lineation. Conversely, IRMA has minimum axes near horizontal and oriented NE-SW, which is compatible with a tectonic fabric due to Alleghanian deformation. Percent ARMA is consistently greater than IRMA. ARM was imparted at low alternating fields (30 mT), and thus ARMA may reflect the fabric residing in low and intermediate coercivity (coarse grained) magnetite. However, the IRM was imparted in saturating fields (300 mT) and appears to be dominated by the single domain fraction, which is believed to carry the observed Kiaman Superchron remagnetization.

  9. Stable Isotopic Constraints on Abiogenic Hydrocarbon gas Contributions to Thermogenic Natural gas Resources in the Northern Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Burruss, R. C.; Laughrey, C. D.

    2006-05-01

    The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the

  10. The Appalachian Mountains' Copper Basin and the concept of environmental susceptibility

    NASA Astrophysics Data System (ADS)

    Quinn, M.-L.

    1991-03-01

    The Copper Basin is located within the southern Appalachian Mountains primarily in extreme southeastern Tennessee, USA. It has long been known for its copper mining/smelting and associated chemical industry, as well as its severely injured environment. Virtually all previous commentary on the environmental degradation at this location have focused on human activities and their destructive impact. This article approaches the subject from a different angle, one that emphasizes the interaction between man and nature. The site's physical setting, industrial history, and environmental history are briefly reviewed. The theory then presented here is that certain of the Copper Basin's natural features made its environment unusually vulnerable to the negative impact of copper mining and smelting, especially as practiced around the turn of the century. These features are identified. This reasoning provides the basis for the concept of environmental susceptibility, which is defined and discussed. A few of its applications are mentioned. This study offers a new perspective on the Copper Basin, as well as insights for those whose work involves investigating the man/nature relationship—both past and present.

  11. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  12. Geohydrologic feasibility study of the Northern and Central Appalachian basin areas for the potential application of a production process patented by Jack W. McIntyre

    SciTech Connect

    Kvasnicka, D.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of a patented (US Patent Office No. 4,766,957) process developed by Jack W. McIntyre for the recovery of natural gas from coalbed/sand formations in the Northern and Central Appalachian basin areas. General research, based on a review of published literature from both public and private sources, indicates that the generally thin, but numerous coalbeds found in the greater Appalachian Basin area do exhibit some potential for the application of this patented process. Estimates of total gas reserves in-place (Gas Research Institute, July 1991) for coalbeds in the Central and Northern Appalachian Basin areas are 5 trillion cubic feet (TCF) and 61 TCF respectively. Produced waters associated with coal deposits in the greater Appalachian Basin area can be characterized on the basis of established but limited production of coalbed methane. Central Appalachian coals generally produce small quantities of water (less than 50 barrels of water per day for the average producing well) which is high in total dissolved solids (TDS), greater than 30,000 parts per million (ppM). The chemical quality of water produced from these coal seams represents a significant disposal challenge to the operators of methane-producing wells in the Central Appalachian Basin. By contrast, water associated with the production of coalbed methane in the Northern Appalachian Basin is generally fair to good quality, and daily production volumes are low. However, the relatively slow desorption of methane gas from Northern Appalachian coals may result in a greater net volume of produced water over the economic life of the well. The well operator must respond to long-term disposal needs.

  13. Petroleum evaluation of Ordovician black shale source rocks in northern Appalachian basin

    SciTech Connect

    Wallace, L.G.; Roen, J.B.

    1988-08-01

    A preliminary appraisal of the Ordovician black shale source beds in the northern part of the Appalachian basin shows that the sequence is composed of the Upper Ordovician Utica Shale and its correlatives. The shales range in thickness from less than 200 ft in the west to more than 600 ft in the east along the Allegheny Front. Structure contours indicate that the shales plunge from 2,000 ft below sea level in central Ohio and to about 12,000 ft below sea level in central and northeastern Pennsylvania. Geochemical analyses of 175 samples indicate that the sequence has an average total organic carbon content (TOC) of 1.34%. Conodont alteration indices (CAI) and production indices indicate that the stages of maturation range from diagenetic in the less deeply buried western part of the basin, which probably produced mostly oil, to catagenetic in the more deeply buried eastern part of the basin, which probably produced mostly gas. Potential for continued hydrocarbon generation is poor in the east and fair to moderate in the western part of the basin. If the authors assume that these rocks have produced hydrocarbons, the hydrocarbons have since migrated. Using an average TOC of 1%, an organic carbon to hydrocarbon conversion factor of 10%, and a volume of rock within the oil and gas generation range as defined by CAI values of 1.5-4, the Ordovician shale could have generated 165 billion bbl of oil or equivalent. If only 1% of the 165 billion bbl was trapped after migration, then 1.65 billion bbl of oil or equivalent would be available for discovery.

  14. Vertical movements of the crust: Case histories from the northern Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Friedman, Gerald M.

    1987-12-01

    Evidence of former deep burial of Ordovician to Devonian strata of the northern Appalachian Basin has been obtained from various techniques of study, including fluid-inclusion homogenization temperatures, δ18O, and vitrinite reflectance. Diagenetic minerals indicate paleotemperatures of 100 200 °C. Maximum depths of burial were calculated from the estimated paleotemperatures; a gradient of 26 °C/km was assumed. Silurian strata of the basin are interpreted to have reached maximum burial depths of 5.0 km; Devonian strata in the Catskill Mountains had former burial depths of ˜6.5 km; Lower Ordovician carbonate sequences were buried to >7 km; Middle Ordovician strata had paleodepths of ˜5 km; and Devonian carbonate strata had paleodepths from 4.5 to 5 km. If these strata were buried deeper than previously thought, unexpectedly large amounts of uplift and erosion, ranging from 4.3 to 7 km, must also have taken place to bring these strata to the present land surface. The occurrence of such large-scale vertical movements of the crust and lithosphere must be recognized in paleogeographic reconstructions. Such drastic changes represent isostatic unroofing, with widespread implications for paleogeography of a kind unrecognized at present.

  15. Early to Middle Ordovician back-arc basin in the southern Appalachian Blue Ridge: characteristics, extent, and tectonic significance

    USGS Publications Warehouse

    Tull, James; Holm-Denoma, Christopher S.; Barineau, Clinton I.

    2014-01-01

    Fault-dismembered segments of a distinctive, extensive, highly allochthonous, and tectonically significant Ordovician (ca. 480–460 Ma) basin, which contains suites of bimodal metavolcanic rocks, associated base metal deposits, and thick immature deep-water (turbiditic) metasediments, occur in parts of the southern Appalachian Talladega belt, eastern Blue Ridge, and Inner Piedmont of Alabama, Georgia, and North and South Carolina. The basin's predominantly metasedimentary strata display geochemical and isotopic evidence of a mixed provenance, including an adjacent active volcanic arc and a provenance of mica (clay)-rich sedimentary and felsic plutonic rocks consistent with Laurentian (Grenvillian) upper-crustal continental rocks and their passive-margin cover sequences. Geochemical characteristics of the subordinate intercalated bimodal metavolcanic rocks indicate formation in a suprasubduction environment, most likely a back-arc basin, whereas characteristics of metasedimentary units suggest deposition above Neoproterozoic rift and outer-margin lower Paleozoic slope and rise sediments within a marginal basin along Ordovician Laurentia's Iapetus margin. This tectonic setting indicates that southernmost Appalachian Ordovician orogenesis (Taconic orogeny) began as an extensional accretionary orogen along the outer margin of Laurentia, rather than in an exotic (non-Laurentian) arc collisional setting. B-type subduction polarity requires that the associated arc-trench system formed southeast of the palinspastic position of the back-arc basin. This scenario can explain several unique features of the southern Appalachian Taconic orogen, including: the palinspastic geographic ordering of key tectonic elements (i.e., back-arc, arc, etc.), and a lack of (1) an obducted arc sensu stricto on the Laurentian margin, (2) widespread Ordovician regional metamorphism, and (3) Taconic klippen to supply detritus to the Taconic foreland basin.

  16. Evaluating the performance of hydraulically-fractured shale gas resources in the Appalachian Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Hakala, A.; Wall, A. J.; Guthrie, G.

    2013-12-01

    Evaluating the performance of engineered-natural systems, such as hydraulically-fractured shales associated with natural gas recovery, depends on an understanding of fracture growth within and outside of the target shale formation, as well as the potential for gas and fluids to migrate to other subsurface resources or underground sources of drinking water. The NETL-Regional University Alliance (NETL-RUA) has a broad research portfolio connected with development of hydraulically-fractured shale resources in the Appalachian Basin. Through a combined field, experimental, modeling, and existing data evaluation effort, the following questions are being addressed: 1) Which subsurface features control the extent to which fractures migrate out of the target fracture zone? 2) Can we improve methods for analyzing natural geochemical tracers? What combination of natural and synthetic tracers can best be used to evaluate subsurface fluid and gas migration? 3) How is wellbore integrity affected by existing shallow gas? Can we predict how shallow groundwater hydrology changes due to drilling? 4) Where are existing wellbores and natural fractures located? What field methods can be used to identify the location of existing wells? To date the NETL-RUA team has focused on four key areas: fracture growth, natural isotopic tracers, impacts of well drilling on shallow hydrology, and statistics on wellbores (locations and conditions). We have found that fracture growth is sensitive to overburden geomechanical features, and that the maximum fracture height outside of the Marcellus Shale aligns with prior assessments (e.g., Fisher et al., 2012). The team has also developed methodologies for the rapid preparation of produced-water samples by MC-ICP-MS and ICP-MS; we are using these methodologies to investigate the potential of key geochemical indicators and species of interest (Sr, Ra) as indicators of fluid and gas migration in the Appalachian Basin. Experimental work on subsurface

  17. Assessment of Appalachian basin oil and gas resources: Carboniferous Coal-bed Gas Total Petroleum System: Chapter G.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Trap formation began with the deposition of the peat deposits during the Mississippian and continued into the Late Pennsylvanian and Permian, when strata of the Appalachian Plateaus were deformed during the Alleghanian orogeny. The seals are the connate waters that occupy fractures and larger pore spaces within the coal beds, as well as the fine-grained, siliciclastic sedimentary strata that are intercalated with the coal. The critical moment for the petroleum system occurred during the Alleghanian orogeny, when deformation resulted in the geologic structures in the eastern part of the Appalachian basin that enhanced fracture porosity within the coal beds. In places, burial by thrust sheets (thrust loading) in the Valley and Ridge physiographic province may have resulted in the additional generation of thermogenic coalbed methane in the Pennsylvania Anthracite region and in the semianthracite deposits of Virginia and West Virginia, although other explanations have been offered.

  18. Information relevant to the U.S. Geological Survey assessment of the Middle Devonian Shale of the Appalachian Basin Province, 2011

    USGS Publications Warehouse

    ,

    2011-01-01

    The U.S. Geological Survey recently assessed the potential for natural gas resources in the Middle Devonian Marcellus Shale of the Appalachian Basin Province. The Marcellus Shale was assessed as a continuous gas accumulation using a methodology identical to that used in the assessment of shale and other continuous-type assessment units throughout the United States. This preliminary report provides some additional geologic information used in the Marcellus Shale assessment. The Appalachian Basin Province encompasses rocks of the Paleozoic passive margins, the foreland basins, and fold and thrust belts formed during several episodes in the Paleozoic. The Marcellus Shale is one of many marine shales deposited in the area that is now encompassed by the Appalachian Basin Province.

  19. The Atlas of Major Appalachian Basin Gas Plays: Data collection and compilation

    SciTech Connect

    Not Available

    1993-01-01

    Task 2 of the ``Atlas of Major Appalachian Basin Gas Plays`` a is the data collection and compilation phase of the project. The prime objective is to collect information by pool, i.e., producing reservoir within a field, that will provide (1) basic reservoir data, (2) reservoir parameters, (3) fluid and gas properties, and (4) volumetric data. It is imperative that all data elements be well understood by all participants to facilitate this process. This report presents an overview of data collection topics. Three families of data that be part of this project: (1) the data base of pool information, (2) drawings, charts, and maps, and (3) text data, including bibliographic information. An initial data definition will be presented with an emphasis on the data base of basic information by pool. Because of the direct bearing on Task 2 of the project and the development of a data base as a deliverable product, this report will concentrate mainly on data definition and collection. A basic data collection strategy is included.

  20. Biostratigraphic utility of organic-walled phytoplankton, Upper Ordovician-Lower Silurian of Appalachian basin

    SciTech Connect

    Colbath, G.K.

    1986-05-01

    Upper Ordovician-Lower Silurian marine mudstones in the Appalachian basin, which have not been subjected to extensive heating or oxidation, contain abundant organic-walled phytoplankton (prasinophycean algal phycomata and acritarchs). In most areas graptolites and conodonts have not been recovered from these rocks, making the phytoplankton particularly important for biostratigraphic correlation. Recent advances have improved the precision with which these microfossils can be used. By tabulating relative abundance data carefully, an abrupt change in the composition of phytoplankton associations can be recognized at the Ordovician-Silurian boundary can be located with greater precision and confidence than is possible using the stratigraphic ranges of individual species. Many supposedly long-ranging species have relatively short stratigraphic ranges, and thus greater utility, as a result of detailed taxonomic studies. Therefore, type and comparative material are important considerations. Also, vesicle wall architecture and dehiscent structures are valuable taxonomic characters. Scanning electron microscopy examination has improved our understanding of small forms (less than 20 ..mu..m in diameter), and has thus increased the number of taxa available for use in biostratigraphy. Further study of samples from vertically extensive stratigraphic sections of established age should help workers refine the biostratigraphy of these microfossils.

  1. Thermal maturity of northern Appalachian Basin Devonian shales: Insights from sterane and terpane biomarkers

    USGS Publications Warehouse

    Hackley, Paul C.; Ryder, Robert T.; Trippi, Michael H.; Alimi, Hossein

    2013-01-01

    To better estimate thermal maturity of Devonian shales in the northern Appalachian Basin, eleven samples of Marcellus and Huron Shale were characterized via multiple analytical techniques. Vitrinite reflectance, Rock–Eval pyrolysis, gas chromatography (GC) of whole rock extracts, and GC–mass spectrometry (GCMS) of extract saturate fractions were evaluated on three transects that lie across previously documented regional thermal maturity isolines. Results from vitrinite reflectance suggest that most samples are immature with respect to hydrocarbon generation. However, bulk geochemical data and sterane and terpane biomarker ratios from GCMS suggest that almost all samples are in the oil window. This observation is consistent with the presence of thermogenic gas in the study area and higher vitrinite reflectance values recorded from overlying Pennsylvanian coals. These results suggest that vitrinite reflectance is a poor predictor of thermal maturity in early mature areas of Devonian shale, perhaps because reported measurements often include determinations of solid bitumen reflectance. Vitrinite reflectance interpretations in areas of early mature Devonian shale should be supplanted by evaluation of thermal maturity information from biomarker ratios and bulk geochemical data.

  2. Evidence and mechanisms for Appalachian Basin brine migration into shallow aquifers in NE Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Llewellyn, Garth T.

    2014-08-01

    Multiple geographic information system (GIS) datasets, including joint orientations from nine bedrock outcrops, inferred faults, topographic lineaments, geophysical data (e.g. regional gravity, magnetic and stress field), 290 pre-gas-drilling groundwater samples (Cl-Br data) and Appalachian Basin brine (ABB) Cl-Br data, have been integrated to assess pre-gas-drilling salinization sources throughout Susquehanna County, Pennsylvania (USA), a focus area of Marcellus Shale gas development. ABB has migrated naturally and preferentially to shallow aquifers along an inferred normal fault and certain topographic lineaments generally trending NNE-SSW, sub-parallel with the maximum regional horizontal compressive stress field (orientated NE-SW). Gravity and magnetic data provide supporting evidence for the inferred faults and for structural control of the topographic lineaments with dominant ABB shallow groundwater signatures. Significant permeability at depth, imparted by the geologic structures and their orientation to the regional stress field, likely facilitates vertical migration of ABB fluids from depth. ABB is known to currently exist within Ordovician through Devonian stratigraphic units, but likely originates from Upper Silurian strata, suggesting significant migration through geologic time, both vertically and laterally. The natural presence of ABB-impacted shallow groundwater has important implications for differentiating gas-drilling-derived brine contamination, in addition to exposing potential vertical migration pathways for gas-drilling impacts.

  3. Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin

    SciTech Connect

    Greb, S.F.; Eble, C.F.; Hower, J.C.; Phillips, T.L.

    1996-09-01

    Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

  4. Petrophysics of low-permeability medina sandstone, northwestern Pennsylvania, Appalachian Basin

    USGS Publications Warehouse

    Castle, J.W.; Byrnes, A.P.

    1998-01-01

    Petrophysical core testing combined with geophysical log analysis of low-permeability, Lower Silurian sandstones of the Appalachian basin provides guidelines and equations for predicting gas producibility. Permeability values are predictable from the borehole logs by applying empirically derived equations based on correlation between in-situ porosity and in-situ effective gas permeability. An Archie-form equation provides reasonable accuracy of log-derived water saturations because of saturated brine salinities and low clay content in the sands. Although measured porosity and permeability average less than 6% and 0.1 mD, infrequent values as high as 18% and 1,048 mD occur. Values of effective gas permeability at irreducible water saturation (Swi) range from 60% to 99% of routine values for the highest permeability rocks to several orders of magnitude less for the lowest permeability rocks. Sandstones having porosity greater than 6% and effective gas permeability greater than 0.01 mD exhibit Swi less than 20%. With decreasing porosity, Swi sharply increases to values near 40% at 3 porosity%. Analysis of cumulative storage and flow capacity indicates zones with porosity greater than 6% generally contain over 90% of flow capacity and hold a major portion of storage capacity. For rocks with Swi < 20%, gas relative permeabilities exceed 45%. Gas relative permeability and hydrocarbon volume decrease rapidly with increasing Swi as porosity drops below 6%. At Swi above 40%, gas relative permeabilities are less than approximately 10%.

  5. What Controls Methane in Potable Ground Water in the Appalachian Basin?

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Smith, B.; Perry, A. E.; Bothun, R.

    2014-12-01

    We present the results of baseline (pre-drilling) sampling for methane in 13,040 potable ground water samples in Northeastern Pennsylvania and 8,004 samples from a "Western Area" (southwest Pennsylvania, eastern Ohio, and north-central West Virginia) that were collected on behalf of Chesapeake Energy Corporation as part of its monitoring program prior to drilling unconventional oil and gas wells in the Marcellus and Utica Formations, as well as the results of a year-long study on temporal variability of methane in ground water at 12 locations in NE Pennsylvania We found dissolved methane common in potable ground water in the Appalachian Basin. In NE Pennsylvania, measureable dissolved methane occurred in 24% of our samples with 3.4% naturally exceeding the PADEP methane notification level of 7 mg/L. In the western area, dissolved methane occurred naturally in 36% of groundwater sampled and in Ohio, 4.1% of samples exceeded the Ohio dissolved methane action level of 10 mg/L. More methane is associated with hydrogeochemical facies trending towards Na-Cl and Na-HCO3 type waters in valleys and along hill flanks. We found no relationship occurs between the concentration of methane and proximity to pre-existing gas wells. Concentrations of methane in domestic wells can naturally vary by factors, depending on pumping regime and time of year.

  6. Selenium Concentrations in Middle Pennsylvanian Coal-Bearing Strata in the Central Appalachian Basin

    USGS Publications Warehouse

    Neuzil, Sandra G.; Dulong, Frank T.; Cecil, C. Blaine; Fedorko, Nick; Renton, John J.; Bhumbla, D.K.

    2007-01-01

    Introduction This report provides the results of a reconnaissance-level investigation of selenium (Se) concentrations in Middle Pennsylvanian coal-bearing strata in the central Appalachian basin. Bryant and others (2002) reported enrichments of Se concentrations in streams draining areas disturbed by surface mining relative to Se concentrations in streams that drain undisturbed areas; the study was conducted without the benefit of data on Se concentrations in coal-bearing strata prior to anthropogenic disturbance. Thus, the present study was conducted to provide data on Se concentrations in coal-bearing strata prior to land disturbance. The principal objectives of this work are: 1) determine the stratigraphic and regional distribution of Se concentrations in coal-bearing strata, 2) provide reconnaissance-level information on relations, if any, between Se concentrations and lithology (rock-type), and 3) develop a cursory evaluation of the leachability of Se from disturbed strata. The results reported herein are derived from analyses of samples obtained from three widely-spaced cores that were collected from undisturbed rock within a region that has been subjected to extensive land disturbance principally by either coal mining or, to a lesser extent, highway construction. The focus was on low-organic-content lithologies, not coal, within the coal-bearing interval, as these lithologies most commonly make up the fill materials after coal mining or in road construction.

  7. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  8. Autogenic gas (self sourced) from shales - an example from the Appalachian Basin

    SciTech Connect

    Milici, R.C. )

    1993-01-01

    Black gas shales of Devonian and Mississippian age occur over much of the Appalachian basin, extending from eastern Tennessee north- and northeastward into Ohio and New York. In general, these shales were deposited along the distal margin of the Acadian Catskill delta in response to episodes of tectonic subsidence and regional transgression during the Acadian orogeny. A major trend of high organic carbon content in the black shales extends along the western side of the Catskill delta, from southwestern Virginia to the southern shores of Lake Erie. The high content of organic detritus in these Devonian and Mississippian black-shale source beds is probably related to high organic productivity in combination with moderate sedimentation rates along the distal margins of the Catskill delta. In general, organic matter in the black shales is more marine and oil prone on the western side of the basin, away from the major sources of siliciclastic input, than it is to the east. Thermal maturity trends follow depositional strike and isopachs of the Catskill delta and, thus, are related to depth of burial. Fracture porosity within the black shale sequence appears to have been affected mostly by regional decollement within discrete stratigraphic units that were, perhaps, overpressured during deformation. Shale gas is produced from relatively large fields in southwestern Virginia, eastern Kentucky, southwestern West Virginia, and southernmost Ohio. To the north, the strata rich in organic matter are thermally immature, and fields along the southern shores of lake Erie in Ohio and Pennsylvania are only marginally productive. To the east in northwestern West Virginia, the organic content of the shales is diluted by increased amounts of siliciclastics; organic matter is not sufficient to sustain long-term gas production, and shale-gas wells are short lived. 79 refs., 11 figs., 1 tab.

  9. Three phases of cooling and unroofing in the Appalachian Basin, Pennsylvania: Implications for flexural control

    SciTech Connect

    Blackmer, G.C.; Gold, D.P. . Dept. of Geosciences); Omar, G.I. . Geology Dept.)

    1992-01-01

    Apatite fission-track ages of 111--184 Ma and mean lengths of 10.7--13.1 [mu]m with unimodal, negatively skewed length distributions indicate slow cooling of Ordovician through Permian rocks in an area extending from the Anthracite Basin to the western Appalachian Plateau. Cooling histories modeled from fission-track data show that cooling began immediately following the Alleghanian Orogeny at 250--240 Ma. Ordovician rocks in the Juniata Culmination began to cool slightly earlier at 265 Ma, probably reflecting synorogenic unroofing of this area during formation of the Valley and Ridge duplex. Unroofing histories were modeled from cooling histories using the one-dimensional heat flow equation. Cooling and unroofing histories can be divided into three periods. The initial period of relatively rapid cooling and unroofing extended from the end of the Alleghanian Orogeny into the Jurassic and represents post-orogenic unroofing due to flexural rebound as orogenic load was removed through erosion. Initial unroofing rates are higher in eater Pennsylvania than in the west, consistent with a flexural model. A period of little to no unroofing from the Jurassic into the Miocene began contemporaneously with the inception of drift at the Atlantic continental margin. As the new continental margin subsided, the remaining load dropped below sea level and was no longer subject to removal, resulting in the cessation of flexural rebound and suppression of unroofing in the foreland. The most rapid unroofing occurred from the Miocene to the present. The nature of this event is unknown; however, it is also observed in increased sedimentation rates in the middle Atlantic offshore basins.

  10. Age of the Bedford Shale, Berea Sandstone, and Sunbury Shale in the Appalachian and Michigan basins, Pennsylvania, Ohio, and Michigan

    USGS Publications Warehouse

    De Witt, Wallace

    1970-01-01

    The suggestion by Sanford (1967, p. 994) that the Bedford Shale, Berea Sandstone, and Sunbury Shale of the Michigan basin are of Late Devonian age because these strata contain Hymenozonotriletes lepidophytus Kedo is invalid for these formations in the Appalachian basin, the area of their type localities. Endosporites lacunosus Winslow, a synonym of Hymenozonotriletes lepidophytus Kedo, occurs in upper Chautauqua (Upper Devonian) rocks through much of the Kinderhook (Lower Mississippian) strata in Ohio. The Sunbury Shale, the Sunbury Member of the Orangeville Shale in part of northern Ohio, contains a Siplionodella fauna which clearly demonstrates the Kinderhook age of the unit. The basal strata of the Bedford Shale contain Spathoffnathodus anteposlcornis which suggests a very Late Devonian or very Early Mississippian age for this part of the Bedford. Except for the basal fossil zone, most of the Bedford Shale and the younger Berea Sandstone overlie the Murrysville sand, which along the Allegheny Front in central Pennsylvania contains an Adiantites flora of Early Mississippian (Kinderhook) age. The presence of Adiantites in the Murrysville sand indicates that most of the Bedford Shale and all the Berea Sandstone are of Early Mississippian age. Lithostratigraphic evidence suggests that the Berea Sandstone of Ohio may be a temporal equivalent of the basal Beckville Member of the Pocono Formation of the Anthracite region of Pennsylvania. The clearly demonstrable Kinderhook age of the Sunbury, Berea, and most of the Bedford in the Appalachian basin strongly indicates a similar age for the same units in the Michigan basin.

  11. Deciphering the mid-Carboniferous eustatic event in the central Appalachian foreland basin, southern West Virginia, USA

    USGS Publications Warehouse

    Blake, B.M.; Beuthin, J.D.

    2008-01-01

    A prominent unconformity, present across shallow shelf areas of the Euramerican paleoequatorial basins, is used to demark the boundary between the Mississippian and Pennsylvanian subsystems. This unconformity, the mid-Carboniferous eustatic event, is generally attributed to a major glacio-eustatic sea-level fall. Although a Mississippian-Pennsylvanian unconformity is recognized throughout most of the Appalachian region, the record of the mid-Carboniferous eustatic event in the structurally deepest part of the basin has been controversial. Based on early reports that suggested the most complete Pennsylvanian section was present in southern West Virginia, various conceptual depositional models postulated continuous sedimentation between the youngest Mississippian Bluestone Formation and the oldest Penn-sylvanian Pocahontas Formation. In contrast, tabular-erosion models envisioned axial drainage systems that evolved in response to changing basin dynamics. These models predicted a Mississippian-Pennsylvanian unconformity. All these models suffered from a lack of biostratigraphic control. The presence of a sub-Pocahontas paleovalley, herein named the Lashmeet paleovalley, has been confirmed in southern West Virginia. The Lashmeet paleovalley was incised over 35 m into Bluestone strata and filled by lithic sands derived from the Appalachian orogen to the northeast and east. The polygenetic Green Valley paleosol complex marks the Bluestone-Pocahontas contact on associated interfluves. Together, these features indicate a substantial period of subaerial exposure and argue strongly in favor of a Mississippian-Pennsylvanian unconformity. Paleontologic data from the Bluestone Formation, including marine invertebrates and conodonts from the marine Bramwell Member and paleofloral data, support a late, but not latest, Arnsbergian age assignment. Marine fossils are not known from the Pocahontas Formation, but macrofloral and palynomorph taxa support a Langsettian age for most of

  12. Sequences, cycles, and basin dynamics in the Silurian of the Appalachian Foreland Basin

    NASA Astrophysics Data System (ADS)

    Brett, Carlton E.; Goodman, William M.; LoDuca, Steven T.

    1990-12-01

    , roughly upward deepening (to slightly shallowing) successions of strata. In turn, sub-sequences are further divisible into widespread minor parasequences and parasequence sets, probably corresponding to 6th- and 5th-order cycles, respectively. The smaller scale units (0.2-5 mthick) commonly display an upward shallowing motif. The nested relationship of these cycles supports the hierarchical model of transgressive-regressive allocycles proposed by Busch and Rollins (1984). Niagaran cycles discussed herein are equivalent to third-, fourth- and fifth-order cycles and are traceable circumbasinally. Depocenters of successive sequences and sub-sequences display a pattern of eastward-westward-eastward basin-axis migration through the Silurian. During early Llandoverian, the Taconic (Queenston) deltaic complex began to subside, and the basin axis, depocenter, and eastern shoreline shifted eastward approximately 200 km over a 6 million year period. As the basin axis migrated eastward, the western basin ramp (forebulge) was repeatedly upwarded and eroded, resulting in the generation of regionally angular unconformities at the bases of sequences II, IV and VI. The pattern of unconformity (greatest to the west) suggests rise of the Algonquin Arch concomitant with eastward basin-axis migration. During the late Llandoverian to early Wenlockian, the Algonquin Arch subsided slightly, concurrently with a reversal in direction of basin-axis migration. During deposition of upper Clinton and Lockport-Vernon strata (sequences V, VI), the basin axis shifted approximately 300 km back to the west. Eastward migration of the basin axis corresponds with a time of tectonic quiescence and probable thrust-load relaxation. The abrupt reversal of migration in the late Llandoverian may be a signal of renewed thrusting in the hinterland at the onset of the Salinic Disturbance.

  13. Appalachian basin oil and natural gas: stratigraphic framework, total petroleum systems, and estimated ultimate recovery: Chapter C.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Milici, Robert C.; Swezey, Christopher S.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The most recent U.S. Geological Survey (USGS) assessment of undiscovered oil and gas resources of the Appalachian basin was completed in 2002 (Milici and others, 2003). This assessment was based on the total petroleum system (TPS), a concept introduced by Magoon and Dow (1994) and developed during subsequent studies such as those by the U.S. Geological Survey World Energy Assessment Team (2000) and by Biteau and others (2003a,b). Each TPS is based on specific geologic elements that include source rocks, traps and seals, reservoir rocks, and the generation and migration of hydrocarbons. This chapter identifies the TPSs defined in the 2002 Appalachian basin oil and gas assessment and places them in the context of the stratigraphic framework associated with regional geologic cross sections D–D′ (Ryder and others, 2009, which was re-released in this volume, chap. E.4.1) and E–E′ (Ryder and others, 2008, which was re-released in this volume, chap. E.4.2). Furthermore, the chapter presents a recent estimate of the ultimate recoverable oil and natural gas in the basin.

  14. Bituminous coal production in the Appalachian basin: past, present, and future: Chapter D.3 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Polyak, Désirée E.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This report on Appalachian basin coal production consists of four plates and associated graphs and tables that were used to construct the maps. Figure 1 shows the decade of greatest coal production by county. Figure 2 shows the amount of coal produced for each county (in thousands of short tons) during the year of greatest coal production. These data are sorted by decade. Figure 3 illustrates the cumulative coal production (in thousands of short tons) for each county since about the beginning of the 20th century. Figure 4 shows 2003 production by county in thousands of short tons.

  15. In search of a Silurian total petroleum system in the Appalachian basin of New York, Ohio, Pennsylvania, and West Virginia: Chapter G.11 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Trippi, Michael H.; Lentz, Erika E.; Avary, K. Lee; Harper, John A.; Kappel, William M.; Rea, Ronald G.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Although the TOC analyses in this study indicate that good to very good source rocks are present in the Salina Group and Wills Creek Formation of southwestern Pennsylvania and northern West Virginia, data are insufficient to propose a new Silurian total petroleum system in the Appalachian basin. However, the analytical results of this investigation are encouraging enough to undertake more systematic studies of the source rock potential of the Salina Group, Wills Creek Formation, and perhaps the Tonoloway Formation (Limestone) and McKenzie Limestone (or Member).

  16. Evidence for Cambrian petroleum source rocks in the Rome trough of West Virginia and Kentucky, Appalachian basin: Chapter G.8 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ryder, Robert T.; Harris, David C.; Gerome, Paul; Hainsworth, Timothy J.; Burruss, Robert A.; Lillis, Paul G.; Jarvie, Daniel M.; Pawlewicz, Mark J.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The bitumen extract from the Rogersville Shale compares very closely with oils or condensates from Cambrian reservoirs in the Carson Associates No. 1 Kazee well, Homer gas field, Elliott County, Ky.; the Inland No. 529 White well, Boyd County, Ky.; and the Miller No. 1 well, Wolfe County, Ky. These favorable oil-source rock correlations suggest a new petroleum system in the Appalachian basin that is characterized by a Conasauga Group source rock and Rome Formation and Conasauga Group reservoirs. This petroleum system probably extends along the Rome trough from eastern Kentucky to at least central West Virginia.

  17. Lower and lower Middle Pennsylvanian fluvial to estuarine deposition, central Appalachian basin: Effects of eustasy, tectonics, and climate

    USGS Publications Warehouse

    Greb, S.F.; Chesnut, D.R.

    1996-01-01

    Interpretations of Pennsylvanian sedimentation and peat accumulation commonly use examples from the Appalachian basin because of the excellent outcrops and large reserve of coal (>100 billion metric tons) in the region. Particularly controversial is the origin of Lower and lower Middle Pennsylvanian quartzose sandstones; beach-barrier, marine-bar, tidalstrait, and fluvial models all have been applied to a series of sand bodies along the western outcrop margin of the basin. Inter-pretations of these sandstones and their inferred lateral relationships are critical for understanding the relative degree of eustatic, tectonic, and climatic controls on Early Pennsylvanian sedimentation. Cross sections utilizing >1000 subsurface records and detailed sedimentological analysis of the Livingston Conglomerate, Rockcastle Sandstone, Corbin Sandstone, and Pine Creek sandstone (an informal member) of the Breathitt Group were used to show that each of the principal quartzose sandstones on the margin of the central Appalachian basin contains both fluvial and marginal marine facies. The four sandstones are fluvially dominated and are inferred to represent successive bed-load trunk systems of the Appalachian foreland. Base-level rise and an associated decrease in extra-basinal sediment at the end of each fluvial episode led to the development of local estuaries and marine reworking of the tops of the sand belts. Each of the sand belts is capped locally by a coal, regardless of whether the upper surfaces of the sand belts are of fluvial or estuarine origin, suggesting allocyclic controls on deposition. Peats were controlled by a tropical ever-wet climate, which also influenced sandstone composition through weathering of stored sands in slowly aggrading braidplains. Recurrent stacking of thick, coarse-grained, fluvial deposits with extra-basinal quartz pebbles; dominance of bed-load fluvial-lowstand deposits over mixed-load, estuarine-transgressive deposits; thinning of sand belts

  18. 87Sr/86Sr Concentrations in the Appalachian Basin: A Review

    SciTech Connect

    Mordensky, Stanley P.; Lieuallen, A. Erin; Verba, Circe; Hakala, Alexandra

    2016-06-16

    This document reviews 87Sr/86Sr isotope data across the Appalachian Basin from existing literature to show spatial and temporal variation. Isotope geochemistry presents a means of understanding the geochemical effects hydraulic fracturing may have on shallow ground substrates. Isotope fractionation is a naturally occurring phenomenon brought about by physical, chemical, and biological processes that partition isotopes between substances; therefore, stable isotope geochemistry allows geoscientists to understand several processes that shape the natural world. Strontium isotopes can be used as a tool to answer an array of geological and environmental inquiries. In some cases, strontium isotopes are sensitive to the introduction of a non-native fluid into a system. This ability allows strontium isotopes to serve as tracers in certain systems. Recently, it has been demonstrated that strontium isotopes can serve as a monitoring tool for groundwater and surface water systems that may be affected by hydraulic fracturing fluids (Chapman et al., 2013; Kolesar Kohl et al., 2014). These studies demonstrated that 87Sr/86Sr values have the potential to monitor subsurface fluid migration in regions where extraction of Marcellus Shale gas is occurring. This document reviews publicly available strontium isotope data from 39 sample locations in the Appalachian Basin (Hamel et al., 2010; Chapman et al., 2012; Osborn et al., 2012; Chapman et al., 2013; Capo et al., 2014; Kolesar Kohl et al., 2014). The data is divided into two sets: stratigraphic (Upper Devonian/Lower Mississippi, Middle Devonian, and Silurian) and groundwater. ArcMap™ (ESRI, Inc.) was used to complete inverse distance weighting (IDW) analyses for each dataset to create interpolated surfaces in an attempt to find regional trends or variations in strontium isotopic values across the Appalachian Basin. 87Sr/86Sr varies up to ~ 0.011 across the

  19. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect

    Robert Jacobi; John Fountain; Stuart Loewenstein; Edward DeRidder; Bruce Hart

    2007-03-31

    For two consecutive years, 2004 and 2005, the largest natural gas well (in terms of gas flow/day) drilled onshore USA targeted the Ordovician Trenton/Black River (T/BR) play in the Appalachian Basin of New York State (NYS). Yet, little data were available concerning the characteristics of the play, or how to recognize and track T/BR prospects across the region. Traditional exploration techniques for entry into a hot play were of limited use here, since existing deep well logs and public domain seismic were almost non-existent. To help mitigate this problem, this research project was conceived with two objectives: (1) to demonstrate that integrative traditional and innovative techniques could be used as a cost-effective reconnaissance exploration methodology in this, and other, areas where existing data in targeted fracture-play horizons are almost non-existent, and (2) determine critical characteristics of the T/BR fields. The research region between Seneca and Cayuga lakes (in the Finger Lakes of NYS) is on strike and east of the discovery fields, and the southern boundary of the field area is about 8 km north of more recently discovered T/BR fields. Phase I, completed in 2004, consisted of integrating detailed outcrop fracture analyses with detailed soil gas analyses, lineaments, stratigraphy, seismic reflection data, well log data, and aeromagnetics. In the Seneca Lake region, Landsat lineaments (EarthSat, 1997) were coincident with fracture intensification domains (FIDs) and minor faults observed in outcrop and inferred from stratigraphy. Soil gas anomalies corresponded to ENE-trending lineaments and FIDs. N- and ENE-trending lineaments were parallel to aeromagnetic anomalies, whereas E-trending lineaments crossed aeromagnetic trends. 2-D seismic reflection data confirmed that the E-trending lineaments and FIDs occur where shallow level Alleghanian salt-cored thrust-faulted anticlines occur. In contrast, the ENE-trending FIDs and lineaments occur where Iapetan

  20. Assessment of undiscovered oil and gas resources of the Devonian Marcellus Shale of the Appalachian Basin Province

    USGS Publications Warehouse

    Coleman, James L.; Milici, Robert C.; Cook, Troy A.; Charpentier, Ronald R.; Kirshbaum, Mark; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated a mean undiscovered natural gas resource of 84,198 billion cubic feet and a mean undiscovered natural gas liquids resource of 3,379 million barrels in the Devonian Marcellus Shale within the Appalachian Basin Province. All this resource occurs in continuous accumulations. In 2011, the USGS completed an assessment of the undiscovered oil and gas potential of the Devonian Marcellus Shale within the Appalachian Basin Province of the eastern United States. The Appalachian Basin Province includes parts of Alabama, Georgia, Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The assessment of the Marcellus Shale is based on the geologic elements of this formation's total petroleum system (TPS) as recognized in the characteristics of the TPS as a petroleum source rock (source rock richness, thermal maturation, petroleum generation, and migration) as well as a reservoir rock (stratigraphic position and content and petrophysical properties). Together, these components confirm the Marcellus Shale as a continuous petroleum accumulation. Using the geologic framework, the USGS defined one TPS and three assessment units (AUs) within this TPS and quantitatively estimated the undiscovered oil and gas resources within the three AUs. For the purposes of this assessment, the Marcellus Shale is considered to be that Middle Devonian interval that consists primarily of shale and lesser amounts of bentonite, limestone, and siltstone occurring between the underlying Middle Devonian Onondaga Limestone (or its stratigraphic equivalents, the Needmore Shale and Huntersville Chert) and the overlying Middle Devonian Mahantango Formation (or its stratigraphic equivalents, the upper Millboro Shale and middle Hamilton Group).

  1. Production and precipitation of rare earth elements in acidic to alkaline coal mine discharges, Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Stewart, B. W.; Capo, R. C.; Hedin, B. C.; Wallrich, I. L. R.; Hedin, R. S.

    2016-12-01

    Abandoned coal mine discharges are a serious threat to ground and surface waters due to their high metal content and often high acidity. However, these discharges represent a potential source of rare earth elements (REE), many of which are considered to be critical resources. Trace element data from 18 coal mine drainage (CMD) sites within the Appalachian Basin suggest CMD is enriched in total REE by 1-4 orders of magnitude relative to concentrations expected in unaffected surface or ground waters. When normalized to the North American Shale Composite (NASC), the discharges generally show a pattern of enrichment in the middle REE, including several identified as critical resources (Nd, Eu, Dy, Tb). In contrast, shale, sandstone and coal samples from Appalachian Basin coal-bearing units have concentrations and patterns similar to NASC, indicating that the REE in CMD are fractionated during interaction with rock in the mine pool. The highest total REE contents (up to 2800 mg/L) are found in low-pH discharges (acid mine drainage, or AMD). A precipitous drop in REE concentration in CMD with pH ≥6.6 suggests adsorption or precipitation of REE in the mine pool at circumneutral pH. Precipitated solids from 21 CMD active and passive treatment sites in the Appalachian Basin, including Fe oxy-hydroxides, Ca-Mg lime slurries, and Si- and Al-rich precipitates, are enriched in total REE content relative to the average CMD discharges by about four orders of magnitude. Similar REE trends in the discharges and precipitates, including MREE enrichment, suggest minimal fractionation of REE during precipitation; direct comparisons over multiple seasonal cycles are needed to confirm this. Although the data are limited, Al-rich precipitates generally have high REE concentrations, while those in iron oxy-hydroxides tend to be lower. Based on the area of mined coal in the Appalachian Basin, estimated infiltration rates, and the mean REE flux from discharges analyzed in this study and

  2. A Late Cambrian Carbon Isotope Excursion Recorded in Passive Margin Dolostones of the Central Appalachian Basin, USA.

    NASA Astrophysics Data System (ADS)

    Mackey, J. E.; Stewart, B. W.

    2016-12-01

    A Late Cambrian global positive carbon isotope excursion, known as the SPICE event [1,2] is linked to possible widespread ocean anoxia and enhanced carbon burial [3,4]. We report data from the central Appalachian Conasauga Group from the upper portion of the Middle Cambrian Maryville limestone, through the Late Cambrian Nolichucky shale and Maynardville limestone members. A geochemical, macro-, and micro-scale analyses of core material from southeastern Ohio was carried out to further constrain the timing of oceanic anoxia and trace element geochemistry relative to sediment fluxes occurring at the transition of the Middle to Late Cambrian. The section represents condensed, passive margin shale deposition and carbonate ramp development on the continental shelf of Laurentia. Carbonate sediments (primarily diagenetic dolomite) record a positive δ13C (relative to V-PDB) excursion starting in the upper Nolichucky shale member, reaching its peak (+4.0) in the overlying Maynardville limestone. At this location, there is an offset between the onlap Nolichucky shale deposition and start of the C isotope excursion; this was reported as well in a carbonate section further south of this location [2], on the other side of an extensional feature (Rome Trough) that formed a deep marine basin during Cambrian time. The condensed shale package and relatively low TOC content in our samples is likely due to the combination of a shallow, upslope basin location and isostatic influence on passive margin sedimentation. However, within the Rome Trough, the Nolichucky shale is rich in organic carbon and a recent target of hydrocarbon exploration. The data suggest a possible link between deposition of this shale and the global SPICE event. The robustness of the Late Cambrian δ13C excursion in diagenetically altered sediments and association with hydrocarbon bearing units indicates its utility as a stratigraphic indicator and as a target for exploration. Ongoing geochemical work will focus

  3. Current perspectives on unconventional shale gas extraction in the Appalachian Basin.

    PubMed

    Lampe, David J; Stolz, John F

    2015-01-01

    The Appalachian Basin is home to three major shales, the Upper Devonian, Marcellus, and Utica. Together, they contain significant quantities of tight oil, gas, and mixed hydrocarbons. The Marcellus alone is estimated to contain upwards of 500 trillion cubic feet of natural gas. The extraction of these deposits is facilitated by a combination of horizontal drilling and slick water stimulation (e.g., hydraulic fracturing) or "fracking." The process of fracking requires large volumes of water, proppant, and chemicals as well as a large well pad (3-7 acres) and an extensive network of gathering and transmission pipelines. Drilling can generate about 1,000 tons of drill cuttings depending on the depth of the formation and the length of the horizontal bore. The flowback and produced waters that return to the surface during production are high in total dissolved solids (TDS, 60,000-350,000 mg L(-1)) and contain halides (e.g., chloride, bromide, fluoride), strontium, barium, and often naturally occurring radioactive materials (NORMs) as well as organics. The condensate tanks used to store these fluids can off gas a plethora of volatile organic compounds. The waste water, with its high TDS may be recycled, treated, or disposed of through deep well injection. Where allowed, open impoundments used for recycling are a source of air borne contamination as they are often aerated. The gas may be "dry" (mostly methane) or "wet," the latter containing a mixture of light hydrocarbons and liquids that need to be separated from the methane. Although the wells can produce significant quantities of natural gas, from 2-7 bcf, their initial decline rates are significant (50-75%) and may cease to be economic within a few years. This review presents an overview of unconventional gas extraction highlighting the environmental impacts and challenges.

  4. Eustatic and tectonic control of deposition of the lower and middle Pennsylvanian strata of the Central Appalachian Basin

    USGS Publications Warehouse

    Chesnut, D.R.

    1997-01-01

    Stratigraphic analysis of Lower and Middle Pennsylvanian rocks of part of the Central Appalachian Basin reveals two orders of cycles and one overall trend in the vertical sequence of coal-bearing rocks. The smallest order cycle, the coal-clastic cycle, begins at the top of a major-resource coal bed and is composed of a vertical sequence of shale, siltstone, sandstone, seat rock, and overlying coal, which, in turn, is overlain by the next coal-clastic sequence. The average duration of the coal-clastic cycle has been calculated to be about 0.4 m.y. The major marine-transgression cycle is composed of five to seven coal-clastic cycles and is distinguished by the occurrence of widespread, relatively thick (generally thicker than 5 m) marine strata at its base. The duration of this cycle has been calculated to be about 2.5 m.y. The Breathitt coarsening-upward trend describes the general upward coarsening of the Middle Pennsylvanian part of the Breathitt Group. The Breathitt Group includes eight major marine-transgression cycles, and was deposited during a period of approximately 20 m.y. The average duration of coal-clastic cycles is of the same order of magnitude (105 year) as the Milankovitch orbital-eccentricity cycles, and matches the 0.4 m.y. second-order eccentricity cycle (Long Earth-Eccentricity cycle). These orbital periodicities are thought to modulate glacial stages and glacio-eustatic levels. The calculated periodicities of the coal-clastic cycles can be used as evidence for glacio-eustatic control of the coal-bearing rocks of the Appalachian Basin. The 2.5-m.y. periodicity of the major marine-transgression cycle does not match any known orbital or tectonic cycle; the cause of this cycle is unknown, but it might represent episodic thrusting in the orogen, propagation of intraplate stresses, or an unidentified orbital cycle. The Breathitt coarsening-upward trend is interpreted to represent the increasing intensity and proximity of the Alleghenian Orogeny

  5. Two basins explored in Dominican Republic

    SciTech Connect

    Ellis, G.M.

    1996-04-29

    Exploration companies are exploring two tracts in separate basins of the Dominican Republic. Drilling is under way or planned in the eastern Cibao basin in the northeastern part of the country, where Petrolera Once Once SA holds a 1,001,287 ha concession, and the Azua-Bani basin in the southwester, where Mobil-Murfin holds a 2,266,197 ha concession. About 75 wells have been drilled onshore in Dominican Republic, but commercial production has not been established. This paper summarizes the exploration history and geology of the area.

  6. Assessment of Appalachian basin oil and gas resources:Devonian shale - Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Milici, Robert C.; Swezey, Christopher S.

    2006-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the technically recoverable undiscovered hydrocarbon resources of the Appalachian Basin Province. The assessment province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia and Alabama. The assessment was based on six major petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) extends generally from New York to Tennessee. This petroleum system has produced a large proportion of the oil and natural gas that has been discovered in the Appalachian basin since the drilling of the Drake well in Pennsylvania in 1859. For assessment purposes, the TPS was divided into 10 assessment units (plays), 4 of which were classified as conventional and 6 as continuous. The results were reported as fully risked fractiles (F95, F50, F5 and the Mean), with the fractiles indicating the probability of recovery of the assessment amount. Products reported were oil (millions of barrels of oil, MMBO), gas (billions of cubic feet of gas, BCFG), and natural gas liquids (millions of barrels of natural gas liquids, MMBNGL). The mean estimates for technically recoverable undiscovered hydrocarbons in the TPS are: 7.53 MMBO, 31,418.88 BCFG (31.42 trillion cubic feet) of gas, and 562.07 MMBNGL.

  7. In search of a Silurian Total Petroleum System in the Appalachian Basin of New York, Ohio, Pennsylvania, and West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Trippi, Michael H.; Lentz, Erika E.; Avary, K. Lee; Harper, John A.; Kappel, William M.; Rea, Ronald G.

    2007-01-01

    This report provides an evaluation of the source rock potential of Silurian strata in the U.S. portion of the northern Appalachian Basin, using new TOC and RockEval data. The study area consists of all or parts of New York, Ohio, Pennsylvania, and West Virginia. The stratigraphic intervals that were sampled for this study are as follows: 1) the Lower Silurian Cabot Head Shale, Rochester Shale, and Rose Hill Formation; 2) the Lower and Upper Silurian McKenzie Limestone, Lockport Dolomite, and Eramosa Member of the Lockport Group; and 3) the Upper Silurian Wills Creek Formation, Tonoloway Limestone, Salina Group, and Bass Islands Dolomite. These Silurian stratigraphic intervals were chosen because they are cited in previous publications as potential source rocks, they are easily identified and relatively continuous across the basin, and they contain beds of dark gray to black shale and (or) black argillaceous limestone and dolomite.

  8. Assessment of undiscovered oil and gas resources of the Mississippian Sunbury shale and Devonian–Mississippian Chattanooga shale in the Appalachian Basin Province, 2016

    USGS Publications Warehouse

    Higley, Debra K.; Rouse, William A.; Enomoto, Catherine B.; Trippi, Michael H.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Tennyson, Marilyn E.; Drake, Ronald M.; Finn, Thomas M.; Gianoutsos, Nicholas J.; Pearson, Ofori N.; Doolan, Colin; Le, Phuong A.; Schenk, Christopher J.

    2016-11-08

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources that total 464 million barrels of oil and 4.08 trillion cubic feet of gas in the Lower Mississippian Sunbury Shale and Middle Devonian–Lower Mississippian Chattanooga Shale of the Appalachian Basin Province.

  9. Distributed Application of the Unified Noah LSM with Hydrologic Flow Routing on an Appalachian Headwater Basin

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Kumar, S.; Gochis, D.; Yates, D.; McHenry, J.; Burnet, T.; Coats, C.; Condrey, J.

    2006-05-01

    Collaboration between scientists at UMBC-GEST and NASA-GSFC, the NCAR Research Applications Laboratory (RAL), and Baron Advanced Meteorological Services (BAMS), has produced a modeling framework for the application of traditional land surface models (LSMs) in a distributed hydrologic system which can be used for diagnosis and prediction of routed stream discharge hydrographs. This collaboration is oriented on near-term system implementation across Romania for flood and flash-flood analyses and forecasting as part of the World Bank-funded Destructive Waters Abatement (DESWAT) program. Meteorological forcing from surface observations, model analyses and numerical forecasts are employed in the NASA-GSFC Land Information System (LIS) to drive the Unified Noah LSM with Noah-Distributed components, stream network delineation and routing schemes original to this work. The Unified Noah LSM is the outgrowth of a joint modeling effort between several research partners including NCAR, the NOAA National Center for Environmental Prediction (NCEP), and the Air Force Weather Agency (AFWA). At NCAR, hydrologically-oriented extensions to the Noah LSM have been developed for LSM applications in a distributed domain in order to address the lateral redistribution of soil moisture by surface and subsurface flow processes. These advancements have been integrated into the NASA-GSFC Land Information System (LIS) and coupled with an original framework for hydraulic channel network definition and specification, linkages with the Noah-Distributed overland and subsurface flow framework, and distributed cell- to-cell (or link-node) hydraulic routing. This poster presents an overview of the system components and their organization, as well as results of the first U.S. case study performed with this system under various configurations. The case study simulated precipitation events over a headwater basin in the southern Appalachian Mountains in October 2005 following the landfall of Tropical

  10. Thermal maturity patterns (conodont color alteration index and vitrinite reflectance) in Upper Ordovician and Devonian rocks of the Appalachian basin: a major revision of USGS Map I-917-E using new subsurface collections: Chapter F.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine

  11. Na-Cl-Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin and migration paths

    SciTech Connect

    Kesler, S.E.; Martini, A.M.; Appold, M.S.; Walter, L.M.; Huston, T.J.; Furman, F.C.

    1996-01-01

    This study evaluated Na-Cl-Br systematics of fluid inclusion-hosted brines in Mississippi Valley-type (MVT) deposits from the Appalachian Basin. Unlike other geochemical tracers such as lead and strontium isotopes which constrain metal sources, Na-Cl-Br systematics identify sources of brine salinity. Saline formation waters can vary systematically within and between basins with regard to their Na-Cl-Br compositions depending on the importance of halite dissolution relative to retention of subaerially evaporated seawater for the halogen budget. Oil field brine compositions from the Illinois and Appalachian basins are quite distinct in their Na-Cl-Br systematics. Compositions of saline fluid inclusions in MVT deposits generally are consistent with these regional differences. These results shed new light on the extent of regional flow systems and on the geochemical evolution of saline fluids responsible for mineralization. Nearly all fluid inclusions analyzed from the Appalachian MVT deposits have Na/Br and Cl/Br ratios less than modern seawater, consistent with ratios observed in marine brines involved in halite precipitation. The Na-Cl-Br systematics of the brines responsible for Appalachian MVT deposits may be inherited from original marine brines refluxed into the porous carbonate shelf sediments that host these deposits. The Cl/Br and Na/Br ratios of most fluid inclusion-hosted brines from Appalachian MVT sphalerites and fluorites fall into two compositional groups, one from the Lower Cambrian paleoaquifer and another from the Lower Ordovician paleoaquifer. Leachates from most MVT barite deposits form a third compositional group having lower Na/Br and Cl/Br ratios than the other two. Appalachian MVT leachate compositions differ significantly from those in MVT deposits in the Cincinnati arch-midcontinent region suggesting that these two MVT provinces formed from brines of different origin or flow path. 59 refs., 8 figs., 2 tabs.

  12. The Areal Extent of Continuous Type Gas Accumulations in Lower Silurian Clinton Sands and Medina Group Sandstones of the Appalachian Basin and the Environments Affected by Their Development

    USGS Publications Warehouse

    Wandrey, C.J.; Ryder, Robert T.; Nuccio, Vito F.; Aggen, Kerry L.

    1997-01-01

    In order to best preserve and manage our energy and natural resources we must understand the relationships between these resources and the impacts of their development. To further this understanding the U.S. Geological Survey is studying unconventional continuous-type and, to a lesser extent, conventional oil and gas accumulations and the environmental impacts associated with their development. Continuous-type gas accumulations are generally characterized by low matrix permeabilities, large areal extents, and no distinct water contacts. This basin scale map shows the overall extent of these accumulations and the general land use types that may be impacted by their development. The Appalachian Basin has the longest history of oil and gas exploration and production in the United States. Since Drake's Titusville discovery well was drilled in 1859, oil and gas has been continuously produced in the basin. While there is still a great deal of oil and gas production, new field discoveries are rare and relatively small. For most of the second half of the 20th century the Appalachian basin has been considered a mature petroleum province because most of the large plays have already been discovered and developed. One exception to this trend is the Lower Silurian Clinton Sands and Medina Group Gas play which is being developed in New York, Pennsylvania, and Ohio. This continuous-type gas play has been expanding since the early 1970's (see inset maps). In the 1980's economic incentives such as large increases in wellhead prices further stimulated continuous-type gas resource development. Continuous-type gas plays can be large in areal extent and in thickness. 'Sweetspots' (areas of greater prodcution) are hard to predict and generally associated with better than average permeabilities, and enhanced by natural fracture systems. With an overall success rate often approaching 90%, drilling most of the play with closely spaced wells is often the best way to maximize gas recovery

  13. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect

    Robert D. Hatcher

    2003-05-31

    RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

  14. Measured and predicted air temperatures at basin to regional scales in the southern Appalachian mountains

    Treesearch

    Paul V. Bolstad; Lloyd Swift; Fred Collins; Jacques Regniere

    1998-01-01

    Landscape and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the Southern Appalachian mountains of North America. Temperatures decreased with altitude at mean rates of 7EC/km (maximum temperature) and 3EC/km (minimum temperature). Daily lapse rates depended on the method and stations used in the calculations...

  15. Innovative Methodology For Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect

    Jacobi, Rober

    2007-03-28

    This Topical Report (#6 of 9) consists of the figures 3.6-13 to (and including) 3.6-18 (and appropriate figure captions) that accompany the Final Technical Progress Report entitled: “Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin” for DOE/NETL Award DE-AC26-00NT40698.

  16. Innovative Methodology for Detection of Fracture-Controlled Sweet Spots in the Northern Appalachian Basin

    SciTech Connect

    Jacobi, Rober

    2007-03-31

    This Topical Report (#6 of 9) consists of the figures 3.6-13 to (and including) 3.6-18 (and appropriate figure captions) that accompany the Final Technical Progress Report entitled: "Fracture-Controlled Sweet Spots in the Northern Appalachian Basin” for DOE/NETL Award DE-AC26-00NT40698.

  17. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  18. Water resources and shale gas/oil production in the Appalachian Basin: critical issues and evolving developments

    USGS Publications Warehouse

    Kappel, William M.; Williams, John H.; Szabo, Zoltan

    2013-01-01

    Unconventional natural gas and oil resources in the United States are important components of a national energy program. While the Nation seeks greater energy independence and greener sources of energy, Federal agencies with environmental responsibilities, state and local regulators and water-resource agencies, and citizens throughout areas of unconventional shale gas development have concerns about the environmental effects of high volume hydraulic fracturing (HVHF), including those in the Appalachian Basin in the northeastern United States (fig. 1). Environmental concerns posing critical challenges include the availability and use of surface water and groundwater for hydraulic fracturing; the migration of stray gas and potential effects on overlying aquifers; the potential for flowback, formation fluids, and other wastes to contaminate surface water and groundwater; and the effects from drill pads, roads, and pipeline infrastructure on land disturbance in small watersheds and headwater streams (U.S. Government Printing Office, 2012). Federal, state, regional and local agencies, along with the gas industry, are striving to use the best science and technology to develop these unconventional resources in an environmentally safe manner. Some of these concerns were addressed in U.S. Geological Survey (USGS) Fact Sheet 2009–3032 (Soeder and Kappel, 2009) about potential critical effects on water resources associated with the development of gas extraction from the Marcellus Shale of the Hamilton Group (Ver Straeten and others, 1994). Since that time, (1) the extraction process has evolved, (2) environmental awareness related to high-volume hydraulic fracturing process has increased, (3) state regulations concerning gas well drilling have been modified, and (4) the practices used by industry to obtain, transport, recover, treat, recycle, and ultimately dispose of the spent fluids and solid waste materials have evolved. This report updates and expands on Fact Sheet 2009

  19. Utility of Isotopes to Understand the Effect of Shale Gas Drilling on Water Quality: Examples From the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Bowman, L.; Pelak, A.; Mulder, M.

    2014-12-01

    Marcellus Shale of the Appalachian Basin is one of the largest unconventional gas resources in the United States. The main public concern associated with hydraulic fracturing of Marcellus shale is that that the quality of underground sources of drinking water (USDW) and surface waters can be compromised due to well casing or grouting failures, creation of new fracture pathways, and improper disposal of produced water. However, this region has a long history of coal mining and oil /gas development and therefore it becomes very important to be able to distinguish if any incidence of water contamination is associated with legacy mining/drilling activities or the newly drilled shale gas wells. In addition, the complex structural regime of the Appalachian makes it difficult to decouple natural migration of deep brines and stray gas along geological faults/ fractures from new pathways created by hydraulic fracturing activities. In order to effectively assess the effect of shale gas development on water quality of this region there is a need 1) to establish the background geochemical signatures of different water sources and, 2) to develop geochemical fingerprints that can track the sources and fates of brines and stray gas in fresh waters. We will present results from several ongoing research projects which demonstrate applicability of stable isotopes as natural tracers to understand changes in hydrologic connections associated with shale gas drilling in this region.

  20. Black shale source rocks and oil generation in the Cambrian and Ordovician of the central Appalachian Basin, USA

    USGS Publications Warehouse

    Ryder, R.T.; Burruss, R.C.; Hatch, J.R.

    1998-01-01

    Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network

  1. Assessment of undiscovered oil and gas resources of the Ordovician Utica Shale of the Appalachian Basin Province, 2012

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Schenk, Christopher J.; Cook, Troy A.; Ryder, Robert T.; Charpentier, Ronald R.; Klett, Timothy R.; Gaswirth, Stephanie B.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2012-01-01

    The U.S. Geological Survey assessed unconventional oil and gas resources of the Upper Ordovician Utica Shale and adjacent units in the Appalachian Basin Province. The assessment covers parts of Maryland, New York, Ohio, Pennsylvania, Virginia, and West Virginia. The geologic concept is that black shale of the Utica Shale and adjacent units generated hydrocarbons from Type II organic material in areas that are thermally mature for oil and gas. The source rocks generated petroleum that migrated into adjacent units, but also retained significant hydrocarbons within the matrix and adsorbed to organic matter of the shale. These are potentially technically recoverable resources that can be exploited by using horizontal drilling combined with hydraulic fracturing techniques.

  2. The northern and central Appalachian basin coal region -- The Upper Freeport and Pond Creek coal bed assessments

    SciTech Connect

    Ruppert, L.; Tewalt, S.; Bragg, L.; Wallack, R.; Freeman, P.; Tully, J.

    1999-07-01

    The Upper Freeport and Pond Creek coal beds are two of six coal beds being assessed by the US Geological Survey (USGS) in the northern and central Appalachian basin coal region. The coal resource assessments were designed to provide up-to-date, concise data on the location, quantity, and quality of US coals for Federal agencies, the public, industry and academia. Assessment products are fully digital and include original and remaining resource estimates; maps depicting areal extent, mined areas, geologic structure contour, isopach, overburden thickness, ash yield, sulfur content, calorific value, and selected trace-element contents; and public domain geochemical and stratigraphic databases. The assessment methodology and a few results are presented.

  3. Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Sheets, Charlynn J.; Kozar, Mark D.

    2000-01-01

    Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the

  4. Carboniferous sediment dispersal in the Appalachian-Ouachita juncture: Provenance of selected late Mississippian sandstones in the Black Warrior Basin, Mississippi, United States

    NASA Astrophysics Data System (ADS)

    Xie, Xiangyang; O'Connor, Patrick M.; Alsleben, Helge

    2016-08-01

    The Black Warrior Basin is one of several Carboniferous foreland basins along the Appalachian-Ouachita fold-thrust belt in the southeastern United States. Sediment dispersal within the Black Warrior Basin has been a long-debated topic because of a complex tectonic history and the potential interaction between the Appalachian and Ouachita orogenic belts, as well as far field sediment sources. Three dispersal patterns have been proposed, including dispersal routes from the craton, dispersal via the Appalachian foreland, and dispersal from the arc side of the Ouachita suture, but sediment dispersal in the Black Warrior Basin remains inconclusive. In this study, sandstone modal analysis and U-Pb detrital zircon geochronology are used to document the provenance and potential dispersal patterns for selected Mississippian sandstone units in the Black Warrior Basin, Missouri, USA. Results show that the majority of the Lewis, Evans, Sanders, and Carter sandstones are sublitharenite to mature quartzarenite and fall within the Cratonic Interior field on Q-F-L diagrams. U-Pb detrital zircon analyses of the Lewis, Sanders, and Carter sandstones show that there are four distinctive age clusters, including a prominent Paleozoic age cluster (~ 350-500 Ma), a broad Grenville age cluster (~ 900-1350 Ma), and two minor age clusters of the Granite-Rhyolite (~ 1360-1600 Ma) and the Yavapai-Mazatzal (~ 1600-1800 Ma) provinces. All Mississippian sandstones have similar age distributions except for the Lewis sandstone, which lacks zircon grains from the Superior province (>~2500 Ma). Based on the compositional maturity, similarity of age distributions, and changes of relative abundance among different age groups, we conclude that the Late Mississippian sandstone units analyzed during this study were derived from the Laurussian craton and the northern part of the Appalachian foreland through a major axial drainage that occupied the Mississippi Valley Graben.

  5. SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA

    SciTech Connect

    BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

    1998-08-14

    The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during

  6. Using 10Be to quantify rates of landscape change in 'dead' orogens - millennial scale rates of bedrock and basin-scale erosion in the southern and central Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Bierman, P. R.; Reusser, L.; Portenga, E.

    2011-12-01

    The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion

  7. Exploration trends of the Sirte Basin

    SciTech Connect

    Aburawi, R.M.

    1995-08-01

    A wave of intense exploration activity in the Sirte Basin began after the discovery of oil in 1958, and an enormous quantity of hydrocarbon was found in less than ten years. The oil discovery rate has been gradually declining since its peak in the 1960`s, and it is now becoming increasingly difficult and more expensive to find a new reserve. This paper is an attempt to discuss briefly the past exploration cycle, to indicate the present position and to predict the future trend of our activities in the Sirte Basin. The past exploration activities in the Sirte Basin were concentrated along the particular geological trends where the possibilities of finding more reserves are now drastically reduced. Therefore, for the future healthy exploration activities, new ideas are needed to bring about some new favourable areas under further investigation. A new cycle of exploration success will emerge if our exploratory efforts are purposely directed towards the stratigraphic, stratrigraphic/structural traps and subtle type traps, along the migrational pathways and deep plays in the potential oil generative areas.

  8. Stratigraphy of the Devonian Chattanooga and Ohio shales and equivalents in the Appalachian basin: an example of long-range subsurface correlation using gamma-ray logs

    SciTech Connect

    Roen, J.B.

    1980-01-01

    The correlations discussed demonstrate the utility of the gamma-ray log for regional, basinwide stratigraphic studies. Through the use of these logs, suggested correlations based on paleontologic evidence (Hass, 1956) were confirmed and new correlations were established in the Appalachian basin across at least 700 miles. These logs used in conjunction with a few lithologic logs and gamma-ray profiles of surface sections (Ettensohn and others, 1979) have proven to be a useful tool for long-range stratigraphic studies.

  9. Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping

    SciTech Connect

    Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

    2010-01-01

    Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

  10. Facies analysis and depositional environment of the Ames Marine Member of the Conemaugh Group in the Appalachian Basin

    SciTech Connect

    Al-Qayim, B.A.

    1983-01-01

    The lithologic and paleontological aspects for fifty localities of the Ames Marine Member were examined. The regional stratigraphic reconstruction shows that it is variably composed of limestone and shale, and often associated with a thin basal coal seam. A generalized, composite stratigraphic section of the Ames Member consists of the following units from top to bottom: the Grafton Sandstone, Nonmarine Shale, Upper Ames Shale, Upper Ames Limestone, Middle Ames Shale, Lower Ames Limestone, Lower Ames Shale, Ames Coal, Nonmarine Silty Shale, and Harlem Coal. Harlem coal is commonly the basal coal in Ohio, and the Ames Coal is common in Pennsylvania and West Virginia. Insoluble residue analysis of 223 samples shows that quartz and glauconite are the major and significant residues. The major petrographic components of the Ames rocks are bioclastic grains of echinoderm, brachiopods, molluscs, bryozoa, and foraminifera in a matrix variably composed of clay and calcium carbonate. A quantitative microfacies study applying factor and cluster analysis reveals five basin-wide biofacies and four lithofacies reflecting a gradient from shoreline to an offshore position. The areal and vertical distribution of the different facies reflects the transgression-regression history of the Ames Cycle. A uniform slow eustatic rise of sea level with an early rapid transgression was responsible for the deposition of most of the Ames marine section. The small, upper, underdeveloped regressive section suggests a rapid regression by active prograding deltaic deposits which rapidly terminated the marine conditions over most the the Appalachian Basin.

  11. Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin

    USGS Publications Warehouse

    Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.

    2015-01-01

    In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.

  12. Value of coenocorrelation curves in documenting sea level changes in Appalachian basin during Late Silurian and Early Devonian

    SciTech Connect

    Wong, S.

    1986-05-01

    A detailed paleoecological analysis of the Keyser Limestone was conducted at five localities in Virginia and West Virginia, using two multivariate statistical techniques: cluster analysis and detrended correspondence analysis. Through this analysis, the Keyser fauna was divided into communities along a nearshore to offshore environmental gradient, and each community was assigned to a benthic assemblage. Having established the proximity of the various faunal elements to the shoreline, the faunal zones at other localities, as described in the literature, were assigned to the appropriate benthic assemblage. Coenocorrelation curves were then constructed, based on benthic assemblage membership. By correlating the curves between each locality, the history of sea level changes in the Appalachian basin during the Late Silurian to Early Devonian were determined. Through this technique, more localities can be incorporated into detailed basin analysis studies. In this study, using coenocorrelation curves, it was found that the Keyser Limestone records several transgressive pulses. An initial transgressive pulse, affecting Virginia and West Virginia, resulted in the deposition of facies containing benthic assemblages 4 and 5. A second transgressive pulse resulted in the extension of these facies into Pennsylvania and New York. This transgressive pulse was followed by regressive conditions and the expansion of facies containing benthic assemblage 3. Subsequent transgression led to a return of facies containing benthic assemblages 4 and 5. Keyser deposition ended with a major regressive event, as recorded in the deposition of facies containing benthic assemblages 1-3.

  13. Petroleum exploration in the Amadeus Basin

    NASA Astrophysics Data System (ADS)

    Roe, L. E.

    Although the spectacular outcrops in the Amadeus Basin have attracted researcher for many years, commercial exploration for oil started only in 1958. Up until 1973, 16 petroleum exploration wells were drilled and the major Mereenie Oil and Gas Field and the Palm Valley Gas Field were discovered. In both cases, the principal reservoir is the latest Cambrian-Early Ordovician Pacoota Sandstone; the reservoirs were sourced from the Early Ordovician Horn Valley Siltstone. Due to a combination of adverse circumstances, there was no exploration in the basin between 1973 and 1980. Since activity resumed, 14 further exploratory wells have been drilled and both the Mereenie and Palm Valley Fields have commenced production. The Dingo Gas Field, with flows form the basal part of the latest Proterozoic Arumbera Sandstone, was discovered in 1981. The Dingo Field is currently under study because of low flow rates from the reservoir. Exploration during the 1980's has brought out new concepts regarding the prospectiveness of parts of the basin, many of which have yet to be tested.

  14. Exploring lag times between monthly atmospheric deposition and stream chemistry in Appalachian forests using cross-correlation

    NASA Astrophysics Data System (ADS)

    DeWalle, David R.; Boyer, Elizabeth W.; Buda, Anthony R.

    2016-12-01

    Forecasts of ecosystem changes due to variations in atmospheric emissions policies require a fundamental understanding of lag times between changes in chemical inputs and watershed response. Impacts of changes in atmospheric deposition in the United States have been documented using national and regional long-term environmental monitoring programs beginning several decades ago. Consequently, time series of weekly NADP atmospheric wet deposition and monthly EPA-Long Term Monitoring stream chemistry now exist for much of the Northeast which may provide insights into lag times. In this study of Appalachian forest basins, we estimated lag times for S, N and Cl by cross-correlating monthly data from four pairs of stream and deposition monitoring sites during the period from 1978 to 2012. A systems or impulse response function approach to cross-correlation was used to estimate lag times where the input deposition time series was pre-whitened using regression modeling and the stream response time series was filtered using the deposition regression model prior to cross-correlation. Cross-correlations for S were greatest at annual intervals over a relatively well-defined range of lags with the maximum correlations occurring at mean lags of 48 months. Chloride results were similar but more erratic with a mean lag of 57 months. Few high-correlation lags for N were indicated. Given the growing availability of atmospheric deposition and surface water chemistry monitoring data and our results for four Appalachian basins, further testing of cross-correlation as a method of estimating lag times on other basins appears justified.

  15. Choice of College Major: An Exploration of Appalachian Female Choice of an Early Childhood Education Major

    ERIC Educational Resources Information Center

    Gannoe, Lisa N.

    2013-01-01

    First generation Appalachian female students are exposed to gender differences in roles and career choices that are modeled in the family. A case study approach was used to obtain qualitative data from five students at Eastern Kentucky University and their mothers regarding why these students chose to major in child development and early childhood…

  16. Choice of College Major: An Exploration of Appalachian Female Choice of an Early Childhood Education Major

    ERIC Educational Resources Information Center

    Gannoe, Lisa N.

    2013-01-01

    First generation Appalachian female students are exposed to gender differences in roles and career choices that are modeled in the family. A case study approach was used to obtain qualitative data from five students at Eastern Kentucky University and their mothers regarding why these students chose to major in child development and early childhood…

  17. Deep-water carbonate slope failure events in a newly discovered Silurian basin, Blue Ridge province, southern Appalachians, Tennessee

    SciTech Connect

    Unrug, R. )

    1991-03-01

    Siliciclastic deep-water turbidites of the Walden Creek Group, Ocoee Supergroup, underlying the foothills of the Great Smoky Mountains, contain olistolith blocks and olistostromal debris-flow breccia beds. Paleozoic fossils discovered recently in the olistoliths indicate Silurian age of the carbonates. The Walden Creek Group is therefore Silurian or younger, not late Proterozoic in age, as believed previously. The carbonate olistoliths and breccias formed by collapse of post-Taconic Silurian carbonate-dominated basin present in the Blue Ridge province of the Southern Appalachians into the younger basin of the Walden Creek Group. Two modes of occurrence of the olistoliths are present: (1) discrete horizons in which olistoliths are sitting spaced ten to hundreds of meters apart underneath a widespread conglomerate bed and (2) accumulations of olistoliths in localized stacked horizons in the vertical sequence of the enclosing siliciclastic rocks. Both modes can be related to failure of active fault scarps. Rocks of the olistolith are lithologically varied and record an older event of slope failure within the Silurian carbonate-dominated basin. Three facies assemblages representing two sedimentary environments are present in the olistoliths. Facies assemblage A includes oolitic limestone, stromatolite, carbonate breccia encrusted by stromatolite, and massive sandy limestone. It represents a high-energy, shallow-water, carbonate platform environment. Facies assemblage B consists of bedded dark limestone, alternating with black shale, and represents sediments of the carbonate platform slope. Facies assemblage C includes carbonate breccias intercalated in the bedded limestones and shales and is interpreted as deposits of the lower slope formed by failure of the carbonate platform margin.

  18. Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB

    DOE Data Explorer

    Teresa E. Jordan

    2015-11-15

    This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria or ‘risks’: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain “item description” documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in

  19. Paleoclimate controls on late paleozoic sedimentation and peat formation in the central appalachian basin (U.S.A.)

    USGS Publications Warehouse

    Cecil, C.B.; Stanton, R.W.; Neuzil, S.G.; Dulong, F.T.; Ruppert, L.F.; Pierce, B.S.

    1985-01-01

    In the central Appalachian basin, at least two major climate changes affected sedimentation during the late Paleozoic. Stratigraphically, these two changes are indicated by the distribution of coal beds, the variation in coal quality, and the variation in rock lithologies. In latest Mississippian or earliest Pennsylvanian time, the climate changed from dry-seasonal tropical to ever-wet (equable) tropical. The equable climate prevailed into the Middle Pennsylvanian, influencing the morphology and geochemistry in peat-forming environments. Many of the peat deposits, which formed under the equable climate, were probably domed (raised bogs); low concentrations of dissolved solids in peat formation water resulted in low buffering capacity. Organic acids caused acidic (pH < 4), antiseptic conditions that resulted in intense leaching of mineral matter, minimal degradation of organic matter, and low-ash and low-sulfur peat deposits; the resulting coal beds are also low in ash and sulfur. Associated rocks are noncalcareous and consist of sequences of interbedded shale, siltstone, and sandstone including quartz arenite. Another climate change occurred in late Middle Pennsylvanian time when evapopation periodically exceeded rainfall resulting in an increase of both dissolved solids and pH (4 to ??? 7) in surface and near-surface water. Throughout the remainder of the Pennsylvanian, the surfaces of peat deposits were probably planar (not domed); water in peat-forming and other depositional environments became more nearly neutral. The coal beds derived from these peats are highly variable in both ash and sulfur contents. Drier or more seasonal climates are also indicated by sequences of (1) calcareous sandstone and shale, (2) nonmarine limestone that shows shallow-water and subaerial exposure features, and (3) calcareous paleosols that have caliche characteristics. Our data and observations indicate that physical depositional environment models for the origin of coal do not

  20. ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES

    SciTech Connect

    Ronald R. McDowell; Khashayar Aminian; Katharine L. Avary; John M. Bocan; Michael Ed. Hohn; Douglas G. Patchen

    2003-09-01

    The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in

  1. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos

  2. Preliminary report on the clay mineralogy of the Upper Devonian Shales in the southern and middle Appalachian Basin

    USGS Publications Warehouse

    Hosterman, John W.; Loferski, Patricia J.

    1978-01-01

    The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.

  3. Appalachian Veterans.

    ERIC Educational Resources Information Center

    Arnow, Pat, Ed.

    1987-01-01

    This journal issue focuses on Appalachian veterans and on the premise that Appalachians and Americans in general are still fighting the battles and dealing with the psychic aftermath of the Civil War and all wars fought since then. One article notes that Appalachian soldiers were 20 to 25% more likely to be killed in Vietnam than other soldiers.…

  4. Geologic Cross Section D-D' Through the Appalachian Basin from the Findlay Arch, Sandusky County, Ohio, to the Valley and Ridge Province, Hardy County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.

    2009-01-01

    Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  5. Geologic Cross Section I–I′ Through the Appalachian Basin from the Eastern Margin of the Illinois Basin, Jefferson County, Kentucky, to the Valley and Ridge Province, Scott County, Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.

    2015-12-08

    Cross section I‒I ’ contains much information that is useful for evaluating energy resources in the Appalachian basin. Many of the key elements of the Appalachian basin petroleum systems (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and petroleum migration pathways) may be evaluated by burial history, thermal history, and fluid flow models on the basis of what is shown on the cross section. Cross section I‒I’ also provides a stratigraphic and structural framework for the Pennsylvanian coal-bearing section. In addition, geologists and engineers could use cross section I‒I’ as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  6. Hydrocarbons exploration in east Siberia southern basins

    SciTech Connect

    Resnick, V.S. )

    1991-08-01

    The vast Lena-Tunguska province in the heart of Siberia is among the world's largest and least explored frontier basins. Some encouraging exploration has nevertheless been carried out in the four southern subbasins: PrePatom (PreBaykal) trough, Nepa-Botuobin anticlise, PreSayan-Yenisey basin, and Angara-Lena terrace. Source rocks are essentially Proterozoic, but younger sediments may contribute about 10% of the region's oil potential. Riphean-Cambrian subsalt reservoirs contribute more than 90% of the hydrocarbons discovered, whereas Cambrian salt provides the most common regional seals. The main hydrocarbon later migration occurred in Vendian-Cambrian. Traps include clastic wedging out along favorable structures and carbonate reef-like buildups. Many traps were transformed or destroyed by the late Paleozoic-early Mesozoic volcanic activity, whereas Hercynian overthrust tectonics developed new traps in the PrePatom trough. About 30 discoveries, mainly gas and condensates, have been made in the area, but operations are hampered by poor logistics and limited infrastructure.

  7. Paleocurrent analysis of a deformed Devonian foreland basin in the northern Appalachians, Maine, USA

    USGS Publications Warehouse

    Bradley, D.C.; Hanson, L.S.

    2002-01-01

    New paleocurrent data indicate that the widespread Late Silurian and Devonian flysch and molasse succession in Maine was deposited in an ancestral, migrating foreland basin adjacent to an advancing Acadian orogenic belt. The foreland-basin sequence spread across a varied Silurian paleogeography of deep basins and small islands-the vestiges of an intraoceanic arc complex that not long before had collided with the Laurentian passive margin during the Ordovician Taconic Orogeny. We report paleocurrents from 43 sites representing 12 stratigraphic units, the most robust and consistent results coming from three units: Madrid Formation (southwesterly paleoflow), Carrabassett Formation (northerly paleoflow), and Seboomook Group (westerly paleoflow). Deformation and regional metamorphism are sufficiently intense to test the limits of paleocurrent analysis requiring particular care in retrodeformation. ?? 2002 Elsevier Science B.V. All rights reserved.

  8. Palynology, geochemistry and Re-Os age of the Lower-Middle Pennsylvanian stage boundary, central Appalachian basin, USA

    NASA Astrophysics Data System (ADS)

    Geboy, N.; Tripathy, G. R.; Ruppert, L. F.; Eble, C. F.; Blake, B. M.; Hannah, J. L.; Stein, H. J.

    2014-12-01

    The central Appalachian basin (CAB) in the eastern United States contains complicated sedimentary sequences often with thin and discontinuous strata. As an economically important coal-producing region, the basin's architectural framework and depositional history are important to understand. Typically, eustatic marine incursions, marked with black shale deposits, are used for basin-wide correlation. The Betsie Shale Member of the Kanawha Formation represents one of these relatively thick and laterally extensive marine zones. This study examines the palynoflora of the Matewan coalbed, which conformably underlies the Betsie, in the context of a new Re-Os date for the Betsie Shale Member and additional geochemical measures. At its base, the Matewan contains abundant lycopsid tree spores, indicative of a submerged, flooded paleomire. Upsection, biodiversity increases to include small fern and calamite spores as well as cordaite pollen. Combined with an observed increase of inertinite, the diversification of palynoflora suggests surficial peat exposure and drying out of the paleomire. A S-rich (28 wt. %) shaley parting separates these lower and upper benches of the Matewan and may represent an initial marine pulse prior to the glacioeustatic incursion that ultimately flooded the Matewan and deposited the overlying Betsie Shale. The Betsie is organic-rich (3.05 - 4.89 wt. % TOC) with Re and Os content ranging from 320 - 1,200 ppb and 1.5 - 5.3 ppb, respectively. The highly enriched Re values result in notably high parent:daughter ratios (187Re/188Os = 3,644 - 5,737). The Re-Os isotopic data yield a Model 1 age of 323 ± 7.8 Ma (n = 7; MSWD = 0.63) with evidence that the true age lies closer to the younger end of the uncertainty. This age is consistent with previous paleontologic-based interpretations but represents the first directly measured radiometric date for the Betsie. An absolute age for the Betsie is a critical result, as the member is correlated with units in

  9. Perspective of gas exploration in Ying-Qiong Basin

    SciTech Connect

    He, Hanyi; Zhongtiang Hu )

    1996-01-01

    The Yinggehai and Qiongdongnan Basin (Ying-Qiong Basin) in the northwest part of the South China Sea is a Cenozoic sedimentary basin, which has fast-subsiding and thick sediments. The maximum Cenozoic sediments in the center part of the basin is 20,000 m. Six sets of source rocks with prevailing Type III kerogen were developed in the basin, which has a great potential for gas generation. Different types of reservoirs and traps, leading to different assemblages of source rocks, reservoirs, and cap rocks, form good gas pools. Abnormal high temperature and high pressure in the basin resulted in many mud diapirs and made the generation, migration, and accumulation of gas more colorful. Up to now, four gas fields have been discovered in the basin. A large number of anticlines and stratigraphic-lithologic traps in the basin provide an extensive area for gas exploration. The perspective of gas exploration in the basin is vast and bright.

  10. Perspective of gas exploration in Ying-Qiong Basin

    SciTech Connect

    He, Hanyi; Zhongtiang Hu

    1996-12-31

    The Yinggehai and Qiongdongnan Basin (Ying-Qiong Basin) in the northwest part of the South China Sea is a Cenozoic sedimentary basin, which has fast-subsiding and thick sediments. The maximum Cenozoic sediments in the center part of the basin is 20,000 m. Six sets of source rocks with prevailing Type III kerogen were developed in the basin, which has a great potential for gas generation. Different types of reservoirs and traps, leading to different assemblages of source rocks, reservoirs, and cap rocks, form good gas pools. Abnormal high temperature and high pressure in the basin resulted in many mud diapirs and made the generation, migration, and accumulation of gas more colorful. Up to now, four gas fields have been discovered in the basin. A large number of anticlines and stratigraphic-lithologic traps in the basin provide an extensive area for gas exploration. The perspective of gas exploration in the basin is vast and bright.

  11. Utilization Analysis in Low-Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB)

    SciTech Connect

    Teresa E. Jordan

    2015-09-30

    This submission of Utilization Analysis data to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) is in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (project DE-EE0006726). The submission includes data pertinent to the methods and results of an analysis of the Surface Levelized Cost of Heat (SLCOH) for US Census Bureau ‘Places’ within the study area. This was calculated using a modification of a program called GEOPHIRES, available at http://koenraadbeckers.net/geophires/index.php. The MATLAB modules used in conjunction with GEOPHIRES, the MATLAB data input file, the GEOPHIRES output data file, and an explanation of the software components have been provided. Results of the SLCOH analysis appear on 4 .png image files as mapped ‘risk’ of heat utilization. For each of the 4 image (.png) files, there is an accompanying georeferenced TIF (.tif) file by the same name. In addition to calculating SLCOH, this Task 4 also identified many sites that may be prospects for use of a geothermal district heating system, based on their size and industry, rather than on the SLCOH. An industry sorted listing of the sites (.xlsx) and a map of these sites plotted as a layer onto different iterations of maps combining the three geological risk factors (Thermal Quality, Natural Reservoir Quality, and Risk of Seismicity) has been provided. In addition to the 6 image (.png) files of the maps in this series, a shape (.shp) file and 7 associated files are included as well. Finally, supporting files (.pdf) describing the utilization analysis methodology and summarizing the anticipated permitting for a deep district heating system are supplied.

  12. Petrophysics of Lower Silurian sandstones and integration with the tectonic-stratigraphic framework, Appalachian basin, United States

    USGS Publications Warehouse

    Castle, J.W.; Byrnes, A.P.

    2005-01-01

    Petrophysical properties were determined for six facies in Lower Silurian sandstones of the Appalachian basin: fluvial, estuarine, upper shoreface, lower shoreface, tidal channel, and tidal flat. Fluvial sandstones have the highest permeability for a given porosity and exhibit a wide range of porosity (2-18%) and permeability (0.002-450 md). With a transition-zone thickness of only 1-6 m (3-20 ft), fluvial sandstones with permeability greater than 5 md have irreducible water saturation (Siw) less than 20%, typical of many gas reservoirs. Upper shoreface sandstones exhibit good reservoir properties with high porosity (10-21%), high permeability (3-250 md), and low S iw (<20%). Lower shoreface sandstones, which are finer grained, have lower porosity (4-12%), lower permeability (0.0007-4 md), thicker transition zones (6-180 m [20-600 ft]), and higher S iw. In the tidal-channel, tidal-flat, and estuarine facies, low porosity (average < 6%), low permeability (average < 0.02 md), and small pore throats result in large transition zones (30-200 m; 100-650 ft) and high water saturations. The most favorable reservoir petrophysical properties and the best estimated production from the Lower Silurian sandstones are associated with fluvial and upper shoreface facies of incised-valley fills, which we interpret to have formed predominantly in areas of structural recesses that evolved from promontories along a collisional margin during the Taconic orogeny. Although the total thickness of the sandstone may not be as great in these areas, reservoir quality is better than in adjacent structural salients, which is attributed to higher energy depositional processes and shallower maximum burial depth in the recesses than in the salients. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.

  13. Midwest Regional Carbon Sequestration Partnership Appalachian Basin Test Site: Developing a Sequestration Site from Concept through Injection

    NASA Astrophysics Data System (ADS)

    Gerst, J. L.; Place, M.; Sminchak, J.; Gupta, N.; Sullivan, C.

    2008-12-01

    The Midwest Regional Carbon Sequestration Partnership (MRCSP) Appalachian Basin Field Test is located at the First Energy Generation Corp. RE Burger Power Plant in Belmont County, Ohio. The goal at this site is to injection up to 3000 tonnes of carbon dioxide in up to three separate geologic formations. We present the development of this injection plan as more data was collected and added to the system. In addition, we present initial injection results. Site characterization consisted of a regional geological assessment and a 2D seismic survey. A test injection well (FEGENCO 1) was completed in early 2007 and data collected from this well, included geophysical wireline logs and core samples, were used to develop an injection plan. Two previously identified injection targets were analyzed, the Devonian Oriskany Sandstone and the Silurian Clinton Sandstone. Both of these sandstones are regional sequestration targets across the Midwestern United States. In addition to these, a third injection target was identified after drilling. The Silurian Salina Group is regionally extensive throughout most of the Midwest and consists of carbonate and evaporate layers. In the FEGENCO 1 well, one of the subgroups was found to have higher porosity dolomitic stringers sandwiched between anhydrite layers. Wireline data and field samples were used to better understand the geologic model and predict the porosity and permeability distribution of the interval. Injection is expected to be completed by Fall 2008. This work was done as part of the Midwest Regional Carbon Sequestration Partnership (MRCSP); DOE/NETL Cooperative Agreement No. DE-FC26-05NT42589

  14. Alabama's Appalachian overthrust amid exploratory drilling resurgence

    SciTech Connect

    Taylor, J.D. ); Epsman, M.L.

    1991-06-24

    Oil and gas exploration has been carried out sporadically in the Appalachian overthrust region of Alabama for years, but recently interest in the play has had a major resurgence. The Appalachian overthrust region of Alabama is best exposed in the valley and ridge physiographic province in the northeast part of the state. Resistant ridges of sandstone and chert and valleys of shales and carbonate have been thrust toward the northwest. Seismic data show that this structural style continues under the Cretaceous overlap. The surface and subsurface expression of the Alabama overthrust extends for more than 4,000 sq miles. Oil and gas have been produced for many years from Cambro-Ordovician, Ordovician, Mississippian, and Pennsylvanian rocks in the nearby Black Warrior basin in Alabama and Mississippi and the Cumberland plateau in Tennessee. The same zones are also potential producing horizons in the Alabama overthrust region.

  15. Thermal Maturity Patterns (CAI and %Ro) in Upper Ordovician and Devonian Rocks of the Appalachian Basin: A Major Revision of USGS Map I-917-E Using New Subsurface Collections

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.

    2008-01-01

    The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of our report are to present new CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front.

  16. Paleoecological interpretation of a middle Pennsylvanian coal bed in the central Appalachian basin, U.S.A.

    USGS Publications Warehouse

    Eble, C.F.; Grady, W.C.

    1990-01-01

    change in palynflora and by the establishment and proliferation of some plant groups, notably cordaites and calamites, that may have been better adapted to growth on mineral soils. These palynologic and petrographic relationships, thought to be indicative of a domed peat-swamp origin, are not confined to the Hernshaw-Fire Clay coal bed, but appear to be characteristic of many coal beds in the Appalachian basin, and also of coal beds in other basins. ?? 1990.

  17. Exploration in the Ombilin Intermontane Basin, West Sumatra

    SciTech Connect

    Koning, T.

    1996-12-31

    The Ombilin Basin is a Tertiary intermontane basin located within the Barisan Mountain Range of Sumatra. Oil exploration commenced in the Ombilin Basin in the early 1980s when geological mapping was carried out, a synthetic aperture radar survey was flown, and a basin-wide geophysical survey was completed. This effort led to the drilling of Sinimar No. 1 to a total depth 3020 m. Sinimar No. 1 was a historic well in Indonesia`s oil industry since it was the first oil exploration well drilled in the Ombilin Basin and also the first well drilled in an intermontane basin in Indonesia. Oil, gas and condensate was tested in the well. An integrated interpretation of the well, geophysical and outcrop data indicates that despite its small areal size (30 km x 50 km), the Ombilin Basin is a deep pull-apart basin containing up to 4500 m of Tertiary sediments, ranging in age from Middle Eocene to Early Miocene. The basin currently is in an intermontane basin structural setting but it was also an intermontane basin during its Early Tertiary depositional history. During the Eocene, alluvial fans and massive debris flows were deposited on the basin margins and a large lake occupied the basin center. Fluvial deposition occurred in the basin during the Oligocene followed by deposition of marine shales, sandstones, and isolated reefs during the Miocene. Although the Ombilin Basin is located within Sumatra`s magmatic arc and is partially covered by volcanics from extinct and active volcanoes, the subsurface temperature gradients of 1.62 deg. F/100 ft. recorded in Sinimar No. I and 1.47 deg F/100 ft. measured in a deep (670 m) coal exploration core hole are significantly cooler than the average subsurface temperature gradients in the Sumatra back-arc basins. Organic-rich Eocene lacustrine shales are the likely source rocks for the hydrocarbons tested in Sinimar No. 1 and the oil seeps located along the basin margins.

  18. Exploration in the Ombilin Intermontane Basin, West Sumatra

    SciTech Connect

    Koning, T. Petroleum Co., Lagos )

    1996-01-01

    The Ombilin Basin is a Tertiary intermontane basin located within the Barisan Mountain Range of Sumatra. Oil exploration commenced in the Ombilin Basin in the early 1980s when geological mapping was carried out, a synthetic aperture radar survey was flown, and a basin-wide geophysical survey was completed. This effort led to the drilling of Sinimar No. 1 to a total depth 3020 m. Sinimar No. 1 was a historic well in Indonesia's oil industry since it was the first oil exploration well drilled in the Ombilin Basin and also the first well drilled in an intermontane basin in Indonesia. Oil, gas and condensate was tested in the well. An integrated interpretation of the well, geophysical and outcrop data indicates that despite its small areal size (30 km x 50 km), the Ombilin Basin is a deep pull-apart basin containing up to 4500 m of Tertiary sediments, ranging in age from Middle Eocene to Early Miocene. The basin currently is in an intermontane basin structural setting but it was also an intermontane basin during its Early Tertiary depositional history. During the Eocene, alluvial fans and massive debris flows were deposited on the basin margins and a large lake occupied the basin center. Fluvial deposition occurred in the basin during the Oligocene followed by deposition of marine shales, sandstones, and isolated reefs during the Miocene. Although the Ombilin Basin is located within Sumatra's magmatic arc and is partially covered by volcanics from extinct and active volcanoes, the subsurface temperature gradients of 1.62 deg. F/100 ft. recorded in Sinimar No. I and 1.47 deg F/100 ft. measured in a deep (670 m) coal exploration core hole are significantly cooler than the average subsurface temperature gradients in the Sumatra back-arc basins. Organic-rich Eocene lacustrine shales are the likely source rocks for the hydrocarbons tested in Sinimar No. 1 and the oil seeps located along the basin margins.

  19. Tourmaline in Appalachian - Caledonian massive sulphide deposits and its exploration significance.

    USGS Publications Warehouse

    Slack, J.F.

    1982-01-01

    Tourmaline is a common gangue mineral in several types of stratabound mineral deposits, including some massive base-metal sulphide ores of the Appalachian - Caledonian orogen. It is most abundant (sometimes forming massive foliated tourmalinite) in sediment-hosted deposits, such as those at the Elizabeth Cu mine and the Ore Knob Cu mine (North Carolina, USA). Trace amounts of tourmaline occur associated with volcanic-hosted deposits in the Piedmont and New England and also in the Trondheim district. Tourmaline associated with the massive sulphide deposits are Mg- rich dravites with major- and trace-element compositions significantly different from schorl. It is suggested that the necessary B was produced by submarine exhalative processes as a part of the same hydrothermal system that deposited the ores. An abundance of dravite in non-evaporitic terrains is believed to indicate proximity to former subaqueous fumarolic centres.-R.A.H.

  20. Potential subsurface structures and hydrocarbon reservoirs in the southern Appalachian Basin beneath the Cumberland Plateau and eastern Highland Rim, Tennessee, Kentucky, and southwestern Virginia

    NASA Astrophysics Data System (ADS)

    Evenick, Jonathan Charles

    2006-04-01

    Oil and gas exploration in the southern Appalachian basin is typically concentrated around areas with historically proven reserves and very limited prospecting is conducted elsewhere in the region. To remove possible correlation problems and promote regional prospecting a standardized picking methodology was established in geophysical logs for the Middle Ordovician carbonate lithofacies (Nashville-Stones River Groups). This methodology was then used to correlate the units across Cumberland Plateau of Tennessee, Kentucky, and Virginia, from the Nashville-Jessamine domes to the Clinchport-Whiteoak Mountain thrust in the Valley and Ridge. The same lithofacies may extend in Ohio, Pennsylvania, and New York, suggesting a standardized nomenclature be established. This methodology is key to resolving regional and local structures, and structural trends in this area. To identify deformation probably associated with blind structural trends and producing fields, regional structure contour, trend surface residual anomaly, and isopach maps were constructed using data from 7,639 geophysical logs, 1,960 drill cores, and 433 surface contacts. These maps correlate well with known producing fields and identified a possible decollement in the Chattanooga Shale along with the southern extension of the Rome trough in Tennessee. A geologic model for hydrocarbon emplacement was constructed to accommodate all the available structural and petroleum information. The model illustrates a proposed decollement soled in the Chattanooga Shale that forms linear potential Mississippian-age traps and a previously unidentified continuation of the Rome trough and Sequatchie Valley fault beneath the western section of the Wartburg basin in Tennessee. The Flynn Creek impact structure was also investigated because it has a good hydrocarbon potential and may have economical reserves. The impact occurred in a carbonate-dominated target during the Late Devonian. Four persistent, concentric faults indicate

  1. Geologic Cross Section E-E' through the Appalachian Basin from the Findlay Arch, Wood County, Ohio, to the Valley and Ridge Province, Pendleton County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.

    2008-01-01

    Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for

  2. Origin of middle Silurian Keefer sandstone, east-central Appalachian basin

    SciTech Connect

    Meyer, S.C.; Textoris, D.A.; Dennison, J.M.

    1988-08-01

    The Keefer Sandstone of northeastern West Virginia and western Maryland was deposited in back-barrier, barrier-island, and marine shelf environments along a prograding, storm-dominated, mesotidal coastline of probable low wave energy. Back-barrier sediments were deposited in tidal-flat and lagoonal environments. Barrier-island sediments are dominated by cross-bedded sandstones deposited in deep, laterally migrating tidal inlets. Erosion accompanying the passage of a migrating tidal inlet usually resulted in the removal of underyling shoreface and shelf sands, so that tidal-inlet sandstones commonly lie with a markedly erosive contact on subtidal shales of the underlying Rose Hill Formation. Sand was transported to the shelf from the coastline by downwelling, storm-generated currents. Chamosite ooids formed in gently agitated waters immediately below fair-weather wave base. Outcrops to the east, which preserve back-barrier and barrier-island lithofacies, record a single basinward progradation of the shoreline. However, outcrops farther west, which preserve finer grained sandstone, shale, and limestone shelf lithofacies, document four progradational events in stacked coarsening-upward sequences. Each is typically capped by transgressive sandstones, commonly hematite ooid-bearing, which mark episodes of coastal retreat. Retreat occurred through shoreface and nearshore erosion. Chamosite ooids were transported basinward during coastal retreat and altered to hematite prior to burial. Transgressive shelf sands contain abundant coarse sand eroded from tidal-inlet deposits. Deposition of the Keefer was a response to a decrease in rate of eustatic sea level rise, or a decrease in basin subsidence rate. This was followed by deposition of the transgressive basin facies of the Rochester Shale.

  3. Black Appalachians.

    ERIC Educational Resources Information Center

    Waage, Fred, Ed.; Cabbell, Ed, Ed.

    1986-01-01

    This issue of "Now and Then" focuses on black Appalachians, their culture, and their history. It contains local histories, articles, and poems and short stories by Appalachian blacks. Articles include: "A Mountain Artist's Landscape," a profile of artist Rita Bradley by Pat Arnow; "A Part and Apart," a profile of…

  4. Black Appalachians.

    ERIC Educational Resources Information Center

    Waage, Fred, Ed.; Cabbell, Ed, Ed.

    1986-01-01

    This issue of "Now and Then" focuses on black Appalachians, their culture, and their history. It contains local histories, articles, and poems and short stories by Appalachian blacks. Articles include: "A Mountain Artist's Landscape," a profile of artist Rita Bradley by Pat Arnow; "A Part and Apart," a profile of…

  5. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Appalachian Mountains     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . The true-color image at left is a ... location:  United States region:  Eastern United States Order:  3 ...

  6. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Aerosols over the Appalachian Mountains     View ... Imaging SpectroRadiometer (MISR) acquired these views of the Appalachian Mountains on March 6, 2000. The image at left is a downward-looking ... location:  United States region:  Eastern United States Order:  2 ...

  7. Petrographic maturity parameters of a Devonian shale maturation series, Appalachian Basin, USA. ICCP Thermal Indices Working Group interlaboratory exercise

    USGS Publications Warehouse

    Araujo, Carla Viviane; Borrego, Angeles G.; Cardott, Brian; das Chagas, Renata Brenand A.; Flores, Deolinda; Goncalves, Paula; Hackley, Paul C.; Hower, James C.; Kern, Marcio Luciano; Kus, Jolanta; Mastalerz, Maria; Filho, João Graciano Mendonça; de Oliveira Mendonça, Joalice; Rego Menezes, Taissa; Newman, Jane; Suarez-Ruiz, Isabel; Sobrinho da Silva, Frederico; Viegas de Souza, Igor

    2014-01-01

    This paper presents results of an interlaboratory exercise on organic matter optical maturity parameters using a natural maturation series comprised by three Devonian shale samples (Huron Member, Ohio Shale) from the Appalachian Basin, USA. This work was conducted by the Thermal Indices Working Group of the International Committee for Coal and Organic Petrology (ICCP) Commission II (Geological Applications of Organic Petrology). This study aimed to compare: 1. maturation predicted by different types of petrographic parameters (vitrinite reflectance and spectral fluorescence of telalginite), 2. reproducibility of the results for these maturation parameters obtained by different laboratories, and 3. improvements in the spectral fluorescence measurement obtained using modern detection systems in comparison with the results from historical round robin exercises.Mean random vitrinite reflectance measurements presented the highest level of reproducibility (group standard deviation 0.05) for low maturity and reproducibility diminished with increasing maturation (group standard deviation 0.12).Corrected fluorescence spectra, provided by 14 participants, showed a fair to good correspondence. Standard deviation of the mean values for spectral parameters was lowest for the low maturity sample but was also fairly low for higher maturity samples.A significant improvement in the reproducibility of corrected spectral fluorescence curves was obtained in the current exercise compared to a previous investigation of Toarcian organic matter spectra in a maturation series from the Paris Basin. This improvement is demonstrated by lower values of standard deviation and is interpreted to reflect better performance of newer photo-optical measuring systems.Fluorescence parameters measured here are in good agreement with vitrinite reflectance values for the least mature shale but indicate higher maturity than shown by vitrinite reflectance for the two more mature shales. This red shift in

  8. Palynology, petrography and geochemistry of the Sewickley coal bed (Monongahela Group, Late Pennsylvanian), Northern Appalachian Basin, USA

    USGS Publications Warehouse

    Eble, C.F.; Pierce, B.S.; Grady, W.C.

    2003-01-01

    Forty-two bench samples of the Sewickley coal bed were collected from seven localities in the northern Appalachian Basin and analyzed palynologically, petrographically, and geochemically. The Sewickley coal bed occurs in the middle of the Pittsburgh Formation (Monongahela Group) and is of Late Pennsylvanian age. Palynologically, it is dominated by spores of tree ferns. Tree fern spore taxa in the Sewickley include Punctatisporites minutus, Punctatosporites minutus, Laevigatosporites minimus, Spinosporites exiguus, Apiculatasporites saetiger, and Thymospora spp. In fact, Punctatisporites minutus was so abundant that it had to be removed from the standard counts and recorded separately (average 73.2%). Even when Punctatisporites minutus is removed from the counts, tree fern spores still dominate a majority of the assemblages, averaging 64.4%. Among the tree fern spores identified in the Sewickley coal, Thymospora exhibits temporal and spatial abundance variation. Thymospora usually increases in abundance from the base to the top of the bed. Thymospora is also more abundant in columns that are thick (>100 cm) and low in ash yield (< 12.0%, dry basis). Calamite spores (e.g. Calamospora spp., Laevigatosporites minor, and L. vulgaris) are the next most abundant plant group represented in the Sewickley coal, averaging 20%. Contributions from all other plant groups are minor in comparison. Petrographically, the Sewickley coal contains high percentages of vitrinite (average 82.3%, mineral matter-free (mmf)), with structured forms being more common than unstructured forms. In contrast, liptinite and inertinite macerals both occur in low percentages (average 7.7% and 10.0%, respectively). Geochemically, the Sewickley coal has a moderate ash yield (average 12.4%) and high total sulfur content (average 3.4%). Four localities contained a high ash or carbonaceous shale bench. These benches, which may be coeval, are strongly dominated by tree fern spores. Unlike the lower ash

  9. An in situ occurrence of coal balls in the Amburgy coal bed, Pikeville Formation (Duckmantian), central Appalachian Basin, USA

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Chesnut, D.R.; Phillips, T.L.; Hower, J.C.

    1999-01-01

    Carbonate concretions containing permineralized peat, commonly called coal balls, were encountered in the Amburgy coal, a generally low-ash (9.4%), but commonly high-sulfur (3.6%), Middle Pennsylvanian coal of the Eastern Kentucky Coal Field. These are the first coal balls from the Amburgy coal, and one of only a few reported occurrences from the central Appalachian Basin. The coal balls occur in the upper part of the coal, between two paleochannel cut-outs at the top of the Pikeville Formation, and immediately beneath a scour with a marine fossil lag at the base of the Kendrick Shale Member, Hyden Formation. The coal is thickest (1.3 m) in a narrow (<300 m), elongate depression between the bounding paleochannels, and thins toward the occurrence of coal balls. Total biovolume as measured from acetate peels of coal balls indicates cordaites or lycopsid (36.1% each) dominance. Vertical sampling through one coal-ball aggregate shows zoning from a lower cordaites-dominant (88.7%) assemblage, to a middle, degraded, sphenopsid-rich assemblage, to an upper lycopsid-dominant (88.6%) assemblage. Beneath the coal balls, palynologic and petrographic analyses indicate the basal and middle portions of the bed are dominated by arborescent lycopsid spores and cordaites pollen, and by vitrinite macerals. The top part of the bed, above the coal balls, contains increased intertinite macerals, increased percentages of small fern spores, and variable ash yield (5-21%). Thickening of the Amburgy coal along a structural low, in combination with basal high-ash yields, vitrinite-dominance, and heterogenous palynoflora, indicate paleotopographic control on initial peat accumulation. Abundant lycopsid spores in the basal and middle part of the coal reflect rheotrophic conditions consistent with accumulation in a paleotopographic depression. Apparent zonation preserved in one of the coal-ball masses may document plant successions in response to flooding. Similar percentages of cordaites and

  10. A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones: Searching for the record of Phanerozoic orogenic events

    NASA Astrophysics Data System (ADS)

    Hietpas, Jack; Samson, Scott; Moecher, David

    2011-10-01

    The provenance potential of detrital monazite was investigated by in situ measurement of 232Th- 208Pb dates of grains isolated from six Middle Carboniferous-Permian sandstones from the Appalachian foreland basin. Provenance assessment of these units was previously investigated by measuring U-Pb crystallization ages of detrital zircon (Thomas et al., 2004; Becker et al., 2005, 2006). Approximately 90% of the detrital zircon ages record Mesoproterozoic or older ages, with only 10% recording the three major pulses of tectonism (Taconian, Acadian and Alleghanian) that are the hallmark of the Appalachian Orogen. 232Th- 208Pb ages of detrital monazite, however, strongly record the complex phases of Paleozoic orogenesis. Nearly 65% of the ages record Paleozoic events, while 35% record Neoproterozoic or older ages. In several of the analyzed sandstones, detrital monazite ages record Paleozoic orogenic events that are completely missed by detrital zircon ages, demonstrating that monazite ages more accurately reflect the character of the sediment source rocks. The inferred maximum age of sediment deposition, as determined by the youngest monazite grains, is ~ 550 Ma younger for two of the analyzed sandstones compared to depositional constraints based on the youngest detrital zircon. The different physical properties and petrogenesis of zircon and monazite are interpreted to be factors for the dramatic differences in sediment provenance information provided by each mineral. The results from this study have important implications for determining sediment provenance, constraining maximum age of sediment deposition, and developing robust regional tectonic models.

  11. Coalbed methane potential in the Appalachian states of Pennsylvania, West Virginia, Maryland, Ohio, Virginia, Kentucky, and Tennessee; an overview

    USGS Publications Warehouse

    Lyons, Paul C.

    1996-01-01

    Ricei s (1995) report. This compares with 20 Tcf in place and 2.30 Tcf as technically recoverable CBM for the Black Warrior Basin. These estimates should be considered preliminary because of unknown CBM potential in Ohio, Maryland, Tennessee, and eastern Kentucky. The largest potential for CBM development in the central Appalachian basin is in the Pocahontas coal beds, which have total gas values as much as 700 cf/ton, and in the New River coal beds. In the northern Appalachian basin, the greatest CBM potential is in the Middle Pennsylvanian Allegheny coal beds, which have total gas values as much as 252 cf/ton. Rice (1995) estimated a mean estimated ultimate recovery per well of 521 MMcfg for the central Appalachian basin and means of 121 and 216 MMcfg for the anticlinal and synclinal areas, respectively, of the northern Applachian basin. There is potential for CBM development in the Valley coal fields and Richmond basin of Virginia, the bituminous region of southeastern Kentucky, eastern Ohio, northern Tennessee, and the Georges Creek coal field of western Maryland and adjacent parts of Pennsylvania. Moreover, the Anthracite region of eastern Pennsylvania, which has the second highest known total gas content for a single coal bed (687 cf/ton) in the central and northern Appalachian basin, should be considered to have a fair to good potential for CBM development where structure, bed continuity, and permeability are favorable. CBM is mainly an undeveloped unconventional fossil-fuel resource in the central and northern Appalachian basin states, except in Virginia, and will probably contribute an increasing part of total Appalachian gas production into the next century as development in Pennsylvania, West Virginia, Ohio, and other Appalachian states continue. The central and northern Appalachian basins are frontier or emerging regions for CBM exploration and development, which will probably extend well into the next century. On the basis of CBM production

  12. Examples from the atlas of major Appalachian Gas Plays

    SciTech Connect

    Patchen, D.G.; Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Nuttall, B.C.; Smosna, R.A.

    1993-12-31

    The objectives of this contract are to produce a panted atlas of major Appalachian basin gas plays and to compile a machine-readable database of reservoir data. The Appalachian Oil and Natural Gas Research Consortium (AONGRC or the Consortium), a partnership of the state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and the departments of Geology and Petroleum and Natural Gas Engineering at West Virginia University (WVU), agrees with the need to classify gas reservoirs by geologic plays. During meetings with industry representatives, the small independents in the basin emphasized that one of their prime needs was to place each producing reservoir within a stratigraphic framework subdivided by environment of deposition to enable them to develop exploration and development strategies. The text for eight of the 31 play descriptions has been completed, drafting of illustrations for these plays is underway (or complete for some plays), and the review process is ongoing.

  13. Appalachian Mental Health.

    ERIC Educational Resources Information Center

    Keefe, Susan Emley, Ed.

    In this book, 17 psychologists, anthropologists, social workers and others explore important theoretical and applied issues concerning the mental health of Appalachian people. Rejecting the view of Appalachia as an area dominated by a culture of poverty, these papers portray a strong regional culture based on family, community, and religion. This…

  14. Part I: Neoacadian to Alleghanian foreland basin development and provenance in the central appalachian orogen, pine mountain thrust sheet Part II: Structural configuration of a modified Mesozoic to Cenozoic forearc basin system, south-central Alaska

    NASA Astrophysics Data System (ADS)

    Robertson, Peter Benjamin

    Foreland and forearc basins are large sediment repositories that form in response to tectonic loading and lithospheric flexure during orogenesis along convergent plate boundaries. In addition to their numerous valuable natural resources, these systems preserve important geologic information regarding the timing and intensity of deformation, uplift and erosion history, and subsidence history along collisional margins, and, in ancient systems, may provide more macroscopic information regarding climate, plate motion, and eustatic sea level fluctuations. This thesis presents two studies focused in the Paleozoic Appalachian foreland basin system along the eastern United States and in the Mesozoic to Cenozoic Matanuska forearc basin system in south-central Alaska. Strata of the Appalachian foreland basin system preserve the dynamic history of orogenesis and sediment dispersal along the east Laurentian margin, recording multiple episodes of deformation and basin development during Paleozoic time. A well-exposed, >600 m thick measured stratigraphic section of the Pine Mountain thrust sheet at Pound Gap, Kentucky affords one of the most complete exposures of Upper Devonian through Middle Pennsylvanian strata in the basin. These strata provide a window into which the foreland basin's development during two major collisional events known as the Acadian-Neoacadian and the Alleghanian orogenies can be observed. Lithofacies analysis of four major sedimentary successions observed in hanging wall strata record the upward transition from (1) a submarine deltaic fan complex developed on a distal to proximal prodelta in Late Devonian to Middle Mississippian time, to (2) a Middle to Late Mississippian carbonate bank system developed on a slowly subsiding, distal foreland ramp, which was drowned by (3) Late Mississippian renewed clastic influx to a tidally influenced, coastal deltaic complex to fluvial delta plain system unconformably overlain by (4) a fluvial braided river complex

  15. Log ASCII Standard (LAS) Files for Geophysical (Gamma Ray) Wireline Well Logs and Their Application to Geologic Cross Section C-C' Through the Central Appalachian Basin

    USGS Publications Warehouse

    Trippi, Michael H.; Crangle, Robert D.

    2009-01-01

    U.S. Geological Survey (USGS) regional geologic cross section C-C' (Ryder and others, 2008) displays key stratigraphic intervals in the central Appalachian basin. For this cross section, strata were correlated by using descriptions of well cuttings and gamma ray well log traces. This report summarizes the procedures used to convert gamma ray curves on paper well logs to the digital Log ASCII (American Standard Code for Information Interchange) Standard (LAS) format using the third-party software application Neuralog. The procedures could be used with other geophysical wireline logs also. The creation of digital LAS files from paper well logs by using Neuralog is very helpful, especially when dealing with older logs with limited or nonexistent digital data. The LAS files from the gamma ray logs of 11 wells used to construct cross section C-C' are included in this report. They may be downloaded from the index page as a single ZIP file.

  16. Regional diagenetic variations in Middle Pennsylvanian foreland basin sandstones of the southern Appalachians: Comparison to passive margin Cenozoic sandstones of the Gulf of Mexico

    SciTech Connect

    Milliken, K.L. . Dept. of Geological Science)

    1992-01-01

    Water/rock interactions recorded by authigenic phases in lithic-rich sandstones of the southern Appalachian basin, in the region of the Pine Mountain Overthrust (PMO), began with early post-depositional burial, extended through deeper burial and temperatures > 100 C during the Alleghenian orogeny, and continued through uplift and exposure at the modern weathering surface. Early-formed carbonate in the form of highly localized calcite concretions preserves IGVs greater than 30% and has widely ranging trace element concentrations. Later-formed calcite is characterized by relative low trace element concentrations in sandstones of low IGV. Precipitation of kaolinite cement and grain replacements partially overlapped formation of early carbonate and quartz cement. Dissolution and albitization of detrital feldspars are the primary types of grain alteration observed. Complete loss of the detrital feldspar assemblage is observed only around the eastern end of the PMO where a portion of the feldspar loss is recorded as quartz-replaced grains. Compaction due to ductile behavior of phyllosilicate-rich rock fragments and pressure solution of detrital quartz has reduced IGV to an average of around 11% below the PMO and 6% above the fault. In general, these foreland basin sandstones manifest authigenic phases and sequences of diagenetic events similar to those observed in the passive margin Gulf of Mexico sedimentary basin. The most striking diagenetic differences between the two basins are seen in terms of the comparative amounts of compaction (greater in the foreland basin) and grain alteration (less in the foreland basin) which most likely relate to primary differences in the texture and mineralogy of the sediments.

  17. Exploration in Ordovician of central Michigan Basin

    SciTech Connect

    Fisher, J.H.; Barratt, M.W.

    1985-12-01

    Deep wells in the central Michigan basin have provided sufficient data to define two new mappable formations - the Foster Formation and the Bruggers Formation. Recent conodont studies have corrected the age assignments of the strata containing these formations. Previously, the lower section (Foster) was classified as mostly Cambrian, and the upper unit (Bruggers) was identified as Early Ordovician. Conodont identifications indicate an Early and Middle Ordovician age for the Foster Formation and a Middle Ordovician age for the Bruggers Formation. The Michigan basin existed in embryonic form in the Late Cambrian, but the full outline of the present-day basin did not develop until Early Ordovician. Gas and condensate are produced from the Bruggers Formation as deep as 11,252 ft (3429 m). Geothermal investigations suggest that gas production is possible to the base of the Paleozoic section in the central basin (17,000 ft or 5181 m). Paleotemperatures were higher during the Paleozoic owing to 3000-4000 ft (914-1291 m) of additional sedimentary cover. Five wells are producing from the Bruggers Formation. All are deeper tests in anticlines producing from Devonian reservoirs discovered earlier. The structures are the result of vertical movements of basement fault blocks activated by regional stresses. 12 figures, 2 tables.

  18. Properties, origin and nomenclature of rodlets of the inertinite maceral group in coals of the central Appalachian basin, U.S.A.

    USGS Publications Warehouse

    Lyons, P.C.; Finkelman, R.B.; Thompson, C.L.; Brown, F.W.; Hatcher, P.G.

    1982-01-01

    Resin rodlets, sclerenchyma strands and woody splinters, which are collectively called rodlets, were studied by chemical, optical petrographic, and scanning-electron microscopic (SEM) techniques. A study was made of such rodlets from the bituminous coal beds of the central Appalachian basin (Pennsylvanian; Upper Carboniferous) of the United States. Comparisons were made with rodlets from coal beds of the Illinois basin, the Southern Anthracite Field of Pennsylvania, the St. Rose coal field of Nova Scotia, and European and other coal fields. In order to determine their physical and chemical properties, a detailed study was made of the rodlets from the Pomeroy coal bed (high volatile A bituminous coal; Monongahela Formation; Upper Pennsylvanian) of Kanawha County, West Virginia. The origin of the rodlets was determined by a comparative analysis of a medullosan (seed fern) stem from the Herrin (No. 6) coal bed (high volatile C bituminous coal; Carbondale Formation) from Washington County, Illinois. Rodlets are commonly concentrated in fusain or carbominerite layers or lenses in bituminous coal beds of the central Appalachian basin. Most of the rodlets examined in our study were probably derived from medullosan seed ferns. The three types of rodlets are distinguished on the basis of cellularity, morphology and fracture. The resin rodlets studied by us are noncellular and appear to be similar in properties and origin to those found in coal beds of the Middle and Upper Pennsylvanian of the Illinois basin. The resin rodlets extracted from the Pomeroy coal bed exhibit high relief and high reflectance when polished and viewed in reflected light; they are opaque in transmitted light. In cross section, the resin rodlets are oval to round and have diameters ranging from 60 to 450 ??m. Many are solid, but some have vesicles, canals or cavities, which are commonly filled with clay, probably kaolinite. Typically, they have distinct fracture patterns ("kerfs") in longitudinal and

  19. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    SciTech Connect

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  20. Petroleum exploration in Absaroka basin of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.

    1986-08-01

    A new, virtually unexplored petroleum province with large potential resources can be defined in northwestern Wyoming. Structurally, the Absaroka basin is bounded on the north by the Beartooth uplift, to the west by the Gallatin and Washakie uplifts, to the south by the Washakie and Owl Creek uplifts, and to the east by the Cody arch. The Cody arch connects the southern Beartooth uplift with the northwesternmost Owl Creek uplift and separates the Bighorn basin to the east from the Absaroka basin to the west. The eastern flank of the cody arch is bounded by a major west-dipping thrust fault. The western flank is locally a subhorizontal shelf but overall gently dips to the west-southwest into deeper parts of the Absaroka basin. In contrast to most petroleum basins, the Absaroka basin is topographically a rugged mountain range, created by erosion of a thick sequence of Eocene volcanic rocks that fill the center of the basin and lap onto the adjacent uplifts. Mesozoic and Paleozoic rocks that have produced several billion barrels of oil from the adjacent Bighorn and Wind River basins are probably present within the Absaroka basin and should have similar production capabilities. The Absaroka basin may have greater potential than adjacent basins because the volcanics provide additional traps and reservoirs. Domes in Mesozoic and Paleozoic rocks beneath the volcanics and stratigraphic traps at the angular unconformity between the volcanics and underlying reservoirs are primary exploration targets. Unique geologic, geophysical, permitting, access, and drilling problems are encountered in all aspects of exploration.

  1. Evolution of Cambrian-Ordovician carbonate shelf, United States Appalachians

    SciTech Connect

    Read, J.F.

    1985-02-01

    Cross sections and isopach maps (palinspastic) of the Cambrian-Ordovician continental shelf, US Appalachians, show that thickness and facies trends are controlled by the Adirondack, New Jersey, and Virginia highs and depocenters in Tennessee, Pennsylvania, and by the Rome trough. Carbonate sedimentation was initiated with drowning of Early Cambrian clastics, deposition of carbonate ramp and rimmed shelf facies followed by drowning, then regional regression and deposition of Early to Middle Cambrian red beds and platform margin rimmed shelf facies. During subsequent regional transgression, the Conasauga intrashelf shale basin formed, bounded toward the shelf edge and along depositional strike by Middle to Upper Cambrian oolitic ramp facies and cyclic peritidal carbonates. Intrashelf basin filling and regional regression caused progradation of Late Cambrian cyclic carbonates and clastics across the shelf. By this time, the margin had a relief of 2.5 km. During the Early Ordovician, incipient drowning of the shelf formed subtidal carbonates and bioherms that passed up into cyclic carbonate as sea level oscillations decreased in magnitude. Numerous unconformities interrupt this sequence in the northern Appalachians. The earlier high relief rimmed shelf was converted into a ramp, owing to uplift in the basin, heralding approaching collision. Subsidence rates on the margin were low (4 cm/1000 yr) and typical of a mature passive margin. Shelf sedimentation in the southern Appalachians ceased with arc-continent collision and development of the Knox unconformity, which dies out into the Pennsylvania depocenter. Major exploration targets are in the Late Cambrian-Early Ordovician Knox Group.

  2. Petroleum in the Caribbean Basin: Further exploration justified?

    SciTech Connect

    Robinson, E.

    1996-08-01

    After more than half a century of exploration for petroleum in that part of the Caribbean Basin covered by this review, the prospects for substantial discoveries remain low. Only Barbados has had modest but sustained production of oil and gas. In Hispaniola minor production from small prospects lasted briefly. Exploration in the northeast Caribbean has not resulted in discoveries. Similar exploration in Puerto Rico and, on a more extensive scale, in Jamaica, has also failed to show positive results. On the Nicaragua Rise (Mosquitia, Tela Basins) drilling has produced shows but no production, a situation also evident in Belize. Nevertheless, examination of these results, in the context of the regional geology of the Caribbean Basin, suggests there are areas where further exploration is justified.

  3. Argentina`s Claromeco basin needs further exploration

    SciTech Connect

    Pucci, J.C. |

    1995-09-25

    The presence of a sedimentary basin between the Tandilia and Ventana hills south of Buenos Aires was recognized by several workers. The Argentine Secretary of Energy put four blocks in the Claromeco basin out for bids and awarded two to the Argentinian Bridas Co. Bridas committed to the acquisition of 200 km of seismic on each block. This paper reviews the available data on geology, stratigraphy, traps, reservoir seals, and source rocks. Although exploration in the basin would be high risk, the author makes recommendations for a minimum reconnaissance program.

  4. Eustatic control on early dolomitization of cyclic peritidal carbonates: Evidence from the Early Ordovician Upper Knox Group, Appalachians and Middle to Late Cambrian Bonanza King Formation, southern Great basin

    SciTech Connect

    Montanez, I.P. )

    1991-03-01

    The origin of massive dolomite in ancient cyclic carbonate successions remains a poorly resolved issue reflecting the lack of modern analogs of extensive dolomitization. This paper presents evidence for extensive synsedimentary dolomitization of peritidal cyclic carbonates of the Early Ordovician upper Knox Group, Appalachians, and of the Middle to Late Cambrian Bonanza King Formation, southern Great basin. Early dolomitization of these Cambro-Ordovician carbonates was synchronous with regressive conditions governed by superimposed sea-level oscillations (fifth-, fourth-, and third-order).

  5. Japanese submersible explores the North Fiji Basin

    NASA Astrophysics Data System (ADS)

    Shipboard Scientific Party; Auzende, J.-M.; Urabe, T.; Tanahashi, M.; Ruellan, E.

    1992-03-01

    Since 1987, Japanese and French geologists, geophysicists, and biologists have been studying the North Fiji Basin Ridge within the framework of a joint project named STARMER (Science and Technology Agency of Japan—IFREMER of France). This ridge was first geologically, geophysically, and geochemically surveyed during the 1985 SEAPSO 3 cruise of the R/V Jean Charcot [Auzende et al., 1988]. At that time, water sampling and morphotectonic analysis indicated that the North Fiji Basin Ridge was technically and hydrothermally active. Within the STARMER project, four surface ship cruises have been conducted {Kaiyo 87-88-89 and Yokosuka 90).One significant result of these surveys is the complete mapping of the entire ridge between 14°S and 22°S (Figure 1), an area approximately 900 km long and more than 50 km wide (Sea Beam and Furuno multibeam swath-mapping systems were used). During the Kaiyo 87 cruise, the presence of active hydrothermalism (sulfide deposits, chimneys expelling shimmering water, and associated living animal colonies) was discovered through water sampling and video deep towing.

  6. Visayan Basin - the birthplace of Philippine petroleum exploration revisited

    SciTech Connect

    Rillera, F.G. ); Durkee, E.F. )

    1994-07-01

    Petroleum exploration in the Philippines has its roots in the Visayan Basin in the central Philippines. This is a Tertiary basin with up to 30,000 ft of sedimentary fill. With numerous surface oil and gas manifestations known as early as 1888, the area was the site of the first attempts to establish commercial petroleum production in the country. Over the past 100 years, more than 200 wells have been drilled in the basin. Several of these have yielded significant oil and gas shows. Production, albeit noncommercial in scale, has been demonstrated to be present in some places. A review of past exploration data reveals that many of the earlier efforts failed due to poorly located tests from both structural and stratigraphic standpoints. Poor drilling and completion technology and lack of funding compounded the problems of early explorationists. Because of this, the basin remains relatively underexplored. A recent assessment by COPLEX and E.F. Durkee and Associates demonstrates the presence of many untested prospects in the basin. These prospects may contain recoverable oil and gas potential on the order of 5 to 10 MMBO onshore and 25 to 100 MMBO offshore. With new exploration ideas, innovative development concepts, and the benefit of modern technology, commercial oil and gas production from the basin may yet be realized.

  7. Burial and thermal history of the central Appalachian basin, based on three 2-D models of Ohio, Pennsylvania, and West Virginia

    USGS Publications Warehouse

    Rowan, Elisabeth L.

    2006-01-01

    Introduction: Three regional-scale, cross sectional (2-D) burial and thermal history models are presented for the central Appalachian basin based on the detailed geologic cross sections of Ryder and others (2004), Crangle and others (2005), and Ryder, R.T., written communication. The models integrate the available thermal and geologic information to constrain the burial, uplift, and erosion history of the region. The models are restricted to the relatively undeformed part of the basin and extend from the Rome trough in West Virginia and Pennsylvania northwestward to the Findlay arch in Ohio. This study expands the scope of previous work by Rowan and others (2004) which presented a preliminary burial/thermal history model for a cross section (E-E') through West Virginia and Ohio. In the current study, the burial/thermal history model for E-E' is revised, and integrated with results of two additional cross sectional models (D-D' and C-C'). The burial/thermal history models provide calculated thermal maturity (Ro%) values for the entire stratigraphic sequence, including hydrocarbon source rocks, along each of the three cross sections. In contrast, the Ro and conodont CAI data available in the literature are sparse and limited to specific stratigraphic intervals. The burial/thermal history models also provide the regional temperature and pressure framework that is needed to model hydrocarbon migration.

  8. Influence of Appalachian Fatalism on Adolescent Identity Processes

    ERIC Educational Resources Information Center

    Phillips, Tommy M.

    2007-01-01

    The influences of the fatalism frequently associated with Appalachian culture on adolescent identity processes were explored. The sample consisted of 91 Appalachian adolescents and 87 non-Appalachian adolescents. Participants completed measures of fatalism (operationalized in terms of higher hopelessness and lower optimism/efficacy scores) and…

  9. Influence of Appalachian Fatalism on Adolescent Identity Processes

    ERIC Educational Resources Information Center

    Phillips, Tommy M.

    2007-01-01

    The influences of the fatalism frequently associated with Appalachian culture on adolescent identity processes were explored. The sample consisted of 91 Appalachian adolescents and 87 non-Appalachian adolescents. Participants completed measures of fatalism (operationalized in terms of higher hopelessness and lower optimism/efficacy scores) and…

  10. Alternative model upgrades exploration potential of Congo basin

    SciTech Connect

    Le Fournier, J. )

    1994-01-24

    The Congo basin, in Equatorial Africa, is an enormous topographic depression, roughly coinciding with the drainage system of the Congo (or Zaire) River and its tributaries. It covers nearly 2 million sq km, mostly in the Republic of Zaire, the Republic of Congo, and the Central African Republic. With only 2,900 km of seismic profiling and two exploration wells, it can be considered almost unexplored. No exploration work is in progress. Data derived from wells, seismic profiles, and some field reconnaissance surveys have been reviewed in initial articles by Lawrence et al. and Daly et al. Based on the available data, these authors have proposed a model of the basin, which is summarized. Based on the same data complemented by more-elaborate sedimentological interpretations, focusing on paleoenvironmental reconstruction, this author proposes a significantly different model concluding in the nonexistence of the Galamboge play, at least in the central part of the basin. He counters with the alternative of the probable existence of a variety of other plays located at different stratigraphic intervals and distributed in different sectors of the basin. While this alternative model certainly downgrades the Galamboge sandstones play, in return it considerably upgrades the global estimate of the petroleum potential of the Congo basin. Indeed, it shows that this basin displays most of the characteristics generally attached to major intracratonic petroleum provinces.

  11. Exploration limited since '70s in Libya's Sirte basin

    SciTech Connect

    Thomas, D. )

    1995-03-13

    Esso Standard made the first Libyan oil discovery in the western Ghadames basin in 1957. The Atshan-2 well tested oil from Devonian sandstones, and the play was a continuation of the Paleozoic trend found productive in the neighboring Edjeleh region of eastern Algeria. Exploration in the Sirte basin began in earnest in 1958. Within the next 10 years, 16 major oil fields had been discovered, each with recoverable reserves greater than 500 million bbl of oil. Libya currently produces under OPEC quota approximately 1.4 million b/d of oil, with discovered in-place reserves of 130 billion bbl of oil. The paper describes the structural framework, sedimentary basins of Libya, the Sirte basin, petroleum geology, play types, source rocks, generation and migration of hydrocarbons, oil reserves, potential, and acreage availability.

  12. SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA

    SciTech Connect

    Douglas G. Patchen

    2000-12-01

    Two independent high-resolution aeromagnetic surveys flown by Airmag Surveys, Inc. and interpreted by Pearson, de Ridder and Johnson, Inc were merged, processed and reinterpreted by Pearson, de Ridder and Johnson, Inc for this study. Derived products included depth filtered and reduced to pole maps of total magnetic intensity, vertical and horizontal gradients, interpreted STARMAG structure, lineament analysis and an overall interpretation. The total magnetic intensity patterns of the combined survey conformed reasonably well to those of coarser grid, non-proprietary regional aeromagnetic surveys reviewed. The merged study also helped illustrate regional basement patterns adjacent to and including the northwest edge of the Rome trough. The tectonic grain interpreted is dominantly southwest-northeast with a secondary northwest-southeast component that is consistent with this portion of the Appalachian basin. Magnetic susceptibility appears to be more important locally than basement structure in contributing to the magnetic intensity recorded, based on seismic to aeromagnetic data comparisons made to date. However, significant basement structures cannot be ruled out for this area, and in fact are strongly suspected to be present. The coincidence of the Henderson Dome with a total magnetic intensity low is an intriguing observation that suggests the possibility that structure in the overlying Lower Paleozoic section may be detached from the basement. Rose diagrams of lineament orientations for 2.5 minute unit areas are more practical to use than the full-quadrangle summaries because they focus on smaller areas and involve less averaging. Many of these illustrate a northeast bias. Where orientations abruptly become scattered, there is an indication of intersecting fractures and possible exploration interest. However, the surface lineament study results are less applicable in a practical sense relative to the seismic, subsurface or aeromagnetic control used

  13. Depletion of Appalachian coal reserves - how soon?

    USGS Publications Warehouse

    Milici, R.C.

    2000-01-01

    Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year. A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, 'potential' reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century. Published by Elsevier Science B.V.Much of the coal consumed in the US since the end of the last century has been produced

  14. Integrated exploration study of Norwegian-Danish basin, northwestern Europe

    SciTech Connect

    Joergensen, N.B.; Haselton, T.M.

    1987-05-01

    The Norwegian-Danish basin (NDB) extends from offshore Norway southeast through Denmark. This study, initiated by the Danish Energy Agency to evaluate hydrocarbon potential, consists of geophysical structural and stratigraphic mapping combined with geologic source rock and reservoir analysis. Approximately 25 wells and 15,000 km of seismic data were included. Formation of the NDB resulted from uplift of the Variscan foldbelt followed by subsidence of the foreland, i.e., the NDB and the North German basin. The Ringkoebing-Fyn High, a positive feature probably established in the late Precambrian and persisting to present, separates the basins, thus constituting the southern boundary of the NDB. Northeast the basin is bounded by the Fennoscandian shield and to the west by the North Sea graben system. Following deposition of Rotliegendes eolian and fluviatile sandstones, a major Late Permian marine transgression deposited up to 2000 m of evaporites and carbonates. Early Triassic regression resulted in thick red-bed deposits. Halokinesis commencing in the Upper Triassic dominated subsequent structural development. Continued subsidence led to deposition of Early Jurassic shelf mudstones overlain by deltaic sandstones. Rising seas during Late Cretaceous allowed widespread deposition of oceanic pelagic chalk. Early Paleocene wrench movements produced inversion. Basinal downwarping during the Tertiary was accompanied by progradation from the northeast. The complex tectonic history provides numerous different structural styles and a variety of depositional environments. To date only obvious structural features have been tested. This integrated basin study demonstrates that a number of other hydrocarbon plays remain to be explored.

  15. Exploration matrix evaluation of sedimentary basins of Colombia

    SciTech Connect

    Kanes, W.H.; Bueno, R.

    1989-03-01

    The sedimentary basins of Colombia are evaluated for the following five exploration criteria: (1) source rock potential, including total organic carbon, Rock-Eval analysis, and kerogen types; (2) seals, with specific units and lithologies designated in each basin; (3) reservoirs characteristics, with stress laid on porosity and permeability fairways developed in the various types of clastic depositional systems; (4) traps, whether structural or stratigraphic, and the most probable routes of hydrocarbon migration; and (5) timing, which also examines the interrelationship between maturation and expulsion of hydrocarbon and the formation of the structural or stratigraphic trap and seal. The exploration matrix is based on delineating the play concepts (up to five) for each sedimentary basin. These play concepts are based on a linear scale based on the probability of future or potential discoveries. All data for the analyses were provided by Ecopetrol and were subjectively weighed only where the number of wells in the basin was low in contrast to the basin area (<1:100 km/sup 2/) and there was no history of production.

  16. Annual and average estimates of water-budget components based on hydrograph separation and PRISM precipitation for gaged basins in the Appalachian Plateaus Region, 1900-2011

    USGS Publications Warehouse

    Nelms, David L.; Messinger, Terence; McCoy, Kurt J.

    2015-07-14

    As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.

  17. Log ASCII Standard (LAS) Files for Geophysical Wireline Well Logs and Their Application to Geologic Cross Sections Through the Central Appalachian Basin

    USGS Publications Warehouse

    Crangle, Robert D.

    2007-01-01

    Introduction The U.S. Geological Survey (USGS) uses geophysical wireline well logs for a variety of purposes, including stratigraphic correlation (Hettinger, 2001, Ryder, 2002), petroleum reservoir analyses (Nelson and Bird, 2005), aquifer studies (Balch, 1988), and synthetic seismic profiles (Kulander and Ryder, 2005). Commonly, well logs are easier to visualize, manipulate, and interpret when available in a digital format. In recent geologic cross sections E-E' and D-D', constructed through the central Appalachian basin (Ryder, Swezey, and others, in press; Ryder, Crangle, and others, in press), gamma ray well log traces and lithologic logs were used to correlate key stratigraphic intervals (Fig. 1). The stratigraphy and structure of the cross sections are illustrated through the use of graphical software applications (e.g., Adobe Illustrator). The gamma ray traces were digitized in Neuralog (proprietary software) from paper well logs and converted to a Log ASCII Standard (LAS) format. Once converted, the LAS files were transformed to images through an LAS-reader application (e.g., GeoGraphix Prizm) and then overlain in positions adjacent to well locations, used for stratigraphic control, on each cross section. This report summarizes the procedures used to convert paper logs to a digital LAS format using a third-party software application, Neuralog. Included in this report are LAS files for sixteen wells used in geologic cross section E-E' (Table 1) and thirteen wells used in geologic cross section D-D' (Table 2).

  18. Stratigraphic Framework of Cambrian and Ordovician Rocks in the Appalachian Basin from Sequatchie County, Tennessee, through Eastern Kentucky, to Mingo County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Repetski, John E.; Harris, Anita G.

    2008-01-01

    Cross section H-H' is the seventh in a series of restored cross sections constructed by the lead author to show the stratigraphic framework of Cambrian and Ordovician rocks in the Appalachian basin from Pennsylvania to Tennessee. The sections show complexly intertongued carbonate and siliciclastic lithofacies, marked thickness variations, key marker horizons, unconformities, stratigraphic nomenclature of the Cambrian and Ordovician sequence, and major faults that offset Proterozoic basement and overlying lower Paleozoic rocks. Several of the drill holes along the cross section have yielded a variety of whole and (or) fragmented conodont elements. The identifiable conodonts are used to differentiate strata of Late Cambrian, Early Ordovician, and Middle Ordovician age, and their conodont color alteration index (CAI) values are used to establish the thermal maturity of the sequence. Previous cross sections in this series are G-G', F-F', E-E', D-D', C-C', and B-B'. Many of these cross sections (B-B', C-C', D-D', and G-G') have been improved with the addition of gamma-ray log traces, converted to digital images, and made accessible on the Web.

  19. Thermal maturity patterns in Pennsylvanian coal-bearing rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania: Chapter F.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Hower, James C.; Grady, William C.; Levine, Jeffrey R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Thermal maturation patterns of Pennsylvanian strata in the Appalachian basin and part of the Black Warrior basin were determined by compiling previously published and unpublished percent-vitrinite-reflectance (%R0) measurements and preparing isograd maps on the basis of the measurements. The isograd values range from 0.6 %R0 in Ohio and the western side of the Eastern Kentucky coal field to 5.5 %R0 in the Southern field in the Pennsylvania Anthracite region, Schuylkill County, Pa. The vitrinite-reflectance values correspond to the American Society of Testing Materials (ASTM) coal-rank classes of high-volatile C bituminous to meta-anthracite, respectively. In general, the isograds show that thermal maturity patterns of Pennsylvanian coals within the Appalachian basin generally decrease from east to west. In the Black Warrior basin of Alabama, the isograds show a circular pattern with the highest values (greater than 1.6 %R0) centered in Jefferson County, Ala. Most of the observed patterns can be explained by variations in the depth of burial, variations in geothermal gradient, or a combination of both; however, there are at least four areas of higher ranking coal in the Appalachian basin that are difficult to explain by these two processes alone: (1) a set of west- to northwest-trending salients centered in Somerset, Cambria, and Fayette Counties, Pa.; (2) an elliptically shaped, northeast-trending area centered in southern West Virginia and western Virginia; (3) the Pennsylvania Anthracite region in eastern Pennsylvania; and (4) the eastern part of the Black Warrior coal field in Alabama. The areas of high-ranking coal in southwestern Pennsylvania, the Black Warrior coal field, and the Pennsylvania Anthracite region are interpreted here to represent areas of higher paleo-heat flow related to syntectonic movement of hot fluids towards the foreland associated with Alleghanian deformation. In addition to the higher heat flow from these fluids, the Pennsylvania

  20. Trace-element budgets in the Ohio/Sunbury shales of Kentucky: Constraints on ocean circulation and primary productivity in the Devonian-Mississippian Appalachian Basin

    USGS Publications Warehouse

    Perkins, R.B.; Piper, D.Z.; Mason, C.E.

    2008-01-01

    The hydrography of the Appalachian Basin in late Devonian-early Mississippian time is modeled based on the geochemistry of black shales and constrained by others' paleogeographic reconstructions. The model supports a robust exchange of basin bottom water with the open ocean, with residence times of less than forty years during deposition of the Cleveland Shale Member of the Ohio Shale. This is counter to previous interpretations of these carbon-rich units having accumulated under a stratified and stagnant water column, i.e., with a strongly restricted bottom bottom-water circulation. A robust circulation of bottom waters is further consistent with the palaeoclimatology, whereby eastern trade-winds drove upwelling and arid conditions limited terrestrial inputs of siliciclastic sediment, fresh waters, and riverine nutrients. The model suggests that primary productivity was high (~ 2??g C m- 2 d- 1), although no higher than in select locations in the ocean today. The flux of organic carbon settling through the water column and its deposition on the sea floor was similar to fluxes found in modern marine environments. Calculations based on the average accumulation rate of the marine fraction of Ni suggest the flux of organic carbon settling out of the water column was approximately 9% of primary productivity, versus an accumulation rate (burial) of organic carbon of 0.5% of primary productivity. Trace-element ratios of V:Mo and Cr:Mo in the marine sediment fraction indicate that bottom waters shifted from predominantly anoxic (sulfate reducing) during deposition of the Huron Shale Member of the Ohio Shale to predominantly suboxic (nitrate reducing) during deposition of the Cleveland Shale Member and the Sunbury Shale, but with anoxic conditions occurring intermittently throughout this period. ?? 2008 Elsevier B.V.

  1. Zircon and apatite fission-track evidence for an Early Permian thermal peak and relatively rapid Late Permian cooling in the Appalachian Basin

    SciTech Connect

    Roden, M.K. . Dept. of Earth and Environmental Science); Wintsch, R.P. . Dept. of Geological Sciences)

    1992-01-01

    New zircon fission-track ages compliment published apatite fission-track ages in the Appalachian Basin to narrowly constrain its thermal history. Geologic evidence can only constrain timing of the thermal peak to be younger than late Pennsylvanian sediments ([approximately] 300 Ma) and older than Mesozoic sediments in the Newark and Gettysburg Basins ([approximately] 210 Ma). Apatite fission-track ages as old as 246 Ma require the Alleghanian thermal peak to have been pre-Triassic. Preliminary data on reset zircon fission-track ages from middle Paleozoic sediments range from 255 to 290 Ma. Zircon fission-track apparent ages from samples younger and structurally higher than these are not reset. Thus, the oldest reset zircon fission-track age constraints the time of the Alleghanian thermal peak to be earliest Permian. Rates of post-Alleghanian cooling have not been well-constrained by geologic data and could be very slow. The difference between apatite and zircon fission-track ages for most of the samples range from 100--120 m.y. reflecting Permo-Triassic cooling of only 1 C/m.y. However, one sample with one of the oldest apatite ages, 245 Ma, yields one of the younger zircon ages of 255 Ma. This requires cooling rates of 10 C/m.y. and uplift rates of [approximately] 0.5 mm/yr. Collectively, these data support an early Permian thermal peak and a two-stage cooling history, consisting of > 100 C cooling (> 8 km denundation) in the Permian followed by relatively slow cooling and exhumation throughout the Mesozoic.

  2. Apatite fission track evidence for post-Early Cretaceous erosional unroofing of Middle Pennsylvanian sandstones from the southern Appalachian Basin in Kentucky and Virginia

    SciTech Connect

    Boettcher, S.S.; Milliken, K.L. . Dept. of Geological Sciences)

    1992-01-01

    Apatite fission track ages and mean etchable track lengths for 7 samples of Middle Pennsylvanian (Breathitt Formation) depositional age from the southern Appalachian Basin of KY and VA suggest that 3--4 km of erosional unroofing has occurred since the Early Cretaceous. The samples were collected over a 1,600 km[sup 2] area at the northern end of the Pine Mountain Overthrust southeast of Pikeville, KY. This new data set overlaps 8 published apatite fission track ages and 3 mean etchable lengths from the Cumberland Plateau and Valley and Ridge areas of WV. Because all of the apatite fission track ages are significantly younger than the depositional age, maximum burial temperatures in the area exceeded 125 C, such that fission tracks that formed in the detrital apatite prior to deposition have been totally annealed. Furthermore, mean etchable track lengths show considerable length reduction from initial values revealing that the samples resided in the zone of partial annealing on the order of 100 Ma following attainment of maximum temperatures. The burial history for these samples began with deposition and rapid burial of synorogenic sediments in front of the westward advancing Alleghenian deformation front. The fission track data are compatible with the hypothesis that maximum temperatures were attained during the Late Paleozoic as tectonically driven synorogenic fluids penetrated the foreland basin deposits. Slow erosional unroofing (< 15 m/Ma for a thermal gradient of 30 C/km) has occurred since the onset of Triassic-Jurassic rifting along the atlantic continental margin and continued into the Cenozoic.

  3. Implementation of a subcanopy solar radiation model on a forested headwater basin in the Southern Appalachians to estimate riparian canopy density and stream insolation for stream temperature models

    NASA Astrophysics Data System (ADS)

    Belica, L.; Petras, V.; Iiames, J. S., Jr.; Caldwell, P.; Mitasova, H.; Nelson, S. A. C.

    2016-12-01

    Water temperature is a key aspect of water quality and understanding how the thermal regimes of forested headwater streams may change in response to climatic and land cover changes is increasingly important to scientists and resource managers. In recent years, the forested mountain watersheds of the Southeastern U.S. have experienced changing climatic patterns as well as the loss of a keystone riparian tree species and anticipated hydrologic responses include lower summer stream flows and decreased stream shading. Solar radiation is the main source of thermal energy to streams and a key parameter in heat-budget models of stream temperature; a decrease in flow volume combined with a reduction in stream shading during summer have the potential to increase stream temperatures. The high spatial variability of forest canopies and the high spatio-temporal variability in sky conditions make estimating the solar radiation reaching small forested headwater streams difficult. The Subcanopy Solar Radiation Model (SSR) (Bode et al. 2014) is a GIS model that generates high resolution, spatially explicit estimates of solar radiation by incorporating topographic and vegetative shading with a light penetration index derived from leaf-on airborne LIDAR data. To evaluate the potential of the SSR model to provide estimates of stream insolation to parameterize heat-budget models, it was applied to the Coweeta Basin in the Southern Appalachians using airborne LIDAR (NCALM 2009, 1m resolution). The LIDAR derived canopy characteristics were compared to current hyperspectral images of the canopy for changes and the SSR estimates of solar radiation were compared with pyranometer measurements of solar radiation at several subcanopy sites during the summer of 2016. Preliminary results indicate the SSR model was effective in identifying variations in canopy density and light penetration, especially in areas associated with road and stream corridors and tree mortality. Current LIDAR data and

  4. An Integrated Geochemical and Paleontological Investigation of Environmental and Biotic Change Associated with Late Devonian Mass Extinctions in the Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Haddad, E.; Love, G. D.; Boyer, D.; Droser, M. L.

    2012-12-01

    The Upper Kellwasser (uK) black shale, a global unit at the Frasnian-Famennian boundary, closely associated with the Late Devonian extinction event, is commonly linked to oxygen limitation in the water column. In spite of the significance of this time interval, the nature of the ocean redox geochemistry is poorly understood. Using a multi-proxy approach, this study tests the appropriateness of three distinct oceanographic models for ocean redox chemistry at this time: 1) an oxic setting with sub-oxic bottom waters but with sulfide production confined to sedimentary porewaters; 2) an expanded oxygen minimum zone within a highly stratified marine redox column with only intermittent photic zone (shallow water) euxinia; and 3) a persistently euxinic water column extending up into the photic zone. Bottom water oxygen conditions are described at a high resolution for 4 uK black shale localities in western New York State, using inorganic and organic geochemical proxies and trace fossils to constrain relative oxygen levels and identify signals of anoxia and euxinia in the Devonian Appalachian Basin. Mo concentrations typically range from crustal (2-3 ppm) to moderately enriched values suggestive of suboxic conditions (typically less than 30 ppm), with some higher values between 30 and 40 ppm perhaps suggesting intermittent euxinia, indicating that the uK black shale preserves reduced oxygen bottom water conditions. The levels of enrichment are muted, though, such that these are inconsistent with persistent anoxia or euxinia for the interval, especially as compared to other Phanerozoic euxinic black shale intervals. Other trace metals suggest similarly suboxic to intermittently anoxic bottom water conditions. Lipid biomarker patterns are typical for Paleozoic marine rocks, indicating that the biomarker molecules in the extracted bitumens are syndepositional and not significantly affected by contamination. Independent thermal maturity screening data indicating peak oil

  5. Seismic exploration in the Dalhart Basin, western Texas panhandle

    SciTech Connect

    Walker, D.P.

    1993-09-01

    The Dalhart basin, the Texas panhandle's [open quotes]other[close quotes] basin, is accountable for over 17 million bbl of oil production since the 1954 discovery of Rehm field by Standard Oil of Texas in Hartley County, Texas. The primary objective in most of the seismic exploration has been the Pennsylvanian/Missourian granite washes, one of several sequences of wash deposition that occurred in the basin. These granite washes, sourced from the Bravo dome of the extreme western Texas panhandle and eastern New Mexico, have been distributed into the Dalhart basin in both deltaic and long-shore patterns across and along carbonate shelf margins of Pennsylvania Missourian-Virgilian age. In same cases, this carbonate [open quotes]bank[close quotes] has been productive and should be considered prospective in any exploration program. More recently, production from Permian Wolfcampian granite wash has been found to exist in the form of a stratigraphic trap adjacent to the Bravo Dome. Development continues in this encouraging play. In most cases, the application of seismic in the Dalhart basin appears to reflect the concrete data of subsurface geology. Primarily, the use of seismic to delineate structure has prompted the majority of penetrations throughout the basin and has resulted in the acquisition of an estimated 6000+ mi of two-dimensional seismic data to date. Whereas anomalies of same type may be uncovered in most seismic surveys, coupling of subsurface stratigraphic information to determine fairways of clean granite washes combined with detailed, high-quality seismic data is a necessity. With the increasing prominence of three-dimensional seismic data, these goals by be achieved both in terms of cost effectiveness and technical superiority. The density of three-dimensional data collection satisfies nearly all criteria to minimize error in mapping these subtle, critical structural and stratigraphic closures.

  6. Exploration and hydrocarbon potential of interior basins, Alaska

    SciTech Connect

    Grether, W.J.; Morgan, K.A.

    1988-01-01

    During the early 1980s, ARCO Alaska, Inc., conducted an extensive hydrocarbon exploration program in the Alaskan Interior. The study focused on several basinal areas: Middle Tanana, Minchumina, Holitna, Yukon Flats, and Kandik. Other basinal areas (Upper Tanana, Lowre Tanana, and Yukon-Koyukuk) have been reported in the literature to have lower hydrocarbon potential and were not as extensively studied. Several geological and geophysical techniques, including gravity, aeromagnetic, and CDP seismic surveys, were used to establish sediment thickness, basin volume, morphology, and structural style. Analytical data were collected for hydrocarbon source, reservoir potential, and thermal history. Specialized structural and biostratigraphic studies were conducted in some areas. The Middle Tanana and Kandik basins have the highest hydrocarbon potential. A 6-mi wide by 26-mi long half-graben within the Middle Tanana basin contains 20,000 ft of section. The 1984 ARCO Totek Hills 1 well penetrated 3,015 ft of Tertiary (Pliocene to Eocene) section unconformably overlying metamorphic basement. Because it was drilled on the basin flank, the well tested only the uppermost section within the half-graben. Sandstones averaged 17% porosity and 11 md permeability. Claystones containing type II kerogen showed good oil-generating potential (pyrolysis S1 + S2 values average 17 mg/g). The Kandik basin contains excellent source rocks in the Triassic Glen Shale (S2 averaging 16 mg/g). Hydrocarbon thermal maturation changes from immature to postmature in a stepwise fashion across thrust faults from southeast to northwest. Solid residue of migrated hydrocarbons occurs in formations of Devonian, Pennsylvanian, Permian, and Triasic age.

  7. Oil exploration in nonmarine rift basins of interior Sudan

    SciTech Connect

    Schull, T.J.

    1984-04-01

    In early 1975 Chevron Overseas Petroleum Inc. commenced a major petroleum exploration effort in previously unexplored interior Sudan. With the complete cooperation of the Sudanese Government, Chevron has acquired a vast amount of geologic and geophysical data during the past 9 years. These data include extensive aeromagnetic and gravity surveys, 25,000 mi (40,200 km) of seismic data, and the results of 66 wells. This information has defined several large rift basins which are now recognized as a major part of the Central African rift system. The sedimentary basins of interior Sudan are characterized by thick Cretaceous and Tertiary nonmarine clastic sequences. Over 35,000 ft (10,600 m) of sediment have been deposited in the deepest trough, and extensive basinal areas are underlain by more than 20,000 ft (6100 m) of sediment. The depositional sequence includes thick lacustrine shales and claystones, flood plain claystones, and lacustrine, fluvial, and alluvial sandstones and conglomerates. Those lacustrine claystones which were deposited in an anoxic environment provide oil-prone source rocks. Reservoir sandstones have been found in a wide variety of nonmarine sandstone facies. The extensional tectonism which formed these basins began in the Early Cretaceous. Movement along major fault trends continued intermittently into the Miocene. This deformation resulted in a complex structural history which led to the formation of several deep fault-bounded troughs, major interbasin high trends, and complex basin flanks. This tectonism has created a wide variety of structures, many of which have become effective hydrocarbon traps.

  8. Petroleum geology and exploration of Tarim Basin, China

    SciTech Connect

    Liang Di-Gang; Jia Cheng-Zao )

    1996-01-01

    Since 1989 CNPC has carried on large-scale oil and gas exploration and geological research in Tarim Basin of Xinjiang Province, China. Twelve thousand km 2D seismic, 4500 km[sup 2] 3D seismic, and 200 exploratory wells have been completed; ninety-five wells yield commercial oil or gas flows. At this time, eight oil/gas fields have been discovered; they include Lunnan, Yaha, and Tazhong No. 4, having proved 2.7x10[sup 8]t of oil and 109.2x10[sup 9]m[sup 3] of gas in place. Two million six hundred thousand tons of crude oil was yielded in 1995 and 5x10[sup 8]t crude oil will be produced in 1997. The facies of discovered oil-gas pools in Tarim Basin are complex: there are condensate gas pools, volatile oil pools, normal oil pools, and some heavy oil pools. Structural traps form 80% of oil-gas pools. Oil-gases are mainly reservoired in sandstone beds. The burial depths of oil-gas pools range mainly from 4000 to 5500m. Oil and condensate gas occupy 60% and 40% of proved reserves respectively. Oil-gas pools are mainly distributed in the Mesozoic-Cenozoic group, in which Tertiary occupies 50%, Triassic occupies 30% and Carboniferous occupies 20%. Tarim Basin is a large overlapped composite basin, composed of Paleozoic cratonic basins and Mesozoic-Cenozoic foreland basins. Paleozoic and Mesozoic-Cenozoic oil-gas pools have different distribution character. Paleozoic oil-gas accumulations are controlled by cratonic paleo-uplifts and slopes. Mesozoic-Cenozoic oil-gas accumulations are controlled by foredeep uplifts and imbricate thrust structures of foreland thrust belts.

  9. Petroleum geology and exploration of Tarim Basin, China

    SciTech Connect

    Liang Di-Gang; Jia Cheng-Zao

    1996-12-31

    Since 1989 CNPC has carried on large-scale oil and gas exploration and geological research in Tarim Basin of Xinjiang Province, China. Twelve thousand km 2D seismic, 4500 km{sup 2} 3D seismic, and 200 exploratory wells have been completed; ninety-five wells yield commercial oil or gas flows. At this time, eight oil/gas fields have been discovered; they include Lunnan, Yaha, and Tazhong No. 4, having proved 2.7x10{sup 8}t of oil and 109.2x10{sup 9}m{sup 3} of gas in place. Two million six hundred thousand tons of crude oil was yielded in 1995 and 5x10{sup 8}t crude oil will be produced in 1997. The facies of discovered oil-gas pools in Tarim Basin are complex: there are condensate gas pools, volatile oil pools, normal oil pools, and some heavy oil pools. Structural traps form 80% of oil-gas pools. Oil-gases are mainly reservoired in sandstone beds. The burial depths of oil-gas pools range mainly from 4000 to 5500m. Oil and condensate gas occupy 60% and 40% of proved reserves respectively. Oil-gas pools are mainly distributed in the Mesozoic-Cenozoic group, in which Tertiary occupies 50%, Triassic occupies 30% and Carboniferous occupies 20%. Tarim Basin is a large overlapped composite basin, composed of Paleozoic cratonic basins and Mesozoic-Cenozoic foreland basins. Paleozoic and Mesozoic-Cenozoic oil-gas pools have different distribution character. Paleozoic oil-gas accumulations are controlled by cratonic paleo-uplifts and slopes. Mesozoic-Cenozoic oil-gas accumulations are controlled by foredeep uplifts and imbricate thrust structures of foreland thrust belts.

  10. Geologic cross section C-C' through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.

    2012-01-01

    Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  11. William Maclure's Wernerian Appalachians

    USGS Publications Warehouse

    Lessing, P.

    1999-01-01

    William Maclure (1763-1840), a geologist of Scottish ancestry, was also a man of many other talents and interests including educator, philanthropist, world traveler, prolific writer, patron of science, businessman, bibliophile, and social reformer. He produced the first American printing of a geological map of the United States in 1809 and followed this with four other editions identified as 1811, 1817A, 1817B, and 1817C. All were well received and reproduced by others at least 15 times, as recently as 1989. Maclure has been called 'Father of American Geology,' a title he rightly deserves, primarily for these maps, but also for the first cross sections through the Appalachians, many other geological articles, and substantial donations of specimens, books, and funds to many learned institutions, including the Academy of Natural Sciences of Philadelphia. Maclure's delineation of Appalachian geology followed Werner's geognostic classification of strata using Primary, Transition, Secondary, and Alluvial, but with modifications and considerable doubt concerning their Neptunian origin. He added 'Rock Salt' on his 1809 map as a line on the western edge of the Appalachians and 'Old Red Sand Stone' on the 1811 map for the basins later identified as Triassic. In his later articles, Maclure noted several times that 'trap' or basalt was an igneous rock and not an aqueous precipitate. He further stated that the Secondary and Transition strata are aggregates from the disintegration of the older Primitive rocks. He came to the conclusion near the end of his life that organic remains indicate '...that nature began with the most simple, and gradually proceeded to the more complicated and perfect.'.

  12. Stratigraphic Framework and Depositional Sequences in the Lower Silurian Regional Oil and Gas Accumulation, Appalachian Basin: From Licking County, Ohio, to Fayette County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.

    2006-01-01

    The Lower Silurian regional oil and gas accumulation was named by Ryder and Zagorski (2003) for a 400-mile (mi)-long by 200-mi-wide hydrocarbon accumulation in the central Appalachian basin of the Eastern United States and Ontario, Canada. From the early 1880s to 2000, approximately 300 to 400 million barrels of oil and eight to nine trillion cubic feet of gas have been produced from the Lower Silurian regional oil and gas accumulation (Miller, 1975; McCormac and others, 1996; Harper and others, 1999). Dominant reservoirs in the regional accumulation are the Lower Silurian 'Clinton' and Medina sandstones in Ohio and westernmost West Virginia and coeval rocks in the Lower Silurian Medina Group (Grimsby Sandstone (Formation) and Whirlpool Sandstone) in northwestern Pennsylvania and western New York. A secondary reservoir is the Upper Ordovician(?) and Lower Silurian Tuscarora Sandstone in central Pennsylvania and central West Virginia, a more proximal eastern facies of the 'Clinton' sandstone and Medina Group (Yeakel, 1962; Cotter, 1982, 1983; Castle, 1998). The Lower Silurian regional oil and gas accumulation is subdivided by Ryder and Zagorski (2003) into the following three parts: (1) an easternmost part consisting of local gas-bearing sandstone units in the Tuscarora Sandstone that is included with the basin-center accumulation; (2) an eastern part consisting predominantly of gas-bearing 'Clinton' sandstone-Medina Group sandstones that have many characteristics of a basin-center accumulation (Davis, 1984; Zagorski, 1988, 1991; Law and Spencer, 1993); and (3) a western part consisting of oil- and gas-bearing 'Clinton' sandstone-Medina Group sandstones that is a conventional accumulation with hybrid features of a basin-center accumulation (Zagorski, 1999). With the notable exception of the offshore part of Lake Erie (de Witt, 1993), the supply of oil and (or) gas in the hybrid-conventional part of the regional accumulation continues to decline because of the many

  13. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B.

    1996-12-31

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very {open_quote}high risk{close_quotes} targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell`s recent major gas discovery from a turbidite play in this basin.

  14. New exploration targets in Malaysia: Deep sandstone reservoirs in Malay basin and turbidites in Sabah basin

    SciTech Connect

    Ngah, K.B. )

    1996-01-01

    Much of the production in Malaysia is from middle to upper Miocene sandstones and carbonates in three main basins: Malay, Sarawak (Its three subbasins-Central Luconia, Balingian and Baram), and Sabah. Fifteen fields produce an average of 630,000 bopd and 3.0 bcfgpd. More than 4.0 billion barrels of oil and 20 tcf of gas have been produced, and reserves are 4.2 billion barrels of oil and 90 tcf. Oil production will decline within the next 1 0 years unless new discoveries are made and/or improved oil recovery methods introduced, but gas production of 5 tcf, expected after the turn of the century, can be sustained for several decades. Successful exploratory wells continue to be drilled in the Malaysian Tertiary basins, and others are anticipated with application of new ideas and technology. In the Malay basin, Miocene sandstone reservoirs in Groups L and M have been considered as very [open quote]high risk[close quotes] targets, the quality of the reservoirs has generally been thought to be poor, especially toward the basinal center, where they occur at greater depth. The cause of porosity loss is primarily burial-related. Because of this factor and overpressuring, drilling of many exploration wells has been suspended at or near the top of Group L. In a recent prospect drilled near the basinal axis on the basis of advanced seismic technology, Groups L and M sandstones show fair porosity (8-15%) and contain gas. In the Sabah basin, turbidite play has received little attention, partly because of generally poor seismic resolution in a very complex structural setting. Only one field is known to produce oil from middle Miocene turbidities. However, using recently acquired 3-D seismic data over this field, new oil pools have been discovered, and they are currently being developed. These finds have created new interest, as has Shell's recent major gas discovery from a turbidite play in this basin.

  15. Detrital mica K/Ar ages for Devonian-Pennsylvanian strata of the north central Appalachian Basin: Dominance of the Acadian Orogen as provenance

    SciTech Connect

    Aronson, J.L. . Dept. of Geological Sciences); Lewis, T.L. . Dept. of Geological Sciences)

    1992-01-01

    Detrital micas were separated from: the Upper Devonian Walton Sandstone and Ohio Shale; Lower Mississippian Berea Sandstone; Upper Mississippian Mauch Chunk Formation; and the Lower-Middle Pennsylvanian Pottsville and Allegheny Sandstones. A total of 12 separates were conventionally dated, the only biotite being from the Allegheny Formation sandstone, from which a muscovite was also dated. The total range in dates for the study was encompassed by the Allegheny sample of 414 m.y. (muscovite) to 361 m.y. (biotite), each date having an uncertainty of about [+-] 9 m.y. Excluding this sample, a narrower range of Early to Middle Devonian dates from 406--371 m.y. is obtained. For the Walton Sandstone of the proximal Catskill Wedge and for the northeast OH samples of the distal Catskill Wedge, all deposited within Late Devonian-Early Mississippian time, a very narrow span of 20 m.y. is obtained entirely within Early Devonian time and only approximately 30 m.y. older than deposition. All of these provenance ages have been previously found as primary ages of crystallization or cooling therefrom of regional metamorphism and plutonism in the Acadian Orogen of New England. The mean provenance ages are so close to the age of deposition of the distal Devonian/mississippian Catskill strata as to preclude almost any Precambrian contribution from either the Canadian Shield or the uplifted cores of the Orogen. These results support the paleocurrent and paleoenvironmental analysis of the northeast OH section by Lewis (1988) and argue against the classic Bedford Delta interpretation sourced from the north. Furthermore, the Acadian Orogen persisted as the major provenance for the clastic pulses that prograded into the central Appalachian Basin after the post-Catskill transgression, at least up until Middle Pennsylvanian time.

  16. Identifying Seismic Risk in the Appalachian Basin Geothermal Play Fairway Analysis Project Using Potential Fields, Seismicity, and the World Stress Map

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.

    2015-12-01

    A collaborative effort between Cornell University, Southern Methodist University, and West Virginia University has been sponsored by the US Department Of Energy to perform a Geothermal Play Fairway Analysis of the low temperature direct use potential for portions of the Appalachian sedimentary basin in New York, Pennsylvania and West Virginia - abbreviated here as GPFA-AB. One risk factor - of several being analyzed for the GPFA-AB - is whether a candidate location is near an active fault, and thereby potentially susceptible to induced seismicity from geothermal operations. Existing fault maps do not share the GPFA-AB boundaries or scale. Hence, their use leads to problems of uneven coverage, varying interpretation of faults vs. lineaments, and different mapping scales. For more uniformity across the GPFA-AB region, we use an analysis of gravity and magnetic fields. Multiscale edge Poisson wavelet analyses of potential fields ("worms") have a physical interpretation as the locations of lateral boundaries in a source distribution that exactly generates the observed field. Not all worms are faults, and of faults, only a subset might be active. Also, worms are only sensitive to steeply dipping structures. To identify some active structures, we plot worms and intra-plate earthquakes from the ISC, NEIC, and EarthScope TA catalogs. Worms within a small distance of epicenters are tracked spatially. To within errors in location, this is a sufficient condition to identify structures that might be active faults - which we categorize with higher risk than other structures. Plotting worms within World Stress Map σ1 directions yields an alternative approach to identifying activatable structures. Here, we use worms to identify structures with strikes favorably oriented for failure by Byerlee's law. While this is a necessary criterion for fault activation it is not a sufficient one - because we lack detailed information about stress magnitudes throughout the GPFA-AB region

  17. Seismic Exploration for Pennsylvanian Algal Mounds, Paradox Basin

    SciTech Connect

    Moriarty, B.; Grundy, R.

    1985-05-01

    During the past 2 years, several new field discoveries were drilled in Pennsylvanian algal mounds of the Paradox basin. Most of these discoveries were based, at least partially, on state-of-the-art seismic data. New field production comes from either the Ismay or Desert Creek zones the Paradox Formation. The algal correlate laterally with either marine shelf or penesaline facies. Detection of the Ismay and Desert Creek buildups is difficult because of their limited thickness. Therefore, the acquisition of good signal-to-noise high-frequency data and stratigraphic processing for frequency enhancement are both critical for successful seismic exploration in the Paradox basin. Bug, Patterson, Ismay, Cache, and Rockwell Springs fields are characteristic of Desert Creek and Ismay stratigraphic trapping.

  18. REGIONAL MAGNETOTELLURIC SURVEYS IN HYDROCARBON EXPLORATION, PARANA BASIN, BRAZIL.

    USGS Publications Warehouse

    Stanley, William D.; Saad, Antonio; Ohofugi, Walter

    1985-01-01

    The mangetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with sounding spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas. Refs.

  19. Recent developments of seismic exploration in the Tannwald basin

    NASA Astrophysics Data System (ADS)

    Burschil, Thomas; Buness, Hermann; Gabriel, Gerald

    2016-04-01

    The ICDP proposal DOVE (Drilling Overdeepened Alpine Valleys) intends to examine the Quaternary glacial cycles in the Alpine region. The sediment succession of overdeepened valleys and basins will be analysed in a multidisciplinary way. Other objectives are related to groundwater supply and geohazards in Alpine valleys. In the context of DOVE, a DFG-funded project studies the benefit of modern multi-component reflection seismics. This project intends to characterize the structure and facies of the sedimentary fillings and to transfer methodological results to the DOVE drill sites. In 2014 and 2015 several reflection seismic surveys were carried out in the Tannwald basin, located about 50 km NE of Lake Constance. The basin constitutes a relict of one of the Rhine Glacier lobes in the Pleistocene. In total, we acquired five high-resolution profiles using P-waves, two profiles using horizontally polarized shear waves, and one profile using multi-component technique (SV- and SH-wave source, 3-component receivers) to explore the sedimentary filling of the basin. The P-wave profiles generally show strong heterogeneity and variations in the reflection pattern. Distinct reflections in depths between 100 m and 200 m are identified as basement, i.e. top Molasse, which is supported by a nearby research borehole. In particular, a ramp-like structure is prominent over a distance of 450 m and dips about 10°. Internal structures of the basin filling form discontinuous reflection segments, which are only visible in parts of the profile. The SH-wave profiles resolve both internal structures in detail and the basement. Since the location of the SH-wave profiles coincides with P-wave profiles, a detailed comparison of the structures gained from P-wave and SH-wave seismic exploration is possible. Moreover, Vp/Vs and Poisson ratio are calculated from P- and S-wave velocities received from refraction seismic tomography and the stack velocities, respectively. Further steps are

  20. Record of glacial-eustatic sea-level fluctuations in complex middle to late Pennsylvanian facies in the Northern Appalachian Basin and relation to similar events in the Midcontinent basin

    NASA Astrophysics Data System (ADS)

    Belt, Edward S.; Heckel, Philip H.; Lentz, Leonard J.; Bragonier, William A.; Lyons, Timothy W.

    2011-06-01

    Pennsylvanian cycles in the Northern Appalachian Basin (NAB) were historically considered to result from delta-lobe switching, and more recently from sea-level fluctuation with sandy deltas prograding during highstand. These interpretations are revised using new data from cores and outcrop exposures. Thick (> 5 m) channel deposits with a marked erosion surface at their base cutting down across previous cycles are re-interpreted as incised valley fill (IVF) deposits in paleovalleys, because the basal erosion surfaces are widespread, and thus reflect a record of lowstand. Most common are simple paleovalleys that contain mainly sandy fluvial deposits. Compound paleovalleys with sequence boundaries above the basal erosion surface, contain terrestrial, estuarine, and marine deposits. Early to late highstand deposits in interfluvial parts of the cycles are dominated by shale and mudstone, with paleosols, coals, and local non-marine limestone, which reflect floodbasin to lacustrine conditions. These reinterpretations are applied to previously and newly recognized cycles in ascending order: Upper Kittanning, Lower Freeport, Upper Freeport Leader (new), Upper Freeport, Piedmont (new), Mahoning, Mason interval (locally includes Upper New Galilee in the north), and Brush Creek, across a 300-km arc in the Northern Appalachian Basin. These deposits accumulated in a 'high shelf' setting that experienced fewer marine transgressions, and were interrupted by more frequent exposure and downcutting, in contrast to the thicker and more complete succession with more numerous marine units in the Midcontinent. Magnitudes of highstand transgressions into this basin, deduced from the up-dip extent of marine and brackish fossil assemblages, were greatest for the Brush Creek, less so for the Upper Kittanning and Mahoning, and least for the Lower Freeport, Upper Freeport Leader, Piedmont, and Mason. The anomalous basin-wide fresh-water roofshales and equivalents of the Upper Freeport coal may

  1. Russians to seek exploration in difficult Far East basins

    SciTech Connect

    1998-06-01

    Local governments and associations in Russia hope to encourage exploration interest in lightly explored, mostly nonproducing offshore basins in the Far East. Adjacent onshore areas have experienced recurring shortages of natural gas and petroleum products. Russian authorities have been attempting to license blocks in far eastern waters for much of the 1990s, but political, bureaucratic, fiscal, and tax uncertainties have frustrated most efforts. Approval of the Russian Parliament is needed for tender offers, and no one can predict when such approvals might be forthcoming. Dalwave is offering a package of more than 40,000 km of 24--48 fold regional 2D seismic data on nearly 400 lines in the Sea of Okhotsk and Bering Sea. The package is being made available to give geoscientists a head start at regional evaluation outside the Sakhalin Island area. The paper describes Russian`s Far East resources, exploration prospects, and other considerations.

  2. Early and Late Diagenetic Origins of the widespread middle Devonian Purcell/Cherry Valley Limestone in the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Wang, J.; Arthur, M. A.

    2013-12-01

    Isotopic geochemistry, lithofacies characteristics and fluid inclusion microthemometry are investigated to evaluate the deposition and diagenesis of the thin, basin-wide Purcell/Cherry Valley carbonate member within the Middle Devonian Marcellus Formation. This carbonate interval is fine-grained and sparsely fossiliferous, with abundant nodular and disseminated pyrite, which distinguish it from normal lowstand carbonate units. A process that involves upward or lateral migration of methane with oxidation at or near the seafloor by sulfate-reduction, precipitating pyrite and 13C-depleted carbonate (commonly less than -10‰) could be responsible for the origin of this unusual carbonate layer. Samples of Purcell/Cherry Valley carbonate within Marcellus black shale collected from both shallow well core from the basin margin and core from producing wells in the basin center exhibit depleted carbon isotopic (δ13C=-10.2 to -2‰) and highly depleted oxygen isotopic signatures (δ18O=-13.2 to -8.7‰). The oxygen isotope values may indicate strong late diagenetic overprint. Primary fluid inclusions in calcite precipitates within tectonically induced fractures in this carbonate member mainly consist of three different types: aqueous brine inclusions, methane inclusions and light hydrocarbon inclusions. The petrologic analysis of fluid inclusions shows that hydrocarbons migrated with the brine. The homogenization temperatures of fluid inclusions suggest mineral trapping occurred at fluid temperatures of 90-98°C. Moreover, with constrains of isotopic composition of Devonian oilfield brine (δ18O =+2 to -3‰) and veins (δ18O=-12 to -11‰, δ13C=-3.0 to 1‰), the calculated diagenetic temperature should also be relatively high (~ 100°C). Lithofacies characteristics, isotopic compositions and fluid inclusion microthermometries are all consistent with the conclusion that this carbonate member partially originated from methane oxidation and then underwent a high degree of

  3. Hardgrove grindability study of Powder River Basin and Appalachian coal components in the blend to a midwestern power station

    SciTech Connect

    Padgett, P.L.; Hower, J.C.

    1996-12-31

    Five coals representing four distinct coal sources blended at a midwestern power station were subjected to detailed analysis of their Hardgrove grindability. The coals are: a low-sulfur, high volatile A bituminous Upper Elkhorn No. 3 coal (Pike County, KY); a medium-sulfur, high volatile A bituminous Pittsburgh coal (southwestern PA); a low-sulfur, subbituminous Wyodak coal from two mines in the eastern Powder River Basin (Campbell County, WY). The feed and all samples processed in the Hardgrove grindability test procedure were analyzed for their maceral and microlithotype content. The high-vitrinite Pittsburgh coal and the relatively more petrographically complex Upper Elkhorn No. 3 coal exhibit differing behavior in grindability. The Pittsburgh raw feed, 16x30 mesh fraction (HGI test fraction), and the {minus}30 mesh fraction (HGI reject) are relatively similar petrographically, suggesting that the HGI test fraction is reasonably representative of the whole feed. The eastern Kentucky coal is not as representative of the whole feed, the HGI test fraction having lower vitrinite than the rejected {minus}30 mesh fraction. The Powder River Basin coals are high vitrinite and show behavior similar to the Pittsburgh coal.

  4. Thermal maturity patterns (CAI and %R%) in the Ordovician and Devonian rocks of the Appalachian basin in New York State

    USGS Publications Warehouse

    Weary, David J.; Ryder, Robert T.; Nyahay, Richard

    2000-01-01

    The objective of this study is to enhance existing thermal maturity maps in New York State by establishing: 1) new subsurface CAI data points for the Ordovician and Devonian and 2) new %Ro and Rock Eval subsurface data points for Middle and Upper Devonian black shale units. The thermal maturity of the Ordovician and Devonian rocks is of major interest because they contain the source for most of the unconventional natural gas resources in the basin. Thermal maturity patterns of the Middle Ordovician Trenton Group are evaluated here because they closely approximate those of the overlying Ordovician Utica Shale that is believed to be the source rock for the regional oil and gas accumulation in Lower Silurian sandstones (Jenden and others, 1993; Ryder and others, 1998). Improved CAI-based thermal maturity maps of the Ordovician are important to identify areas of optimum gas generation from the Utica Shale and to provide constraints for interpreting the origin of oil and gas in the Lower Silurian regional accumulation, in particular, its basin-centered part (Ryder, 1998). Thermal maturity maps of the Devonian will better constrain burial history-petroleum generation models of the Utica Shale, as well as place limitations on the origin of regional oil and gas accumulation in Upper Devonian sandstone and Middle to Upper Devonian black shale.

  5. Regional magnetotelluric surveys in hydrocarbon exploration, Parana' Basin, Brazil

    SciTech Connect

    Stanley, W.D.; Ohofugi, W.; Saad, A.R.

    1985-03-01

    The magnetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with soundings spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. In the survey area, MT interpretations show that basalts have aggregate thicknesses of as much as 2 km (6,600 ft), and basement may be as much as 6 km (20,000 ft) below the surface. Over most of the basin, the basalts are covered by Upper Cretaceous to Holocene continental sediments of a few hundred meters thickness and are underlain by 2 to 4 km (6,600 to 13,100 ft) thick Paleozoic sediments with possible hydrocarbon potential. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas.

  6. Using magnetotellurics in regional hydrocarbon exploration of Parana basin, Brazil

    SciTech Connect

    Stanley, W.D.; Saad, R.A.; Ohofugi, W.

    1984-04-01

    The magnetotelluric (MT) method has been utilized in a multidisciplinary exploration program recently completed in the Parana basin by the State of Sao Paulo. In the deeper portions of the Parana basin, MT interpretations show that basalts have thicknesses of up to 2 km (6500 ft) and that basement may be as much as 6 km (19,700 ft) below the surface. In most of the basin, the basalts are covered by thin units of Upper Cretaceous to Holocene continental sediments and are underlain by 2-4 km (6500-13,000 ft) of prospective Paleozoic sediments. In addition, interpretation of the MT sounding data with layered and fault-dike models outlines a linear uplift known as the Ponta Grossa arch. Permian Irati sediments are an important source unit classified as mostly in the oil window. Good electrical contrasts occur between the Permian sediments and older units, so that MT measurements can indicate the regional thickness of the Permian and younger sediments for use in interpretation of migration patterns and possible traps. In addition to providing this stratigraphic information, MT and aeromagnetic surveys have delineated the influence of the Sao Francisco craton in truncating uplift and tensional features of the Ponta Grossa arch.

  7. Thrust-ridge paleodepositional model for the Upper Freeport coal bed and associated clastic facies, Upper Potomac coal field, Appalachian Basin, U.S.A.

    USGS Publications Warehouse

    Belt, E.S.; Lyons, P.C.

    1990-01-01

    developed from one of the outboard ridges, and it was thrust farther outboard ahead of the main body of the orogen. Sediment derived from the orogen was diverted into a sediment trap inboard of the ridge (Fig. 1). The ridge prevented sediment from entering the main peat-forming swamp. Sediment shed from the orogen accumulated in the sediment trap was carried out of the ends of the trap by steams that occupied the shear zone at the ends of the blind-thrust ridge (Fig. 1). Remnants of blind-thrust ridges occurs in the Sequatchie Valley thrust and the Pine Mountain thrust of the southern Appalachians. The extent, parallel to the orogen, of the thick areally extensive UF coal is related to the length of the blind-thrust ridge that, in turn, controlled the spacing of the river-derived coarse clastics that entered the main basin from the east. Further tectonism caused the thrust plane to emerge to the surface of the blind-thrust ridge. Peat accumulation was then terminated by the rapid erosion of the blind-thrust ridge and by the release of trapped sediment behind it. The peat was buried by sediments from streams from closely spaced channel belts] with intervening floodbasins. The model was implications for widespread peat (coal) deposits that developed in tropical regions, a few hundred kilometers inland from the sea during Pennsylvanian time (Belt and Lyons, 1989). ?? 1990.

  8. A case of Appalachian endemism: Revision of the Cambarus robustus complex (Decapoda: Cambaridae) in the Kentucky and Licking River basins of Kentucky, USA, with the description of three new species.

    PubMed

    Loughman, Zachary J; Henkanaththegedara, Sujan M; Fetzner, James W; Thoma, Roger F

    2017-05-24

    The amazing levels of freshwater biodiversity found in the Appalachian Mountains of the eastern United States are among the highest recorded globally. Localized endemics make up much of this diversity, with numerous fish, freshwater mussels, salamanders and crayfish often being restricted to a single watershed, and in some instances, subwatersheds. Much of this diversity is the product of the processes of vicariance and historical stream drainage patterns. Herein, we describe three new crayfish species, all previously members of the Cambarus robustus complex, which occur in the Appalachian portion of the Kentucky and Licking river basins in Kentucky, USA. All three species differ from each other morphologically, genetically, and zoogeographically, fulfilling the requirements of the integrated species concept. Cambarus guenteri occurs in the southern tributaries of the Kentucky River mainstem as well as throughout the South Fork Kentucky River. Cambarus taylori is a narrow endemic, which only occurs in the Middle Fork Kentucky River. Cambarus hazardi, which has the widest distribution of the three new species, occurs in the North Fork Kentucky River, Red River, and upper reaches of the Licking River basin. Stream piracy events between the Cumberland and South Fork Kentucky River, as well as the Licking, Red and North Fork Kentucky rivers, are theorized to be important in the evolution of this complex. Cambarus guenteri is proposed as currently stable, though both C. taylori and C. hazardi are considered imperiled at this time due to habitat destruction throughout both of their respective ranges.

  9. Thermal maturity patterns (CAI and %R) in the Ordovician and Devonian rocks of the Appalachian basin in Pennsylvania

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Harper, John A.; Trippi, Michael H.

    2002-01-01

    The objective of this study is to enhance existing thermal maturity maps in Pennsylvania by establishing: 1) new subsurface CAI data points for the Ordovician and Devonian and 2) new %Ro and Rock Eval subsurface data points for Middle and Upper Devonian black shale units. Thermal maturity values for the Ordovician and Devonian strata are of major interest because they contain the source rocks for most of the oil and natural gas resources in the basin. Thermal maturity patterns of the Middle Ordovician Trenton Group are evaluated here because they closely approximate those of the overlying Ordovician Utica Shale that is believed to be the source rock for the regional oil and gas accumulation in Lower Silurian sandstones (Ryder and others, 1998) and for natural gas fields in fractured dolomite reservoirs of the Ordovician Black River-Trenton Limestones. Improved CAI-based thermal maturity maps of the Ordovician are important to identify areas of optimum gas generation from the Utica Shale and to provide constraints for interpreting the origin of oil and gas in the Lower Silurian regional accumulation and Ordovician Black River-Trenton fields. Thermal maturity maps of the Devonian will better constrain burial history-petroleum generation models of the Utica Shale, as well as place limitations on the origin of regional oil and gas accumulations in Upper Devonian sandstone and Middle to Upper Devonian black shale.

  10. Thermal maturity patterns (CAI and %Ro) in the Ordovician and Devonian rocks of the Appalachian basin in West Virginia

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Avary, Katharine Lee; Trippi, Michael H.

    2005-01-01

    The objective of this study is to enhance existing thermal maturity maps in West Virginia by establishing: 1) new subsurface CAI data points for the Ordovician and Devonian and 2) new %Ro and Rock Eval subsurface data points for Middle and Upper Devonian black shale units. Thermal maturity values for the Ordovician and Devonian strata are of major interest because they contain the source rocks for most of the oil and natural gas resources in the basin. Thermal maturity patterns of the Middle Ordovician Trenton Limestone are evaluated here because they closely approximate those of the overlying Ordovician Utica Shale that is believed to be the source rock for the regional oil and gas accumulation in Lower Silurian sandstones (Ryder and others, 1998) and for natural gas fields in fractured dolomite reservoirs of the Ordovician Black River-Trenton Limestones. Improved CAI-based thermal maturity maps of the Ordovician are important to identify areas of optimum gas generation from the Utica Shale and to provide constraints for interpreting the origin of oil and gas in the Lower Silurian regional accumulation and Ordovician Black River-Trenton fields. Thermal maturity maps of the Devonian will better constrain burial history-petroleum generation models of the Utica Shale, as well as place limitations on the origin of regional oil and gas accumulations in Upper Devonian sandstone and Middle to Upper Devonian black shale.

  11. Multiple-bench architecture and interpretations of original mire phases - Examples from the Middle Pennyslvanian of the Central Appalachian Basin, USA

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Hower, J.C.; Andrews, W.M.

    2002-01-01

    Coal seams often exhibit lateral and vertical variability in composition. When sampled as a whole seam this variability is masked. But if a seam is subdivided into correlateable components, this variability can be tested and better understood. Herein, an architectural approach is used to divide seams into intra-seam components. Clastic splits and mineral partings, as well as persistent fusain and durain layers, can be used as intra-seam bounding units to subdivide a seam into subdivisions called benches. Regional examination of Lower and Middle Pennsylvanian-age coal seams shows that many contain laterally persistent bounding surfaces that can be used to define multiple benches of coal within each seam. Inter-bench analyses from some of the most extensively mined seams in the central Appalachian Basin show that individual benches often have different spatial and quality trends. Hence, some component of whole-seam variability is a function of changes in the relative contribution of these different benches to the seam as a whole. Many coal benches also exhibit intra-bench variation in coal parameters. Intra-bench variation can be analyzed in terms of parameters such as sulfur content and ash yield in order to address changes in coal quality for regional resource evaluation. Intra-bench variation can also be analyzed in terms of a combination of palynologic, petrographic, and geochemical parameters, termed compositional groups, in order to better understand the development of the original mire systems. Compositional groups are defined by ranges of multiple criteria, which are inferred to owe their origin to the mire type in which they formed. Vertical changes in compositional groups within coal benches can be used to infer paleo-edaphic conditions during peat accumulation. If seam thickness is a product of bench configuration, and trends in compositional groups occur in benches, then trends in quality can be marginally predicted based upon seam thickness and inferred

  12. Operators renewing exploration in offshore basins of France

    SciTech Connect

    Lamiraux, C.; Mascle, A.

    1995-07-03

    Forty nine wells were drilled without success from the latter 1960s to the first half of the 1980s in French offshore areas. About 10 years of reduced activity followed this first phase of exploration. For a couple of years, these areas have been closely reassessed, taking into account the experience and data previously acquired. More particularly, a better understanding of tectonic processes at the origin of complex structural traps, a better taking into account of the distribution, quality, and maturation history of source rocks, together with significant improvements in seismic data acquisition-processing and basin modeling techniques, have led a few oil companies to apply for licenses in three offshore areas. The paper discusses prospects in the Bay of Biscay, the Iroise Sea and English Channel, and the Gulf of Lions.

  13. Exploration applications of geochemistry in the Midland Basin, Texas

    SciTech Connect

    Dow, W.G.; Talukdar, S.C. ); Harmon, L. )

    1990-05-01

    Reservoirs, source rocks, and crude oils were studied at Pegasas field on the eastern flank of the Central Basin platform. The field is a faulted anticlinal structure and produces oil and gas from seven geologically complex reservoirs ranging from the Ordovician Ellenburger to the Permian San Andres formations. A better understanding of the petroleum systems present should lead to improved exploration and development opportunities. Good to excellent-quality, mature oil-prone source rocks occur at numerous horizons between the Permian Spraberry and Ordovician Ellenburger formations. Oil-rock correlations indicate three major petroleum systems: Ordovician sources for oil in Ordovician, Silurian and Devonian reservoirs; Mississippian to Pennsylvanian sources for Pennsylvanian reservoired oils; and Permian sources for oils in Permian reservoirs. The Ordovician to Devonian system experienced peak oil generation, extensive vertical oil migration, and in-reservoir oil maturation in Triassic time; the Mississippian-Pennsylvanian system reached peak oil generation with limited vertical oil migration in Jurassic time; and the Permian system is just reaching peak oil generation and has had little or no vertical oil migration. The total amount of oil available to charge the field is several times the oil in place, and all available traps were filled to capacity. This implies substantial accumulations remain undiscovered in subtle stratigraphic and combination traps in the Pegasus field area. The same is probably true throughout the Midland basin. Integrated studies with geological, geophysical, engineering, and geochemical input can provide valuable exploration information on local as well as regional scales. Pegasus field examples include fault-block isolation reservoir segregation and waterflood or gas cycling efficiency. Such studies may also contribute information leading to lateral and vertical field extension wells.

  14. Acadian dextral transpression and synorogenic sedimentary successions in the Appalachians

    SciTech Connect

    Ferrill, B.A.; Thomas, W.A.

    1988-07-01

    The successive Seboomook-Littleton (northern Appalachians) and Catskill-Pocono (central Appalachians) clastic wedges suggest oblique convergence and southwestward migration of Acadian orogeny beginning in Early Devonian and continuing into Early Mississippian. Wrench-fault movement in Maritime Canada coincided with deposition of all but the earliest components of the Catskill-Pocono clastic wedge and continued into the Pennsylvanian. Contrasts between a thin, Lower to Middle Devonian shallow-shelf facies in the Alabama Appalachian fold-thrust belt and a time-equivalent, thick, shallowing-upward sedimentary to volcanic succession in the adjacent Talladega slate belt are interpreted to reflect a wrench-fault basin. A wrench-fault setting for Devonian rocks in Alabama integrated with manifestations of oblique convergence during the Acadian orogeny in the central and northern Appalachians can be accommodated in dextral transpression along the entire length of the Acadian Appalachian orogen.

  15. Assessment of Appalachian basin oil and gas resources: Devonian gas shales of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System: Chapter G.9 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Swezey, Christopher S.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This report presents the results of a U.S. Geological Survey (USGS) assessment of the technically recoverable undiscovered natural gas resources in Devonian shale in the Appalachian Basin Petroleum Province of the eastern United States. These results are part of the USGS assessment in 2002 of the technically recoverable undiscovered oil and gas resources of the province. This report does not use the results of a 2011 USGS assessment of the Devonian Marcellus Shale because the area considered in the 2011 assessment is much greater than the area of the Marcellus Shale described in this report. The USGS assessment in 2002 was based on the identification of six total petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian gas shales described in this report are within the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System, which extends generally from New York to Tennessee. This total petroleum system is divided into ten assessment units (plays), four of which are classified as conventional and six as continuous. The Devonian shales described in this report make up four of these continuous assessment units. The assessment results are reported as fully risked fractiles (F95, F50, F5, and the mean); the fractiles indicate the probability of recovery of the assessment amount. The products reported are oil, gas, and natural gas liquids. The mean estimates for technically recoverable undiscovered hydrocarbons in the four gas shale assessment units are 12,195.53 billion cubic feet (12.20 trillion cubic feet) of gas and 158.91 million barrels of natural gas liquids

  16. Allogenic and autogenic controls on sedimentation in the central Sumatra basin as an analogue for Pennsylvanian coal-bearing strata in the Appalachian basin

    USGS Publications Warehouse

    Cecil, C. Blaine; Dulong, Frank T.; Cobb, James C.

    1993-01-01

    Recent sedimentation patterns in the central Sumatra basin, Republic of Indonesia, may help to explain the cyclic stratigraphy of the Pennsylvanian System of the eastern United States. Modern influx of fluvial siliciclastic sediment to the epeiric seas of the Sunda shelf, including the Strait of Malacca, appears to be highly restricted by rain forest cover within the ever-wet climate belt of equatorial Sumatra. As a result, much of the marine and estuarine environments appear to be erosional or nondepositional except for localized deposition of sediment in slack water areas, such as the down-stream end of islands. Contemporaneously, thick (>13 m), laterally extensive (>70,000 km2), peat deposits are forming on poorly drained coastal lowlands. Modern peat formation in this study, therefore, is not coeval with aggrading fluvial siliciclastic systems, a situation that commonly is assumed in many depositional models of coal formation. The stratigraphy of Pleistocene and Holocene sediments on the Sunda shelf, as well as those of the Pennsylvanian System, appears to be better explained by the allocyclic controls of climate and sea-level change on sediment flux rather than by depositional models that are based on autocyclic processes. The objective of this paper is to evaluate allocyclic and autocyclic controls on sedimentation in an epeiric setting in a humid (ever-wet) tropical region. Of particular interest are the factors that control peat formation and siliciclastic sediment flux in rivers, estuaries, and open marine environments.

  17. A search for stratiform massive-sulfide exploration targets in Appalachian Devonian rocks; a case study using computer-assisted attribute-coincidence mapping

    USGS Publications Warehouse

    Wedow, Helmuth

    1983-01-01

    The empirical model for sediment-associated, stratiform, exhalative, massive-sulfide deposits presented by D. Large in 1979 and 1980 has been redesigned to permit its use in a computer-assisted search for exploration-target areas in Devonian rocks of the Appalachian region using attribute-coincidence mapping (ACM). Some 36 gridded-data maps and selected maps derived therefrom were developed to show the orthogonal patterns, using the 7-1/2 minute quadrangle as an information cell, of geologic data patterns relevant to the empirical model. From these map and data files, six attribute-coincidence maps were prepared to illustrate both variation in the application of ACM techniques and the extent of possible significant exploration-target areas. As a result of this preliminary work in ACM, four major (and some lesser) exploration-target areas needing further study and analysis have been defined as follows: 1) in western and central New York in the outcrop area of lowermost Upper Devonian rocks straddling the Clarendon-Linden fault; 2) in western Virginia and eastern West Virginia in an area largely coincident with the well-known 'Oriskany' Mn-Fe ores; 3) an area in West Virginia, Maryland, and Virginia along and nearby the trend of the Alabama-New York lineament of King and Zietz approximately between 38- and 40-degrees N. latitude; and 4) an area in northeastern Ohio overlying an area coincident with a significant thickness of Silurian salt and high modern seismic activity. Some lesser, smaller areas suggested by relatively high coincidence may also be worthy of further study.

  18. The evolution of Devonian hydrocarbon gases in shallow aquifers of the northern Appalachian Basin: Insights from integrating noble gas and hydrocarbon geochemistry

    NASA Astrophysics Data System (ADS)

    Darrah, Thomas H.; Jackson, Robert B.; Vengosh, Avner; Warner, Nathaniel R.; Whyte, Colin J.; Walsh, Talor B.; Kondash, Andrew J.; Poreda, Robert J.

    2015-12-01

    The last decade has seen a dramatic increase in domestic energy production from unconventional reservoirs. This energy boom has generated marked economic benefits, but simultaneously evoked significant concerns regarding the potential for drinking-water contamination in shallow aquifers. Presently, efforts to evaluate the environmental impacts of shale gas development in the northern Appalachian Basin (NAB), located in the northeastern US, are limited by: (1) a lack of comprehensive ;pre-drill; data for groundwater composition (water and gas); (2) uncertainty in the hydrogeological factors that control the occurrence of naturally present CH4 and brines in shallow Upper Devonian (UD) aquifers; and (3) limited geochemical techniques to quantify the sources and migration of crustal fluids (specifically methane) at various time scales. To address these questions, we analyzed the noble gas, dissolved ion, and hydrocarbon gas geochemistry of 72 drinking-water wells and one natural methane seep all located ≫1 km from shale gas drill sites in the NAB. In the present study, we consciously avoided groundwater wells from areas near active or recent drilling to ensure shale gas development would not bias the results. We also intentionally targeted areas with naturally occurring CH4 to characterize the geochemical signature and geological context of gas-phase hydrocarbons in shallow aquifers of the NAB. Our data display a positive relationship between elevated [CH4], [C2H6], [Cl], and [Ba] that co-occur with high [4He]. Although four groundwater samples show mantle contributions ranging from 1.2% to 11.6%, the majority of samples have [He] ranging from solubility levels (∼45 × 10-6 cm3 STP/L) with below-detectable [CH4] and minor amounts of tritiogenic 3He in low [Cl] and [Ba] waters, up to high [4He] = 0.4 cm3 STP/L with a purely crustal helium isotopic end-member (3He/4He = ∼0.02 times the atmospheric ratio (R/Ra)) in samples with CH4 near saturation for shallow

  19. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  20. Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy landscapes.

    PubMed

    Roth, Christine-Andrea; Dreyfus, Tom; Robert, Charles H; Cazals, Frédéric

    2016-03-30

    The number of local minima of the potential energy landscape (PEL) of molecular systems generally grows exponentially with the number of degrees of freedom, so that a crucial property of PEL exploration algorithms is their ability to identify local minima, which are low lying and diverse. In this work, we present a new exploration algorithm, retaining the ability of basin hopping (BH) to identify local minima, and that of transition based rapidly exploring random trees (T-RRT) to foster the exploration of yet unexplored regions. This ability is obtained by interleaving calls to the extension procedures of BH and T-RRT, and we show tuning the balance between these two types of calls allows the algorithm to focus on low lying regions. Computational efficiency is obtained using state-of-the art data structures, in particular for searching approximate nearest neighbors in metric spaces. We present results for the BLN69, a protein model whose conformational space has dimension 207 and whose PEL has been studied exhaustively. On this system, we show that the propensity of our algorithm to explore low lying regions of the landscape significantly outperforms those of BH and T-RRT.

  1. Devonian stratigraphy of the Appalachians

    SciTech Connect

    Ferrill, B.A.; Thomas, W.A.

    1985-01-01

    Lower and lower Middle Devonian (below the top of the Onondaga and equivalent) strata in the Appalachian unmetamorphosed fold-thrust belt are relatively thin and are laterally variable in lithology, thickness, and age. South of Virginia, thickness is less than 100 m; in Virginia and farther north, thickness ranges from 100 to 450 m. Locally, rocks of this age are unconformably absent in Pennsylvania and in Virginia and farther south. Clastic rocks dominate the interval in places along the southeastern margin of the fold-thrust belt and near pinch-outs at unconformities. Elsewhere, the interval is dominated by carbonate rocks. In contrast, thick sequences of lower Devonian rocks are preserved in Appalachian metamorphic belts in New England and in Alabama. The stratigraphic distribution of upper Middle (above the top of the Onondaga and equivalent) and Upper Devonian rocks is dominated by the widespread semicircular Catskill clastic wedge, centered on southeastern Pennsylvania. Near the depocenter, the succession grades upward from deep-water black shale, through shallow-marine sandstones and mudstones, to deltaic and fluvial red beds. These facies prograde both northwestward toward the craton and southwestward along structural strike. Pelitic rocks dominate the distal part of the wedge. Distribution of the Catskill clastic wedge reflects sediment transport onto the earlier Devonian shelf from an Acadian orogenic uplift. Local basins in Maine were probably not interconnected and reflect fault-block uplifts and pull-apart basins associated with wrench faults.

  2. Stratigraphic framework of Cambrian and Ordovician rocks in the central Appalachian Basin from Medina County, Ohio, through southwestern and south-central Pennsylvania to Hampshire County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Harris, Anita G.; Repetski, John E.; revised and digitized by Crangle, Robert D.

    2003-01-01

    A 275-mi-long restored stratigraphic cross section from Medina County, Ohio, through southwestern and south-central Pennsylvania to Hampshire County, W. Va., provides new details on Cambrian and Ordovician stratigraphy in the central Appalachian basin and the structure of underlying Precambrian basement rocks. From west to east, the major structural elements of the block-faulted basement in this section are (1) the relatively stable, slightly extended craton, which includes the Wooster arch, (2) the fault-controlled Ohio-West Virginia hinge zone, which separates the craton from the adjoining Rome trough, (3) the Rome trough, which consists of an east-facing asymmetric graben and an overlying sag basin, and (4) a positive fault block, named here the South-central Pennsylvania arch, which borders the eastern margin of the graben part of the Rome trough. Pre-Middle Ordovician structural relief on Precambrian basement rocks across the down-to-the-west normal fault that separates the Rome trough and the adjoining South-central Pennsylvania arch amounted to between 6,000 and 7,000 ft. The restored cross section shows eastward thickening of the Cambrian and Ordovician sequence from about 3,000 ft near the crest of the Wooster arch at the western end of the section to about 5,150 ft at the Ohio-West Virginia hinge zone adjoining the western margin of the Rome trough to about 19,800 ft near the depositional axis of the Rome trough. East of the Rome trough, at the adjoining western edge of the South-central Pennsylvania arch, the Cambrian and Ordovician sequence thins abruptly to about 13,500 ft and then thins gradually eastward across the arch to about 12,700 ft near the Allegheny structural front and to about 10,150 ft at the eastern end of the restored section. In general, the Cambrian and Ordovician sequence along this section consists of four major lithofacies that are predominantly shallow marine to peritidal in origin. In ascending stratigraphic order, the lithofacies

  3. Petroleum geology of Cook Inlet basin - an exploration model

    USGS Publications Warehouse

    Magoon, L.B.; Claypool, G.E.

    1981-01-01

    Oil exploration commenced onshore adjacent to lower Cook Inlet on the Iniskin Peninsula in 1900, shifted with considerable success to upper Cook Inlet from 1957 through 1965, then returned to lower Cook Inlet in 1977 with the COST well and Federal OCS sale. Lower Cook Inlet COST No. 1 well, drilled to a total depth of 3,775.6 m, penetrated basinwide unconformities at the tops of Upper Cretaceous, Lower Cretaceous, and Upper Jurassic strata at 797.1, 1,540.8, and 2,112.3 m, respectively. Sandstone of potential reservoir quality is present in the Cretaceous and lower Tertiary rocks. All siltstones and shales analyzed are low (0 to 0.5 wt. %) in oil-prone organic matter, and only coals are high in humic organic matter. At total depth, vitrinite readings reached a maximum ave age reflectance of 0.65. Several indications of hydrocarbons were present. Oil analyses suggest that oils from the major fields of the Cook Inlet region, most of which produce from the Tertiary Hemlock Conglomerate, have a common source. More detailed work on stable carbon isotope ratios and the distribution of gasoline-range and heavy (C12+) hydrocarbons confirms this genetic relation among the major fields. In addition, oils from Jurassic rocks under the Iniskin Peninsula and from the Hemlock Conglomerate at the southwestern tip of the Kenai lowland are members of the same or a very similar oil family. The Middle Jurassic strata of the Iniskin Peninsula are moderately rich in organic carbon (0.5 to 1.5 wt. %) and yield shows of oil and of gas in wells and in surface seeps. Extractable hydrocarbons from this strata are similar in chemi al and isotopic composition to the Cook Inlet oils. Organic matter in Cretaceous and Tertiary rocks is thermally immature in all wells analyzed. Oil reservoirs in the major producing fields are of Tertiary age and unconformably overlie Jurassic rocks; the pre-Tertiary unconformity may be significant in exploration for new oil reserves. The unconformable relation

  4. Trout Use of Woody Debris and Habitat in Appalachian Wilderness Streams of North Carolina

    Treesearch

    Patricia A. Flebbe; C. Andrew Dolloff

    1995-01-01

    Wilderness areas in the Appalachian Mountains of North Carolina are set aside to preserve characteristics of both old-growth and second-growth forests and associated streams. Woody debris loadings, trout habitat, and trout were inventoried in three southern Appalachian wilderness streams in North Carolina by the basin-wide visual estimation technique. Two streams in...

  5. Possible continuous-type (unconventional) gas accumulation in the Lower Silurian "Clinton" sands, Medina Group and Tuscarora Sandstone in the Appalachian Basin; a progress report of the 1995 project activities

    USGS Publications Warehouse

    Ryder, Robert T.; Aggen, Kerry L.; Hettinger, Robert D.; Law, Ben E.; Miller, John J.; Nuccio, Vito F.; Perry, William J.; Prensky, Stephen E.; Filipo, John J.; Wandrey, Craig J.

    1996-01-01

    INTRODUCTION: In the U.S. Geological Survey's (USGS) 1995 National Assessment of United States oil and gas resources (Gautier and others, 1995), the Appalachian basin was estimated to have, at a mean value, about 61 trillion cubic feet (TCF) of recoverable gas in sandstone and shale reservoirs of Paleozoic age. Approximately one-half of this gas resource is estimated to reside in a regionally extensive, continuous-type gas accumulation whose reservoirs consist of low-permeability sandstone of the Lower Silurian 'Clinton' sands and Medina Group (Gautier and others, 1995; Ryder, 1995). Recognizing the importance of this large regional gas accumulation for future energy considerations, the USGS initiated in January 1995 a multi-year study to evaluate the nature, distribution, and origin of natural gas in the 'Clinton' sands, Medina Group sandstones, and equivalent Tuscarora Sandstone. The project is part of a larger natural gas project, Continuous Gas Accumulations in Sandstones and Carbonates, coordinated in FY1995 by Ben E. Law and Jennie L. Ridgley, USGS, Denver. Approximately 2.6 man years were devoted to the Clinton/Medina project in FY1995. A continuous-type gas accumulation, referred to in the project, is a new term introduced by Schmoker (1995a) to identify those natural gas accumulations whose reservoirs are charged throughout with gas over a large area and whose entrapment does not involve a downdip gas-water contact. Gas in these accumulations is located downdip of the water column and, thus, is the reverse of conventional-type hydrocarbon accumulations. Commonly used industry terms that are more or less synonymous with continuous-type gas accumulations include basin- centered gas accumulation (Rose and others, 1984; Law and Spencer, 1993), tight (low-permeability) gas reservoir (Spencer, 1989; Law and others, 1989; Perry, 1994), and deep basin gas (Masters, 1979, 1984). The realization that undiscovered gas in Lower Silurian sandstone reservoirs of the

  6. Use of geophysical, geobotanical, and remotely sensed data in a low cost hydrocarbon exploration strategy for the Appalachians

    SciTech Connect

    Parrish, J.B.

    1985-01-01

    An integrated approach is developed at three scales: regional, subregional, and local. The principal problem addressed was that of how to make the transitional effectively from regional anomalies on the scale of tens of kilometers to a specific drilling site defined by an area on the order of tens of meters. The regional scale results, particularly the are magnetic anomalies, indicated several cross-structural lineaments which are indicative of basement discontinuities that were used to define an exploration area. For this subregional area two-dimensional data sets for Landsat MSS and digital terrain data were transformed and used to define the surficial location of the Wheeling-Needmore magnetic lineament within the subregional study area, indicating that a basement fault has influenced sedimentary structure. Two local-scale exploration areas were delineated. The southern area, which is in the vicinity of the NASA/Geosat Lost River, West Virginia test site was chosen for further study. An anomalous distribution of maples (Acer rubrum) was identified at Lost River in a region where chestnut oak (Quercus prinus) predominates. Soil gas measurements in the field and an in vitro study of seedling response to methane gas supported the hypothesis that high soil gas methane content at the surface is responsible for the geobotanical anomaly. Based on the findings of this study, the proposed minimal-cost exploration strategy should be useful in vegetated terrains in which there are surface hydrocarbon seeps.

  7. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    SciTech Connect

    Taha, M.A. )

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recent well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.

  8. Composition of natural gas and crude oil produced from 10 wells in the Lower Silurian "Clinton" Sandstone, Trumbull County, Ohio: Chapter G.7 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Natural gases and associated crude oils in the “Clinton” sandstone, Medina Group sandstones, and equivalent Tuscarora Sandstone in the northern Appalachian basin are part of a regional, continuous-type or basin-centered accumulation. The origin of the hydrocarbon charge to regional continuoustype accumulations is poorly understood. We have analyzed the molecular and stable isotopic composition of gases and oils produced from 10 wells in the “Clinton” sandstone in Trumbull County, Ohio, in an initial attempt to identify the characteristics of the accumulated fluids. The analyses show that the fluids have remarkably uniform compositions that are similar to previously published analyses of oils (Cole and others, 1987) and gases (Laughrey and Baldasarre, 1998) in Early Silurian reservoirs elsewhere in Ohio; however, geochemical parameters in the oils and gases suggest that the fluids have experienced higher levels of thermal stress than the present-day burial conditions of the reservoir rocks. The crude oils have an unusual geochemical characteristic: they do not contain detectable levels of sterane and triterpane biomarkers. The origin of these absences is unknown.

  9. Soekor, partners explore possibilities in Bredasdorp basin off South Africa

    SciTech Connect

    Burden, P.L.A. Ltd., Parow, )

    1992-12-21

    This paper reports on the Bredasdorp basin, situated off the south coast of the Republic of South Africa, southeast of Cape Town and west-southwest of Port Elizabeth. Both cities have modern deepwater harbor facilities. Infrastructure along the coast includes well developed road, air, and rail links. A petrochemical plant for the conversion of off-shore gas and condensate to hydrocarbon fuels as well as certain chemical feedstocks has recently been completed at Mossel Bay about 100 km north of the Bredasdorp basin. Refineries are situated at Cape Town and Durban.

  10. Carboniferous stratigraphy of the Appalachians

    SciTech Connect

    Hines, R.A.; Thomas, W.A.

    1985-01-01

    Carboniferous rocks in the Appalachian fold-thrust belt and foreland basins include parts of four clastic wedges. Distribution, composition, and ages of the clastic wedges record diachronous orogenic uplifts along the Appalachian margin. Lower Mississippian Pocono sandstones form the upper part of the Catskill-Pocono clastic wedge, which includes the Devonian Catskill deltaic facies. Pocono rocks reflect clastic sediments transport toward the northwest and west from an orogenic source east of the Pennsylvania salient. The upper Mississippian-Pennsylvanian Mauch Chunk-Pottsville clastic wedge prograded westward and southwestward from the Pennsylvania salient over Mississippian limestone. The southwestern limit of the Mauch Chunk-Pottsville clastic wedge is overlapped in the Virginia recess by the oppositely directed Pennington-Lee clastic wedge. The Upper Mississippian-Pennsylvanian Pennington-Lee clastic wedge prograded northeastward and northwestward from the Tennessee salient. Southwestward in the Alabama recess, the Pennington clastic facies grades into Mississippian limestone, and Lee-equivalent sandstones extend over the limestone. In the western part of the Alabama recess, Upper Mississippian-Lower Pennsylvanian delta systems prograded northeastward over the Mississippian carbonate facies. These clastic sediments are an eastern shelf-delta part of a thick clastic wedge that consists of turbidites in the Ouachita salient. The eastern fringe of the Ouachita clastic wedge merges with the southwestward-prograding Pennington-Lee clastic wedge above Mississippian carbonate rocks in the Alabama recess.

  11. Rift basins of interior Sudan: petroleum exploration and discovery

    SciTech Connect

    Schull, T.J.

    1988-10-01

    The sedimentary basins of interior Sudan are characterized by thick nonmarine clastic sequences of Jurassic(.)-Cretaceous and Tertiary age. Over 45,000 ft (13,716 m) of sediment was deposited in the deepest trough and extensive basinal areas are underlain by more than 20,000 ft (6096 m) of sedimentary rocks. The depositional sequences include thick lacustrine shales and claystones, flood plain claystones, and lacustrine, fluvial, and alluvial sandstones and conglomerates. Those lacustrine claystones deposited in a suboxic environment provide good oil-prone source rocks. Reservoir sandstones have been found in a wide variety of nonmarine sandstone facies. The extensional tectonism that formed these basins began in the Jurassic(.)-Early Cretaceous. Movement along major fault trends continued intermittently into the Miocene. This deformation resulted in a complex structural history that led to the formation of several deep fault-bounded troughs, major interbasinal highs, and complex basin flanks. This tectonism has created a wide variety of structures, many of which have become effective hydrocarbon traps. During the past eight years, several important oil discoveries have been made. Significant accumulations have been delineated in the Heglig and Unity areas, where estimated recoverable reserves are 250-300 million bbl of oil. 14 figures.

  12. Exploration of geothermal energy in the western Pannonian basin

    NASA Astrophysics Data System (ADS)

    Tóth, T.; Wórum, G.; Nádor, A.; Uhrin, A.; Bíró, I.; Musitz, B.; Kóbor, M.; Dövényi, G.; Horváth, F.; Pap, N.

    2012-04-01

    The Pannonian basin has been a favourable site for hot water utilisation in spas since the medieval ages. Deliberate drilling activity started already more than a century ago and Hungary has become soon a center of balneological teraphy in Central Europe. The increasing interest for wellness resorts and mainly geothermal energy prospects has initiated recently the first systematic survey in the western Pannonian basin. The regional scale of the survey and access to a wealth of drillhole and seismic data led to the elaboration of novel research strategy. The Pannonian basin formed by rifting, major extension and subsidence of an Alpine orogenic terrain during the Middle Miocene. In the Late Miocene to Pliocene postrift period it was a big lake, which has been filled up by clastic materials transported by big rivers. Four regional aquifers can be defined in the basin from top to bottom: (1) delta front sand packages and their lateral equivalents (Újfalu Formation), (2) deep water delta front turbidite and sheet sand packages (Szolnok Formation), (3) Middle Miocene biogenic limestones and (4) fractured and karstified Mesozoic carbonates in the basement of Tertiary strata. In order to fully evaluate the geothermal potential of these aquifers seismic mapping was completed by borehole geology, well logs and flow tests. In addition a large and most complete geothermal data base available for the region has been prepared to facilitate integrated interpretation. A series of maps will be presented to illustrate the main results of the project and deliver the most important message: there are favourable conditions at large areas in the western Pannonian basin for multipurpose utilisation of geothermal energy.

  13. Fabrication of the Appalachian Thinner

    Treesearch

    Cleveland J. Biller

    1982-01-01

    The Appalachian Thinner, a prototype cable yarder, has proven capable of harvesting timber on steep slopes. Details of the fabrication of the prototype yarder are presented. An Appalachian Thinner can be built economically in a typical logger's repair shop.

  14. A Regional Resource: Appalachian Campuses

    ERIC Educational Resources Information Center

    Roesch, Harry

    1975-01-01

    An Appalachian Regional Commission survey of 180 institutions of higher education in the Appalachian Region pinpoints which institutions offer technical assistance to state and local governments and officals. (Author)

  15. A Regional Resource: Appalachian Campuses

    ERIC Educational Resources Information Center

    Roesch, Harry

    1975-01-01

    An Appalachian Regional Commission survey of 180 institutions of higher education in the Appalachian Region pinpoints which institutions offer technical assistance to state and local governments and officals. (Author)

  16. The 1911 Quadrant offshore Namibia; Exploration in a virgin basin

    SciTech Connect

    Holtar, E.; Forsberg, A.

    1995-08-01

    As a result of the first licensing round in independent Namibia, the Namibian authorities in 1992 awarded five offshore licenses to five different companies or groups of companies. License no. 001 was awarded in 1992 to a group consisting of three Norwegian oil companies, Norsk Hydro, Saga Petroleum and Statoil, with Hydro as the operator. Somewhat later Bow Valley Energy (now Talisman Energy) farmed in. Since 1992 a seismic survey of 7200 km has been acquired over the license area that covers 11.619 sq. Km of the Walvis Basin. This basin was undrilled until the 1911/15-1 well was finished at a depth of 4586mRKB in early 1994. The sedimentary succession of the 1911/15-1 well reflects a depositional history that postdates the Neocorman Etendeka plateau basalts found onshore Namibia. After the onset of the drift phase in late Hauterivian times, the Walvis Basin subsided and eventually a marine transgression took place. Shallow marine platform sedimentation then prevailed until an Albian tectonic event resulted in complex block faulting and the formation of several sub basins. Subsequent volcanic activity created a series of volcanic centres localized on the Walvis Ridge bathymetric feature. In early Late Cretaceous the Southern African craton was uplifted relative to the shelf, leading to the formation of large scale westward prograding wedges. Later sedimentation largely followed the evolution of a passive continental margin, responding to relative sealevel changes and paleoclimate. A stratigraphic breakdown of the Northern Namibian offshore is proposed, and compared to South African and Angolan nomenclature.

  17. Regional frontier exploration in Sinu basin, northwestern Colombia

    SciTech Connect

    Lindberg, F.A.; Ellis, J.M.; Dekker, L.L.

    1989-03-01

    In 1983, Gulf and Ecopetrol undertook a regional hydrocarbon evaluation of northwestern Colombia, during the course of which much of the Sinu basin was mapped by field geologists aided by low-altitude aerial photographs. Additional seismic and airborne radar data were acquired to assist in developing a regional structural model. The dominant structures of the Sinu basin were produced by westward-vergent thrust faults, which are offset on the order of 10 to 20 km by northwest-southeast-trending compartmental faults. Numerous mud volcanos are surface expressions of overpressured shales, which migrate upward along both thrust and strike-slip faults. Thrust faults are expressed, on the surface, by steep-sided, asymmetrical anticlines, which are separated by broad synclines filled with clastics shed during Tertiary thrusting. The extremely thick section of Tertiary sediments is dominated by shale but contains some potential reservoir sandstones. These resistive sandstones could be accurately mapped on the radar imagery and projected into the subsurface allowing traps to be better defined. Combining field geology with geologic interpretation of aerial photographs and radar images was very effective in developing a regional structural framework of the Sinu basin.

  18. Polish permian basin: Lithofacies traps for gas within the Rotliegende deposits as a new exploration potential

    SciTech Connect

    Karnkowski, P.H. )

    1993-09-01

    Rotliegende deposits are the most prospective reservoir gas rocks in the Polish Permian basin. Thirty years of their exploration have led to location of numerous gas fields in the upper-most part of these series, particularly in the area of the Fore-Sudetic monocline. Up to this time, exploration studies concentrated mainly on structural objects, and most of the structures were positive gas traps. Well and seismic data also indicate an occurrence of lithofacies gas traps; they occur mainly in the sandstone zones within the fanglomerates surrounding the Wolsztyn Ridge. When comparing the facies regularities in the known gas fields in the German Permian basin (interfingering sandstones and claystones) to the facies patterns of the Polish Permian basin, one may suspect similar exploration possibilities. These are the first promising results. Advances in analysis of the Rotliegende depositional systems will enable us to create a new exploration potential.

  19. "We're All Appalachian."

    ERIC Educational Resources Information Center

    Banker, Mark

    2002-01-01

    A teacher at a Knoxville college preparatory school challenges his students to analyze stereotypes about Appalachia and recognize that acceptance of their own Appalachian-ness is vital to their personal well-being and that of the region. Comparisons of Appalachians with Hispanics in northern New Mexico reveal common issues of land use, cultural…

  20. "We're All Appalachian."

    ERIC Educational Resources Information Center

    Banker, Mark

    2002-01-01

    A teacher at a Knoxville college preparatory school challenges his students to analyze stereotypes about Appalachia and recognize that acceptance of their own Appalachian-ness is vital to their personal well-being and that of the region. Comparisons of Appalachians with Hispanics in northern New Mexico reveal common issues of land use, cultural…

  1. Exploration for geothermal energy in Arizona basin and range

    SciTech Connect

    Witcher, J.C.; Ruscetta, C.A.

    1982-07-01

    A summary of the results and interpretations of heat flow and geochemistry studies in the Safford Basin, Arizona, is presented. Numerous artesian wells discharge thermal water at 30 to 50/sup 0/C. The Artesia anomaly is characterized by high soil mercury, ranging from 225 ppb to 380 ppb, and high apparent heat flow, ranging from 1.35 ..mu..cal/cm/sup 2/sec at a depth of 65 to 95 ft to 5.25 ..mu..cal/cm/sup 2/sec at a depth of 70 to 130 ft. It is concluded that the factors point toward a hydrothermal convention system possibly controlled by basement structure. (MJF)

  2. Texas' lightly drilled Dalhart basin getting more oil exploration

    SciTech Connect

    Petzet, G.A.

    1991-06-24

    The Dalhart basin of the northwestern Texas Panhandle, the state's least drilled prospective area, is showing signs of another round of exploratory drilling. Horizon Oil and Gas Co., Dallas, opened ERT (Granite Wash) field in Potter County at 102 Bivins Ranch 9 miles north of Amarillo in early June. The discovery well pumped 105 b/d of 37.7{degrees} gravity oil and 48 b/d of water with gas too small to measure from perforations at 5,820-5,913 ft. Total depth is 7,516 ft in granite. In Hartley County, McKinney Operating Co., Amarillo, is pumped testing a second well in a field it discovered in 1990 that opened the first commercial Permian oil production in the Dalhart basin. The discovery well, McKinney's 1 Proctor, in section 63, block 22, CSL Survey, 19 miles west of Channing, pumped 12 b/d of oil and 15 b/d of water from Wolfcamp perforations at 4,038-50 ft. The well, which opened Proctor Ranch field, is producing about 35 b/d of oil.

  3. Climbing Back Up the Mountain: Reflections From an Exploration of End-of-Life Needs of Persons Living With HIV/AIDS in Appalachian Tennessee.

    PubMed

    Hutson, Sadie P

    2016-12-01

    Little is known about the health access and end-of-life (EOL) concerns of persons living with HIV/AIDS (PLWHA) in Appalachia, where religious and cultural values are largely traditional. A qualitative, descriptive study with 9 participants was undertaken to assess EOL care needs among those from South Central Appalachian PLWHA. The focus of the study was to examine subjective data regarding EOL needs assessment related to advanced care planning. Five men and 4 women self-acknowledged a diagnosis of HIV/AIDS and completed a 2-hour face-to-face interview with the nurse researcher. Data were analyzed using qualitative descriptive content analysis methods, including data coding for emergent themes and metaphors. A common metaphor tied content to both struggle and triumph as well as the beauty and ruggedness of the Appalachian region: "Climbing Back up the Mountain." Rich descriptions of the significance of the metaphor match with stigma as the greatest hurdle to overcome in planning and interacting with others, including health care providers and significant others, about EOL care needs and advanced planning preferences. Further, the metaphor was derived directly from quotes offered by participants. Sources of stigma were often intersecting: the disease itself, associations with "promiscuity," sexual minority status, illicit drug use, and so on. Strong spiritual images were contrasted with a common avoidance and disdain of organized religion. Findings were used in refining plans for a larger study of EOL care needs and concerns on the population of PLWHA in 2 Southern Appalachian states. Comparison with other research and insights for providers is included.

  4. Appalachian Play Fairway Analysis Seismic Hazards Supporting Data

    SciTech Connect

    Frank Horowitz

    2016-07-20

    These are the data used in estimating the seismic hazards (both natural and induced) for candidate direct use geothermal locations in the Appalachian Basin Play Fairway Analysis by Jordan et al. (2015). xMin,yMin -83.1407,36.7461 : xMax,yMax -71.5175,45.1729

  5. Using potential field data for petroleum exploration targeting, Amadeus Basin, Australia

    NASA Astrophysics Data System (ADS)

    Dentith, Mike; Cowan, Duncan

    2011-09-01

    The Amadeus Basin, a large Proterozoic basin located in central Australia, is one of the least explored onshore petroleum-bearing basins with proven reserves in Australia. The size and remoteness of the Amadeus Basin makes ground exploration expensive so this study uses aerogravity and aeromagnetic data to assess petroleum prospectivity. In the western part of the Amadeus Basin the Gillen Petroleum System is considered most significant; this system has the important characteristic that the source in the Bitter Springs Formation is stratigraphically higher than the potential reservoirs within the Dean/Heavitree Quartzite. Thin skinned deformation is expected at the source level and above, with detachments at evaporitic horizons, but deformation of the reservoir is expected to be thick-skinned. This model can form the basis for predicting potential field responses. The most prospective areas are where: (i) gravity suggests basement (and reservoir) is shallow; (ii) magnetics maps fold-thrust complexes (structural trap); and (iii) these features occur adjacent to gravity lows, indicative of significant thicknesses of basin fill (source at depth and below reservoir). Faults at the margins of the depocentre (mapped using magnetic data) provide a possible migration path for the hydrocarbons. Favourable scenarios for younger petroleum systems are antiforms in fold-thrust complexes in units assigned to the Boord Formation and younger units. The juxtaposition of these structures with depocentres suggested by negative gravity anomalies constitutes a favourable exploration scenario. Regardless of specific exploration targets, this study demonstrates that airborne gravity and magnetic data are capable of resolving intra-basin structures in sufficient detail to allow prospective areas to be identified and for follow-up seismic surveys to be reliably planned.

  6. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  7. Identifying Sociocultural Barriers to Mammography Adherence Among Appalachian Kentucky Women

    PubMed Central

    Cohen, Elisia L.; Wilson, Bethney R.; Vanderpool, Robin C.; Collins, Tom

    2016-01-01

    Despite lower breast cancer incidence rates, Appalachian women evidence lower frequency of screening mammography and higher mortality risk for breast cancer compared to non-Appalachian women in Kentucky, and in the United States, overall. Utilizing data from 27 in-depth interviews from women in seven Appalachian Kentucky counties, this study examines how Appalachian women explain sociocultural barriers and facilitators to timely screening mammography, and explores their common narratives about their mammography experiences. The women describe how pain and embarrassment, less personal and less professional mammography experiences, cancer fears, and poor provider communication pose barriers to timely and appropriate mammography schedule adherence and follow-up care. The study also identifies how improving communication strategies in the mammography encounter may improve mammography experiences and adherence to screening guidelines. PMID:25668682

  8. Identifying Sociocultural Barriers to Mammography Adherence Among Appalachian Kentucky Women.

    PubMed

    Cohen, Elisia L; Wilson, Bethney R; Vanderpool, Robin C; Collins, Tom

    2016-01-01

    Despite lower breast cancer incidence rates, Appalachian women evidence lower frequency of screening mammography and higher mortality risk for breast cancer compared to non-Appalachian women in Kentucky, and in the United States, overall. Utilizing data from 27 in-depth interviews from women in seven Appalachian Kentucky counties, this study examines how Appalachian women explain sociocultural barriers and facilitators to timely screening mammography, and explores their common narratives about their mammography experiences. The women describe how pain and embarrassment, less personal and less professional mammography experiences, cancer fears, and poor provider communication pose barriers to timely and appropriate mammography schedule adherence and follow-up care. The study also identifies how improving communication strategies in the mammography encounter may improve mammography experiences and adherence to screening guidelines.

  9. Southern Appalachian Case Study

    Treesearch

    Charles C. van Sickle

    1999-01-01

    The Southern Appalachian study covers a region of 37.4 million acres. Its mountains, foothills, and valleys stretch from northern Virginia and northern West Virginia to northern Georgia and Alabama. When Native Americans came to the region, forests dominated the landscape and they still do, covering 70% of the land (Figure 32.1). Terrain characteristics are...

  10. Exploring the Schrödinger and South Pole-Aitken basins on the lunar farside

    NASA Astrophysics Data System (ADS)

    Kring, D. A.

    2013-09-01

    One or more missions to the Schrödinger and South Pole-Aitken basins can address the majority of scientific objectives in lunar research, while also providing technical challenges required to re-develop and expand our capability to explore beyond low-Earth orbit.

  11. Deepwater exploration on tap in Voring Basin I area off Norway

    SciTech Connect

    Gading, M. )

    1994-11-07

    The results of IKU Petroleum Research studies support the assessment of considerable potential for the Voring Basin in the Norwegian Sea as a hydro-carbon province. Several critical factors concerning generation and preservation of hydrocarbons remain beyond the authors present understanding. Although some of these factors may be evaluated based on existing data, more firmly grounded results cannot be expected until exploration drilling begins. The paper describes the geologic history, hydrocarbon finds, and increased exploration activity in the area.

  12. Syn- to post-Taconian basin formation in the Southern Québec Appalachians, Canada: constraints from detrital zircon U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Perrot, Morgann; Tremblay, Alain; David, Jean

    2015-04-01

    In Southern Québec, In the Southern Quebec Appalachians, the Laurentian continental margin (Humber zone) and adjacent oceanic domain of the Dunnage zone were amalgamated during the Ordovician Taconian orogeny. The Dunnage zone includes ophiolites, overlying synorogenic Ordovician deposits of both the Saint-Daniel Mélange and Magog Group and the remnants of a peri-Laurentian volcanic arc, the Ascot complex. However, recently-acquired detrital zircons geochronological data challenge some aspects of the formation and evolution the Magog Group as documented so far. The Magog Group consists of ~3 km pile of sandstone, felsic volcaniclastic rocks, graphitic slate and sandstone at the base (Frontière, Etchemin and Beauceville formations) overlain by a ~7 km-thick of a turbidites flysch sequence, constituting the St-Victor Formation at the top. The maximum age limit for the Magog Group is currently considered to be Caradocian based on graptolite fauna. This has been proven consistent with a 462 +5/-4 Ma (U-Pb ID-TIMS) from a felsic tuff of the Beauceville Formation, but in obvious contradiction with a detrital zircon U-Pb age of 424  6 Ma recently measured in the St-Victor Formation. A detrital zircon U-Pbgeochronology study (LA-HR-ICPMS), focused on the St-Victor Formation, has been therefore initiated in order to better constrain the age and tectonic evolution of the Magog Group. Results were treated according to a Bayesian mixture modeling to highlight different age populations. A feldspar-rich sandstone, directly overlying the Ascot Complex (ca. 460 Ma) and belonging to the base of the St-Victor Formation, yielded ages as young as 431 ± 3 Ma (Wenlockian). Higher in the stratigraphy, a quartz-feldspars sandstone sample contains zircons as young as 419 ±2 Ma (Pridolian). Finally, another sandstone sample from the stratigraphic top of the analyzed sequence yielded a bimodal age distribution, showing prominent populations clustering around ca. 950 Ma and ca. 435 Ma

  13. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    shows. Tacheng Basin, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  14. Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin

    SciTech Connect

    Putnam, P.E.; Moore, S. ); Ward, G. )

    1990-05-01

    Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

  15. Hydrothermal exploration of the Mariana Back Arc Basin: Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Resing, J. A.; Chadwick, B.; Baker, E. T.; Butterfield, D. A.; Baumberger, T.; Buck, N. J.; Walker, S. L.; Merle, S. G.; Michael, S.

    2016-12-01

    In November and December 2015, we visited the Southern Mariana back-arc on R/V Falkor (cruise FK151121) to explore for hydrothermal and volcanic activity. We conducted our study using the SENTRY AUV, a CTD rosette designed to do tows and vertical casts into the deep back-arc, and a trace metal CTD-package for the upper 1000m of the water column to examine transport form the nearby arc. We conducted 7 SENTRY dives, 12 tow-yos, 7 vertical casts, and 14 trace metal casts. We also mapped 24,050 km2 of the seafloor using the Falkor EM 302 multibeam. We discovered four new hydrothermal vent sites, and at one of them we found that some of the venting was coming from recently erupted lava flows. That lava flow is the deepest contemporary eruption yet discovered (at 4100-4450 m), and the first to be documented on a slow-spreading ridge. In addition, we were able to map the previously known Alice Springs hydrothermal site in unprecedented detail with AUV Sentry. The distribution of hydrothermal activity as well as chemistry of the plumes above them will be discussed. Plume chemistry data will include , Fe, Mn, CH4, H2, and 3He. The ship time for this project was provided by the Schmidt Ocean Institute with science funding provided by NOAA-Ocean Exploration.

  16. Analysis and characteristics of simulated flows from small surface-mined and undisturbed Appalachian watersheds in the Tug Fork basin of Kentucky, Virginia, and West Virginia

    SciTech Connect

    Scott, A.G.

    1984-01-01

    Data collected included continuous records of discharge, precipitation, and air temperature. Daily records of sediment concentrations and sediment discharges were also obtained and periodic observations of water-quality data taken. A compilation of all these data is presented. The observed climatic and hydrologic data from these basins were used to calibrate the US Geological Survey Precipitation-Runoff Modeling System for each watershed. The calibrated models of each basin were then used with a set of nearby, long-term climatic data to simulate a long record of stream-flow. These simulated records were analyzed to obtain flood-frequency curves, flow-duration curves, mean-annual discharges, and the 7-day, 10-year low flow for each site. The flow characteristics computed from the simulated records of discharge were analyzed graphically and statistically by regression analysis to investigate the degree of relationship and to define the relationship between mining and runoff. For this sample of small basins, peak flows, discharges for 10- and 50-percent flow durations, and mean-annual flows are directly related to percent of drainage area disturbed (measured from aerial photos) and drainage area. Percent of drainage area disturbed is generally a more statistically significant estimator of discharge than drainage area, particularly for peak flows of higher recurrence intervals. 10 references, 24 figures, 8 tables.

  17. Depositional setting of Ordovician and Cambrian rocks in central Appalachian basin along a section from Morrow County, Ohio, to Calhoun County, West Virginia

    SciTech Connect

    Ryder, R.T.

    1988-08-01

    A 200-mi (320 km) long restored stratigraphic section from Morrow County, Ohio, to Calhoun County, West Virginia, contrasts Ordovician and Cambrian rocks deposited on a relatively stable shelf with those deposited in rift and postrift basins. Lithologic data are from commercial logs and from detailed descriptions of cores in five of the nine drill holes used to construct the section. Particularly instructive was the 2,352 ft (717 m) of core from the Hope Natural Gas 9634 Power Oil basement test in Wood County, West Virginia. Rift basin deposits are dominated by medium to dark-gray argillaceous limestone, argillaceous siltstone, and by green-gray to black shale of probable subtidal origin. Dolomite is the dominant rock type in the postrift basin and adjacent stable shelf deposits. The upper part of the postrift sequence, composed of the Middle Ordovician Black River Limestone, the Middle Ordovician Trenton Limestone, and Middle and Upper Ordovician Antes (Utica) Shale with a high organic content, represents deposition in gradually deepening water on an open shelf.

  18. Raton basin, New Mexico - exploration frontier for fracture reservoirs in Cretaceous shales

    SciTech Connect

    Woodward, L.A.

    1983-03-01

    The Raton basin contains up to 3000 ft (900 m) of marine shale and subordinate carbonate rocks of Cretaceous age, including (in ascending order) the Graneros Shale, Greenhorn Limestone, Carlile Shale, Niobrara Formation, and Pierre Shale. Clastic reservoir rocks are sparse in this part of the section and drilling for them in the Raton basin has led to disappointing results. However, brittle siltstone and carbonate-rich interbeds within the Cretaceous shale intervals are capable of providing fracture reservoirs under the right conditions. Carbonate-rich beds of the Greenhorn Limestone and Niobrara Formation appear to be the most widespread and thickest intervals that might develop fracture reservoirs. Siltstone or orthoquartzitic interbeds in the Graneros, Carlile, and Pierre Shales may provide other zones with fracture systems. Hydrocarbon shows have been reported from the Graneros, Greenhorn, Niobrara, and Pierre Formations in the New Mexico parts of the Raton basin. Also, minor gas was produced from the Garcia field near Trinidad, Colorado. Fracturing appears to have enhanced the reservoir characteristics of the Wagon Mound Dakota gas field in the southern part of the basin. Structure contour maps and lithofacies maps showing brittle interbeds in dominantly shaly sequences are the basic tools used in exploration for fracture reservoirs. These maps for the Raton basin indicate numerous exploration targets.

  19. Long-term response of surface water acid neutralizing capacity in a central Appalachian (USA) river basin to declining acid deposition

    NASA Astrophysics Data System (ADS)

    Kline, Kathleen M.; Eshleman, Keith N.; Garlitz, James E.; U'Ren, Sarah H.

    2016-12-01

    Long-term changes in acid-base chemistry resulting from declining regional acid deposition were examined using data from repeating synoptic surveys conducted within the 275 km2 Upper Savage River Watershed (USRW) in western Maryland (USA); a randomly-selected set of 40 stream reaches was sampled 36 times between 1999 and 2014 to: (1) repeatedly characterize the acid-base status of the entire river basin; (2) determine whether an extensive network of streams of varying order has shown signs of recovery in acid neutralizing capacity (ANC); and (3) understand the key factors controlling the rate of ANC recovery across the river network. Several non-parametric analyses of trends (i.e., Mann Kendall Trend: MKT tests; and Regional Kendall Trend: RKT) in streamwater acid-base chemistry suggest that USRW has significantly responded to declining acid deposition during the study period; the two most robust, statistically significant trends were decreasing surface water SO42- (∼1.5 μeq L-1 yr-1) and NO3- (∼1 μeq L-1 yr-1) concentrations-consistent with observed downward trends in regional wet S and N deposition. Basin-wide decreasing trends in K+, Mg2+, and Ca2+ were also observed, while Na+ concentrations increased. Significant ANC recovery was observed in 10-20% of USRW stream reaches (depending on the p level used), but the magnitude of the trend relative to natural variability was apparently insufficient to allow detection of a basin-wide ANC trend using the RKT test. Watershed factors, such as forest disturbances and increased application of road deicing salts, appeared to contribute to substantial variability in concentrations of NO3- and Na+ in streams across the basin, but these factors did not affect our overall interpretation of the results as a systematic recovery of USRW from regional acidification. Methodologically, RKT appears to be a robust method for identifying basin-wide trends using synoptic data, but MKT results for individual systems should be

  20. Applications of geographic information systems (GIS) to exploration studies in the San Juan basin, New Mexico

    SciTech Connect

    Miller, B.M. )

    1990-05-01

    The US Geological Survey (USGS) is currently applying geographic information systems (GIS) technology to develop a geologic knowledge base that will provide the framework for an integrated basin analysis for the San Juan basin. GIS technology involves the integration of mapping and data-base functions that enable the user to integrate and manipulate spatial (coordinate) data with attribute (thematic) data in order to combine complex geographic, geologic, and geophysical data sets into resultant overlay and composite maps and to conduct multivariate exploratory data analysis and have access to a variety of options for analyzing these databases. The San Juan basin, a 13,500-mi{sup 2} Laramide structural basin in northwestern New Mexico, was chosen for the pilot project. The basin encompasses a maximum of over 15,000 ft of Paleozoic to Eocene sedimentary rock and contains economic deposits of natural gas, oil, coal, and uranium. Successful exploration in this basin requires an understanding of the complex stratigraphy and structural geology controlling the distribution of these resources. GIS technology applied to the San Juan basin includes both surface and subsurface data sets that establish a three-dimensional perspective of the basin's fundamental stratigraphic and structural framework and aid in the identification of its temporal and tectonic relationships relative to origin and occurrence of its resources. Among the digital data bases used for surface mapping is the US GeoData system from the USGS's national mapping program, which includes digital elevation models (DEM) for terrain elevations: digital line graphs (DLG) for planimetric information on boundaries, transportation, hydrography, and the US Public Land Survey system; and land use and land cover (LULC) data. Additional data bases used for surface mapping include surficial geology, locations of oil and gas wells, well status, and oil and gas fields.

  1. The Role of Language in Interactions with Others on Campus for Rural Appalachian College Students

    ERIC Educational Resources Information Center

    Dunstan, Stephany Brett; Jaeger, Audrey J.

    2016-01-01

    Dialects of English spoken in rural, Southern Appalachia are heavily stigmatized in mainstream American culture, and speakers of Appalachian dialects are often subject to prejudice and stereotypes which can be detrimental in educational settings. We explored the experiences of rural, Southern Appalachian college students and the role speaking a…

  2. The Role of Language in Interactions with Others on Campus for Rural Appalachian College Students

    ERIC Educational Resources Information Center

    Dunstan, Stephany Brett; Jaeger, Audrey J.

    2016-01-01

    Dialects of English spoken in rural, Southern Appalachia are heavily stigmatized in mainstream American culture, and speakers of Appalachian dialects are often subject to prejudice and stereotypes which can be detrimental in educational settings. We explored the experiences of rural, Southern Appalachian college students and the role speaking a…

  3. White Infant Mortality in Appalachian States, 1976-1980 and 1996-2000: Changing Patterns and Persistent Disparities

    PubMed Central

    Yao, Nengliang; Matthews, Stephen A.; Hillemeier, Marianne M.

    2013-01-01

    Purpose Appalachian counties have historically had elevated infant mortality rates. Changes in infant mortality disparities over time in Appalachia are not well-understood. This study explores spatial inequalities in white infant mortality rates over time in the 13 Appalachian states, comparing counties in Appalachia with non-Appalachian counties. Methods Data are analyzed for 1,100 counties in 13 Appalachian states that include 420 counties designated as Appalachian by the Appalachian Regional Commission. Area Resource File data for 1976-1980 and 1996-2000 provide county- and city-level infant mortality rates, poverty rates, rural-urban continuum codes, and numbers of physicians per 1,000 residents. Multiple regression analyses evaluate whether Appalachian counties are significantly associated with elevated white infant mortality in each time period, accounting for covariates. Findings White infant mortality rates decreased substantially in all sub-regions over the last 2 decades; however, disparities in infant mortality did not diminish in Appalachian counties compared to non-Appalachian counties. After accounting for poverty, rural/urban status, and health care resources, Appalachian counties were significantly associated with comparatively higher infant mortality during the late 1970s but not in the late 1990s. At the more recent time point, higher poverty rates, residence in more rural areas, and lower physician density were associated with greater infant mortality risk. Conclusion Appalachian counties continue to experience relatively elevated infant mortality rates. Poverty and rurality remain important dimensions of health service need in Appalachia. PMID:22458318

  4. White infant mortality in Appalachian states, 1976-1980 and 1996-2000: changing patterns and persistent disparities.

    PubMed

    Yao, Nengliang; Matthews, Stephen A; Hillemeier, Marianne M

    2012-01-01

    Appalachian counties have historically had elevated infant mortality rates. Changes in infant mortality disparities over time in Appalachia are not well-understood. This study explores spatial inequalities in white infant mortality rates over time in the 13 Appalachian states, comparing counties in Appalachia with non-Appalachian counties. Data are analyzed for 1,100 counties in 13 Appalachian states that include 420 counties designated as Appalachian by the Appalachian Regional Commission. Area Resource File data for 1976-1980 and 1996-2000 provide county- and city-level infant mortality rates, poverty rates, rural-urban continuum codes, and numbers of physicians per 1,000 residents. Multiple regression analyses evaluate whether Appalachian counties are significantly associated with elevated white infant mortality in each time period, accounting for covariates. White infant mortality rates decreased substantially in all sub-regions over the last 2 decades; however, disparities in infant mortality did not diminish in Appalachian counties compared to non-Appalachian counties. After accounting for poverty, rural/urban status, and health care resources, Appalachian counties were significantly associated with comparatively higher infant mortality during the late 1970s but not in the late 1990s. At the more recent time point, higher poverty rates, residence in more rural areas, and lower physician density were associated with greater infant mortality risk. Appalachian counties continue to experience relatively elevated infant mortality rates. Poverty and rurality remain important dimensions of health service need in Appalachia. © 2011 National Rural Health Association.

  5. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    1998-08-28

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends.

  6. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Dr. Ronald C. Surdam

    1999-02-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends.

  7. Cenozoic tectonic evolution and petroleum exploration in Perl River Mouth basin, South China Sea

    SciTech Connect

    Chi Yukun; Xu Shice )

    1990-06-01

    The Pearl River Mouth basin is a large Cenozoic continental margin basin that is rich in hydrocarbon potential. Fluvial-lake sequences were deposited before Oligocene, but all were covered by Miocene marine clastic and carbonate rocks. Both paleo-Pearl River delta system and reef/bank carbonate system were widely developed. At the early stage of the evolution, two subsidence belts and one uplift between them distributed in NE regional direction; grabens occurred in the north belt and depressions in the south belt. Tectonic movement was stronger in the east than the west. The main production zones have been drilled both in Miocene sandstone and carbonate rocks. As the exploration activities are developing, the basin will be one of the most significant China offshore oil production areas.

  8. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng

    2016-04-01

    shows, and oil and gas fields have also been discovered in the Zaysan Basin in adjacent Kazakhstan and in adjacent Junggar, Tuha and Santanghu Basins. Drilling data, geochemical analysis of outcrop data, and the disection of ancient Bulongguoer oil reservoir at the south margin of the Hefeng Basin show there developed two sets of good transitional source rocks, the lower Hujierste Formation in the Middle Devonian (D2h1) and the Hebukehe Formation in the Upper Devonian and Lower Carboniferous (D3-C1h) in this area, which, 10 to 300 m thick, mainly distribute in the shoal water zone along Tacheng-Ertai Late Paleozoic island arc belt. Reservoirs were mainly formed in the Jurassic and then adjusted in two periods, one from the end of the Jurassic to middle Cretaceous and the other in early Paleogene. Those early oil reservoirs might be destroyed in areas such as Bulongguoer with poor preservation conditions, but in an area with good geologic and preserving conditions, oil and gas might accumulate again to form new reservoirs. Therefore, a potential Middle Devonian-Lower Carboniferous petroleum system may exist in Tacheng-Ertai island arc belt, which may become a new domain for exploration, north faulted fold belt in the Heshituoluogai basin, and Hongyan fault bench zone in north Ulungur Depression in the Junggar Basin are promising areas for hydrocarbon exploration.

  9. Reprocessing Seismic Data - Using Wits Seismic Exploration Data to Image the Karoo Basin

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Scheiber-Enslin, S. E.; Manzi, M. S.

    2016-12-01

    During the heyday of seismic exploration of the Witwatersrand Basin, Anglo American's Gold Division acquired several thousand kilometres of Vibroseis reflection seismic data. These data, acquired from 1983-1994, were collected with the goal of finding extensions to the Witwatersrand Basin. In a prescient move, over 500 line kilometres were collected at 16 s two way travel time (TWT), extending to depths of 50 -70 km and have provided critical insight into the formation of the Kaapvaal Craton. In addition to these deep seismic lines, Anglo American acquired an extensive network of heretofore unpublished seismic lines that were collected at 6 sec TWT extending well beyond the known limits of the Witwatersrand Basin. The South African government as part of the national geophysical program in the late 1980s acquired six research reflection seismic lines in varied geological settings accruing another 700 km of data. Many of these data are now hosted at the University of the Witwatersrand's newly established Seismic Research Centre and represent unprecedented coverage and research opportunities. With recent global interest in shale gas, attention focused on the Karoo Basin in South Africa. Early exploration seismic data acquired by Soekor in the 1970s has been lost; however, digitized paper records indicate clear reflection targets. Here we examine one of the AngloGold seismic lines that was acquired in the middle of the Karoo Basin just south of Trompsburg extending to the southeast towards Molteno. This 150 km long line crosses the edge of the Kaapvaal Craton and shows clear reflectors throughout the Karoo Basin. These include the well-defined base of the Karoo and a number of dolerite sills within it. Nearby gas escape structures have been identified on surface and it is likely that several disruptions along this line are related to these or to dykes associated with the sills.

  10. Recent exploration and drilling activity in the Lafayette Bol. mex. basin

    SciTech Connect

    Harrison, F.W. Jr.

    1995-10-01

    The 1984 discovery of thick Bol. mex. gas sands at the Broussard Field initiated an intense exploration play. This activity and further evaluation of existing fields has centered in and around Lafayette, Louisiana. Since 1984 drilling for Bol. mex. sands has resulted in the discovery of several new fields and extensions. Cumulative production from fields within the basin is 425 BCF gas and 20 million barrels of condensate through 1994. The quest for these high yield reservoirs, which average over 200 feet in thickness in some fault blocks, continues unabated. There are four wells currently drilling near Lafayette with Bol. mex. sands as the main objective. One of the most exciting ventures is being drilled by Vastar in the city of Lafayette. All the drilling wells are located in the Lafayette Bol. mex. basin which is a large depositional center of Oligocene {open_quotes}Frio{close_quotes} sands centering just west of Lafayette. Approximately 2000 feet thick, the basin is a sequence of alternating sands and shales deposited in a deep marine environment. It is flanked on the north by a large growth fault which forms the northern limit of the basin. Basinward, a series of additional growth faults strike south of the subparallel to the northern edge of the Bol. mex. basin. The production seems to be associated with structures along the strike of the growth faulting. The fields which produce from the Bol. mex. interval are Scott, Broussard, West Ridge, Duson-Ridge, North Broussard, Milton, Maurice, North Maurice and Perry Point.

  11. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    SciTech Connect

    Ronald C. Surdam; Zunsheng Jiao; Nicholas K. Boyd

    1999-11-01

    The new exploration technology for basin center gas accumulations developed by R.C. Surdam and Associates at the Institute for Energy Research, University of Wyoming, was applied to the Riverton Dome 3-D seismic area. Application of the technology resulted in the development of important new exploration leads in the Frontier, Muddy, and Nugget formations. The new leads are adjacent to a major north-south trending fault, which is downdip from the crest of the major structure in the area. In a blind test, the drilling results from six new Muddy test wells were accurately predicted. The initial production values, IP, for the six test wells ranged from < one mmcf/day to four mmcf/day. The three wells with the highest IP values (i.e., three to four mmcf/day) were drilled into an intense velocity anomaly (i.e., anomalously slow velocities). The well drilled at the end of the velocity anomaly had an IP value of one mmcf/day, and the two wells drilled outside of the velocity anomaly had IP values of < one mmcf/day and are presently shut in. Based on these test results, it is concluded that the new IER exploration strategy for detecting and delineating commercial, anomalously pressured gas accumulation is valid in the southwestern portions of the Wind River Basin, and can be utilized to significantly reduce exploration risk and to increase profitability of so-called basin center gas accumulations.

  12. Composition of natural gas and crude oil produced from 14 wells in the Lower Silurian "Clinton" Sandstone and Medina Group Sandstones, northeastern Ohio and northwestern Pennsylvania: Chapter G.6 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The geochemical processes that control the distribution of hydrocarbons in the regional accumulation of natural gas and crude oil in reservoirs of Early Silurian age in the central Appalachian basin are not well understood. Gas and oil samples from 14 wells along a down-dip transect through the accumulation in northeastern Ohio and northwestern Pennsylvania were analyzed for molecular and stable isotopic compositions to look for evidence of hydrocarbon source, thermal maturation, migration, and alteration parameters. The correlation of carbon and hydrogen stable isotopic composition of methane with thermal maturation indicates that the deepest gases are more thermally mature than independent estimates of thermal maturity of the reservoir horizon based on the conodont alteration index. This correlation indicates that the natural gas charge in the deepest parts of the regional accumulation sampled in this study originated in deeper parts of the Appalachian basin and migrated into place. Other processes, including mixing and late-stage alteration of hydrocarbons, may also impact the observed compositions of natural gases and crude oils.

  13. Application of sequence stratigraphy to oil and gas exploration in Bredasdorp basin offshore South Africa

    SciTech Connect

    Van Wyk, N.J.S.

    1989-03-01

    For more than two decades, oil and gas exploration in offshore South African rift basins within structural synrift plays yielded limited success. After the first oil discovery in postrift sediments in the Bredasdorp basin in 1987, sequence-stratigraphic concepts were applied to the Lower Cretaceous postrift sequences to permit correlation of depositional systems tracts and related facies throughout the basin. Extensive high-resolution seismic coverage and borehole control supported the study. The interplay of diminishing rift tectonics, thermal cooling, and inferred eustatic variations in global sea level produced a distinctive series of repetitive cycle depositional sequences. As many as 10 cyclic sequences and megasequences, deposited between the mid-Valanginian and lower Santonian, can be recognized within resolution limits of regional seismic profiles. Various elements of lowstand systems tracts within these sequences appear to contain potential reservoirs. Highly erosional (type 1) unconformities, commonly exhibiting incised valleys and canyons, provide surfaces on which (1) mounded and sheetlike submarine/basin-floor fans, (2) submarine channel fill and associated mounds and fans, and (3) prograding deltaic/coastal lowstand wedges were deposited. These fans, channel fills, and wedges are top sealed and sourced by transgressive shales and marine condensed sections, deposited at a time of regional transgression of the shoreline. One discovery well and various reservoir-quality sandstones occurring at predicted stratigraphic levels in other wells support the application of the sequence-stratigraphic concepts to hydrocarbon exploration.

  14. Multicultural Counseling: An Appalachian Perspective

    ERIC Educational Resources Information Center

    Salyers, Kathleen M.; Ritchie, Martin H.

    2006-01-01

    Appalachians have been referred to as the forgotten people and are often overlooked in multicultural counseling. A case study is presented using the extended case method to enhance counselor awareness and demonstrate how counselors can apply knowledge of the Appalachian culture in the provision of best practices for this population.

  15. Security along the Appalachian Trail

    Treesearch

    James J. Bacon; Robert E. Manning; Alan R. Graefe; Gerard Kyle; Robert D. Lee; Robert C. Burns; Rita Hennessy; Robert Gray

    2002-01-01

    The Appalachian National Scenic Trail (AT) is a public footpath that spans more than 2.000 miles of Appalachian Mountain ridgelines. It stretches from Mount Katahdin in Maine to Springer Mountain in Georgia and passes through twelve other states along the way. It is estimated that the AT lies within a day's drive of over half the country's population. Thus,...

  16. Field based geothermal exploration: Structural controls in the Tarutung Basin/North Central Sumatra (Indonesia)

    NASA Astrophysics Data System (ADS)

    Nukman, M.; Moeck, I.

    2012-04-01

    The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last

  17. Riverton Dome Gas Exploration and Stimulation Technology Demonstration, Wind River Basin, Wyoming

    SciTech Connect

    Ronald C. Surdam

    1998-11-15

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends. The Institute for Energy Research has taken a unique approach to building a new exploration strategy for low-permeability gas accumulations in basins characterized by anomalously pressured, compartmentalized gas accumulations. Key to this approach is the determination and three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes, and the detection and delineation of areas of enhanced storage capacity and deliverability below this boundary. This new exploration strategy will be demonstrated in the Riverton Dome� Emigrant Demonstration Project (RDEDP) by completing the following tasks: 1) detect and delineate the anomalous pressure boundaries, 2) delineate surface lineaments, fracture and fault distribution, spacing, and orientation through remote sensing investigations, 3) characterize the internal structure of the anomalous pressured volume in the RDEDP and

  18. Quantification of Exhumation from Sonic Velocity Data, Cooper Basin, Australia, and Implications for Hydrocarbon Exploration

    NASA Astrophysics Data System (ADS)

    Mavromatidis, Angelos

    2006-05-01

    Exhumation (defined as rock uplift minus surface uplift) in the Cooper Basin of South Australia and Queensland has been quantified using the compaction methodology. The sonic log, which is strongly controlled by the amount of porosity, is an appropriate indicator of compaction, and hence is used for quantifying exhumation from compaction. The traditional way of estimating exhumation based on the degree of overcompaction of a single shale unit has been modified and five units ranging in age from Permian to Triassic have been analysed. The results reveal that exhumation increases eastwards from the South Australia into the Queensland sector of the basin. The results show that exhumation in Late Triassic - Early Jurassic times, after the Cooper Basin deposition, seems to be 200-400 m higher than exhumation in Late Cretaceous - Tertiary times, after the Eromanga Basin deposition. This study has major implications for hydrocarbon exploration. Maturation of source rocks will be greater for any given geothermal history if exhumation is incorporated in maturation modelling. Exhumation values can also be used to improve porosity predictions of reservoir units in undrilled targets.

  19. Past operations, results, and prospects of future petroleum explorations in the SE Pannonian basin

    SciTech Connect

    Sarkovic, M.; Stankovic, S. )

    1991-08-01

    The long history of petroleum operations in the southeastern area of the Pannonian basin (eastern Yugoslavia) relates to successful explorations using state-of-art tools in geology, geophysics, and geochemistry, as well as in deep drilling. The paper will discuss chronologically past explorations and problems encountered in its specific stages. A comprehensive petroleum geological overview will highlight the most important features of the 30,000-km{sup 2} exploration area, including issues such as oil and gas origin, occurrence of source, reservoir, and cap rocks, hydrocarbon migration and accumulation etc. Particular attention will be devoted to the description of the applied exploration techniques and results obtained on this very interesting hydrocarbon-bearing area. Due space will be given to the application of the recent developments for assessing the potential of the deep buried, comparatively unknown targets situated in extremely complex environments under adverse temperature and pressure conditions.

  20. Prospects for hydrocarbon exploration in the Mesozoic and Paleozoic sections of the Pannonian basin in Hungary

    SciTech Connect

    Mattick, R. ); Koncz, I.; Bardocz, B.; Szalay, A.; Szent-Gyoergyi, K. ); Csaszar, G.; Juhasz, E. )

    1993-09-01

    To date, exploration in the Pannonian basin of Hungary has concentrated on oil and gas believed to be derived from source rocks of the Cenozoic. In this sense, the basin is a mature hydrocarbon province. However, exploration of the Mesozoic and Paleozoic sections has just begun. These section may contain significant quantities of hydrocarbons derived from source rocks of the Mesozoic. Much of the buried basement consists of a complex system of stacked nappes composed of Mesozoic and older rocks. Basement structures from three areas are shown: (1) southwestern Hungary, where oil and gas produced from fracture zones in the crest of nappes; (2) southeastern Hungary, where thrusting occurred subsequent to Upper Cretaceous deposition; and (3) western Hungary, where thrusting occurred prior to Upper Cretaceous deposition. In general, Paleozoic-Middle Triassic rocks are overmature; however, Upper Triassic-Cretaceous rocks entered the oil-generation window during the Neogene. The heavy oils of the Zala basin were generated from organic-rich marls of the Late Triassic. In the Mecsek area, Toarcian shales are likely a good source for oil. Upper Cretaceous rocks, because of their terrestrial character, are inferred to be gas prone. Reservoir properties of Triassic and older rocks are expected to be poor, except where fracture porosity occurs. In the Nagylengyel field, rudist limestones of Late Cretaceous contain prolific reservoirs with primary solution and fracture porosity. Although the average porosities of these reservoir rocks are relatively low (2-4%), permeabilities are >1-2 d as a result of paleokarst development.

  1. Characteristics of discrete and basin-centered parts of the Lower Silurian regional oil and gas accumulation, Appalachian basin; preliminary results from a data set of 25 oil and gas fields

    USGS Publications Warehouse

    Ryder, Robert T.

    1998-01-01

    Oil and gas trapped in Lower Silurian 'Clinton' sands and Medina Group sandstone constitute a regional hydrocarbon accumulation that extends 425 mi in length from Ontario, Canada to northeastern Kentucky. The 125-mi width of the accumulation extends from central Ohio eastward to western Pennsylvania and west-central New York. Lenticular and intertonguing reservoirs, a gradual eastward decrease in reservoir porosity and permeability, and poorly segregated gas, oil, and water in the reservoirs make it very difficult to recognize clear-cut geologic- and production-based subdivisions in the accumulation that are relevant to resource assessment. However, subtle variations are recognizable that permit the regional accumulation to be subdivided into three tentative parts: a western gas-bearing part having more or less discrete fields; an eastern gas-bearing part having many characteristics of a basin-centered accumulation; and a central oil- and gas-bearing part with 'hybrid' fields that share characteristics of both discrete and basin-centered accumulation. A data set of 25 oil and gas fields is used in the report to compare selected attributes of the three parts of the regional accumulation. A fourth part of the regional accumulation, not discussed here, is an eastern extension of basin-centered accumulation having local commercial gas in the Tuscarora Sandstone, a proximal facies of the Lower Silurian depositional system. A basin-centered gas accumulation is a regionally extensive and commonly very thick zone of gas saturation that occurs in low-permeability rocks in the central, deeper part of a sedimentary basin. Another commonly used term for this type of accumulation is deep-basin gas accumulation. Basin-centered accumulation is a variety of continuous-type accumulation. The 'Clinton' sands and Medina Group sandstone part of the basin-centered gas accumulation is characterized by: a) reservoir porosity ranging from about 5 to 10 percent; b) reservoir permeability

  2. Use of groundwater temperature data in geothermal exploration: the example of Sydney Basin, Australia

    NASA Astrophysics Data System (ADS)

    Danis, Cara

    2013-11-01

    Multidimensional simulations in geothermal exploration require vast quantities of measurements, including temperature, to produce realistic estimates. In Australia, the database of temperature measurements is small, limited by sparse distribution and tainted by non-equilibrium conditions. Groundwater temperature data from the groundwater-monitoring/water-supply bore network provide a creative cost effective way to bridge the information gap. Down-hole temperature profiles are valuable when thermal equilibrium conditions are present. Equilibrium conditions are common in groundwater bores as they are installed to be long term. Effective use of groundwater temperature data for geothermal exploration requires an understanding of (1) the thermal conditions being measured, (2) the factors that affect the measurement, and (3) how the measurements can be used. Highly constrained models, rather than extrapolation maps, are the cost effective, risk-reducing solution for geothermal exploration in Australia. The Sydney Basin provides a case study of how an undervalued, `cold' coal-bearing sedimentary basin became `hot' through high-resolution modelling using groundwater temperature measurements. Groundwater temperature data are the new information source capable of filling the gaps left by the limited deep temperature measurements. Hydrogeological data play a critical role in geothermal exploration, as models representing a highly complex world approach reality.

  3. Forming a deep-water forearc basin by subduction erosion--exploring this idea for the prominent Aleutian forearc basin

    NASA Astrophysics Data System (ADS)

    Scholl, D.; Huene, R. V.; Ryan, H.

    2003-04-01

    INTRODUCTION: A widely cited model links the formation of deep-water forearc basins to the outward growth of an accretionary prism along the seaward and uplifted edge of a slab of ocean crust that is abandoned in the forearc when a new oceanic subduction (SZ) forms. Because the structurally prominent Aleutian forearc basin (AFB) formed ~50 Myr after the initiation of the Aleutian SZ, we explore the notion that the AFB was substantially created by basal subduction erosion. THE AFB. The Aleutian Ridge (arc) is fronted by a wide (~50 km), laterally continuous (1500-2000 km), and bathymetrically prominent platform--the Aleutian Terrace. The terrace overlies the deep-water (4-5 km) AFB, which contains a 2-3-km thick fill of latest Miocene and younger sedimentary deposits overlying an older pre-basinal sedimentary sequence (~0.5 km thick) and an underlying basement that in part or in whole consists of the arc massif. Seaward of the AFB, the lower landward trench slope is constructed of a 30-40-km wide frontal prism of presumably mostly offscraped trench floor deposits. SUBDUCTION EROSION. Basal subduction erosion thins the forearc crust by processes of tectonic erosion that detach rock from the upper plate and transports this material toward the mantle. Evidence for subduction erosion gained by drilling and geophysical studies of SZ margins includes (1) rapid (~0.2-0.8 km/Myr) and substantial (3-5 km) forearc subsidence, and (2) long-term (>10-15 Myr) landward migration of the arc magmatic front. Observations that subduction erosion has thinned Aleutian crust include (1) the landward migration of the volcanic front (~30 km since ~34 Ma and 20 km since ~12 Ma), and, bordering the AFB, (2), a deeply (1-1.5 km) subsided and seaward tilted shelf edge of late Neogene age. We speculate that during the past 5-6 Myr underthrusting beneath the forearc of a nearly horizontal slab covered by a ~1-km-thick layer of subducted trench sediment enhanced subduction erosion and created

  4. Geology of oil fields and future exploration potential in west African Aptian Salt basin

    SciTech Connect

    Bignell, R.D.; Edwards, A.D.

    1987-05-01

    The Aptian Salt basin of west Africa, extends from Equatorial Guinea southward to Angola, contains recoverable reserves estimated at nearly 4 billion BOE, and is current producing 600,000 BOPD. The basin developed as a result of tensional forces between west Africa and South America initiated at the end of the Jurassic. The prospective sedimentary sequences ranged in age from Early Cretaceous (uppermost Jurassic in places) to Holocene and is divided by the Aptian transgressive sand and salt into a pre-salt, nonmarine, syn-rift sequence and a post-salt, marine, post-rift sequence. Both the pre- and post-salt sequences contain several successful exploration plays, the most prolific of which are the Early Cretaceous nonmarine sandstone fields in tilted fault blocks of Gabon and Cabinda; Early Cretaceous carbonate buildups on the margins of basement highs in Cabinda; Early Cretaceous transgressive marine sandstone fields in anticlines draped over basement highs in Gabon; Late Cretaceous shallow marine sandstone and carbonate fields in salt-related structures in the Congo, Zaire, Cabinda, and Angola; Late Cretaceous dolomites in structural/stratigraphic traps in Angola; Late Cretaceous/early Tertiary deltaic/estuarine sandstone traps formed by salt movement in Gabon, Cabinda, and angola; and Tertiary marine turbidite fields in Cabinda and Angola. Despite the exploration success in these trends, much of the basin is under or poorly explored. The major problems for exploration are the poor quality of seismic definition beneath the salt, which makes it difficult to predict pre-salt structure and stratigraphy, and the importance of a stratigraphic element in many of the post-salt traps, also difficult to detect on seismic.

  5. Middle Ordovician carbonate ramp deposits of central Appalachians

    SciTech Connect

    Demicco, R.V.

    1986-05-01

    Middle Ordovician carbonates exposed in Maryland and Pennsylvania can be divided into six facies, each a few tens to hundreds of meters thick: (1) cyclic, meter-scale, alternating thin-bedded to massive limestones and mud-cracked, stromatolitic laminites; (2) thick-bedded to massive skeletal wackestones containing diverse fauna; (3) cross-stratified skeletal-oncoid grainstones; (4) graded, thin-bedded limestones with diverse fauna and internal planar lamination or hummocky cross-stratification; (5) nodular, thin-bedded limestones; and (6) shaly, thin-bedded to laminated limestones containing rare breccia beds. These facies are interpreted as deposits of: (1) tidal flats; (2) open, bioturbated muddy shelf; (3) lime-sand shoals; (4) below normal wave-base shelf; (5) deep ramp; and (6) basin. Palinspastic reconstructions of facies distribution in Maryland and Pennsylvania suggest that these facies developed during flooding of a carbonate ramp that deepened northeastward into a foreland basin. This northern depocenter of the Middle Ordovician Appalachian foreland basin is notably different that its southern counterpart in Virginia and Tennessee. Large skeletal bioherms did not develop on the northern carbonate ramp, where only one onlap package exists. Thus, although the record of the foundering of the passive Cambrian-Ordovician carbonate shelf is grossly similar in the southern and central Appalachians, there are several significant differences. The overlying Martinsburg Formation contains deep-water facies and taconic-style thrust sheets in the central Appalachians, which suggests that the two depocenters may have had different tectonic settings.

  6. Exploring Unconventional Hydrocarbons in the Makó Trough, Pannonian basin, Hungary: Results and Challenges

    NASA Astrophysics Data System (ADS)

    Horvath, Anita; Bada, Gabor; Szafian, Peter; Sztano, Orsolya; Law, Ben; Wallis, Rod

    2010-05-01

    The latest phase exploration in the Makó Trough, which commenced a few years ago, has focused on the utilization of unconventional hydrocarbons. Accumulations are regarded as "unconventional" when they cannot be produced economically except by means of some sort of stimulation, usually hydraulic fracturing. The model we have developed for the evaluation of the hydrocarbon potential indicates a significant gas accumulation in the area of the Makó Trough. The tally of the distinctive attributes of the hydrocarbon system and the combined analysis of the available geological data led to the conclusion that the Makó Trough represents an area of active basin-centered gas accumulation (BCGA), with very significant perspective reserves. In a BCGA, hydrocarbons do not accumulate conventionally, in structural or stratigraphic traps, but rather in cells. Due to the geological setting of the Makó Trough, the hydrocarbon cell here forms a relatively continuous zone marked by considerable internal lithological and petrophysical variability. The most prolific parts, called sweet spots, possess a reservoir potential higher than the average. The identification of these sweet spots constitutes one of the most important, and quite possibly the most challenging task of the entire exploration project. The hemipelagic Endrőd Formation, which acts as the source rock, contains organic-rich marls in a depth delimited by the 170-230 °C isotherms. These marls constitute the still active hydrocarbon "kitchen" of the BCGA in the Makó Trough. The top and bottom boundaries of the cell essentially coincide with the turbidites of the Szolnok Formation and the top of the pre-Neogene basement, respectively. In light of the fact that pressure, temperature, and maturity tests have produced rather similar results in a number of wells in the area, we have reason to believe that the extension of the Makó Trough's BCGA is of regional dimensions (>1000 km2). The thickness and lateral extension of

  7. Perspectives on Physical Activity and Exercise Among Appalachian Youth

    PubMed Central

    Swanson, Mark; Schoenberg, Nancy E.; Erwin, Heather; Davis, Rian E.

    2015-01-01

    Background Most children in the United States receive far less physical activity (PA) than is optimal. In rural, under resourced areas of Appalachian Kentucky, physical inactivity rates are significantly higher than national levels. We sought to understand children’s perceptions of PA, with the goal of developing culturally appropriate programming to increase PA. Methods During 11 focus groups, we explored perspectives on PA among 63 Appalachian children, ages 8–17. Sessions were tape recorded, transcribed, content analyzed, and subjected to verification procedures. Results Several perspectives on PA emerged among these rural Appalachian youth, including the clear distinction between PA (viewed as positive) and exercise (viewed as negative) and an emphasis on time and resource factors as barriers to adequate PA. Additional PA determinants expressed in the focus groups are similar to those of other populations. We include children’s recommendations for appealing PA programs. Conclusions Appalachian and other rural residents contend with the loss of rural health advantages (due to declines in farming/other occupational and avocational transitions). At the same time, Appalachian residents have not benefitted from urban PA facilitators (sidewalks, recreational facilities, clubs and organized leisure activities). Addressing low PA levels requires extensive community input and creative programming. PMID:22397810

  8. Perspectives on physical activity and exercise among Appalachian youth.

    PubMed

    Swanson, Mark; Schoenberg, Nancy E; Erwin, Heather; Davis, Rian E

    2013-01-01

    Most children in the United States receive far less physical activity (PA) than is optimal. In rural, under resourced areas of Appalachian Kentucky, physical inactivity rates are significantly higher than national levels. We sought to understand children's perceptions of PA, with the goal of developing culturally appropriate programming to increase PA. During 11 focus groups, we explored perspectives on PA among 63 Appalachian children, ages 8-17. Sessions were tape recorded, transcribed, content analyzed, and subjected to verification procedures. Several perspectives on PA emerged among these rural Appalachian youth, including the clear distinction between PA (viewed as positive) and exercise (viewed as negative) and an emphasis on time and resource factors as barriers to adequate PA. Additional PA determinants expressed in the focus groups are similar to those of other populations. We include children's recommendations for appealing PA programs. Appalachian and other rural residents contend with the loss of rural health advantages (due to declines in farming/other occupational and avocational transitions). At the same time, Appalachian residents have not benefitted from urban PA facilitators (sidewalks, recreational facilities, clubs and organized leisure activities). Addressing low PA levels requires extensive community input and creative programming.

  9. Aspects of exploration, development of Vulcan sub-basin, Timor Sea

    SciTech Connect

    Smith, B.L. ); Lawrence, R.B. )

    1989-10-01

    This article presents a geological summary of the Vulcan sub-basin. Three exploratory phases in the Timor Sea are detailed and the economics of exploration in this area is discussed. The Timor Sea is emerging as a major Australian oil-producing area. From the Jabiru field alone Timor Sea oil production contributes 9% of Australia's oil production. The Timor Sea will soon rank second in terms of daily production. Early phases of exploration in the area focused on the detection and drilling of large structures. Success rates were low. Since the Jabiru discovery in 1983, better exploration methods have resulted in the delineation of many prospects which could contain significant oil reserves. New play concepts being developed will result in additional prospects.

  10. Exploring the Schrödinger and South Pole-Aitken Basins on the Lunar Farside

    NASA Astrophysics Data System (ADS)

    Kring, David

    The Moon remains largely unexplored. No traverses or sampling have occurred around either lunar pole, nor anywhere on the lunar farside. Intriguingly, the few samples returned to Earth from the nearside and to have fallen as meteorites indicate the Moon is probably the best and most accessible place in the Solar System to deduce processes associated with planetary accretion, differentiation, formation of primitive planetary crust, and impact modification of that crust. There is broad international consensus that exploration of the Moon can address fundamentally important scientific questions. One of the most comprehensive studies of lunar science objectives was produced by the US National Research Council (NRC) of The National Academies (2007). The report outlined eight scientific concepts and thirty-five prioritized investigations. While that study was conducted at the request of NASA, there is broad international support for those objectives (e.g., Crawford et al. 2012). Beginning in 2008, a series of studies were conducted to determine the locations on the lunar surface where each of those investigations could be addressed. The final summary of those studies (Kring and Durda 2012) revealed that the majority of objectives could be addressed within the South Pole-Aitken basin. Furthermore, the Schrödinger basin, which is within the South Pole-Aitken basin, is the best location anywhere on the Moon for addressing the highest priority and largest number of objectives. The study also found that Amundsen crater, also within the South Pole-Aitken basin, may be a better landing site than the often discussed Shackleton crater to study polar volatiles. References: National Research Council (NRC): The Scientific Context for Exploration of the Moon, The National Academies Press, 2007. Crawford, I.A., Anand, M., Cockell, C.S., Falcke, H., Green, D.A., Jaumann, R., and Wieczorek, M.A.: Back to the Moon: The scientific rationale for resuming lunar surface exploration

  11. Geology of the Southern Appalachian Mountains

    USGS Publications Warehouse

    Clark, Sandra H.B.

    2008-01-01

    The Southern Appalachian Mountains includes the Blue Ridge province and parts of four other physiographic provinces. The Blue Ridge physiographic province is a high, mountainous area bounded by several named mountain ranges (including the Unaka Mountains and the Great Smoky Mountains) to the northwest, and the Blue Ridge Mountains to the southeast. Metamorphic rocks of the mountains include (1) fragments of a billion-year-old supercontinent, (2) thick sequences of sedimentary rock that were deposited in subsiding (sinking) basins on the continent, (3) sedimentary and volcanic rocks that were deposited on the sea floor, and (4) fragments of oceanic crust. Most of the rocks formed as sediments or volcanic rocks on ocean floors, islands, and continental plates; igneous rocks formed when crustal plates collided, beginning about 450 million years ago. The collision between the ancestral North American and African continental plates ended about 270 million years ago. Then, the continents began to be stretched, which caused fractures to open in places throughout the crust; these fractures were later filled with sediment. This product (U.S. Geological Survey Scientific Investigations Map 2830) consists of a geologic map of the Southern Appalachian Mountains overlain on a shaded-relief background. The map area includes parts of southern Virginia, eastern West Virginia and Tennessee, western North and South Carolina, northern Georgia and northeastern Alabama. Photographs of localities where geologic features of interest can be seen accompany the map. Diagrams show how the movement of continental plates over many millions of years affected the landscapes seen today, show how folds and faults form, describe important mineral resources of the region, and illustrate geologic time. This two-sided map is folded into a convenient size (5x9.4 inches) for use in the field. The target audience is high school to college earth science and geology teachers and students; staffs of

  12. White Infant Mortality in Appalachian States, 1976-1980 and 1996-2000: Changing Patterns and Persistent Disparities

    ERIC Educational Resources Information Center

    Yao, Nengliang; Matthews, Stephen A.; Hillemeier, Marianne M.

    2012-01-01

    Purpose: Appalachian counties have historically had elevated infant mortality rates. Changes in infant mortality disparities over time in Appalachia are not well-understood. This study explores spatial inequalities in white infant mortality rates over time in the 13 Appalachian states, comparing counties in Appalachia with non-Appalachian…

  13. White Infant Mortality in Appalachian States, 1976-1980 and 1996-2000: Changing Patterns and Persistent Disparities

    ERIC Educational Resources Information Center

    Yao, Nengliang; Matthews, Stephen A.; Hillemeier, Marianne M.

    2012-01-01

    Purpose: Appalachian counties have historically had elevated infant mortality rates. Changes in infant mortality disparities over time in Appalachia are not well-understood. This study explores spatial inequalities in white infant mortality rates over time in the 13 Appalachian states, comparing counties in Appalachia with non-Appalachian…

  14. Correlation chart of Pennsylvanian rocks in Alabama, Tennessee, Kentucky, Virginia, West Virginia, Ohio, Maryland, and Pennsylvania showing approximate position of coal beds, coal zones, and key stratigraphic units: Chapter D.2 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Trippi, Michael H.; Slucher, Ernie R.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    Because of the many names used to identify individual coal beds and coal zones in the historic Appalachian basin coal-mining districts, coal bed designations may differ even more than stratigraphic nomenclature. In eastern Kentucky, northwest of the Pine Mountain thrust fault on the Cumberland overthrust sheet, for example, coal beds or coal zones equivalent to the Lower Elkhorn coal zone (within the Pikeville Formation) are identified also as the Eagle coal zone, Pond Creek coal zone, and Blue Gem coal bed (fig. 1). Southeast of the Pine Mountain thrust fault, yet still in Kentucky, equivalent coals in this same interval are known as the Imboden and Rich Mountain. Moreover, this same interval of coal is identified as the Blue Gem coal in Tennessee, the Imboden coal bed or Campbell Creek or Pond Creek coal zones in Virginia, and the Eagle coal zone in West Virginia.

  15. Applied geointegration to hydrocarbon exploration in the San Pedro-Machango Area, Maracaibo Basin, Venezuela

    SciTech Connect

    Fonseca, A.; Navarro, A.; Osorio, R.; Corvo, F.; Arismendi, J.

    1996-08-01

    Hydrocarbon exploration has nowadays a diversity of technological resources to capture, merge and interpret information from diverse sources. To accomplish this, the integration of geodata for modeling was done through the use of new technologies like Remote Sensing and Geographical Systems of Information and applied to the San Pedro-Machango area, located in the Serrania de Trujillo, west of Costa Bolivar (onshore), eastern Maracaibo Basin, Venezuela. The main purpose of this work was to optimize the design of an exploration program in harmony with environmental conservation procedures. Starting with satellital and radar images that incorporated geophysical, geological and environmental information, they then were analyzed and merged to improve the lithological, structural and tectonic interpretation, generating an integrated model that allowed better project design. The use of a system that combines information of geographical, geodetical, geophysical and geological origins with satellital and radar images produced up to date cartography and refined results of image interpretation.

  16. Application of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China

    USGS Publications Warehouse

    Bailey, G.B.; Anderson, P.D.

    1982-01-01

    Tertiary and Quaternary nonmarine, petroleum-bearing sedimentary rocks have been extensively deformed by compressive forces. These forces created many folds which are current targets of Chinese exploration programs. Image-derived interpretations of folds, strike-slip faults, thrust faults, normal or reverse faults, and fractures compared very favorably, in terms of locations and numbers mapped, with Chinese data compiled from years of extensive field mapping. Many potential hydrocarbon trapping structures were precisely located. Orientations of major structural trends defined from Landsat imagery correlate well with those predicted for the area based on global tectonic theory. These correlations suggest that similar orientations exist in the eastern half of the basin where folded rocks are mostly obscured by unconsolidated surface sediments and where limited exploration has occurred.--Modified journal abstract.

  17. Spirituality and its relationships with the health and illness of Appalachian people.

    PubMed

    Diddle, Gina; Denham, Sharon A

    2010-04-01

    This article explores the ways spirituality intertwines with the health and culture of those living in the Appalachian region. Nursing has long considered the value of spirituality and faith, noting its complex connections with health and illness. Literature pertaining to spirituality, health, and the culture of those residing in the Appalachian region was reviewed. Although the review suggests that connections between spirituality and health exist, empirical evidence is limited, somewhat dated, and lacks viable conclusions relative to the diverse needs of the Appalachian population. Focused research that addresses strongly linked operationally defined variables is needed to strengthen the evidence for clarity about distinct applications to practice.

  18. Devonian of the Appalachian Basin, United States

    USGS Publications Warehouse

    Oliver, William A.; De Witt, Wallace; Dennison, John M.; Hoskins, D.M.; Huddle, John W.

    1967-01-01

    On the craton, the Middle and Upper Devonian rocks are limestones and shales, but units are thin and discontinuous except for black shale, which, over broad areas, is the latest Devonian deposit. Deposition of this shale persisted into post-Devonian times.

  19. Quantitative paleogeography and accretionary history, northern Appalachians

    SciTech Connect

    Pluijm, B.A. van der; Voo, R. van der . Dept. of Geological Sciences)

    1992-01-01

    Ongoing paleomagnetic work on Early and Middle Paleozoic units provides quantitative data on paleogeography, latitudinal separation and latitudinal drift rates of tectonic elements that characterize the history of the northern segment of the Appalachian orogen. Following rifting and opening of Iapetus, the southern margin of Laurentia moved from ca 15S in the Ordovician to ca. 30S in the late Silurian: the northern margin of Avalon drifted northward (separate from Gondwana) from > 50--30S during the same time interval. Paleolatitudes from volcanic units of the intervening Central Mobile Belt that yield primary magnetizations are: Newfoundland: Ordovician arc-back arc basin: 11[degree]S; Ordovician ocean island/arc: 31[degree]S; Silurian continental cover: Botwood Gp: 24[degree]S, Springdale Gp: 17[degree]S New Brunswick: Ordovician rift-subduction complex: 53[degree]S. Maine: Munsungun Volcanic Terrane 18[degree]S; Winterville Volcanic Terrane 15--20[degree]S; upper part Lunksoos Composite Terrane: 20[degree]S. The Ordovician results indicate several near-Laurentian volcanic terranes and back-arc basins, landward-dipping subduction complexes on opposite margins of Iapetus, and intra-Iapetus ocean islands/arcs. Silurian paleogeographic and tectonostratigraphic data show that closure of Iapetus and progressive outboard accretion in the northern portion of the Appalachian orogen was complete by the late Silurian. This closure is accompanied by considerable Ordovician to Early Silurian left-lateral strike slip and subsequent right-lateral displacement based on the relative positions of Laurentia, Avalon and Gondwana in Early and Middle Paleozoic times.

  20. BASINS

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  1. Evolution of Cambrian-Ordovician carbonate shelf, US Appalachians

    SciTech Connect

    Read, J.F.

    1985-01-01

    Newly compiled cross sections and isopach maps of the Cambro-Ordovician continental shelf, U.S. Appalachians shows that thickness and facies trends are controlled by the Adirondack, New Jersey and Virginia and Alabama arches, and depocenters in Tennessee, Pennsylvania and the Rome Trough. Carbonate sedimentation was initiated with drowning of Early Cambrian clastics, deposition of carbonate ramp facies followed by drowning, regional regression and deposition of Early to Middle Cambrian red beds and platform margin rimmed shelf lime sands and reefs. During subsequent regional transgression the Conasauga intrashelf shale basin formed, bounded toward the shelf edge and along depositional strike by Middle to Upper Cambrian oolitic ramp facies and cyclic peritidal carbonates. During Middle Cambrian rifting, the Rome Trough was filled by thick clastics and carbonates. Intrashelf basin filling and regional regression caused progradation of Late Cambrian cyclic carbonates and clastics across the shelf. By this time, the margin had a relief of 2.5 kms. During the Early Ordovician, incipient drowning of the shelf formed subtidal carbonates and bioherms that passed up into cyclic carbonates which grade seaward into lime sands and reefs. Numerous unconformities interrupt this sequence in the Northern Appalachians. Early dolomitization patterns were controlled by regional highs. Subsidence rates on the margin were low (4 cm/1000 yrs) and typical of a mature passive margin. Shelf sedimentation in the Southern Appalachians ceased with arc-continent collision and development of the Knox unconformity, which dies out into the Pennsylvania depocenter.

  2. Geologic Carbon Sequestration in a Lightly Explored Basin: the Puget-Willamette Lowland

    NASA Astrophysics Data System (ADS)

    Jackson, J. S.

    2007-12-01

    The Puget-Willamette Lowland is located between the Cascade Range and Olympic Mountains-Coast Range. Exploration for oil and gas there commenced in 1890. Over 700 wells subsequently drilled yield one commercial gas discovery. Eocene sediments deposited west of an ancestral Cascade Range include a coal-bearing sequence covering much of the Puget-Willamette Lowland. The terrestrial deposits pass into marine deposits to the west. Syn- depositional normal faulting and strike-slip faulting are evident in several sub-basins. In the southern Lowland, normal faults were modified by episodes of late Eocene and Miocene transpression, which resulted in mild inversion of older normal faults Preserved sediments indicate that local subsidence continued into Miocene- Pliocene time, and was followed in the northern Lowland by extensive Pleistocene glaciation. In the northern Lowland, Holocene faulting is recognized in outcrop and is interpreted on seismic data acquired in Puget Sound. Structures formed by early Miocene or earlier events may have trapped migrating hydrocarbons. Structures formed or modified by Holocene faulting very probably post-date hydrocarbon generation and migration. The region appears to host potential geologic sequestration targets, including coals, sandstones, and vesicular basalt flows. The size and location of potential traps is poorly constrained by present data. Experience in better explored fore arc basins suggests 10 to 30 percent of the basin may be deformed into suitable trapping geometries. Modern seismic data is required to identify potential sequestration traps. More than one well will be required to confirm the presence and size of these traps. The present boom in oil and gas drilling has created a robust environment for seismic and drilling companies, who command unprecedented rates for their services. Only one seismic crew is presently active on the West Coast, and only a few exploration drilling rigs are available. If this environment

  3. Groundwater flow in an intermountain basin: Hydrological, geophysical, and geological exploration of South Park, Colorado

    NASA Astrophysics Data System (ADS)

    Ball, Lyndsay Brooke

    Groundwater in the intermountain basins of the American West is increasingly of interest with respect to water supply, ecosystem integrity, and contaminant and heat transport processes. These basins are defined by their heterogeneity through large topographic relief, substantial climatic variability, and permeability distributions made complex through variations in lithology and deformation over the orogenic history of these regions, leading to folded and faulted aquifers. This dissertation focuses on the influence of these heterogeneities on the groundwater flow system of the South Park basin in central Colorado, USA. The influence of faults on shallow groundwater flow was examined at two locations along the mapped trace of the Elkhorn fault, a Laramide reverse fault that juxtaposes crystalline and sedimentary rocks in eastern South Park. At the first location, electromagnetic, resistivity, self-potential, and hydraulic data were collected at an existing well field straddling the fault trace. Integrated analysis suggested the fault behaves as combined conduit barrier to groundwater in flow the upper 60 m. A second location along the mapped trace was selected through additional geophysical exploration. New boreholes were drilled to make direct geologic, hydrologic, and geophysical observations of the fault zone. However, these boreholes did not intersect the Elkhorn fault despite passing through rocks with similar electrical resistivity signatures to the first study location. Analyses of drill core and geophysical data indicate that the mineralogical composition of the crystalline rocks strongly influences their resistivity values, and the resistivity contrasts associated with the rock juxtaposition created by the Elkhorn fault is not unique. A steady-state, three-dimensional groundwater flow model of the South Park basin was developed to explore the influence of complex topography, recharge, and permeability structure on regional groundwater flow. Geologic

  4. Down Home, Downtown: Urban Appalachians Today.

    ERIC Educational Resources Information Center

    Obermiller, Phillip J., Ed.

    This book contains selected presentations from a conference on urban Appalachians held in Cincinnati, Ohio, in September 1995. The papers present diverse perspectives on the migration from rural Appalachia to industrial centers, questions of Appalachian culture and identity, community development in Appalachian neighborhoods, and rural Appalachian…

  5. Appalachian Regional Commission: 1986 Annual Report.

    ERIC Educational Resources Information Center

    Russell, Jack, Ed.; And Others

    The Appalachian Regional Commission used its $120 million appropriation for fiscal year 1986 to create and retain jobs under the jobs and private investment program, provide basic public facilities to the worst-off Appalachian counties under the distressed counties program, and to work toward closing the gaps in the Appalachian Development Highway…

  6. Spiritual care with Appalachians: beyond stereotypes.

    PubMed

    Easterling, Larry Wayne

    2014-01-01

    Stereotypes of Appalachians can persist in our collective imaginations. This article addresses such stereotypes as unfounded. The historical origin of these stereotypes is identified. Alternate images of positive values and characteristics of Appalachian people are presented. Recommendations for spiritual care are outlined consistent with the characteristics of the Appalachian population.

  7. Mesozoic basins of eastern N. America: Exploration target whose time has come

    SciTech Connect

    Pyron, A.J.

    1998-07-20

    Significant hydrocarbon reserves may be found in Mesozoic age rift basins of the eastern US. The Mesozoic basins of eastern North America stretch from the Labrador shelf in Nova Scotia to the Florida panhandle. In northwestern Africa, basins with stratigraphic columns of clastic rocks (sandstones, shales, and conglomerates) similar to those in eastern North America have been documented. Similar basins formed on the South American and southern African plates in response to extensional activity concurrently with the more northern basins. Only the rift basins found onshore in the US have no identified economic hydrocarbon reservoirs. The paper discusses the regional geology, production analogs, and a review of the Newark basin.

  8. Alteration mineralogy and geochemistry as an exploration tool for detecting basement heat sources in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Uysal, Tonguc; Gasparon, Massimo; van Zyl, Jacobus; Wyborn, Doone

    2010-05-01

    The Cooper Basin located in South Australia and Queensland hosts some of the hottest granites in the world at economic drilling depths (240°C at 3.5 km). Investigating the mechanism of heat-producing element enrichment in the Cooper Basin granite is crucial for understanding hot-dry rock geothermal systems and developing exploration strategies. Trace element (by ICP-MS) and stable isotope geochemistry of whole rock granite samples and hydrothermal phyllosilicate alteration minerals separated from the granite and overlying sandstones and mudstones of the Cooper Basin were examined in detail. Granite core samples from relatively shallow depths in Moomba 1 and Big Lake 1 are strongly altered with pervasive sericite (illite) and quartz precipitation, probably associated with intense micro-fracturing and veining. The intensity of hydrothermal alteration is less in deeper samples from Mcleod 1, Jolokia and Habanero 1. Highly altered granites from former holes are substantially enriched in lithophile elements, particularly in Cs, Rb, Be, Th, U and rare earth elements (REE) relative to the upper continental crust (UCC). U and Th contents with concentrations of up to 30 and 144 ppm, respectively, are 10 and 13 times higher than those of the UCC. Comparison of the trace element composition of the same samples dissolved by open beaker acid digestion and high-pressure acid bomb digestion (to dissolve zircon) shows that zircon is not the main repository of U and Th in the Cooper Basin granite. Instead, we propose that the enrichment of heat-producing elements was promoted by a regional hydrothermal event leading to the precipitation of U and Th- bearing minerals such as illite, K-feldspar and thorite. Crystallinity index (illite crystallinity) of the sericite indicates hydrothermal temperatures ranging from 250°C (in Moomba 1 and Big Lake 1) to 350°C (in McLeod 1 and Jolokia 1). In the overlying sedimentary rocks, crystallinity of authigenic illites translates to lower

  9. Geothermal GIS coverage of the Great Basin, USA: Defining regional controls and favorable exploration terrains

    USGS Publications Warehouse

    Coolbaugh, M.F.; Sawatzky, D.L.; Oppliger, G.L.; Minor, T.B.; Raines, G.L.; Shevenell, L.; Blewitt, G.; Louie, J.N.

    2003-01-01

    A geographic information system (GIS) of geothermal resources, built last year for the state of Nevada, is being expanded to cover the Great Basin, USA. Data from that GIS is being made available to industry, other researchers, and the public via a web site at the Great Basin Center for Geothermal Energy, Reno, Nevada. That web site features a search engine, supports ArcExplorer?? for on-line map construction, and provides downloadable data layers in several formats. Though data collection continues, preliminary analysis has begun. Contour maps of geothermal temperatures, constructed using geothermometer temperatures calculated from a Great Basin geochemical database compiled by the Geo-Heat Center, reveal distinctive trends and patterns. As expected, magmatic-type and extensional-type geothermal systems have profoundly different associations, with magmatic-type systems following major tectonic boundaries, and extensional-type systems associating with regionally high heat flow, thin crust, active faulting, and high extensional strain rates. As described by earlier researchers, including Rowen and Wetlaufer (1981) and Koenig and McNitt (1983), high-temperature (> 100??C) geothermal systems appear to follow regional northeast trends, most conspicuously including the Humboldt structural zone in Nevada, the "Black Rock-Alvord Desert" trend in Oregon and Nevada, and the "Newcastle-Roosevelt" trend in Utah and Nevada. Weights-of-evidence analyses confirm a preference of high-temperature geothermal systems for young northeast-trending faults, but the distribution of geothermal systems correlates even better with high rates of crustal extension, as measured from global positioning system (GPS) stations in Nevada. A predictive map of geothermal potential based only on areas of high extensional strain rates and high heat flux does an excellent job of regionally predicting the location of most known geothermal systems in Nevada, and may prove useful in identifying blind

  10. The Nordkapp Basin, Norway: Development of salt and sediment interplays for hydrocarbon exploration

    SciTech Connect

    Lerche, I.; Toerudbakken, B.O.

    1996-12-31

    Investigation of a particular salt diapir in the Nordkapp Basin, Barents Sea has revealed the following sequence of events: (1) salt started to rise when approximately 1.5 {+-} 0.3 km of sedimentary cover was present (Carboniferous/Permian time); (2) salt reached the sediment surface when about 3.5 {+-} 0.7 km of sediment had been deposited (Triassic time); (3) the mushroom cap on the salt stock top developed over a period of about 75--100 Ma (i.e. during the time when about another km of sediment had been deposited) (Triassic through Base Cretaceous time); (4) the mushroom cap started to dip down significantly ({approximately}1 km) into the sediments around Cretaceous to Tertiary erosion time; (5) oil generation started in the deep sediments of the Carboniferous around the time that salt reached the surface (Triassic time) and continues to the present day at sedimentary depths between about 4 to 7 km (currently Triassic and deeper sediments); (6)gas generation started around mushroom cap development time and continues to the present day at sedimentary depths greater than about 6--7 km (Permian/Carboniferous); (7) the salt stock is currently 3--4 km wide, considerably less than the mushroom cap which is 9 km wide and 1 km thick. The relative timing of mushroom cap development, bed upturning, and hydrocarbon generation makes the salt diapir an attractive exploration target, with suggested reservoir trapping under the downturned mushroom cap on the deep basin side of the salt. In addition, rough estimates of rim syncline fill suggest the basin had an original salt thickness of 2.4--3.3 km, depending upon the amount of salt removed at the Tertiary erosion event.

  11. The challenges of exploring near the fringes of space: A case history of seismically exploring the Altiplano Basin of Bolivia

    SciTech Connect

    Prideaux, B.R.; Bayne, J.W.

    1994-12-31

    Obtaining the quality seismic data necessary to answer key exploration questions in the Altiplano Basin of Bolivia necessitated the use of turbo-charged vibrators, ground force control electronics, and state of the art processing techniques. Overcoming the structural complexity of the region, including steep surface dips (averaging 45{degree}--50{degree}), even steeper subsurface dips adjacent to areas of near-flat dip, as well as substantial surface variations, required optimal recording and processing parameters. A long far offset (3056.75 m) and a close trace spacing (12.5 m) was needed to acquire the most reliable data. Seven second records were also recorded to insure that information was acquired at depth. Several other factors helped account for an acquisition success for the project. A field computer system was used to quickly process brute and enhanced brute stacks, which provided greater quality control and allowed for in-field adjustments to optimize the acquisition parameters. Additionally, the processing of the data was able to minimize numerous problems. There was a high variance in the recorded data quality, mainly due to surface and near-surface conditions (statics), as well as a fairly high degree of background noise throughout. These noise problems eventually determined the processing sequence that was used. Some processes that were initially proposed deteriorated instead of enhanced the interpretability of the seismic data.

  12. Exploring for lower Eocene-Nummulitic Banks in the Gabes-Tripolitania basin of offshore Tunisia

    SciTech Connect

    Abraham, N.Y.

    1988-08-01

    In 1987, Marathon drilled a well on the Metlaoui trend to evaluate a specific seismic anomaly. Detailed microfacies and biostratigraphic analyses of the well and subsequent seismic and stratigraphic evaluations suggest it was drilled in a basinal reentrant of the outer platform. An exploration model has been developed to pursue the nummulitic bank play based upon (1) a study of available trend wells, (2) a review of seismic data on the Ashtart field and other discoveries, and (3) geologic field studies. Seismic evaluations have focused on delineating bank-stratigraphic anomalies along the more prospective Metlaoui outer platform edge through isochronal relationships of the Metlaoui and adjacent sequences as well as seismic and stratigraphic analysis of amplitude variation and onlap/offlap relationships.

  13. Exploration of the lower permeability reservoir in Sanzhao area of Songliao Basin

    SciTech Connect

    Ding Guiming; Wang Yuxin )

    1996-01-01

    Sanzhao area is an independent petroleum generation-migration-accumulation unit that concentrates in the Sanzhao sag, a large sag in the central depression of Songliao basin. The oil generated from the Lower Cretaceous Qingshankou Formation migrated into Fuyu and Yangdachengzi reservoirs in Members 3 and 4 of the Quantou Formation, with the overpressure of the source bed driving fluids through dense fault pathways. Fuyu and Yangdachengzi reserviors are formed by areally-extensive, fluviodeltaic thin interbedded sandstones. Most of the oil pools in Sanzhao area are in low-permeability lithologies. In order to prospect for these lower permeability reservoirs, first we set evaluation and oil/gas reservoir evaluation. On the basis of the composite study of petroleum geology, the low-permeability feature of Fuyu and Yangdachengzi reservoirs has been further understood. Secondly, we have developed a series of exploration methods and techniques, including high-resolution seismic exploration, oil testing and fracturing, and techniques for protecting oil reservoirs. Due to breakthrough in understanding of petroleum geology and the development of composite exploration techniques, the low-permeability reservoirs of Sanzhao area have liberated abundant reservers. A large, low-permeability oil province with reserves of more than 10x10[sup 8] has been proven.

  14. Exploration of the lower permeability reservoir in Sanzhao area of Songliao Basin

    SciTech Connect

    Ding Guiming; Wang Yuxin

    1996-12-31

    Sanzhao area is an independent petroleum generation-migration-accumulation unit that concentrates in the Sanzhao sag, a large sag in the central depression of Songliao basin. The oil generated from the Lower Cretaceous Qingshankou Formation migrated into Fuyu and Yangdachengzi reservoirs in Members 3 and 4 of the Quantou Formation, with the overpressure of the source bed driving fluids through dense fault pathways. Fuyu and Yangdachengzi reserviors are formed by areally-extensive, fluviodeltaic thin interbedded sandstones. Most of the oil pools in Sanzhao area are in low-permeability lithologies. In order to prospect for these lower permeability reservoirs, first we set evaluation and oil/gas reservoir evaluation. On the basis of the composite study of petroleum geology, the low-permeability feature of Fuyu and Yangdachengzi reservoirs has been further understood. Secondly, we have developed a series of exploration methods and techniques, including high-resolution seismic exploration, oil testing and fracturing, and techniques for protecting oil reservoirs. Due to breakthrough in understanding of petroleum geology and the development of composite exploration techniques, the low-permeability reservoirs of Sanzhao area have liberated abundant reservers. A large, low-permeability oil province with reserves of more than 10x10{sup 8} has been proven.

  15. A water system model for exploring electric energy alternatives in southeastern US basins

    NASA Astrophysics Data System (ADS)

    Flores-López, F.; Yates, D.

    2013-09-01

    Electric power generation often involves the use of water for power plant cooling and steam generation, which typically involves the release of cooling water to nearby rivers and lakes. The resulting thermal pollution may negatively impact the ecosystems of these water bodies. Water resource systems models enable the examination of the implications of alternative electric generation on regional water resources. This letter documents the development, calibration, and validation of a climate-driven water resource systems model of the Apalachicola-Chattahoochee-Flint, the Alabama-Coosa-Tallapoosa, and the Tombigbee River basins in the states of Georgia, Alabama, and Florida, in the southeastern US. The model represents different water users, including power plants, agricultural water users, and municipal users. The model takes into account local population, per-capita use estimates, and changes in population growth. The water resources planning model was calibrated and validated against the observed, managed flows through the river systems of the three basins. Flow calibration was performed on land cover, water capacity, and hydraulic conductivity of soil horizons; river water temperature calibration was performed on channel width and slope properties. Goodness-of-fit statistics indicate that under 1980-2010 levels of water use, the model robustly represents major features of monthly average streamflow and water temperatures. The application of this integrated electricity generation-water resources planning model can be used to explore alternative electric generation and water implications. The implementation of this model is explored in the companion paper of this focus issue (Yates et al 2013 Environ. Res. Lett. 8 035042).

  16. An evaluation of the suitability of ERTS data for the purposes of petroleum exploration. [Anadarko Basin of Texas and Oklahoma

    NASA Technical Reports Server (NTRS)

    Collins, R. J.; Mccown, F. P.; Stonis, L. P.; Petzel, G.; Everett, J. R.

    1974-01-01

    This experiment was designed to determine the types and amounts of information valuable to petroleum exploration extractable from ERTS data and the cost of obtaining the information using traditional or conventional means. It was desired that an evaluation of this new petroleum exploration tool be made in a geologically well known area in order to assess its usefulness in an unknown area. The Anadarko Basin lies in western Oklahoma and the panhandle of Texas. It was chosen as a test site because there is a great deal of published information available on the surface and subsurface geology of the area, and there are many known structures that act as traps for hydrocarbons. This basin is similar to several other large epicontinental sedimentary basins. It was found that ERTS imagery is an excellent tool for reconnaissance exploration of large sedimentary basins or new exploration provinces. For the first time, small and medium size oil companies can rapidly and effectively analyze exploration provinces as a whole.

  17. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  18. Play-fairway analysis for geothermal exploration: Examples from the Great Basin, western USA

    SciTech Connect

    Siler, Drew L; Faulds, James E

    2013-10-27

    Elevated permeability within fault systems provides pathways for circulation of geothermal fluids. Future geothermal development depends on precise and accurate location of such fluid flow pathways in order to both accurately assess geothermal resource potential and increase drilling success rates. The collocation of geologic characteristics that promote permeability in a given geothermal system define the geothermal ‘fairway’, the location(s) where upflow zones are probable and where exploration efforts including drilling should be focused. We define the geothermal fairway as the collocation of 1) fault zones that are ideally oriented for slip or dilation under ambient stress conditions, 2) areas with a high spatial density of fault intersections, and 3) lithologies capable of supporting dense interconnected fracture networks. Areas in which these characteristics are concomitant with both elevated temperature and fluids are probable upflow zones where economic-scale, sustainable temperatures and flow rates are most likely to occur. Employing a variety of surface and subsurface data sets, we test this ‘play-fairway’ exploration methodology on two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These analyses, based on 3D structural and stratigraphic framework models, reveal subsurface characteristics about each system, well beyond the scope of standard exploration methods. At Brady’s, the geothermal fairways we define correlate well with successful production wells and pinpoint several drilling targets for maintaining or expanding production in the field. In addition, hot-dry wells within the Brady’s geothermal field lie outside our defined geothermal fairways. At Astor Pass, our play-fairway analysis provides for a data-based conceptual model of fluid flow within the geothermal system and indicates several targets for exploration drilling.

  19. Geothermal exploration in the German Molasse Basin - Supplementary exploration using integrated 3-component data and shear wave measurements

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Lüschen, Ewald; Thomas, Rüdiger

    2017-04-01

    To establish a dense area-wide network of geothermal facilities, the Stadtwerke München initiated the joint research project GRAME together with the Leibniz Institute for Applied Geophysics (GeoParaMoL*). As a database for the project, a 3D seismic survey was acquired from November 1015 to March 2016 and covers 170 km2 of the southern part of Munich. 3D seismic exploration is a well-established method to explore geothermal reservoirs, and its value for reservoir characterization of the Malm has been proven by several projects. A particular challenge often is the determination of geophysical parameters for facies interpretation without any borehole information, which is needed for calibration. A new approach to facilitate a reliable interpretation is to include shear waves in the interpretation workflow, which helps to tie down the range of lithological and petrophysical parameters. Shear wave measurements were conducted during the regular 3D seismic survey in Munich. In a passive experiment, the survey was additionally recorded on 467 single, 3-component (3C), digital receivers that were deployed along one main line (15 km length) and two crosslines (4 km length). In this way another 3D P-wave as well as a 3D shear wave dataset were acquired. In the active shear wave experiment the SHOVER technique (Edelmann, 1981) was applied to directly excite shear waves using standard vertical vibrators. The 3C recordings of both datasets show, in addition to the P-wave reflections on the vertical component, clear shear-wave signals on the horizontal components. The structural image of the P-waves recorded on the vertical component of the 3C receivers displays clear reflectors within the Molasse Basin down to the Malm and correlates well with the structural image of the regular survey. Taking into account a travel time ratio of 1.6 the reflection patterns of horizontal and vertical components approximately coincide. This indicates that Molasse sediments and the Malm can also

  20. Exploration of a Basin and Range-Type Geothermal System Using Soil pH Analysis

    NASA Astrophysics Data System (ADS)

    Owens, L.; Hill, G.; Norman, D. I.

    2005-12-01

    The Socorro Peak, NM Known Geothermal Reservoir Area (KGRA) is a Basin and Range-type extentional-fault geothermal system boasting thermal gradients upwards of 420 mW/m3 in an uplift Precambrian fault block. Structural and geophysical evidence suggests that a low-to-mid temperature (60-100C) geothermal aquifer may reside within the fault-bounded alluvial basin, capped and insulated by over 1000meters of Tertiary mudstone aquitard strata and Quaternary flanglomerates. Select Ion Leach Analysis Geochemistry (SILG) and pH analysis of soils were employed to investigate the location and extent of the Socorro KGRA. The SILG geothermal exploration method is commonly used for mineral and oil exploration; the soil pH is method is a new method being developed. Soil samples for SILG were collected at 100m intervals over the alluvial basin and range bounding fault. Oxide Suite elements (As, V, I, Hg) and alkali elements (Rb, Sr) were observed in a series of nested halos of anomalously high concentrations surrounding a central core of anomalously low concentrations. The center of this 3 km-wide anomaly is located just in to the east of the range bounding fault. This pattern is interpreted as an oxidizing environment surrounding a reduction chimney created by the geothermal waters. Field pH analyses were also performed on a 25 meter interval grid over the same exploration area. A 25 g soil sample screened to 18 mesh is mixed with 10 cc water, stirred and pH measured. Two dimensional plots indicate a central region of 7.0 to 7.5 pH values surrounded by a 1.5 km radius semi-halo of 5.0 to 6.5 pH values . This pattern corresponds with those observed by SILG. If a geothermal reservoir is responsible for the oxidizing/reduction environment causing the volatilization of select ions through the substrate, then we would also expect to see a decrease in pH caused by the release of free hydrogen ions. Spikes of acidic pH values (5.0-6.0) were also observed along sub alluvium faults

  1. Delineation of Piceance Basin basement structures using multiple source data: Implications for fractured reservoir exploration

    SciTech Connect

    Hoak, T.E.; Klawitter, A.L.

    1995-10-01

    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau, Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.

  2. Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin

    ERIC Educational Resources Information Center

    Lundmark, Carina; Jonsson, Gunnar

    2014-01-01

    This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

  3. Prospects for Learning in River Management: Exploring the Initial Implementation of the Water Framework Directive in a Swedish River Basin

    ERIC Educational Resources Information Center

    Lundmark, Carina; Jonsson, Gunnar

    2014-01-01

    This case study explores the initial implementation of the EU Water Framework Directive (WFD) in the Lule River basin, Sweden, examining how and to what extent administrative procedures enable learning through dialogue and stakeholder collaboration. Theorising on adaptive co-management and social learning is used to structure what is to be learnt,…

  4. Relative importance of physical and economic factors in Appalachian coalbed gas assessment

    USGS Publications Warehouse

    Attanasi, E.D.

    1998-01-01

    In the 1995 National Assessment of Oil and Gas Resources prepared by the U.S. Geological Survey, only 20% of the assessed technically recoverable Appalachian Province coalbed gas resources were economic. Physical and economic variables are examined to explain the disparity between economic and technically recoverable coalbed gas. The Anticline and Syncline plays of the Northern Appalachian Basin, which account for 77% of the assessed technically recoverable coalbed gas, are not economic. Analysis shows marginal reductions in costs or rate of return will not turn these plays into commercial successes. Physical parameters that determine ultimate well recoverability and the rate of gas recovery are primary reasons the Northern Appalachian Basin plays are non-commercial. If the application of new well stimulation technology could offset slow gas desorption rates, Appalachian Province economic gas could increase to more then 70% of the technically recoverable gas. Similarly, if operators are able to develop strategies to selectively drill plays by avoiding dry holes and non-commercial occurrences, the economic fraction of technically recoverable gas could increase to over half.In the 1995 National Assessment of Oil and Gas Resources prepared by the U.S. Geological Survey, only 20% of the assessed technically recoverable Appalachian Province coalbed gas resources were economic. Physical and economic variables are examined to explain the disparity between economic and technically recoverable coalbed gas. The Anticline and Syncline plays of the Northern Appalachian Basin, which account for 77% of the assessed technically recoverable coalbed gas, are not economic. Analysis shows marginal reductions in costs or rate of return will not turn these plays into commercial successes. Physical parameters that determine ultimate well recoverability and the rate of gas recovery are primary reasons the Northern Appalachian Basin plays are non-commercial. If the application of new well

  5. Exploring the Potential for Sustainable Future Bioenergy Production in the Arkansas-White-Red River Basin

    NASA Astrophysics Data System (ADS)

    Baskaran, L.; Jager, H.; Kreig, J.

    2016-12-01

    Bioenergy production in the US has been projected to increase in the next few years and this has raised concerns over environmentally sustainable production. Specifically, there are concerns that managing lands to produce bioenergy feedstocks in the Mississippi-Atchafalaya River Basin (MARB) may have impacts over the water quality in the streams draining these lands and hamper with efforts to reduce the size of the Gulf of Mexico's "Dead Zone" (hypoxic waters). However, with appropriate choice of feedstocks and good conservation practices, bioenergy production systems can be environmentally and economically sustainable. We evaluated opportunities for producing 2nd generation cellulosic feedstocks that are economically sustainable and improve water quality in the Arkansas-White-Red (AWR) river basin, which is major part of the MARB. We generated a future bioenergy landscape by downscaling county-scale projections of bioenergy crop production produced by an economic model, POLYSYS, at a market price of $60 per dry ton and a 1% annual yield increase. Our future bioenergy landscape includes perennial grasses (switchgrass and miscanthus), short-rotated woody crops (poplar and willow) and annual crops (high yield sorghum, sorghum stubble, corn stover and wheat straw). Using the Soil and Water Assessment Tool (SWAT) we analyzed changes in water quality and quantity by simulating a baseline scenario with the current landscape (2014 land cover) and a future scenario with the bioenergy landscape. Our results over the AWR indicate decreases in median nutrient and sediment loadings from the baseline scenario. We also explored methods to evaluate if conservation practices (such as reducing fertilizer applications, incorporating filter strips, planting cover crops and moving to a no-till system) can improve water quality, while maintaining biomass yield. We created a series of SWAT simulations with varying levels of conservation practices by crop and present our methods towards

  6. Wage differentials among Appalachian sawmills

    Treesearch

    Charles H. Wolf

    1977-01-01

    Wage differences among Appalachian sawmills were investigated, using multiple-regression analysis. Wages and fringe benefits were found to vary with type of product sawed, education of the work force, distance to urban areas, general wage levels, and use of collective-bargaining agreements between management and labor.

  7. The Isolated Appalachian Black Community.

    ERIC Educational Resources Information Center

    French, Laurence

    This paper investigates the isolation of the local black community within the social/cultural perspective. A profile of the community is given in terms of data collected from personal and family interviews. Personal interviews assessed how the Appalachian black viewed his group. Among the 13 variables studied are: trustworthiness, religion, work…

  8. Appalachian Women. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Hamm, Mary Margo

    This bibliography compiles annotations of 178 books, journal articles, ERIC documents, and dissertations on Appalachian women and their social, cultural, and economic environment. Entries were published 1966-93 and are listed in the following categories: (1) authors and literary criticism; (2) bibliographies and resource guides; (3) economics,…

  9. Southern Appalachian Regional Seismic Network

    SciTech Connect

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  10. Unraveling the hydrocarbon charge potential of the Nordkapp Basin, Barents Sea: An integrated approach to reduce exploration risk in complex salt basins

    NASA Astrophysics Data System (ADS)

    Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham

    2014-05-01

    The Nordkapp Basin, Barents Sea, is an intra-continental syn-rift basin containing many complex salt structures. The salt is late-Carboniferous to Early Permian in age, with regional extension in the Triassic initiating the salt movement resulting in formation of sub- and mini-basins with significant subsidence (especially in the northeastern part of the basin). Subsequent tectonic phases allowed growth and distortion of salt diapirs that were later affected by uplift and erosion during Tertiary resulting in the formation of salt-related traps in Triassic and Lower Jurassic strata. During Plio-Pleistocene, glacial erosion removed additional Mesozoic and Cenozoic strata. This basin is regarded as a frontier salt province. A small hydrocarbon discovery (Pandora well) in the southwestern part of the basin points to the presence several functioning petroleum systems. The primary play type is related to salt traps below overhangs. Such structures are however, very difficult to image with conventional seismic techniques due to i) generation of multiples from sea floor and top of shallow salt bodies and ii) seismic shadow zones within the salt (possibly resulting from shale and carbonate stringers) which cause severe diffractions so that prospective areas adjacent to the salt remain elusive. Arctic exploration is expensive and the ability to focus on the highest potential targets is essential. A unique solution to this challenging subsurface Arctic environment was developed by integrating petroleum system modeling with full azimuth broadband seismic acquisition and processing. This integrated approach allows intelligent location of seismic surveys over structures which have the maximum chance of success of hydrocarbon charge. Petroleum system modeling was conducted for four seismic sections. Salt was reconstructed according to the diapiric evolution presented in Nilsen et al. (1995) and Koyi et al. (1995). Episodes of major erosion were assigned to Tertiary (tectonic) and

  11. Seismic exploration for oil and gas traps in Wind River Basin: a Laramide example

    SciTech Connect

    Ray, R.R.; Keefer, W.R.

    1985-05-01

    The Wind River Basin in central Wyoming is typical of the large sedimentary and structural basins that formed in the Rocky Mountain region during the Laramide deformation in latest Cretaceous and early Tertiary times. Northeast-southwest-oriented seismic profiles across the Wind River basin and flanking Owl Creek and Bighorn Mountains illustrate the structural configuration and correspondent stratigraphic development of a typical Laramide intermontane basin. Understanding the geometry of the basin margin and the timing of structural movement aids in prospecting for mountain-front subthrust structures, like Tepee Flats field, and stratigraphic traps, like Haybarn field, in fluvial and lacustrine basin-fill sequences. The Wind River basin is structurally asymmetric with the basin axis close to the Owl Creek Mountains and Casper Arch thrusts, which form the north and east basin boundaries. Major Laramide deformation began in latest Cretaceous time (beginning of Lance Formation deposition) with pronounced downwarping of the basin trough and broad doming of parts of the peripheral areas. The intensity of movement increased through the Paleocene and culminated in early Eocene time as high mountains were uplifted along thrust faults. Clastic debris, stripped from the surrounding rising mountain arches, was shed basinward, resulting in a pronounced wedge-shaped accumulation of fluvial and lacustrine sediments now representing the Lance, Fort Union, Indian Meadows, and Wind River Formations.

  12. Streamflow Generation on Small Forested Central Appalachian Watersheds

    NASA Astrophysics Data System (ADS)

    Hicks, N. S.; Smith, J. A.; Miller, A. J.

    2005-12-01

    This study examines streamflow generation and extreme flood response for high-gradient, forested central Appalachian watersheds. Streamflow and rainfall observations are combined with observations from a network of 415 crest-stage piezometers on two headwater watersheds (0.30 and 0.14 km2) at the Fernow Experimental Forest near Parsons, WV, to examine the storm event response of forested Appalachian watersheds. Piezometer nests (piezometer depths of 25, 50, and 100 cm) were used to identify perched water tables and to distinguish between different runoff production mechanisms. A conceptual model of runoff processes in these watersheds includes the formation of localized perched water tables due to decreased macropores and increased flaggy stones with increasing depth in the soil column. This model is an extension of the variable source area. During small and moderate sized events, subsurface saturation observed in the swales supports the idea of expanding variable source areas; during extreme events, the development of perched water tables in the shallow subsurface and rapid progression of saturated conditions to the surface becomes increasingly important. Contributions from perched water tables are spatially and temporally variable and dependent upon preferential flow pathways and decreases in effective vertical hydraulic conductivity. This extension of the variable source area model of streamflow production is necessary to explain anomalously fast response times and large runoff ratios observed during extreme events on forested central Appalachian watersheds. Subsurface saturation over large portions of a watershed is infrequent in forested central Appalachian basins, but may play a central role in extreme flood response.

  13. Cancer Mortality in Rural Appalachian Kentucky. Appalachian Data Bank Report #6.

    ERIC Educational Resources Information Center

    Tucker, Thomas C.; And Others

    This report compares cancer mortality rates in rural Appalachian Kentucky with rates for rural non-Appalachian Kentucky and the U.S. white population. Rural Appalachian Kentucky differs from the rest of rural Kentucky in having a younger, poorer, less educated population with greater employment in mining as opposed to agriculture, and with less…

  14. Cancer Mortality in Rural Appalachian Kentucky. Appalachian Data Bank Report #6.

    ERIC Educational Resources Information Center

    Tucker, Thomas C.; And Others

    This report compares cancer mortality rates in rural Appalachian Kentucky with rates for rural non-Appalachian Kentucky and the U.S. white population. Rural Appalachian Kentucky differs from the rest of rural Kentucky in having a younger, poorer, less educated population with greater employment in mining as opposed to agriculture, and with less…

  15. The stratigraphic hierarchy: Framework for integrated basin analysis at the exploration and production scales - Paradox basin case study

    SciTech Connect

    Weber, L.J.; Sarg, J.F.; Armentrout, J.M.

    1996-12-31

    Analysis of seismic, outcrop, core, and log data into a stratigraphic hierarchy for the Middle Pennsylvanian mixed carbonate, siliciclastic, and evaporate strata of the Paradox basin, southwest USA allows for an improved prediction of reservoir, source, and seal. Facies stacking patterns indicate that 5th-order depositional cycles ({ge} 100 k.y.), stack into 4th-order depositional sequences ({approximately}400 k.y.), each with lowstand, transgressive, and highstand systems tracts. This framework comprises the reservoir architecture of the giant Aneth field. Fourth-order sequences stack into seismically resolvable, biostratigraphically defined 3rd-order composite sequences ({approximately}1.5 m.y.). Secondary porosity is most pronounced in highstands beneath 3rd-order sequence boundaries. Five 3rd-order sequences make up part of an Atokan-Missourian 2nd-order transgressive-Tegressive cycle. This framework is used to predict the regional distribution of reservoir, source, and seal. A second-order relative rise in sea level during the lower three 3rd-order sequences (Atokan-E. Desmoinesian) resulted in a basin-rimming carbonate shelf that backsteps through time. During 3rd-order lowstands, basin restriction and drawdown resulted in accumulation of subaqueous evaporates. Third-order transgressions over vast evaporate deposits led to dissolution, elevated salinity, and high organic productivity. These source rocks are basinwide in extent. The ensuing turnaround and initiation of the 2nd-order fall in sea level resulted in rapid progradation of the carbonate shelf. Drawdown was sufficient during 4th-order lowstands to allow shallow subaqueous evaporates to accumulate in each 3rd-order sequence. World-class reservoirs formed in algal buildup and grainstone facies of the 3rd-order highstand above the 2nd-order turn- around. Seal facies overlie reservoirs and are composed of lowstand evaporates and transgressive carbonates.

  16. The stratigraphic hierarchy: Framework for integrated basin analysis at the exploration and production scales - Paradox basin case study

    SciTech Connect

    Weber, L.J.; Sarg, J.F.; Armentrout, J.M. )

    1996-01-01

    Analysis of seismic, outcrop, core, and log data into a stratigraphic hierarchy for the Middle Pennsylvanian mixed carbonate, siliciclastic, and evaporate strata of the Paradox basin, southwest USA allows for an improved prediction of reservoir, source, and seal. Facies stacking patterns indicate that 5th-order depositional cycles ([ge] 100 k.y.), stack into 4th-order depositional sequences ([approximately]400 k.y.), each with lowstand, transgressive, and highstand systems tracts. This framework comprises the reservoir architecture of the giant Aneth field. Fourth-order sequences stack into seismically resolvable, biostratigraphically defined 3rd-order composite sequences ([approximately]1.5 m.y.). Secondary porosity is most pronounced in highstands beneath 3rd-order sequence boundaries. Five 3rd-order sequences make up part of an Atokan-Missourian 2nd-order transgressive-Tegressive cycle. This framework is used to predict the regional distribution of reservoir, source, and seal. A second-order relative rise in sea level during the lower three 3rd-order sequences (Atokan-E. Desmoinesian) resulted in a basin-rimming carbonate shelf that backsteps through time. During 3rd-order lowstands, basin restriction and drawdown resulted in accumulation of subaqueous evaporates. Third-order transgressions over vast evaporate deposits led to dissolution, elevated salinity, and high organic productivity. These source rocks are basinwide in extent. The ensuing turnaround and initiation of the 2nd-order fall in sea level resulted in rapid progradation of the carbonate shelf. Drawdown was sufficient during 4th-order lowstands to allow shallow subaqueous evaporates to accumulate in each 3rd-order sequence. World-class reservoirs formed in algal buildup and grainstone facies of the 3rd-order highstand above the 2nd-order turn- around. Seal facies overlie reservoirs and are composed of lowstand evaporates and transgressive carbonates.

  17. Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona

    SciTech Connect

    George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

    1999-04-29

    A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

  18. Intimate partner violence-related hospitalizations in Appalachia and the non-Appalachian United States

    PubMed Central

    Davis, Stephen M.; Zhu, Motao; Afifi, Tracie O.; Kimber, Melissa; Goldstein, Abby L.; Pitre, Nicole; Gurka, Kelly K.; Stocks, Carol

    2017-01-01

    The highly rural region of Appalachia faces considerable socioeconomic disadvantage and health disparities that are recognized risk factors for intimate partner violence (IPV). The objective of this study was to estimate the rate of IPV-related hospitalizations in Appalachia and the non-Appalachian United States for 2007–2011 and compare hospitalizations in each region by clinical and sociodemographic factors. Data on IPV-related hospitalizations were extracted from the State Inpatient Databases, which are part of the Healthcare Cost and Utilization Project. Hospitalization day, year, in-hospital mortality, length of stay, average and total hospital charges, sex, age, payer, urban-rural location, income, diagnoses and procedures were compared between Appalachian and non-Appalachian counties. Poisson regression models were constructed to test differences in the rate of IPV-related hospitalizations between both regions. From 2007–2011, there were 7,385 hospitalizations related to IPV, with one-third (2,645) occurring in Appalachia. After adjusting for age and rurality, Appalachian counties had a 22% higher hospitalization rate than non-Appalachian counties (ARR = 1.22, 95% CI: 1.14–1.31). Appalachian residents may be at increased risk for IPV and associated conditions. Exploring disparities in healthcare utilization and costs associated with IPV in Appalachia is critical for the development of programs to effectively target the needs of this population. PMID:28886119

  19. Intimate partner violence-related hospitalizations in Appalachia and the non-Appalachian United States.

    PubMed

    Davidov, Danielle M; Davis, Stephen M; Zhu, Motao; Afifi, Tracie O; Kimber, Melissa; Goldstein, Abby L; Pitre, Nicole; Gurka, Kelly K; Stocks, Carol

    2017-01-01

    The highly rural region of Appalachia faces considerable socioeconomic disadvantage and health disparities that are recognized risk factors for intimate partner violence (IPV). The objective of this study was to estimate the rate of IPV-related hospitalizations in Appalachia and the non-Appalachian United States for 2007-2011 and compare hospitalizations in each region by clinical and sociodemographic factors. Data on IPV-related hospitalizations were extracted from the State Inpatient Databases, which are part of the Healthcare Cost and Utilization Project. Hospitalization day, year, in-hospital mortality, length of stay, average and total hospital charges, sex, age, payer, urban-rural location, income, diagnoses and procedures were compared between Appalachian and non-Appalachian counties. Poisson regression models were constructed to test differences in the rate of IPV-related hospitalizations between both regions. From 2007-2011, there were 7,385 hospitalizations related to IPV, with one-third (2,645) occurring in Appalachia. After adjusting for age and rurality, Appalachian counties had a 22% higher hospitalization rate than non-Appalachian counties (ARR = 1.22, 95% CI: 1.14-1.31). Appalachian residents may be at increased risk for IPV and associated conditions. Exploring disparities in healthcare utilization and costs associated with IPV in Appalachia is critical for the development of programs to effectively target the needs of this population.

  20. North America as an exotic terrane'' and the origin of the Appalachian--Andean Mountain system

    SciTech Connect

    Dalziel, I.W.D; Gahagan, L.M. . Inst. for Geophysics); Dalla Salda, L.H. . Centro de Investigaciones Geologicas)

    1992-01-01

    North America was sutured to Gondwana in the terminal Alleghanian event of Appalachian orogenesis, thus completing the late Paleozoic assembly of Pangea. The suggestion that the Pacific margins of East Antarctica-Australia and Laurentia may have been juxtaposed during the Neoproterozoic prompts reevaluation of the widely held assumptions that the ancestral Appalachian margin rifted from northwestern Africa during the earliest Paleozoic opening of Iapetus, and remained juxtaposed to that margin, even though widely separated from it at times, until the assembly of Pangea. The lower Paleozoic carbonate platform of northwestern Argentina has been known for a long time to contain Olenellid trilobites of the Pacific or Columbian realm. Although normally regarded as some kind of far-travelled terrane that originated along the Appalachian margin of Laurentia, it has recently been interpreted as a fragment detached from the Ouachita embayment of Laurentia following Taconic-Famatinian collision with Gondwana during the Ordovician. The Oaxaca terrane of Mexico, on the other hand, contains a Tremadocian trilobite fauna of Argentine-Bolivian affinities, and appears to have been detached from Gondwana following the same collision. The Wilson cycle'' of Iapetus ocean basin opening and closing along the Appalachian and Andean orogens may have involved more than one such continental collision during clockwise drift of Laurentia around South America following late Neoproterozoic to earliest Cambrian separation. Together with the collisions of baltic and smaller terranes with Laurentia, this could explain the protracted Paleozoic orogenic history of both the Appalachian and proto-Andean orogens.

  1. From ENSEMBLES to CORDEX: exploring the progress for hydrological impact research for the upper Danube basin

    NASA Astrophysics Data System (ADS)

    Stanzel, Philipp; Kling, Harald

    2017-04-01

    EURO-CORDEX Regional Climate Model (RCM) data are available as result of the latest initiative of the climate modelling community to provide ever improved simulations of past and future climate in Europe. The spatial resolution of the climate models increased from 25 x 25 km in the previous coordinated initiative, ENSEMBLES, to 12 x 12 km in the CORDEX EUR-11 simulations. This higher spatial resolution might yield improved representation of the historic climate, especially in complex mountainous terrain, improving applicability in impact studies. CORDEX scenario simulations are based on Representative Concentration Pathways, while ENSEMBLES applied the SRES greenhouse gas emission scenarios. The new emission scenarios might lead to different projections of future climate. In this contribution we explore these two dimensions of development from ENSEMBLES to CORDEX - representation of the past and projections for the future - in the context of a hydrological climate change impact study for the Danube River. We replicated previous hydrological simulations that used ENSEMBLES data of 21 RCM simulations under SRES A1B emission scenario as meteorological input data (Kling et al. 2012), and now applied CORDEX EUR-11 data of 16 RCM simulations under RCP4.5 and RCP8.5 emission scenarios. The climate variables precipitation and temperature were used to drive a monthly hydrological model of the upper Danube basin upstream of Vienna (100,000 km2). RCM data was bias corrected and downscaled to the scale of hydrological model units. Results with CORDEX data were compared with results with ENSEMBLES data, analysing both the driving meteorological input and the resulting discharge projections. Results with CORDEX data show no general improvement in the accuracy of representing historic climatic features, despite the increase in spatial model resolution. The tendency of ENSEMBLES scenario projections of increasing precipitation in winter and decreasing precipitation in summer is

  2. Fault analysis as part of urban geothermal exploration in the German Molasse Basin around Munich

    NASA Astrophysics Data System (ADS)

    Ziesch, Jennifer; Tanner, David C.; Hanstein, Sabine; Buness, Hermann; Krawczyk, Charlotte M.; Thomas, Rüdiger

    2017-04-01

    Faults play an essential role in geothermal exploration. The prediction of potential fluid pathways in urban Munich has been started with the interpretation of a 3-D seismic survey (170 km2) that was acquired during the winter of 2015/2016 in Munich (Germany) within the Bavarian Molasse Basin. As a part of the research project GeoParaMoL*, we focus on the structural interpretation and retro-deformation analysis to detect sub-seismic structures within the reservoir and overburden. We explore the hydrothermal Malm carbonate reservoir (at a depth of 3 km) as a source of deep geothermal energy and the overburden of Tertiary Molasse sediments. The stratigraphic horizons, Top Aquitan, Top Chatt, Top Bausteinschichten, Top Lithothamnien limestone (Top Eocene), Top and Base Malm (Upper Jurassic), together with the detailed interpretation of the faults in the study area are used to construct a 3-D geological model. The study area is characterised by synthetic normal faults that strike parallel to the alpine front. Most major faults were active from Upper Jurassic up to the Miocene. The Munich Fault, which belongs to the Markt-Schwabener Lineament, has a maximum vertical offset of 350 metres in the central part, and contrary to previous interpretation based on 2-D seismic, this fault dies out in the eastern part of the area. The south-eastern part of the study area is dominated by a very complex fault system. Three faults that were previously detected in a smaller 3-D seismic survey at Unterhaching, to the south of the study area, with strike directions of 25°, 45° and 70° (Lüschen et al. 2014), were followed in to the new 3-D seismic survey interpretation. Particularly noticeable are relay ramps and horst/graben structures. The fault with a strike of 25° ends in three big sinkholes with a maximum vertical offset of 60 metres. We interpret this special structure as fault tip horsetail-structure, which caused a large amount of sub-seismic deformation. Consequently, this

  3. NOAA Deepwater Exploration of the Marianas 2016: Volcanic arc and Backarc Basin

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Brounce, M. N.; Chadwick, B.; Fryer, P. B.; Glickson, D.; Merle, S. G.

    2016-12-01

    Legs 1 and 3 of NOAA Okeanos Explorer EX1605 devoted a total of 17 ROV dives to exploring the Mariana magmatic arc and backarc basin (BAB). Dives were carried out on 11 submarine arc volcanoes, the submerged slopes of two volcanic islands, and at 3 BAB sites along 1000 km of the Mariana arc system. Four of the studied arc volcanoes are extinct, three are dormant, and six are active. All BAB dives were on the spreading ridge between 15-17°N, which is volcanically active. Geologic highpoints of these dives include: 1) discovery of an extinct hydrothermal chimney ( 15m tall) in Fina Nagu A (Leg 1, Dive 7; L1D7); 2) observations of very fresh (<3 years old) BAB pillow basalts (L1D9); 3) discovery of a very active BAB hydrothermal field (T 340°C, active chimneys up to 30m tall; L1D11); 4) examination of Esmeralda Bank crater floor (active venting but too murky to find vents; L1D19); 5) discovery of hydrothermal vents with vent fauna on Chamorro volcano (L3D7; T 30°C, active chimneys 2m tall); and 6) examination of active venting and S degassing at 500-350 m depth on Daikoku volcano (L3D9). Video clips of some of the most exciting discoveries and examinations will be presented. We plan to compare previous bathymetry over the active volcanoes with what was collected during EX1605 to quantify how these edifices have changed since when these were previously mapped, over the past 13 years or less. These dives also provided visual evidence in support of the hypothesis that individual edifices of the Fina Nagu Volcanic Complex increase in age from NE to SW, interpreted as due to the motion of actively-extending lithosphere of the southern Mariana BAB to the SW over a relatively fixed source of arc magma above the subducting Pacific plate (Brounce et al. G3 2016). Continuous interaction between biologists and geologists on EX1605 allowed us to identify regions of high faunal density on hard substrates around some active volcanoes, for example Esmeralda Bank, presumably

  4. Re-exploration of cratonic basins using passive-margin sequence-stratigraphic concepts: examples from upper Paleozoic rocks, eastern margin, Midland basin

    SciTech Connect

    Brown, L.F. Jr.

    1989-03-01

    Use of 5000 well logs and extensive outcrop information with a 22,000-mi/sup 2/ test region on the eastern margin of the Midland basin permitted delineation of 16 probably third-order type 1 depositional sequences. Sandstone-isolith maps of siliciclastic highstand and lowstand systems tracts show that most structural traps produce from highstand fluvial-deltaic reservoirs, but most stratigraphic traps discovered to date occur within lowstand depositional systems, principally incised valley fills and basin-floor fans. Hydrocarbons are rarely trapped in retrogradational (transgressive) systems tracts. Maps of lowstand tracts refocus attention on reservoirs that can be predicted to exist basinward of preexisting shelf edges. A basinward shift of exploration emphasis from incised valley-fill reservoirs to other lowstand elements - such as basin-floor fans, canyon and leveed-channel fills, and lowstand progradational deltaic wedges - could lead to plays where lenticular reservoir sandstones and marine-condensed source and seal shales exhibit the optimum conditions for pinch-out traps.

  5. Comparing the trends of elevated blood pressure in appalachian and non-Appalachian regions.

    PubMed

    Shandera-Ochsner, Anne L; Han, Dong Y; Rose, Danny; Aroor, Sushanth R; Schmitt, Frederick; Bellamy, Lisa M; Dobbs, Michael R

    2014-10-01

    As an established risk factor for cardiovascular disease and stroke, hypertension risks are often thought to be more prevalent in Appalachian mountain ranges when compared with other neighboring counterpart regions. This study evaluated blood pressure (BP) readings among 2358 Kentucky residents attending community stroke risk screening events held in 15 counties, including nine Appalachian counties (n=1134) and six non-Appalachian counties (n=1224). With high BP being operationally defined as ≥140/90 mm Hg, 41.5% of Appalachian county residents had elevated BP compared with 42.6% among those from non-Appalachian counties. Although the counties with the highest rates of elevated BP did tend to reside in the Appalachian region, there was no significant difference between rates of elevated BP in Appalachia vs non-Appalachian counties. This dataset is proposed as a pilot project to encourage further pursuit of a larger controlled project.

  6. Ouachita-Appalachian junction: a Paleozoic transpressional zone

    SciTech Connect

    Hale-Erlich, W.S.; Coleman, J.L.; Lopez, J.A.; Lober, M.S.

    1987-05-01

    The late Paleozoic collision of the Gondwana supercontinent with the trailing southern margin of North America created the Ouachita and Appalachian orogenic belts. Transecting these belts are several transpressional or wrench fault zones, including the Val Verde basin-Texas lineament system, the Ardmore-Anadarko basin trend, and the Reelfoot rift complex. Vertical movement within these wrench zones resulted in the emplacement of pop-block or flower structures. In Texas and Oklahoma these features are major structural traps for oil and gas. In this work, they propose that the (buried) juncture between the Ouachita and Appalachian foldbelts in Mississippi is a similar transpressional fault zone. Recent reconstructions of the collision between Gondwana and North America indicate a relative closure direction of southeast to northwest. Normal decollement thrusting occurred in the Appalachian and Ouachita foldbelts, where the structural grain of the North American margin was nearly perpendicular to the closure direction. Where the structural grain was oblique to closure direction, wrench faulting and high-angle thrust faulting occurred, due to the combined effect of both translational and compressional stress fields. In southwestern Alabama and Mississippi the trailing North American plate margin consisted of Mississippian and Pennsylvanian clastics draped over a thick Cambro-Ordovician carbonate shelf. This shelf trends northeast-southwest in Alabama but turns sharply to trend north-northwest in Mississippi, possibly reflecting changes in Precambrian basement relief. Transpressional stresses would have been generated near this sharp bend during the collision. This study identifies one such transpressional fault zone, on the basis of seismic data and well control, in east-central Mississippi.

  7. Rural Appalachian perspectives on heart health: social ecological contexts.

    PubMed

    Mudd-Martin, Gia; Biddle, Martha J; Chung, Misook L; Lennie, Terry A; Bailey, Alison L; Casey, Baretta R; Novak, M J; Moser, Debra K

    2014-01-01

    To explore factors associated with cardiovascular disease (CVD) risk in Central Appalachia Kentucky to guide development of a culturally appropriate risk reduction intervention. Based on community-based participatory research principles, 7 focus groups were conducted with 88 healthcare employees and residents from 6 Appalachian counties. Sessions were audio-recorded and transcribed. Thematic analysis was used to identify themes and sub-themes. Participants most frequently attributed CVD risk to behaviors including unhealthy diets, physical inactivity, and smoking, and to inadequate preventive care. Intrapersonal, interpersonal, sociocultural, environmental, organizational, and policy level influences on risk were identified. Comprehensive intervention guided by a social ecological framework is needed to address CVD risk reduction in Appalachian Kentucky communities.

  8. Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China

    NASA Astrophysics Data System (ADS)

    Niu, Jun; Chen, Ji; Sun, Liqun

    2015-07-01

    The knowledge of drought evolution characteristics may aid the decision making process in mitigating drought impacts. This study uses a macro-scale hydrological model, Variable Infiltration Capacity (VIC) model, to simulate terrestrial hydrological processes over the Xijiang (West River) basin in South China. Three drought indices, namely standardized precipitation index (SPI), standardized runoff index (SRI), and soil moisture anomaly index (SMAI), are employed to examine the spatio-temporal and evolution features of drought events. SPI, SRI and SMAI represent meteorological drought, hydrological drought and agricultural drought, respectively. The results reveal that the drought severity depicted by SPI and SRI is similar with increasing timescales; SRI is close to that of SPI in the wet season for the Liu River basin as the high-frequency precipitation is conserved more by runoff; the time lags appear between SPI and SRI due to the delay response of runoff to precipitation variability for the You River basin. The case study in 2010 spring drought further shows that the spatio-temporal evolutions are modulated by the basin-scale topography. There is more consistency between meteorological and hydrological droughts for the fan-like basin with a converged river network. For the west area of the Xijiang basin with the high elevation, the hydrological drought severity is less than meteorological drought during the developing stage. The recovery of hydrological and agricultural droughts is slower than that of meteorological drought for basins with a longer mainstream.

  9. Appalachian clean coal technology consortium

    SciTech Connect

    Kutz, K.; Yoon, Roe-Hoan

    1995-11-01

    The Appalachian Clean Coal Technology Consortium (ACCTC) has been established to help U.S. coal producers, particularly those in the Appalachian region, increase the production of lower-sulfur coal. The cooperative research conducted as part of the consortium activities will help utilities meet the emissions standards established by the 1990 Clean Air Act Amendments, enhance the competitiveness of U.S. coals in the world market, create jobs in economically-depressed coal producing regions, and reduce U.S. dependence on foreign energy supplies. The research activities will be conducted in cooperation with coal companies, equipment manufacturers, and A&E firms working in the Appalachian coal fields. This approach is consistent with President Clinton`s initiative in establishing Regional Technology Alliances to meet regional needs through technology development in cooperation with industry. The consortium activities are complementary to the High-Efficiency Preparation program of the Pittsburgh Energy Technology Center, but are broader in scope as they are inclusive of technology developments for both near-term and long-term applications, technology transfer, and training a highly-skilled work force.

  10. Flood response for the watersheds of the Fernow Experimental Forest in the central Appalachians

    NASA Astrophysics Data System (ADS)

    Bates, Naomi S.; Smith, James A.; Villarini, Gabriele

    2015-06-01

    We examine flood response of high-gradient, forested central Appalachian watersheds through analyses of rainfall, streamflow, and piezometer observations from the Fernow Experimental Forest near Parsons, West Virginia. Analyses focus on hydrologic processes that control the "upper tail" of flood distributions. The largest flood peaks in the Fernow are an order of magnitude smaller than record floods in the central Appalachian region (for basins of comparable drainage area). We examine flood distributions in the Fernow using extreme value distributions (Generalized Extreme Value and Generalized Pareto distributions) and compare them to other watersheds in the central Appalachians. To examine the role of antecedent soil moisture on flood response, we installed a network of 415 crest-stage piezometers on two headwater watersheds (0.30 and 0.14 km2) of the Fernow. Observations show pronounced heterogeneity of subsurface saturation even within the unchannelized swales of headwater watersheds. Shallow perched water tables over large portions of a watershed occur infrequently in forested central Appalachian basins, but may play an important role in extreme flood response. Fernow watersheds include "treated" and control watersheds with stream gaging records extending back to 1951. We examine nonstationarites in flood frequency in the Fernow and show that forest management practices have had relatively minor impacts on flood frequency.

  11. Petroleum geology of the Estancia basin, New Mexico: An exploration frontier

    SciTech Connect

    Broadhead, R.F. )

    1994-03-01

    The Estancia basin of central New Mexico is an asymmetric, north-south-trending structural depression that originated during the Pennsylvanian. The present-day basin covers 1600 mi[sup 2]. The basin is bounded on the east by the late Paleozoic Pedernal uplift, on the west by the Tertiary Manzano and Los Pinos Mountains, on the north by the Espanola basin, an do the south by Chupadera Mesa. The depth to the Precambrian ranges from 9000 ft in the eastern part of the basin to less than 1500 ft in the western part. Basin fill consists primarily of Pennsylvanian and Wolfcampian (Permian) clastics. The Pennsylvanian section contains significant shelf limestones in the western part of the basin. Forty-three exploratory wells have been drilled in the basin; only 17 have been drilled to Precambrian. Numerous shows of oil and gas have been reported. From the 1930s until the 1960s, CO[sub 2] was produced from lower Pennsylvanian sandstones in two small fields on the western flank of the basin. Dark-gray to black Pennsylvanian shales are probable source rocks. They are mature to marginally mature; TAI values range from less than 2.0 to 3.2. TOC is greater than 0.5% in many of these shales. Kerogen types are mixed amorphous, algal, herbaceous, and woody, indicating that gas, or both gas and oil, may have been generated. Pennsylvanian sandstones are good reservoirs. They are fine- to coarse-grained subarkosic arenites and quartz arenites. Porosity ranges from 10 to 20% in the more porous, coarser-grained sandstones.

  12. Exploration history and future potential of Paleogene and Mesozoic rocks in the substratum of the Pannonian basin, Hungary

    SciTech Connect

    Badocz, B. ); Szalay, A. ); Horvath, F. ); Koncz, I. )

    1991-08-01

    The substratum of Pannonian basin is made up of Paleogene and Mesozoic deposits and Paleozoic, mostly crystalline rocks. They have been studied for a long time at outcrops in and around the basin, and our knowledge has improved significantly due to recent drilling activity and seismic exploration. Geochemical data combined with facies interpretations suggest the following possible source rocks of pre-Neogene age: Lower Oligocene Tard clay, Lower Cretaceous pelagic marls, Upper Liassic (Toarcian) black shales, Lowest Jurassic coal-bearing strata (Gresten facies), and Upper Triassic bitumenous shales (Kossen beds). The most remarkable success in exploration in Mesozoic rocks has been the finding of the Nagylengyel oil field in 1951 (total production 21 million tons). Several smaller fields have been found more recently in fractured Mesozoic and Paleozoic reservoirs, although their source rock can be Miocene marls in nearby deep troughs. Simple mass-balance calculations of hydrocarbon gases in the Great Hungarian Plain, however, indicate that known gas reserves are much larger than the potential yield of all available Neogene source rocks. Analyses of gas content of individual pools and isotope geochemistry give evidence that massive gas flux from depth is still going on. Maturity studies also support the view that hydrocarbon generative potential of the Mesozoic and Paleogene substrata of the Pannonian basin is remarkable. The authors conclude that future exploration can be profitable provided that high technology is combined with adequate experience in post orogenic extensional terrains.

  13. Conceptual models in exploration geochemistry-The Basin and Range Province of the Western United States and Northern Mexico

    USGS Publications Warehouse

    Lovering, T.G.; McCarthy, J.H.

    1978-01-01

    This summary of geochemical exploration in the Basin and Range Province is another in the series of reviews of geochemical-exploration applications covering a large region; this series began in 1975 with a summary for the Canadian Cordillera and Canadian Shield, and was followed in 1976 by a similar summary for Scandinavia (Norden). Rather than adhering strictly to the type of conceptual models applied in those papers, we have made use of generalized landscape geochemistry models related to the nature of concealment of ore deposits. This study is part of a continuing effort to examine and evaluate geochemical-exploration practices in different areas of the world. Twenty case histories of the application of geochemical exploration in both district and regional settings illustrate recent developments in techniques and approaches. Along with other published reports these case histories, exemplifying generalized models of concealed deposits, provide data used to evaluate geochemical-exploration programs and specific sample media. Because blind deposits are increasingly sought in the Basin and Range Province, the use of new sample media or anomaly-enhancement techniques is a necessity. Analysis of vapors or gases emanating from blind deposits is a promising new technique. Certain fractions of stream sediments show anomalies that are weak or not detected in conventional minus 80-mesh fractions. Multi-element analysis of mineralized bedrock may show zoning patterns that indicate depth or direction of ore. Examples of the application of these and other, more conventional methods are indicated in the case histories. The final section of this paper contains a brief evaluation of the applications of all types of sample media to geochemical exploration in the arid environment of the Basin and Range Province. ?? 1978.

  14. Maps showing petroleum exploration intensity and production in major Cambrian to Ordovician reservoir rocks in the Anadarko Basin

    USGS Publications Warehouse

    Henry, Mitch; Hester, Tim

    1996-01-01

    The Anadarko basin is a large, deep, two-stage Paleozoic basin (Feinstein, 1981) that is petroleum rich and generally well explored. The Anadarko basin province, a geogrphic area used here mostly for the convenience of mapping and data management, is defined by political boundaries that include the Anadarko basin proper. The boundaries of the province are identical to those used by the U.S. Geological Survey (USGS) in the 1995 National Assessment of United Stated Oil and Gas Resources. The data in this report, also identical to those used in the national assessment, are from several computerized data bases including Nehring Research Group (NRG) Associates Inc., Significant Oil and Gas Fields of the United States (1992); Petroleum Information (PI), Inc., Well History Control System (1991); and Petroleum Information (PI), Inc., Petro-ROM: Production data on CD-ROM (1993). Although generated mostly in response to the national assessment, the data presented here arc grouped differently and arc displayed and described in greater detail. In addition, the stratigraphic sequences discussed may not necessarily correlate with the "plays" of the 1995 national assessment. This report uses computer-generated maps to show drilling intensity, producing wells, major fields, and other geologic information relevant to petroleum exploration and production in the lower Paleozoic part of the Anadarko basin province as defined for the U.S. Geological Survey's 1995 national petroleum assessment. Hydrocarbon accumulations must meet a minimum standard of 1 million barrels of oil (MMBO) or 6 billion cubic feet of gas (BCFG) estimated ultimate recovery to be included in this report as a major field or revoir. Mapped strata in this report include the Upper Cambrian to Lower Ordovician Arbuckle and Low Ordovician Ellenburger Groups, the Middle Ordovician Simpson Group, and the Middle to Upper Ordovician Viola Group.

  15. The Appalachian Band in the Moral Spectrum.

    ERIC Educational Resources Information Center

    Snyder, Bob

    1995-01-01

    Reviews "Appalachian Values," by author Loyal Jones and photographer Warren Brunner, which depicts the culture and values characteristic of Appalachian people. Although the book successfully illustrates the moral core of Appalachia, values are presented in a noncontroversial form, rather than as a part of individual or social conflict.…

  16. Chapter 1: The Appalachian regional reforestation initiative

    Treesearch

    Patrick Angel; Vic Davis; Jim Burger; Don Graves; Carl. Zipper

    2017-01-01

    The Appalachian Regional Reforestation Initiative (ARRI) is a cooperative effort by the States of the Appalachian region with the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSMRE) to encourage restoration of high-quality forests on reclaimed coal mines in the eastern United States. The goals of ARRI are to communicate...

  17. Proceedings: guidelines for regenerating Appalachian hardwood stands

    Treesearch

    H. Clay Smith; Arlyn W. Perkey; William E. Kidd

    1988-01-01

    This proceedings will provide field foresters and landowners with an update of current available information for regenerating Appalachian hardwood stands. We wanted a "state-of-the-art" proceedings for regenerating Appalachian hardwood stands. We asked the authors to make recommendations based on the current literature, their knowledge, and experience. Though...

  18. Appalachian Regional Commission. Annual Report 1969.

    ERIC Educational Resources Information Center

    Appalachian Regional Commission, Washington, DC.

    After 4 years of operation, the Appalachian Regional Commission (ARC) presents this 1969 annual report and evaluation of its activities as required by the Appalachian Regional Development Act of 1965. A brief overview is given of the history of the program, the Federal-state relationship, and strategies for regional development. Appalachia is then…

  19. Appalachian English Stereotypes: Language Attitudes in Kentucky.

    ERIC Educational Resources Information Center

    Luhman, Reid

    1990-01-01

    Employs the matched guise technique to compare attitudes in Kentucky about Appalachian English and Standard American English held by speakers of both language varieties. The study suggests that speakers of Appalachian English partially accept low status evaluation of their dialect, but reject other negative stereotypes about their community…

  20. 1977 Annual Report - Appalachian Regional Commission.

    ERIC Educational Resources Information Center

    Appalachian Regional Commission, Washington, DC.

    Narrative and tabular data, maps, and photographs comprise this annual report for fiscal 1977 on the Appalachian Regional Commission. Among highlights reported for the year were: completion of half the mileage in the Appalachian Development Highway system, further reducing inhabitants' isolation from jobs, schools, and markets; continued reversal…

  1. An Appalachian Author Describes His Life Style

    ERIC Educational Resources Information Center

    Garrett, Betty

    1972-01-01

    Jesse Stuart, an author who has written poems, stories, and novels about Appalachia since the early 1930s, is interviewed in this first of a series focusing on outstanding Appalachians who have contributed to the Appalachian Region and to the nation as a whole. (NQ)

  2. An Appalachian Author Describes His Life Style

    ERIC Educational Resources Information Center

    Garrett, Betty

    1972-01-01

    Jesse Stuart, an author who has written poems, stories, and novels about Appalachia since the early 1930s, is interviewed in this first of a series focusing on outstanding Appalachians who have contributed to the Appalachian Region and to the nation as a whole. (NQ)

  3. Petroleum geology of Campos Basin, Brazil: A successful case history of deep water exploration

    SciTech Connect

    Franke, M.R.; Lugon, H.A.F.; Beraldo, W.L. )

    1990-05-01

    Campos Basin, the most prolific Brazilian basin, produces almost 400,000 bbl of oil per day and contains 70% of the national reserves. The basin is located on the southeastern coast of Brazil, covering a prospectable area of 100,000 km{sup 2} Campos is a passive continental margin basin originated by the breakup of Pangea and the rifting of the South American and African plates in the Early Cretaceous. The basin's sedimentary section encompasses three megasequences: nonmarine, transitional, and marine, ranging in age from Neocomian to Holocene. Hydrocarbon generation is related to nonmarine organic-rich shales and marls, and hydrocarbon entrapment assumes ascendent migration along fault planes and through salt gaps toward reservoirs ranging in age from Neocomian to Tertiary (mainly turbiditic sandstones). The first onshore stratigraphic well was drilled based on gravity surveys in 1958. The acquisition of new geophysical data, mainly seismic reflection data, followed after 1968. The first offshore well was drilled in 1971, and in 1974, the first oil field, Garopua, was discovered. Giant hydrocarbon accumulations have been discovered in water depths ranging from 400 to 1,800 m since 1984. As of mid-1989, 35 offshore oil fields have been discovered, 760 million bbl of oil, and 490 bcf of gas have been produced. The basin oil and equivalent gas reserves are estimated in 6.0 billion bbl, 60% of which is located in the deep-water giant oil fields.

  4. Giant polygons and circular graben in western Utopia basin, Mars: Exploring possible formation mechanisms

    NASA Astrophysics Data System (ADS)

    Buczkowski, Debra L.; Seelos, Kim D.; Cooke, Michele L.

    2012-08-01

    Large-scale fracture systems surrounding the Utopia basin include giant polygons and circular graben. Data covering the northern Utopia basin now allow high-resolution mapping of these features in all regions of the basin. Giant polygons to the north and south of the basin are different in both size and morphology, leading to the polygon classifications (1) S-style, (2) subdued S-style, (3) northern S-style and (4) N-style. Also, ten circular graben have been identified to the north of the Utopia basin. These have generally larger diameters than southern circular graben, and their fracture morphology is similar to N-style giant polygons. As with southern circular graben, the surface relief of the depression inside the northern circular graben scales directly with diameter. However, northern circular graben have less steep trend slopes, larger average diameters and greater ring spacing compared to southern circular graben of the same diameter and similar distance to the center of the Utopia basin. Both the giant polygons and circular graben of Utopia Planitia are consistent with formation by volumetric compaction of a fine-grained sedimentary material covering an uneven buried surface. Giant polygon size variations can be explained by the material being wet to the south but frozen or partially frozen to the north, while differences between northern and southern circular graben may be attributed to changes in cover thickness. Differences in fracture morphology can be explained by subsequent alteration of the northern troughs due to polar processes.

  5. Terrain and landform influence on Tsuga canadensis (L.) Carriere (Eastern Hemlock) distribution in the southern Appalachian Mountains

    Treesearch

    G. Narayanaraj; P.V. Bolstad; K.J. Elliott; J.M. Vose

    2010-01-01

    We examined the relationships between hemlock distribution and abundance and terrain attributes for the Coweeta Basin in the southern Appalachian Mountains. Field measurements were combined with GIS mapping methods to develop predictive models of abundance and distribution of Tsuga canadensis (L.) Carriere (eastern hemlock) and evaluate the co-...

  6. Application of sequence stratigraphy to exploration and development in eastern Pearl River Mouth Basin, South China Sea

    SciTech Connect

    Yang, Shaokun; Huang Lifen; Xu Shice

    1996-01-01

    Some appropriate conditions for applying sequence stratigraphy in PRMB exist: (1) The PRMB is a Cenozoic extension basin with weak tectogenesis after rifting; (2) The late Tertiary successive sediments deposited over the area from coast to deep marine basin are well developed and their seismic reflection is good in quality; (3) High resolution quantitative biostratigraphy has provided more precise data of eustasy. Twenty-two third order sequences since 30Ma were identified and are correlative to global cycle chart, but TB2.1 can be further divided into two third-order sequences. The 22 sequences from a [open quote]retrograding stacking pattern[close quote] which resulted in no large constructive delta or delta-related rollover anticlines. However, widely deposited seal rock possibly sealed the incised-valley, basin floor fan (BPF), and transgressive sandstone to form valid stratigraphic traps. Stratigraphic traps are particularly important in future exploration because of poor anticline trap types in the basin. Some ER stratigraphic traps can be predicted after studying the distribution of systems ER tracts in each sequence as a basic exploration unit. The BPF of TB2.1 which is closed to the source kitchen area could form a large subtle trap. Using the parasequence as a basic unit in reservoir scale will provide a new method to discover new reservoirs. For example, new oil reserves within the predicted stratigraphic trap related to K22, which can be divided into several parasequences in C.A. 16/08, were obtained after drilling. Sequence stratigraphy has become a valid high resolution tool for chronostratigraphic correlation and fine-division and exploration of stratigraphic traps.

  7. Setting the baseline before geothermal exploration begins: the search of microseismic activity in the Geneva Basin, Western Switzerland

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Martin, François

    2017-04-01

    Switzerland is moving towards the development of renewable energies. Following this trend, SIG (Services Industriels de Genève) and the Canton of Geneva is investing in the exploration of geothermal energy. Before the exploration takes place it is crucial to understand the rate of seismic activity in the region and its relationship with the existing faults. Historical and instrumental times suggest the presence of active faults in the region but to date little is known about the seismic activity in the Geneva Basin. Tectonic maps show the presence of major faults crossing the basin and recent seismic events indicate that such systems are still active on a regional scale. However, available data indicate infrequent and dispersed activity. This can be partially due to the small number of permanent stations in the area. To understand where micro-seismic activity may be located around and within the Geneva Basin we have deployed a temporary network composed of 20 broadband stations. With the densification of the network it could be possible to capture and localise small magnitude seismic events (i.e. M less than 1). Here we present the preliminary results obtained during the first months of the temporary network deployment.

  8. Examination of cardiovascular risk factors and rurality in Appalachian children.

    PubMed

    Lilly, Christa L; Umer, Amna; Cottrell, Lesley; Pyles, Lee; Neal, William

    2017-01-01

    The prevalence of childhood cardiovascular disease (CVD) risk factors often increases in more rural geographic regions in the USA. However, research on the topic often has conflicting results. Researchers note differences in definitions of rurality and other factors that would lead to differences in inference, including appropriate use of statistical clustering analysis, representative data, and inclusion of individual-level covariates. The present study's objective was to examine CVD risk factors during childhood by geographic distribution in the US Appalachian region as a first step towards understanding the health disparities in this area. Rurality and CVD risk factors (including blood pressure, body-mass index (BMI), and cholesterol) were examined in a large, representative sample of fifth-grade students (N=73 014) from an Appalachian state in the USA. A six-category Rural-Urban Continuum Codes classification system was used to define rurality regions. Mixed modeling analysis was used to appropriately cluster individuals within 725 unique zip codes in each of these six regions, and allowed for including several individual-level socioeconomic factors as covariates. Rural areas had better outcomes for certain CVD risk factors (lowest low-density lipoprotein cholesterol (LDL-C), and blood pressure (BP) and highest high-density lipoprotein cholesterol (HDL-C)) whereas mid-sized metro and town areas presented with the worst CVD risk factors (highest BMI% above ideal, mean diastolic BP, LDL-C, total cholesterol, triglyceride levels and lowest HDL-C) outcomes in children and adolescence in this Appalachian state. Counter to the study hypothesis, mid-sized metro areas presented with the worst CVD risk factors outcomes in children and adolescence in the Appalachian state. This data contradicts previous literature suggesting a straightforward link between rurality and cardiovascular risk factors. Future research should include a longitudinal design and explore

  9. An evaluation of the suitability of ERTS data for the purposes of petroleum exploration. [Anadarko Basin in Oklahoma and Texas

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Petzel, G.

    1974-01-01

    This investigation was undertaken to determine the types and amounts of information valuable to petroleum exploration that are extractable from ERTS data and to determine the cost of obtaining the information from ERTS relative to costs using traditional or conventional means. In particular, it was desirable to evaluate this new petroleum exploration tool in a geologically well-known area in order to assess its potential usefulness in an unknown area. In light of the current energy situation, it is felt that such an evaluation is important in order to best utilize technical efforts with customary exploration tools, by rapidly focusing attention on the most promising areas in order to reduce the time required to go through the exploration cycle and to maximize cost savings. The Anadarko Basin lies in western Oklahoma and the panhandle of Texas (Figure 1). It was chosen as a test site because there is a great deal of published information available on the surface and subsurface geology of the area, there are many known structures that act as traps for hydrocarbons, and it is similar to several other large epicontinental sedimentary basins.

  10. Tectono-thermal History of the Southern Nenana Basin, Interior Alaska: Implications for Conventional and Unconventional Hydrocarbon Exploration

    NASA Astrophysics Data System (ADS)

    Dixit, N. C.; Hanks, C. L.

    2014-12-01

    The Tertiary Nenana basin of Interior Alaska is currently the focus of both new oil exploration and coalbed methane exploitation and is being evaluated as a potential CO2sequestration site. The basin first formed as a Late Paleocene extensional rift with the deposition of oil and gas-prone, coal-bearing non-marine sediments with excellent source potential. Basin inversion during the Early Eocene-Early Oligocene times resulted in folding and erosion of higher stratigraphic levels, forming excellent structural and stratigraphic traps. Initiation of active faulting on its eastern margin in the middle Oligocene caused slow tectonic subsidence that resulted in the deposition of reservoir and seal rocks of the Usibelli Group. Onset of rapid tectonic subsidence in Pliocene that continues to the present-day has provided significant pressure and temperature gradient for the source rocks. Apatite fission-track and vitrinite reflectance data reveals two major paleo-thermal episodes: Late Paleocene to Early Eocene (60 Ma to 54.8 Ma) and Late Miocene to present-day (7 Ma to present). These episodes of maximum paleotemperatures have implications for the evolution of source rock maturity within the basin. In this study, we are also investigating the potential for coalbed methane production from the Late Paleocene coals via injection of CO2. Our preliminary analyses demonstrate that 150 MMSCF of methane could be produced while 33000 tonnes of CO2 per injection well (base case of ~9 years) can be sequestered in the vicinity of existing infrastructure. However, these volumes of sequestered CO2and coal bed methane recovery are estimates and are sensitive to the reservoir's geomechanical and flow properties. Keywords: extensional rift, seismic, subsidence, thermal history, fission track, vitrinite reflectance, coal bed methane, Nenana basin, CO2 sequestration

  11. Exploration for deep gas in the Devonian Chaco Basin of Southern Bolivia: Sequence stratigraphy, predictions, and well results

    SciTech Connect

    Williams, K.E.; Radovich, B.J.; Brett, J.W.

    1995-12-31

    In mid 1991, a team was assembled in Texaco`s Frontier Exploration Department (FED) to define the hydrocarbon potential of the Chaco Basin of Southern Bolivia. The Miraflores No. 1 was drilled in the fall of 1992, for stratigraphic objectives. The well confirmed the predicted stratigraphic trap in the Mid-Devonian, with gas discovered in two highstand and transgressive sands. They are low contrast and low resistivity sands that are found in a deep basin `tight gas` setting. Testing of the gas sands was complicated by drilling fluid interactions at the well bore. Subsequent analysis indicated that the existing porosity and permeability were reduced, such that a realistic test of reservoir capabilities was prevented.

  12. The impact of late Cenozoic uplift and erosion on hydrocarbon exploration: offshore Norway and some other uplifted basins

    NASA Astrophysics Data System (ADS)

    Doré, A. G.; Jensen, L. N.

    1996-03-01

    Uplift and erosion of sedimentary basins can have a wide range of effects, both positive and negative, on hydrocarbon prospectivity. These phenomena are discussed with special reference to the Norwegian Continental Shelf. Late Cenozoic uplift and erosion have affected large expanses of the shelf, and in particular the Barents Sea. Up to 3000 m of sedimentary overburden have been removed from the Barents shelf, and this process is widely held to be responsible for disappointing results in petroleum exploration. Negative effects identified include spillage of hydrocarbons from accumulations, expansion of gas and evacuation of structures, potential for seal failure and cooling of source rocks. We argue, however, that these aspects have been overstated based on a limited database. Many of the world's hydrocarbon basins (and most of the world's petroleum reserves) lie on land. Most of these basins must have been recently uplifted in order to be above sea level today. Using some of these examples, we show that in other areas with a similar magnitude of uplift and erosion to the Barents Sea sealing capacity (particularly that of evaporites) has been preserved. Hydrocarbon systems have remained intact despite phase changes and redistribution of hydrocarbons. Several enhancing effects of the uplift are documented, including the development of fracture permeability in reservoirs, the remigration of hydrocarbons to shallower subsurface levels and the exsolution of light oil (retrograde condensate). Looking to a future in which natural gas may have increased value, potential exists in uplifted basins such as the Barents Sea for vast volumes of methane formed by exsolution from formation brines. We stress the importance of studying such worldwide analogues in order to throw new light on Norwegian shelf problems. Attention is drawn to some striking similarities between the hydrocarbon systems of the Western Canada Basin and those of the Barents Sea. Examination of the massive

  13. Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic

    SciTech Connect

    Maycock, I.D.

    1988-02-01

    In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well, Alif-1, drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transition between 5000 and 6000 ft. Appraisal and development drilling followed. The Alif field is believed to contain in excess of 400 million bbl of recoverable oil. Subsequent wildcat drilling has located additional accumulations while further amplifying basin stratigraphy. Rapid basin development took place in the Late Jurassic culminating with the deposition of Tithonian salt. The evaporites provide an excellent seal for hydrocarbons apparently sourced from restricted basin shales and trapped in rapidly deposited clastics.

  14. Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic

    SciTech Connect

    Maycock, I.D.

    1986-07-01

    In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transition between 5000 and 6000 ft. A successful appraisal drilling program has demonstrated satisfactory lateral reservoir continuity. Further wildcat drilling demonstrates macro-unit correlation within the eastern part of the basin. Rapid basin development apparently commenced in the late Kimmeridgian, culminating with the deposition of Tithonian evaporites. Available geochemical analysis indicates sourcing from restricted-basin sediments. Excellent traps, reservoirs, and source beds underlying the Tithonian evaporites indicate that a significant new petroliferous province is present.

  15. Reinterpreting the Pinedale Anticline in the Green River Basin: Implications for future hydrocarbon exploration

    SciTech Connect

    Fagan, J.P. Jr.

    1996-06-01

    The Green River Basin is a northwest-southeast elongate structural feature located in southwestern Wyoming. Bounded by three basement uplifts, this complex mountain front basin possesses tremendous gas reserves. Production has been limited to a few structures, such as the Pinedale Anticline, because of the great depth of the basin. The Pinedale Anticline is an elongate structure that parallels the front of the Wind River Thrust. Earlier research has suggested that the anticline is not related to basement, but rather is associated with a foreland detachment structure. A new, high-resolution aeromagnetic survey has been modelled in detail and the results indicate that the Pinedale Anticline may actually be a basement related structure. Profile modelling normal to the anticline from the LaBarge Platform to the Wind River Mountains suggests that not only is Pinedale Field situated on a possible basement structure, but also that additional, heretofore unknown analogous features are also present in the basin. Additionally, an east-northeast structural grain is prevalent throughout the aeromagnetic dataset. This trend has been correlated with structures exposed in the Wind River Mountains and has also been shown to be important to locating hydrocarbon production. Thus, Cretaceous and Paleocene reactivation of Proterozoic age faults may have significantly affected location of structures, local stratigraphy and, subsequently, emplacement of hydrocarbons.

  16. Debris-Flow Hazards within the Appalachian Mountains of the Eastern United States

    USGS Publications Warehouse

    Wieczorek, Gerald F.; Morgan, Benjamin A.

    2008-01-01

    Tropical storms, including hurricanes, often inflict major damage to property and disrupt the lives of people living in coastal areas of the Eastern United States. These storms also are capable of generating catastrophic landslides within the steep slopes of the Appalachian Mountains. Heavy rainfall from hurricanes, cloudbursts, and thunderstorms can generate rapidly moving debris flows that are among the most dangerous and damaging type of landslides. This fact sheet explores the nature and occurrence of debris flows in the central and southern Appalachian Mountains, which extend from central Pennsylvania to northern Alabama.

  17. 3D modelling of an aero-gravity and -magnetic survey as an first exploration step in a frontier basin

    NASA Astrophysics Data System (ADS)

    Köther, Nils; Eckard, Marcel; Götze, Hans-Jürgen

    2010-05-01

    The West African Taoudeni basin covers a desert area of about 1.8 million km² and is one of the last frontier basins worldwide. Here Wintershall Holding AG holds acreage of about 68000 km². During 2005-2007 geological surveys and an aero-gravity and -magnetic survey were conducted in this area. The potential field modelling should contribute first insight about the subsurface to plan an economic seismic survey. 2D models lead to poor results. 2008 the results of an internship (NK) were 3D subsurface models, which were enhanced during the following diploma thesis (Köther, 2009). Complex igneous rocks and sparsely distributed constraints lead to an ambiguous interpretation. Therefore, several simple 3D models were compiled with the in-house software IGMAS+, which base on geological ideas of the underground and fit well the measured data. These basic models allow a geophysical evaluation of different geological theories about the subsurface. Also, for a thorough interpretation field transformations (Euler, Curvature, and Derivatives) were calculated. These results led to new constraints for further interpretation of the basin structures and therefore they are important contributions for future exploration e.g. the planning of seismic surveys.

  18. Radar Rainfall Estimates for Modeling Flood Response to Orographic Thunderstorms in the Central Appalachians

    NASA Astrophysics Data System (ADS)

    Hicks, N. S.; Smith, J. A.

    2001-12-01

    We examine the hydrometeorology and hydrology of extreme flooding from orographic convective systems in the central Appalachian region. Analyses of flood response are based on rainfall and discharge observations for major flood events along the western margin of the central Appalachians (16-17 May 1996, 18-19 July 1996, 30-31 July 1996, 28-29 June 1998, and 7-8 July 2001). A distributed hydrologic model is used to access flood response in Appalachian basins with diverse physiographic properties. High-resolution (1 km, 5 minutes) rainfall fields derived from WSR-88D radars in Charleston, West Virginia and Pittsburgh, Pennsylvania are used for model analyses. Cloud-to-ground lightning and the IFLOWs raingage network provide additional information for hydrometeorological analyses. Flood response is viewed in the context of land surface hydrologic processes and frequency of extreme precipitation events. Orographic convective systems in the Appalachians have produced some of the largest rainfall accumulations in the world for time intervals less than 6 hours and some of the largest unit discharge flood peaks for the U.S. east of the Mississippi River. The 18 July 1942 Smethport, Pennsylvania storm, for example, produced the world record rainfall accumulation of 780 mm in 4.5 hours.

  19. Views from the Summit: White Working Class Appalachian Males and Their Perceptions of Academic Success

    ERIC Educational Resources Information Center

    Alexander, Stephanie J. H.

    2013-01-01

    This research study explored how White working class Appalachian males who have completed, or who were within one term of completing a program of study at one of ten community and technical colleges in West Virginia perceived academic success. It examined their definitions of academic success, the perceptions they held regarding their own past and…

  20. Views from the Summit: White Working Class Appalachian Males and Their Perceptions of Academic Success

    ERIC Educational Resources Information Center

    Alexander, Stephanie J. H.

    2013-01-01

    This research study explored how White working class Appalachian males who have completed, or who were within one term of completing a program of study at one of ten community and technical colleges in West Virginia perceived academic success. It examined their definitions of academic success, the perceptions they held regarding their own past and…

  1. Fragmenting and Reconstructing Identity: Struggles of Appalachian Women Attempting To Reconnect to Their Native American Heritage.

    ERIC Educational Resources Information Center

    Trollinger, Linda Burcham

    This qualitative study drew on the stories and reflections of six Appalachian women of Native American descent to explore their experiences of reconnecting with their lost Native identity. This paper visualizes those experiences in light of the relationships between personal realities and structural influences. Historically, Native identities have…

  2. Petroleum geology of heavy oil in the Oriente basin of Ecuador: Exploration and exploitation challenge for the 1990s

    SciTech Connect

    Leadholm, R.H. )

    1990-05-01

    Published Ecuadorian government forecasts suggest that Oriente basin light oil (21-32{degree} API) production may start to decline in the early to mid-1990s. To maintain stabilized production into the next century, heavy oil reserves (10-20{degree} API) will have to be aggressively exploited. The Oriente's undeveloped proven plus probable heavy reserves are substantial and are expected to exceed 0.5 billion bbl. A recent discovery made by Conoc Ecuador Ltd., operator of Block 16 for a group which consists of O.P.I.C., Maxus, Nomeco, Murphy and Canam, is a good model for future exploration and exploitation of heavy oil in the remote eastern regions of the basin. Amo-1 tested a low-relief anticline (less than 100 ft vertical closure) and encountered 10-20{degree} API oil in five Cretaceous sandstone reservoirs (8,000-10,000 ft depth). Cumulative test production was 1,062 BOPD. Subsequent drilling along the trend resulted in three additional discoveries. The Cretaceous sands were transported from the Brazilian shield by the westward flowing proto-Amazon River and were deposited in fluviodeltaic, tidal, and high-energy marginal marine environments. Air permeabilities are high and geometric mean values approaching several darcies. Porosities average 18-22% in generally well-consolidated sands. The heavy oils are the result of mild biodegradation and/or expulsion from a thermally immature source. Oil-to-oil correlations suggest that all of the basin oils have the same or similar origin, probably marine calcareous shales of the Cretaceous Napo formation. The Block 16 project will provide a major step toward the strategic exploitation of the Oriente basin's heavy oil reserves, when it comes on stream in the early 1990s.

  3. Geologic atlas and database of major Appalachian gas plays

    SciTech Connect

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    The Appalachian Oil and Natural Gas Research Consortium (AONGRC or the Consortium) through a cooperative agreement with the US Department of Energy (DOE), will develop an atlas of major Appalachian gas plays and a machine readable database containing information about these plays. The specific objectives are to: define major gas plays in the basin by age and formation/group and then further by subdividing these units by reservoir rock trap type and depositional environments; determine and map all pools that are in each play; determine data to be collected and published for each pool; conduct a literature search for published and unpublished reservoir data, maps, cross sections, decline curves, and seismic profiles; utilize databases residing of state surveys to produce maps for key fields not available in literature; analyze cores and logs for key fields where these data are not available; redraft available maps and cross sections, compile tables of field data, and layout the atlas pages, including text; arrange the publication of the atlas; and deliver a machine readable database to the Department of Energy.

  4. Geologic atlas and database of major Appalachian gas plays

    SciTech Connect

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    The Appalachian Oil and Natural Gas Research Consortium (AONGRC or the Consortium) through a cooperative agreement with the US Department of Energy (DOE), will develop an atlas of major Appalachian gas plays and a machine readable database containing information about these plays. The specific objectives are to: define major gas plays in the basin by age and formation/group and then further by subdividing these units by reservoir rock trap type and depositional environments; determine and map all pools that are in each play; determine data to be collected and published for each pool; conduct a literature search for published and unpublished reservoir data, maps, cross sections, decline curves, and seismic profiles; utilize databases residing of state surveys to produce maps for key fields not available in literature; analyze cores and logs for key fields where these data are not available; redraft available maps and cross sections, compile tables of field data, and layout the atlas pages, including text; arrange the publication of the atlas; and deliver a machine readable database to the Department of Energy.

  5. Rape myths among Appalachian college students.

    PubMed

    Haywood, Holly; Swank, Eric

    2008-01-01

    Rape myths regularly admonish victims for supposedly provoking the violence done against them. While rape attitudes have been studied in national and urban samples, the support of rape myths in rural populations is seldom investigated. Furthermore, the few empirical studies on sexual coercion in Appalachia are mostly descriptive and rarely compare the sentiments of Appalachians and non-Appalachians. To address this gap, this study surveyed 512 college students at a public university in Eastern Kentucky. In testing an Appalachian distinctiveness question, this study revealed that Appalachian students were less likely to criticize rape victims. Students were also less inclined to condemn rape victims when they were victims themselves, came from egalitarian families, stayed in college longer, rejected modem sexism, and felt little animosity toward women.

  6. Weight/volume ratios for Appalachian hardwoods

    Treesearch

    Floyd G. Timson

    1975-01-01

    Weight/volume relationships are presented in both English and metric systems for 15 commercial species of Appalachian hardwoods. Two ratios are presented: weight of wood volume alone, and weight of wood plus bark.

  7. 1970 Directory: Appalachian Adult Basic Education Personnel.

    ERIC Educational Resources Information Center

    Qazilbash, Husain

    This directory provides quick reference to individuals at the national, regional, state and local levels who, through their responsibilities and organizations, can aid those engaged in the Appalachian Adult Basic Education Program. (CK)

  8. Neotropical Migratory Birds of the Southern Appalachians

    Treesearch

    Kathleen E. Franzreb; Ricky A. Phillips

    1996-01-01

    This publication describes Neotropical migratory birds in the Southern Appalachians, their general ecology and habitat associations, population status, possible reasons for declines and management needs. This paper concentrates on migratory landbirds, thus it does not include waterfowl or shorebirds.

  9. Cooperative Educational Project - The Southern Appalachians: A Changing World

    NASA Astrophysics Data System (ADS)

    Clark, S.; Back, J.; Tubiolo, A.; Romanaux, E.

    2001-12-01

    The Southern Appalachian Mountains, a popular recreation area known for its beauty and rich biodiversity, was chosen by the U.S. Geological Survey as the site to produce a video, booklet, and teachers guide to explain basic geologic principles and how long-term geologic processes affect landscapes, ecosystems, and the quality of human life. The video was produced in cooperation with the National Park Service and has benefited from the advice of the Southern Appalachian Man and Biosphere Cooperative, a group of 11 Federal and three State agencies that works to promote the environmental health, stewardship, and sustainable development of the resources of the region. Much of the information in the video is included in the booklet. A teachers guide provides supporting activities that teachers may use to reinforce the concepts presented in the video and booklet. Although the Southern Appalachians include some of the most visited recreation areas in the country, few are aware of the geologic underpinnings that have contributed to the beauty, biological diversity, and quality of human life in the region. The video includes several animated segments that show paleogeographic reconstructions of the Earth and movements of the North American continent over time; the formation of the Ocoee sedimentary basin beginning about 750 million years ago; the collision of the North American and African continents about 270 million years ago; the formation of granites and similar rocks, faults, and geologic windows; and the extent of glaciation in North America. The animated segments are tied to familiar public-access localities in the region. They illustrate geologic processes and time periods, making the geologic setting of the region more understandable to tourists and local students. The video reinforces the concept that understanding geologic processes and settings is an important component of informed land management to sustain the quality of life in a region. The video and a

  10. Non-tectonic base level forcings drive widespread transient incision and relief production in the waning Appalachian orogen

    NASA Astrophysics Data System (ADS)

    Prince, P. S.; Richardson, R. P.

    2012-12-01

    The development of knickpoints and steep bedrock gorges within otherwise low-relief landscapes of the Appalachian Highlands has long interested geomorphologists. While large tracts of muted Appalachian topography appear consistent with slow, steady exhumation of a thickened crustal root, active gorge development into lower-relief uplands suggests that Appalachian river systems have been re-energized to incise into bedrock and increase relief. Orogen-scale analysis of incision patterns, fluvial profiles, and surficial deposits indicate that two main sources of non-tectonic base level drop superimposed on the slowly-exhuming Appalachian landscape can explain the Cenozoic relief production observed. Along the Eastern Continental Divide on the southeast margin of the Highlands, repeated capture of headwaters of elevated, landward-draining streams of the Blue Ridge by Atlantic basin streams maintains the oversteepened slopes and bedrock gorges of the Blue Ridge Escarpment zone. Capture events induce a transient erosional response in which rapid knickpoint retreat carves deep gorges into the captured basin, ultimately adjusting topography to match the rest of the Atlantic slope. In the lower reaches of landward Appalachian rivers still following courses to the continental interior, hillslope steepening in the wake of migrating knickpoints is apparent against the backdrop of a comparatively low-relief upland. This landscape suggests that landward base level drop, possibly due to rapid, glacially-forced Plio-Pleistocene drainage rearrangement, has initiated transgressive waves of incision to adjust Highlands topography to the recently-established continental interior drainage pattern. Encroachment of both the post-rift seaward base level and the modern landward base level forces a rapid release of potential energy stored in the elevated Highlands, energizing streams to incise into bedrock without the introduction of new tectonic energy. The southern Appalachian landscape

  11. The Status of Health Care in Appalachian Kentucky. Appalachian Data Bank Report #4.

    ERIC Educational Resources Information Center

    Bagby, Jane W.; And Others

    In the early 1960's, the Appalachian Regional Commission (ARC) established a goal to make health care more accessible to the people of the mountains. Today, a primary health care facility is within a 30 minute drive of nearly all Appalachian counties. There has also been a substantial, but still inadequate increase in health care professionals in…

  12. The Status of Health Care in Appalachian Kentucky. Appalachian Data Bank Report #4.

    ERIC Educational Resources Information Center

    Bagby, Jane W.; And Others

    In the early 1960's, the Appalachian Regional Commission (ARC) established a goal to make health care more accessible to the people of the mountains. Today, a primary health care facility is within a 30 minute drive of nearly all Appalachian counties. There has also been a substantial, but still inadequate increase in health care professionals in…

  13. Preconception Health Indicators: A Comparison Between Non-Appalachian and Appalachian Women

    PubMed Central

    Short, Vanessa L.; Oza-Frank, Reena

    2015-01-01

    To compare preconception health indicators (PCHIs) among non-pregnant women aged 18–44 years residing in Appalachian and non-Appalachian counties in 13 U.S. states. Data from the 1997–2005 Behavioral Risk Factor Surveillance System were used to estimate the prevalence of PCHIs among women in states with ≥1 Appalachian county. Counties were classified as Appalachian (n = 36,496 women) or non-Appalachian (n = 88,312 women) and Appalachian counties were categorized according to economic status. Bivariate and multivariable logistic regression models examined differences in PCHIs among women by (1) Appalachian residence, and (2) economic classification. Appalachian women were younger, lower income, and more often white and married compared to women in non-Appalachia. Appalachian women had significantly higher odds of reporting Appalachian women in counties with weaker economies had significantly higher odds of reporting less education, no health insurance, <5 daily fruits/vegetables, overweight/obesity, and poor mental health compared to Appalachian women in counties with the strongest economies. For many PCHIs, Appalachian women did not fare as well as non-Appalachians. Interventions sensitive to Appalachian culture to improve preconception health may be warranted for this population. PMID:23054445

  14. Preconception health indicators: a comparison between non-Appalachian and Appalachian women.

    PubMed

    Short, Vanessa L; Oza-Frank, Reena; Conrey, Elizabeth J

    2012-12-01

    To compare preconception health indicators (PCHIs) among non-pregnant women aged 18-44 years residing in Appalachian and non-Appalachian counties in 13 U.S. states. Data from the 1997-2005 Behavioral Risk Factor Surveillance System were used to estimate the prevalence of PCHIs among women in states with ≥1 Appalachian county. Counties were classified as Appalachian (n = 36,496 women) or non-Appalachian (n = 88,312 women) and Appalachian counties were categorized according to economic status. Bivariate and multivariable logistic regression models examined differences in PCHIs among women by (1) Appalachian residence, and (2) economic classification. Appalachian women were younger, lower income, and more often white and married compared to women in non-Appalachia. Appalachian women had significantly higher odds of reporting Appalachian women in counties with weaker economies had significantly higher odds of reporting less education, no health insurance, <5 daily fruits/vegetables, overweight/obesity, and poor mental health compared to Appalachian women in counties with the strongest economies. For many PCHIs, Appalachian women did not fare as well as non-Appalachians. Interventions sensitive to Appalachian culture to improve preconception health may be warranted for this population.

  15. THE EFFECT OF APPALACHIAN MOUNTAINTOP MINING ON INTERIOR FOREST

    EPA Science Inventory

    Southern Appalachian forests are predominantly interior because they are spatially extensive with little disturbance imposed by other uses of the land. Appalachian mountaintop mining increased substantially during the 1990s, posing a threat to the interior character of the forest...

  16. THE EFFECT OF APPALACHIAN MOUNTAINTOP MINING ON INTERIOR FOREST

    EPA Science Inventory

    Southern Appalachian forests are predominantly interior because they are spatially extensive with little disturbance imposed by other uses of the land. Appalachian mountaintop mining increased substantially during the 1990s, posing a threat to the interior character of the forest...

  17. Metals in water, sediments, and biota of an offshore oil exploration area in the Potiguar Basin, Northeastern Brazil.

    PubMed

    Lacerda, L D; Campos, R C; Santelli, R E

    2013-05-01

    Metal concentrations were evaluated in water, bottom sediments, and biota in four field campaigns from 2002 to 2004 in the Potiguar Basin, northeastern Brazil, where offshore oil exploration occurs. Analyses were performed by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Total metal concentrations in water (dissolved + particulate) and sediments were in the range expected for coastal and oceanic areas. Abnormally high concentrations in waters were only found for Ba (80 μg l(-1)) and Mn (12 μg l(-1)) at the releasing point of one of the outfalls, and for the other metals, concentrations in water were found in stations closer to shore, suggesting continental inputs. In bottom sediments, only Fe and Mn showed abnormal concentrations closer to the effluent releasing point. Metal spatial distribution in shelf sediments showed the influence of the silt-clay fraction distribution, with deeper stations at the edge of the continental shelf, which are much richer in silt-clay fraction showing higher concentrations than shallower sediments typically dominated by carbonates. Metal concentrations in estuarine (mollusks and crustaceans) and marine (fish) organisms showed highest concentrations in oysters (Crassostrea rhizophorae). Fish tissues metal concentrations were similar between the continental shelf influenced by the oil exploration area and a control site. The results were within the range of concentrations reported for pristine environments without metals contamination. The global results suggest small, if any, alteration in metal concentrations due to the oil exploration activity in the Potiguar Basin. For monitoring purposes, the continental inputs and the distribution of the clay-silt fraction need to be taken into consideration for interpreting environmental monitoring results.

  18. 1975 Annual Report of the Appalachian Regional Commission.

    ERIC Educational Resources Information Center

    Kendrick, Elise F., Ed,; And Others

    The Appalachian Regional Commission, created via the Regional Development Act of 1965, documents a decade of contributions to Appalachian socioeconomic development in this 1975 annual report. Topics covered in this report include: the ten years of foundation building; the Region before 1965; the Region and the Appalachian Regional Commission;…

  19. Walking through time: heritage resources within the Appalachian Trail corridor

    Treesearch

    David M. Lacy; Karl Roenke

    1998-01-01

    Parts of the Appalachian Trail (and nearly half of Vermont's Long Trail) are located on New England National Forests, and managed in partnership with the Appalachian Trail Conference, Green Mountain Club, and other volunteers. Since the Trail corridor is a linear, if serpentine, sample of northern Appalachian highland environments it's not surprising that it...

  20. A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia

    NASA Astrophysics Data System (ADS)

    Gallegos, Z. E.; Newsom, H. E.

    2015-10-01

    This abstract highlights a previously unexplored area in the Hellas Planitia region of Mars. The exploration zone proposed offers scientifically compelling regions of interest, as well as abundant resources for reoccurring human missions.

  1. Fluvioglacial sandstone reservoirs and deposystem analysis in hydrocarbon exploration of Permian Gidgealpa group, southern Cooper basin, south Australia

    SciTech Connect

    Wild, E.K.; Williams, B.P.J.

    1984-04-01

    The sedimentology of the Permian Gidgealpa Group of the southern Cooper basin currently is being evaluated to ascertain the tectono-sedimentologic evolution of the basin and to determine the architecture of the clastic suite in order to generate exploration plays. The Merrimelia Formation of the Gidgealpa Group was examined regionally in 29 cored wells. The formation attains a maximum thickness of 300 m (1000 ft), and representative facies include glaciofluvial outwash, terrestrial and subaqueous diamictites, and glaciolacustrine, wave-affected, and ripple-laminated sandstones, with thick, monotonous mudrock sequences containing clay-dominant rhythmite horizons. The Tirrawarra Sandstone, analyzed in 32 cored wells, comprises four major facies associations throughout its maximum 75 m (250 ft) thickness. These associations indicate a temporal and spatial evolution of a fluvioglacial to predominantly fluvial system. Initial deposition on low slope, outwash fans, where braided processes operated is indicated. This sedimentation style evolved into a low sinuosity, bedload-dominant, sandy braided system, with high width-to-depth ratio channels. Allocyclic control mechanisms are invoke for late Tirrawarra sedimentation as the facies reveal proximal-distal patterns and the fluvial style changes to a mixed-load channel system. The interfacing and evolutionary pattern of the deposystem indicates that additional reserves potential exists for reservoirs developed locally within the Merrimelia Formation.

  2. Erosional history of the Appalachians as recordeed in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Naeser, C.W.; Naeser, N.D.; Edwards, Lucy E.; Weems, Robert E.; Southworth, C. Scott; Newell, Wayne

    2016-01-01

    and Maryland, sands of Early Cretaceous through late early Oligocene age do not yield any old zircons comparable in age to the old zircons found in bedrock in the western Appalachians. Very old zircons yielding FT ages >800 Ma are only encountered in Coastal Plain sands of middle early Miocene and younger age.Miocene and younger fluvial-deltaic deposits associated with the major mid-Atlantic Coastal Plain rivers that now head in the western Appalachians (the Hudson, Delaware, Susquehanna, Potomac, James, and Roanoke) contain abundant clasts of fossiliferous chert and quartzite and other distinctive rock types derived from Paleozoic rocks of the western Appalachians. These distinctive clasts have not been reported in older Coastal Plain sediments.The ZFT and lithic detritus data indicate that the drainage divide for one or more east-flowing mid-Atlantic rivers migrated west into the western Appalachians, and the river(s) began transporting western Appalachian detritus to the Atlantic Coastal Plain, sometime between the late early Oligocene and middle early Miocene. By no later than late middle Miocene most if not all of the major rivers that now head west of the Blue Ridge were transporting western Appalachian detritus to the Coastal Plain. Prior to the drainage divide migrating into the western Appalachians, the ZFT data are consistent with the dominant source of Atlantic Coastal Plain sediments being detritus from the Piedmont and main part of the Blue Ridge, with possible input from distant volcanic sources.The ZFT data suggest that the rapid increase in the rate of siliciclastic sediment accumulation in middle Atlantic margin offshore basins that peaked in the middle Miocene and produced almost 30 percent of the total volume of post-rift siliciclastic sediments in the offshore basins began in the early Miocene when Atlantic river(s) gained access to the relatively easily eroded Paleozoic sedimentary rocks of the western Appalachians.

  3. Discovery of a concealed geothermal resource in the Alturas Basin, and its implications for further exploration in northeastern California

    SciTech Connect

    Bohm, B.; Juncal, R.W.

    1995-12-31

    In 1988 a so far unknown geothermal resource was drilled into under the City of Alturas in northeastern California. A fracture was tapped below 2300 feet, in cemented fine-grained tuffs and mudflows, producing 182{degrees}F water. The well has been used since 1990 to heat the local high school. A second well was drilled in 1991, producing about 250 gpm 182{degrees}F water from a fracture below 1893 ft. Well productivities and artesian pressures are variable, depending on distance from a major fault zone and local hydrologic regime. It appears as if the wells produce from deep reaching fractures in a caprock, that may conceal a 300 to 400{degrees}F resource between 4000 and 6000 feet depth. The results have important implications for geothermal exploration in northeastern California, i.e. just because there are no surface manifestations in a basin, it does not necessarily mean there is no geothermal resource at depth.

  4. Appalachian Picturebooks, Read-Alouds, and Teacher-Led Discussion: Combating Stereotypes Associated with the Appalachian Region

    ERIC Educational Resources Information Center

    Brashears, Kathy

    2012-01-01

    The author's personal experiences indicate that, unfortunately, Appalachian culture in particular has been overlooked in many areas of literature and life. Major bookstores located in the Appalachian region frequently lack sections featuring Appalachian picturebooks. Her experiences with schools also indicate that living in Appalachia does not…

  5. Appalachian Picturebooks, Read-Alouds, and Teacher-Led Discussion: Combating Stereotypes Associated with the Appalachian Region

    ERIC Educational Resources Information Center

    Brashears, Kathy

    2012-01-01

    The author's personal experiences indicate that, unfortunately, Appalachian culture in particular has been overlooked in many areas of literature and life. Major bookstores located in the Appalachian region frequently lack sections featuring Appalachian picturebooks. Her experiences with schools also indicate that living in Appalachia does not…

  6. Estimating exploration potential in mature producing area, northwest shelf of Delaware Basin, New Mexico

    SciTech Connect

    Kumar, N.

    1985-11-01

    The case history presented here describes an investigation of the Northwest shelf of the Delaware basin carried out in 1979 for estimating the potential of finding new reserves and a follow-up study to measure predictions against results. A total of 191 new-field wildcats had been drilled during 1974-1979 in the study area. An analysis of target zones and success ratios showed that the best chances of drilling a successful test were in the San Andres (Permian) and Silurian-Devonian. However, cumulative frequency plots of existing fields in these two intervals showed that the chance of finding a field larger than 1 million bbl (159,000 m/sup 3/) in either of these zones was relatively low. As a result of the 1979 analysis, three prospective areas representing 8% of the total study area were high graded, or rated as having a higher potential than other parts of the study area. The 1980-1983 drilling results show that the original high-graded areas contain 52% of the 21 successful San Andres tests and the only discovery in the Silurian-Devonian. However, as predicted by the analysis, all of these discoveries appear to be small. 12 figures, 2 tables.

  7. Estimating exploration potential in mature producing area, Northwest shelf of Delaware basin, New Mexico

    SciTech Connect

    Kumar, N.

    1985-11-01

    The case history presented here describes an investigation of the Northwest shelf of the Delaware basin carried out in 1979 for estimating the potential of finding new reserves and a follow-up study to measure predictions against results. A total of 191 new-field wildcats had been drilled during 1974-1979 in the study area. An analysis of target zones and success ratios showed that the best chances of drilling a successful test were in the San Andres (Permian) and SilurianDevonian. However, cumulative frequency plots of existing fields in these two intervals showed that the chance of finding a field larger than 1 million bbl (159,000 mT) in either of these zones was relatively low. As a result of the 1979 analysis, three prospective areas representing 8% of the total study area were high graded, or rated as having a higher potential than other parts of the study area. The 1980-1983 drilling results show that the original high-graded areas contain 52% of the 21 successful San Andres tests and the only discovery in the SilurianDevonian. However, as predicted by the analysis, all of these discoveries appear to be small.

  8. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  9. Exploring the hydropower potential of future ice-free glacier basins

    NASA Astrophysics Data System (ADS)

    Round, Vanessa; Farinotti, Daniel; Huss, Matthias

    2017-04-01

    The retreat of glaciers over the next century will present new challenges related to water availability and cause significant changes to the landscape. The construction of dams in areas becoming ice-free has previously been suggested as a mitigation measure against changes to water resources in the European Alps. In Switzerland, a number of hydropower dams already exist directly below glaciers, and the hydropower potential of natural lakes left by retreating glaciers has been recognised. We expand these concepts to the regional, and ultimately global, scale to assess the potential of creating hydropower dams in glacier basins, encouraged by advantages such as relatively low ecological and social impacts, and the possibility to replicate the water storage capabilities of glaciers. In a first order assessment, dam volumes are computed using a subglacial topography model and dam walls simulated at the terminus of each glacier. Potential power production is then estimated from projected glacier catchment runoff until 2100 based on the Global Glacier Evolution Model (GloGEM), and penstock head approximated from a global digital elevation model. Based on this, a feasibility ranking system is presented which takes into account various proxies for cost, demand and impact, such as proximity to populations and existing infrastructure, geological risks and threatened species. The ultimate objective is to identify locations of glacier retreat which could most feasibly and beneficially be used for hydropower production.

  10. Exploring the effectiveness of sustainable water management structures in the Upper Pungwe river basin

    NASA Astrophysics Data System (ADS)

    Nyikadzino, B.; Chibisa, P.; Makurira, H.

    The study endeavoured to assess the effectiveness of stakeholder structures and their participation in sustainable water resources management in the Upper Pungwe river basin shared by Zimbabwe and Mozambique. The study sought to assess the level and effectiveness of stakeholder, gender and the vulnerable groups representation in sustainable water resources management as well as the whole stakeholder participation process. The study employed both qualitative and quantitative methods for data collection and analysis. Sampling data was obtained from 15 stakeholder representatives (councillors) constituting Pungwe Subcatchment Council, 30 water users ranging from small scale to large scale users and professionals in water resources management. Two different questionnaires and three structured interviews were administered during the study. Water permit database, financial reports and other source documents were also analysed. The study established that the sustainability and effectiveness of stakeholder structures and their participation in water resources management is being compromised by lack of stakeholder awareness. Water utilisation is very high in the subcatchment (99%) while women participation is still low (20%). The study therefore recommends the use of quotas for the participation of women in stakeholder structures. Stakeholder structures are encouraged to intensify stakeholder awareness on issues of river protection, efficient water use and pollution control. Further research is recommended to be carried out on the effectiveness of stakeholder structures in combating water pollution and enhancing river protection.

  11. Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays

    NASA Astrophysics Data System (ADS)

    D'Elia, Leandro; Bilmes, Andrés; Franzese, Juan R.; Veiga, Gonzalo D.; Hernández, Mariano; Muravchik, Martín

    2015-12-01

    Long-lived rift basins are characterized by a complex structural and tectonic evolution. They present significant lateral and vertical stratigraphic variations that determine diverse basin-patterns at different timing, scale and location. These issues cause difficulties to establish facies models, correlations and stratal stacking patterns of the fault-related stratigraphy, specially when exploration of hydrocarbon plays proceeds on the subsurface of a basin. The present case study corresponds to the rift-successions of the Neuquén Basin. This basin formed in response to continental extension that took place at the western margin of Gondwana during the Late Triassic-Early Jurassic. A tectono-stratigraphic analysis of the initial successions of the southern part of the Neuquén Basin was carried out. Three syn-rift sequences were determined. These syn-rift sequences were located in different extensional depocentres during the rifting phases. The specific periods of rifting show distinctly different structural and stratigraphic styles: from non-volcanic to volcanic successions and/or from continental to marine sedimentation. The results were compared with surface and subsurface interpretations performed for other depocentres of the basin, devising an integrated rifting scheme for the whole basin. The more accepted tectono-stratigraphic scheme that assumes the deposits of the first marine transgression (Cuyo Cycle) as indicative of the onset of a post-rift phase is reconsidered. In the southern part of the basin, the marine deposits (lower Cuyo Cycle) were integrated into the syn-rift phase, implying the existence of different tectonic signatures for Cuyo Cycle along the basin. The rift climax becomes younger from north to south along the basin. The post-rift initiation followed the diachronic ending of the main syn-rift phase throughout the Neuquén Basin. Thus, initiation of the post-rift stage started in the north and proceeded towards the south, constituting a

  12. Subsurface temperature as a passkey for exploration of mature basins: Hot anticlines - A key to discovery?

    USGS Publications Warehouse

    Merriam, D.F.

    2004-01-01

    Temperature anomalies associated with oil-producing structures in the US Midcontinent and similar cratonic areas probably can be used reliably as a passkey for petroleum exploration in mature areas, and thus the concept of hot anticlines could be a key to discovery. Analysis of accumulated data during the past several decades allows a definition of the problem of hot anticlines. A possible solution for migration and entrapment of petroleum can be explained by the Roberts temperature differential model and the Walters fluid-flow paradigm. In fact, if the Roberts model is valid, higher shallow temperatures, temperature gradients, or heat flow could indicate the entrapment of hydrocarbons at depth. The recognition and promotion of shallow "hotspots" as an exploration key is not new and was proposed years ago by Haas and Hoffmann, Kappelmeyer, and as recently as 1986 by Blackwell.

  13. Charting exploration strategy in a mature producing area, Northwest Shelf of Delaware basin, New Mexico

    SciTech Connect

    Kumar, N.

    1984-04-01

    In formulating strategy for mature areas, management has to consider chance factor for success, as well as the chance of finding sizeable reserves. As a case history, we describe an investigation of the Northwest Shelf of Delaware basin carried out in 1979 to locate areas having the best potential of finding new reserves. In 1983, we tabulated the activity since 1980 to compare our predictions against the drilling results. The 1979 study had shown that out of a total of almost 200 wildcats drilled during 1974-79, the largest number (63) had been drilled for San Andres (Permian) objective with a success ratio of 33%. Forty-six wells had been drilled for various Pennsylvanian objectives with a success ratio of 40%, and 25 wells had been drilled for Siluro-Devonian targets with a success ratio of 16%. However, based on wildcat success ratios and cumulative-frequency plots of field sizes, the probability of a wildcat discovering reserves larger than 1 million bbl was only 6% in San Andres, 19% in Pennsylvanian, and 7% in Siluro-Devonian. The 1979 study allowed us to high-grade three blocks representing 5% of the total 5.25 million acres. These blocks were considered to have the best potential for San Andres and Siluro-Devonian objectives. Subsequent analysis of 1980-83 drilling results shows that these blocks contain 55% of the 20 new successful San Andres tests and the only new discovery in the Siluro-Devonian. However, as predicted, all of these have been small discoveries. Such studies allow management to develop a course of action for mature areas.

  14. Clay mineralogy of the malmian source rock of the Vienna Basin: Effects on shale gas exploration?

    NASA Astrophysics Data System (ADS)

    Schicker, Andrea; Gier, Susanne; Herzog, Ulrich

    2010-05-01

    In an unique opportunity the diagenetic changes of clay minerals of a marlstone formation with only minor differences in provenance and depositional environment was studied from shallow (1400 m) to very deep (8550 m) burial. The clay mineralogy of 46 core samples from ten wells was quantified with X-ray diffraction in applying the mineral intensity factor (MIF)-method of Moore and Reynolds (1997). The clay fraction of the marlstone contains a prominent illite/smectite (I/S) mixed-layer mineral (20 to 70 wt%), illite (20 to 70 wt%), chlorite (0.5 to 12 wt%) and kaolinite (2 to 17 wt%). The amounts of I/S and kaolinite decrease with depth, whereas illite and chlorite increase. A gradual transformation of smectite to illite through mixed-layer I/S intermediates is recognized. With increasing depth the illite content in I/S intermediates increases from 25% to 90% in parallel the ordering of the mixed layer I/S changes from R0 (25% illite in I/S) to R1 (60-80% illite in I/S) to R3 (90% illite in I/S). R3 ordering prevails at depths greater than 4000 m and implies that the effect of the expandable mineral smectite is negligible. This paper covers a part of a shale gas feasibility study on the main Vienna Basin hydrocarbon source rock (Mikulov Formation, a Malmian marlstone) recently performed by OMV. Shale gas production usually is enabled by pumping fluids (mainly water) into a gas-mature source rock in order to generate fracture permeability. Expandable clays within the source rock can dramatically reduce stimulation effectiveness and gas production. Moore and Reynolds (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, 378 p.

  15. Near Surface Geophysical Exploration at The Archaeological Site of San Miguel Tocuila, Basin of Mexico.

    NASA Astrophysics Data System (ADS)

    Arciniega, A.; Hernandez, E.; Cabral-Cano, E.; Diaz-Molina, O.; Morett, L.; Soler, A.

    2008-12-01

    The village of Tocuila is located on the western margin of Lake Texcoco in central Mexico. Volcanic activity during the Late Pleistocene and Early Holocene closed the basin's drainage and facilitated the development of a lacustrine environment and subsequent deposition of volcano-sedimentary sequences with abundant archaeological and paleontological record. Tocuila was one of the most prominent suburbs of the main civic ceremonial complex of the Aztecs. The rapid expansion of Mexico City's Metropolitan areas in the last three decades strongly influenced Tocuila's environment and has compromised several of its archaeological and ancient human settlements. A near surface geophysical survey including magnetometry, seismic refraction tomography and Ground Penetrating Radar (GPR) techniques was conducted to investigate pre-Hispanic structures. The magnetometric survey was performed using an Overhauser magnetometer with an omnidirectional, 0.015 nT/Hz sensor and 1Hz sampling rate over a 80x100 m area, yielding 990 measurements of total intensity magnetic field at 1.0m height above the ground surface. Thirty seismic refraction profiles were obtained with a 48-channel 24 bits Geometrics StrataVisor NZ seismograph, 14 Hz natural frequency vertical geophones with a 2m separation array and an impact source of 5 kg. The GPR survey consisted of 15 cross sections at two different resolutions with a GSSI SIR-3000 instrument, using a GSSI 200 MHz and a RadarTeam 70 MHz antennas. All surveys were georeferenced with a dual frequency GPS local station and a GPS rover attached to the surveying geophysical instruments. Seismic refraction tomography and GPR radargrams show a platform structure of approx. 80x60 m which can be subdivided in three distinctive layers with a total height of ~10m. Based on the history of ancient settlements in the area surrounding Lake Texcoco and considering the characteristics of shape and height of the surveyed structure, we interpreted that the resulting

  16. Megafaunal community structure of Andaman seamounts including the Back-arc Basin--a quantitative exploration from the Indian Ocean.

    PubMed

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K A Kamesh; Mudholkar, Abhay

    2011-01-31

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount--CSM) and a non-volcano (SM2) in the Andaman Back-arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only.

  17. Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    PubMed Central

    Sautya, Sabyasachi; Ingole, Baban; Ray, Durbar; Stöhr, Sabine; Samudrala, Kiranmai; Raju, K. A. Kamesh; Mudholkar, Abhay

    2011-01-01

    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only. PMID:21297959

  18. Exploration for shallow compaction-induced gas accumulations in sandstones of the Fort Union Formation, Powder River Basin, Wyoming

    SciTech Connect

    Oldham, D.W.

    1997-01-01

    Commercial quantities of gas have been produced from shallow sandstone reservoirs of the Tongue River Member of the Fort Union Formation (Paleocene) in the Wyoming portion of the Powder River Basin. The two largest accumulations discovered to date, Oedekoven and Chan pools, were drilled on prospects which invoked differential compaction as a mechanism for gas entrapment and prospect delineation. Coal-sourced bacterial gas may have accumulated in localized structural highs early in the burial history of lenticular sand bodies and associated sediments. Structural relief is due to the compaction contrast between sand and stratigraphically equivalent fine-grained sediments. A shallow gas play targeting sandstones as potential reservoirs was initiated in the Recluse area in response as sources for bacterial gas, and the presence of lenticular sandstones that may have promoted the development of compaction structures early in the burial process, to which early-formed bacterial gas migrated. Prospects were ranked based on a number of geologic elements related to compaction-induced trap development. Drilling of the Oedekoven prospect, which possessed all prospect elements, led to the discovery and development of the Oedekoven Fort Union gas pool, which has produced nearly 2 BCF of gas from a depth of 340 ft. Production figures from the Oedekoven and Chan pools demonstrate the commercial gas potential of Fort Union sandstone reservoirs in the Powder River Basin. The shallow depths of the reservoirs, coupled with low drilling and completion costs, an abundance of subsurface control with which to delineate prospects, and an existing network of gas-gathering systems, make them attractive primary targets in shallow exploration efforts as well as secondary objectives in deeper drilling programs.

  19. Origin of subpressure and hydrocarbon exploration in Shiwu fault depression, Songliao Basin, China

    SciTech Connect

    Zhou, Guojun )

    1994-08-01

    In the Shiwu fault depression, evolutionary history of formation pressure can be deduced on the basis of structural evolutionary history. Uplifting and denudation caused high pressure to evolve into low pressure. The main factors controlling the evolutions are (1) generation of fractures and release of high pressure, (2) temperature reduction and water-cooling pressure reduction, (3) desaturation and gas dissociation, and (4) diffusion and dissipation of gas. According to the pressure evolutionary history, the study area has had two pool-forming stages. During uplifting and denudation, fracture generation, and the transformation from high pressure to low pressure, the protogenic high-pressure oil and gas pools were transformed into low-pressure relic pools, and secondary pools with normal pressure formed above them. A predictor equation of the low pressure has been proposed on the basis of the balanced depth in the undercompaction zone, as well as the eroded thickness of the overlying strata. According to this equation, measured pressure data, well logs, and seismic interval velocity data, pressure prediction has been made in the study area by drawing on experience gained at key points. In the light of pressure evolutionary history and pool-forming history, it is regarded that the exploration potential of the low-pressure zone is not as good as that of the hydrostatic-pressure zone. This has been verified by petroleum exploration activities.

  20. “It's Just a Way of Fitting In:” Tobacco Use and the Lived Experience of Lesbian, Gay, and Bisexual Appalachians

    PubMed Central

    Bennett, Keisa; Ricks, JaNelle M.; Howell, Britteny M.

    2014-01-01

    Lesbian, gay, and bisexual (LGB) people are affected by multiple health disparities and risk factors, including tobacco use. Few studies to date have examined tobacco use specifically in rural LGB populations, and none has investigated the intersections of identity, rural LGB culture, and tobacco. The purpose of this study was to explore the perspective of Appalachian LGB people regarding tobacco use. Methods Nineteen LGB-identified Appalachian residents participated in audiotaped, semi-structured interviews. Two authors analyzed and coded transcripts through constant comparison, and determined themes through consensus. Results Five themes emerged: the convergence of Appalachian and LGB identities, tacit awareness of LGB identity by others, culture and tobacco use, perceived associations with tobacco use, and health beliefs and health care. Conclusions LGB Appalachians connect stress and culture to tobacco, but seem less aware that partial concealment of their identity might be a source of the stress that could influence their smoking. PMID:25418233

  1. Appalachian versus non-Appalachian US traffic fatalities, 2008-2010

    PubMed Central

    Zhu, Motao; Zhao, Songzhu; Gurka, Kelly K.; Kandati, Sahiti; Coben, Jeffrey H.

    2013-01-01

    Purpose Though myriad health disparities exist in Appalachia, limited research has examined traffic fatalities in the region. This study compared traffic-fatality rates in Appalachia and the non-Appalachian US. Methods Fatality Analysis Reporting System and Census data from 2008-2010 were used to calculate traffic-fatality rates. Poisson models were used to estimate unadjusted (RR) and adjusted rate ratios (aRR), controlling for age, sex, and county-specific population density levels. Results: The Appalachian traffic-fatality rate was 45% (95% CI: 1.42, 1.47) higher than the non-Appalachian rate. Though only 29% of fatalities occur in rural counties in non-Appalachia versus 48% in Appalachia, rates in rural counties were similar (RR=0.97; 95% CI: 0.95, 1.00). However, the rate for urban, Appalachian counties was 42% (95% CI: 1.38, 1.45) higher than among urban, non-Appalachian counties. Appalachian rates were higher for passenger-vehicle drivers, motorcyclists, and all-terrain-vehicle riders, regardless of rurality, as well as for passenger-vehicle passengers overall and for urban counties. Conversely, Appalachia experienced lower rates among pedestrians and bicyclists, regardless of rurality. Conclusions Disparities in traffic fatality rates exist in Appalachia. Though elevated rates are partially explained by the proportion of residents living in rural settings, overall rates in urban Appalachia were consistently higher than in urban non-Appalachia. PMID:23619016

  2. Appalachian versus non-Appalachian U.S. traffic fatalities, 2008-2010.

    PubMed

    Zhu, Motao; Zhao, Songzhu; Gurka, Kelly K; Kandati, Sahiti; Coben, Jeffrey H

    2013-06-01

    Although myriad health disparities exist in Appalachia, limited research has examined traffic fatalities in the region. This study compared traffic fatality rates in Appalachia and the non-Appalachian United States. Fatality Analysis Reporting System and Census data from 2008 through 2010 were used to calculate traffic fatality rates. Poisson models were used to estimate unadjusted (rate ratio [RR]) and adjusted rate ratios, controlling for age, gender, and county-specific population density levels. The Appalachian traffic fatality rate was 45% (95% confidence interval [CI], 1.42-1.47) higher than the non-Appalachian rate. Although only 29% of fatalities occur in rural counties in non-Appalachia versus 48% in Appalachia, rates in rural counties were similar (RR, 0.97; 95% CI, 0.95-1.00). However, the rate for urban, Appalachian counties was 42% (95% CI, 1.38-1.45) higher than among urban, non-Appalachian counties. Appalachian rates were higher for passenger vehicle drivers, motorcyclists, and all terrain vehicle riders, regardless of rurality, as well as for passenger vehicle passengers overall and for urban counties. Conversely, Appalachia experienced lower rates among pedestrians and bicyclists, regardless of rurality. Disparities in traffic fatality rates exist in Appalachia. Although elevated rates are partially explained by the proportion of residents living in rural settings, overall rates in urban Appalachia were consistently higher than in urban non-Appalachia. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Health disparities between Appalachian and non-Appalachian counties in Virginia USA.

    PubMed

    McGarvey, Elizabeth L; Leon-Verdin, Maguadalupe; Killos, Lydia F; Guterbock, Thomas; Cohn, Wendy F

    2011-06-01

    The examination of health disparities among people within Appalachian counties compared to people living in other counties is needed to find ways to strategically target improvements in community health in the United States of America (USA). A telephone survey of a random sample of adults living in households within communities of all counties of the state of Virginia (VA) in the USA was conducted. Health status was poorer among those in communities within Appalachian counties in VA and health insurance did not make a difference. Health perception was significantly worse in residents within communities in Appalachian counties compared to non-Appalachian community residents (30.5 vs. 17.4% rated their health status as poor/fair), and was worse even among those with no chronic diseases. Within communities in Appalachian counties, black residents report significantly better health perception than do white residents. Residents living in communities in Appalachian counties in VA are not receiving adequate health care, even among those with health insurance. More research with a larger ethnic minority sample is needed to investigate the racial/ethnic disparities in self-reported health and health care utilization within communities.

  4. Examining substance use among rural Appalachian and urban non-Appalachian individuals participating in drug court.

    PubMed

    Shannon, Lisa M; Perkins, Elizabeth B; Neal, Connie

    2014-02-01

    The study purpose was to examine differences in substance use among individuals in drug court (N = 583) in rural Appalachian (n = 301) and urban non-Appalachian areas (n = 282). A series of logistic regression analyses suggested individuals in the rural Appalachian area were significantly more likely to report lifetime use of cocaine, illicit opiates, and illicit benzodiazepines, but they were less likely to report methamphetamine use when compared with individuals in the urban non-Appalachian area. Regarding past 30-day use, a series of logistic regression analyses suggested individuals in the rural Appalachian area were significantly more likely to use marijuana, illicit opiates, and illicit benzodiazepines, but they were less likely to report crack cocaine use when compared with individuals in the urban non-Appalachian area. Identifying differences which exist in substance use is the first step in generating evidence-based structural changes in treatment drug court programs. Future research should focus on better understanding context in terms of demographic, geographic, and economic conditions, which may be of critical influence on substance use and treatment planning.

  5. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  6. Numerical Modelling of Thermal Convection Related to Fracture Permeability - Implications for Geothermal Exploration and Basin Modelling

    NASA Astrophysics Data System (ADS)

    Lipsey, Lindsay; van Wees, Jan-Diederik; Pluymaekers, Maarten; Cloetingh, Sierd

    2015-04-01

    Thermal anomalies in deep sedimentary settings are largely controlled by fluid circulation within permeable zones. Convection is of particular interest in geothermal exploration, as it creates areas with anomalously high temperatures at shallow depths. Recent work on the temperature distribution in the Dutch subsurface revealed a thermal anomaly at the Luttelgeest-01 (LTG-01) at 4-5 km depth, which could be explained by thermal convection. Temperature measurements show a shift to higher temperatures at depths greater than 4000 m, corresponding the Dinantian carbonates. In order for convective heat transport to explain the anomaly, there must also be sufficient permeability. Rayleigh number calculations show that convection may be possible within the Dinantian carbonate layer, depending on its thickness, permeability and geothermal gradient. For example, an average permeability of 60 mD permits convection in a 600 m aquifer, given a geothermal gradient of 31°C/km. If the permeability is reduced to 20 mD, convection can only occur where the thickness of the aquifer is greater than 900 m. Interestingly, numerical simulations were able to come within 5-10 mD of the theoretical minimum permeability values calculated for each scenario. 3D numerical simulations provide insight on possible flow and thermal structures within the fractured carbonate interval, as well as illustrate the role of permeability on the timing of convection onset, convection cell structure development and the resulting temperature patterns. The development and number of convection cells is very much a time dependent process. Many cells may develop in the beginning of simulations, but they seem to gradually converge until steady state is reached. The shape of convective upwellings varies from roughly circular or hexagonal to more elongated upwellings and downwellings. Furthermore, the geometric aspects of the carbonate platform itself likely control the shape and location of upwellings, as well as

  7. Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California

    SciTech Connect

    Schimschal, U. )

    1991-02-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters.

  8. Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California

    USGS Publications Warehouse

    Schimschal, U.

    1991-01-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author

  9. Vertical movements of crust, uplift of lithosphere, and isostatic unroofing: case histories from the Ozark dome and northern Appalachians

    SciTech Connect

    Friedman, G.M.

    1987-05-01

    Evidence of former deep burial of Ordovician to Devonian strata of the Ozark dome and northern Appalachians has been obtained from petrographic and geochemical studies of carbonates and coal-bearing rocks. In diagenetic minerals of the carbonate rocks, fluid inclusion homogenization temperatures and delta/sup 18/O values indicate paleotemperatures of 100 to 200/sup 0/C. The geothermometers used also include vitrinite reflectance, level of organic metamorphism (LOM), Staplin kerogen alteration index, and conodont alteration index (CAI). Maximum depths of burial were calculated from the estimated paleotemperatures assuming a geothermal gradient of about 25/sup 0/C/km. Strata of the Silurian of the northern Appalachian basin and of the Ordovician of the Ozark dome are interpreted to have reached maximum burial depths of 5 and 4.3 km, respectively; Devonian strata in the Catskill Mountains of New York had former burial depths of about 6.5 km; Lower Ordovician carbonate sequences of the northern Appalachian basin were buried to more than 7 km; Middle Ordovician strata from the same basin had paleodepths of approximately 5 km, and Devonian strata, 4.5 to 5 km. If these strata were formerly buried much more deeply than previously thought, then unexpectedly large amounts of uplift and erosion, ranging from 4.3 to 7 km, must also have occurred to bring these strata to the present land surface. The occurrence of such large-scale vertical movements of the crust and lithosphere needs to be recognized in paleogeographic reconstructions.

  10. Appalachian Women: A Learning/Teaching Guide.

    ERIC Educational Resources Information Center

    Lord, Sharon B.; Patton-Crowder, Carolyn

    While Appalachian women share many experiences and circumstances in common with American women in general and with rural American women in particular, the economics, social and political history, and circumstances peculiar to the region have forged life experiences for females in Appalachia which merit independent attention. This learning/teaching…

  11. Selection Management in Southern Appalachian Hardwoods

    Treesearch

    Lino Della-Bianca; Donald E. Beck

    1985-01-01

    A woodland tract of southern Appalachian cove hardwoods and mixed oak has been managed under the selection satem of silviculture since 1946.Simply cutting in all commercial diameter classes (i.e. 6.0 inches and larger), as was the practice during the first 24 years, failed to develop enough desirable saplings and poles to maintain the system.After 1970,...

  12. Appalachian Folktales: A Unit of Study.

    ERIC Educational Resources Information Center

    Underwood, Shirley C.

    Designed to develop an appreciation of folktales as a literary type and a love for the oral tradition, this unit on the telling of folktales from the oral tradition, with an emphasis on Appalachian tales, can be adapted for use as an introduction to the study of the short story; to begin a study of regional writers or regional literature; to…

  13. Appalachian Regional Commission Annual Report, 2000.

    ERIC Educational Resources Information Center

    Appalachian Regional Commission, Washington, DC.

    In 2000, the Appalachian Regional Commission (ARC), in cooperation with local development districts, nonprofit organizations, and many small municipalities, expanded programs to help Appalachia's distressed counties become economically competitive. The effort calls for increased funding for technical assistance and capacity building in distressed…

  14. Appalachian Regional Commission: 1987 Annual Report.

    ERIC Educational Resources Information Center

    Russell, Jack, Ed.; And Others

    The Appalachian Regional Commission (ARC) used its $105 million appropriation for fiscal year 1987 to support three major program areas in the 13 state region: (1) creating and retaining regional jobs; (2) assisting in construction of basic facilities, particularly water and sewer systems, in the region's 90 poorest counties; and (3) working…

  15. Media Utilization by Teachers of Appalachian Kentucky.

    ERIC Educational Resources Information Center

    Norfleet, Morris; Burkett, Leonard

    In Appalachian Kentucky, the adoption rate of new ideas and new practices in education tends to be slower because of the provincialism and isolationism of the region. The objectives of this study were to determine which of the media--radio, television, or reading material--is used most frequently by the elementary and secondary teachers in…

  16. Conserving the Appalachian medicinal plant industry

    Treesearch

    James L. Chamberlain

    2006-01-01

    An industry based on plants that flourish in the mountains of Appalachia is at a critical crossroads. The medicinal plant industry has relied on the conservation of Appalachian forest resources for more than 300 years. There is growing and widespread concern that many of the species, on which this vibrant and substantia