Sample records for apparent angular diameter

  1. Empirical effective temperatures and bolometric corrections for early-type stars

    NASA Technical Reports Server (NTRS)

    Code, A. D.; Bless, R. C.; Davis, J.; Brown, R. H.

    1976-01-01

    An empirical effective temperature for a star can be found by measuring its apparent angular diameter and absolute flux distribution. The angular diameters of 32 bright stars in the spectral range O5f to F8 have recently been measured with the stellar interferometer at Narrabri Observatory, and their absolute flux distributions have been found by combining observations of ultraviolet flux from the Orbiting Astronomical Observatory (OAO-2) with ground-based photometry. In this paper, these data have been combined to derive empirical effective temperatures and bolometric corrections for these 32 stars.

  2. Visual processing of rotary motion.

    PubMed

    Werkhoven, P; Koenderink, J J

    1991-01-01

    Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.

  3. Towards stellar effective temperatures and diameters at 1 per cent accuracy for future surveys

    NASA Astrophysics Data System (ADS)

    Casagrande, L.; Portinari, L.; Glass, I. S.; Laney, D.; Silva Aguirre, V.; Datson, J.; Andersen, J.; Nordström, B.; Holmberg, J.; Flynn, C.; Asplund, M.

    2014-04-01

    The apparent size of stars is a crucial benchmark for fundamental stellar properties such as effective temperatures, radii and surface gravities. While interferometric measurements of stellar angular diameters are the most direct method to gauge these, they are still limited to relatively nearby and bright stars, which are saturated in most of the modern photometric surveys. This dichotomy prevents us from safely extending well-calibrated relations to the faint stars targeted in large spectroscopic and photometric surveys. Here, we alleviate this obstacle by presenting South African Astronomical Observatory near-infrared JHK observations of 55 stars: 16 of them have interferometric angular diameters and the rest are in common with the 2 Micron All Sky Survey (2MASS, unsaturated) data set, allowing us to tie the effective temperatures and angular diameters derived via the infrared flux method to the interferometric scale. We extend the test to recent interferometric measurements of unsaturated 2MASS stars, including giants, and the metal-poor benchmark target HD122563. With a critical evaluation of the systematics involved, we conclude that a 1 per cent accuracy in fundamental stellar parameters is usually within reach. Caution, however, must be used when indirectly testing a Teff scale via colour relations as well as when assessing the reliability of interferometric measurements, especially at submilliarcsec level. As a result, rather different effective temperature scales can be compatible with a given subset of interferometric data. We highlight some caveats to be aware of in such a quest and suggest a simple method to check against systematics in fundamental measurements. A new diagnostic combination seismic radii with astrometric distances is also presented.

  4. An independent Cepheid distance scale: Current status

    NASA Technical Reports Server (NTRS)

    Barnes, T. G., III

    1980-01-01

    An independent distance scale for Cepheid variables is discussed. The apparent magnitude and the visual surface brightness, inferred from an appropriate color index, are used to determine the angular diameter variation of the Cepheid. When combined with the linear displacement curve obtained from the integrated radial velocity curve, the distance and linear radius are determined. The attractiveness of the method is its complete independence of all other stellar distance scales, even though a number of practical difficulties currently exist in implementing the technique.

  5. Measurements of eight early-type stars angular diameters using VEGA/CHARA interferometer

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Mourard, D.; Aroui, H.; Delaa, O.

    2014-12-01

    The surface brightness color (SBC) relation is an important tool to derive the distance of extragalatic eclipsing binaries. We determined the uniform disc angular diameter of the eight following early-type stars using VEGA/CHARA interferometric observations: θ_{UD}[δ Cyg] = 0.766 ± 0.047 mas, θ_{UD}[γ Lyr] = 0.742& ± 0.010 mas, θ_{UD}[γ Ori] = 0.701 ± 0.005 mas, θ_{UD}[ζ Peg] = 0.539 ± 0.009 mas, θ_{UD}[λ Aql] = 0.529 ± 0.003 mas, θ_{UD}[ζ Per] = 0.531 ± 0.007 mas, θ_{UD}[ι Her] = 0.304 ± 0.010 mas and θ_{UD}[8 Cyg] = 0.229 ± 0.011 mas (by extending V-K range from -0.76 to 0.02) with typical precision of about 1.5%. By combining these data with previous angular diameter determinations available in the literature, Challouf et al. (2014) provide for the very first time a SBC relation for early-type stars (-1≤V-K≤0) with a precision of about 0.16 magnitude or 7% in term of angular diameter (when using this SBC relation to derive the angular diameter of early-type stars).

  6. VizieR Online Data Catalog: JMDC : JMMC Measured Stellar Diameters Catalogue (Duvert, 2016)

    NASA Astrophysics Data System (ADS)

    Duvert, G.

    2016-11-01

    Several star diameter compilations exist that contain a fair amount of stellar angular diameter measurements. The CADARS (2011, Cat. II/224) has entries for 6888 stars and claims completeness up to 1997. CHARM2 (2005, Cat. J/A+A/431/773) lists 8231 measurements of 3243 stars, up to 2005. However all these catalogs mix results from very direct methods, such as intensity interferometry, with indirect methods, or spectrophotometric estimates of various kind (always including some model of the star), or linear diameters from eclipsing binaries (1600 entries in CADARS), which need some modelling of the two stars, as well as a good estimate of the distance to be converted into an angular diameter. In contrary, the present catalogue, called JMDC (for JMMC Measured stellar Diameters Catalog) is focussed on direct methods only, and selects only one value of the uniform-disk diameter (UDD) and limb-darkened diameter (LDD) for each historical measurement. It should be regularly updated via a specialized submission tool that will be made available on the JMMC website (www.jmmc.fr). The current version gathers 1478 measurements that have been published since the first experiments by Michelson. Prior to 1997, our bibliography relies only on the reference list of CADARS, carefully reviewed. After this date we used NASA's ADS hosted at CDS. We retained only the measurements obtained from visible/IR interferometry, intensity interferometry and lunar occultation in the database. We always retrieved the values in the original text and used SIMBAD to properly and uniquely identify the stars. The three techniques retained share the same method of converting the measurements (squared visibilities for optical interferometry, correlation of photon-counts for intensity interferometry, fast photometry for lunar occultations) into an angular diameter: fitting a geometrical function into the values, in many cases a uniform disk, which provides a uniform disk diameter (UDD) value. This UDD is wavelength-dependent owing to the limb-darkening effect of the upper layers of a star's photosphere, and JMDC retains the wavelength or photometric band at which the observation was made. To measure a star's apparent diameter consistently, i.e., with the same meaning as our Sun's well-resolved apparent diameter, it was necessary for the authors of these measurements to take into account the star's limb-darkening, for which only theoretical estimates exist as yet. They chose one of the various limb-darkening parameters available in the literature, either by multiplying the UDD by a coefficient function of the wavelength and the star's adopted effective temperature, or directly fitting a limb-darkened disk model in the data. Of course this adds some amount of theoretical bias in the published measurements, which however diminishes as the wavelength increases. An additional difficulty for the lunar occultations is that the result depends on the exact geometry of the occulting portion of the lunar limb, which can, more or less, be correctly estimated. To deal with the limb-darkening problem as efficiently as possible, in the publications where reported diameters are measured in several optical/IR bands, we retain the measurement with the best accuracy and favor the measurement at the longest wavelength to minimize the effect of limb-darkening correction. When the publication include both LDD and UDD values, we report both, and, if available, the conversion coefficient used. We provide in the Notes additional information, such as the eventual binarity of the star, possible erroneous measurements, origin the of limb-darkening factor used, duplication with other publications etc... as weel as more "in-house" comments related to the proper use of this database in the companion publication 2016A&A...589A.112C. In the paper 2016A&A...589A.112C, we further use the published UDD measurement, or retrieve the original, unpublished UDD measurement from the LDD value and the limb-darkening coefficient used by the authors. We then convert these UDD values into limb-darkened angular diameters using mainly the coefficients from J/A+A/556/A86/table16 and J/A+A/554/A98/table16 when possible (compatible spectral types) and following the prescriptions of the JMMC report JMMC-MEM-2610-001 (http://www.mariotti.fr/doc/approved/JMMC-MEM-2610-0001.pdf) in all other cases. As the limb-darkening coefficients depend on the effective temperature and surface gravity as well as some model of the stellar photosphere, these "revised" LDDs are not part of the present catalog. (2 data files).

  7. Preliminary results on the apparent size of the sources of type III bursts observed at low frequencies

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1976-01-01

    We present preliminary results on the apparent angular size of the sources of four type III bursts observed between 3500 and 50 kHz from the IMP-6 spacecraft. The observations were made with a dipole rotating in the plane of the ecliptic where the sources are assumed to be. The apparent angular sizes obtained are unexpectedly large. We discuss different explanations for the results. It seems that the scattering of radio waves by electron density inhomogeneities is the most likely cause. We report a temporal increase of the apparent angular size of the source during the burst lifetime for some bursts. From its characteristics it appears to be a real effect.

  8. Simple Fourier optics formalism for high-angular-resolution systems and nulling interferometry.

    PubMed

    Hénault, François

    2010-03-01

    Reviewed are various designs of advanced, multiaperture optical systems dedicated to high-angular-resolution imaging or to the detection of exoplanets by nulling interferometry. A simple Fourier optics formalism applicable to both imaging arrays and nulling interferometers is presented, allowing their basic theoretical relationships to be derived as convolution or cross-correlation products suitable for fast and accurate computation. Several unusual designs, such as a "superresolving telescope" utilizing a mosaicking observation procedure or a free-flying, axially recombined interferometer are examined, and their performance in terms of imaging and nulling capacity are assessed. In all considered cases, it is found that the limiting parameter is the diameter of the individual telescopes. A final section devoted to nulling interferometry shows an apparent superiority of axial versus multiaxial recombining schemes. The entire study is valid only in the framework of first-order geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all entrance subapertures are optically conjugated with their associated exit pupils.

  9. The Biggest Star in the Sky

    NASA Astrophysics Data System (ADS)

    1997-03-01

    An international team of astronomers has used large telescopes in Chile and Australia to measure the biggest star in the sky. The star, designated R Doradus , is of the so-called red giant type and is located in the southern constellation of Dorado. Its apparent diameter (i.e., the size which the star appears to have when seen from the Earth) is larger than any other so far observed, except for the Sun. In particular, it exceeds by more than 30 % that of Betelgeuse , which for the past 75 years has held the title of star with the largest apparent size. Measuring sizes of stars Measuring the sizes of stars is very difficult due to their enormous distances. For example, if our Sun were placed at the distance of the next closest star (four light-years away), it would have about the same apparent size as a DM 1 (or US quarter-dollar) coin placed at a distance of 500 km (about 0.01 arcsec). Even for the most powerful astronomical telescopes, it is a very challenging task to measure such small angles. Ideally, the angular resolution of a telescope (its capability to resolve fine details in celestial sources) increases with its diameter. In practice, although ground-based optical telescopes now have diameters up to 10 metres, their actual resolution of visual light is that of a telescope of only about 20 centimetres aperture. This is because of the constant turbulence in the Earth's atmosphere. This turbulence causes the stars to twinkle in a way which delights the poets but frustrates the astronomers, since it blurs the fine details of the images. The first, and largest, star apart from the Sun to have its diameter measured was Betelgeuse, the brightest star in the constellation of Orion. Its angular diameter was found to be 0.044 arcsec by Albert Michelson and his team who used the Hooker telescope on Mt. Wilson in California in the early 1920s, pioneering interferometry techniques. Betelgeuse kept its title as the star with the largest apparent size for the next 75 years. This title has now been taken by R Doradus. R Doradus is a variable star in the constellation of Dorado (the Swordfish), located in the far southern sky. At a distance of about 200 light years it is relatively nearby. R Doradus is a variable star with a period of about 338 days, changing its magnitude from approximately 4.8 at maximum (when it is visible with the unaided eye) to 6.6 at minimum (when it requires a small telescope). Interferometry at the NTT In August 1993, the team of astronomers [1] pointed the ESO 3.5-metre New Technology Telescope (NTT) towards R Doradus. For these observations, the NTT was covered with an opaque mask with seven holes arranged on a 3.3-metre diameter circle. Each of these holes had a diameter of 25 cm, which was smaller than the cells of turbulence in the atmosphere above. The main motivation for using the mask was to suppress the effects of the turbulence and in this way restore the full resolution capability of the NTT [2]. Caption to ESO PR Photo 07/97 [JPG, 63k] The seven light beams from a star were brought to interfere with each other at the telescope's focus. Each pair of holes in the mask produced a fringe pattern in the image of the star, so at any moment there were 21 distinct fringe patterns (see ESO Press Photo 07/97 [63k] ). A camera in the focal plane recorded these fringes, their contrast being determined during subsequent computer analysis. A star which is very far away will appear too small for its disk to be resolved by the telescope. All of the 21 fringes will then have approximately the same contrast. On the other hand, if the star is closer by and has a perceptible size, the contrast of the fringe patterns will be reduced for widely separate mask holes. By comparing the fringe contrast of the target star with that of a more distant, unresolved star, it is then possible to estimate the size of the target. The present NTT observations were made at infrared wavelengths (1.25 microns) with the SHARP camera, developed by the Max-Planck Institut for Extraterrestrial Physics (Garching, Germany). Several hundred very short exposures of R Doradus were made, each lasting 0.1 second (this is short enough to freeze the 21 fringe patterns in each exposure). Immediately thereafter, a similar series of observations was made of an unresolved calibrator ' star (Gamma Reticuli). This procedure was repeated several times, producing thousands of images to be analysed. Additional observations were made in 1995 with the NTT as well as the 3.9-m Anglo-Australian Telescope at Siding Spring (Australia). These observations, and the application of different interferometric data analysis techniques to similar data sets, confirmed the results of the earlier ones. The results The results clearly showed that R Doradus is extended, having an angular diameter of 0.057 +- 0.005 arcsec (assuming that the star appears as a uniform disk). This apparent size is 30% larger than Betelgeuse! The bigger a star's apparent diameter, the more easily it can be resolved. The surprise is therefore not only the large diameter of R Doradus, but also the fact that this was not discovered earlier. Many of the larger stars were already measured by Albert Michelson and his team. The reason for the late discovery is most likely the southern latitude of R~Doradus, which makes it inaccessible to the stellar interferometers predominantly located on the northern hemisphere. R Doradus is an inconspicuous star at visible wavelength but is one of the brightest in the sky in the infrared. This led Robert Wing (Ohio State University) to predict in 1971 that R Doradus should have a large angular size. Only now has this prediction been confirmed. The NTT observations were made in the infrared. At first sight it may seem more sensible to observe at shorter, visible wavelengths because this would result in better angular resolution. However, measurements in the infrared - although more difficult to perform - result in a better estimate of the diameter of the underlying atmosphere ( photosphere ) of a star. The combination of a high-quality telescope and a high-quality infrared camera made this result possible. R Doradus is approximately 200 light years away. The measured size implies that it has a physical diameter of 370 +- 50 times that of the Sun, or well over 250 million km! If R Doradus would be placed at the centre of the Solar System, its surface would be outside of the orbit of Mars. Although even bigger stars are known - Betelgeuse for one - none appears as large in the sky because they are all at greater distances. The very large apparent size of R Doradus is due to the combination of its relative proximity and large physical size. R Doradus has about the same mass as the Sun, but it is 6500 times brighter [3]. Interferometry with the VLT Although much more difficult, interferometry can also be done combining light from different telescopes. This has been successfully demonstrated by teams in France, UK and USA. As the telescopes can be some distance apart, the separation of the collecting apertures can be much increased, simulating a telescope with a diameter of a hundred metres, and the angular resolution can reach the level of the milli-arcsec. This will be the case when the ESO Very Large Telescope Interferometer (VLTI) becomes operational some years from now. The VLTI is able to combine the light of four telescopes with 8.2-m diameter, and also from several smaller, movable auxiliary 1.8-m telescopes, at separations of up to 200 metres. The VLTI will be a very powerful tool for studying small details in many astronomical objects. The team has already made observations of R~Doradus with the Anglo-Australian Telescope which show the star to have structure on its surface, analogous to (but many times larger than) Sun spots. The VLTI would provide forty times more resolution, allowing such structures to be studied in incredible detail. More information about this research project An article describing the results will appear in the April 21, 1997 issue of the British scientific journal Monthly Notices of the Royal Astronomical Society . Notes: [1] Tim R. Bedding, J. Gordon Robertson and Ralph G. Marson (School of Physics, University of Sydney, Australia), Albert A. Zijlstra and Oskar von der Lühe (ESO), John R. Barton (Anglo-Australian Observatory, Epping, Australia) and Brian S. Carter (South African Astronomical Observatory, Observatory, South Africa). [2] For more details, see the article First light from the NTT Interferometer on page 2 of the December 1993 issue of the ESO house journal The Messenger. [3] This number (6500) was incorrected given (as 180) on the printed version of this Press Release. Sorry for the inconvenience!. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  10. Taking the Measure of Massive Stars and their Environments with the CHARA Array Long-baseline Interferometer

    NASA Astrophysics Data System (ADS)

    Gies, Douglas R.

    2017-11-01

    Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.

  11. 49 CFR Appendix B to Part 564 - Information To Be Submitted for Long Life Replaceable Light Sources of Limited Definition

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for... base in the bulb holder such as tabs, keys, keyways, surface, etc. III. Bulb Holder Interchangeability Dimensions and Tolerances. A. Mating angular locations, diameters, key/keyway sizes, any other...

  12. 49 CFR Appendix B to Part 564 - Information To Be Submitted for Long Life Replaceable Light Sources of Limited Definition

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... A. Angular locations, diameters, key/keyway sizes, and any other interchangeability dimensions for... base in the bulb holder such as tabs, keys, keyways, surface, etc. III. Bulb Holder Interchangeability Dimensions and Tolerances. A. Mating angular locations, diameters, key/keyway sizes, any other...

  13. Interstellar Broadening of Images in the Gravitational Lens Pks 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Preston, R. A.; Murphy, D. W.; Jauncey, D. L.; Reynolds, J. E.; Tzioumis, A. K.; King, E. A.; McCulloch, P. M.; Lovell, J. E. J.; Costa, M. E.

    1996-01-01

    The remarkably strong radio gravitational lens PKS 1830-211 consists of a one arcsecond diameter Einstein ring with two bright compact (milliarcsecond) components located on opposite sides of the ring. We have obtained 22 GHz VLBA data on this source to determine the intrinsic angular sizes of the compact components. Previous VLBI observations at lower frequencies indicate that the brightness temperatures of these components are significantly lower than 10(exp 10) K (Jauncey, et al. 1991), less than is typical for compact synchrotron radio sources and less than is implied by the short timescales of flux density variations. A possible explanation is that interstellar scattering is broadening the apparent angular size of the source and thereby reducing the observed brightness temperature. Our VLBA data support this hypothesis. At 22 GHz the measured brightness temperature is at least 10(exp 11) K, and the deconvolved 2 size of the core in the southwest compact component is proportional to upsilon(sup -2) between 1.7 and 22 GHz. VLBI observations at still higher frequencies should be unaffected by interstellar scattering.

  14. DUAL-FREQUENCY OBSERVATIONS OF 140 COMPACT, FLAT-SPECTRUM ACTIVE GALACTIC NUCLEI FOR SCINTILLATION-INDUCED VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.

    2011-10-15

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in interstellar scintillation (ISS) for sources at redshifts z {approx}> 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the intergalactic medium (IGM) in excess of the expected (1 + z){sup 1/2} angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a samplemore » of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H{alpha} intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15-3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at {alpha} < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at four-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of three decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.« less

  15. Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.- P.; Rickett, B. J.; Bignall, H. E.; Lovell, J. E. J.; Reynolds, C.; Jauncey, D. L.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at red shifts z > or approx. 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM) , in excess of the expected (1+z)1/2 angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, fiat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H(alpha) intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at alpha < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.

  16. The Relation between Cosmological Redshift and Scale Factor for Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn; Department of Physics, Wuhan University, Wuhan 430072

    The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems;more » and the Sandage–Loeb effect. All of this method is feasible now or in the near future.« less

  17. The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications

    NASA Astrophysics Data System (ADS)

    Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.

  18. THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron

    2016-08-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less

  19. Constraints on the Energy Density Content of the Universe Using Only Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark

    2003-01-01

    We demonstrate that it is possible to constrain the energy content of the Universe with high accuracy using observations of clusters of galaxies only. The degeneracies in the cosmological parameters are lifted by combining constraints from different observables of galaxy clusters. We show that constraints on cosmological parameters from galaxy cluster number counts as a function of redshift and accurate angular diameter distance measurements to clusters are complementary to each other and their combination can constrain the energy density content of the Universe well. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Zeldovich effect) surveys, the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect (X-SZ method). In this letter we combine constraints from simulated cluster number counts expected from a 12 deg2 SZ cluster survey and constraints from simulated angular diameter distance measurements based on using the X-SZ method assuming an expected accuracy of 7% in the angular diameter distance determination of 70 clusters with redshifts less than 1.5. We find that R, can be determined within about 25%, A within 20%, and w within 16%. Any cluster survey can be used to select clusters for high accuracy distance measurements, but we assumed accurate angular diameter distance measurements for only 70 clusters since long observations are necessary to achieve high accuracy in distance measurements. Thus the question naturally arises: How to select clusters of galaxies for accurate diameter distance determinations? In this letter, as an example, we demonstrate that it is possible to optimize this selection changing the number of clusters observed, and the upper cut off of their redshift range. We show that constraints on cosmological parameters from combining cluster number counts and angular diameter distance measurements, as opposed to general expectations, will not improve substantially selecting clusters with redshifts higher than one. This important conclusion allow us to restrict our cluster sample to clusters closer than one, in a range where the observational time for accurate distance measurements are more manageable. Subject headings: cosmological parameters - cosmology: theory - galaxies: clusters: general - X-rays: galaxies: clusters

  20. The Surface Brightness-color Relations Based on Eclipsing Binary Stars: Toward Precision Better than 1% in Angular Diameter Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graczyk, Dariusz; Gieren, Wolfgang; Konorski, Piotr

    In this study we investigate the calibration of surface brightness–color (SBC) relations based solely on eclipsing binary stars. We selected a sample of 35 detached eclipsing binaries with trigonometric parallaxes from Gaia DR1 or Hipparcos whose absolute dimensions are known with an accuracy better than 3% and that lie within 0.3 kpc from the Sun. For the purpose of this study, we used mostly homogeneous optical and near-infrared photometry based on the Tycho-2 and 2MASS catalogs. We derived geometric angular diameters for all stars in our sample with a precision better than 10%, and for 11 of them with amore » precision better than 2%. The precision of individual angular diameters of the eclipsing binary components is currently limited by the precision of the geometric distances (∼5% on average). However, by using a subsample of systems with the best agreement between their geometric and photometric distances, we derived the precise SBC relations based only on eclipsing binary stars. These relations have precisions that are comparable to the best available SBC relations based on interferometric angular diameters, and they are fully consistent with them. With very precise Gaia parallaxes becoming available in the near future, angular diameters with a precision better than 1% will be abundant. At that point, the main uncertainty in the total error budget of the SBC relations will come from transformations between different photometric systems, disentangling of component magnitudes, and for hot OB stars, the main uncertainty will come from the interstellar extinction determination. We argue that all these issues can be overcome with modern high-quality data and conclude that a precision better than 1% is entirely feasible.« less

  1. Angular and linear fields of view of Galilean telescopes and telemicroscopes.

    PubMed

    Katz, Milton

    2007-06-01

    The calculation of the angular fields of view (FOVs) of Galilean telescopes generally necessitates the calculation of the pupils and ports. This, in turn, requires knowledge of the optical design of the telescope, in particular, the focal lengths or powers of the objective and ocular lenses. Equations for finding the FOV that obviate the need to calculate pupils and ports, or even to know the lens powers of the telescope, are presented in this article. The equations can be used to find the FOVs in image space of real Galilean telescopes of known magnification, merely by measuring the distance between the objective and ocular lenses and the diameter of the objective lens. The equations include the effects of eye pupil diameter and eye relief. Linear FOVs (LFOVs) of Galilean telemicroscopes are similarly determined. Two image space angular FOV equations were derived: (1) an equation to determine the angular FOVs of a telescope with various amounts of vignetting and eye relief; and (2) an equivalent equation for the LFOVs of telescopes fitted with lens caps for near vision. The FOV increases linearly with increasing vignetting. Increasing the eye relief results in a nonlinear decrease in the FOV, shown as a fraction of the normalized value for zero eye relief. Decrements in the FOVs with increasing eye relief as a fraction of the normalized field angle when the eye relief = 0 are shown to be constant regardless of the vignetting level. A transition of the objective lens from field stop to aperture stop occurs when the eye pupil diameter exceeds the diameter of the objective lens divided by the magnification. Equations have been derived for Galilean telescopes and telemicroscopes that make it unnecessary to find pupils and ports, or to know the powers of the lenses. They provide a direct and simple evaluation of angular and LFOVs as functions of magnification, objective lens diameter, eye pupil diameter, eye relief, and vignetting, and enable comparisons of actual telescopes.

  2. Solar Supergranulation Revealed as a Superposition of Traveling Waves

    NASA Technical Reports Server (NTRS)

    Gizon, L.; Duvall, T. L., Jr.; Schou, J.; Oegerle, William (Technical Monitor)

    2002-01-01

    40 years ago two new solar phenomena were described: supergranulation and the five-minute solar oscillations. While the oscillations have since been explained and exploited to determine the properties of the solar interior, the supergranulation has remained unexplained. The supergranules, appearing as convective-like cellular patterns of horizontal outward flow with a characteristic diameter of 30 Mm and an apparent lifetime of 1 day, have puzzling properties, including their apparent superrotation and the minute temperature variations over the cells. Using a 60-day sequence of data from the MDI (Michelson-Doppler Imager) instrument onboard the SOHO (Solar and Heliospheric Observatory) spacecraft, we show that the supergranulation pattern is formed by a superposition of traveling waves with periods of 5-10 days. The wave power is anisotropic with excess power in the direction of rotation and toward the equator, leading to spurious rotation rates and north-south flows as derived from correlation analyses. These newly discovered waves could play an important role in maintaining differential rotation in the upper convection zone by transporting angular momentum towards the equator.

  3. A spectro-interferometric view of l Carinae's modulated pulsations

    NASA Astrophysics Data System (ADS)

    Anderson, Richard I.; Mérand, Antoine; Kervella, Pierre; Breitfelder, Joanne; Eyer, Laurent; Gallenne, Alexandre

    Classical Cepheids are radially pulsating stars that enable important tests of stellar evolution and play a crucial role in the calibration of the local Hubble constant. l Carinae is a particularly well-known distance calibrator, being the closest long-period (P ~ 35.5 d) Cepheid and subtending the largest angular diameter. We have carried out an unprecedented observing program to investigate whether recently discovered cycle-to-cycle changes (modulations) of l Carinae's radial velocity (RV) variability are mirrored by its variability in angular size. To this end, we have secured a fully contemporaneous dataset of high-precision RVs and high-precision angular diameters. Here we provide a concise summary of our project and report preliminary results. We confirm the modulated nature of the RV variability and find tentative evidence of cycle-to-cycle differences in l Car's maximal angular diameter. Our analysis is exploring the limits of state-of-the-art instrumentation and reveals additional complexity in the pulsations of Cepheids. If confirmed, our result suggests a previously unknown pulsation cycle dependence of projection factors required for determining Cepheid distances via the Baade-Wesselink technique.

  4. Non-Contact EDDY Current Hole Eccentricity and Diameter Measurement

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1998-01-01

    Precision holes are among the most critical features of a mechanical component. Deviations from permissible tolerances can impede operation and result in unexpected failure. We have developed an automated non-contact eddy current hole diameter and eccentricity measuring system. The operating principle is based on the eddy current lift-off effect, which is the coil impedance as a function of the distance between the coil and the test object. An absolute eddy current probe rotates in the hole. The impedance of each angular position is acquired and input to the computer for integration and analysis. The eccentricity of the hole is the profile of the impedance as a function of angular position as compared to a straight line, an ideal hole. The diameter of the hole is the sum of the diameter of the probe and twice the distance-calibrated impedance. An eddy current image is generated by integrating angular scans for a plurality of depths between the top and bottom to display the eccentricity profile. This system can also detect and image defects in the hole. The method for non-contact eddy current hole diameter and eccentricity measurement has been granted a patent by the U.S. Patent and Trademark Office.

  5. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  6. Empirical Bolometric Fluxes and Angular Diameters of 1.6 Million Tycho-2 Stars and Radii of 350,000 Stars with Gaia DR1 Parallaxes

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott

    2017-12-01

    We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M.; Abujetas, Diego R.

    The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guidedmore » modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.« less

  8. Orion Optical Navigation for Loss of Communication Lunar Return Contingencies

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Hanak, Chad; Kubitschek, Daniel G.

    2010-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return.

  9. Predicting stellar angular diameters from V, IC, H and K photometry

    NASA Astrophysics Data System (ADS)

    Adams, Arthur D.; Boyajian, Tabetha S.; von Braun, Kaspar

    2018-01-01

    Determining the physical properties of microlensing events depends on having accurate angular sizes of the source star. Using long baseline optical interferometry, we are able to measure the angular sizes of nearby stars with uncertainties ≤2 per cent. We present empirically derived relations of angular diameters which are calibrated using both a sample of dwarfs/subgiants and a sample of giant stars. These relations are functions of five colour indices in the visible and near-infrared, and have uncertainties of 1.8-6.5 per cent depending on the colour used. We find that a combined sample of both main-sequence and evolved stars of A-K spectral types is well fitted by a single relation for each colour considered. We find that in the colours considered, metallicity does not play a statistically significant role in predicting stellar size, leading to a means of predicting observed sizes of stars from colour alone.

  10. Particle flow within a transonic compressor rotor passage with application to laser-Doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.

    1975-01-01

    A theoretical analysis was conducted of the dynamic behavior of micron size particles moving in the three-dimensional flow field of a rotating transonic axial-flow air compressor rotor. The particle velocity lag and angular deviation relative to the gas were determined as functions of particle diameter, mass density and radial position. Particle size and density were varied over ranges selected to correspond to typical laser-Doppler velocimeter (LDV) flow field mapping applications. It was found that the particles move essentially on gas stream surfaces and that particle tracking is relatively insensitive to the rotor radial coordinate. Velocity lag and angular deviation increased whenever particle size or mass density increased, and particle tracking was more sensitive to a change in particle diameter than to a corresponding change in mass density. Results indicated that velocity and angular deviations generally less than 1 percent and 1 degree could be achieved with 1 gm/cc tracer particles with diameters of 1 micron or less.

  11. Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.

    2003-01-01

    We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general

  12. Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter.

    PubMed

    Skab, Ihor; Vasylkiv, Yuriy; Krupych, Oleh; Savaryn, Viktoriya; Vlokh, Rostyslav

    2012-04-10

    We show that a system of glass disks compressed along their diameters enables one to induce a doubly charged vortex beam in the emergent light when the incident light is circularly polarized. Using such a disk system, one can control the efficiency of conversion of the spin angular momentum to the orbital angular momentum by a loading force. The consideration presented here can be extended for the case of crystalline materials with high optical damage thresholds in order to induce high-power vortex beams.

  13. RadioAstron Science Program Five Years after Launch: Main Science Results

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.

    2017-12-01

    The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).

  14. The structure of the interstellar medium at the 25 AU scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diamond, P.J.; Goss, W.M.; Romney, J.D.

    1989-12-01

    A three-station VLBI Galactic H I absorption experiment has been carried out with baselines up to 600 km. The large collecting area of the European VLBI Network consisting of the Lovell Telescope (Mark Ia), the 100 m telescope at Effelsberg, and the Westerbork Synthesis Radio Telescope was necessary to achieve adequate sensitivity for these high angular resolution (0.05 arcsec) and high-velocity resolution (0.5 km/s) observations. The extragalactic sources 3C 138, 3C 147, and 3C 380 were observed. Changes in the local H I apparent absorption were observed in all three sources as a function of resolution. The changes are mostmore » striking in the direction of 3C 138. The implied linear diameters are in the range 25 AU with typical H I densities of 10,000-100,000/cu cm. 19 refs.« less

  15. Nearly extremal apparent horizons in simulations of merging black holes

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Scheel, Mark A.; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilágyi, Béla; Chu, Tony; Demos, Nicholas; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Afshari, Nousha

    2015-03-01

    The spin angular momentum S of an isolated Kerr black hole is bounded by the surface area A of its apparent horizon: 8π S≤slant A, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses M and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to S/{{M}2}=0.994. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality 8π S\\lt A is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also evaluate the Booth-Fairhurst extremality, whose value for a given apparent horizon depends on the scaling of the horizon’s null normal vectors. In particular, we introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst’s extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al (2008 Phys. Rev. D 78 084017), we construct quasiequilibrium binary-black hole initial data with ‘overspun’ marginally trapped surfaces with 8π S\\gt A. We show that the overspun surfaces are indeed superextremal: our lower bound on their Booth-Fairhurst extremality exceeds unity. However, we confirm that these superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with 8π S\\lt A. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole.

  16. Cosmic equation of state from combined angular diameter distances: Does the tension with luminosity distances exist?

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zhu, Zong-Hong

    2014-10-01

    Using relatively complete observational data concerning four angular diameter distance (ADD) measurements and combined SN +GRB observations representing current luminosity distance (LD) data, this paper investigates the compatibility of these two cosmological distances considering three classes of dark energy equation of state (EoS) reconstruction. In particular, we use strongly gravitationally lensed systems from various large systematic gravitational lens surveys and galaxy clusters, which yield the Hubble constant independent ratio between two angular diameter distances Dl s/Ds data. Our results demonstrate that, with more general categories of standard ruler data, ADD and LD data are compatible at 1 σ level. Second, we note that consistency between ADD and LD data is maintained irrespective of the EoS parametrizations: there is a good match between the universally explored Chevalier-Polarski-Linder model and other formulations of cosmic equation of state. Especially for the truncated generalized equation of state (GEoS) model with β =-2 , the conclusions obtained with ADD and LD are almost the same. Finally, statistical analysis of generalized dark energy equation of state performed on four classes of ADD data provides stringent constraints on the EoS parameters w0 , wβ, and β , which suggest that dark energy was a subdominant component at early times. Moreover, the GEoS parametrization with β ≃1 seems to be a more favorable two-parameter model to characterize the cosmic equation of state, because the combined angular diameter distance data (SGL +CBF +BAO +WMAP 9 ) provide the best-fit value β =0.75 1-0.480+0.465 .

  17. Wavelength dependence of the apparent diameter of retinal blood vessels

    NASA Astrophysics Data System (ADS)

    Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

    2005-04-01

    Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

  18. Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Jones, Jeremy; White, Russel; McAlister, Harold A.; ten Brummelaar, Theo A.; Ridgway, Stephen; Gies, Douglas; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C), Kron (R K I K), Sloan (griz), and WISE (W 3 W 4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  19. The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter.

    PubMed

    Schyboll, Felix; Jaekel, Uwe; Weber, Bernd; Neeb, Heiko

    2018-02-20

    Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R 2 *(= 1/T 2 *) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R 2 *, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R 1 (= 1/T 1 ), as well as the apparent water content. For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R 1 and apparent water content. The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field. These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R 1 and apparent water content in white matter.

  20. Emissivity Measurements of Additively Manufactured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Robert Vaughn; Reid, Robert Stowers; Baker, Andrew M.

    The emissivity of common 3D printing materials such as ABS and PLA were measured using a reflectivity meter and have the measured value of approximately 0.92. Adding a conductive material to the filament appears to cause a decrease in the emissivity of the surface. The angular dependence of the emissivity and the apparent temperature was measured using a FLIR infrared camera showing that the emissivity does not change much for shallow angles less than 40 angular degrees, and drops off dramatically after 70 angular degrees.

  1. Narrowly peaked forward light scattering on particulate media: II. Angular spreading of light scattered by polystyrene microspheres

    NASA Astrophysics Data System (ADS)

    Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia

    2008-07-01

    The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.

  2. Angular-domain scattering interferometry.

    PubMed

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J

    2013-11-15

    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. Themore » precision of the relations is not as well constrained for giant stars as it is for less evolved stars.« less

  4. Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Linsky, J. L.

    1986-01-01

    Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.

  5. Photogrammetry Of A Parabolic Antenna

    NASA Technical Reports Server (NTRS)

    Merrick, W. D.; Lansing, F. L.; Stoller, F. W.; Lobb, V. B.

    1988-01-01

    Surface measured with accuracy better than 10 to the negative fifth power times diameter. Report describes use of advanced close-range photogrammetry to determine deviations of 34-m-diameter antenna main reflector and subreflector from nominal paraboloidal shapes. Measurements enable removal of linear offsets and angular misalignments of subreflector, with consequent increase of 4 percent in aperture efficiency.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jee, I.; Komatsu, E.; Suyu, S.H., E-mail: ijee@mpa-garching.mpg.de, E-mail: komatsu@mpa-garching.mpg.de, E-mail: suyu@asiaa.sinica.edu.tw

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions ofmore » a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.« less

  7. Getting the Big Picture: Design Considerations for a ngVLA Short Spacing Array

    NASA Astrophysics Data System (ADS)

    Mason, Brian Scott; Cotton, William; Condon, James; Kepley, Amanda; Selina, Rob; Murphy, Eric Joseph

    2018-01-01

    The Next Generation VLA (ngVLA) aims to provide a revolutionary increase in cm-wavelength collecting area and sensitivity while at the same time providing excellent image fidelity for a broad spectrum of science cases. Likely ngVLA configurations currently envisioned provide sensitivity over a very wide range of spatial scales. The antenna diameter (notionally 18 meters) fundamentally limits the largest angular scales that can be reached. One simple and powerful way to image larger angular scales is to build a complementary interferometer comprising a smaller number of smaller-diameter dishes.We have investigated the requirements that such an array would need to meet in order to usefully scientifically complement the ngVLA; this poster presents the results of our investigation.

  8. Angular and radial dependence of the energy response factor for LIF-TLD micro-rods in 125L permanent implant source.

    PubMed

    Mobit, Paul; Badragan, Iulian

    2006-01-01

    EGSnrc Monte Carlo simulations were used to calculate the angular and radial dependence of the energy response factor for LiF-thermoluminescence dosemeters (TLDs) irradiated with a commercially available (125)I permanent brachytherapy source. The LiF-TLDs were modelled as cylindrical micro-rods of length 6 mm and with diameters of 1 mm and 5 mm. The results show that for a LiF-TLD micro-rod of 1 mm diameter, the energy response relative to (60)Co gamma rays is 1.406 +/- 0.3% for a polar angle of 90 degrees and radial distance of 1.0 cm. When the diameter of the micro-rod is increased from 1 to 5 mm, the energy response decreases to 1.32 +/- 0.3% at the same point. The variation with position of the energy response factor is not >5% in a 6 cm x 6 cm x 6 cm calculation grid for the 5 mm diameter micro-rod. The results show that there is a change in the photon spectrum with angle and radial distance, which causes the variation of the energy response.

  9. Angular dependence of the magnetic properties of permalloy and nickel nanowires as a function of their diameters

    NASA Astrophysics Data System (ADS)

    Raviolo, Sofía; Tejo, Felipe; Bajales, Noelia; Escrig, Juan

    2018-01-01

    In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d = 40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d = 100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications.

  10. Bolivia

    Atmospheric Science Data Center

    2013-04-18

    ... in brightness between them. Varying degrees of surface moisture around the two playas are illustrated by the different display ... angular composites contain information relating to surface moisture and/or texture characteristics that are not apparent with a single ...

  11. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  12. Tethered Formation Configurations: Meeting the Scientific Objectives of Large Aperture and Interferometric Science

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.; Quinn, David A.

    2004-01-01

    With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.

  13. Statistical analysis of catalogs of extragalactic objects. II - The Abell catalog of rich clusters

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Peebles, P. J. E.

    1973-01-01

    The results of a power-spectrum analysis are presented for the distribution of clusters in the Abell catalog. Clear and direct evidence is found for superclusters with small angular scale, in agreement with the recent study of Bogart and Wagoner (1973). It is also found that the degree and angular scale of the apparent superclustering varies with distance in the manner expected if the clustering is intrinsic to the spatial distribution rather than a consequence of patchy local obscuration.

  14. Distance and absolute magnitudes of the brightest stars in the dwarf galaxy Sextans A

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Carlson, G.

    1982-01-01

    In an attempt to improve present bright star calibration, data were gathered for the brightest red and blue stars and the Cepheids in the Im V dwarf galaxy, Sextans A. On the basis of a magnitude sequence measured to V and B values of about 22 and 23, respectively, the mean magnitudes of the three brightest blue stars are V=17.98 and B=17.88. The three brightest red supergiants have V=18.09 and B=20.14. The periods and magnitudes measured for five Cepheids yield an apparent blue distance modulus of 25.67 + or - 0.2, via the P-L relation, and the mean absolute magnitudes of V=-7.56 and B=-5.53 for the red supergiants provide additional calibration of the brightest red stars as distance indicators. If Sextans A were placed at the distance of the Virgo cluster, it would appear to have a surface brightness of 23.5 mag/sq arcec. This, together with the large angular diameter, would make such a galaxy easily discoverable in the Virgo cluster by means of ground-based surveys.

  15. Ring structure in the HII region of NGC 5930

    NASA Astrophysics Data System (ADS)

    Su, Bu-Mei; Mutel, R. L.; Zhang, Fu-Jing; Li, Yong-Sheng

    1992-03-01

    Radio continuous observations of the barred spiral galaxy NGC5930 at 2- and 3.6-cm wavelengths have been carried out with the VLA. It has been found that at 2 cm the HII region appears to be a ring structure on which hot spots are distributed. The outer angular diameter of the ring is 2.2 arcsec, and the inner angular diameter - 0.3 arcsec. The center is a hole from which no radio emission has been detected. The electron density in the HII region is 80 - 90 cu cm, and its mass is 10 exp 7 solar mass units. In NGC 5930 there is very strong infrared radiation. The infrared luminosity is 10 exp 6 times larger than the radio luminosity. There is a steep Balmer attenuation. This is a region where a star is being formed violently.

  16. Approximating high angular resolution apparent diffusion coefficient profiles using spherical harmonics under BiGaussian assumption

    NASA Astrophysics Data System (ADS)

    Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun

    2009-02-01

    Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.

  17. The natural moon illusion: a multifactor angular account.

    PubMed

    Plug, C; Ross, H E

    1994-01-01

    It is argued that the failure to explain the celestial illusion results from conceptual confusion about perceived size and from disregard of the observational evidence relating to the natural moon illusion. The evidence shows that the illusion consists of a perceived angular size enlargement of horizon objects, by a factor of about 1.5-2.0 in diameter in comparison with elevated objects. Most measurements of the illusion have been made in terms of angular size, although in some proposed explanations an illusion of linear size is assumed. The magnitude of the illusion varies, particularly with the detail of the horizon scene. The illusion can be explained as the sum of several factors that affect perceived angular size: size contrast, vergence commands and eye or head position, aerial perspective, and colour. The relative contributions of these factors are assessed.

  18. Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Algabri, Y. A.; Rookkapan, S.; Chatpun, S.

    2017-09-01

    An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.

  19. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  20. Constraining smoothness parameter and the DD relation of Dyer-Roeder equation with supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xi; Yu, Hao-Ran; Zhang, Tong-Jie, E-mail: yangwds@mail.bnu.edu.cn, E-mail: yu@bnu.edu.cn, E-mail: tjzhang@bnu.edu.cn

    2013-06-01

    Our real universe is locally inhomogeneous. Dyer and Roeder introduced the smoothness parameter α to describe the influence of local inhomogeneity on angular diameter distance, and they obtained the angular diameter distance-redshift approximate relation (Dyer-Roeder equation) for locally inhomogeneous universe. Furthermore, the Distance-Duality (DD) relation, D{sub L}(z)(1+z){sup −2}/D{sub A}(z) = 1, should be valid for all cosmological models that are described by Riemannian geometry, where D{sub L} and D{sub A} are, respectively, the luminosity and angular distance distances. Therefore, it is necessary to test whether if the Dyer-Roeder approximate equation can satisfy the Distance-Duality relation. In this paper, we usemore » Union2.1 SNe Ia data to constrain the smoothness parameter α and test whether the Dyer-Roeder equation meet the DD relation. By using χ{sup 2} minimization, we get α = 0.92{sub −0.32}{sup +0.08} at 1σ and 0.92{sub −0.65}{sup +0.08} at 2σ, and our results show that the Dyer-Roeder equation is in good consistency with the DD relation at 1σ.« less

  1. An investigation into the blood-flow characteristics of telangiectatic skin lesions in systemic sclerosis using dual-wavelength laser Doppler imaging.

    PubMed

    Murray, A K; Moore, T L; Griffiths, C E M; Herrick, A L

    2009-07-01

    Superficial telangiectases associated with systemic sclerosis may be more responsive to treatment than those deeper in the dermis. We investigated whether dual-wavelength laser Doppler imaging (LDI) is sufficiently sensitive to ascertain the distribution of blood flow within telangiectases and whether blood flow relates to telangiectatic diameter. The perfusion and diameter of 20 telangiectases were measured in superficial and deeper layers of the skin using dual-wavelength LDI. Of 20 telangiectases, 18 had higher blood flow in the red (representing deeper blood flow), rather than the green (representing superficial blood flow) wavelength images. Clinically apparent diameters correlated with those of the superficial (r = 0.61, P = 0.01), but not with the deeper blood flow images. Hence, the apparent size of telangiectases at the skin surface does not predict blood flow through the microvessel(s) at deeper levels, and thus clinically apparent size is unlikely to predict treatment response. Dual-wavelength LDI may help predict treatment response.

  2. Boring apparatus capable of boring straight holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, C.R.

    The invention relates to a rock boring assembly for producing a straight hole for use in a drill string above a pilot boring bit of predetermined diameter smaller than the desired final hole size. The boring assembly comprises a small conical boring bit and a larger conical boring, the conical boring bits mounted on lower and upper ends of an enlongated spacer, respectively, and the major effective cutting diameters of each of the conical boring bits being at least 10% greater than the minor effective cutting diameter of the respective bit. The spacer has a cross-section resistant bending and spacesmore » the conical boring bits apart a distance at least 5 times the major cutting diameter of the small conical boring bit, thereby spacing the pivot points provided by the two conical boring bits to limit bodily angular deflection of the assembly and providing a substantial moment arm to resist lateral forces applied to the assembly by the pilot bit and drill string. The spacing between the conical bits is less than about 20 times the major cutting diameter of the lower conical boring bit to enable the spacer to act as a bend-resistant beam to resist angular deflection of the axis of either of the conical boring bits relative to the other when it receives uneven lateral force due to non-uniformity of cutting conditions about the circumference of the bit. Advantageously the boring bits also are self-advancing and feature skewed rollers. 7 claims.« less

  3. Solar diameter measurements from eclipses as a solar variability proxy

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David

    The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.

  4. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong; Duan, Lian; Lan, Hui

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressedmore » as a function of the opacity using the Beer–Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.« less

  5. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Wang, Xinbing; Duan, Lian; Lan, Hui; Chen, Ziqi; Zuo, Duluo; Lu, Peixiang

    2015-05-01

    Angular-resolved ion time-of-flight spectra as well as extreme ultraviolet radiation in laser-produced tin droplet plasma are investigated experimentally and theoretically. Tin droplets with a diameter of 150 μm are irradiated by a pulsed Nd:YAG laser. The ion time-of-flight spectra measured from the plasma formed by laser irradiation of the tin droplets are interpreted in terms of a theoretical elliptical Druyvesteyn distribution to deduce ion density distributions including kinetic temperatures of the plasma. The opacity of the plasma for extreme ultraviolet radiation is calculated based on the deduced ion densities and temperatures, and the angular distribution of extreme ultraviolet radiation is expressed as a function of the opacity using the Beer-Lambert law. Our results show that the calculated angular distribution of extreme ultraviolet radiation is in satisfactory agreement with the experimental data.

  6. 7 CFR 51.2932 - Damage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... apparent. (e) Scab spots when cracked or aggregating more than three-eighths inch (9.5 mm) in diameter. (f... scattered and aggregating more than one-fourth inch (6.3 mm) in diameter. (g) Hail when the skin has been...

  7. 7 CFR 51.2932 - Damage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... apparent. (e) Scab spots when cracked or aggregating more than three-eighths inch (9.5 mm) in diameter. (f... scattered and aggregating more than one-fourth inch (6.3 mm) in diameter. (g) Hail when the skin has been...

  8. 7 CFR 51.2932 - Damage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... apparent. (e) Scab spots when cracked or aggregating more than three-eighths inch (9.5 mm) in diameter. (f... scattered and aggregating more than one-fourth inch (6.3 mm) in diameter. (g) Hail when the skin has been...

  9. Adaptive Optics Imaging of Solar System Objects

    NASA Technical Reports Server (NTRS)

    Roddier, Francois; Owen, Toby

    1999-01-01

    Most solar system objects have never been observed at wavelengths longer than the R band with an angular resolution better than 1". The Hubble Space Telescope itself has only recently been equipped to observe in the infrared. However, because of its small diameter, the angular resolution is lower than that one can now achieved from the ground with adaptive optics, and time allocated to planetary science is limited. We have successfully used adaptive optics on a 4-m class telescope to obtain 0.1" resolution images of solar system objects in the far red and near infrared (0.7-2.5 microns), aE wavelengths which best discl"lmlnate their spectral signatures. Our efforts have been put into areas of research for which high angular resolution is essential.

  10. VizieR Online Data Catalog: JMMC Stellar Diameters Catalogue - JSDC. Version 2 (Bourges+, 2017)

    NASA Astrophysics Data System (ADS)

    Bourges, L.; Mella, G.; Lafrasse, S.; Duvert, G.; Chelli, A.; Le Bouquin, J.-B.; Delfosse, X.; Chesneau, O.

    2017-01-01

    The JMMC (Jean-Marie Mariotti Center) Calibrator Workgroup has long developed methods to estimate the angular diameter of stars, and provides this expertise in the SearchCal tool (http://www.jmmc.fr/searchcal). SearchCal creates a dynamical catalogue of stars suitable to calibrate Optical Long-Baseline Interferometry (OLBI) observations from on-line queries of CDS catalogues, according to observational parameters. In essence, SearchCal is limited only by the completeness of the stellar catalogues it uses, and in particular is not limited in magnitude. SearchCal being an application centered on the somewhat restricted OLBI observational purposes, it appeared useful to make our angular diameter estimates available for other purposes through a CDS-based catalog, the JMMC Stellar Diameters Catalogue (JSDC, II/300). This second version of the catalog represents a tenfold improvement both in terms of the number of objects and on the precision of the estimates. This is due to a new algorithm using reddening-free quantities -- the pseudomagnitudes, allied to a new database of all the measured stellar angular diameters -- the JMDC (II/345/jmdc), and a rigorous error propagation at all steps of the processing. All this is described in the associated publication by Chelli et al. (2016A&A...589A.112C). The catalog reports the Limb-Darkened Diameter (LDD) and error for 465877 stars, as well as their BVRIJHKLMN magnitudes, Uniform Disk Diameters (UDD) in these same photometric bands, Spectral Type, and two supplementary quality indicators: - the mean-diameter chi-square (see Appendix A.2 of Chelli et al., 2016A&A...589A.112C). - a flag indicating some degree of caution in choosing this star as an OLBI calibrator: known spectroscopic binaries, Algol type stars, etc, see Note (1). The conversion from LDD to UDD in each spectral band is made using mainly the coefficients from J/A+A/556/A86/table16 and J/A+A/554/A98/table16 when possible (compatible spectral types) and following the prescriptions of the JMMC report at http://www.mariotti.fr/doc/approved/JMMC-MEM-2610-0001.pdf in all other cases. The errors on UDD values are omitted as they are similar to the LDD error. Instead of using this catalog to find a suitable OLBI calibrator, the reader is invited to use the SearchCal tool at JMMC (http://www.jmmc.fr/searchcal) which permits a refined search, give access to other possible calibrators (faint stars not in the Tycho catalog) and benefits from the maintainance of JMMC and CDS databases. This catalog replaces the previous JSDC (II/300/jsdc). Almost all stars in II/300/jsdc are found in II/346 with a consistent diameter, with the exception of 1935 stars whose estimated diameter differs from more than 2 sigmas between the two catalogs. The associated file JSDCv2v1 dis.vot (jsdc dis.dat) summarizes this difference. (5 data files).

  11. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  12. Electron-spin-resonance studies of vapor-grown carbon fibers

    NASA Technical Reports Server (NTRS)

    Marshik, B.; Meyer, D.; Apple, T.

    1987-01-01

    The effects of annealing temperature and fiber diameter on the degree of disorder of vapor-grown carbon fibers were investigated by analyzing the electron-spin-resonance (ESR) line shapes of fibers annealed at six various temperatures up to 3375 K. The diameter of fibers, grown from methane gas, ranged from 10 to 140 microns with most fibers between 20 and 50 microns. It was found that the degree of disorder of vapor-grown fibers decreases upon annealing to higher temperature; standard angular deviation between the fiber axis and the crystallite basal planes could vary from 35 deg (for annealing temperature of 2275 K) to 12 deg (for 3375 K). With respect to fiber diameter, order parameters were found to be higher for fibers of smaller diameters.

  13. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array.

    PubMed

    Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas

    2017-05-01

    High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.

  14. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  15. Contributions of high-altitude winds and atmospheric moment of inertia to the atmospheric angular momentum-earth rotation relationship

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Mayr, H. G.; Kramer, L.

    1985-01-01

    For many years it has been recognized that recurrent modulations occur in the time series of the earth's rotation rate or, alternatively, the change in the length of the day (Delta-LOD). Studies relating Delta-LOD to global patterns of zonal winds have confirmed that the variability of atmospheric angular momentum (M) is of sufficient magnitude to account for a large portion of the gross periodicities observed in the earth rotation. The present investigation is concerned with the importance of the contributions of the moment of inertia and high-altitude winds to the angular momentum budget. On the basis of an analysis of the various factors, it is found that within the available data, contributions of high-altitude winds and atmospheric moment of inertia reach levels detectable in the atmospheric angular momentum budget. Nevertheless, for the period December 1978 to December 1979 these contributions are not sufficient to resolve the apparent short-term discrepancies which are evident between Delta-LOD and M.

  16. Angular photogrammetric analysis of the soft tissue profile in 12-year-old southern Chinese.

    PubMed

    Leung, Cindi Sy; Yang, Yanqi; Wong, Ricky Wk; Hägg, Urban; Lo, John; McGrath, Colman

    2014-12-24

    To quantify average angular measurements that define the soft tissue profiles of 12-year-old southern Chinese and to determine gender differences. A random population sample of 514 12-year-old children was recruited (about 10% of a Hong Kong Chinese birth cohort). Photographs were taken in natural head posture and 12 soft tissue landmarks were located on the photos to measure 12 angular measurements using ImageJ (V1.45s) for Windows. Approximately 10% of photographs were reanalyzed and method error was calculated. Angular norm values for the 12 parameters were determined and gender differences were assessed using 2 sample T-test with 95% confidence interval. The response rate was 54.1% (278/514). Norm values for the 12 angular measurements were generated. The greatest variability was found for the nasolabial (Cm-Sn-Ls) and labiomental (Li-Sm-Pg) angles. Gender differences were found in 4 angular parameters: vertical nasal angle (N-Prn/TV) (p < 0.05), cervicomental angle (G-Pg/C-Me) (p < 0.001), facial convexity angle (G-Sn-Pg) (p < 0.01) and total facial convexity angle (G-Prn-Pg)(p < 0.01). Norm values for 12 angular measurements among 12-year-old southern Chinese children were provided and some variability noted. Gender differences were apparent in several angular measurements. This study has implications in developing norm values for southern Chinese and for comparison with other ethnic groups.

  17. Angular correlation studies in noble gases

    NASA Technical Reports Server (NTRS)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  18. A simple but powerful theory of the moon illusion.

    PubMed

    Baird, J C; Wagner, M; Fuld, K

    1990-08-01

    Modification of Restle's theory (1970) explains the moon illusion and related phenomena on the basis of three principles: (1) The apparent sizes of objects are their perceived visual angles. (2) The apparent size of the moon is determined by the ratio of the angular extent of the moon relative to the extents subtended by objects composing the surrounding context, such as the sky and things on the ground. (3) The visual extents subtended by common objects of a constant physical size decrease systematically with increasing distance from the observer. Further development of this theory requires specification of both the components of the surrounding context and their relative importance in determining the apparent size and distance of the moon.

  19. A homogeneous sample of binary galaxies: Basic observational properties

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  20. Arecibo Radar Observation of Near-Earth Asteroids: Expanded Sample Size, Determination of Radar Albedos, and Measurements of Polarization Ratios

    NASA Astrophysics Data System (ADS)

    Lejoly, Cassandra; Howell, Ellen S.; Taylor, Patrick A.; Springmann, Alessondra; Virkki, Anne; Nolan, Michael C.; Rivera-Valentin, Edgard G.; Benner, Lance A. M.; Brozovic, Marina; Giorgini, Jon D.

    2017-10-01

    The Near-Earth Asteroid (NEA) population ranges in size from a few meters to more than 10 kilometers. NEAs have a wide variety of taxonomic classes, surface features, and shapes, including spheroids, binary objects, contact binaries, elongated, as well as irregular bodies. Using the Arecibo Observatory planetary radar system, we have measured apparent rotation rate, radar reflectivity, apparent diameter, and radar albedos for over 350 NEAs. The radar albedo is defined as the radar cross-section divided by the geometric cross-section. If a shape model is available, the actual cross-section is known at the time of the observation. Otherwise we derive a geometric cross-section from a measured diameter. When radar imaging is available, the diameter was measured from the apparent range depth. However, when radar imaging was not available, we used the continuous wave (CW) bandwidth radar measurements in conjunction with the period of the object. The CW bandwidth provides apparent rotation rate, which, given an independent rotation measurement, such as from lightcurves, constrains the size of the object. We assumed an equatorial view unless we knew the pole orientation, which gives a lower limit on the diameter. The CW also provides the polarization ratio, which is the ratio of the SC and OC cross-sections.We confirm the trend found by Benner et al. (2008) that taxonomic types E and V have very high polarization ratios. We have obtained a larger sample and can analyze additional trends with spin, size, rotation rate, taxonomic class, polarization ratio, and radar albedo to interpret the origin of the NEAs and their dynamical processes. The distribution of radar albedo and polarization ratio at the smallest diameters (≤50 m) differs from the distribution of larger objects (>50 m), although the sample size is limited. Additionally, we find more moderate radar albedos for the smallest NEAs when compared to those with diameters 50-150 m. We will present additional trends we find in this data set.

  1. Three-mirror anastigmat for cosmic microwave background observations.

    PubMed

    Padin, S

    2018-03-20

    An off-axis three-mirror anastigmat is proposed for future cosmic microwave background observations. The telescope has a 5 m diameter primary, giving 1.5 ' angular resolution at λ=2  mm, which is sufficient for measurements of gravitational lensing and for galaxy cluster surveys. The design includes several key features, not previously combined in a large telescope, that are important for sensitive measurements, especially on large angular scales: (1) high throughput (8° diameter diffraction-limited field of view at λ=1  mm, and 12×8° at λ=3  mm, so a single telescope could support all the detectors for an optimistic, future experiment); (2) low scattering (all the mirrors are small enough to be monolithic, so there are no segment gaps); (3) full boresight rotation, over the full elevation range, for measuring polarization errors; and (4) a comoving shield or baffle around the entire telescope to control pickup.

  2. Improved Time-Lapsed Angular Scattering Microscopy of Single Cells

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.

    By measuring angular scattering patterns from biological samples and fitting them with a Mie theory model, one can estimate the organelle size distribution within many cells. Quantitative organelle sizing of ensembles of cells using this method has been well established. Our goal is to develop the methodology to extend this approach to the single cell level, measuring the angular scattering at multiple time points and estimating the non-nuclear organelle size distribution parameters. The diameters of individual organelle-size beads were successfully extracted using scattering measurements with a minimum deflection angle of 20 degrees. However, the accuracy of size estimates can be limited by the angular range detected. In particular, simulations by our group suggest that, for cell organelle populations with a broader size distribution, the accuracy of size prediction improves substantially if the minimum angle of detection angle is 15 degrees or less. The system was therefore modified to collect scattering angles down to 10 degrees. To confirm experimentally that size predictions will become more stable when lower scattering angles are detected, initial validations were performed on individual polystyrene beads ranging in diameter from 1 to 5 microns. We found that the lower minimum angle enabled the width of this delta-function size distribution to be predicted more accurately. Scattering patterns were then acquired and analyzed from single mouse squamous cell carcinoma cells at multiple time points. The scattering patterns exhibit angular dependencies that look unlike those of any single sphere size, but are well-fit by a broad distribution of sizes, as expected. To determine the fluctuation level in the estimated size distribution due to measurement imperfections alone, formaldehyde-fixed cells were measured. Subsequent measurements on live (non-fixed) cells revealed an order of magnitude greater fluctuation in the estimated sizes compared to fixed cells. With our improved and better-understood approach to single cell angular scattering, we are now capable of reliably detecting changes in organelle size predictions due to biological causes above our measurement error of 20 nm, which enables us to apply our system to future studies of the investigation of various single cell biological processes.

  3. Latitudinal Transport of Angular Momentum by Cellular Flows Observed with MDI

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Gilman, Peter A.; Beck, John G.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We have analyzed Doppler velocity images from the MDI instrument on SOHO to determine the latitudinal transport of angular momentum by the cellular photospheric flows. Doppler velocity images from 60-days in May to July of 1996 were processed to remove the p-mode oscillations, the convective blue shift, the axisymmetric flows, and any instrumental artifacts. The remaining cellular flows were examined for evidence of latitudinal angular momentum transport. Small cells show no evidence of any such transport. Cells the size of supergranules (30,000 km in diameter) show strong evidence for a poleward transport of angular momentum. This would be expected if supergranules are influenced by the Coriolis force, and if the cells are elongated in an east-west direction. We find good evidence for just such an east-west elongation of the supergranules. This elongation may be the result of differential rotation shearing the cellular structures. Data simulations of this effect support the conclusion that elongated supergranules transport angular momentum from the equator toward the poles, Cells somewhat larger than supergranules do not show evidence for this poleward transport. Further analysis of the data is planned to determine if the direction of angular momentum transport reverses for even larger cellular structures. The Sun's rapidly rotating equator must be maintained by such transport somewhere within the convection zone.

  4. Wide-angle display-type retarding field analyzer with high energy and angular resolutions

    NASA Astrophysics Data System (ADS)

    Muro, Takayuki; Ohkochi, Takuo; Kato, Yukako; Izumi, Yudai; Fukami, Shun; Fujiwara, Hidenori; Matsushita, Tomohiro

    2017-12-01

    Deployments of spherical grids to obtain high energy and angular resolutions for retarding field analyzers (RFAs) having acceptance angles as large as or larger than ±45° were explored under the condition of using commercially available microchannel plates with effective diameters of approximately 100 mm. As a result of electron trajectory simulations, a deployment of three spherical grids with significantly different grid separations instead of conventional equidistant separations showed an energy resolving power (E/ΔE) of 3200 and an angular resolution of 0.6°. The mesh number of the wire mesh retarding grid used for the simulation was 250. An RFA constructed with the simulated design experimentally showed an E/ΔE of 1100 and an angular resolution of 1°. Using the RFA and synchrotron radiation of 900 eV, photoelectron diffraction (PED) measurements were performed for single-crystal graphite. A clear C 1s PED pattern was observed even when the differential energy of the RFA was set at 0.5 eV. Further improvement of the energy resolution was theoretically examined under the assumption of utilizing a retarding grid fabricated by making a large number of radially directed cylindrical holes through a partial spherical shell instead of using a wire mesh retarding grid. An E/ΔE of 14 500 was predicted for a hole design with a diameter of 60 μm and a depth of 100 μm. A retarding grid with this hole design and a holed area corresponding to an acceptance angle of ±7° was fabricated. An RFA constructed with this retarding grid experimentally showed an E/ΔE of 1800. Possible reasons for the experimental E/ΔE lower than the theoretical values are discussed.

  5. Science requirements and optimization of the silicon pore optics design for the Athena mirror

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Pareschi, G.; Christensen, F.; den Herder, J.-W.; Ferreira, D.; Jakobsen, A.; Ackermann, M.; Collon, M.; Bavdaz, M.

    2014-07-01

    The science requirements for the Athena X-ray mirror are to provide a collecting area of 2 m2 at 1 keV, an angular resolution of ~5 arc seconds half energy eidth (HEW) and a field of view of diameter 40-50 arc minutes. This combination of area and angular resolution over a wide field are possible because of unique features of the Silicon pore optics (SPO) technology used. Here we describe the optimization and modifications of the SPO technology required to achieve the Athena mirror specification and demonstrate how the optical design of the mirror system impacts on the scientific performance of Athena.

  6. Shapes of rotating superfluid helium nanodroplets

    DOE PAGES

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis; ...

    2017-02-16

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  7. Shapes of rotating superfluid helium nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernando, Charles; Tanyag, Rico Mayro P.; Jones, Curtis

    Rotating superfluid He droplets of approximately 1 μm in diameter were obtained in a free nozzle beam expansion of liquid He in vacuum and were studied by single-shot coherent diffractive imaging using an x-ray free electron laser. The formation of strongly deformed droplets is evidenced by large anisotropies and intensity anomalies (streaks) in the obtained diffraction images. The analysis of the images shows that in addition to previously described axially symmetric oblate shapes, some droplets exhibit prolate shapes. Forward modeling of the diffraction images indicates that the shapes of rotating superfluid droplets are very similar to their classical counterparts, givingmore » direct access to the droplet angular momenta and angular velocities. Here, the analyses of the radial intensity distribution and appearance statistics of the anisotropic images confirm the existence of oblate metastable superfluid droplets with large angular momenta beyond the classical bifurcation threshold.« less

  8. Singularities in Dromo formulation. Analysis of deep flybys

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-08-01

    The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.

  9. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  10. Fundamental Stellar Properties of M-Dwarfs from the CHARA Array

    NASA Astrophysics Data System (ADS)

    Berger, D. H.; Gies, D. R.; McAlister, H. A.; ten Brummelaar, T. A.; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Mérand, A. M.

    2005-12-01

    We report the angular diameters of six M dwarfs ranging in spectral type from M1.0 V to M3.0 V measured with Georgia State University's CHARA Array, a long-baseline optical interferometer located at Mount Wilson Observatory. Observations were made with the longest baselines in the near infrared K'-band and yielded angular diameters less than one milliarcsecond. Using an iterative process combining parallaxes from the NStars program and photometrically-derived bolometric luminosities and masses, we calculated effective temperatures, surface gravities, and stellar radii. Our results are consistent with other empirical measurements of M-dwarf radii, but found that current models underestimate the true stellar radii by up to 15-20%. We suggest that theoretical models for low mass stars may be lacking an opacity source that alters the computed stellar radii. Science operations at the Array are supported by the National Science Foundation through NSF Grant AST--0307562 and by Georgia State University through the College of Arts and Sciences and the Office of the Vice President for Research. Financial support for DHB was provided by the National Science Foundation through grant AST--0205297.

  11. Spectroscopic determination of fundamental parameters of small angular diameter galactic open clusters

    NASA Astrophysics Data System (ADS)

    Ahumada, A. V.; Claria, J. J.; Bica, E.; Parisi, M. C.; Torres, M. C.; Pavani, D. B.

    We present integrated spectra obtained at CASLEO (Argentina) for 9 galactic open clusters of small angular diameter. Two of them (BH 55 and Rup 159) have not been the target of previous research. The flux-calibrated spectra cover the spectral range approx. 3600-6900 A. Using the equivalent widths (EWs) of the Balmer lines and comparing the cluster spectra with template spectra, we determined E(B-V) colour excesses and ages for the present cluster sample. The parameters obtained for 6 of the clusters show good agreement with previous determinations based mainly on photometric methods. This is not the case, however, for BH 90, a scarcely reddened cluster, for which Moffat and Vogt (1975, Astron. and Astroph. SS, 20, 125) derived E(B-V) = 0.51. We explain and justify the strong discrepancy found for this object. According to the present analysis, 3 clusters are very young (Bo 14, Tr 15 and Tr 27), 2 are moderately young (NGC 6268 and BH 205), 3 are Hyades-like clusters (Rup 164, BH 90 and BH 55) and only one is an intermediate-age cluster (Rup 159).

  12. Galaxy clusters, type Ia supernovae and the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holanda, R.F.L.; Busti, V.C.; Colaço, L.R.

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){supmore » 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.« less

  13. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  14. Pressure-sensing performance of upright cylinders in a Mach 10 boundary-layer

    NASA Technical Reports Server (NTRS)

    Johnson, Steven; Murphy, Kelly

    1994-01-01

    An experimental research program to provide basic knowledge of the pressure-sensing performance of upright, flushported cylinders in a hypersonic boundary layer is described. Three upright cylinders of 0.25-, 0.5- and l.0-in. diameters and a conventional rake were placed in the test section sidewall boundary layer of the 31 Inch Mach 10 Wind Tunnel at NASA Langley Research Center, Hampton, Virginia. Boundary-layer pressures from these cylinders were compared to those measured with a conventional rake. A boundary-layer thickness-to-cylinder-diameter ratio of 8 proved sufficient to accurately measure an overall pressure profile and ascertain the boundary-layer thickness. Effects of Reynolds number, flow angularity, and shock wave impingement on pressure measurement were also investigated. Although Reynolds number effects were negligible at the conditions studied, flow angularity above 10 deg significantly affects the measured pressures. Shock wave impingement was used to investigate orifice-to-orifice pressure crosstalk. No crosstalk was measured. The lower pressure measured above the oblique shock wave impingement showed no influence of the higher pressure generated at the lower port locations.

  15. The elastic theory of shells using geometric algebra

    PubMed Central

    Lasenby, J.; Agarwal, A.

    2017-01-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404

  16. The elastic theory of shells using geometric algebra.

    PubMed

    Gregory, A L; Lasenby, J; Agarwal, A

    2017-03-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.

  17. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    PubMed

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  18. Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, T.M.C.; et al.

    We present angular diameter distance measurements obtained by locating the BAO scale in the distribution of galaxies selected from the first year of Dark Energy Survey data. We consider a sample of over 1.3 million galaxies distributed over a footprint of 1318 degmore » $^2$ with $$0.6 < z_{\\rm photo} < 1$$ and a typical redshift uncertainty of $0.03(1+z)$. This sample was selected, as fully described in a companion paper, using a color/magnitude selection that optimizes trade-offs between number density and redshift uncertainty. We investigate the BAO signal in the projected clustering using three conventions, the angular separation, the co-moving transverse separation, and spherical harmonics. Further, we compare results obtained from template based and machine learning photometric redshift determinations. We use 1800 simulations that approximate our sample in order to produce covariance matrices and allow us to validate our distance scale measurement methodology. We measure the angular diameter distance, $$D_A$$, at the effective redshift of our sample divided by the true physical scale of the BAO feature, $$r_{\\rm d}$$. We obtain close to a 4 per cent distance measurement of $$D_A(z_{\\rm eff}=0.81)/r_{\\rm d} = 10.75\\pm 0.43 $$. These results are consistent with the flat $$\\Lambda$$CDM concordance cosmological model supported by numerous other recent experimental results.« less

  19. Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders

    NASA Astrophysics Data System (ADS)

    Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.

    2015-04-01

    In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.

  20. The Gaussian Plasma Lens in Astrophysics: Refraction

    NASA Astrophysics Data System (ADS)

    Clegg, Andrew W.; Fey, Alan L.; Lazio, T. Joseph W.

    1998-03-01

    We present the geometrical optics for refraction of a distant background radio source by an interstellar plasma lens, with specific application to a lens with a Gaussian profile of free-electron column density. The refractive properties of the lens are specified completely by a dimensionless parameter α, which is a function of the wavelength of observation, the free-electron column density through the lens, the lens-observer distance, and the diameter of the lens transverse to the line of sight. A lens passing between the observer and a background source, due to the relative motions of the observer, lens, and source, produces modulations in the light curve of the background source. Because plasma lenses are diverging, the light curve displays a minimum in the background source's flux density, formed when the lens is on-axis, surrounded by enhancements above the nominal (unlensed) flux density. The exact form of the light curve depends only upon the parameter α and the relative angular sizes of the source and lens as seen by the observer. Other effects due to lensing include the following: (1) the formation of caustic surfaces, upon which the apparent brightness of the background source becomes very large; (2) the possible creation of multiple images of the background source; and (3) angular position wander of the background source. If caustics are formed, the separation of the outer caustics can be used to constrain α, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to two sources, which have undergone extreme scattering events: (1) 0954+658, a source for which we can identify multiple caustics in its light curve, and (2) 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modeled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies between the modeled and observed light curves may result from some combination of substructure within the lens, an anisotropic lens shape, a lens which only grazes the source rather than passing completely over it, or unresolved substructure within the extragalactic sources. Our analysis also allows us to place constraints on the physical characteristics of the lens. The inferred properties of the lens responsible for the scattering event toward 0954+658 (1741-038) are that it was 0.38 AU (0.065 AU) in diameter with a peak column density of 0.24 pc cm-3 (10-4 pc cm-3), an electron density within the lens of 105 cm-3 (300 cm-3), and a mass of 6.5 × 10-14 M⊙ (10-18 M⊙). The angular position wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. In the case of 1741-038, we can place an upper limit of only 100 mG on the magnetic field within the lens.

  1. IR and SiO Maser Observations of Miras

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.; Mennesson, B.; Diamond, P. J.; Perrin, G.; Coudé du Foresto, V.; Chagnon, G.; van Langevelde, H. J.; Ridgway, S.; Waters, R.; Vlemmings, W.; Morel, S.; Traub, W.; Carleton, N.; Lacasse, M.

    2005-12-01

    Preliminary results of a coordinated program of near IR and SiO maser interferometric observations of Mira variables are reported. The 2.2 and 3.6 micron results are from the FLUOR/TISIS beam combiners on the IOTA interferometer and the SiO maser observations from the VLBA. The ratio of the SiO ring diameter to the apparent diameter at 2.2 microns for stars in our sample cluster around 2, whereas the 3.6 micron diameters range from slightly larger than the 2.2 micron diameter to approximately the SiO ring diameter. This may be due to differences in the opacity of the molecular envelope at 3.6 microns.

  2. Nearly extremal apparent horizons in simulations of merging black holes

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Scheel, Mark; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilagyi, Bela; Chu, Tony; Demos, Nicholas; Hemberger, Daniel; Kidder, Lawrence; Pfeiffer, Harald; Afshari, Nousha; SXS Collaboration

    2015-04-01

    The spin S of a Kerr black hole is bounded by the surface area A of its apparent horizon: 8 πS <= A . We present recent results (arXiv:1411.7297) for the extremality of apparent horizons for merging, rapidly rotating black holes with equal masses and equal spins aligned with the orbital angular momentum. Measuring the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, we find that the inequality 8 πS < A is satisfied but is very close to equality on the common apparent horizon at the instant it first appears--even for initial spins as large as S /M2 = 0 . 994 . We compute the smallest value e0 that Booth and Fairhurst's extremality parameter can take for any scaling of the horizon's null normal vectors, concluding that the common horizons are at least moderately close to extremal just after they appear. We construct binary-black-hole initial data with marginally trapped surfaces with 8 πS > A and e0 > 1 , but these surfaces are always surrounded by apparent horizons with 8 πS < A and e0 < 1 .

  3. The Angular Power Spectrum of BATSE 3B Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Tegmark, Max; Hartmann, Dieter H.; Briggs, Michael S.; Meegan, Charles A.

    1996-01-01

    We compute the angular power spectrum C(sub l) from the BATSE 3B catalog of 1122 gamma-ray bursts and find no evidence for clustering on any scale. These constraints bridge the entire range from small scales (which probe source clustering and burst repetition) to the largest scales (which constrain possible anisotropics from the Galactic halo or from nearby cosmological large-scale structures). We develop an analysis technique that takes the angular position errors into account. For specific clustering or repetition models, strong upper limits can be obtained down to scales l approx. equal to 30, corresponding to a couple of degrees on the sky. The minimum-variance burst weighting that we employ is visualized graphically as an all-sky map in which each burst is smeared out by an amount corresponding to its position uncertainty. We also present separate bandpass-filtered sky maps for the quadrupole term and for the multipole ranges l = 3-10 and l = 11-30, so that the fluctuations on different angular scales can be inspected separately for visual features such as localized 'hot spots' or structures aligned with the Galactic plane. These filtered maps reveal no apparent deviations from isotropy.

  4. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, James P., E-mail: james.tonks@awe.co.uk; AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR; Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systemsmore » designed for only one of these techniques.« less

  5. Exploring the uses for small-diameter trees

    Treesearch

    Susan L. LeVan-Green; Jean. Livingston

    2001-01-01

    Small-diameter and underutilized (SDU) material refers to the timber that is left in the forest because it is not economical to remove, or local capacity to process it does not exist. SDU material also includes the dense, understory present through-out the forest as a result of 50 years of successful fire suppression. It has become apparent that there are many...

  6. Meter-wavelength observations of pulsars using very long baseline interferometry. Ph.D. Thesis - Maryland Univ., College Park; [with particular attention to the Crab nebula

    NASA Technical Reports Server (NTRS)

    Vandenberg, N. R.

    1974-01-01

    The results of an investigation of the angular structure imposed on pulsar radiation due to scattering in the interstellar medium are presented. The technique of very-long-baseline interferometry was used to obtain the necessary high angular resolution. The interferometers formed by the Arecibo, NRAO, and Sugar Grove telescopes were used at radio frequencies of 196, 111, and 74 MHz during seven separate observing sessions between November 1971 and February 1973. A crude visibility function for the Crab nebular pulsar was obtained along with the correlated pulse profile. The technique of differential fringe phase was used to show that the pulsar and the compact source in the Crab nebula are coincident to within 0.001 arcsec which corresponds to aproximately 2 a.u. at the distance to the nebula. The ratio of pulsing to total flux, and the fringe visibility of the time-averaged pulsing flux are also discussed, and apparent angular sizes of the pulsars were measured.

  7. Infrared Atmospheric Emission. I.

    DTIC Science & Technology

    1982-03-01

    work efitrely in the I-i coupling scheme. Since the electrostatic energies are usually given in a coupling scheme resulting in total orbital angular...For heteronuclear diatomic molecules, the case either molecule or atom. The energy lor sufered IR emission does not necessitate the electronic...apparently to work sufficiently pood in many cases, they are not ccurate enough . .. . . .. . . . . . .... . .1 6 S for the computation of the

  8. Description of small-scale fluctuations in the diffuse X-ray background.

    NASA Technical Reports Server (NTRS)

    Cavaliere, A.; Friedland, A.; Gursky, H.; Spada, G.

    1973-01-01

    An analytical study of the fluctuations on a small angular scale expected in the diffuse X-ray background in the presence of unresolved sources is presented. The source population is described by a function N(S), giving the number of sources per unit solid angle and unit apparent flux S. The distribution of observed flux, s, in each angular resolution element of a complete sky survey is represented by a function Q(s). The analytical relation between the successive, higher-order moments of N(S) and Q(s) is described. The goal of reconstructing the source population from the study of the moments of Q(s) of order higher than the second (i.e., the rms fluctuations) is discussed.

  9. Rotations of large inertial cubes, cuboids, cones, and cylinders in turbulence

    NASA Astrophysics Data System (ADS)

    Pujara, Nimish; Oehmke, Theresa B.; Bordoloi, Ankur D.; Variano, Evan A.

    2018-05-01

    We conduct experiments to investigate the rotations of freely moving particles in a homogeneous isotropic turbulent flow. The particles are nearly neutrally buoyant and the particle size exceeds the Kolmogorov scale so that they are too large to be considered passive tracers. Particles of several different shapes are considered including those that break axisymmetry and fore-aft symmetry. We find that regardless of shape the mean-square particle angular velocity scales as deq -4 /3, where de q is the equivalent diameter of a volume-matched sphere. This scaling behavior is consistent with the notion that velocity differences across a length de q in the flow are responsible for particle rotation. We also find that the probability density functions (PDFs) of particle angular velocity collapse for particles of different shapes and similar de q. The significance of these results is that the rotations of an inertial, nonspherical particle are only functions of its volume and not its shape. The magnitude of particle angular velocity appears log-normally distributed and individual Cartesian components show long tails. With increasing de q, the tails of the PDF become less pronounced, meaning that extreme events of angular velocity become less common for larger particles.

  10. Far Sidelobe Effects from Panel Gaps of the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    Fluxa, Pedro R.; Duenner, Rolando; Maurin, Loiec; Choi, Steve K.; Devlin, Mark J.; Gallardo, Patricio A.; Shuay-Pwu, P. Ho; Koopman, Brian J.; Louis, Thibaut; Wollack, Edward J.

    2016-01-01

    The Atacama Cosmology Telescope is a 6 meter diameter CMB telescope located at 5200 meters in the Chilean desert. ACT has made arc-minute scale maps of the sky at 90 and 150 GHz which have led to precise measurements of the fine angular power spectrum of the CMB fluctuations in temperature and polarization. One of the goals of ACT is to search for the B-mode polarization signal from primordial gravity waves, and thus extending ACT's data analysis to larger angular scales. This goal introduces new challenges in the control of systematic effects, including better understanding of far sidelobe effects that might enter the power spectrum at degree angular scales. Here we study the effects of the gaps between panels of the ACT primary and secondary reflectors in the worst case scenario in which the gaps remain open. We produced numerical simulations of the optics using GRASP up to 8 degrees away from the main beam and simulated timestreams for observations with this beam using real pointing information from ACT data. Maps from these simulated timestreams showed leakage from the sidelobes, indicating that this effect must be taken into consideration at large angular scales.

  11. High-precision infra-red stellar interferometry

    NASA Astrophysics Data System (ADS)

    Lane, Benjamin F.

    2003-08-01

    This dissertation describes work performed at the Palomar Testbed Interferometer (PTI) during 1998 2002. Using PTI, we developed a method to measure stellar angular diameters in the 1 3 milli-arcsecond range with a precision of better than 5%. Such diameter measurements were used to measure the mass-radius relations of several lower main sequence stars and hence verify model predictions for these stars. In addition, by measuring the changes in Cepheid angular diameters during the pulsational cycle and applying a Baade-Wesselink analysis we are able to derive the distances to two galactic Cepheids (η Aql & ζ Gem) with a precision of ˜10%; such distance determinations provide an independent calibration of the Cepheid period- luminosity relations that underpin current estimates of cosmic distance scales. Second, we used PTI and the adaptive optics facility at the Keck Telescope on Mauna Kea to resolve the low mass binary systems BY Dra and GJ 569B, resulting in dynamical mass determinations for these systems. GJ 569B most likely contains at least one sub-stellar component, and as such represents the first dynamical mass determination of a brown dwarf. Finally, a new observing technique, dual star phase referencing, was developed and demonstrated at PTI. Phase referencing allows interferometric observations of stars previously too faint to observe, and is a prerequisite for large-scale interferometric astrometry programs such as the one planned for the Keck Interferometer; interferometric astrometry is a promising technique for the study of extra-solar planetary systems, particularly ones with long-period planets.

  12. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source.

    PubMed

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 microm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2 x 10(11) Wcm(2) with a spot diameter of 175 microm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  13. Development of a liquid tin microjet target for an efficient laser-produced plasma extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Hamada, Masaya; Kubodera, Shoichi

    2007-03-01

    A regenerative tin liquid microjet target was developed for a high average power extreme ultraviolet (EUV) source. The diameter of the target was smaller than 160 μm and good vacuum lower than 0.5 Pa was maintained during the operation. A maximum EUV conversion efficiency of 1.8% at the Nd:yttrium-aluminum-garnet laser intensity of around 2×1011 W/cm2 with a spot diameter of 175 μm (full width at half maximum) was observed. The angular distribution of the EUV emission remained almost isotropic, whereas suprathermal ions mainly emerged toward the target normal.

  14. Fiber optic light-scattering measurement system for evaluation of embryo viability: model experiment

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1996-05-01

    We evaluated the particle density detectability and particle size detectivity of our fiber-optic light-scattering measurement system. In order to prevent the multiple pregnancy on current in vitro fertilization-embryo transfer, we have aimed to develop a new quantitative and non- invasive method to select a single viable human embryo. We employed the measurement of mitochondria localization in an embryo, which may have the correlation with development ability. We applied the angular distribution measurement of the light-scattering intensity from the embryo to obtain the information originated from the mitochondria. The latex spheres with a diameter of 1.0 micrometers were used to simulate the scattering intensity of the mitochondria. The measurement probes of our system consisted of two fibers for illumination and sensing. They were arranged at a right angle to a microscope optical axis to measure the angular distribution of the light-scattering intensity. We observed that the light-scattering intensity increased monotonically in the range from 106 to 1010 particles per ml. Since the mitochondria density in a human embryo corresponded to 2.5 X 107 per ml in the measurement chamber, we may measure the mitochondria density in the human embryo. The angular dependence of light-scattering intensity changed with the sphere diameters. This result showed the possibility of the selective measurement of the mitochondria density in the embryo in spite of the presence of the other cell organelle. We think that our light-scattering measurement system might be applicable to the evaluation method for the embryo viability.

  15. Quick-Connect, Self-Alining Latch

    NASA Technical Reports Server (NTRS)

    Burns, G. C.; Williams, E. J.

    1983-01-01

    Sturdy latch tolerates 10 degrees of angular mismatch in joining structural elements. Hexagonal passive plate nests in active plate, guided by capture plates and alinement keys and grooves. Center hole in both active and passive plates is 1 meter in diameter. Latch has possible uses a pipe joint, connector for parts of portable structures, and fitting for marine risers on offshore drilling rigs.

  16. Light propagation in Swiss-cheese models of random close-packed Szekeres structures: Effects of anisotropy and comparisons with perturbative results

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.

    2017-03-01

    Light propagation in two Swiss-cheese models based on anisotropic Szekeres structures is studied and compared with light propagation in Swiss-cheese models based on the Szekeres models' underlying Lemaitre-Tolman-Bondi models. The study shows that the anisotropy of the Szekeres models has only a small effect on quantities such as redshift-distance relations, projected shear and expansion rate along individual light rays. The average angular diameter distance to the last scattering surface is computed for each model. Contrary to earlier studies, the results obtained here are (mostly) in agreement with perturbative results. In particular, a small negative shift, δ DA≔D/A-DA ,b g DA ,b g , in the angular diameter distance is obtained upon line-of-sight averaging in three of the four models. The results are, however, not statistically significant. In the fourth model, there is a small positive shift which has an especially small statistical significance. The line-of-sight averaged inverse magnification at z =1100 is consistent with 1 to a high level of confidence for all models, indicating that the area of the surface corresponding to z =1100 is close to that of the background.

  17. Analogies between the Torque-Free Motion of a Rigid Body about a Fixed Point and Light Propagation in Anisotropic Media

    ERIC Educational Resources Information Center

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2009-01-01

    An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…

  18. Very long baseline interferometric observations of OH/IR stars

    NASA Technical Reports Server (NTRS)

    Reid, M. J.; Muhleman, D. O.

    1975-01-01

    Results are reported for spectral-line very long baseline interferometric observations of the following II OH/IR objects, which emit strong 1612-MHz OH maser radiation concentrated at two velocities: NML Cyg, R Aql, IRC+10011, IRC-10529, and OH 1837-05. The apparent angular sizes were obtained for NML Cyg and R Aql, and lower limits upon the apparent sizes were obtained for the other objects. The data for NML Cyg agree with previous size determinations and indicate that the low- and high-velocity components are separated by about 20 times their apparent size. The maser component of R Aql is calculated within a factor of two to be about 5 by 10 to the 14th power cm, although the emitting region can be significantly larger. A qualitative description is given for II OH/IR objects with late M-type Mira variable center stars and circumstellar dust shells of similar dimensions.

  19. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  20. Obituary: David Stanley Evans, 1916-2004

    NASA Astrophysics Data System (ADS)

    Bash, Frank N.

    2005-12-01

    David Stanley Evans died on 14 November 2004 in Austin, Texas. He was a noted observational astronomer whose career was divided between South Africa and Texas. He also used the extensive historical collections at the University of Texas to write several books on the history of astronomy. He was born in Cardiff, Wales on 28 January 1916. David received his BA degree in mathematics in 1937 from Kings College, Cambridge. He became a PhD student at Cambridge Observatory in 1937, and was one of Sir Arthur Eddington's last surviving students. He received his PhD degree in 1941 with a dissertation entitled, "The Formation of the Balmer Series of Hydrogen in Stellar Atmospheres." He was a conscientious objector to war and, thus, spent the war years at Oxford working with physicist Kurt Mendelssohn on medical problems, involving cadavers, relating to the war. During these years, David was scientific editor of "Discovery", and he was editor of "The Observatory". David left England in 1946 in order to take up the position of Second Assistant at the Radcliffe Observatory, Pretoria, South Africa. He and H. Knox Shaw were the entire staff after R. O. Redman left, and they aluminized and installed the mirrors in the 74-inch telescope. His notable scientific contribution was to use lunar occultations to measure stellar angular diameters during the 1950s. He succeeded in determining the angular diameter of Antares and determined that Arcturus was not circular but had an elliptical shape. The elliptical shape was later shown to be an instrumental artifact, but the utility of using lunar occultations to measure stellar diameters and stellar multiplicity was conclusively demonstrated. T. Gold presented David's paper on lunar occultation angular diameters at the January 1953 meeting of the Royal Astronomical Society. For the rest of his life, David resented Gold's remarks, because he felt that he had been ridiculed. By 1953, David Evans was Chief Assistant at the Royal Observatory headquartered in Cape Town, South Africa. David had designed and built a Newtonian spectrograph for the 74-inch Radcliffe Telescope with which he measured the first southern galaxy redshifts. David and his family spent 1965-66 in Austin, Texas, where he was a National Science Foundation Senior Visiting Scientist at the University of Texas and McDonald Observatory. They moved permanently to Austin in 1968 and David became a Professor of Astronomy and Associate Director of McDonald Observatory at the University of Texas at Austin. At McDonald Observatory, R. E. Nather had devised a high-speed photometer capable of measuring millisecond time-scale changes in brightness and with Brian Warner, he invented "high-speed astronomy". This instrument caused Evans to revive his occultation program and, over the next twenty years, he produced the major part of the angular diameters of late-type stars with his students and collaborators. In addition, David and collaborators used the extensive collections of the University of Texas to write "Herschel at the Cape". David was also involved in observing the occultation of ? Sco by Jupiter in 1972 and in observing, during a solar eclipse in 1973, the gravitational deflections in the positions of stars whose light passes near to the Sun. The eclipse was observed from Mauritania, and the observations confirmed Einstein's prediction again. David Evans and his students studied late-type stars that have large star-spots and others that flare. In addition, they studied stars whose lunar occultation observations had revealed them to be double or even more than two stars. David Evans's major scientific contribution was an application of his stellar angular diameters to deduce the surface brightness of stars with the result that with suitable color indices one could use photometry to deduce the angular diameter of stars. This is applicable to stars which can never be occulted by the Moon, and its application to Cepheid variable stars has yielded their distances. This relation between angular diameters and a V-R color index is called the Barnes-Evans Relation. Tom Barnes gives most of the credit to Evans, but said that David insisted that the authors be listed in alphabetical order. This work was greeted with initial skepticism but it stimulated an enormous amount of interest and has been used to measure distances to 100 Cepheid variable stars in our galaxy. The method gives a distance to one of them, Delta Cephei, that agrees closely with recently measured parallaxes using HST. The Barnes-Evans method yields distances which are accurate to a few percent and is applicable to Cepheids in nearby galaxies. Before coming to Texas, David Evans had never given a large lecture course at a university, and his efforts met with mixed success especially in introductory classes for freshmen facing a "science requirement." David had considerably more success supervising PhD dissertations. He was supervisor for four. He was promoted to the position of Jack S. Josey Centennial Professor of Astronomy in 1984, which is the position he held until his retirement in 1986. He was awarded the Gill Medal of the Astronomical Society of South Africa in 1988. David Evans had a remarkable facility for language, especially English. He was an author of eight books including a 1966 edition of "Teach Yourself Astronomy", which was an introduction to astronomy and an inspiration to a number of currently active astronomers. He also loved history, especially of Southern Hemisphere astronomy but also of the McDonald Observatory. In fact, David continued to be very active after retirement and when he died he had completed a book (with Karen Winget) on the eclipse expedition to Mauritania, which is not yet printed.

  1. Developing lignin-based bio-nanofibers by centrifugal spinning technique.

    PubMed

    Stojanovska, Elena; Kurtulus, Mustafa; Abdelgawad, Abdelrahman; Candan, Zeki; Kilic, Ali

    2018-07-01

    Lignin-based nanofibers were produced via centrifugal spinning from lignin-thermoplastic polyurethane polymer blends. The most suitable process parameters were chosen by optimization of the rotational speed, nozzle diameter and spinneret-to-collector distance using different blend ratios of the two polymers at different total polymer concentrations. The basic characteristics of polymer solutions were enlightened by their viscosity and surface tension. The morphology of the fibers produced was characterized by SEM, while their thermal properties by DSC and TG analysis. Multiply regression was used to determine the parameters that have higher impact on the fiber diameter. It was possible to obtain thermally stable lignin/polyurethane nanofibers with diameters below 500nm. From the aspect of spinnability, 1:1 lignin/TPU contents were shown to be more feasible. On the other side, the most suitable processing parameters were found to be angular velocity of 8500rpm for nozzles of 0.5mm diameter and working distance of 30cm. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Curved position-sensitive detector for X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Izumi, T.

    1980-11-01

    A new curved position-sensitive proportional detector has been constructed for X-ray crystallography. A very hard steel wire 0.2 mm in diameter was used as a single anode wire. It was bent to a radius of 6.5 cm and was suspended elastically in a wide 160° 2θ angular aperture. An amplifier and ADC-per-cathode strip system was made in order to encode the position. The spatial resolution is better than 0.37 mm (fwhm) along the curved anode wire, and this value corresponds to an angular resolution of 0.28° in 2θ. It is shown that a thick hard anode wire is quite suitable for use as a curved position-sensitive detector.

  3. WGM resonators for studying orbital angular momentum of a photon, and methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  4. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    The performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0.3 to 3 deg is presented. The system represents a collaborative effort combining a low-background 1-m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3, 6, 9, and 12/cm (90, 180, 270, and 360 GHz). The telescope has been flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of about 0.00001 with detectors operated at 0.3 K.

  5. Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness

    NASA Astrophysics Data System (ADS)

    Wang, Mengyu; Elze, Tobias; Li, Dian; Baniasadi, Neda; Wirkner, Kerstin; Kirsten, Toralf; Thiery, Joachim; Loeffler, Markus; Engel, Christoph; Rauscher, Franziska G.

    2017-12-01

    Optical coherence tomography (OCT) manufacturers graphically present circumpapillary retinal nerve fiber layer thickness (cpRNFLT) together with normative limits to support clinicians in diagnosing ophthalmic diseases. The impact of age on cpRNFLT is typically implemented by linear models. cpRNFLT is strongly location-specific, whereas previously published norms are typically restricted to coarse sectors and based on small populations. Furthermore, OCT devices neglect impacts of lens or eye size on the diameter of the cpRNFLT scan circle so that the diameter substantially varies over different eyes. We investigate the impact of age and scan diameter reported by Spectralis spectral-domain OCT on cpRNFLT in 5646 subjects with healthy eyes. We provide cpRNFLT by age and diameter at 768 angular locations. Age/diameter were significantly related to cpRNFLT on 89%/92% of the circle, respectively (pointwise linear regression), and to shifts in cpRNFLT peak locations. For subjects from age 42.1 onward but not below, increasing age significantly decreased scan diameter (r=-0.28, p<0.001), which suggests that pathological cpRNFLT thinning over time may be underestimated in elderly compared to younger subjects, as scan diameter decrease correlated with cpRNFLT increase. Our detailed numerical results may help to generate various correction models to improve diagnosing and monitoring optic neuropathies.

  6. The concept of apparent polarizability for calculating the extinction of electromagnetic radiation by porous aerosol particles

    NASA Astrophysics Data System (ADS)

    Haspel, C.; Adler, G.

    2017-04-01

    In the current study, the electromagnetic properties of porous aerosol particles are calculated in two ways. In the first, a porous target input file is generated by carving out voids in an otherwise homogeneous particle, and the discrete dipole approximation (DDA) is used to compute the extinction efficiency of the particle assuming that the voids are near vacuum dielectrics and assuming random particle orientation. In the second, an effective medium approximation (EMA) style approach is employed in which an apparent polarizability of the voids is defined based on the well-known solution to the problem in classical electrostatics of a spherical cavity within a dielectric. It is found that for porous particles with smaller overall diameter with respect to the wavelength of incident radiation, describing the voids as near vacuum dielectrics within the DDA sufficiently reproduces measured values of extinction efficiency, whereas for porous particles with moderate to larger overall diameters with respect to the wavelength of the radiation, the apparent polarizability EMA approach better reproduces the measured values of extinction efficiency.

  7. A Homing Missile Control System to Reduce the Effects of Radome Diffraction

    NASA Technical Reports Server (NTRS)

    Smith, Gerald L.

    1960-01-01

    The problem of radome diffraction in radar-controlled homing missiles at high speeds and high altitudes is considered from the point of view of developing a control system configuration which will alleviate the deleterious effects of the diffraction. It is shown that radome diffraction is in essence a kinematic feedback of body angular velocities which causes the radar to sense large apparent line-of-sight angular velocities. The normal control system cannot distinguish between the erroneous and actual line-of-sight rates, and entirely wrong maneuvers are produced which result in large miss distances. The problem is resolved by adding to the control system a special-purpose computer which utilizes measured body angular velocity to extract from the radar output true line-of-sight information for use in steering the missile. The computer operates on the principle of sampling and storing the radar output at instants when the body angular velocity is low and using this stored information for maneuvering commands. In addition, when the angular velocity is not low the computer determines a radome diffraction compensation which is subtracted from the radar output to reduce the error in the sampled information. Analog simulation results for the proposed control system operating in a coplanar (vertical plane) attack indicate a potential decrease in miss distance to an order of magnitude below that for a conventional system. Effects of glint noise, random target maneuvers, initial heading errors, and missile maneuverability are considered in the investigation.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Jeremy, E-mail: jdarling@colorado.edu

    Objects and structures gravitationally decoupled from the Hubble expansion will appear to shrink in angular size as the universe expands. Observations of extragalactic proper motions can thus directly reveal the cosmic expansion. Relatively static structures such as galaxies or galaxy clusters can potentially be used to measure the Hubble constant, and test masses in large scale structures can measure the overdensity. Since recession velocities and angular separations can be precisely measured, apparent proper motions can also provide geometric distance measurements to static structures. The apparent fractional angular compression of static objects is 15 μas yr{sup –1} in the local universe;more » this motion is modulated by the overdensity in dynamic expansion-decoupled structures. We use the Titov et al. quasar proper motion catalog to examine the pairwise proper motion of a sparse network of test masses. Small-separation pairs (<200 Mpc comoving) are too few to measure the expected effect, yielding an inconclusive 8.3 ± 14.9 μas yr{sup –1}. Large-separation pairs (200-1500 Mpc) show no net convergence or divergence for z < 1, –2.7 ± 3.7 μas yr{sup –1}, consistent with pure Hubble expansion and significantly inconsistent with static structures, as expected. For all pairs a 'null test' gives –0.36 ± 0.62 μas yr{sup –1}, consistent with Hubble expansion and excludes a static locus at ∼5-10σ significance for z ≅ 0.5-2.0. The observed large-separation pairs provide a reference frame for small-separation pairs that will significantly deviate from the Hubble flow. The current limitation is the number of small-separation objects with precise astrometry, but Gaia will address this and will likely detect the cosmic recession.« less

  9. Burning of CP Titanium (Grade 2) in Oxygen-Enriched Atmospheres

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Jeffers, Nathan; Gallus, Timothy D.

    2012-01-01

    The flammability in oxygen-enriched atmospheres of commercially pure (CP) titanium rods as a function of diameter and test gas pressure was determined. Test samples of varying diameters were ignited at the bottom and burned upward in 70% O2/balance N2 and in 99.5+% O2 at various pressures. The burning rate of each ignited sample was determined by observing the apparent regression rate of the melting interface (RRMI) of the burning samples. The burning rate or RRMI increased with decreasing test sample diameter and with increasing test gas pressure and oxygen concentration

  10. 7 CFR 51.2933 - Serious damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... residue which is readily apparent and seriously affects the appearance. (e) Scab spots when cracked or... insects, scale marks, or similar marks aggregating more than one-half inch (12.7 mm) in diameter. (g) Hail...

  11. 7 CFR 51.2933 - Serious damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... residue which is readily apparent and seriously affects the appearance. (e) Scab spots when cracked or... insects, scale marks, or similar marks aggregating more than one-half inch (12.7 mm) in diameter. (g) Hail...

  12. On the Redshift Distribution and Physical Properties of ACT-Selected DSFGs

    NASA Technical Reports Server (NTRS)

    Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dunner, R.; Farrah, D.; Frayer, D. T.; hide

    2016-01-01

    We present multi-wavelength detections of nine candidate gravitationally-lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of 4.1 (+ 1.1, -10) (68 percent confidence interval), as expected for 218 GHz selection and an apparent total infrared luminosity of log 10(uL(sub IR)/solar luminosity) = 13.86(+0.33, -0.30), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is square root of mu d = 4.2 (+ 1.7, -1.0) kpc, further evidence of strong lensing of multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of opticaly thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = (4.2+, -1.9) of dust around the peak in the modified blackbody spectrum (lambda obs is less than 500 micrometers), a result that is robust to model choice.

  13. On the redshift distribution and physical properties of ACT-selected DSFGs

    NASA Astrophysics Data System (ADS)

    Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dünner, R.; Farrah, D.; Frayer, D. T.; Gralla, M. B.; Hall, K.; Halpern, M.; Harris, A. I.; Hilton, M.; Hincks, A. D.; Hughes, J. P.; Niemack, M. D.; Page, L. A.; Partridge, B.; Rivera, J.; Scott, D.; Sievers, J. L.; Thornton, R. J.; Viero, M. P.; Wang, L.; Wollack, E. J.; Zemcov, M.

    2017-01-01

    We present multi-wavelength detections of nine candidate gravitationally lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z=4.1^{+1.1}_{-1.0} (68 per cent confidence interval), as expected for 218 GHz selection, and an apparent total infrared luminosity of log _{10}(μ L_IR/L_{odot }) = 13.86^{+0.33}_{-0.30}, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is sqrt{μ }d= 4.2^{+1.7}_{-1.0} kpc, further evidence of strong lensing or multiplicity, since the typical diameter of DSFGs is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2^{+3.7}_{-1.9}) to dust around the peak in the modified blackbody spectrum (λobs ≤ 500 μm), a result that is robust to model choice.

  14. Observable Deviations from Homogeneity in an Inhomogeneous Universe

    NASA Astrophysics Data System (ADS)

    Giblin, John T., Jr.; Mertens, James B.; Starkman, Glenn D.

    2016-12-01

    How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann-Lemaître-Robertson-Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.

  15. Poster 8: ALMA observations of Titan : Vertical and spatial distributions of nitriles

    NASA Astrophysics Data System (ADS)

    Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq

    2016-06-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ˜0.47". Titan's angular surface diameter was 0.77". Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/dλ = 3106). We will present radiative transfer analysis of the acquired spectra. With the combination of all the detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution HCN, HC3N, CH3CN, HNC, C2H5CN, as well as isotopic ratios.

  16. Entropy generation minimization for the sloshing phenomenon in half-full elliptical storage tanks

    NASA Astrophysics Data System (ADS)

    Saghi, Hassan

    2018-02-01

    In this paper, the entropy generation in the sloshing phenomenon was obtained in elliptical storage tanks and the optimum geometry of tank was suggested. To do this, a numerical model was developed to simulate the sloshing phenomenon by using coupled Reynolds-Averaged Navier-Stokes (RANS) solver and the Volume-of-Fluid (VOF) method. The RANS equations were discretized and solved using the staggered grid finite difference and SMAC methods, and the available data were used for the model validation. Some parameters consisting of maximum free surface displacement (MFSD), maximum horizontal force exerted on the tank perimeter (MHF), tank perimeter (TP), and total entropy generation (Sgen) were introduced as design criteria for elliptical storage tanks. The entropy generation distribution provides designers with useful information about the causes of the energy loss. In this step, horizontal periodic sway motions as X =amsin(ωt) were applied to elliptical storage tanks with different aspect ratios namely ratios of large diameter to small diameter of elliptical storage tank (AR). Then, the effect of am and ω was studied on the results. The results show that the relation between MFSD and MHF is almost linear relative to the sway motion amplitude. Moreover, the results show that an increase in the AR causes a decrease in the MFSD and MHF. The results, also, show that the relation between MFSD and MHF is nonlinear relative to the sway motion angular frequency. Furthermore, the results show that an increase in the AR causes that the relation between MFSD and MHF becomes linear relative to the sway motion angular frequency. In addition, MFSD and MHF were minimized in a sway motion with a 7 rad/s angular frequency. Finally, the results show that the elliptical storage tank with AR =1.2-1.4 is the optimum section.

  17. 7 CFR 51.2932 - Damage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... appearing to the extent that it is readily apparent. (e) Scab spots when cracked or aggregating more than...) in diameter. (g) Hail when the skin has been broken or when not shallow and superficial or more than...

  18. 7 CFR 51.2932 - Damage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... appearing to the extent that it is readily apparent. (e) Scab spots when cracked or aggregating more than...) in diameter. (g) Hail when the skin has been broken or when not shallow and superficial or more than...

  19. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1997-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  20. Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.

    1992-01-01

    This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.

  1. Research for diagnosing electronic control fault of astronomical telescope's armature winding by step signal

    NASA Astrophysics Data System (ADS)

    Zhang, Yulong; Yang, Shihai; Gu, Bozhong

    2016-10-01

    This paper puts forward a electronic fault diagnose method focusing on large-diameter astronomical telescope's armature winding, and ascertains if it is the resistance or inductance which is out of order. When it comes to armature winding's electronic fault, give the angular position a step signal, and compare the outputs of five models of normal, larger-resistance, smaller-resistance, larger-inductance and smaller-inductance, so we can position the fault. Firstly, we ascertain the transfer function of the angular position to the armature voltage, to analysis the output of armature voltage when the angular position's input is step signal. Secondly, ascertain the different armature currents' characteristics after armature voltage pass through different armature models. Finally, basing on the characteristics, we design two strategies of resistance and inductance separately. The author use MATLAB/Simulink function to model and emulate with the hardware parameters of the 2.5m-caliber telescope, which China and France developed cooperatively for Russia. Meanwhile, the author add a white noise disturbance to the armature voltage, the result shows its feasibility under a certain sized disturbance.

  2. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1994-01-01

    We have investigated how extracellular matrix (ECM) alters the mechanical properties of the cytoskeleton (CSK). Mechanical stresses were applied to integrin receptors on the apical surfaces of adherent endothelial cells using RGD-coated ferromagnetic microbeads (5.5-microns diameter) in conjunction with a magnetic twisting device. Increasing the number of basal cell-ECM contacts by raising the fibronectin (FN) coating density from 10 to 500 ng/cm2 promoted cell spreading by fivefold and increased CSK stiffness, apparent viscosity, and permanent deformation all by more than twofold, as measured in response to maximal stress (40 dyne/cm2). When the applied stress was increased from 7 to 40 dyne/cm2, the stiffness and apparent viscosity of the CSK increased in parallel, although cell shape, ECM contacts, nor permanent deformation was altered. Application of the same stresses over a lower number ECM contacts using smaller beads (1.4-microns diameter) resulted in decreased CSK stiffness and apparent viscosity, confirming that this technique probes into the depth of the CSK and not just the cortical membrane. When magnetic measurements were carried out using cells whose membranes were disrupted and ATP stores depleted using saponin, CSK stiffness and apparent viscosity were found to rise by approximately 20%, whereas permanent deformation decreased by more than half. Addition of ATP (250 microM) under conditions that promote CSK tension generation in membrane-permeabilized cells resulted in decreases in CSK stiffness and apparent viscosity that could be detected within 2 min after ATP addition, before any measurable change in cell size.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. A remark on the theory of measuring thermal diffusivity by the modified Angstrom's method. [in lunar samples

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.

  4. Cosmological gravitational waves

    NASA Technical Reports Server (NTRS)

    Linder, Eric V.

    1988-01-01

    A cosmological background of gravitational waves would alter the propagation of radiation, inducing redshift fluctuations, apparent source position deflections, and luminosity variations. By comparing these astrophysical effects with observations, it is possible to deduce upper limits on the energy density present in gravitational waves. Emphasis is placed on microwave background anisotropy from the redshift deviations and galaxy clustering correlation functions from the angular deviations. Many of the gravitational wave effects are shown to be generalizations of the gravitational lensing formalism.

  5. Why are angles misperceived?

    PubMed Central

    Nundy, Surajit; Lotto, Beau; Coppola, David; Shimpi, Amita; Purves, Dale

    2000-01-01

    Although it has long been apparent that observers tend to overestimate the magnitude of acute angles and underestimate obtuse ones, there is no consensus about why such distortions are seen. Geometrical modeling combined with psychophysical testing of human subjects indicates that these misperceptions are the result of an empirical strategy that resolves the inherent ambiguity of angular stimuli by generating percepts of the past significance of the stimulus rather than the geometry of its retinal projection. PMID:10805814

  6. Precise predictions for the angular coefficients in Z-boson production at the LHC

    NASA Astrophysics Data System (ADS)

    Gauld, R.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2017-11-01

    The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, A i=0,…,7, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation A 0 - A 2 = 0, we perform a precision study of the angular coefficients at O({α}s^3) in perturbative QCD. We make predic-tions relevant for pp collisions at √{s}=8 TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable ΔLT = 1 - A 2 /A 0 that is more sensitive to the dynamics in the region where A 0 and A 2 are both small. We find that the O({α}s^3) corrections have an important impact on the p T,Z distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial χ 2 test with respect to the central theoretical prediction which shows that χ 2 /N data is significantly reduced by going from O({α}s^2) to O({α}s^3).

  7. Goldstone radar evidence for short-axis mode non-principal-axis rotation of near-Earth asteroid (214869) 2007 PA8

    NASA Astrophysics Data System (ADS)

    Brozović, Marina; Benner, Lance A. M.; Magri, Christopher; Scheeres, Daniel J.; Busch, Michael W.; Giorgini, Jon D.; Nolan, Michael C.; Jao, Joseph S.; Lee, Clement G.; Snedeker, Lawrence G.; Silva, Marc A.; Lawrence, Kenneth J.; Slade, Martin A.; Hicks, Michael D.; Howell, Ellen S.; Taylor, Patrick A.; Sanchez, Juan A.; Reddy, Vishnu; Dykhuis, Melissa; Le Corre, Lucille

    2017-04-01

    We report radar and optical photometric observations of near-Earth asteroid (214869) 2007 PA8 obtained during October 2-November 13, 2012. We observed 2007 PA8 on sixteen days with Goldstone (8560 MHz, 3.5 cm) and on five days with the 0.6 m telescope at Table Mountain Observatory. Closest approach was on November 5 at a distance of 0.043 au. Images obtained with Goldstone's new chirp system achieved range resolutions as fine as 3.75 m, placing thousands of pixels on the asteroid's surface, and revealing that 2007 PA8 is an elongated, asymmetric object. Surface features include angularities, facets, and a concavity approximately 400 m in diameter. We used the Shape software to estimate the asteroid's 3D shape and spin state. 2007 PA8 has a broad, rounded end and a tapered, angular end with sharp-crested ridges. The asteroid's effective diameter is 1.35 ± 0.07 km, which in combination with the absolute magnitude of 16.30 ± 0.52 gives an optical albedo of pV = 0.29 ± 0.14. The shape modeling of the radar data revealed that 2007 PA8 is a non-principal axis (NPA) rotator in the short-axis mode with an average period of precession by the long axis around the angular momentum vector of 4.26 ± 0.02 days and an oscillatory period around the long axis of 20.55 ± 3.75 days. The amplitude of rolling around the long axis is 42 ± 7° . The angular momentum vector points toward ecliptic longitude and latitude of 273.6 ± 10°, +16.9 ± 5°. 2007 PA8 is only the second confirmed short-axis mode NPA rotator known in the near-Earth asteroid population after (99942) Apophis (Pravec et al., 2014). 2007 PA8 has a geopotential high at the equator, where the equator is defined as the plane that contains the long and intermediate axis. This geopotential extreme could be interpreted as a large, hidden surface depression, or as evidence that 2007 PA8 is a multi-component body.

  8. On-ground calibration of the Hitomi Hard X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Mori, Hideyuki; Miyazawa, Takuya; Awaki, Hisamitsu; Matsumoto, Hironori; Babazaki, Yasunori; Bandai, Ayako; Demoto, Tadatsugu; Furuzawa, Akihiro; Haba, Yoshito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Ishida, Manabu; Ishida, Naoki; Itoh, Masayuki; Iwase, Toshihiro; Kato, Hiroyoshi; Kobayashi, Hiroaki; Kosaka, Tatsuro; Kunieda, Hideyo; Kurashima, Shou; Kurihara, Daichi; Kuroda, Yuuji; Maeda, Yoshitomo; Meshino, Yoshifumi; Mitsuishi, Ikuyuki; Miyata, Yuusuke; Nagano, Housei; Namba, Yoshiharu; Ogasaka, Yasushi; Ogi, Keiji; Okajima, Takashi; Saji, Shigetaka; Shimasaki, Fumiya; Sato, Takuro; Sato, Toshiki; Shima, Naotsugu; Sugita, Satoshi; Suzuki, Yoshio; Tachibana, Kenji; Tachibana, Sasagu; Takizawa, Shun'ya; Tamura, Keisuke; Tawara, Yuzuru; Tomikawa, Kazuki; Torii, Tatsuharu; Uesugi, Kentaro; Yamashita, Koujun; Yamauchi, Shigeo

    2018-01-01

    We present x-ray characteristics of the Hard X-ray Telescopes (HXTs) on board the Hitomi (ASTRO-H) satellite. Measurements were conducted at the SPring-8 BL20B2 beamline and the ISAS/JAXA 27-m beamline. The angular resolution defined by a half-power diameter was 1.9‧ (HXT-1) and 2.1‧ (HXT-2) at 8 keV, 1.9‧ at 30 keV, and 1.8‧ at 50 keV. The effective area was found to be 620 cm2 at 8 keV, 178 cm2 at 30 keV, and 82 cm2 at 50 keV per mirror module. Although the angular resolutions were slightly worse than the requirement (1.7‧), the effective areas sufficiently exceeded the requirements of 150 cm2 at 30 keV and 55 cm2 at 50 keV. The off-axis measurements of the effective areas resulted in the field of view being 6.1‧ at 50 keV, 7.7‧ at 30 keV, and 9.7‧ at 8 keV in diameter. We confirmed that the main component of the stray x-ray light was significantly reduced by mounting the precollimator as designed. Detailed analysis of the data revealed that the angular resolution was degraded mainly by figure errors of mirror foils, and the angular resolution is completely explained by the figure errors, positioning errors of the foils, and conical approximation of the foil shape. We found that the effective areas were ˜80% of the designed values below 40 keV, whereas they steeply decline above 40 keV and become only ˜50%. We investigated this abrupt decline and found that neither the error of the multilayer design nor the errors of the incident angles induced by the positioning errors of the foils can be the cause. The reflection profile of each foil pair from the defocused image strongly suggests that the figure errors of the foils probably bring about the reduction in the effective areas at higher energies.

  9. Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche

    NASA Astrophysics Data System (ADS)

    Luhr, James F.; Prestegaard, Karen L.

    1988-12-01

    About 4,300 years ago, 10 km 3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km 2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40-75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km 3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude. Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.

  10. The mid-infrared diameter of W Hydrae

    NASA Astrophysics Data System (ADS)

    Zhao-Geisler, R.; Quirrenbach, A.; Köhler, R.; Lopez, B.; Leinert, C.

    2011-06-01

    Aims: Asymptotic giant branch (AGB) stars are among the largest distributors of dust into the interstellar medium, and it is therefore important to understand the dust formation process and sequence in their strongly pulsating extended atmosphere. By monitoring the AGB star W Hya interferometrically over a few pulsations cycles, the upper atmospheric layers can be studied to obtain information on their chemical gas and dust composition and their intracycle and cycle-to-cycle behavior. Methods: Mid-infrared (8-13 μm) interferometric data of W Hya were obtained with MIDI/VLTI between April 2007 and September 2009, covering nearly three pulsation cycles. The spectrally dispersed visibility data of all 75 observations were analyzed by fitting a circular fully limb-darkened disk (FDD) model to all data and individual pulsation phases. Asymmetries were studied with an elliptical FDD. Results: Modeling results in an apparent angular FDD diameter of W Hya of about (80 ± 1.2) mas (7.8 AU) between 8 and 10 μm, which corresponds to an about 1.9 times larger diameter than the photospheric one. The diameter gradually increases up to (105 ± 1.2) mas (10.3 AU) at 12 μm. In contrast, the FDD relative flux fraction decreases from (0.85 ± 0.02) to (0.77 ± 0.02), reflecting the increased flux contribution from a fully resolved surrounding silicate dust shell. The asymmetric character of the extended structure could be confirmed. An elliptical FDD yields a position angle of (11 ± 20)° and an axis ratio of (0.87 ± 0.07). A weak pulsation dependency is revealed with a diameter increase of (5.4 ± 1.8) mas between visual minimum and maximum, while detected cycle-to-cycle variations are smaller. Conclusions: W Hya's diameter shows a behavior that is very similar to the Mira stars RR Sco and S Ori and can be described by an analogous model. The constant diameter part results from a partially resolved stellar disk, including a close molecular layer of H2O, while the increase beyond 10 μm can most likely be attributed to the contribution of a spatially resolved nearby Al2O3 dust shell. Probably due to the low mass-loss rate, close Fe-free silicate dust could not be detected. The results suggest that the formation of amorphous Al2O3 occurs mainly at visual minimum. A possible close Al2O3 dust shell has now been revealed in a few objects calling for self-consistent dynamic atmospheric models including dust formation close to the star. The asymmetry might be explained by an enhanced dust concentration along an N-S axis. Based on observations made with the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory under program IDs 079.D-0140, 080.D-0005, 081.D-0198, 082.D-0641 and 083.D-0294.FITS files of the calibrated visibilities are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A120

  11. Divergent biparietal diameter growth rates in twin pregnancies.

    PubMed

    Houlton, M C

    1977-05-01

    Twenty-eight twin pregnancies were monitored by serial ultrasonic cephalometry from 30 or 31 weeks' gestation. The rates of growth of the individual twins as determined by biparietal diameters were similar in 11 cases (39%) and divergent in 17 (61%). When the rates of growth were divergent, the lesser rate was always below the mean for singleton pregnancies, and the incidence of small-for-gestational-age babies was 18 of 34 (53%). It was apparent that the greater the difference in biparietal diameters within the 2 weeks preceding delivery, the higher the risk of a small-for-gestation-age baby being delivered. No comment could be made on the growth rate prior to 28 weeks except that at diagnosis there was little or no difference in biparietal diameters.

  12. Spectroscopic and Interferometric Measurements of Nine K Giant Stars

    NASA Astrophysics Data System (ADS)

    Baines, Ellyn K.; Döllinger, Michaela P.; Guenther, Eike W.; Hatzes, Artie P.; Hrudkovu, Marie; van Belle, Gerard T.

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  13. BAO from Angular Clustering: Optimization and Mitigation of Theoretical Systematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, M.; et al.

    We study the theoretical systematics and optimize the methodology in Baryon Acoustic Oscillations (BAO) detections using the angular correlation function with tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The MLE method yields the least bias in the fit results (bias/spreadmore » $$\\sim 0.02$$) and the error bar derived is the closest to the Gaussian results (1% from 68% Gaussian expectation). When there is mismatch between the template and the data either due to incorrect fiducial cosmology or photo-$z$ error, the MLE again gives the least-biased results. The BAO angular shift that is estimated based on the sound horizon and the angular diameter distance agree with the numerical fit. Various analysis choices are further tested: the number of redshift bins, cross-correlations, and angular binning. We propose two methods to correct the mock covariance when the final sample properties are slightly different from those used to create the mock. We show that the sample changes can be accommodated with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because the number of free parameters is substantially reduced [$p$ parameters versus $p(p+1)/2$ from direct measurement].« less

  14. Tail function during arboreal quadrupedalism in squirrel monkeys (Saimiri boliviensis) and tamarins (Saguinus oedipus).

    PubMed

    Young, Jesse W; Russo, Gabrielle A; Fellmann, Connie D; Thatikunta, Meena A; Chadwell, Brad A

    2015-10-01

    The need to maintain stability on narrow branches is often presented as a major selective force shaping primate morphology, with adaptations to facilitate grasping receiving particular attention. The functional importance of a long and mobile tail for maintaining arboreal stability has been comparatively understudied. Tails can facilitate arboreal balance by acting as either static counterbalances or dynamic inertial appendages able to modulate whole-body angular momentum. We investigate associations between tail use and inferred grasping ability in two closely related cebid platyrrhines-cotton-top tamarins (Saguinus oedipus) and black-capped squirrel monkeys (Saimiri boliviensis). Using high-speed videography of captive monkeys moving on 3.2 cm diameter poles, we specifically test the hypothesis that squirrel monkeys (characterized by grasping extremities with long digits) will be less dependent on the tail for balance than tamarins (characterized by claw-like nails, short digits, and a reduced hallux). Tamarins have relatively longer tails than squirrel monkeys, move their tails through greater angular amplitudes, at higher angular velocities, and with greater angular accelerations, suggesting dynamic use of tail to regulate whole-body angular momentum. By contrast, squirrel monkeys generally hold their tails in a comparatively stationary posture and at more depressed angles, suggesting a static counterbalancing mechanism. This study, the first empirical test of functional tradeoffs between grasping ability and tail use in arboreal primates, suggests a critical role for the tail in maintaining stability during arboreal quadrupedalism. Our findings have the potential to inform our functional understanding of tail loss during primate evolution. © 2015 Wiley Periodicals, Inc.

  15. OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giblin, John T. Jr.; Mertens, James B.; Starkman, Glenn D.

    How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, findingmore » deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.« less

  16. Operation GREENHOUSE. Scientific Director’s Report of Atomic Weapon Tests at Eniwetok, 1951. Annex 1.3. Thermal Radiation Measurements. Part 1. Atmospheric Transmission. Part 2. Total Thermal Radiation. Part 3. Radiant Power as a Function of Time--Photoelectric Measurements. Appendix A and Appendix B

    DTIC Science & Technology

    1985-09-01

    derived in the article by Stewart and Curcio. 1 In this expression, e is the angular diameter (in radians) of the field of view of the detecting...t dt = Ftdt (1) where t is the angular deflection of the galvanometer at time t; Ft is the radiant thermal en- ergy, in watts/cm’, incident n the...tits igl~ *ING ma Z.9 .Io - OEaM, * ’Uv I 82* 16. 6 O~vS v 4.vS I 0.0 vst , SO- L900 6 IS* los - low tows S~ wows; V. ) S .14t; .6;slows -~ ’.3 ’.3

  17. A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales

    NASA Technical Reports Server (NTRS)

    Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.

    1992-01-01

    We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.

  18. Milliarcsecond Astronomy with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Jones, Jeremy; Farrington, Christopher

    2018-01-01

    The Center for High Angular Resolution Astronomy offers 50 nights per year of open access time at the CHARA Array. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. The open access time is part of an NSF/MSIP funded program to open the CHARA Array to the broader astronomical community. As part of the program, we will build a searchable database for the CHARA data archive and run a series of one-day community workshops at different locations across the country to expand the user base for stellar interferometry and encourage new scientific investigations with the CHARA Array.

  19. Observing the Sun with micro-interferometric devices: a didactic experiment

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Hanot, C.; Riaud, P.; Magette, A.; Marion, L.; Wertz, O.; Finet, F.; Steenackers, M.; Habraken, S.; Surdej, A.; Surdej, J.

    2014-04-01

    Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, observing distant stars located 10 to 100~pc away with a large hectometric interferometer is equivalent to observing our Sun with a micrometric baseline. Based on this idea, we have manufactured a set of micro-interferometric devices and tested them on the sky. The micro-interferometers consist of a chrome layer deposited on a glass plate that has been drilled by laser lithography to produce micron-sized holes with configurations corresponding to proposed interferometer projects such as CARLINA, ELSA, KEOPS, and OVLA. In this paper, we describe these interferometric devices and present interferometric observations of the Sun made in the framework of Astrophysics lectures being taught at the Liège University. By means of a simple photographic camera placed behind a micro-interferometric device, we observed the Sun and derived its angular size. This experiment provides a very didactic way to easily obtain fringe patterns similar to those that will be obtained with future large imaging arrays. A program written in C also allows to reproduce the various point spread functions and fringe patterns observed with the micro-interferometric devices for different types of sources, including the Sun.

  20. A centennial gift from Einstein

    NASA Astrophysics Data System (ADS)

    Oswalt, T. D.

    2017-06-01

    The 1919 detection of the apparent displacement of background stars near the edge of the eclipsed Sun's disk provided one of the first convincing proofs of Einstein's theory of general relativity (1, 2). Almost 100 years later, Sahu et al. report on page 1046 of this issue the first measurement of the gravitational deflection of starlight by a star other than the Sun (3). Using the superior angular resolution of the Hubble Space Telescope (HST), they measured shifts in the apparent position of a distant background star as a nearby dense stellar remnant called a white dwarf passed almost in front of it in 2014. Because of the relative distances involved, the deflections they observed were about 1000 times smaller than those seen in 1919, but also in agreement with general relativity theory.

  1. Is the four-day rotation of Venus illusory?. [includes systematic error in radial velocities of solar lines reflected from Venus

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1974-01-01

    An overlooked systematic error exists in the apparent radial velocities of solar lines reflected from regions of Venus near the terminator, owing to a combination of the finite angular size of the Sun and its large (2 km/sec) equatorial velocity of rotation. This error produces an apparent, but fictitious, retrograde component of planetary rotation, typically on the order of 40 meters/sec. Spectroscopic, photometric, and radiometric evidence against a 4-day atmospheric rotation is also reviewed. The bulk of the somewhat contradictory evidence seems to favor slow motions, on the order of 5 m/sec, in the atmosphere of Venus; the 4-day rotation may be due to a traveling wave-like disturbance, not bulk motions, driven by the UV albedo differences.

  2. The surface brightness of reflection nebulae. Ph.D. Thesis, Dec. 1972

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    Hubble's equation relating the maximum apparent angular extent of a reflection nebula to the apparent magnitude of the illuminating star has been reconsidered under a set of less restrictive assumptions. A computational technique is developed which permits the use of fits to observed m, log a values to determine the albedo of the particles composing reflection nebulae, providing only that one assumes a particular phase function. Despite the fact that all orders of scattering, anisotropic phase functions, and illumination by the general stellar field are considered, the albedo which is determined for reflection nebulae by this method appears larger than that for interstellar particles in general. The possibility that the higher surface brightness might be due to a continuous fluorescence mechanism is considered both theoretically and observationally.

  3. Operation Sun Beam, Shot Small Boy. Project Officers report. Project 1. 9. Crater measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooke, A.D.; Davis, L.K.; Strange, J.N.

    1985-09-01

    The objectives of Project 1.9 were to obtain the dimensions of the apparent and true craters formed by the Small Boy event and to measure the permanent earth deformation occurring beyond the true crater boundary. Measurements were made of the apparent crater by aerial stereophotography and ground survey and of the true crater and subsurface zones of residual deformation by the excavation and mapping of an array of vertical, colored sand columns which were placed along one crater diameter prior to the shot. The results of the crater exploration are discussed, particularly the permanent compression of the medium beneath themore » true crater which was responsible for the major portion of the apparent and true crater volumes. Apparent and true crater dimensions are compared with those of previous cratering events.« less

  4. Fine Structure of the Core of the Blazar OJ 287-I

    NASA Astrophysics Data System (ADS)

    Matveyenko, L. I.; Sivakon', S. S.

    2017-12-01

    The fine structure of the active region, the bulge, of the blazar OJ 287 has been investigated with a resolution of 20 μas (0.1 pc) at a wavelength of 7 mm, the epochs of 2007-2017. The structure and kinematics correspond to a vortex nature. The surrounding matter, the plasma, is transferred to the center along two arms from opposite directions. The emerging excess angular momentum is carried away along the rotation axis by bipolar outflows, rotating coaxial tubes, in a direction X ≈ -120° in the plane of the sky as it is accumulated. The central high-velocity bipolar outflow has a helical shape. The diameters of the low-velocity flows are ø1 ≈ 0.3 and ø2 ≈ 0.65 mas, or 1.4 and 3 pc, respectively. Ring currents whose tangential directions are observed as parallel chains of components are excited in the flow walls. The peak brightness temperature of the nozzle reaches Tb ≈ 1012-1013 K. A "disk" with a diameter ø ≈ 0.5 mas (≈2.2 pc) is observed by the absorption of synchrotron radiation. The disk is inclined to the plane of the sky at an angle of 60° in the jet direction. The fragments are seen from a distance of ˜0.2 mas outside the absorption zone. The jet sizes exceed considerably the counterjet ones. An enhanced supply of plasma from the northern arm gives rise to an independent vortex 0.2 mas away from the central one in the NW direction. As in the first case, the helical central bipolar outflow is surrounded by a low-velocity component ø ≈ 0.28 mas in diameter with built-in ring currents. The jet is ejected in the direction X = -50° in the plane of the sky. The jet orientation changes, X = -130° at a distance of 1 mas. A high activity of the central and two side nozzles spaced 0.22 mas apart in the direction X = -40° is occasionally observed simultaneously. The active region of the blazar is observed through an ionized medium, a screen, whose influence is significant even at a wavelength of 7 mm. The absorption and refraction of the transmitted emission in the screen affect the apparent brightness relative to the positions of the fragments.

  5. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect.

    PubMed

    Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror

    2016-10-01

    Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. An edge-on translucent dust disk around the nearest AGB star, L2 Puppis. VLT/NACO spectro-imaging from 1.04 to 4.05 μm and VLTI interferometry

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Ridgway, S. T.; Perrin, G.; Chesneau, O.; Lacour, S.; Chiavassa, A.; Haubois, X.; Gallenne, A.

    2014-04-01

    As the nearest known AGB star (d = 64 pc) and one of the brightest (mK ≈ -2), L2 Pup is a particularly interesting benchmark object to monitor the final stages of stellar evolution. We report new serendipitous imaging observations of this star with the VLT/NACO adaptive optics system in twelve narrow-band filters covering the 1.0-4.0 μm wavelength range. These diffraction-limited images reveal an extended circumstellar dust lane in front of the star that exhibits a high opacity in the J band and becomes translucent in the H and K bands. In the L band, extended thermal emission from the dust is detected. We reproduced these observations using Monte Carlo radiative transfer modeling of a dust disk with the RADMC-3D code. We also present new interferometric observations with the VLTI/VINCI and MIDI instruments. We measured in the K band an upper limit to the limb-darkened angular diameter of θLD = 17.9 ± 1.6 mas, converting to a maximum linear radius of R = 123 ± 14 R⊙. Considering the geometry of the extended K band emission in the NACO images, this upper limit is probably close to the actual angular diameter of the star. The position of L2 Pup in the Hertzsprung-Russell diagram indicates that this star has a mass of about 2 M⊙ and is probably experiencing an early stage of the asymptotic giant branch. We did not detect any stellar companion of L2 Pup in our adaptive optics and interferometric observations, and we attribute its apparent astrometric wobble in the Hipparcos data to variable lighting effects on its circumstellar material. However, we do not exclude the presence of a binary companion, because the large loop structure extending to more than 10 AU to the northeast of the disk in our L-band images may be the result of interaction between the stellar wind of L2 Pup and a hidden secondary object. The geometric configuration that we propose, with a large dust disk seen almost edge-on, appears particularly favorable to test and develop our understanding of the formation of bipolar nebulae. Based on observations made with ESO telescopes at Paranal Observatory, under ESO programs 090.D-0144(A), 074.D-0198(C) and an unreferenced VLTI/VINCI program.FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A88

  7. Reducing tilt-to-length coupling for the LISA test mass interferometer

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Schuster, S.; Lieser, M.; Zwetz, M.; Chwalla, M.; Danzmann, K.; Fernández Barránco, G.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Killow, C. J.; Perreur-Lloyd, M.; Robertson, D. I.; Schwarze, T. S.; Wanner, G.; Ward, H.

    2018-05-01

    Objects sensed by laser interferometers are usually not stable in position or orientation. This angular instability can lead to a coupling of angular tilt to apparent longitudinal displacement—tilt-to-length coupling (TTL). In LISA this is a potential noise source for both the test mass interferometer and the long-arm interferometer. We have experimentally investigated TTL coupling in a setup representative for the LISA test mass interferometer and used this system to characterise two different imaging systems (a two-lens design and a four-lens design) both designed to minimise TTL coupling. We show that both imaging systems meet the LISA requirement of  ±25 μm rad‑1 for interfering beams with relative angles of up to  ±300 μrad. Furthermore, we found a dependency of the TTL coupling on beam properties such as the waist size and location, which we characterised both theoretically and experimentally.

  8. Angular relation of axes in perceptual space

    NASA Technical Reports Server (NTRS)

    Bucher, Urs

    1992-01-01

    The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.

  9. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  10. Generation and Sustainment of Plasma Rotation by ICRF Heating

    NASA Astrophysics Data System (ADS)

    Perkins, F. W.

    2000-10-01

    When tokamak plasmas are heated by the fundamental minority ion-cyclotron process, they are observed to rotate toroidally, even though this heating process introduces negligable angular momentum. This work proposes and evaluates a physics mechanism which resolves this apparent conflict. The argument has two elements. First, it is assumed that angular momentum transport is governed by a diffusion equation with a v_tor = 0 boundary condition at the plasma surface and a torque-density source. When the source consists of separated regions of positive and negative torque density, a finite central rotation velocity results, even though the volume integrated torque density - the angular momentum input - vanishes. Secondly, ions energized by the ICRF process can generate separated regions of positive and negative torque density. Heating increases their banana widths which leads to radial energetic-particle transport that must be balanced by neutralizing radial currents and a j_rB_pR torque density in the bulk plasma. Additional, comparable torque density results from collisional transfer of mechanical angular momentum from energetic particles to the bulk plasma and particle loss through banana particles impacting the wall. Monte-Carlo calculations utilizing the ORBIT code evaluate all sources of torque density and rigorously assure that no net angular momentum is introduced. Two models of ICRF heating, diffusive and instantaneous, give similar results. When the resonance location is on the LFS, the calculated rotation has the magnitude, profile, and co-current sense of Alcator C-Mod observations. For HFS resonance locations, the model predicts counter-current rotation. Scans of rotational profiles vs. resonance location, initial energy, particle loss, pitch, and qm will be presented as will the location of the velocity shear layer its scaling to a reactor.

  11. Aggregation of Lens Crystallins in an In Vivo Hyperbaric Oxygen Guinea Pig Model of Nuclear Cataract: Dynamic Light-Scattering and HPLC Analysis

    PubMed Central

    Simpanya, M. Francis; Ansari, Rafat R.; Suh, Kwang I.; Leverenz, Victor R.; Giblin, Frank J.

    2006-01-01

    Purpose The role of oxygen in the formation of lens high-molecular-weight (HMW) protein aggregates during the development of human nuclear cataract is not well understood. The purpose of this study was to investigate lens crystallin aggregate formation in hyperbaric oxygen (HBO)–treated guinea pigs by using in vivo and in vitro methods. Methods Guinea pigs were treated three times weekly for 7 months with HBO, and lens crystallin aggregation was investigated in vivo with the use of dynamic light-scattering (DLS) and in vitro by HPLC analysis of water-insoluble (WI) proteins. DLS measurements were made every 0.1 mm across the 4.5- to 5.0-mm optical axis of the guinea pig lens. Results The average apparent diameter of proteins in the nucleus (the central region) of lenses of HBO-treated animals was nearly twice that of the control animals (P < 0.001). Size distribution analysis conducted at one selected point in the nucleus and cortex (the outer periphery of the lens) after dividing the proteins into small-diameter and large-diameter groups, showed in the O2-treated nucleus a threefold increase in intensity (P < 0.001) and a doubling in apparent size (P = 0.03) of large-diameter aggregate proteins, compared with the same control group. No significant changes in apparent protein diameter were detected in the O2-treated cortex, compared with the control. The average diameter of protein aggregates at the single selected location in the O2-treated nucleus was estimated to be 150 nm, a size capable of scattering light and similar to the size of aggregates found in human nuclear cataracts. HPLC analysis indicated that one half of the experimental nuclear WI protein fraction (that had been dissolved in guanidine) consisted of disulfide cross-linked 150- to 1000-kDa aggregates, not present in the control. HPLC-isolated aggregates contained αA-, β-, γ-, and ζ-crystallins, but not αB-crystallin, which is devoid of −SH groups and thus does not participate in disulfide cross-linking. All ζ-crystallin present in the nuclear WI fraction appeared to be there as a result of disulfide cross-linking. Conclusions The results indicate that molecular oxygen in vivo can induce the cross-linking of guinea pig lens nuclear crystallins into large disulfide-bonded aggregates capable of scattering light. A similar process may be involved in the formation of human nuclear cataract. PMID:16303961

  12. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  13. Mechanical Design Report DARPA BOSS Program

    DTIC Science & Technology

    2008-03-21

    for system mass and length; tolerances for lens spacing, tilt , and diameter; tolerances for lens to lens concentricity and lens perimeter to focus...binding when the lens is compressed, which could otherwise introduce tilt in the lens surface. Part b is the solid stop against which lens 3 (part...Fixed lens angular ( tilt ) accuracy ±3° Lens concentricity ±0.150mm Temperature range 10-45°C Minimum BFL adjustment ±1.5 mm from design focus

  14. Generation-X: An X-ray observatory designed to observe first light objects

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Cameron, R. A.; Brissenden, R. J.; Elvis, M. S.; Fabbiano, G.; Gorenstein, P.; Reid, P. B.; Schwartz, D. A.; Bautz, M. W.; Figueroa-Feliciano, E.; Petre, R.; White, N. E.; Zhang, W. W.

    2006-03-01

    The new cosmological frontier will be the study of the very first stars, galaxies and black holes in the early Universe. These objects are invisible to the current generation of X-ray telescopes, such as Chandra. In response, the Generation-X ("Gen-X") Vision Mission has been proposed as a future X-ray observatory which will be capable of detecting the earliest objects. X-ray imaging and spectroscopy of such faint objects demands a large collecting area and high angular resolution. The Gen-X mission plans 100 m 2 collecting area at 1 keV (1000× that of Chandra), and with an angular resolution of 0.1″. The Gen-X mission will operate at Sun-Earth L2, and might involve four 8 m diameter telescopes or even a single 20 m diameter telescope. To achieve the required effective area with reasonable mass, very lightweight grazing incidence X-ray optics must be developed, having an areal density 100× lower than in Chandra, with mirrors as thin as 0.1 mm requiring active on-orbit figure control. The suite of available detectors for Gen-X should include a large-area high resolution imager, a cryogenic imaging spectrometer, and a grating spectrometer. We discuss use of Gen-X to observe the birth of the first black holes, stars and galaxies, and trace their cosmic evolution.

  15. Electromagnetic driving units for complex microrobotic systems

    NASA Astrophysics Data System (ADS)

    Michel, Frank; Ehrfeld, Wolfgang; Berg, Udo; Degen, Reinhard; Schmitz, Felix

    1998-10-01

    Electromagnetic actuators play an important role in macroscopic robotic systems. In combination with motion transformers, like reducing gear units, angular gears or spindle-screw drives, electromagnetic motors in large product lines ensure the rotational or linear motion of robot driving units and grippers while electromagnets drive valves or part conveyors. In this paper micro actuators and miniaturized motion transformers are introduced which allow a similar development in microrobotics. An electromagnetic motor and a planetary gear box, both with a diameter of 1.9 mm, are already commercially available from the cooperation partner of IMM, the company Dr. Fritz Faulhaber GmbH in Schonaich, Germany. In addition, a motor with a diameter of 2.4 mm is in development. The motors successfully drive an angular gear and a belt drive. A linear stage with a motion range of 7 mm and an overall size as small as 5 X 3.5 X 24 mm3 has been realized involving the motor, a stationary spur gear with zero backlash and a spindle-screw drive. By the use of these commercially available elements complex microrobots can be built up cost-efficiently and rapidly. Furthermore, a batch process has been developed to produce the coils of micro actuator arrays using lithographic techniques with SU-8 resin. In applying these components, the modular construction of complex microrobotic systems becomes feasible.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavinto, Mikko; Räsänen, Syksy, E-mail: mikko.lavinto@helsinki.fi, E-mail: syksy.rasanen@iki.fi

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius r{sub b}=50 h{sup −1} Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude belowmore » the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ D{sub A}/ D-bar {sub A}|∼< 10{sup −4}. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.« less

  17. CMB seen through random Swiss Cheese

    NASA Astrophysics Data System (ADS)

    Lavinto, Mikko; Räsänen, Syksy

    2015-10-01

    We consider a Swiss Cheese model with a random arrangement of Lemaȋtre-Tolman-Bondi holes in ΛCDM cheese. We study two kinds of holes with radius rb=50 h-1 Mpc, with either an underdense or an overdense centre, called the open and closed case, respectively. We calculate the effect of the holes on the temperature, angular diameter distance and, for the first time in Swiss Cheese models, shear of the CMB . We quantify the systematic shift of the mean and the statistical scatter, and calculate the power spectra. In the open case, the temperature power spectrum is three orders of magnitude below the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance and shear are more robust, and agree with perturbation theory and previous Swiss Cheese results. We do not find a statistically significant mean shift in the sky average of the angular diameter distance, and obtain the 95% limit |Δ DA/bar DA|lesssim 10-4. We consider the argument that areas of spherical surfaces are nearly unaffected by perturbations, which is often invoked in light propagation calculations. The closed case is consistent with this at 1σ, whereas in the open case the probability is only 1.4%.

  18. 3D-printed phantom for the characterization of non-uniform rotational distortion (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hohert, Geoffrey; Pahlevaninezhad, Hamid; Lee, Anthony; Lane, Pierre M.

    2016-03-01

    Endoscopic catheter-based imaging systems that employ a 2-dimensional rotary or 3-dimensional rotary-pullback scanning mechanism require constant angular velocity at the distal tip to ensure correct angular registration of the collected signal. Non-uniform rotational distortion (NURD) - often present due to a variety of mechanical issues - can result in inconsistent position and velocity profiles at the tip, limiting the accuracy of any measurements. Since artifacts like NURD are difficult to identify and characterize during tissue imaging, phantoms with well-defined patterns have been used to quantify position and/or velocity error. In this work we present a fast, versatile, and cost-effective method for making fused deposition modeling 3D printed phantoms for identifying and quantifying NURD errors along an arbitrary user-defined pullback path. Eight evenly-spaced features are present at the same orientation at all points on the path such that deviations from expected geometry can be quantified for the imaging catheter. The features are printed vertically and then folded together around the path to avoid issues with printer head resolution. This method can be adapted for probes of various diameters and for complex imaging paths with multiple bends. We demonstrate imaging using the 3D printed phantoms with a 1mm diameter rotary-pullback OCT catheter and system as a means of objectively evaluating the mechanical performance of similarly constructed probes.

  19. MICRONERVA: A Novel Approach to Large Aperture Astronomical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hall, Ryan; Plavchan, Peter; Geneser, Claire; Giddens, Frank; Spangler, Sophia

    2016-06-01

    MICRONERVA (MICRO Novel Exoplanet Radial Velocity Array) is a project to measure precise spectroscopic radial velocities. The cost of telescopes are a strong function of diameter, and light gathering power as opposed to angular resolution is the fundamental driver for telescope design for many spectroscopic science applications. By sacrificing angular resolution, many multiple smaller fiber-fed telescopes can be combined to synthesize the light gathering power of a larger diameter telescope at a lower effective cost. For our MICRONERVA prototype, based upon the larger MINERVA project, we will attempt to demonstrate that an array of four 8-inch CPC Celestron telescopes can be automated with sufficient active guiding precision for robust nightly robotic operations. The light from each telescope is coupled into single mode fibers, which are conveniently matched to the point spread function of 8-inch telescopes, which can be diffraction limited at red wavelengths in typical seeing at good observing sites. Additionally, the output from an array of single mode fibers provides stable output illumination of a spectrograph, which is a critical requirement of future precise radial velocity instrumentation. All of the hardware from the system is automated using Python programs and ASCOM and MaxIm DL software drivers. We will present an overview of the current status of the project and plans for future work. The detection of exoplanets using the techniques of MICRONERVA could potentially enable cost reductions for many types of spectroscopic research.

  20. Titan's rotation reveals an internal ocean and changing zonal winds

    USGS Publications Warehouse

    Lorenz, R.D.; Stiles, B.W.; Kirk, R.L.; Allison, M.D.; Del Marmo, P.P.; Iess, L.; Lunine, J.I.; Ostro, S.J.; Hensley, S.

    2008-01-01

    Cassini radar observations of Saturn's moon Titan over several years show that its rotational period is changing and is different from its orbital period. The present-day rotation period difference from synchronous spin leads to a shift of ???0.36?? per year in apparent longitude and is consistent with seasonal exchange of angular momentum between the surface and Titan's dense superrotating atmosphere, but only if Titan's crust is decoupled from the core by an internal water ocean like that on Europa.

  1. Io hot spots - Infrared photometry of satellite occultations

    NASA Technical Reports Server (NTRS)

    Goguen, J. D.; Matson, D. L.; Sinton, W. M.; Howell, R. R.; Dyck, H. M.

    1988-01-01

    Io's active hot spots, which are presently mapped on the basis of IR photometry of this moon's occultation by other Gallilean satellites, are obtained with greatest spatial resolution near the sub-earth point. A model is developed for the occultation lightcurves, and its fitting to the data defines the apparent path of the occulting satellite relative to Io; the mean error in apparent relative position of occulting satellites is of the order of 178 km. A heretofore unknown, 20-km diameter hot spot is noted on Io's leading hemisphere.

  2. Understanding asteroid collisional history through experimental and numerical studies

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-01-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  3. Understanding asteroid collisional history through experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.; Ryan, Eileen V.; Weidenschilling, S. J.

    1991-06-01

    Asteroids can lose angular momentum due to so called splash effect, the analog to the drain effect for cratering impacts. Numerical code with the splash effect incorporated was applied to study the simultaneous evolution of asteroid sized and spins. Results are presented on the spin changes of asteroids due to various physical effects that are incorporated in the described model. The goal was to understand the interplay between the evolution of sizes and spins over a wide and plausible range of model parameters. A single starting population was used both for size distribution and the spin distribution of asteroids and the changes in the spins were calculated over solar system history for different model parameters. It is shown that there is a strong coupling between the size and spin evolution, that the observed relative spindown of asteroids approximately 100 km diameter is likely to be the result of the angular momentum splash effect.

  4. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  5. Influence of Layup Sequence on the Surface Accuracy of Carbon Fiber Composite Space Mirrors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Liu, Qingnian; Zhang, Boming; Xu, Liang; Tang, Zhanwen; Xie, Yongjie

    2018-04-01

    Layup sequence is directly related to stiffness and deformation resistance of the composite space mirror, and error caused by layup sequence can affect the surface precision of composite mirrors evidently. Variation of layup sequence with the same total thickness of composite space mirror changes surface form of the composite mirror, which is the focus of our study. In our research, the influence of varied quasi-isotropic stacking sequences and random angular deviation on the surface accuracy of composite space mirrors was investigated through finite element analyses (FEA). We established a simulation model for the studied concave mirror with 500 mm diameter, essential factors of layup sequences and random angular deviations on different plies were discussed. Five guiding findings were described in this study. Increasing total plies, optimizing stacking sequence and keeping consistency of ply alignment in ply placement are effective to improve surface accuracy of composite mirror.

  6. Microstructure and mechanical properties of Al-3Fe alloy processed by equal channel angular extrusion

    NASA Astrophysics Data System (ADS)

    Fuxiao, Yu; Fang, Liu; Dazhi, Zhao; Toth, Laszlo S.

    2014-08-01

    Al-Fe alloys are attractive for applications at temperatures beyond those normally associated with the conventional aluminum alloys. Under proper solidification condition, a full eutectic microstructure can be generated in Al-Fe alloys at Fe concentration well in excess of the eutectic composition of 1.8 wt.% Fe. The microstructure in this case is characterized by the metastable regular eutectic Al-Al6Fe fibers of nano-scale in diameter, instead of the equilibrium eutectic Al-Al3Fe phase. In this study, the microstructure and mechanical properties of the Al-3Fe alloy with metastable Al6Fe particles deformed by equal channel angular extrusion were investigated. Severe plastic deformation results in a microstructure consisting of submicron equiaxed Al grains with a uniform distribution of submicron Al6Fe particles on the grain boundaries. The room temperature tensile properties of the alloy with this microstructure will be presented.

  7. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  8. Irreversible evolution of angular-dependent coercivity in Fe80Ni20 nanowire arrays: Detection of a single vortex state

    NASA Astrophysics Data System (ADS)

    Alikhani, M.; Ramazani, A.; Almasi Kashi, M.; Samanifar, S.; Montazer, A. H.

    2016-09-01

    The irreversible evolution of magnetic coercivity in arrays of 75 nm diameter Fe80Ni20 nanowires (NWs) has been explored by means of first-order reversal curve (FORC) analysis as a function of the angle between the magnetic field and the NW axis (0°≤θ≤90°). The Fe80Ni20 NWs with lengths up to 60 μm were fabricated using a pulsed electrodeposition method into hard-anodic aluminum oxide templates with an interpore distance of 275 nm. Investigating the interwire and intrawire magnetostatic interactions, the angular FORC (AFORC) diagrams indicated enhanced intrawire interactions with increasing length and θ (<90°), induced by a magnetization reversal through vortex domain wall (VDW) propagation. Intriguingly, in addition to the VDW mode, a single vortex state with broad irreversible switching of nucleation and annihilation fields was detected at θ=83° for 60 μm long NWs. At θ=90°, the NWs reversed magnetization through transverse domain wall, involving a reversible component by a fraction of 95%. Furthermore, the transition angle between the reversal modes was found to decrease with increasing aspect ratio from 200 to 800. The irreversible angular-dependent coercivity (HcIrrev(θ)) of Fe80Ni20 NWs was extracted from the AFORC measurements and compared with the major angular dependence of coercivity (HcMajor(θ)) obtained from the conventional hysteresis loop measurements. While HcMajor(θ) showed a non-monotonic behavior, HcIrrev(θ) constantly increased with increasing θ (<90°). On the other hand, using analytical models, a 93% agreement was obtained between the theoretical angular-dependent nucleation field and experimental HcIrrev(θ) for irreversible switching of VDW when 0°≤θ≤86°.

  9. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lactic-co-glycolic acid) meshes.

    PubMed

    Bashur, Chris A; Dahlgren, Linda A; Goldstein, Aaron S

    2006-11-01

    Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.

  10. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  11. Pulmonary cestodiasis in a cynomolgus monkey (Macaca fascicularis).

    PubMed

    Guillot, L M; Green, L C

    1992-04-01

    Cestodiasis in primates has been noted historically to occur quite frequently, although tissue damage and clinical signs may or may not be apparent. Larval cestodes, such as hydatid cysts or cysticercus cysts, are known to cause extensive tissue damage, while other larval cestodes, such as tetrathyridia, cause minimal damage to the host. This case history concerns an apparently healthy cynomolgus monkey that was part of a surgical study. During the study, all parameters were normal. The monkey died 3 hours postsurgery. The apparent cause of death was respiratory arrest. At necropsy, it was discovered there were 1- to 3-mm-diameter cysts, which on transection extruded 2- to 5-mm-long larvae. The larvae could not be positively identified; however, they resembled tetrathyridia of Mesocestoides sp.

  12. Morphometric variations of the 7th cervical vertebrae of Zulu, White, and Colored South Africans.

    PubMed

    Kibii, Job M; Pan, Rualing; Tobias, Phillip V

    2010-05-01

    The 7th cervical vertebrae of 240 cadavers of South African Zulu, White, and Colored population groups were examined to determine morphometric variation. White and Colored females had statistically significant narrower cervical anteroposterior diameters than their male counterparts, whereas no statistically significant difference between sexes of the Zulu population group was observed in this variable. In addition, although Zulu and Colored females had statistically significant narrower cervical transverse diameters than their male counterparts, there was no statistically significant variation between South African white males and females in this respect. The findings indicate that sexual dimorphism is more apparent in the vertebral centrum, across the three population groups, where males had significantly larger dimensions in centrum anteroposterior diameter, height, and width than their female counterparts. The study further reveals that sexual dimorphism is more apparent when one compares aspects of the 7th cervical vertebra between sexes within the same population group. Overall, the dimensions of the various variates of the vertebra are substantially smaller in women than in men. The smaller dimensions, particularly of the centrum, may be the result of lower skeletal mass in women and render them more vulnerable to fractures resulting from compression forces. 2010 Wiley-Liss, Inc.

  13. Atmospheric turbulence and the apparent instantaneous diameter of the sun

    NASA Technical Reports Server (NTRS)

    Knight, C. K.; Gatewood, G. D.; Kipp, S. L.; Black, D.

    1977-01-01

    Astrometric data are perturbed by turbulent density fluctuations in the atmosphere over the frequency range from 0.0001 to 10 Hz by amounts that would limit the accuracy of solar-diameter measures significantly. Power spectra of the perturbations are compared with meteorological data to argue that thermal turbulence is dominant above 0.001 Hz and that mechanical turbulence (weather) is important below that frequency. Noise power in astrometry should be comparable under night or day conditions, but site location may be important for the strength of slowly passing waves.

  14. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  15. Liquid-vapor rectilinear diameter revisited

    NASA Astrophysics Data System (ADS)

    Garrabos, Y.; Lecoutre, C.; Marre, S.; Beysens, D.; Hahn, I.

    2018-02-01

    In the modern theory of critical phenomena, the liquid-vapor density diameter in simple fluids is generally expected to deviate from a rectilinear law approaching the critical point. However, by performing precise scannerlike optical measurements of the position of the SF6 liquid-vapor meniscus, in an approach much closer to criticality in temperature and density than earlier measurements, no deviation from a rectilinear diameter can be detected. The observed meniscus position from far (10 K ) to extremely close (1 mK ) to the critical temperature is analyzed using recent theoretical models to predict the complete scaling consequences of a fluid asymmetry. The temperature dependence of the meniscus position appears consistent with the law of rectilinear diameter. The apparent absence of the critical hook in SF6 therefore seemingly rules out the need for the pressure scaling field contribution in the complete scaling theoretical framework in this SF6 analysis. More generally, this work suggests a way to clarify the experimental ambiguities in the simple fluids for the near-critical singularities in the density diameter.

  16. Kinetics and mass-transfer phenomena in anaerobic granular sludge.

    PubMed

    Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R

    2001-04-20

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.

  17. The diameter of Pallas from its occultation of SAO 85009

    NASA Technical Reports Server (NTRS)

    Wasserman, L. H.; Millis, R. L.; Franz, O. G.; Bowell, E.; Giclas, H. L.; Martin, L. J.; Elliot, J. L.; Dunham, E.; Mink, D.; White, N. M.

    1979-01-01

    The May 29, 1978, occultation of SAO 85009 by Pallas was observed photoelectrically at seven widely spaced sites. The observations are well represented by an elliptical apparent limb profile having semimajor and semiminor axes of 279.5 + or - 2.9 and 262.7 + or - 4.5 km, respectively. Combining these results with published information on the light curve and rotational pole position, Pallas's mean diameter is found to be 538 + or - 12 km, which yields a mean density for Pallas of 2.8 + or - 0.5 g/cu cm and a visual geometric albedo of 0.103 + or - 0.005. The diameter of Pallas as determined from this occultation is significantly smaller than the values derived by radiometric, polarimetric, and double-image techniques.

  18. Microcrater investigations on lunar rock 12002

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.; Hodges, F.; Horz, F.; Storzer, D.

    1975-01-01

    Relative ages of 26 submillimeter-sized pits from an equilibrium population in rock 12002 were measured by determining the densities of pits 0.7 microns in diameter and larger on the submillimeter-sized pits. Production rates for 0.7 micron diameter pits were determined from solar-flare track exposure age measurements, and the data for rock 12002 are consistent with previously obtained data for sample 15205 if a lower meteoroid flux prevailed in the past. Metal mounds or spherules within a microcrater pit glass were found to have a meteoritic composition, and an impact lining consisting of protruding crystals was observed. The crystals apparently developed during exposure to space immediately after the 200-micron diameter pit was formed by impact into an olivine grain.

  19. Optical drift effects in general relativity

    NASA Astrophysics Data System (ADS)

    Korzyński, Mikołaj; Kopiński, Jarosław

    2018-03-01

    We consider the question of determining the optical drift effects in general relativity, i.e. the rate of change of the apparent position, redshift, Jacobi matrix, angular distance and luminosity distance of a distant object as registered by an observer in an arbitrary spacetime. We present a fully relativistic and covariant approach, in which the problem is reduced to a hierarchy of ODE's solved along the line of sight. The 4-velocities and 4-accelerations of the observer and the emitter and the geometry of the spacetime along the line of sight constitute the input data. We build on the standard relativistic geometric optics formalism and extend it to include the time derivatives of the observables. In the process we obtain two general, non-perturbative relations: the first one between the gravitational lensing, represented by the Jacobi matrix, and the apparent position drift, also called the cosmic parallax, and the second one between the apparent position drift and the redshift drift. The applications of the results include the theoretical study of the drift effects of cosmological origin (so-called real-time cosmology) in numerical or exact Universe models.

  20. SU-F-I-05: Dose Symmetry for CTDI Equivalent Measurements with Limited Angle CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, V; McKenney, S; Sunde, P

    Purpose: CTDI measurements, useful for characterizing the x-ray output for multi-detector CT (MDCT), require a 360° rotation of the gantry; this presents a problem for cone beam CT (CBCT) due to its limited angular rotation. The purpose of this work is to demonstrate a methodology for overcoming this limited angular rotation so that CTDI measurements can also be made on CBCT systems making it possible to compare the radiation output from both types of system with a common metric. Methods: The symmetry of the CTDI phantom allows a 360° CTDI measurement to be replaced with two 180° measurements. A pencilmore » chamber with a real-time digitizer was placed at the center of the head phantom (16 cm, PMMA) and the resulting exposure measurement from a 180° acquisition was doubled. A pair of edge measurements, each obtained with the gantry passing through the same 180 arc, was obtained with the pencil chamber at opposite edges of the diameter of the phantom and then summed. The method was demonstrated on a clinical CT scanner (Philips, Brilliance6) and then implemented on an interventional system (Siemens, Axiom Artis). Results: The equivalent CTDI measurement agreed with the conventional CTDI measurement within 8%. The discrepancy in the two measurements is largely attributed to uncertainties in cropping the waveform to a 180°acquisition. (Note: Because of the reduced fan angle in the CBCT, CTDI is not directly comparable to MDCT values when a 32 cm phantom is used.) Conclusion: The symmetry-based CTDI measurement is an equivalent measurement to the conventional CTDI measurement when the fan angle is large enough to encompass the phantom diameter. This allows a familiar metric of radiation output to be employed on systems with a limited angular rotation.« less

  1. Interferometric radius and limb darkening of the asteroseismic red giant η Serpentis with the CHARA Array

    NASA Astrophysics Data System (ADS)

    Mérand, A.; Kervella, P.; Barban, C.; Josselin, E.; ten Brummelaar, T. A.; McAlister, H. A.; Coudé du Foresto, V.; Ridgway, S. T.; Turner, N.; Sturmann, J.; Sturmann, L.; Goldfinger, P. J.; Farrington, C.

    2010-07-01

    Context. The radius of a star is a very important constraint to evolutionary models, particularly when combined with asteroseismology. Diameters can now be measured interferometrically with great precision (better than 1%), but the center-to-limb darkening (CLD) remains a potential source of bias. Measuring this bias is possible by completely resolving the star using long-baseline interferometry, and has only been achieved for a handful of stars. Aims: The red giant η Ser (K0III-IV) is a particularly interesting target, as asteroseismic oscillations have recently been detected in this star by spectroscopy. We aim to measure its radius with high accuracy, debiased from limb darkening, in order to bring new constraints to its models. Methods: We obtained interferometric observations of η Ser in the near-infrared using the CHARA/FLUOR instrument, in particular in the so-called second lobe of visibility in order to constrain the CLD and debias our diameter estimation. Results: The limb darkened angular diameter of η Ser is 2.944 ± 0.010 mas (using spherical photosphere models PHOENIX and MARCS for the limb darkening), that converts into a radius of 5.897 ± 0.028 R_⊙ with the Hipparcos parallax. Thanks to a precise visibility measurement in the second lobe of the visibility function of η Ser and a one-parameter limb-darkened visibility profile, we were able to show that the photosphere models have the best agreement possible. Conclusions: Our limb darkening measurement of η Ser is in agreement with existing atmosphere models of this star, with a slightly better agreement for models using spherical geometry. This is a strong indication that interferometric angular diameter measurements for red giants, corrected for the CLD using models, are unbiased at a very small level (a fraction of 1%). In particular, this strengthens our confidence in the existing catalogues of calibrator stars for interferometry that are based on giant stars similar to η Ser. The high accuracy of our measurement brings a new and strong constraint for the asteroseismic modeling of this star.

  2. Observational calibration of the projection factor of Cepheids. I. The type II Cepheid κ Pavonis

    NASA Astrophysics Data System (ADS)

    Breitfelder, J.; Kervella, P.; Mérand, A.; Gallenne, A.; Szabados, L.; Anderson, R. I.; Willson, M.; Le Bouquin, J.-B.

    2015-04-01

    Context. The distance of pulsating stars, in particular Cepheids, are commonly measured using the parallax of pulsation technique. The different versions of this technique combine measurements of the linear diameter variation (from spectroscopy) and the angular diameter variation (from photometry or interferometry) amplitudes, to retrieve the distance in a quasi-geometrical way. However, the linear diameter amplitude is directly proportional to the projection factor (hereafter p-factor), which is used to convert spectroscopic radial velocities (i.e., disk integrated) into pulsating (i.e., photospheric) velocities. The value of the p-factor and its possible dependence on the pulsation period are still widely debated. Aims: Our goal is to measure an observational value of the p-factor of the type-II Cepheid κ Pavonis. Methods: The parallax of the type-II Cepheid κ Pav was measured with an accuracy of 5% using HST/FGS. We used this parallax as a starting point to derive the p-factor of κ Pav, using the SPIPS technique (Spectro-Photo-Interferometry of Pulsating Stars), which is a robust version of the parallax-of-pulsation method that employs radial velocity, interferometric and photometric data. We applied this technique to a combination of new VLTI/PIONIER optical interferometric angular diameters, new CORALIE and HARPS radial velocities, as well as multi-colour photometry and radial velocities from the literature. Results: We obtain a value of p = 1.26 ± 0.07 for the p-factor of κ Pav. This result agrees with several of the recently derived Period-p-factor relationships from the literature, as well as previous observational determinations for Cepheids. Conclusions: Individual estimates of the p-factor are fundamental to calibrating the parallax of pulsation distances of Cepheids. Together with previous observational estimates, the projection factor we obtain points to a weak dependence of the p-factor on period. Based on observations realized with ESO facilities at Paranal Observatory under program IDs 091.D-0020 and 093.D-0316.Based on observations collected at ESO La Silla Observatory using the Coralie spectrograph mounted to the Swiss 1.2 m Euler telescope, under program CNTAC2014A-5.

  3. Direct printing of miniscule aluminum alloy droplets and 3D structures by StarJet technology

    NASA Astrophysics Data System (ADS)

    Gerdes, B.; Zengerle, R.; Koltay, P.; Riegger, L.

    2018-07-01

    Drop-on demand printing of molten metal droplets could be used for prototyping 3D objects as a promising alternative to laser melting technologies. However, to date, only few printheads have been investigated for this purpose, and they used only a limited range of materials. The pneumatically actuated StarJet technology enables the direct and non-contact printing of molten metal microdroplets from metal melts at high temperatures. StarJet printheads utilize nozzle chips featuring a star-shaped orifice geometry that leads to formation of droplets inside the nozzle with high precision. In this paper, we present a novel StarJet printhead for printing aluminum (Al) alloys featuring a hybrid design with a ceramic reservoir for the molten metal and an outer shell fabricated from stainless steel. The micro machined nozzle chip is made from silicon carbide (SiC). This printhead can be operated at up to 950 °C, and is capable of printing high melting point metals like Al alloys in standard laboratory conditions. In this work, an aluminum–silicon alloy that features 12% silicon (AlSi12) is printed. The printhead, nozzle, and peripheral actuation system are optimized for stable generation of AlSi12 droplets with high monodispersity, low angular deviation, and miniaturized droplet diameters. As a result, a stable drop-on-demand printing of droplets exhibiting diameters of d droplet  =  702 µm  ±  1% is demonstrated at 5 Hz with a low angular deviation of 0.3°, when a nozzle chip with 500 µm orifice diameter is used. Furthermore, AlSi12 droplets featuring d droplet  =  176 µm  ±  7% are printed when using a nozzle chip with an orifice diameter of 130 µm. Moreover, we present directly printed objects from molten Al alloy droplets, such as high aspect ratio, free-standing walls (aspect ratio 12:1), and directly printed, flexible springs, to demonstrate the principle of 3D printing with molten metal droplets.

  4. Tests of stellar model atmospheres by optical interferometry. VLTI/VINCI limb-darkening measurements of the M4 giant ψ Phe

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Aufdenberg, J. P.; Kervella, P.

    2004-01-01

    We present K-band interferometric measurements of the limb-darkened (LD) intensity profile of the M 4 giant star ψ Phoenicis obtained with the Very Large Telescope Interferometer (VLTI) and its commissioning instrument VINCI. High-precision squared visibility amplitudes in the second lobe of the visibility function were obtained employing two 8.2 m Unit Telescopes (UTs). This took place one month after light from UTs was first combined for interferometric fringes. In addition, we sampled the visibility function at small spatial frequencies using the 40 cm test siderostats. Our measurement constrains the diameter of the star as well as its center-to-limb intensity variation (CLV). We construct a spherical hydrostatic PHOENIX model atmosphere based on spectrophotometric data from the literature and compare its CLV prediction with our interferometric measurement. We compare as well CLV predictions by plane-parallel hydrostatic PHOENIX, ATLAS 9, and ATLAS 12 models. We find that the Rosseland angular diameter as predicted by comparison of the spherical PHOENIX model with spectrophotometry is in good agreement with our interferometric diameter measurement. The shape of our measured visibility function in the second lobe is consistent with all considered PHOENIX and ATLAS model predictions, and is significantly different to uniform disk (UD) and fully darkened disk (FDD) models. We derive high-precision fundamental parameters for ψ Phe, namely a Rosseland angular diameter of 8.13 ± 0.2 mas, with the Hipparcos parallax corresponding to a Rosseland linear radius R of 86 ± 3 R⊙, and an effective temperature of 3550 ± 50 K, with R corresponding to a luminosity of \\log L/L⊙=3.02 ± 0.06. Together with evolutionary models, these values are consistent with a mass of 1.3 ± 0.2 M⊙, and a surface gravity of \\log g = 0.68 ± 0.11. Based on public data released from the European Southern Observatory VLTI obtained from the ESO/ST-ECF Science Archive Facility. The VLTI was operated with the commissioning instrument VINCI and the MONA beam combiner.

  5. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    PubMed

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the minimum values were 93.5% and 86%, respectively. Our results showed the dosimetric properties of the RGD, including the energy dependence of the dose response, reproducibly, variation, and angular dependence in low-energy photons and suggest that the accuracy of the absorbed dose in low-energy photons is affected by the readout method and the distribution of radiophotoluminescence centers in the RGD.

  6. The rotating universe.

    NASA Astrophysics Data System (ADS)

    Surdin, M.

    A closed universe obeying the Hubble equation v = Hu·r, where Hu is the Hubble constant, is considered. It is shown that such a universe is equivalent to a universe rotating around one of its diameters at an angular velocity Ωu = Hu. If one revives Blackett's conjecture, viz., a rotating body creates at its center a magnetic dipole, one computes the value of the magnetic field as B ≅ 2.5×10-5G. Intergalactic magnetic fields of the order of 10-6G were deduced from observations.

  7. Developing an Optical Lunar Occultation Measurement Reduction System for Observations at Kaau Observatory

    NASA Astrophysics Data System (ADS)

    Malawi, Abdulrahman A.

    2013-06-01

    We present here a detailed explanation of the reduction method that we use to determine the angular diameters of the stars occulted by the dark limb of the moon. This is a main part of the lunar occultation observation program running at King Abdul Aziz University observatory since late 1993. The process is based on the least square model fitting method of analyzing occultation data, first introduced by Nather et al. (Astron. J. 75:963, 1970).

  8. Stellar integrated fluxes for 216 stars in the wavelength range 380 nm-900 NM

    NASA Astrophysics Data System (ADS)

    Petford, A. D.; Blackwell, D. E.; Booth, A. J.; Haddock, D. J.; Leggett, S. K.; Mountain, C. M.; Selby, M. J.; Arribas, S.

    1988-09-01

    The paper reports measurements of the integrated fluxes over the wavelength range 380 nm - 900 nm for 216 stars using a Reticon spectrometer in conjunction with the 1 m Kapteyn telescope of the Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Methods are proposed for deriving visible integrated fluxes from 13-colour photometry, UBVRI and BV photometry. Such fluxes are useful for deriving stellar effective temperatures and angular diameters.

  9. Lightweight piston-rod assembly for a reciprocating machine

    DOEpatents

    Corey, John A.; Walsh, Michael M.

    1986-01-01

    In a reciprocating machine, there is provided a hollow piston including a dome portion on one end and a base portion on the opposite end. The base portion includes a central bore into which a rod is hermetically fixed in radial and angular alignment. The extending end of the rod has a reduced diameter portion adapted to fit into the central bore of a second member such as a cross-head assembly, and to be secured thereto in radial and axial alignment with the piston.

  10. Nonlinear Thomson scattering of a relativistically strong tightly focused ultrashort laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vais, O. E.; Bochkarev, S. G., E-mail: bochkar@sci.lebedev.ru; Bychenkov, V. Yu.

    The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D{sub F} ≳ λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that themore » ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ≃10λ.« less

  11. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  12. Fine Particle Emissions from Residual Fuel Oil Combustion: Characterization and Mechanisms of Formation

    DTIC Science & Technology

    2000-08-04

    another apparent factor influencing health impact is the presence of ultrafine particles (0.1 lm in diameter) [2]. All three characteristics...between 0.5 and 100 lm. The ultrafine particles from both combustion systems were consistent with the accumulation of an evolving aerosol formed by the

  13. Movement coordination and differential kinematics of the cervical and thoracic spines in people with chronic neck pain.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Lee, Raymond Y W

    2013-07-01

    Research on the kinematics and inter-regional coordination of movements between the cervical and thoracic spines in motion adds to our understanding of the performance and interplay of these spinal regions. The purpose of this study was to examine the effects of chronic neck pain on the three-dimensional kinematics and coordination of the cervical and thoracic spines during active movements of the neck. Three-dimensional spinal kinematics and movement coordination between the cervical, upper thoracic, and lower thoracic spines were examined by electromagnetic motion sensors in thirty-four individuals with chronic neck pain and thirty-four age- and gender-matched asymptomatic subjects. All subjects performed a set of free active neck movements in three anatomical planes in sitting position and at their own pace. Spinal kinematic variables (angular displacement, velocity, and acceleration) of the three defined regions, and movement coordination between regions were determined and compared between the two groups. Subjects with chronic neck pain exhibited significantly decreased cervical angular velocity and acceleration of neck movement. Cross-correlation analysis revealed consistently lower degrees of coordination between the cervical and upper thoracic spines in the neck pain group. The loss of coordination was most apparent in angular velocity and acceleration of the spine. Assessment of the range of motion of the neck is not sufficient to reveal movement dysfunctions in chronic neck pain subjects. Evaluation of angular velocity and acceleration and movement coordination should be included to help develop clinical intervention strategies to promote restoration of differential kinematics and movement coordination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. IRAS observations of a large circumstellar dust shell around W Hydrae

    NASA Technical Reports Server (NTRS)

    Hawkins, G. W.

    1990-01-01

    IRAS observations at 60 and 100 microns reveal a large 30-40-arcmin (about 1-pc) diameter dust shell centered on the oxygen-rich red giant W Hya. Except for SNRs, this is the largest mass-loss envelope, in apparent diameter, known around any evolved star, including PN. W Hya's radiation field, stronger than the interstellar radiation field in the outer envelope, is sufficient to heat dust grains with IR emissivity proportional to lambda exp -1.2 to temperatures of about 40 K implied by the ratio of intensities at 60 and 100 microns.

  15. Plume mass flow and optical damage distributions for an MMH/N2O4 RCS thruster. [exhaust plume contamination of spacecraft components

    NASA Technical Reports Server (NTRS)

    Spisz, E. W.; Bowman, R. L.; Jack, J. R.

    1973-01-01

    The data obtained from two recent experiments conducted in a continuing series of experiments at the Lewis Research Center into the contamination characteristics of a 5-pound thrust MMH/N2O4 engine are presented. The primary objectives of these experiments were to establish the angular distribution of condensible exhaust products within the plume and the corresponding optical damage angular distribution of transmitting optical elements attributable to this contaminant. The plume mass flow distribution was measured by five quartz crystal microbalances (QCM's) located at the engine axis evaluation. The fifth QCM was located above the engine and 15 deg behind the nozzle exit plane. The optical damage was determined by ex-situ transmittance measurements for the wavelength range from 0.2 to 0.6 microns on 2.54 cm diameter fused silica discs also located at engine centerline elevation. Both the mass deposition and optical damage angular distributions followed the expected trend of decreasing deposition and damage as the angle between sensor or sample and the nozzle axis increased. A simple plume gas flow equation predicted the deposition distribution reasonably well for angles of up to 55 degrees. The optical damage measurements also indicated significant effects at large angles.

  16. ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waszczak, Adam; Chang, Chan-Kao; Cheng, Yu-Chi

    We fit 54,296 sparsely sampled asteroid light curves in the Palomar Transient Factory survey to a combined rotation plus phase-function model. Each light curve consists of 20 or more observations acquired in a single opposition. Using 805 asteroids in our sample that have reference periods in the literature, we find that the reliability of our fitted periods is a complicated function of the period, amplitude, apparent magnitude, and other light-curve attributes. Using the 805-asteroid ground-truth sample, we train an automated classifier to estimate (along with manual inspection) the validity of the remaining ∼53,000 fitted periods. By this method we findmore » that 9033 of our light curves (of ∼8300 unique asteroids) have “reliable” periods. Subsequent consideration of asteroids with multiple light-curve fits indicates a 4% contamination in these “reliable” periods. For 3902 light curves with sufficient phase-angle coverage and either a reliable fit period or low amplitude, we examine the distribution of several phase-function parameters, none of which are bimodal though all correlate with the bond albedo and with visible-band colors. Comparing the theoretical maximal spin rate of a fluid body with our amplitude versus spin-rate distribution suggests that, if held together only by self-gravity, most asteroids are in general less dense than ∼2 g cm{sup −3}, while C types have a lower limit of between 1 and 2 g cm{sup −3}. These results are in agreement with previous density estimates. For 5–20 km diameters, S types rotate faster and have lower amplitudes than C types. If both populations share the same angular momentum, this may indicate the two types’ differing ability to deform under rotational stress. Lastly, we compare our absolute magnitudes (and apparent-magnitude residuals) to those of the Minor Planet Center’s nominal (G = 0.15, rotation-neglecting) model; our phase-function plus Fourier-series fitting reduces asteroid photometric rms scatter by a factor of ∼3.« less

  17. The Atacama B-mode Search: An Experiment to Probe Inflation by Measuring the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Niemack, Michael; Appel, J.; Cho, H. M.; Essinger-Hileman, T.; Fowler, J.; Halpern, M.; Irwin, K. D.; Marriage, T. A.; Page, L.; Parker, L. P.; Pufu, S.; Staggs, S. T.; Visnjic, K.; Yoon, K. W.; Zhao, Y.

    2009-12-01

    The Atacama B-mode Seach (ABS) is a new experiment to test the prediction that inflation during the early universe resulted in stochastic gravitational waves. The predicted signature of these inflationary gravitational waves is the introduction of a B-mode, or curl, component into the primordial cosmic microwave background (CMB) polarization field, which is dominated by curl-free E-modes. ABS is designed to measure the CMB polarization on large angular scales over a wide frequency band centered at 145 GHz. ABS comprises a 60 cm diameter telescope in the crossed Mizuguchi-Dragone configuration, which illuminates a large focal plane of 200 feedhorns coupled to polarization sensitive bolometric detectors. The detectors are fabricated at NIST and include planar ortho-mode transducers, band defining filters, microstrip tranmission lines and two transition-edge sensors (TES) to provide measurements of the polarization and total power from each feed simultaneously. The telescope mirrors are cooled to 4 K to control systematic effects, and the bolometers are cooled to 0.3 K to achieve sufficiently high saturation power while maintaining low detector noise. The polarization signals are modulated by a 33 cm diameter rotating half-wave plate (HWP) in front of the telescope. The HWP limits the mirror illumination, resulting in 0.5 degree angular resolution over a 20 degree field of view. ABS will begin observing at a high-altitude site in the Atacama Desert, Chile in 2009.

  18. The Green Bank Telescope: First Full Winter of Operation at 3mm

    NASA Astrophysics Data System (ADS)

    Lockman, Felix J.

    2017-06-01

    The winter of 2016-2017 marks the first season for the Green Bank Telescope (GBT) with full instrumentation in the 3mm band. ARGUS, a 16-pixel array, provides spectroscopic capabilities over 80-116 GHz. MUSTANG-2, a 223 pixel bolometer array, provides extremely sensitive continuum mapping capabilities over a 30 GHz band centered on 90 GHz at an angular resolution of 9”. In addition, there is a 2-pixel receiver that covers the lower part of the 3mm band, 67-93 GHz, for spectroscopy, continuum measurements, and VLBI.In March, under good night-time conditions, the GBT angular resolution at 109 GHz was measured to be 6.5”. This corresponds to 1.16 lambda/Diameter, exactly as expected from theoretical considerations and identical to the wavelength/Diameter ratio measured at much lower frequencies. Near sidelobe levels are below -20 dB.This poster will review some results that highlight the GBT’s new capabilities in the 3mm band, including new insights into the origin of the anomalous microwave emission, 13CO measurements of a cloud in the Milky Way halo that is in the process making the transition between atomic and molecular gas, HCO+ measurements of infall in a star-forming region, and measurements of dust emission and its spectrum in Orion.The Green Bank Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

  19. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taruya, Atsushi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Nishimichi, Takahiro

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopolemore » and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.« less

  20. Relating ground truth collection to model sensitivity

    NASA Technical Reports Server (NTRS)

    Amar, Faouzi; Fung, Adrian K.; Karam, Mostafa A.; Mougin, Eric

    1993-01-01

    The importance of collecting high quality ground truth before a SAR mission over a forested area is two fold. First, the ground truth is used in the analysis and interpretation of the measured backscattering properties; second, it helps to justify the use of a scattering model to fit the measurements. Unfortunately, ground truth is often collected based on visual assessment of what is perceived to be important without regard to the mission itself. Sites are selected based on brief surveys of large areas, and the ground truth is collected by a process of selecting and grouping different scatterers. After the fact, it may turn out that some of the relevant parameters are missing. A three-layer canopy model based on the radiative transfer equations is used to determine, before hand, the relevant parameters to be collected. Detailed analysis of the contribution to scattering and attenuation of various forest components is carried out. The goal is to identify the forest parameters which most influence the backscattering as a function of frequency (P-, L-, and C-bands) and incident angle. The influence on backscattering and attenuation of branch diameters, lengths, angular distribution, and permittivity; trunk diameters, lengths, and permittivity; and needle sizes, their angular distribution, and permittivity are studied in order to maximize the efficiency of the ground truth collection efforts. Preliminary results indicate that while a scatterer may not contribute to the total backscattering, its contribution to attenuation may be significant depending on the frequency.

  1. Development of wide-angle 2D light scattering static cytometry

    NASA Astrophysics Data System (ADS)

    Xie, Linyan; Liu, Qiao; Shao, Changshun; Su, Xuantao

    2016-10-01

    We have recently developed a 2D light scattering static cytometer for cellular analysis in a label-free manner, which measures side scatter (SSC) light in the polar angular range from 79 to 101 degrees. Compared with conventional flow cytometry, our cytometric technique requires no fluorescent labeling of the cells, and static cytometry measurements can be performed without flow control. In this paper we present an improved label-free static cytometer that can obtain 2D light scattering patterns in a wider angular range. By illuminating the static microspheres on chip with a scanning optical fiber, wide-angle 2D light scattering patterns of single standard microspheres with a mean diameter of 3.87 μm are obtained. The 2D patterns of 3.87 μm microspheres contain both large-angle forward scatter (FSC) and SSC light in the polar angular range from 40 to 100 degrees, approximately. Experimental 2D patterns of 3.87 μm microspheres are in good agreement with Mie theory simulated ones. The wide-angle light scattering measurements may provide a better resolution for particle analysis as compared with the SSC measurements. Two dimensional light scattering patterns of HL-60 human acute leukemia cells are obtained by using our static cytometer. Compared with SSC 2D light scattering patterns, wide-angle 2D patterns contain richer information of the HL-60 cells. The obtaining of 2D light scattering patterns in a wide angular range could help to enhance the capabilities of our label-free static cytometry for cell analysis.

  2. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the concordance ΛCDM model. Consistent fitting results are also obtained for other cosmological models explaining the cosmic acceleration, like Ricci dark energy (RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.

  3. James Webb Space Telescope Studies of Dark Energy

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a time-variable source gives the angular diameter distance through measured time delays of multiple images. Finally, the growth of structure can also be constrained by measuring the mass of the largest galaxy clusters over cosmic time. HST has contributed to the study of dark energy through SN1a and gravitational lensing, as discussed above. HST has also helped to characterize galaxy clusters and the HST-measured constraints on the current Hubble constant H(sub 0) are relevant to the interpretation of dark energy measurements (Riess et al 2009a). HST has not been used to constrain BAO as the large number of galaxy redshifts required, of order 100 million, is poorly matched to HST's capabilities. As the successor to HST, the James Webb Space Telescope (JWST; Gardner et al 2006) will continue and extend HST's dark energy work in several ways.

  4. Western Pine Beetle

    Treesearch

    Clarence J. Jr. DeMars; Bruce H. Roettgering

    1982-01-01

    The western pine beetle, Dendroctonus brevicomis LeConte, can aggressively attack and kill ponderosa and Coulter pine trees of all ages and vigor classes that are 6 inches (15 cm) or larger in diameter, including apparently healthy trees. Group killing of trees is common in dense, overstocked stands of pure, even-aged, young sawtimber (fig. 1), but also occurs among...

  5. Magnetic resonance imaging evaluation of treatment efficacy and prognosis for brain metastases in lung cancer patients after radiotherapy: A preliminary study.

    PubMed

    Liu, Yuhui; Liu, Xibin; Xu, Liang; Liu, Liheng; Sun, Yuhong; Li, Minghuan; Zeng, Haiyan; Yuan, Shuanghu; Yu, Jinming

    2018-05-17

    This study used magnetic resonance imaging (MRI) to monitor changes to brain metastases and investigate the imaging signs used to evaluate treatment efficacy and determine prognosis following radiotherapy for brain metastases from lung cancer. A total of 60 non-small cell lung cancer patients with brain oligometastases were selected. MRI scans were conducted before and 3, 6, 9, 12, 18, 24, and 30 months after radiotherapy. The tumor and peritumoral edema diameters, Cho/Cr values, elevation of the Lip peak value, and whether the island (yu-yuan) sign or high-signal ring were present on T2 fluid-attenuated inversion recovery (FLAIR) imaging were recorded for each metastasis. The mortality risk was higher the earlier the maximum value of peritumoral edema diameter was reached, when there were fewer island signs, and when brain metastases did not present as tumor progression on imaging. There were significant differences in the average peritumoral edema diameter, apparent diffusion coefficient value, the number of elevated Lip peak values, and the number of T2 FLAIR imaging high-signal rings in a year after radiotherapy in 14 patients with a survival period < 1 year compared to patients with a survival period > 2 years. After radiotherapy for brain metastases, patients with the island sign had longer survival periods, high-signal rings in T2 FLAIR, elevated Lip peaks, and reduced apparent diffusion coefficient values, indicating tumor necrosis. Increased diameter of metastases and Cho/Cr > 2 cannot serve as reliable indicators of brain metastasis progression. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino

    Photon geodesics are calculated in a Swiss-cheese model, where the cheese is made of the usual Friedmann-Robertson-Walker (FRW) solution and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. The observables on which we focus are the changes in the redshift, in the angular-diameter-distance relation, in the luminosity-distance-redshift relation, and in the corresponding distance modulus. We find that redshift effects are suppressed when the hole is small because of a compensation effect acting on the scale of half a hole resulting from the special case of spherical symmetry. However, we find interesting effects in the calculation of themore » angular distance: strong evolution of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy component. Our results also suggest that the nonlinear effects of caustic formation in cold dark matter models may lead to interesting effects on photon trajectories.« less

  8. Design and Experimental Performance of a Two Stage Partial Admission Turbine, Task B.1/B.4

    NASA Technical Reports Server (NTRS)

    Sutton, R. F.; Boynton, J. L.; Akian, R. A.; Shea, Dan; Roschak, Edmund; Rojas, Lou; Orr, Linsey; Davis, Linda; King, Brad; Bubel, Bill

    1992-01-01

    A three-inch mean diameter, two-stage turbine with partial admission in each stage was experimentally investigated over a range of admissions and angular orientations of admission arcs. Three configurations were tested in which first stage admission varied from 37.4 percent (10 of 29 passages open, 5 per side) to 6.9 percent (2 open, 1 per side). Corresponding second stage admissions were 45.2 percent (14 of 31 passages open, 7 per side) and 12.9 percent (4 open, 2 per side). Angular positions of the second stage admission arcs with respect to the first stage varied over a range of 70 degrees. Design and off-design efficiency and flow characteristics for the three configurations are presented. The results indicated that peak efficiency and the corresponding isentropic velocity ratio decreased as the arcs of admission were decreased. Both efficiency and flow characteristics were sensitive to the second stage nozzle orientation angles.

  9. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Habibi, M.; Ramezani, V.

    2017-02-01

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of 4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  10. ALMA observations of Titan : Vertical and spatial distribution of nitriles

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Lellouch, E.; Vinatier, S.; Gurwell, M.; Moullet, A.; Lara, L. M.; Hidayat, T.

    2015-10-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ~0.47''. Titan's angular surface diameter was 0.77''. Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/d λ = 3106). We have obtained maps of several nitriles present in Titan' stratosphere: HCN, HC3N, CH3CN, HNC, C2H5CNand other weak lines (isotopes, vibrationnally excited lines).We will present radiative transfer analysis of the spectra acquired. With the combination of all these detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution of these species, as well as isotopic ratios. Moreover, Doppler lineshift measurements will enable us to constrain the zonal wind flow in the upper atmosphere.

  11. Investigation of the interfacial properties of polyurethane/carbon nanotube hybrid composites: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof

    2018-03-01

    Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.

  12. High-resolution resonant and nonresonant fiber-scanning confocal microscope.

    PubMed

    Hendriks, Benno H W; Bierhoff, Walter C J; Horikx, Jeroen J L; Desjardins, Adrien E; Hezemans, Cees A; 't Hooft, Gert W; Lucassen, Gerald W; Mihajlovic, Nenad

    2011-02-01

    We present a novel, hand-held microscope probe for acquiring confocal images of biological tissue. This probe generates images by scanning a fiber-lens combination with a miniature electromagnetic actuator, which allows it to be operated in resonant and nonresonant scanning modes. In the resonant scanning mode, a circular field of view with a diameter of 190 μm and an angular frequency of 127 Hz can be achieved. In the nonresonant scanning mode, a maximum field of view with a width of 69 μm can be achieved. The measured transverse and axial resolutions are 0.60 and 7.4 μm, respectively. Images of biological tissue acquired in the resonant mode are presented, which demonstrate its potential for real-time tissue differentiation. With an outer diameter of 3 mm, the microscope probe could be utilized to visualize cellular microstructures in vivo across a broad range of minimally-invasive procedures.

  13. Butterfly-valve inductive orientation detector

    NASA Astrophysics Data System (ADS)

    Garrett, Steven

    1980-04-01

    Relative changes of inductance ΔL/L of a single layer coil surrounding a thin electrically conducting disk which can rotate about an axis perpendicular to the coil axis are studied experimentally as a means of measuring angular displacements. ΔL/L is found to be a strong function of disk diameter and is weakly dependent on the ratio of disk thickness to electromagnetic skin depth when this ratio is of the order unity. Values of ΔL/L as a function of disk diameter are given for lead, brass and copper. Detection sensitivities using a resonant tank circuit or an astatic transformer are given in terms of ΔL/L and it is shown that sensitivities of the order of 10-3 to 10-4 deg are practical. Application of this system to the Rayleigh disk and cryogenic environments are emphasized and an expression for the magnetic torque due to detection currents is given.

  14. A helical scintillating fiber hodoscope

    NASA Astrophysics Data System (ADS)

    Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Colberg, T.; Demirörs, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Nähle, O.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration

    1999-07-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9°⩽ Θ⩽72° and 0°⩽ ϕ⩽360° in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes.

  15. PHYSICAL EFFECTS OCCURRING DURING GENERATION AND AMPLIFICATION OF LASER RADIATION: Ultimate values of the gain of solid-state rod amplifiers operating under inversion storage conditions

    NASA Astrophysics Data System (ADS)

    Bayanov, V. I.; Vinokurov, G. N.; Zhulin, V. I.; Yashin, V. E.

    1989-02-01

    A numerical calculation is reported of an inversion conservation coefficient of cylindrical rod solid-state amplifiers with the active element diameter from 1.5 to 15 cm operated under continuous pumping conditions. It is shown that the ultimate gain, limited only by superluminescence, exceeds considerably the value usually obtained in experiments. Various methods of eliminating parasitic effects, which limit the gain of real amplifiers, are considered. The degree of influence of these effects on the inversion conservation coefficient is discussed. The results are given of an experimental determination of the gain close to the ultimate value (0.18 cm- 1 for an active element 3 cm in diameter). Calculations are reported of the angular distributions of superluminescence and parasitic modes demonstrating that the latter can be suppressed by spatial filtering.

  16. Overcoming apparent susceptibility-induced anisotropy (aSIA) by bipolar double-pulsed-field-gradient NMR.

    PubMed

    Shemesh, Noam; Cohen, Yoram

    2011-10-01

    Double-Pulsed-Field-Gradient (d-PFG) MR is emerging as a powerful new means for obtaining unique microstructural information in opaque porous systems that cannot be obtained by conventional single-PFG (s-PFG) methods. The angular d-PFG MR methodology is particularly important since it can utilize the effects of microscopic anisotropy (μA) and compartment shape anisotropy (csA) in the E(ψ) profile at the different t(m) regimes to provide detailed information on compartment size and eccentricity. An underlying assumption is that the PFGs that are imparted to weigh diffusion are the only gradients present; however, in realistic systems and especially where there are randomly oriented anisotropic pores, susceptibility effects may induce strong internal gradients. In this study, the effects of such internal gradients on E(ψ) plots obtained from angular d-PFG MR and on microstructural information that can be obtained from s-PFG and d-PFG MR were investigated. First, it was found that internal gradients induce a bias in the s-PFG MR results, thus creating an anisotropy that is not related to microstructure, termed apparent-Susceptibility-Induced-Anisotropy (aSIA). We then show that aSIA effects are also manifest in different ways in the angular d-PFG MR experiment in controlled phantoms and in realistic systems such as quartz sand, emulsions, and biological systems. The effects of aSIA in some cases completely masked the effects of μA and csA; however, we subsequently show that by introducing bipolar gradients to the d-PFG MR (bp-d-PFG), the effects of aSIA can be largely suppressed, restoring the E(ψ) plots that are expected from the theory along with the microstructural information that it conveys. We conclude that when specimens are characterized by strong internal gradients, the novel information on μA and csA that is manifest in the E(ψ) plots can indeed be inferred when bp-d-PFG MR is used, i.e. when bipolar gradients are applied. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  18. LDR: A submillimeter great observatory

    NASA Astrophysics Data System (ADS)

    Wilson, Robert

    1990-12-01

    The Large Deployable Reflector (LDR), a high Earth orbit free flying 10 to 20 m diameter deployable telescope, is described. The LDR is intended for use throughout the submillimeter band, using imaging receivers with unprecedented sensitivity and angular resolution. Its mission is to produce pictures of line emission regions in the solar neighborhood, in nearby galaxies and in objects at the edge of the known galaxy distribution. It is predicted to be an ideal instrument for exploring the first galaxies and protogalaxies as the submillimeter cooling lines should light up as soon as metals form.

  19. The Chara Array Angular Diameter of HR 8799 Favors Planetary Masses for Its Imaged Companions

    DTIC Science & Technology

    2012-12-10

    because of the shallow convective zones in A-type stars ( Charbonneau 1991). Accretion at these rates will quickly establish abundance anomalies within a...few Myr, but these anomalies will likewise disappear in as little as 1 Myr once the accretion has terminated (Turcotte & Charbonneau 1993); the... Charbonneau , P. 1991, ApJ, 372, L33 Chen, C. H., Sargent, B. A., Bohac, C., et al. 2006, ApJS, 166, 351 Claret, A., & Bloemen, S. 2011, A&A, 529, A75 Cox, A. N

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas, E-mail: ellyn.baines@nrl.navy.mil, E-mail: tarmstr@crater.nrl.navy.mil

    We measured the angular diameter of the exoplanet host star {epsilon} Eridani using the Navy Optical Interferometer. We determined its physical radius, effective temperature, and mass by combining our measurement with the star's parallax, photometry from the literature, and the Yonsei-Yale isochrones, respectively. We used the resulting stellar mass of 0.82 {+-} 0.05 M{sub Sun} plus the mass function from Benedict et al. to calculate the planet's mass, which is 1.53 {+-} 0.22 M{sub Jupiter}. Using our new effective temperature, we also estimated the extent of the habitable zone for the system.

  1. AFRPL Graphite Performance Prediction Program. Improved Capability for the Design and Ablation Performance Prediction of Advanced Air Force Solid Propellant Rocket Nozzles

    DTIC Science & Technology

    1976-12-01

    corrosive attack by both acids and alkali and, in addition, is provided with a special Dynel veil for protection against fluoride attack. 3.1.4...throat region, namely , the entrance, center, and exit. In addition, at each station, the diameters were determined at two angular positions 90° apart. The...characterization test matrix. 3.2.1.1 Rocket Motor Environments Rocket motor environments were based on three advanced MX propellants, namely , * XLDB * HTPB * PEG

  2. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  3. Morphological Effect of Doping Environment on Silicon Nanowires Grown by Plasma-Assisted Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Lohn, Andrew J.; Cormia, Robert D.; Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Kobayashi, Nobuhiko P.

    2012-11-01

    Physical properties of semiconductor nanowires are tied intimately to their specific morphologies such as length and diameter. We studied the growth of silicon nanowires and found their lengths and diameters to vary over orders of magnitude in different doping environments. In all cases we examined, doping resulted in increased diameters. In addition, boron doping was found to accelerate volume growth rate while arsenic and antimony both appeared to slow it down. We further studied the formation of the native oxides that cover the nanowires. X-ray photoelectron spectroscopy indicated that properties of the native oxides are also dependent on doping environment and correlated to doping-dependent shifts in apparent binding energy of the Si 2p3/2 peak illustrating that the electronic contribution is the dominant mechanism for the oxide growth.

  4. Fertilization of black spruce or poor site peatland in Minnesota.

    Treesearch

    David H. Alban; Richard F. Watt

    1981-01-01

    Fertilization of poor site black spruce on organic soil with various rates of nitrogen and phosphorus increased height and diameter growth from 2 to 4 times. The growth response declined with time but was still apparent 16 years after fertilization. Shrub biomass and coverage, and nutrient levels of spruce foliage were strongly affected by fertilization.

  5. Characterization of the interface between cellulosic fibers and a thermoplastic matrix

    Treesearch

    Feipeng P. Liu; Michael P. Wolcott; Douglas J. Gardner; Timothy G. Rials

    1994-01-01

    The applicability of the microbond test to evaluate the interfacial properties between cellulosic fibers and thermoplastics was studied. Acetylation and beat treatment were applied to modify the surface of cellulosic fibers (rayon, cotton, and wood). The apparent diameters and surface free energies of the fibers were estimated by dynamic contact angle (DCA) analysis....

  6. Shatter cones: (Mis)understood?

    PubMed

    Osinski, Gordon R; Ferrière, Ludovic

    2016-08-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and "double" cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship D sc = 0.4 D a, where D sc is the maximum spatial extent of in situ shatter cones, and D a is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact.

  7. Shatter cones: (Mis)understood?

    PubMed Central

    Osinski, Gordon R.; Ferrière, Ludovic

    2016-01-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and “double” cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship Dsc = 0.4 Da, where Dsc is the maximum spatial extent of in situ shatter cones, and Da is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact. PMID:27532050

  8. Mission Study for Generation-X: A Large Area and High Angular Observatory to Study the Early Universe

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger

    2005-01-01

    In this report we provide a summary of the technical progress achieved during the last year Generation-X Vision Mission Study. In addition, we provide a brief programmatic status. The Generation-X (Gen-X) Vision Mission Study investigates the science requirements, mission concepts and technology drivers for an X-ray telescope designed to study the new frontier of astrophysics: the birth and evolution of the first stars, galaxies and black holes in the early Universe. X-ray astronomy offers an opportunity to detect these via the activity of the black holes, and the supernova explosions and gamma-ray burst afterglows of the massive stars. However, such objects are beyond the grasp of current missions which are operating or even under development. Our team has conceived a Gen-X Vision Mission based on an X-ray observatory with 100 m2 collecting area at 1 keV (1000 times larger than Chandra) and 0.1 arcsecond angular resolution (several times better than Chandra and 50 times better than the Constellation-X resolution goal). Such a high energy observatory will be capable of detecting the earliest black holes and galaxies in the Universe, and will also study extremes of density, gravity, magnetic fields, and kinetic energy which cannot be created in laboratories. In our study we develop the mission concept and define candidate technologies and performance requirements for Gen-X. The baseline Gen-X mission involves four 8 m diameter X-ray telescopes operating at Sun-Earth L2. We trade against an alternate concept of a single 26 m diameter telescope with focal plane instruments on a separate spacecraft. A telescope of this size will require either robotic or human-assisted in-flight assembly. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required areal density of at least 100 times lower than for Chandra, we study 0.2 mm thick mirrors which have active on-orbit figure control. We also study the suite of required detectors, including a large FOV high angular resolution imager, a cryogenic imaging spectrometer and a reflection grating spectrometer.

  9. The Generation-X X-ray Observatory Vision Mission and Technology Study

    NASA Technical Reports Server (NTRS)

    Figueroa-Feliciano, Enectali

    2004-01-01

    The new frontier in astrophysics is the study of the birth and evolution of the first stars, galaxies and black holes in the early Universe. X-ray astronomy opens a window into these objects by studying the emission from black holes, supernova explosions and the gamma-ray burst afterglows of massive stars. However, such objects are beyond the grasp of current or near-future observatories. X-ray imaging and spectroscopy of such distant objects will require an X-ray telescope with large collecting area and high angular resolution. Our team has conceived the Generation-X Vision Mission based on an X-ray observatory with 100 sq m collecting area at 1 keV (1000 times larger than Chandra) and 0.1 arcsecond angular resolution (several times better than Chandra and 50 times better than the Constellation-X resolution goal). Such an observatory would be capable of detecting the earliest black holes and galaxies in the Universe, and will also study extremes of density, gravity, magnetic fields, and kinetic energy which cannot be created in laboratories. NASA has selected the Generation-X mission for study under its Vision Mission Program. We describe the studies being performed to develop the mission concept and define candidate technologies and performance requirements for Generation-X. The baseline Generation-X mission involves four 8m diameter X-ray telescopes operating at Sun-Earth L2. We trade against an alternate concept of a single 26m diameter telescope with focal plane instruments on a separate spacecraft. A telescope of this size will require either robotic or human-assisted in-flight assembly. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required aerial density of at least 100 times lower than in Chandra, we will study 0.1mm thick mirrors which have active on-orbit figure control. We discuss the suite of required detectors, including a large FOV high angular resolution imager, a cryogenic imaging spectrometer and a grating spectrometer. We outline the development roadmap to confront the many technological challenges far implementing the Generation-X mission.

  10. Anisotropic Thermal Response of Packed Copper Wire

    DOE PAGES

    Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin; ...

    2017-04-19

    The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less

  11. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  12. 24Na at Ex=4.7 -5.9 MeV from 22Ne(3He,p )

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-04-01

    Abstract. Analysis of data from the 22Ne(3He,p ) 24Na reaction has been extended to include 18 angular distributions for states between 4.7 and 5.9 MeV. A distorted-wave Born-approximation analysis allows the determination of ℓ value(s) for most of them. Results for Jπ are compared with previous information. In general, agreement is good. Some apparent disagreements between current and past results are indicative of population of a different state in this reaction than the nearby one listed in the compilation.

  13. Revisiting the Distance Duality Relation using a non-parametric regression method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Akshay; Mahajan, Shobhit; Mukherjee, Amitabha

    2016-07-01

    The interdependence of luminosity distance, D {sub L} and angular diameter distance, D {sub A} given by the distance duality relation (DDR) is very significant in observational cosmology. It is very closely tied with the temperature-redshift relation of Cosmic Microwave Background (CMB) radiation. Any deviation from η( z )≡ D {sub L} / D {sub A} (1+ z ){sup 2} =1 indicates a possible emergence of new physics. Our aim in this work is to check the consistency of these relations using a non-parametric regression method namely, LOESS with SIMEX. This technique avoids dependency on the cosmological model and worksmore » with a minimal set of assumptions. Further, to analyze the efficiency of the methodology, we simulate a dataset of 020 points of η ( z ) data based on a phenomenological model η( z )= (1+ z ){sup ε}. The error on the simulated data points is obtained by using the temperature of CMB radiation at various redshifts. For testing the distance duality relation, we use the JLA SNe Ia data for luminosity distances, while the angular diameter distances are obtained from radio galaxies datasets. Since the DDR is linked with CMB temperature-redshift relation, therefore we also use the CMB temperature data to reconstruct η ( z ). It is important to note that with CMB data, we are able to study the evolution of DDR upto a very high redshift z = 2.418. In this analysis, we find no evidence of deviation from η=1 within a 1σ region in the entire redshift range used in this analysis (0 < z ≤ 2.418).« less

  14. Review and latest news from the VEGA/CHARA facility

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mourard, D.; Perraut, K.; Tallon-Bosc, I.; Meilland, A.; Stee, P.; Ligi, R.; Challouf, M.; Clausse, J.-M.; Berio, P.; Spang, A.

    2014-12-01

    The VEGA instrument located at the focus of the Center for High Angular Resolution Astronomy (CHARA) array in California is a collaborating project between the Lagrange laboratory in Nice, where it has been developed (Mourard et al. 2009, 2011), the IPAG (Grenoble) and CRAL (Lyon) laboratories, and the CHARA group at Mount Wilson Observatory. The outcome from this international collaboration is to provide to the community a visible spectro-interferometer with an unprecedented angular resolution of 0.3 milli-second of arc (mas) together with a spectral resolution of 5000 or 30000. With such an instrument it becomes possible to determine simultaneously the size and the kinematic of the photosphere and/or of the circumstellar environment of the star as a function of the wavelength, which basically means for each spectral channel in the continuum and/or within spectral lines (in Hα for instance). The only limitation is to get enough signal to noise ratio in each spectral channel. We can currently reach a limiting magnitude of 8 in visible in medium spectral resolution (5000) and 4.5 in high resolution (30000). In this proceeding, we illustrate the two main subjects studied with the VEGA instrument, namely (1) how angular diameters are useful to accurately derive the fundamental parameters of stars, (2) how the spectral resolution can allow to study the kinematical structure of stars or even to derive chromatic images of stellar objects.

  15. Vortex coronagraphs for the Habitable Exoplanet Imaging Mission concept: theoretical performance and telescope requirements

    NASA Astrophysics Data System (ADS)

    Ruane, Garreth; Mawet, Dimitri; Mennesson, Bertrand; Jewell, Jeffrey; Shaklan, Stuart

    2018-01-01

    The Habitable Exoplanet Imaging Mission concept requires an optical coronagraph that provides deep starlight suppression over a broad spectral bandwidth, high throughput for point sources at small angular separation, and insensitivity to temporally varying, low-order aberrations. Vortex coronagraphs are a promising solution that performs optimally on off-axis, monolithic telescopes and may also be designed for segmented telescopes with minor losses in performance. We describe the key advantages of vortex coronagraphs on off-axis telescopes such as (1) unwanted diffraction due to aberrations is passively rejected in several low-order Zernike modes relaxing the wavefront stability requirements for imaging Earth-like planets from <10 to >100 pm rms, (2) stars with angular diameters >0.1 λ / D may be sufficiently suppressed, (3) the absolute planet throughput is >10 % , even for unfavorable telescope architectures, and (4) broadband solutions (Δλ / λ > 0.1) are readily available for both monolithic and segmented apertures. The latter make use of grayscale apodizers in an upstream pupil plane to provide suppression of diffracted light from amplitude discontinuities in the telescope pupil without inducing additional stroke on the deformable mirrors. We set wavefront stability requirements on the telescope, based on a stellar irradiance threshold set at an angular separation of 3 ± 0.5λ / D from the star, and discuss how some requirements may be relaxed by trading robustness to aberrations for planet throughput.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Ding, H; Ziemer, B

    Purpose: To investigate the feasibility of energy calibration and energy response characterization of a photon counting detector using x-ray fluorescence. Methods: A comprehensive Monte Carlo simulation study was done to investigate the influence of various geometric components on the x-ray fluorescence measurement. Different materials, sizes, and detection angles were simulated using Geant4 Application for Tomographic Emission (GATE) Monte Carlo package. Simulations were conducted using 100 kVp tungsten-anode spectra with 2 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The fluorescence material was placed 300 mm away from both themore » x-ray source and the detector. For angular dependence measurement, the distance was decreased to 30 mm to reduce the simulation time. Compound materials, containing silver, barium, gadolinium, hafnium, and gold in cylindrical shape, were simulated. The object size varied from 5 to 100 mm in diameter. The angular dependence of fluorescence and scatter were simulated from 20° to 170° with an incremental step of 10° to optimize the fluorescence to scatter ratio. Furthermore, the angular dependence was also experimentally measured using a spectrometer (X-123CdTe, Amptek Inc., MA) to validate the simulation results. Results: The detection angle between 120° to 160° resulted in more optimal x-ray fluorescence to scatter ratio. At a detection angle of 120°, the object size did not have a significant effect on the fluorescence to scatter ratio. The experimental results of fluorescence angular dependence are in good agreement with the simulation results. The Kα and Kβ peaks of five materials could be identified. Conclusion: The simulation results show that the x-ray fluorescence procedure has the potential to be used for detector energy calibration and detector response characteristics by using the optimal system geometry.« less

  17. Evaluation of the technical performance of three different commercial digital breast tomosynthesis systems in the clinical environment.

    PubMed

    Rodríguez-Ruiz, A; Castillo, M; Garayoa, J; Chevalier, M

    2016-06-01

    The aim of this work was to research and evaluate the performance of three different digital breast tomosynthesis (DBT) systems in the clinical environment (Siemens Mammomat Inspiration, Hologic Selenia Dimensions, and Fujifilm Amulet Innovality). The characterization included the study of the detector, the automatic exposure control, and the resolution of DBT projections and reconstructed planes. The modulation transfer function (MTF) of the DBT projections was measured with a 1mm thick steel edge, showing a strong anisotropy (30-40% lower MTF0.5 frequencies in the tube travel direction). The in-plane MTF0.5, measured with a 25μm tungsten wire, ranges from 1.3 to 1.8lp/mm in the tube-travel direction and between 2.4 and 3.7lp/mm in the chest wall-nipple. In the latter direction, the MTF peak shift is more emphasized for large angular range systems (2.0 versus 1.0lp/mm). In-depth resolution of the planes, via the full width at half maximum (FWHM) from the point spread function of a 25μm tungsten wire, is not only influenced by angular range and yields 1.3-4.6mm among systems. The artifact spread function from 1mm diameter tungsten beads depends mainly on angular range, yielding two tendencies whether large (FWHM is 4.5mm) or small (FWHM is 10mm) angular range is used. DBT delivers per scan a mean glandular dose between 1.4 and 2.7mGy for a 45mm thick polymethyl methacrylate (PMMA) block. In conclusion, we have identified and analysed specific metrics that can be used for quality assurance of DBT systems. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. POD- Mapping and analysis of hydroturbine exit flow dynamics

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Morten; Finstad, Pal Henrik

    2012-11-01

    Pairwise radial dynamic measurements of the swirling draft tube flow have been made at the 25 MW Svorka power plant in Surnadal operating at 48% load at 6 radial and 7 angular positions. The data is analyzed with traditional methods as well as with POD. The measurements were made in the turbine draft tube/exit flow in an axial measurement plane about 1200mm downstream the turbine runner. The draft tube diameter in the measurement plane is about 1300mm. The flow rate during measurements was close to 5.8m3/s. Two probes were used; both of length Le=700 mm and made of stainless steel with an outer diameter of Do=20 mm and inner diameter Di=4mm. At the end of each probe a full bridge cylindrical KULITE xcl152, 0-3.5, was mounted. 90 seconds samples at 10 kS/s were taken. The POD analysis largely follows that of Tutkun et al. (see e.g. AIAA J., 45,5,2008). The analysis shows that 26% of the pressure pulsation energy can be addressed to azimuthal mode 1. The work has been supported by Energy Norway.

  19. Photoballistics of volcanic jet activity at Stromboli, Italy

    NASA Technical Reports Server (NTRS)

    Chouet, B.; Hamisevicz, N.; Mcgetchin, T. R.

    1974-01-01

    Two night eruptions of the volcano Stromboli were studied through 70-mm photography. Single-camera techniques were used. Particle sphericity, constant velocity in the frame, and radial symmetry were assumed. Properties of the particulate phase found through analysis include: particle size, velocity, total number of particles ejected, angular dispersion and distribution in the jet, time variation of particle size and apparent velocity distribution, averaged volume flux, and kinetic energy carried by the condensed phase. The frequency distributions of particle size and apparent velocities are found to be approximately log normal. The properties of the gas phase were inferred from the fact that it was the transporting medium for the condensed phase. Gas velocity and time variation, volume flux of gas, dynamic pressure, mass erupted, and density were estimated. A CO2-H2O mixture is possible for the observed eruptions. The flow was subsonic. Velocity variations may be explained by an organ pipe resonance. Particle collimation may be produced by a Magnus effect.

  20. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  1. Inferring diameters of spheres and cylinders using interstitial water.

    PubMed

    Herrera, Sheryl L; Mercredi, Morgan E; Buist, Richard; Martin, Melanie

    2018-06-04

    Most early methods to infer axon diameter distributions using magnetic resonance imaging (MRI) used single diffusion encoding sequences such as pulsed gradient spin echo (SE) and are thus sensitive to axons of diameters > 5 μm. We previously simulated oscillating gradient (OG) SE sequences for diffusion spectroscopy to study smaller axons including the majority constituting cortical connections. That study suggested the model of constant extra-axonal diffusion breaks down at OG accessible frequencies. In this study we present data from phantoms to test a time-varying interstitial apparent diffusion coefficient. Diffusion spectra were measured in four samples from water packed around beads of diameters 3, 6 and 10 μm; and 151 μm diameter tubes. Surface-to-volume ratios, and diameters were inferred. The bead pore radii estimates were 0.60±0.08 μm, 0.54±0.06 μm and 1.0±0.1 μm corresponding to bead diameters ranging from 2.9±0.4 μm to 5.3±0.7 μm, 2.6±0.3 μm to 4.8±0.6 μm, and 4.9±0.7 μm to 9±1 μm. The tube surface-to-volume ratio estimate was 0.06±0.02 μm -1 corresponding to a tube diameter of 180±70 μm. Interstitial models with OG inferred 3-10 μm bead diameters from 0.54±0.06 μm to 1.0±0.1 μm pore radii and 151 μm tube diameters from 0.06±0.02 μm -1 surface-to-volume ratios.

  2. Analogies between the torque-free motion of a rigid body about a fixed point and light propagation in anisotropic media

    NASA Astrophysics Data System (ADS)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2009-03-01

    An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of the modulus of angular velocity ω. The equivalence between this plane construction and the well-known Poinsot's three-dimensional graphical procedure is also shown. From this equivalence, analogies have been found between the general plane wave equation (relation of dispersion) in anisotropic media and basic equations of torque-free motion of a rigid body about a fixed point. These analogies allow reciprocal transfer of results between optics and mechanics and, as an example, reinterpretation of the internal conical refraction phenomenon in biaxial media is carried out. This paper is intended as an interdisciplinary application of analogies for students and teachers in the context of intermediate physics courses at university level.

  3. Assessing the accuracy of using oscillating gradient spin echo sequences with AxCaliber to infer micron-sized axon diameters.

    PubMed

    Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie

    2017-02-01

    Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.

  4. Persistent recovery of normal left ventricular function and dimension in idiopathic dilated cardiomyopathy during long‐term follow‐up: does real healing exist?

    PubMed

    Merlo, Marco; Stolfo, Davide; Anzini, Marco; Negri, Francesco; Pinamonti, Bruno; Barbati, Giulia; Ramani, Federica; Lenarda, Andrea Di; Sinagra, Gianfranco

    2015-01-13

    An important number of patients with idiopathic dilated cardiomyopathy have dramatically improved left ventricular function with optimal treatment; however, little is known about the evolution and long-term outcome of this subgroup, which shows apparent healing. This study assesses whether real healing actually exists in dilated cardiomyopathy. Persistent apparent healing was evaluated among 408 patients with dilated cardiomyopathy receiving tailored medical treatment and followed over the very long-term. Persistent apparent healing was defined as left ventricular ejection fraction ≥50% and indexed left ventricular end-diastolic diameter ≤33 mm/m(2) at both mid-term (19±4 months) and long-term (103±9 months) follow-up. At mid-term, 63 of 408 patients (15%) were apparently healed; 38 (60%; 9%of the whole population) showed persistent apparent healing at long-term evaluation. No predictors of persistent apparent healing were found. Patients with persistent apparent healing showed better heart transplant–free survival at very long-term follow-up (95% versus 71%; P=0.014) compared with nonpersistently normalized patients. Nevertheless, in the very longterm, 37% of this subgroup experienced deterioration of left ventricular systolic function, and 5% died or had heart transplantation. Persistent long-term apparent healing was evident in a remarkable proportion of dilated cardiomyopathy patients receiving optimal medical treatment and was associated with stable normalization of main clinical and laboratory features. This condition can be characterized by a decline of left ventricular function over the very long term, highlighting the relevance of serial nd individualized follow-up in all patients with dilated cardiomyopathy, especially considering the absence of predictors for longterm apparent healing.

  5. Paleomagnetic Euler Poles and the Apparent Polar Wander and Absolute Motion of North America Since the Carboniferous

    NASA Astrophysics Data System (ADS)

    Gordon, Richard G.; Cox, Allan; O'Hare, Scott

    1984-10-01

    The apparent polar wander path for a plate is determined from paleomagnetic data by plotting a time sequence of paleomagnetic poles, each representing the location of the earth's spin axis as seen from the plate. Apparent polar wander paths consist of long, gently curved segments termed tracks linked by short segments with sharp curvature termed cusps. The tracks correspond to time intervals when the direction of plate motion was constant, and the cusps correspond to time intervals when the direction of plate motion was changing. Apparent polar wander tracks, like hot spot tracks, tend to lie along small circles. The center of a circle is called a hot spot Euler pole in the case of hot spot tracks and a paleomagnetic Euler pole in the case of paleomagnetic apparent polar wander paths. Both types of tracks mark the motion of a plate with respect to a point, a rising mantle plume in the case of hot spot tracks and the earth's paleomagnetic axis in the case of apparent polar wander paths. Unlike approaches uced in previous studies, paleomagnetic Euler pole analysis yields all three components of motion—including the east-west motion—of a plate with respect to the paleomagnetic axis. A new method for analyzing paleomagnetic poles along a track by using a maximum likelihood criterion gives the best fit paleomagnetic Euler pole and an ellipsoid of 95% confidence about the paleomagnetic Euler pole. In analyzing synthetic and real data, we found that the ellipsoids are elongate, the long axes being aligned with a great circle drawn from the paleomagnetic Euler pole to the center of the apparent polar wander track. This elongation is caused by the azimuths of circular tracks being better defined than their radii of curvature. A Jurassic-Cretaceous paleomagnetic Euler pole for North America was determined from 13 paleomagnetic poles. This track begins with the Wingate and Kayenta formations (about 200 Ma) and ends with the Niobrara Formation (about 87 Ma). Morgan's hot spot Euler pole for 200-90 Ma lies only 15° outside the 95% confidence ellipsoid of the paleomagnetic Euler pole. The good but not perfect agreement reflects displacement between the hot spot and paleomagnetic reference frames at an average rate that is smaller by an order of magnitude than the rate at which the faster plates are moving. The angular velocity of North America about the Jurassic-Cretaceous paleomagnetic Euler pole was determined by plotting the angular positions of paleomagnetic poles along the track as a function of age. For the Cretaceous the angular velocity was too small to measure. During the Jurassic the angular velocity was high, corresponding to a root-mean-square velocity of 70 km/m.y. for the North American plate. A short time interval of even more rapid movement during the Middle and Late Jurassic, possibly corresponding to the beginning of rapid displacement between North America and Africa, is suggested by the data. The direction of absolute motion of North America during the Jurassic was toward the northwest. A Carboniferous-Permian-Triassic paleomagnetic Euler pole was determined from 26 paleomagnetic poles. The progression of poles along this track is consistent with known ages and stratigraphy, except for some systematic differences between poles from Triassic rocks on the Colorado Plateau and poles from Triassic rocks off the Colorado Plateau. These differences could be due to a small clockwise rotation of the Colorado Plateau with respect to cratonal North America, or to miscorrelations between Triassic rocks on the Colorado Plateau and off the Colorado Plateau, or to large lag times between the deposition and magnetization of some rock units, or to some combination of these possibilities. Despite these ambiguities in interpreting paleomagnetic data from Triassic rocks, the general pattern of apparent polar wander and plate motion during the Carboniferous through Triassic is clear: The root-mean-square velocity of North America was slow (about 20 km/m.y.) during the Carboniferous, probably slow (about 20 km/m.y.) during the Permian, but rapid (60-100 km/m.y.) during the Triassic. Paleomagnetic Euler pole analysis establishes that the present slow (less than 30 km/m.y.) velocity of large continental plates like North America is not an intrinsic property of the plates. Occasionally these plates have, for intervals of 50 ± 20 m.y., moved as rapidly as the oceanic plates are moving today. In our interpretation, during times of rapid motion the continents were attached along a passive margin to oceanic lithosphere that was being subducted at some distance from the continent. Rapid motion stopped when the oceanic lithosphere had been consumed by subduction. If North America, Greenland, and Eurasia were joined as a single land mass during the Jurassic, then a likely location for the subducting oceanic plate attached to this landmass is along the southern margin of the cratonal core of Asia with the oceanic plate extending into Tethys. At the cusp between the Carboniferous-Permian-Triassic track and the Jurassic-Cretaceous track, the trend of the path changes by 160°. The western point of the cusp, which is delineated by paleomagnetic poles from the Chinle, Wingate, and Kayenta formations, is 13° farther west in our analysis than it is in commonly accepted apparent polar wander paths for North America. An implication for terrane analysis is that northward displacements found by using our Late Triassic and Early Jurassic poles are up to 2000 km smaller than are those found by using previously published Late Triassic and Early Jurassic cratonal poles.

  6. Interplanetary Dust Observations by the Juno MAG Investigation

    NASA Astrophysics Data System (ADS)

    Jørgensen, John; Benn, Mathias; Denver, Troelz; Connerney, Jack; Jørgensen, Peter; Bolton, Scott; Brauer, Peter; Levin, Steven; Oliversen, Ronald

    2017-04-01

    The spin-stabilized and solar powered Juno spacecraft recently concluded a 5-year voyage through the solar system en route to Jupiter, arriving on July 4th, 2016. During the cruise phase from Earth to the Jovian system, the Magnetometer investigation (MAG) operated two magnetic field sensors and four co-located imaging systems designed to provide accurate attitude knowledge for the MAG sensors. One of these four imaging sensors - camera "D" of the Advanced Stellar Compass (ASC) - was operated in a mode designed to detect all luminous objects in its field of view, recording and characterizing those not found in the on-board star catalog. The capability to detect and track such objects ("non-stellar objects", or NSOs) provides a unique opportunity to sense and characterize interplanetary dust particles. The camera's detection threshold was set to MV9 to minimize false detections and discourage tracking of known objects. On-board filtering algorithms selected only those objects tracked through more than 5 consecutive images and moving with an apparent angular rate between 15"/s and 10,000"/s. The coordinates (RA, DEC), intensity, and apparent velocity of such objects were stored for eventual downlink. Direct detection of proximate dust particles is precluded by their large (10-30 km/s) relative velocity and extreme angular rates, but their presence may be inferred using the collecting area of Juno's large ( 55m2) solar arrays. Dust particles impact the spacecraft at high velocity, creating an expanding plasma cloud and ejecta with modest (few m/s) velocities. These excavated particles are revealed in reflected sunlight and tracked moving away from the spacecraft from the point of impact. Application of this novel detection method during Juno's traversal of the solar system provides new information on the distribution of interplanetary (µm-sized) dust.

  7. Variable rotational line broadening in the Be star Achernar

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Baade, D.; Townsend, R. H. D.; Carciofi, A. C.; Štefl, S.

    2013-11-01

    Aims: The main theoretical problem for the formation of a Keplerian disk around Be stars is how angular momentum is supplied from the star to the disk, even more so since Be stars probably rotate somewhat subcritically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk-formation/replenishment. The nearby Be star Achernar is presently building a new disk and offers an excellent opportunity to observe this process from relatively close-up. Methods: Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by Hα emission. The variable strength of the non-radial pulsation is confirmed, but does not affect the other results. Results: For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as Δv sini ≲ 35 km s-1. However, unlike assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of Hα line emission. The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the Hα line emission becomes undetectable. Based on observations collected at the European Southern Observatory at La Silla and Paranal, Chile, Prog. IDs: 62.H-0319, 64.H-0548, 072.C-0513, 073.C-0784, 074.C-0012, 073.D-0547, 076.C-0431, 077.D-0390, 077.D-0605, and the technical program IDs 60.A-9120 and 60.A-9036.Appendices are available in electronic form at http://www.aanda.org

  8. Visualization of natural convection heat transfer on a sphere

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Young; Chung, Bum-Jin

    2017-12-01

    Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.

  9. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    DOE PAGES

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; ...

    2018-02-14

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  10. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  11. Observations of H II regions around Zeta OPH and other O-B stars

    NASA Astrophysics Data System (ADS)

    Shestakova, L. I.; Kutirev, A. S.; Ataev, A. Sh.

    1988-01-01

    A Fabry-Perot spectrometer was used to measure the emission intensities in H-beta near Zeta Oph, Alpha Vir, Alpha Cam, and HD 188209. The spectrometer sensitivity is 0.2 rayleighs, the intensity measurement accuracy is 20 percent. Ionization zone boundaries are determined for Zeta Oph and Alpha Vir; the angular diameters of both regions are about 15 deg. The contour of the H II region near Zeta Oph on the level of the double background in the southwest does not close; instead, it expands again and incorporates the region associated with the B-association II Sco.

  12. Automated high-speed Mueller matrix scatterometer.

    PubMed

    Delplancke, F

    1997-08-01

    A new scatterometer-polarimeter is described. It measures the angular distribution of intensity and of the complete Mueller matrix of light scattered by rough surfaces and particle suspensions. The measurement time is 1 s/scattering angle in the present configuration but can be reduced to a few milliseconds with modified electronics. The instrument uses polarization modulation and a Fourier analysis of four detected signals to obtain the 16 Mueller matrix elements. This method is particularly well suited to online, real time, industrial process control involving rough surfaces and large particle suspensions (an arithmetic roughness or particle diameter of >1 microm). Some results are given.

  13. Cosmic distance duality and cosmic transparency

    NASA Astrophysics Data System (ADS)

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak

    2012-12-01

    We compare distance measurements obtained from two distance indicators, Supernovae observations (standard candles) and Baryon acoustic oscillation data (standard rulers). The Union2 sample of supernovae with BAO data from SDSS, 6dFGS and the latest BOSS and WiggleZ surveys is used in search for deviations from the distance duality relation. We find that the supernovae are brighter than expected from BAO measurements. The luminosity distances tend to be smaller then expected from angular diameter distance estimates as also found in earlier works on distance duality, but the trend is not statistically significant. This further constrains the cosmic transparency.

  14. Mid-Infrared Interferometric Monitoring of Evolved Stars: The Dust Shell Around the Mira Variable RR Aquilae at 13 Epochs

    DTIC Science & Technology

    2011-01-01

    photometric and interferometric data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF...λ = 2.2 μm, Δλ = 0.4 μm) angular size with the Infrared Optical Telescope Array ( IOTA ). The uniform disk diameter (UD) of θUD = 10.73 ± 0.66 mas at...with IOTA in the H-band, and classified RR Aql as a target with no detectable asymmetries. The IRAS flux at 12 μm is 332 Jy. The light curve in the V

  15. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  16. Characterization of Photoreceivers for LISA

    NASA Technical Reports Server (NTRS)

    Cervantes, F. Guzman; Livas, J.; Silverberg, R.; Buchanan, E.; Stebbins, R.

    2010-01-01

    LISA will use quadrant photo receivers as front-end devices for the phase meter measuring the motion of drag-free test masses in both angular orientation and separation. We have set up a laboratory testbed for the characterization of photo receivers. Some of the limiting noise sources have been identified and their contribution has been either measured or determined from the measured data. We have built a photo receiver with a 0.5 mm diameter quadrant photodiode with an equivalent input noise of better than 1.8 pA/(square root of)Hz below 20 MHz and a 3 dB bandwidth of 34 MHz.

  17. Predicting liver metastasis of gastrointestinal tract cancer by diffusion-weighted imaging of apparent diffusion coefficient values

    PubMed Central

    Zheng, De-Xian; Meng, Shu-Chun; Liu, Qing-Jun; Li, Chuan-Ting; Shang, Xi-Dan; Zhu, Yu-Seng; Bai, Tian-Jun; Xu, Shi-Ming

    2016-01-01

    AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient (ADC) values of diffusion-weighted imaging (DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer (156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve (ROC curve) was used to analyze the ADC values before treatment to predict the patient’s sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group (P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group (P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group (P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the percentage of the maximum tumor diameter were significantly positively correlated. The results of the ROC curve showed that ADC value with a chemotherapy ineffective threshold value of 1.14 × 10-3 mm2/s before treatment had a sensitivity and specificity of 94.3% and 76.7%, respectively. CONCLUSION: DWI ADC values can be used to predict the response of patients with liver metastasis of gastrointestinal tract cancer to chemotherapy with high sensitivity and relatively high specificity. PMID:26973399

  18. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  19. Spatial filtering and spatial primitives in early vision: an explanation of the Zöllner-Judd class of geometrical illusion.

    PubMed

    Morgan, M J; Casco, C

    1990-10-22

    The apparent length and orientation of short lines is altered when they abut against oblique lines (the Zöllner and Judd illusions). Here we present evidence that the length and orientation biases are geometrically related and probably depend upon the same underlying mechanism. Measurements were done with an 'H' figure, in which the apparent length and orientation of the cross-bar was assessed by the method of adjustment while the orientation of the outer flanking lines was varied. When the flanking lines are oblique the apparent length of the central line is reduced and its orientation is shifted so that it appears more nearly at right-angles to the obliques than is in fact the case. Measurements of the orientation and length effects were made in three observers, over a range of flanking-line angles (90, 63, 45, 34 and 27 deg) and central line lengths (9, 17, 33 and 67 arc min). The biases increased with the tilt of the flanking-lines, and decreased with central line length. The extent of the length bias could be accurately predicted from the angular shift by simple trigonometry. We describe physiological and computational models to account for the relation between the orientation and length biases.

  20. Angular structure of jet quenching within a hybrid strong/weak coupling model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡qˆ/T3K≡q^/T3 that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K ≠ 0 themore » jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We also propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. Thus, this effect must be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. Generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the importance of these processes for understanding the internal, soft, angular structure of high energy jets.« less

  1. Angular structure of jet quenching within a hybrid strong/weak coupling model

    DOE PAGES

    Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; ...

    2017-03-27

    Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡qˆ/T3K≡q^/T3 that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K ≠ 0 themore » jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We also propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. Thus, this effect must be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. Generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the importance of these processes for understanding the internal, soft, angular structure of high energy jets.« less

  2. Gravity-assist engine for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  3. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

    NASA Astrophysics Data System (ADS)

    Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

    2018-06-01

    We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

  4. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, L.F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method are disclosed which includes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy. 5 figs.

  5. Coordinate measuring machine test standard apparatus and method

    DOEpatents

    Bieg, Lothar F.

    1994-08-30

    A coordinate measuring machine test standard apparatus and method which iudes a rotary spindle having an upper phase plate and an axis of rotation, a kinematic ball mount attached to the phase plate concentric with the axis of rotation of the phase plate, a groove mounted at the circumference of the phase plate, and an arm assembly which rests in the groove. The arm assembly has a small sphere at one end and a large sphere at the other end. The small sphere may be a coordinate measuring machine probe tip and may have variable diameters. The large sphere is secured in the kinematic ball mount and the arm is held in the groove. The kinematic ball mount includes at least three mounting spheres and the groove is an angular locating groove including at least two locking spheres. The arm may have a hollow inner core and an outer layer. The rotary spindle may be a ratio reducer. The device is used to evaluate the measuring performance of a coordinate measuring machine for periodic recertification, including 2 and 3 dimensional accuracy, squareness, straightness, and angular accuracy.

  6. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sohrabi, M.; Habibi, M., E-mail: mortezahabibi@gmail.com; Ramezani, V.

    2017-02-15

    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due tomore » the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.« less

  7. Goldstone radar imaging of near-Earth asteroids (469896) 2007 WV4, 2014 JO25, 2017 BQ6, and 2017 CS

    NASA Astrophysics Data System (ADS)

    Naidu, S.; Benner, L.; Brozovic, M.; Giorgini, J. D.; Busch, M.; Jao, J. S.; Lee, C. G.; Snedeker, L. G.; Silva, M. A.; Slade, M. A.; Lawrence, K. J.

    2017-12-01

    We present Goldstone radar imaging of four near-Earth asteroids during Feb-Jun 2017. The signal-to-noise ratios were very strong for each object and we obtained detailed images with range resolutions as fine as 3.75 m/pixel. 2017 BQ6 was discovered on Jan 26 and approached Earth within 6.5 lunar distances on Feb 7. Radar images show that it is a strikingly angular object roughly 200 m in diameter with a rotation period of 3 h. Its multi-faceted shape challenges the expectation that it is a rubble pile. 2017 CS was discovered on Feb 2 and approached within 8 lunar distances on May 29. It appears rounded on large scales but has considerable fine-scale topography evident along its leading edges. The images suggest a diameter of 1 km and a spin period consistent with the 40 h period obtained from photometry by P. Pravec (pers. comm.). The highest resolution images show evidence for meter-size boulders, ridges, and broad concavities. 2007 WV4 was imaged in late May and early June, has a diameter of 900 meters, and appears distinctly angular with at least three large facets > 100 m in extent. Tracking of features in the images gives a rotation period of about 12 hours. 2014 JO25 approached within 4.6 lunar distances on April 19. This was the closest encounter by an asteroid with an absolute magnitude brighter than 18 known in advance until 2027, when 1999 AN10 will approach within one lunar distance. Radar imaging shows that 2014 JO25 is an irregular object, consisting of two components connected by a narrow neck. The asteroid has pole on dimensions of roughly 1 x 0.6 km in the images. Imaging with 3.75 m/pixel resolution places thousands of pixels on the object and reveals ridges, concavities, flat regions up to 200 meters long, and radar-bright spots suggestive of boulders. Tracking of features in the images yields a rotation period of about 4.5 hours that is among the fastest of the 50 known contact binaries in the near-Earth population.

  8. Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F.

    2009-01-01

    Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932-1936) and 210 modern (1988-1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosa-Calocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa dominated the large-diameter component of burned plots. Densities of large-diameter P. ponderosa were 8.1 trees ha-1 in plots that had experienced fire, but only 0.5 trees ha-1 in plots that remained unburned. ?? 2009 Elsevier B.V. All rights reserved.

  9. Evidence of asymmetries in the Aldebaran photosphere from multiwavelength lunar occultations

    NASA Astrophysics Data System (ADS)

    Richichi, A.; Dyachenko, V.; Pandey, A. K.; Sharma, S.; Tasuya, O.; Balega, Y.; Beskakotov, A.; Rastegaev, D.; Dhillon, V. S.

    2017-01-01

    We have recorded three lunar occultations of Aldebaran (α Tau) at different telescopes and using various band-passes, from the ultraviolet to the far red. The data have been analysed using both model-dependent and model-independent methods. The derived uniform-disc angular diameter values have been converted to limb-darkened values using model atmosphere relations and are found in broad agreement among themselves and with previous literature values. The limb-darkened diameter is about 20.3 mas on average. However, we have found indications that the photospheric brightness profile of Aldebaran may have not been symmetric, a finding already reported by other authors for this and for similar late-type stars. At the sampling scale of our brightness profile, between 1 and 2 mas, the uniform and limb-darkened disc models may not be a good description for Aldebaran. The asymmetries appear to differ with wavelength and over the 137-d time span of our measurements. Surface spots appear as a likely explanation for the differences between observations and the models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas; Van Belle, Gerard T., E-mail: ellyn.baines@nrl.navy.mil

    We used the Navy Precision Optical Interferometer to measure the limb-darkened angular diameter of the exoplanet host star {kappa} CrB and obtained a value of 1.543 {+-} 0.009 mas. We calculated its physical radius (5.06 {+-} 0.04 R{sub Sun }) and used photometric measurements from the literature with our diameter to determine {kappa} CrB's effective temperature (4788 {+-} 17 K) and luminosity (12.13 {+-} 0.09 L{sub Sun }). We then placed the star on an Hertzsprung-Russell diagram to ascertain the star's age (3.42{sup +0.32}{sub -0.25} Gyr) and mass (1.47 {+-} 0.04 M{sub Sun }) using a metallicity of [Fe/H] =more » +0.15. With this mass, we calculated the system's mass function with the orbital elements from a variety of sources, which produced a range of planetary masses: m{sub p}sin i = 1.61-1.88 M{sub Jup}. We also updated the extent of the habitable zone for the system using our new temperature.« less

  11. Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-10-01

    A new device was designed to provide fast measurements (4 s) of the peripheral refraction (90 degrees central horizontal field). Almost-continuous traces are obtained with high angular resolution (0.4 degrees) while the subject is fixating a central stimulus. Three-dimensional profiles can also be measured. The peripheral refractions in 10 emmetropic subjects were studied as a function of accommodation (200 cm, 50 cm, and 25 cm viewing distances). Peripheral refraction profiles were largely preserved during accommodation but were different in each individual. Apparently, the accommodating lens changes its focal length evenly over the central 90 degrees of the visual field.

  12. Absorption of a particle by a rotating black hole: The potential barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Leon

    For a test particle approaching a rapidly rotating black hole we find a range of values of the particle’s energy and angular momentum, on the order of 1% or more of the corresponding values of the hole, such that three conditions are satisfied. The particle can reach the horizon. After absorption the new hole still has a horizon. The area of the new hole is less than the area of the original one, in apparent violation of a theorem of Hawking. As a result, we offer support for the claim that the test particle approximation is the cause of themore » violation.« less

  13. Absorption of a particle by a rotating black hole: The potential barrier

    DOE PAGES

    Heller, Leon

    2016-09-02

    For a test particle approaching a rapidly rotating black hole we find a range of values of the particle’s energy and angular momentum, on the order of 1% or more of the corresponding values of the hole, such that three conditions are satisfied. The particle can reach the horizon. After absorption the new hole still has a horizon. The area of the new hole is less than the area of the original one, in apparent violation of a theorem of Hawking. As a result, we offer support for the claim that the test particle approximation is the cause of themore » violation.« less

  14. Stabilization of RNA through Absorption by Functionalized Mesoporous Silicate Nanospheres

    DTIC Science & Technology

    2012-11-30

    storage or storage in restrictive environments. Materials and Methods Chemicals Bovine serum albumin (BSA), trehalose , glucosamine, tetraethyl...NS) were functionalized with trehalose (NS- T), glucosamine (NS-G), and BSA (NS-B). Functionalization of sorbents resulted in a loss in surface area...92 Å for glucosamine and trehalose functionalization (Fig. 2B). BSA functionalization resulted in an apparent loss in smaller diameter mesopores. The

  15. Criteria for electrically heated temperature probes in flames.

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Schryer, D. R.

    1971-01-01

    Measurement techniques proposed by Gilbert and Lobdell (1953) and Rein and O'Laughlin (1967) are considered, giving attention to an apparent paradox. The criteria under which the assumptions made for the measurement techniques apply are specified. If sensors of different diameters are tested and the resultant plots of the parameter ?S' vs the wire temperature intersect below the abscissa, the considered measurement techniques are not applicable.

  16. A strategy for monitoring Swiss needle cast and assessing its growth impact in Douglas-fir plantations of Coastal Oregon

    Treesearch

    Doug Maguire; Alan Kanaskie; Mike McWilliams

    2000-01-01

    Many Douglas-fir plantations along the north coast of Oregon are exhibiting severe symptoms of Swiss needle cast disease (SNC). These symptoms include premature loss of foliage, abundant fungal pseudothecia on needles, yellowing of foliage, and apparent reduction in diameter and height growth. The development of the disease and its impacts on growth are currently being...

  17. Extended Envelopes around Galactic Cepheids. III. Y Ophiuchi and α Persei from Near-Infrared Interferometry with CHARA/FLUOR

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Aufdenberg, Jason P.; Kervella, Pierre; Foresto, Vincent Coudé du; ten Brummelaar, Theo A.; McAlister, Harold A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.

    2007-08-01

    Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade-Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a nonpulsating yellow supergiant (α Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of α Per do not provide evidence for a CSE. The measured CLD is explained by an hydrostatic photospheric model. Our observations of Y Oph, when compared to smaller baseline measurements, suggest that it is surrounded by a CSE with characteristics similar to CSEs found previously around other Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc. Additional evidence points toward the conclusion that most Cepheids are surrounded by faint CSEs, detected by near-infrared interferometry: after observing four Cepheids, all show evidence for a CSE. Our CSE nondetection around a nonpulsating supergiant in the instability strip, α Per, provides confidence in the detection technique and suggests a pulsation driven mass-loss mechanism for the Cepheids.

  18. Is the non-isothermal double β-model incompatible with no time evolution of galaxy cluster gas mass fraction?

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.

    2018-05-01

    In this paper, we propose a new method to obtain the depletion factor γ(z), the ratio by which the measured baryon fraction in galaxy clusters is depleted with respect to the universal mean. We use exclusively galaxy cluster data, namely, X-ray gas mass fraction (fgas) and angular diameter distance measurements from Sunyaev-Zel'dovich effect plus X-ray observations. The galaxy clusters are the same in both data set and the non-isothermal spherical double β-model was used to describe their electron density and temperature profiles. In order to compare our results with those from recent cosmological hydrodynamical simulations, we suppose a possible time evolution for γ(z), such as, γ(z) =γ0(1 +γ1 z) . As main conclusions we found that: the γ0 value is in full agreement with the simulations. On the other hand, although the γ1 value found in our analysis is compatible with γ1 = 0 within 2σ c.l., our results show a non-negligible time evolution for the depletion factor, unlike the results of the simulations. However, we also put constraints on γ(z) by using the fgas measurements and angular diameter distances obtained from the flat ΛCDM model (Planck results) and from a sample of galaxy clusters described by an elliptical profile. For these cases no significant time evolution for γ(z) was found. Then, if a constant depletion factor is an inherent characteristic of these structures, our results show that the spherical double β-model used to describe the galaxy clusters considered does not affect the quality of their fgas measurements.

  19. Design consideration of a multipinhole collimator with septa for ultra high-resolution silicon drift detector modules

    NASA Astrophysics Data System (ADS)

    Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun

    2009-07-01

    The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.

  20. Positron Emission Mammography with Multiple Angle Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark F. Smith; Stan Majewski; Raymond R. Raylman

    2002-11-01

    Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less

  1. A Green Bank Telescope Survey of Large Galactic H II Regions

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Armentrout, W. P.; Luisi, Matteo; Bania, T. M.; Balser, Dana S.; Wenger, Trey V.

    2018-02-01

    As part of our ongoing H II Region Discovery Survey (HRDS), we report the Green Bank Telescope detection of 148 new angularly large Galactic H II regions in radio recombination line (RRL) emission. Our targets are located at a declination of δ > -45^\\circ , which corresponds to 266^\\circ > {\\ell }> -20^\\circ at b=0^\\circ . All sources were selected from the Wide-field Infrared Survey Explorer Catalog of Galactic H II Regions, and have infrared angular diameters ≥slant 260\\prime\\prime . The Galactic distribution of these “large” H II regions is similar to that of the previously known sample of Galactic H II regions. The large H II region RRL line width and peak line intensity distributions are skewed toward lower values, compared with that of previous HRDS surveys. We discover seven sources with extremely narrow RRLs < 10 {km} {{{s}}}-1. If half the line width is due to turbulence, these seven sources have thermal plasma temperatures < 1100 {{K}}. These temperatures are lower than any measured for Galactic H II regions, and the narrow-line components may arise instead from partially ionized zones in the H II region photodissociation regions. We discover G039.515+00.511, one of the most luminous H II regions in the Galaxy. We also detect the RRL emission from three H II regions with diameters > 100 {pc}, making them some of the physically largest known H II regions in the Galaxy. This survey completes the HRDS H II region census in the Northern sky, where we have discovered 887 H II regions and more than doubled the size of the previously known census of Galactic H II regions.

  2. STELLAR PARAMETERS FOR HD 69830, A NEARBY STAR WITH THREE NEPTUNE MASS PLANETS AND AN ASTEROID BELT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanner, Angelle; Boyajian, Tabetha S.; Brewer, John M.

    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674 ± 0.014 mas for the limb-darkened angular diameter of this star leads to a physical radius of R {sub *} = 0.9058 ± 0.0190 R {sub ☉} and luminosity of L {sub *} = 0.622 ± 0.014 L {sub ☉} when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel diagram along with stellar evolution isochrones produces an age of 10.6 ± 4 Gyr and mass of 0.863 ± 0.043 M {sub ☉}. We usemore » archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H] = –0.04 ± 0.03), effective temperature (5385 ± 44 K), and surface gravity (log g = 4.49 ± 0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5 ± 3 Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95 ± 0.19 AU, which is outside the orbit of all three planets and its asteroid belt.« less

  3. On-Sky Tests of a High-Power Pulsed Laser for Sodium Laser Guide Star Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Otarola, Angel; Hickson, Paul; Gagné, Ronald; Bo, Yong; Zuo, Junwei; Xie, Shiyong; Feng, Lu; Rochester, Simon; Budker, Dmitry; Shen, Shixia; Xue, Suijian; Min, Li; Wei, Kai; Boyer, Corinne; Ellerbroek, Brent; Hu, Jingyao; Peng, Qinjun; Xu, Zuyan

    2016-03-01

    We present results of on-sky tests performed in the summer of 2013 to characterize the performance of a prototype high-power pulsed laser for adaptive optics. The laser operates at a pulse repetition rate (PRR) of 600-800Hz, with a 6% duty cycle. Its coupling efficiency was found to be, in the best test case (using 18W of transmitted power), 231±14 photons s-1 sr-1 atom-1 W-1 m2 when circular polarization was employed and 167±17 photons s-1 sr-1 atom-1 W-1 m2 with linear polarization. No improvement was seen when D2b repumping was used, but this is likely due to the relatively large laser guide star (LGS) diameter, typically 10 arcsec or more, which resulted in low irradiance levels. Strong relaxation oscillations were present in the laser output, which have the effect of reducing the coupling efficiency. To better understand the results, a physical modeling was performed using the measured pulse profiles and parameters specific to these tests. The model results, for a 10 arcsec angular size LGS spot, agree well with the observations. When extrapolating the physical model for a sub-arcsecond angular size LGS (typical of what is needed for a successful astronomical guide star), the model predicts that this laser would have a coupling efficiency of 130 photons s-1 sr-1 atom-1 W-1 m2, using circular polarization and D2b repumping, for a LGS diameter of 0.6 arcsec Full Width at Half Maximum (FWHM), and free of relaxation oscillations in the 589 nm laser light.

  4. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  5. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  6. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  7. SU-E-T-391: Assessment and Elimination of the Angular Dependence of the Response of the NanoDot OSLD System in MV Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; University of Sydney, Sydney; RMIT University, Melbourne

    2014-06-01

    Purpose: Assess the angular dependence of the nanoDot OSLD system in MV X-ray beams at depths and mitigate this dependence for measurements in phantoms. Methods: Measurements for 6 MV photons at 3 cm and 10 cm depth and Monte Carlo simulations were performed. Two special holders were designed which allow a nanoDot dosimeter to be rotated around the center of its sensitive volume (5 mm diameter disk). The first holder positions the dosimeter disk perpendicular to the beam (en-face). It then rotates until the disk is parallel with the beam (edge on). This is referred to as Setup 1. Themore » second holder positions the disk parallel to the beam (edge on) for all angles (Setup 2). Monte Carlo simulations using GEANT4 considered detector and housing in detail based on microCT data. Results: An average drop in response by 1.4±0.7% (measurement) and 2.1±0.3% (Monte Carlo) for the 90° orientation compared to 0° was found for Setup 1. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming 100% active material (Al??O??) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response (within simulation uncertainty of about 1%). For Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusion: The nanoDot dosimeter system exhibits a small angular dependence off approximately 2%. Changing the orientation of the dosimeter so that a coplanar beam arrangement always hits the detector material edge on reduces the angular dependence to within the measurement uncertainty of about 1%. This makes the dosimeter more attractive for phantom based clinical measurements and audits with multiple coplanar beams. The Australian Clinical Dosimetry Service is a joint initiative between the Australian Department of Health and the Australian Radiation Protection and Nuclear Safety Agency.« less

  8. Calibration of the ART-XC mirror modules at MSFC

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Tkachenko, A.; Burenin, R.; Filippova, E.; Lapshov, I.; Mereminskiy, I.; Molkov, S.; Pavlinsky, M.; Sazonov, S.; Gubarev, M.; Kolodziejczak, J.; O'Dell, S. L.; Swartz, D.; Zavlin, Vyacheslav E.; Ramsey, B. D.

    2017-10-01

    The Astronomical Röntgen Telescope X-ray Concentrator (ART-XC) is a hard X-ray telescope with energy response up to 30 keV, to be launched on board the Spectrum Röntgen Gamma (SRG) spacecraft in 2018. ART-XC consists of seven identical co-aligned mirror modules. Each mirror assembly is coupled with a CdTe double-sided strip (DSS) focal-plane detector. Eight X-ray mirror modules (seven flight and one spare units) for ART-XC were developed and fabricated at the Marshall Space Flight Center (MSFC), NASA, USA. We present results of testing procedures performed with an X-ray beam facility at MSFC to calibrate the point spread function (PSF) of the mirror modules. The shape of the PSF was measured with a high-resolution CCD camera installed in the focal plane with defocusing of 7 mm, as required by the ART-XC design. For each module, we performed a parametrization of the PSF at various angular distances Θ. We used a King function to approximate the radial profile of the near on-axis PSF (Θ < 9 arcmin) and an ellipse fitting procedure to describe the morphology of the far off-axis angular response (9 < Θ < 24 arcmin). We found a good agreement between the seven ART-XC flight mirror modules at the level of 10%. The on-axis angular resolution of the ART-XC optics varies between 27 and 33 arcsec (half-power diameter), except for the spare module.

  9. Weak lensing by galaxy troughs in DES Science Verification data

    DOE PAGES

    Gruen, D.; Friedrich, O.; Amara, A.; ...

    2015-11-29

    In this study, we measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers ofmore » the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.« less

  10. Distance within colloidal dimers probed by rotation-induced oscillations of scattered light.

    PubMed

    van Vliembergen, Roland W L; van IJzendoorn, Leo J; Prins, Menno W J

    2016-01-25

    Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it represents the most sensitive phase of diagnostic aggregation assays. Here, we characterize dimers by rotating them in a magnetic field and by recording the angle dependence of light scattering. At small scattering angles, the scattering cross section can be approximated by the total cross-sectional area of the dimer. In contrast, at scattering angles around 90 degrees, we reveal that the dependence of the scattering cross section on the dimer angle shows a series of peaks per single 2π rotation of the dimers. These characteristics originate from optical interactions between the two particles, as we have verified with two-particle Mie scattering simulations. We have studied in detail the angular positions of the peaks. It appears from simulations that the influence of particle size polydispersity, Brownian rotation and refractive index on the angular positions of the peaks is relatively small. However, the angular positions of the peaks strongly depend on the distance between the particles. We find a good correspondence between measured data and calculations for a gap of 180 nm between particles having a diameter of 1 micrometer. The experiment and simulations pave the way for extracting distance-specific data from ensembles of dimerizing colloidal particles, with application for sensitive diagnostic aggregation assays.

  11. Angular correlation function of 1.5 million luminous red galaxies: clustering evolution and a search for baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Sawangwit, U.; Shanks, T.; Abdalla, F. B.; Cannon, R. D.; Croom, S. M.; Edge, A. C.; Ross, Nicholas P.; Wake, D. A.

    2011-10-01

    We present the angular correlation function measured from photometric samples comprising 1562 800 luminous red galaxies (LRGs). Three LRG samples were extracted from the Sloan Digital Sky Survey (SDSS) imaging data, based on colour-cut selections at redshifts, z≈ 0.35, 0.55 and 0.7 as calibrated by the spectroscopic surveys, SDSS-LRG, 2dF-SDSS LRG and QSO (quasi-stellar object) (2SLAQ) and the AAΩ-LRG survey. The galaxy samples cover ≈7600 deg2 of sky, probing a total cosmic volume of ≈5.5 h-3 Gpc3. The small- and intermediate-scale correlation functions generally show significant deviations from a single power-law fit with a well-detected break at ≈1 h-1 Mpc, consistent with the transition scale between the one- and two-halo terms in halo occupation models. For galaxy separations 1-20 h-1 Mpc and at fixed luminosity, we see virtually no evolution of the clustering with redshift and the data are consistent with a simple high peaks biasing model where the comoving LRG space density is constant with z. At fixed z, the LRG clustering amplitude increases with luminosity in accordance with the simple high peaks model, with a typical LRG dark matter halo mass 1013-1014 h-1 M⊙. For r < 1 h-1 Mpc, the evolution is slightly faster and the clustering decreases towards high redshift consistent with a virialized clustering model. However, assuming the halo occupation distribution (HOD) and Λ cold dark matter (ΛCDM) halo merger frameworks, ˜2-3 per cent/Gyr of the LRGs are required to merge in order to explain the small scales clustering evolution, consistent with previous results. At large scales, our result shows good agreement with the SDSS-LRG result of Eisenstein et al. but we find an apparent excess clustering signal beyond the baryon acoustic oscillations (BAO) scale. Angular power spectrum analyses of similar LRG samples also detect a similar apparent large-scale clustering excess but more data are required to check for this feature in independent galaxy data sets. Certainly, if the ΛCDM model were correct then we would have to conclude that this excess was caused by systematics at the level of Δw≈ 0.001-0.0015 in the photometric AAΩ-LRG sample.

  12. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  13. Experimental development of rod pinch diode radiographic source using modified KALI 1000 pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com

    2014-07-01

    This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less

  14. Mars Pathfinder Near-Field Rock Distribution Re-Evaluation

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Golombek, M. P.

    2003-01-01

    We have completed analysis of a new near-field rock count at the Mars Pathfinder landing site and determined that the previously published rock count suggesting 16% cumulative fractional area (CFA) covered by rocks is incorrect. The earlier value is not so much wrong (our new CFA is 20%), as right for the wrong reason: both the old and the new CFA's are consistent with remote sensing data, however the earlier determination incorrectly calculated rock coverage using apparent width rather than average diameter. Here we present details of the new rock database and the new statistics, as well as the importance of using rock average diameter for rock population statistics. The changes to the near-field data do not affect the far-field rock statistics.

  15. Can Coulomb repulsion for charged particle beams be overcome?

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-01-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into a small spots at large distances from the defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Since the nonreversible terms should be small, it might be possible to construct an electron beam directed energy weapon.

  16. OBSERVATIONAL EVIDENCE AGAINST LONG-LIVED SPIRAL ARMS IN GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foyle, K.; Rix, H.-W.; Walter, F.

    2011-07-10

    We test whether the spiral patterns apparent in many large disk galaxies should be thought of as dynamical features that are stationary in a corotating frame for {approx}> t{sub dyn}, as implied by the density wave approach for explaining spiral arms. If such spiral arms have enhanced star formation (SF), observational tracers for different stages of the SF sequence should show a spatial ordering, from upstream to downstream in the corotating frame: dense H I, CO, tracing molecular hydrogen gas, 24 {mu}m emission tracing enshrouded SF, and UV emission tracing unobscured young stars. We argue that such a spatial orderingmore » should be reflected in the angular cross-correlation (CC, in polar coordinates) using all azimuthal positions among pairs of these tracers; the peak of the CC should be offset from zero, in different directions inside and outside the corotation radius. Recent spiral SF simulations by Dobbs and Pringle show explicitly that for the case of a stationary spiral arm potential such angular offsets between gas and young stars of differing ages should be observable as cross-correlation offsets. We calculate the angular cross-correlations for different observational SF sequence tracers in 12 nearby spiral galaxies, drawing on a data set with high-quality maps of the neutral gas (H I, THINGS) and molecular gas (CO, HERACLES), along with 24 {mu}m emission (Spitzer, SINGS); we include FUV images (GALEX) and 3.6 {mu}m emission (Spitzer, IRAC) for some galaxies, tracing aging stars and longer timescales. In none of the resulting tracer cross-correlations for this sample do we find systematic angular offsets, which would be expected for a stationary dynamical spiral pattern of well-defined pattern speed. This result indicates that spiral density waves in their simplest form are not an important aspect of explaining spirals in large disk galaxies.« less

  17. Inkjet printing ultra-large graphene oxide flakes

    NASA Astrophysics Data System (ADS)

    He, Pei; Derby, Brian

    2017-06-01

    Graphene oxide 2D materials inks with mean flake diameter 36 µm can be inkjet printed, with no significant blockage of the printer or apparent damage to the flakes, despite the mean flake size being  >50% of the printer nozzle diameter and the ink containing individual flakes considerably larger than the nozzle. Printed flakes show a similar level of wrinkle and fold defects as observed in flakes deposited by drop casting. Polarised light imaging of the ink in the printhead prior to printing shows alignment of the flakes in the shear flow and this is believed to allow passage without agglomeration or blocking of the nozzle. The bulk electrical conductivity of these ultra-large flake printed films is 2.48  ×  104 Sm-1 after reduction, which is comparable to that reported with printed pristine graphene. The conductivity of the printed films increases slightly with increasing flake size indicating that there is no increase in damage to electrical properties as the flakes approach and exceed the nozzle diameter.

  18. Cryo-transmission electron tomography of native casein micelles from bovine milk

    PubMed Central

    Trejo, R.; Dokland, T.; Jurat-Fuentes, J.; Harte, F.

    2013-01-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (~20 to 30 nm in diameter), channels (diameter greater than ~5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. PMID:22118067

  19. Pancreatic hardness: Correlation of surgeon’s palpation, durometer measurement and preoperative magnetic resonance imaging features

    PubMed Central

    Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung

    2017-01-01

    AIM To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. METHODS Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. RESULTS The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. CONCLUSION Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results. PMID:28373771

  20. Pancreatic hardness: Correlation of surgeon's palpation, durometer measurement and preoperative magnetic resonance imaging features.

    PubMed

    Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung

    2017-03-21

    To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results.

  1. Tool and process for miniature explosive joining of tubes

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor)

    1987-01-01

    A tool and process to be used in the explosive joining of tubes is disclosed. The tool consists of an initiator, a tool form, and a ribbon explosive. The assembled tool is a compact, storable, and safe device suitable for explosive joining of small, lightweight tubes down to 0.20 inch in diameter. The invention is inserted into either another tube or a tube plate. A shim or standoff between the two surfaces to be welded is necessary. Initiation of the explosive inside the tube results in a high velocity, angular collision between the mating surfaces. This collision creates surface melts and collision bonding wherein electron-sharing linkups are formed.

  2. Halbach array generator/motor having an automatically regulated output voltage and mechanical power output

    DOEpatents

    Post, Richard F.

    2005-02-22

    A motor/generator having its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along its axis of rotation. The rotor includes a Halbach array. The stator windings are switched or commutated to provide a DC motor/generator much the same as in a conventional DC motor/generator. The voltage and power are automatically regulated by using centrifugal force to change the diameter of the rotor, and thereby vary the radial gap in between the stator and the rotating Halbach array, as a function of the angular velocity of the rotor.

  3. Characteristic microwave background distortions from collapsing domain wall bubbles

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    The magnitude and angular pattern of distortions of the microwave background are analyzed by collapsing spherical domain walls. A characteristic pattern of redshift distortions of red or blue spikes surrounded by blue discs was found. The width and height of a spike is related to the diameter and magnitude of the disc. A measurement of the relations between these quantities thus can serve as an unambiguous indicator for a collapsing spherical domain wall. From the redshift distortion in the blue discs an upper bound was found on the surface energy density of the walls sigma is less than or approximately 8 MeV cubed.

  4. The effect of the pressure on the deceleration parameter in inhomogeneous cosmological models

    NASA Astrophysics Data System (ADS)

    Vrba, David

    2012-07-01

    The cosmological parameters have been recently widely studied within inhomogeneous cosmological models. The investigation is usually done in the Lemaitre-Tolman-Bondi (LTB) metric, the spherically symmetric dust solution of Einstein equations. However only little attention has been paid to models with nonzero pressure. Recently it has been pointed out, that pressure gradients can have significant impact on the angular diameter distance redshift relation and it seems to be important to investigate how it effects other cosmological parameters. Here we investigate the influence of the pressure on the backreaction and consequently on the deceleration parameter using the inhomogeneous Lemaitre metric.

  5. Far-ultraviolet energy distributions of the metal-poor A stars HD 109995 and HD 161817

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Low-resolution IUE spectra at wavelengths between 1300 and 3400 A of the metal-poor stars HD 109995 (A1p) and HD 161817 (A4p) have been compared with model-atmosphere energy distributions computed by Kurucz (1979). Good overall agreement is found. Effective temperatures, metal abundances, and angular diameters could be determined. Assuming an absolute visual magnitude of 0.7, the previously determined gravity log = 3 yields masses of 0.5 solar masses for both stars. It is found that the theoretical UBV colors calculated earlier agree reaonably well with the ones observed for these stars.

  6. Investigation of light scattering as a technique for detecting discrete soot particles in a luminous flame

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The practicability of using a classical light-scattering technique, involving comparison of angular scattering intensity patterns with theoretically determined Mie and Rayleight patterns, to detect discrete soot particles (diameter less than 50 nm) in premixed propane/air and propane/oxygen-helium flames is considered. The experimental apparatus employed in this investigation included a laser light source, a flat-flame burner, specially coated optics, a cooled photomultiplier detector, and a lock-in voltmeter readout. Although large, agglomerated soot particles were detected and sized, it was not possible to detect small, discrete particles. The limiting factor appears to be background scattering by the system's optics.

  7. Numerical experiments with flows of elongated granules

    NASA Technical Reports Server (NTRS)

    Elrod, Harold G.; Brewe, David E.

    1992-01-01

    Theory and numerical results are given for a program simulating two dimensional granular flow (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely wide slider. Each granule is simulated by a central repulsive force field ratcheted with force restitution factor to introduce dissipation. Transmission of angular momentum between particles occurs via Coulomb friction. The effect of granular hardness is explored. Gaps from 7 to 28 particle diameters are investigated, with solid fractions ranging from 0.2 to 0.9. Among features observed are: slip flow at boundaries, coagulation at high densities, and gross fluctuation in surface stress. A videotape has been prepared to demonstrate the foregoing effects.

  8. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Zavlin, V.; Swartz, D.; Elsner, R. F.; ODell, S.; Kilaru, K.; Atkins, C.; McCracken, J.; Pavlinsky, M.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  9. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approximately 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  10. ART-XC/SRG: Status of the X-ray Optics Development

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Elsner, R.; O'Dell, S.; Kolodziejczak, J.; McCracken, J.; Zavlin, V.; Swartz, D.; Kilaru, K.; Atkins, C.; hide

    2014-01-01

    The Astronomical Roentgen Telescope (ART) instrument is a hard-x-ray instrument with energy response up to 30 keV that is to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. The instrument consists of seven identical mirror modules coupled with seven CdTe strip focal-plane detectors. The mirror modules are being developed at the Marshall Space Flight Center (MSFC.) Each module has approx. 65 sq. cm effective area and an on-axis angular resolution of 30 arcseconds half power diameter (HPD) at 8 keV. The current status of the mirror module development and testing will be presented.

  11. Angular Diameters of Stars from the Mark III Optical Interferometer

    DTIC Science & Technology

    2003-11-01

    0.105 8775 .............. Peg 16.528 0.165 16.326 0.229 16.464 0.230 15.970 0.319 17.982 0.180 8796 .............. 56 Peg 2.190 0.048 2.031...1.000 1.000 1.000 8796 .............. 56 Peg 1.001 0.005 0.987 0.012 . . . . . . Notes.—If an entry for a star does not have an error estimate, that...3.92 M2.5 III 3639 47 8775 .............. Peg 2.42 1.50 4.63 15.22 M2.5 II 3448 42 8796 .............. 56 Peg 4.77 0.97 . . . 0.54 G8.0 I 4152

  12. Transient Torque Technique for Viscosity and Electrical Conductivity Determination of Semiconducting Liquids

    NASA Technical Reports Server (NTRS)

    Li, C.; Scripa, R. N.; Ban, H.; Lin, B.; Su, C.-H.; Lehoczky, S. L.; Feth, S.; Zhu, S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A novel apparatus based on transient torque technique is constructed in MSFC/NASA. The apparatus uses a 125um diameter quartz fiber as torsion wire. A high sensitive angular detector is implemented to measure the deflection angle of the crucible containing the liquid. A rotating magnetic field (RMF) is used to induce a rotating flow of a conducting or semiconducting melts. By measuring the magnitude and transient behavior of the induced deflection angle, the electrical conductivity and viscosity of the melt can be measured simultaneously. High purity elements namely Hg, Ga, Zn and Te are tested at room temperature and high temperature up to 900 C.

  13. Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection

    NASA Technical Reports Server (NTRS)

    Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.

    2016-01-01

    The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.

  14. Synthetic Vaccines for the Control of Arenavirus Infections

    DTIC Science & Technology

    1992-03-31

    is envel- tions. For example. Lassa fever and CH have several sopcd apparently buds from the cytoplasmic membrane (no similarities, including an acutc...course, involvement of mul- intact virions were seen intra-ellularly). has a glycoprotein tiple organs (including liver and spleen), petechial hemor...c fringe ,ontains ribosomelike interna! structures, and has a rhale, (although not prominent in either CH or Lassa fever ). A diameter ranging from 67

  15. Effects of fertilization on the growth and development of a Japanese larch plantation in West Virginia

    Treesearch

    James N. Kochenderfer; H. Clay Smith; Jerry T. Crews

    1995-01-01

    The effects of fertilization on the growth and development of a Japanese larch plantation in central West Virginia were evaluated after 9 years. Mean height and diameter growth of the larch trees were greater on the unfertilized plots. Foliar and soil chemical analyses were used to examine this apparent anomaly. Japanese larch demonstrated an ability to grow well on a...

  16. Detecting Compartmental non-Gaussian Diffusion with Symmetrized Double-PFG MRI

    PubMed Central

    Paulsen, Jeffrey L.; Özarslan, Evren; Komlosh, Michal E.; Basser, Peter J.; Song, Yi-Qiao

    2015-01-01

    Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present Symmetrized Double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time-dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth moment (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics and act as a novel source of contrast to better resolve tissue micro-structure. PMID:26434812

  17. Concealed d -wave pairs in the s ± condensate of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less

  18. Concealed d -wave pairs in the s ± condensate of iron-based superconductors

    DOE PAGES

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-02

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less

  19. Concealed d-wave pairs in the s± condensate of iron-based superconductors.

    PubMed

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-17

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave ([Formula: see text]) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. Here, we propose a new class of [Formula: see text] state containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave ([Formula: see text]) motion of the pairs with the internal angular momenta [Formula: see text] of the iron orbitals to make a singlet ([Formula: see text]), an [Formula: see text] superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba1-x KXFe2As2 as a reconfiguration of the orbital and internal angular momentum into a high spin ([Formula: see text]) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. The formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.

  20. Annealing induced low coercivity, nanocrystalline Co-Fe-Si thin films exhibiting inverse cosine angular variation

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Al-Harthi, Salim; Al-Omari, I. A.; Geetha, P.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Anantharaman, M. R.

    2013-09-01

    Co-Fe-Si based films exhibit high magnetic moments and are highly sought after for applications like soft under layers in perpendicular recording media to magneto-electro-mechanical sensor applications. In this work the effect of annealing on structural, morphological and magnetic properties of Co-Fe-Si thin films was investigated. Compositional analysis using X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a native oxide surface layer consisting of oxides of Co, Fe and Si on the surface. The morphology of the as deposited films shows mound like structures conforming to the Volmer-Weber growth model. Nanocrystallisation of amorphous films upon annealing was observed by glancing angle X-ray diffraction and transmission electron microscopy. The evolution of magnetic properties with annealing is explained using the Herzer model. Vibrating sample magnetometry measurements carried out at various angles from 0° to 90° to the applied magnetic field were employed to study the angular variation of coercivity. The angular variation fits the modified Kondorsky model. Interestingly, the coercivity evolution with annealing deduced from magneto-optical Kerr effect studies indicates a reverse trend compared to magetisation observed in the bulk. This can be attributed to a domain wall pinning at native oxide layer on the surface of thin films. The evolution of surface magnetic properties is correlated with morphology evolution probed using atomic force microscopy. The morphology as well as the presence of the native oxide layer dictates the surface magnetic properties and this is corroborated by the apparent difference in the bulk and surface magnetic properties.

  1. On Facilitating the use of HARDI in population studies by creating Rotation-Invariant Markers

    PubMed Central

    Caruyer, Emmanuel; Verma, Ragini

    2014-01-01

    We design and evaluate a novel method to compute rotationally invariant features using High Angular Resolution Diffusion Imaging (HARDI) data. These measures quantify the complexity of the angular diffusion profile modeled using a higher order model, thereby giving more information than classical diffusion tensor-derived parameters. The method is based on the spherical harmonic (SH) representation of the angular diffusion information, and is generalizable to a range of HARDI reconstruction models. These scalars are obtained as homogeneous polynomials of the SH representation of a HARDI reconstruction model. We show that finding such polynomials is equivalent to solving a large linear system of equations, and present a numerical method based on sparse matrices to efficiently solve this system. Among the solutions, we only keep a subset of algebraically independent polynomials, using an algorithm based on a numerical implementation of the Jacobian criterion. We compute a set of 12 or 25 rotationally invariant measures representative of the underlying white matter for the rank-4 or rank-6 spherical harmonics (SH) representation of the apparent diffusion coefficient (ADC) profile, respectively. Synthetic data was used to investigate and quantify the difference in contrast. Real data acquired with multiple repetitions showed that within subject variation in the invariants was less than the difference across subjects - facilitating their use to study population differences. These results demonstrate that our measures are able to characterize white matter, especially complex white matter found in regions of fiber crossings and hence can be used to derive new biomarkers for HARDI and can be used for HARDI-based population analysis. PMID:25465846

  2. Orbit Alignment in Triple Stars

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2017-08-01

    The statistics of the angle Φ between orbital angular momenta in hierarchical triple systems with known inner visual or astrometric orbits are studied. A correlation between apparent revolution directions proves the partial orbit alignment known from earlier works. The alignment is strong in triples with outer projected separation less than ˜50 au, where the average Φ is about 20^\\circ . In contrast, outer orbits wider than 1000 au are not aligned with the inner orbits. It is established that the orbit alignment decreases with the increasing mass of the primary component. The average eccentricity of inner orbits in well-aligned triples is smaller than in randomly aligned ones. These findings highlight the role of dissipative interactions with gas in defining the orbital architecture of low-mass triple systems. On the other hand, chaotic dynamics apparently played a role in shaping more massive hierarchies. The analysis of projected configurations and triples with known inner and outer orbits indicates that the distribution of Φ is likely bimodal, where 80% of triples have {{Φ }}< 70^\\circ and the remaining ones are randomly aligned.

  3. Influence of diameter on particle transport in a fractured shale saprolite

    USGS Publications Warehouse

    Cumbie, D.H.; McKay, L.D.

    1999-01-01

    Experiments in an undisturbed, saturated column of weathered and fractured shale saprolite using fluorescent carboxylate-coated latex microspheres as tracers indicate that particle diameter plays a major role in controlling transport. In this study the optimum microsphere diameter for transport was approximately 0.5 ??m. Microspheres larger than the optimum size were present in the effluent at lower relative concentrations, apparently because of greater retention due to gravitational settling and/or physical straining. The smaller than optimum microspheres also experienced greater retention, apparently related to their higher rates of diffusion. Faster diffusion can lead to more frequent collisions with, and attachment to, fracture walls and may also lead to movement of particles into zones of relatively immobile pore water in the fractures or in the fine pore structure of the clay-rich matrix between fractures. Dismantling of the soil column and mapping of the distribution of retained microspheres indicated that there was substantial size-segregation of the microspheres between different fractures or in 'channels' within a fracture. Examination of small core samples showed that the smallest microspheres (0.05-0.1 ??m) were present in the fine pores of the matrix at distances of up to 3-4 mm from the nearest fracture, which supports the hypothesis that small particles can be retained by diffusion into the matrix. Calculations of settling velocity and diffusion rate using simple 1D approaches suggest that these processes could both cause significant retention of the larger and smaller particles, respectively, even for the fast advective transport rates (up to 32 m/day) observed during the experiments. Copyright (C) 1999 Elsevier Science B.V.

  4. Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Della Monica Ferreira, D.; Shortt, B.; Bavdaz, M.; Bergback Knudsen, E.; Bianucci, G.; Christensen, F.; Civitani, M.; Collon, M.; Conconi, P.; Fransen, S.; Marioni, F.; Massahi, S.; Pareschi, G.; Salmaso, B.; Jegers, A. S.; Tayabaly, K.; Valsecchi, G.; Westergaard, N.; Wille, E.

    2017-09-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m2 effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module's segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

  5. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

  6. ON THE CONNECTION OF THE APPARENT PROPER MOTION AND THE VLBI STRUCTURE OF COMPACT RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moor, A.; Frey, S.; Lambert, S. B.

    2011-06-15

    Many of the compact extragalactic radio sources that are used as fiducial points to define the celestial reference frame are known to have proper motions detectable with long-term geodetic/astrometric very long baseline interferometry (VLBI) measurements. These changes can be as high as several hundred microarcseconds per year for certain objects. When imaged with VLBI at milliarcsecond (mas) angular resolution, these sources (radio-loud active galactic nuclei) typically show structures dominated by a compact, often unresolved 'core' and a one-sided 'jet'. The positional instability of compact radio sources is believed to be connected with changes in their brightness distribution structure. For themore » first time, we test this assumption in a statistical sense on a large sample rather than on only individual objects. We investigate a sample of 62 radio sources for which reliable long-term time series of astrometric positions as well as detailed 8 GHz VLBI brightness distribution models are available. We compare the characteristic direction of their extended jet structure and the direction of their apparent proper motion. We present our data and analysis method, and conclude that there is indeed a correlation between the two characteristic directions. However, there are cases where the {approx}1-10 mas scale VLBI jet directions are significantly misaligned with respect to the apparent proper motion direction.« less

  7. Usefulness of the apparent diffusion coefficient for the evaluation of the white matter to differentiate between glioblastoma and brain metastases.

    PubMed

    Miquelini, L A; Pérez Akly, M S; Funes, J A; Besada, C H

    2016-01-01

    To determine whether there are significant differences in the apparent diffusion coefficient (ADC) between the apparently normal peritumor white matter surrounding glioblastomas and that surrounding brain metastases. We retrospectively reviewed 42 patients with histologically confirmed glioblastomas and 42 patients with a single cerebral metastasis. We measured the signal intensity in the apparently normal peritumor white matter and in the abnormal peritumor white matter on the ADC maps. We used mean ADC values in the contralateral occipital white matter as a reference from which to design normalized ADC indices. We compared mean values between the two tumor types. We calculated the area under the receiver operator characteristic curve and estimated the sensitivity and specificity of the measurements taken. Supratentorial lesions and compromise of the corpus callosum were more common in patients with glioblastoma than in patients with brain metastases. The maximum diameter of the enhanced area after injection of a contrast agent was greater in the glioblastomas (p<0.001). The minimum ADC value measured in the apparently normal peritumor white matter was higher for the glioblastomas than for the metastases (p=0.002). Significant differences in the ADC index were found only for the minimum ADC value in apparently normal peritumor white matter. The sensitivity and specificity were less than 70% for all variables analyzed. There are differences in the ADC values of apparently normal peritumor white matter between glioblastomas and cerebral metastases, but the magnitude of these differences is slight and the application of these differences in clinical practice is still limited. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  8. Obesity and overweight associated with increased carotid diameter and decreased arterial function in young otherwise healthy men.

    PubMed

    Kappus, Rebecca M; Fahs, Christopher A; Smith, Denise; Horn, Gavin P; Agiovlasitis, Stomatis; Rossow, Lindy; Jae, Sae Y; Heffernan, Kevin S; Fernhall, Bo

    2014-04-01

    Obesity is linked to cardiovascular disease, stroke, increased mortality and vascular remodeling. Although increased arterial diameter is associated with multiple cardiovascular risk factors and obesity, it is unknown whether lumen enlargement is accompanied by unfavorable vascular changes in young and otherwise healthy obese individuals. The purpose of this study was to compare carotid and brachial artery diameter, blood pressure, arterial stiffness, and endothelial function in young, apparently healthy, normal-weight, overweight, and obese male subjects. One hundred sixty-five male subjects (27.39±0.59 years) were divided into 3 groups (normal weight, overweight, and obese) according to body mass index. Subjects underwent cardiovascular measurements to determine arterial diameter, function, and stiffness. After adjusting for age, the obese group had significantly greater brachial, carotid, and aortic pressures, brachial pulse wave velocity, carotid intima media thickness, and carotid arterial diameter compared with both the overweight and normal-weight groups. Obesity is associated with a much worse arterial profile, as an increased carotid lumen size was accompanied by higher blood pressure, greater arterial stiffness, and greater carotid intima media thickness in obese compared with overweight or normal-weight individuals. These data suggest that although obesity may be a factor in arterial remodeling, such remodeling is also accompanied by other hemodynamic and arterial changes consistent with reduced arterial function and increased cardiovascular risk.

  9. Obesity and Overweight Associated With Increased Carotid Diameter and Decreased Arterial Function in Young Otherwise Healthy Men

    PubMed Central

    2014-01-01

    BACKGROUND Obesity is linked to cardiovascular disease, stroke, increased mortality and vascular remodeling. Although increased arterial diameter is associated with multiple cardiovascular risk factors and obesity, it is unknown whether lumen enlargement is accompanied by unfavorable vascular changes in young and otherwise healthy obese individuals. The purpose of this study was to compare carotid and brachial artery diameter, blood pressure, arterial stiffness, and endothelial function in young, apparently healthy, normal-weight, overweight, and obese male subjects. METHODS One hundred sixty-five male subjects (27.39±0.59 years) were divided into 3 groups (normal weight, overweight, and obese) according to body mass index. Subjects underwent cardiovascular measurements to determine arterial diameter, function, and stiffness. RESULTS After adjusting for age, the obese group had significantly greater brachial, carotid, and aortic pressures, brachial pulse wave velocity, carotid intima media thickness, and carotid arterial diameter compared with both the overweight and normal-weight groups. CONCLUSIONS Obesity is associated with a much worse arterial profile, as an increased carotid lumen size was accompanied by higher blood pressure, greater arterial stiffness, and greater carotid intima media thickness in obese compared with overweight or normal-weight individuals. These data suggest that although obesity may be a factor in arterial remodeling, such remodeling is also accompanied by other hemodynamic and arterial changes consistent with reduced arterial function and increased cardiovascular risk. PMID:24048148

  10. Characteristics of moving visual scenes influencing spatial orientation

    NASA Technical Reports Server (NTRS)

    Held, R.; Bauer, J.; Dichgans, J.

    1975-01-01

    A visual display rotating in a frontal plane induces effects equivalent to a change in the apparent direction of gravity. Magnitude of visual tilt was measured as a function of time from onset of rotation, velocity of rotation, and area and retinal location of the stimulating field. The mejor part of the tilt occurs within 30 sec from onset of stimulation. It increases with angular velocity, but independently of area and location of field, up to about 30 to 40 deg of rotation per sec and then levels off. Tilt increases with field size but the effect of thin ring-fields increases with retinal eccentricity. The interaction of visual and nonvisual determinants of the induced effects is discussed.

  11. Effects of stoichiometry, purity, etching and distilling on resistance of MgB 2 pellets and wire segments

    NASA Astrophysics Data System (ADS)

    Ribeiro, R. A.; Bud'ko, S. L.; Petrovic, C.; Canfield, P. C.

    2002-11-01

    We present a study of the effects of non-stoichiometry, boron purity, wire diameter and post-synthesis treatment (etching and Mg distilling) on the temperature dependent resistance and resistivity of sintered MgB 2 pellets and wire segments. Whereas the residual resistivity ratio (RRR) varies between RRR≈4 to RRR⩾20 for different boron purity, it is only moderately affected by non-stoichiometry (from 20% Mg deficiency to 20% Mg excess) and is apparently independent of wire diameter and presence of Mg metal traces on the wire surface. The obtained set of data indicates that RRR values in excess of 20 and residual resistivities as low as ρ 0≈0.4 μΩ cm are intrinsic material properties of high purity MgB 2.

  12. Exploitation of Geometric Occlusion and Covariance Spectroscopy in a Gamma Sensor Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2013-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory has recently used an array of six small-footprint (1-inch diameter by 3-inch long) cylindrical crystals of thallium-doped sodium iodide scintillators to obtain angular information from discrete gamma ray–emitting point sources. Obtaining angular information in a near-field measurement for a field-deployed gamma sensor is a requirement for radiological emergency work. Three of the sensors sit at the vertices of a 2-inch isosceles triangle, while the other three sit on the circumference of a 3-inch-radius circle centered in this triangle. This configuration exploits occlusion of sensors, correlation from Compton scattering within a detector array,more » and covariance spectroscopy, a spectral coincidence technique. Careful placement and orientation of individual detectors with reference to other detectors in an array can provide improved angular resolution for determining the source position by occlusion mechanism. By evaluating the values of, and the uncertainties in, the photopeak areas, efficiencies, branching ratio, peak area correction factors, and the correlations between these quantities, one can determine the precise activity of a particular radioisotope from a mixture of radioisotopes that have overlapping photopeaks that are ordinarily hard to deconvolve. The spectral coincidence technique, often known as covariance spectroscopy, examines the correlations and fluctuations in data that contain valuable information about radiation sources, transport media, and detection systems. Covariance spectroscopy enhances radionuclide identification techniques, provides directional information, and makes weaker gamma-ray emission—normally undetectable by common spectroscopic analysis—detectable. A series of experimental results using the concept of covariance spectroscopy are presented.« less

  13. Morphologic classes of impact basins on Venus

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Tam, Wesley

    1993-01-01

    An independent survey of 60% of Venus has resulted in the detection of 35 impact basins and associated transitional rings. Contrary to previous studies central peak basins have been identified, as well as peak ring basins. But no unambiguous multi-ring basins have been detected. A new class of crateriform - expanded peak structure - has been noticed, which is transitional in diameter, but apparently not in structure, between central peak and peak ring basins.

  14. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)

    PubMed Central

    Li, Shuhui; Wang, Jian

    2014-01-01

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159

  15. Interstellar Scattering Towards the Galactic Center as Probed by OH/IR Stars

    NASA Technical Reports Server (NTRS)

    Vanlangevelde, Huib Jan; Frail, Dale A.; Cordes, James M.; Diamond, Philip J.

    1992-01-01

    Angular broadening measurements are reported of 20 OH/IR stars near the galactic center. This class of sources is known to have bright, intrinsically compact (less than or equal to 20 mas) maser components within their circumstellar shells. VLBA antennas and the VLA were used to perform a MKII spectral line VLBI experiment. The rapid drop in correlated flux with increasing baseline, especially for sources closest to the galactic center, is attributed to interstellar scattering. Angular diameters were measured for 13 of our sources. Lower limits were obtained for the remaining seven. With the data, together with additional data taken from the literature, the distribution was determined of interstellar scattering toward the galactic center. A region was found of pronounced scattering nearly centered on SgrA*. Two interpretations are considered for the enhanced scattering. One hypothesis is that the scattering is due to a clump of enhanced turbulence, such as those that lie along lines of sight to other known objects, that has no physical relationship to the galactic center. The other model considers the location of the enhanced scattering to arise in the galactic center itself. The physical implications of the models yield information on the nature of interstellar scattering.

  16. Dust Production of Comet 21P/Giacobini-Zinner Using Broadband Photometry

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Suggs, R. M.; Cooke, W.

    2012-01-01

    Comet 21P/Giacobini-Zinner is a Jupiter family comet, approximately 2 km in diameter, and is established to be the parent of the Draconids, a meteor shower known to outburst. In 1933 and 1946 up to 10,000 meteors per hour were reported for the Draconids, and 2011 saw a minor Draconid outburst. Meteor stream modeling/forecasting being a primary focus for the NASA Meteoroid Environment Office, it was decided to monitor 21P for three purposes: firstly to find the apparent and absolute magnitude with respect to heliocentric distance; second to calculate Af , a quantity that describes the dust production rate and is used in models to predict the activity of the Draconids; and thirdly to detect possible increases in cometary activity, which could correspond to future Draconid meteor outbursts. A similar study was done for 21P during its 2004-2006 close approach to the Sun in which apparent and absolute magnitudes were found with various heliocentric distances, as well as the dust production. At 2.32 AU from the Sun, 21P possessed an apparent magnitude of 17.05 and Af of 83 cm, and an apparent magnitude of 15.91 and Af of 130.66 cm at 1.76 AU from the sun.

  17. Characterization of micron-size hydrogen clusters using Mie scattering.

    PubMed

    Jinno, S; Tanaka, H; Matsui, R; Kanasaki, M; Sakaki, H; Kando, M; Kondo, K; Sugiyama, A; Uesaka, M; Kishimoto, Y; Fukuda, Y

    2017-08-07

    Hydrogen clusters with diameters of a few micrometer range, composed of 10 8-10 hydrogen molecules, have been produced for the first time in an expansion of supercooled, high-pressure hydrogen gas into a vacuum through a conical nozzle connected to a cryogenic pulsed solenoid valve. The size distribution of the clusters has been evaluated by measuring the angular distribution of laser light scattered from the clusters. The data were analyzed based on the Mie scattering theory combined with the Tikhonov regularization method including the instrumental functions, the validity of which was assessed by performing a calibration study using a reference target consisting of standard micro-particles with two different sizes. The size distribution of the clusters was found discrete peaked at 0.33 ± 0.03, 0.65 ± 0.05, 0.81 ± 0.06, 1.40 ± 0.06 and 2.00 ± 0.13 µm in diameter. The highly reproducible and impurity-free nature of the micron-size hydrogen clusters can be a promising target for laser-driven multi-MeV proton sources with the currently available high power lasers.

  18. Lidar Analyses

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1995-01-01

    A brief description of enhancements made to the NASA MSFC coherent lidar model is provided. Notable improvements are the addition of routines to automatically determine the 3 dB misalignment loss angle and the backscatter value at which the probability of a good estimate (for a maximum likelihood estimator) falls to 50%. The ability to automatically generate energy/aperture parametrization (EAP) plots which include the effects of angular misalignment has been added. These EAP plots make it very easy to see that for any practical system where there is some degree of misalignment then there is an optimum telescope diameter for which the laser pulse energy required to achieve a particular sensitivity is minimized. Increasing the telescope diameter above this will result in a reduction of sensitivity. These parameterizations also clearly show that the alignment tolerances at shorter wavelengths are much stricter than those at longer wavelengths. A brief outline of the NASA MSFC AEOLUS program is given and a summary of the lidar designs considered during the program is presented. A discussion of some of the design trades is performed both in the text and in a conference publication attached as an appendix.

  19. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects.

    PubMed

    Cullen, Laurence G; Tilston, Emma L; Mitchell, Geoff R; Collins, Chris D; Shaw, Liz J

    2011-03-01

    The effects of nano-scale and micro-scale zerovalent iron (nZVI and mZVI) particles on general (dehydrogenase and hydrolase) and specific (ammonia oxidation potential, AOP) activities mediated by the microbial community in an uncontaminated soil were examined. nZVI (diameter 12.5 nm; 10 mg g⁻¹ soil) apparently inhibited AOP and nZVI and mZVI apparently stimulated dehydrogenase activity but had minimal influence on hydrolase activity. Sterile experiments revealed that the apparent inhibition of AOP could not be interpreted as such due to the confounding action of the particles, whereas, the nZVI-enhanced dehydrogenase activity could represent the genuine response of a stimulated microbial population or an artifact of ZVI reactivity. Overall, there was no evidence for negative effects of nZVI or mZVI on the processes studied. When examining the impact of redox active particles such as ZVI on microbial oxidation-reduction reactions, potential confounding effects of the test particles on assay conditions should be considered. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals.

    PubMed

    Ranasinghesagara, Janaka C; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O; Venugopalan, Vasan

    2017-04-17

    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.

  1. Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals

    PubMed Central

    Ranasinghesagara, Janaka C.; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O.; Venugopalan, Vasan

    2017-01-01

    We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction. PMID:28437941

  2. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  3. VizieR Online Data Catalog: Pulsation model data for delta Cep and eta Aql (Merand+, 2015)

    NASA Astrophysics Data System (ADS)

    Merand, A.; Kervella, P.; Breitfelder, J.; Gallenne, A.; Coude du Foresto, V.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S.; Sturmann, L.; Sturmann, J.; Turner, N. H.

    2015-09-01

    FITS files containing the stars' (delta Cep and eta Aql) data and model presented in the paper. Each fits file has 3 HDU: 1- primary HDU: contains no data apart from the header. The header has the parameters of the model (keywords 'HIERARCH PARAM') as well as some other quantities derived from the modeling (keywords 'HIERARCH MODEL'). These quantities are aimed at people who would like to reproduce or compare their results with us. 2- 'DATA' HDU: this contains the data used for the fit. Each line is a scalar measurement described as follow: col1='MJD' (E) modified Julian date of the observations col2='OBS' (A50) description of the data point: the string before ";" defines the type, after ";" is the source. after | are anciliary data: for diam, UDdiam: [wavelengthum, interfbaseline_m] for mag: photometric band for color: photometric band1 - photometric band2 col3='MEAS' (E) the actual measurements. units are km/s for Vpuls or Vrad (which includes the p-factor correction), and mas (milli-arcseconds) for diameters (diam of UDdiam). col4='ERR' (E) the uncertainty on the measurement. col5='MODEL' (E) corresponding value predicted by the model col6='PHASE' (E) pulsation phase computed from the model ranges from 0 to 1. col7='PERIOD' (E) pulsation period computed from the model in days 3- 'MODEL' HDU: a tabulation of the pulsation model, as a function of pulsation phase. col1='PHASE' (E) phase from 0 to 1. col2='Vpuls' (E) pulsation velocity, in km/s. col3='Vrad' (E) radial velocity, in km/s. It is Vpuls/p-factor + Vgamma. col4='diam' (E) Rosseland angular diameter, in milliarcseconds (mas). col5='Teff' (E) effective temperature, in Kelvin. col6='Lum' (E) Luminosity in solar luminosities. col7='logg' (E) surface gravity, in log_10(cm/s2). col8,9,10='diamK xxxm' (E) biased angular diameters measured by an interferometer at baselines xxx (in m), for xxx=[100, 200, 300]. In milliarcseconds col>=11= 'MAG ...' or 'COLOR ...' (E) reddenned magnitudes or colors in various bands, depending on the data entry. '...' is the name of band for magnitudes, and pair of bands for colors. (6 data files).

  4. Elastic response of binary hard-sphere fluids

    NASA Astrophysics Data System (ADS)

    Rickman, J. M.; Ou-Yang, H. Daniel

    2011-07-01

    We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for example, does not. This behavior is shown to be dictated by the angular dependence (in k⃗ space) of derivatives of the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal fluids in laser trapping experiments.

  5. Spectroscopy and nonthermal processes

    NASA Technical Reports Server (NTRS)

    Querci, Monique

    1987-01-01

    Stellar spectra are analyzed to determine nonthermal processes for cool stars. A shock wave crossing model is supported by a study of the behavior of absorption and emission spectra. The shock waves are attributed to atmospheric kinetics. Circumstellar spectral lines are studied for information about gaseous circumstellar layers. The description of stellar envelopes is carried on through circumstellar dust. Characteristic properties of polarization in the dust are described in the case of specific stars, emphasizing narrowband observations in Mira, semiregular, and supergiant stars. Finally, the direct approach to measuring the angular diameters of stars and mapping the distribution of circumstellar dust and gas by lunar occultation or interferometry is discussed, using two prototype stars, an M supergiant and a dusty carbon star.

  6. Laboratory simulation of the electrodynamic interactions of a tethered satellite with an ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Bonifazi, C.; Lebreton, J. P.; Vannaroni, G.; Cosmovici, C.; Debrie, R.; Hamelin, M.; Pomathiod, L.; Arends, H.

    1986-01-01

    An improved experimental set-up in the Orleans Plasma Chamber allowed investigations of the I-V characteristics of a conductive spherical body (10 cm diameter) in a plasma environment. Moreover, the influence of a transversal magnetic field at 0.6 and 1.2 G was investigated, for the first time, both on the sheath potential profile and current collection. Floating potential profiles were measured at 16 different radial distances from the test body up to 9 body radii in 8 different angular positions. The test body potential could be increased in the range from -200 V up to +100 V. Preliminary results are shown and discussed.

  7. Detection of a late B star companion of the bright cluster giant C PUP equals HD 63032

    NASA Astrophysics Data System (ADS)

    Groote, D.; Reimers, D.

    1983-03-01

    IUE observations show that c Pup, the central bright K giant in the open cluster NGC 2451, has a blue companion. A fit of theoretical line blanketed model atmosphere fluxes to the observed energy distribution yields reddening E(B-V) = 0.15 (from λ2200 Å feature), an effective temperature Te = 10,200K, and an angular diameter θ = 0.060. If the companion is a main-sequence star, c Pup and its companion are located at a distance of 310 ± 50 pc which lends additional support to membership of c Pup in NGC 2451. The evolutionary status of c Pup is briefly discussed.

  8. The CHARA Array Database

    NASA Astrophysics Data System (ADS)

    Jones, Jeremy; Schaefer, Gail; ten Brummelaar, Theo; Gies, Douglas; Farrington, Christopher

    2018-01-01

    We are building a searchable database for the CHARA Array data archive. The Array consists of six telescopes linked together as an interferometer, providing sub-milliarcsecond resolution in the optical and near-infrared. The Array enables a variety of scientific studies, including measuring stellar angular diameters, imaging stellar shapes and surface features, mapping the orbits of close binary companions, and resolving circumstellar environments. This database is one component of an NSF/MSIP funded program to provide open access to the CHARA Array to the broader astronomical community. This archive goes back to 2004 and covers all the beam combiners on the Array. We discuss the current status of and future plans for the public database, and give directions on how to access it.

  9. Input/output properties of the lateral vestibular nucleus

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  10. Development of a Computer-Controlled Polishing Process for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-01-01

    The future X-ray observatory missions require grazing-incidence x-ray optics with angular resolution of < 5 arcsec half-power diameter. The achievable resolution depends ultimately on the quality of polished mandrels from which the shells are replicated. With an aim to fabricate better shells, and reduce the cost/time of mandrel production, a computer-controlled polishing machine is developed for deterministic and localized polishing of mandrels. Cylindrical polishing software is also developed that predicts the surface residual errors under a given set of operating parameters and lap configuration. Design considerations of the polishing lap are discussed and the effects of nonconformance of the lap and the mandrel are presented.

  11. VizieR Online Data Catalog: Reference Catalogue of Bright Galaxies (RC1; de Vaucouleurs+ 1964)

    NASA Astrophysics Data System (ADS)

    de Vaucouleurs, G.; de Vaucouleurs, A.

    1995-11-01

    The Reference Catalogue of Bright Galaxies lists for each entry the following information: NGC number, IC number, or A number; A, B, or C designation; B1950.0 positions, position at 100 year precession; galactic and supergalactic positions; revised morphological type and source; type and color class in Yerkes list 1 and 2; Hubble-Sandage type; revised Hubble type according to Holmberg; logarithm of mean major diameter (log D) and ratio of major to minor diameter (log R) and their weights; logarithm of major diameter; sources of the diameters; David Dunlap Observatory type and luminosity class; Harvard photographic apparent magnitude; weight of V, B-V(0), U-B(0); integrated magnitude B(0) and its weight in the B system; mean surface brightness in magnitude per square minute of arc and sources for the B magnitude; mean B surface brightness derived from corrected Harvard magnitude; the integrated color index in the standard B-V system; "intrinsic" color index; sources of B-V and/or U-B; integrated color in the standard U-B system; observed radial velocity in km/sec; radial velocity corrected for solar motion in km/sec; sources of radial velocities; solar motion correction; and direct photographic source. The catalog was created by concatenating four files side by side. (1 data file).

  12. Dead space and tidal volume of the giraffe compared with some other mammals.

    PubMed

    Hugh-Jones, P; Barter, C E; Hime, J M; Rusbridge, M M

    1978-10-01

    The ventilation, tidal volume and anatomical dead-space were measured in a living giraffe and compared with similar measurements in a camel, red deer, llama and man. The giraffe had a resting tidal volume of about 3.3 litres with a dead-space/tidal-volume ratio of 0.34. The giraffe breathes slowly, apparently because of the unusually small diameter of its trachea relative to its length, compared with known measurement in other mammals.

  13. Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study.

    PubMed

    Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis.

  14. Optical distortion correction of a liquid-gas interface and contact angle in cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Darzi, Milad; Park, Chanwoo

    2017-05-01

    Objects inside cylindrical tubes appear distorted as seen outside the tube due to the refraction of the light passing through different media. Such an optical distortion may cause significant errors in geometrical measurements using optical observations of objects (e.g., liquid-gas interfaces, solid particles, gas bubbles) inside the tubes. In this study, an analytical method using a point-by-point correction of the optical distortion was developed. For an experimental validation, the method was used to correct the apparent profiles of the water-air interfaces (menisci) in cylindrical glass tubes with different tube diameters and wall thicknesses. Then, the corrected meniscus profiles were used to calculate the corrected static contact angles. The corrected contact angle shows an excellent agreement with the reference contact angles as compared to the conventional contact angle measurement using apparent meniscus profiles.

  15. Vortex rings impinging on permeable boundaries

    NASA Astrophysics Data System (ADS)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  16. Cryo-transmission electron tomography of native casein micelles from bovine milk.

    PubMed

    Trejo, R; Dokland, T; Jurat-Fuentes, J; Harte, F

    2011-12-01

    Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Characteristics and performance of a superconducting bumpy-torus magnet facility for plasma research

    NASA Technical Reports Server (NTRS)

    Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.

    1973-01-01

    The NASA Lewis bumpy-torus facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T on its axis. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m; they are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The design value of the maximum magnetic field on the magnetic axis, 3.0 T, was reached and exceeded. A maximum magnetic field of 3.23 T was held for a period of 60 minutes. When the coils were charged to a maximum magnetic field of 3.35 T, the coil system went normal without apparent damage or degradation of performance.

  18. Heat generated during seating of dental implant fixtures.

    PubMed

    Flanagan, Dennis

    2014-04-01

    Frictional heat can be generated during seating of dental implants into a drill-prepared osteotomy. This in vitro study tested the heat generated by implant seating in dense bovine mandible ramus. A thermocouple was placed approximately 0.5 mm from the rim of the osteotomy during seating of each dental implant. Four diameters of implants were tested. The average temperature increases were 0.075°C for the 5.7-mm-diameter implant, 0.97°C for the 4.7-mm-diameter implant, 1.4°C for the 3.7-mm-diameter implant, and 8.6°C for the 2.5-mm-diameter implant. The results showed that heat was indeed generated and a small temperature rise occurred, apparently by the friction of the implant surface against the fresh-cut bone surface. Bone is a poor thermal conductor. The titanium of the implant and the steel of the handpiece are much better heat conductors. Titanium may be 70 times more heat conductive than bone. The larger diameter and displacement implant may act as a heat sink to draw away any heat produced from the friction of seating the implant at the bone-implant interface. The peak temperature duration was momentary, and not measured, but this was approximately less than 1 second. Except for the 2.5-mm-diameter implants, the temperature rises and durations were found to be below those previously deemed to be detrimental, so no clinically significant osseous damage would be expected during dental implant fixture seating of standard and large-diameter-sized implants. A 2.5-mm implant may generate detrimental heat during seating in nonvital bone, but this may be clinically insignificant in vital bone. The surface area and thermal conductivity are important factors in removing generated heat transfer at the bone-implant interface. The F value as determined by analysis of variance was 69.22, and the P value was less than .0001, demonstrating significant differences between the groups considered as a whole.

  19. Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons ≥15 years of age.

    PubMed

    Devereux, Richard B; de Simone, Giovanni; Arnett, Donna K; Best, Lyle G; Boerwinkle, Eric; Howard, Barbara V; Kitzman, Dalane; Lee, Elisa T; Mosley, Thomas H; Weder, Alan; Roman, Mary J

    2012-10-15

    Nomograms to predict normal aortic root diameter for body surface area (BSA) in broad ranges of age have been widely used but are limited by lack of consideration of gender effects, jumps in upper limits of aortic diameter among age strata, and data from older teenagers. Sinus of Valsalva diameter was measured by American Society of Echocardiography convention in normal-weight, nonhypertensive, nondiabetic subjects ≥15 years old without aortic valve disease from clinical or population-based samples. Analyses of covariance and linear regression with assessment of residuals identified determinants and developed predictive models for normal aortic root diameter. In 1,207 apparently normal subjects ≥15 years old (54% women), aortic root diameter was 2.1 to 4.3 cm. Aortic root diameter was strongly related to BSA and height (r = 0.48 for the 2 comparisons), age (r = 0.36), and male gender (+2.7 mm adjusted for BSA and age, p <0.001 for all comparisons). Multivariable equations using age, gender, and BSA or height predicted aortic diameter strongly (R = 0.674 for the 2 comparisons, p <0.001) with minimal relation of residuals to age or body size: for BSA 2.423 + (age [years] × 0.009) + (BSA [square meters] × 0.461) - (gender [1 = man, 2 = woman] × 0.267), SEE 0.261 cm; for height 1.519 + (age [years] × 0.010) + (height [centimeters] × 0.010) - (gender [1 = man, 2 = woman] × 0.247), SEE 0.215 cm. In conclusion, aortic root diameter is larger in men and increases with body size and age. Regression models incorporating body size, age, and gender are applicable to adolescents and adults without limitations of previous nomograms. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. In situ fragmentation and rock particle sorting on arid hills

    NASA Astrophysics Data System (ADS)

    McGrath, Gavan S.; Nie, Zhengyao; Dyskin, Arcady; Byrd, Tia; Jenner, Rowan; Holbeche, Georgina; Hinz, Christoph

    2013-03-01

    Transport processes are often proposed to explain the sorting of rock particles on arid hillslopes, where mean rock particle size often decreases in the downslope direction. Here we show that in situ fragmentation of rock particles can also produce similar patterns. A total of 93,414 rock particles were digitized from 880 photographs of the surface of three mesa hills in the Great Sandy Desert, Australia. Rock particles were characterized by the projected Feret's diameter and circularity. Distance from the duricrust cap was found to be a more robust explanatory variable for diameter than the local hillslope gradient. Mean diameter decreased exponentially downslope, while the fractional area covered by rock particles decreased linearly. Rock particle diameters were distributed lognormally, with both the location and scale parameters decreasing approximately linearly downslope. Rock particle circularity distributions showed little change; only a slight shift in the mode to more circular particles was noted to occur downslope. A dynamic fragmentation model was used to assess whether in situ weathering alone could reproduce the observed downslope fining of diameters. Modeled and observed size distributions agreed well and both displayed a preferential loss of relatively large rock particles and an apparent approach to a terminal size distribution of the rocks downslope. We show this is consistent with a size effect in material strength, where large rocks are more susceptible to fatigue failure under stress than smaller rocks. In situ fragmentation therefore produces qualitatively similar patterns to those that would be expected to arise from selective transport.

  1. Radio observations of interplanetary magnetic field structures out of the ecliptic. [related to type III solar bursts

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Weber, R. R.; Alvarez, H.; Haddock, F. T.; Potter, W. H.

    1977-01-01

    Observations of the out-of-ecliptic trajectories of type III solar radio bursts have been obtained from simultaneous direction-finding measurements in two independent satellite experiments, IMP-6 with spin plane in the ecliptic and RAE-2 with spin plane normal to the ecliptic. Burst-exciter trajectories were observed which originated at the active region and then crossed the ecliptic plane at about 0.8 AU. A considerable large-scale north-south component of the interplanetary magnetic field followed by the exciters is found. The apparent north-south and east-west angular source sizes observed by the two spacecraft are approximately equal, and range from 25 deg at 600 kHz to 110 deg at 80 kHz.

  2. Radio observations of interplanetary magnetic field structures out of the ecliptic

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Weber, R. R.; Alvarez, H.; Haddock, F. T.; Potter, W. H.

    1976-01-01

    New observations of the out-of-the ecliptic trajectories of type 3 solar radio bursts have been obtained from simultaneous direction finding measurements on two independent satellite experiments, IMP-6 with spin plane in the ecliptic, and RAE-2 with spin plane normal to the ecliptic. Burst exciter trajectories were observed which originated at the active region and then crossed the ecliptic plane at about 0.8 AU. A considerable large scale north-south component of the interplanetary magnetic field is followed by the exciters. The apparent north-south and east-west angular source sizes observed by the two spacecraft are approximately equal, and range from 25 deg at 600 KHz to 110 deg at 80 KHz.

  3. A Generative Angular Model of Protein Structure Evolution

    PubMed Central

    Golden, Michael; García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.; Hamelryck, Thomas; Hein, Jotun

    2017-01-01

    Abstract Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof. PMID:28453724

  4. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    NASA Technical Reports Server (NTRS)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  5. Detecting compartmental non-Gaussian diffusion with symmetrized double-PFG MRI.

    PubMed

    Paulsen, Jeffrey L; Özarslan, Evren; Komlosh, Michal E; Basser, Peter J; Song, Yi-Qiao

    2015-11-01

    Diffusion in tissue and porous media is known to be non-Gaussian and has been used for clinical indications of stroke and other tissue pathologies. However, when conventional NMR techniques are applied to biological tissues and other heterogeneous materials, the presence of multiple compartments (pores) with different Gaussian diffusivities will also contribute to the measurement of non-Gaussian behavior. Here we present symmetrized double PFG (sd-PFG), which can separate these two contributions to non-Gaussian signal decay as having distinct angular modulation frequencies. In contrast to prior angular d-PFG methods, sd-PFG can unambiguously extract kurtosis as an oscillation from samples with isotropic or uniformly oriented anisotropic pores, and can generally extract a combination of compartmental anisotropy and kurtosis. The method further fixes its sensitivity with respect to the time dependence of the apparent diffusion coefficient. We experimentally demonstrate the measurement of the fourth cumulant (kurtosis) of diffusion and find it consistent with theoretical predictions. By enabling the unambiguous identification of contributions of compartmental kurtosis to the signal, sd-PFG has the potential to help identify the underlying micro-structural changes corresponding to current kurtosis based diagnostics, and act as a novel source of contrast to better resolve tissue micro-structure. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Integrated spectral study of small angular diameter galactic open clusters

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o < l < 345o) near the Galactic plane (∣b∣ ≤ 9o). We performed simultaneous estimates of foreground interstellar reddening and age by comparing the continuum distribution and line strenghts of the cluster spectra with those of template cluster spectra with known parameters. We thus provide spectroscopic information independent from that derived through color-magnitude diagram studies. We found three clusters (Collinder 249, NGC 4463 and Ruprecht 122) younger than ˜40 Myr, four moderately young ones (BH 92, Harvard 5, Hogg 14 and Pismis 23) with ages within 200-400 Myr, and two intermediate-age ones (Ruprecht 158 and ESO 065-SC07) with ages within 1.0-2.2 Gyr. The derived foreground E(B - V) color excesses vary from around 0.0 in Ruprecht 158 to ˜1.1 in Pismis 23. In general terms, the results obtained show good agreement with previous photometric results. In Ruprecht 158 and BH 92, however, some differences are found between the parameters here obtained and previous values in the literature. Individual spectra of some comparatively bright stars located in the fields of 5 out of the 9 clusters here studied, allowed us to evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  7. Operating characteristics of tube-current-modulation techniques when scanning simple-shaped phantoms

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Koshida, Kichiro; Lin, Pei-Jan Paul; Fukuda, Atsushi

    2015-07-01

    Our objective was to investigate the operating characteristics of tube current modulation (TCM) in computed tomography (CT) when scanning two types of simple-shaped phantoms. A tissueequivalent elliptical phantom and a homogeneous cylindrical step phantom comprising 16-, 24-, and 32-cm-diameter polymethyl methacrylate (PMMA) phantoms were scanned by using an automatic exposure control system with longitudinal (z-) and angular-longitudinal (xyz-) TCM and with a fixed tube current. The axial dose distribution throughout the elliptical phantom and the longitudinal dose distribution at the center of the cylindrical step phantom were measured by using a solid-state detector. Image noise was quantitatively measured at eight regions in the elliptical phantom and at 90 central regions in contiguous images over the full z extent of the cylindrical step phantom. The mean absorbed doses and the standard deviations in the elliptical phantom with z- and xyz-TCM were 12.3' 3.7 and 11.3' 3.5 mGy, respectively. When TCM was activated, some differences were observed in the absorbed doses of the left and the right measurement points. The average image noises in Hounsfield units (HU) and the standard deviations were 15.2' 2.4 and 15.9' 2.4 HU when using z- and xyz-TCM, respectively. With respect to the cylindrical step phantom under z-TCM, there were sudden decreases followed by increases in image noise at the interfaces with the 24- and 16-cm-diameter phantoms. The image noise of the 24-cm-diameter phantom was, relatively speaking, higher than those of the 16- and 32-cm-diameter phantoms. The simple-shaped phantoms used in this study can be employed to investigate the operating characteristics of automatic exposure control systems when specialized phantoms designed for that purpose are not available.

  8. Investigation of scattering coefficients and anisotropy factors of human cancerous and normal prostate tissues using Mie theory

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Chen, Jun; Wang, Wubao

    2014-02-01

    The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.

  9. Sun-sized Water Vapor Masers in Cepheus A

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.; Moran, J. M.; Gray, M. D.; Alakoz, A.; Imai, H.; Baan, W. A.; Tolmachev, A. M.; Samodurov, V. A.; Ladeyshchikov, D. A.

    2018-03-01

    We present the first VLBI observations of a Galactic water maser (in Cepheus A) made with a very long baseline interferometric array involving the RadioAstron Earth-orbiting satellite station as one of its elements. We detected two distinct components at ‑16.9 and 0.6 km s‑1 with a fringe spacing of 66 μas. In total power, the 0.6 km s‑1 component appears to be a single Gaussian component of strength 580 Jy and width of 0.7 km s‑1. Single-telescope monitoring showed that its lifetime was only eight months. The absence of a Zeeman pattern implies the longitudinal magnetic field component is weaker than 120 mG. The space–Earth cross power spectrum shows two unresolved components smaller than 15 μas, corresponding to a linear scale of 1.6 × 1011 cm, about the diameter of the Sun, for a distance of 700 pc, separated by 0.54 km s‑1 in velocity and by 160 ± 35 μas in angle. This is the smallest angular structure ever observed in a Galactic maser. The brightness temperatures are greater than 2 × 1014 K, and the line widths are 0.5 km s‑1. Most of the flux (about 87%) is contained in a halo of angular size of 400 ± 150 μas. This structure is associated with the compact H II region HW3diii. We have probably picked up the most prominent peaks in the angular size range of our interferometer. We discuss three dynamical models: (1) Keplerian motion around a central object, (2) two chance overlapping clouds, and (3) vortices caused by flow around an obstacle (i.e., von Kármán vortex street) with a Strouhal number of about 0.3.

  10. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about 350 mW. The entrance aperture has a diameter of 0.004 in. (0.10 mm) to provide the required energy resolution between 0.05 and 0.15. This design (see Figure 2) provides a WTS occupying a volume less than 40 cm(sup 3), on a footprint of diameter about 1.5 in. (38 mm). The Crossed SDEA offers many advantages in the measurements of neutral wind and ion drifts in the Earth's thermosphere. As such, it will be useful in future commercial satellites dedicated to monitoring the ionosphere with a view to improving the integrity and predictability of GPS operations.

  11. A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.

    NASA Astrophysics Data System (ADS)

    Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.

    2001-12-01

    Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field measurements in that it is convenient, easily instrumented and, most importantly, can be moved to a low-pressure environment. Terrestrial field data are necessary, however, to validate the laboratory simulation as a good approximation of reality. Field measurements show that both pressure and velocity structure of the laboratory-generated vortex are similar to terrestrial dust devils. Initial threshold tests under terrestrial conditions show that the geometry of the vortex plays a key role in the angular velocity required to entrain material: smaller vortices have lower angular velocities at threshold. This is thought to be due to the smaller inflow boundary layer associated with narrow vortices and hence enhanced shear stress. However, calculations show that the shear stresses at the surface are at least two orders of magnitude less than the upward force caused by the pressure drop at the center of the vortex. This leads to the tentative conclusion that the actual particle lifting action of the `lift' force is minimal. A full program of experiments using this apparatus is under way to confirm these initial findings and a sequence of experiments under Martian conditions is being planned.

  12. Thin fused silica optics for a high angular resolution and large collecting area X Ray telescope after Chandra

    NASA Astrophysics Data System (ADS)

    Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero

    2014-08-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).

  13. A CCD search for geosynchronous debris

    NASA Technical Reports Server (NTRS)

    Gehrels, Tom; Vilas, Faith

    1986-01-01

    Using the Spacewatch Camera, a search was conducted for objects in geosynchronous earth orbit. The system is equipped with a CCD camera cooled with dry ice; the image scale is 1.344 arcsec/pixel. The telescope drive was off so that during integrations the stars were trailed while geostationary objects appeared as round images. The technique should detect geostationary objects to a limiting apparent visual magnitude of 19. A sky area of 8.8 square degrees was searched for geostationary objects while geosynchronous debris passing through was 16.4 square degrees. Ten objects were found of which seven are probably geostationary satellites having apparent visual magnitudes brighter than 13.1. Three objects having magnitudes equal to or fainter than 13.7 showed motion in the north-south direction. The absence of fainter stationary objects suggests that a gap in debris size exists between satellites and particles having diameters in the millimeter range.

  14. MR imaging of apparent 3He gas transport in narrow pipes and rodent airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Jacob, Richard E.; Laicher, Gernot; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2008-10-01

    High sensitivity makes hyperpolarized 3He an attractive signal source for visualizing gas flow with magnetic resonance (MR) imaging. Its rapid Brownian motion, however, can blur observed flow lamina and alter measured diffusion rates when excited nuclei traverse shear-induced velocity gradients during data acquisition. Here, both effects are described analytically, and predicted values for measured transport during laminar flow through a straight, 3.2-mm diameter pipe are validated using two-dimensional (2D) constant-time images of different binary gas mixtures. Results show explicitly how measured transport in narrow conduits is characterized by apparent values that depend on underlying gas dynamics and imaging time. In ventilated rats, this is found to obscure acquired airflow images. Nevertheless, flow splitting at airway branches is still evident and use of 3D vector flow mapping is shown to reveal surprising detail that highlights the correlation between gas dynamics and lung structure.

  15. Simultaneous measurements of new particle formation at 1 s time resolution at a street site and a rooftop site

    NASA Astrophysics Data System (ADS)

    Zhu, Yujiao; Yan, Caiqing; Zhang, Renyi; Wang, Zifa; Zheng, Mei; Gao, Huiwang; Gao, Yang; Yao, Xiaohong

    2017-08-01

    This study is the first to use two identical Fast Mobility Particle Sizers for simultaneous measurement of particle number size distributions (PNSDs) at a street site and a rooftop site within 500 m distance in wintertime and springtime to investigate new particle formation (NPF) in Beijing. The collected datasets at 1 s time resolution allow deduction of the freshly emitted traffic particle signal from the measurements at the street site and thereby enable the evaluation of the effects on NPF in an urban atmosphere through a site-by-site comparison. The number concentrations of 8 to 20 nm newly formed particles and the apparent formation rate (FR) in the springtime were smaller at the street site than at the rooftop site. In contrast, NPF was enhanced in the wintertime at the street site with FR increased by a factor of 3 to 5, characterized by a shorter NPF time and higher new particle yields than at the rooftop site. Our results imply that the street canyon likely exerts distinct effects on NPF under warm or cold ambient temperature conditions because of on-road vehicle emissions, i.e., stronger condensation sinks that may be responsible for the reduced NPF in the springtime but efficient nucleation and partitioning of gaseous species that contribute to the enhanced NPF in the wintertime. The occurrence or absence of apparent growth for new particles with mobility diameters larger than 10 nm was also analyzed. The oxidization of biogenic organics in the presence of strong photochemical reactions is suggested to play an important role in growing new particles with diameters larger than 10 nm, but sulfuric acid is unlikely to be the main species for the apparent growth. However, the number of datasets used in this study is relatively small, and larger datasets are essential to draw a general conclusion.

  16. Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, C.; Frazer, D.; Lupinacci, A.

    Here, micropillar compression testing was implemented on Equal Channel Angular Pressed copper samples ranging from 200 nm to 10 µm in side length in order to measure the mechanical properties yield strength, first load drop during plastic deformation at which there was a subsequent stress decrease with increasing strain, work hardening, and strain hardening exponent. Several micropillars containing multiple grains were investigated in a 200 nm grain sample. The effective pillar diameter to grain size ratios, D/d, were measured to be between 1.9 and 27.2. Specimens having D/d ratios between 0.2 and 5 were investigated in a second sample thatmore » was annealed at 200 °C for 2 h with an average grain size of 1.3 µm. No yield strength or elastic modulus size effects were observed in specimens in the 200 nm grain size sample. However work hardening increases with a decrease in critical ratios and first stress drops occur at much lower stresses for specimens with D/d ratios less than 5. For comparison, bulk tensile testing of both samples was performed, and the yield strength values of all micropillar compression tests for the 200 nm grained sample are in good agreement with the yield strength values of the tensile tests.« less

  17. Investigation of specimen size effects by in-situ microcompression of equal channel angular pressed copper

    DOE PAGES

    Howard, C.; Frazer, D.; Lupinacci, A.; ...

    2015-09-30

    Here, micropillar compression testing was implemented on Equal Channel Angular Pressed copper samples ranging from 200 nm to 10 µm in side length in order to measure the mechanical properties yield strength, first load drop during plastic deformation at which there was a subsequent stress decrease with increasing strain, work hardening, and strain hardening exponent. Several micropillars containing multiple grains were investigated in a 200 nm grain sample. The effective pillar diameter to grain size ratios, D/d, were measured to be between 1.9 and 27.2. Specimens having D/d ratios between 0.2 and 5 were investigated in a second sample thatmore » was annealed at 200 °C for 2 h with an average grain size of 1.3 µm. No yield strength or elastic modulus size effects were observed in specimens in the 200 nm grain size sample. However work hardening increases with a decrease in critical ratios and first stress drops occur at much lower stresses for specimens with D/d ratios less than 5. For comparison, bulk tensile testing of both samples was performed, and the yield strength values of all micropillar compression tests for the 200 nm grained sample are in good agreement with the yield strength values of the tensile tests.« less

  18. MEMS SoC: observer-based coplanar gyro-free inertial measurement unit

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Lin; Park, Sungsu

    2005-09-01

    This paper presents a novel design of a coplanar gyro-free inertial measurement unit (IMU) that consists of seven to nine single-axis linear accelerometers, and it can be utilized to perform the six DOF measurements for an object in motion. Unlike other gyro-fee IMUs, this design uses redundant accelerometers and state estimation techniques to facilitate the in situ and mass fabrication for the employed accelerometers. The alignment error from positioning accelerometers onto a measurement unit and the fabrication cost of an IMU can greatly be reduced. The outputs of the proposed design are three linear accelerations and three angular velocities. As compared to other gyro-free IMUs, the proposed design uses less integral operation and thus improves its sensing resolution and drifting problem. The sensing resolution of a gyro-free IMU depends on the sensing resolution of the employed accelerometers as well as the size of the measurement unit. Simulation results indicate that the sensing resolution of the proposed design is 2° s-1 for the angular velocity and 10 μg for the linear acceleration when nine single-axis accelerometers, each with 10 μg sensing resolution, are deployed on a 4 inch diameter disc. Also, thanks to the iterative EKF algorithm, the angle estimation error is within 10-3 deg at 2 s.

  19. Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Ming; Ou, Yuh-Roung; Pearlstein, Arne J.

    1993-01-01

    The temporal development of a 2D viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = omega(a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. However, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate.

  20. Method of determining dispersion dependence of refractive index of nanospheres building opals

    NASA Astrophysics Data System (ADS)

    Kępińska, Mirosława; Starczewska, Anna; Duka, Piotr

    2017-11-01

    The method of determining dispersion dependence of refractive index of nanospheres building opals is presented. In this method basing on angular dependences of the spectral positions of Bragg diffraction minima on transmission spectra for opal series of known spheres diameter, the spectrum of effective refractive index for opals and then refractive index for material building opal's spheres is determined. The described procedure is used for determination of neff(λ) for opals and nsph(λ) for material which spheres building investigated opals are made of. The obtained results are compared with literature data of nSiO2(λ) considered in the analysis and interpretation of extremes related to the light diffraction at (hkl) SiO2 opal planes.

  1. ΛCDM Cosmology for Astronomers

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Matthews, A. M.

    2018-07-01

    The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.

  2. Full scattering profile for detecting physiological tissue properties

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2017-02-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (FSP), which is the angular distribution of exiting photons, provides more comprehensive information when measuring from a cylindrical tissue, such as earlobe, fingertip and pinched tissue. Our hypothesis is that the change in blood vessel diameter is more significant than the change in optical properties. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG and pulse oximetery.

  3. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.

  4. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  5. Radiation Channels Close to a Plasmonic Nanowire Visualized by Back Focal Plane Imaging

    PubMed Central

    Hartmann, Nicolai; Piatkowski, Dawid; Ciesielski, Richard; Mackowski, Sebastian; Hartschuh, Achim

    2014-01-01

    We investigated the angular radiation patterns, a key characteristic of an emitting system, from individual silver nanowires decorated with rare earth ion-doped nanocrystals. Back focal plane radiation patterns of the nanocrystal photoluminescence after local two-photon excitation can be described by two emission channels: Excitation of propagating surface plasmons in the nanowire followed by leakage radiation and direct dipolar emission observed also in the absence of the nanowire. Theoretical modeling reproduces the observed radiation patterns which strongly depend on the position of excitation along the nanowire. Our analysis allows to estimate the branching ratio into both emission channels and to determine the diameter dependent surface plasmon quasi-momentum, important parameters of emitter-plasmon structures. PMID:24131299

  6. Effects of rolling friction on a spinning coin or disk

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2018-05-01

    Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.

  7. Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation: The NeuroGlide actuator

    NASA Astrophysics Data System (ADS)

    Yun, Cheol-Ho; Yeo, Leslie Y.; Friend, James R.; Yan, Bernard

    2012-04-01

    A 240-μm diameter ultrasonic micromotor is presented as a potential solution for an especially difficult task in minimally invasive neurosurgery, navigating a guidewire to an injury in the neurovasculature as the first step of surgery. The peak no-load angular velocity and maximum torque were 600 rad/s and 1.6 nN-m, respectively, and we obtained rotation about all three axes. By using a burst drive scheme, open-loop position and speed control were achieved. The construction method and control scheme proposed in this study remove most of the current limitations in minimally invasive, catheter-based actuation, enabling minimally invasive vascular surgery concepts to be pursued for a broad variety of applications.

  8. Spectral irradiance calibration in the infrared. I - Ground-based and IRAS broadband calibrations

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell G.; Barlow, Michael J.; Deacon, John R.

    1992-01-01

    Absolutely calibrated versions of realistic model atmosphere calculations for Sirius and Vega by Kurucz (1991) are presented and used as a basis to offer a new absolute calibration of infrared broad and narrow filters. In-band fluxes for Vega are obtained and defined to be zero magnitude at all wavelengths shortward of 20 microns. Existing infrared photometry is used differentially to establish an absolute scale of the new Sirius model, yielding an angular diameter within 1 sigma of the mean determined interferometrically by Hanbury Brown et al. (1974). The use of Sirius as a primary infrared stellar standard beyond the 20 micron region is suggested. Isophotal wavelengths and monochromatic flux densities for both Vega and Sirius are tabulated.

  9. Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice.

    PubMed

    Kim, Hyuntai; Kim, Jongki; Jung, Yongmin; Vazquez-Zuniga, Luis Alonso; Lee, Seung Jong; Choi, Geunchang; Oh, Kyunghwan; Wang, Pu; Clarkson, W A; Jeong, Yoonchan

    2012-11-05

    We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-μm light input when the splice joint is tapered down to 30 μm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.

  10. Sizes, Shapes, and Satellites of Asteroids from Occultations

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Herald, David; Preston, Steve; Timerson, Brad; Maley, Paul; Frappa, Eric; Hayamizu, Tsutomu; Talbot, John; Poro, Atila

    2016-01-01

    For 40 years, the sizes and shapes of many dozens of asteroids have been determined from observations of asteroidal occultations, and over a thousand high-precision positions of the asteroids relative to stars have been measured. Some of the first evidence for satellites of asteroids was obtained from the early efforts; now, the orbits and sizes of some satellites discovered by other means have been refined from occultation observations. Also, several close binary stars have been discovered, and the angular diameters of some stars have been measured from analysis of these observations. The International Occultation Timing Association (IOTA) coordinates this activity worldwide, from predicting and publicizing the events, to accurately timing the occultations from as many stations as possible, and publishing and archiving the observations.

  11. Thermocouple design for measuring temperatures of small insects.

    PubMed

    Hanson, A A; Venette, R C

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to improve our ability to resolve insect exotherms. We tested the designs with adults from three parasitoid species: Tetrastichus planipennisi, Spathius agrili, and S. floridanus. These species are <3 mm long and <0.1 mg. Mean exotherms were greater for fine-gauge thermocouples than thick-gauge thermocouples for the smallest species tested, T. planipennisi. This difference was not apparent for larger species S. agrili and S. floridanus. Thermocouple design did not affect the mean supercooling point for any of the species. The cradle thermocouple design developed with the fine gauge wire was reusable and allowed for easy insect recovery after cold exposure.

  12. Rheology of wet granular materials under continuous shear: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Badetti, Michel; Fall, Abdoulaye; Roux, Jean-Noël

    2017-06-01

    The behaviour of wet granular media in shear flow is characterized by the dependence of apparent friction μ* and solid fraction Φs on the reduced pressure P* and the inertia number I. Reduced pressure, P* = σ22a2/F0, compares the applied normal stress σ22 on grains of diameter a to the tensile strength of contact F0 (proportional to the surface tension D of the liquid and the beads diameter). A specifically modified rotational rheometer is used to characterize the response of model wet granular material to applied shear rate \\dot γ under controlled normal stress σ22. Discrete Element Method (DEM) simulations in 3D are carried out in parallel and numerical results are compared with experimental ones. Cohesive, inertia, saturation and viscous effects on macroscopic coefficient of friction μ* and solid fraction Φs are discussed.

  13. [Rotational stability of angiography catheters].

    PubMed

    Schröder, J; Weber, M

    1992-10-01

    Rotatory stability is a parameter that reflects the ability of a catheter to transmit a rotation applied at the outer end to the catheter tip for the purpose of selective probing. A method for measuring the rotatory stability is described, and the results of rotatory stability measurements of 70 different commercially available catheters are reported. There is an almost linear correlation between the rotatory stability and the difference between the respective fourth power of the external and internal diameter or, approximately, to the fourth power of the external diameter for catheters without wire reinforcement. With the same cross-sectional dimensions, the rotatory stability of teflon, polyethylene, and nylon catheters has an approximate ratio of 1:2:4. Wire reinforcement increases rotatory stability by an average factor of about 3. For catheters of calibers 5 F and 6 F, a correlation between the rotatory stability and the weight of the reinforcing wire mesh is apparent.

  14. Characteristics of Nano-emulsion for Cold Thermal Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  15. A new approach to the CZ crystal growth weighing control

    NASA Astrophysics Data System (ADS)

    Kasimkin, P. V.; Moskovskih, V. A.; Vasiliev, Y. V.; Shlegel, V. N.; Yuferev, V. S.; Vasiliev, M. G.; Zhdankov, V. N.

    2014-03-01

    The aim of a new approach was to improve the robustness of the weighing control of CZ growth especially for semiconductors, for which the “anomalous“ behavior of the apparent weight provokes instability of the servo-loop. In the described method, the periodic reciprocating measuring motion of small amplitude is superposed on the uniform pull-rod movement. The cross-sectional area is determined from the weight sensor responses that are modulated mainly by the forces of hydrostatic pressure. By the example of germanium crystal growth, it is shown that in the control system, based on such a way of the diameter measuring, a simple PI control law provides a good close loop system's stability and dynamics for the materials with the “anomalous” behavior of a weighing signal. The effect of a meniscus on the modulation measuring of a crystal diameter is also discussed.

  16. Apparent Mass Nonlinearity for Paired Oscillating Plates

    NASA Astrophysics Data System (ADS)

    Granlund, Kenneth; Ol, Michael

    2014-11-01

    The classical potential-flow problem of a plate oscillating sinusoidally at small amplitude, in a direction normal to its plane, has a well-known analytical solution of a fluid ``mass,'' multiplied by plate acceleration, being equal to the force on the plate. This so-called apparent-mass is analytically equal to that of a cylinder of fluid, with diameter equal to plate chord. The force is directly proportional to frequency squared. Here we consider experimentally a generalization, where two coplanar plates of equal chord are placed at some lateral distance apart. For spacing of ~0.5 chord and larger between the two plates, the analytical solution for a single plate can simply be doubled. Zero spacing means a plate of twice the chord and therefore a heuristic cylinder of fluid of twice the cross-sectional area. This limit is approached for plate spacing <0.5c. For a spacing of 0.1-0.2c, the force due to apparent mass was found to increase with frequency, when normalized by frequency squared; this is a nonlinearity and a departure from the classical theory. Flow visualization in a water-tank suggests that such departure can be imputed to vortex shedding from the plates' edges inside the inter-plate gap.

  17. Replacing effective spectral radiance by temperature in occupational exposure limits to protect against retinal thermal injury from light and near IR radiation.

    PubMed

    Madjidi, Faramarz; Behroozy, Ali

    2014-01-01

    Exposure to visible light and near infrared (NIR) radiation in the wavelength region of 380 to 1400 nm may cause thermal retinal injury. In this analysis, the effective spectral radiance of a hot source is replaced by its temperature in the exposure limit values in the region of 380-1400 nm. This article describes the development and implementation of a computer code to predict those temperatures, corresponding to the exposure limits proposed by the American Conference of Governmental Industrial Hygienists (ACGIH). Viewing duration and apparent diameter of the source were inputs for the computer code. At the first stage, an infinite series was created for calculation of spectral radiance by integration with Planck's law. At the second stage for calculation of effective spectral radiance, the initial terms of this infinite series were selected and integration was performed by multiplying these terms by a weighting factor R(λ) in the wavelength region 380-1400 nm. At the third stage, using a computer code, the source temperature that can emit the same effective spectral radiance was found. As a result, based only on measuring the source temperature and accounting for the exposure time and the apparent diameter of the source, it is possible to decide whether the exposure to visible and NIR in any 8-hr workday is permissible. The substitution of source temperature for effective spectral radiance provides a convenient way to evaluate exposure to visible light and NIR.

  18. Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes.

    PubMed

    Innocente, N; Biasutti, M; Venir, E; Spaziani, M; Marchesini, G

    2009-05-01

    The effect of different homogenization pressures (15/3 MPa and 97/3 MPa) on fat globule size and distribution as well as on structure-property relationships of ice cream mixes was investigated. Dynamic light scattering, steady shear, and dynamic rheological analyses were performed on mixes with different fat contents (5 and 8%) and different aging times (4 and 20 h). The homogenization of ice cream mixes determined a change from bimodal to monomodal particle size distributions and a reduction in the mean particle diameter. Mean fat globule diameters were reduced at higher pressure, but the homogenization effect on size reduction was less marked with the highest fat content. The rheological behavior of mixes was influenced by both the dispersed and the continuous phases. Higher fat contents caused greater viscosity and dynamic moduli. The lower homogenization pressure (15/3 MPa) mainly affected the dispersed phase and resulted in a more pronounced viscosity reduction in the higher fat content mixes. High-pressure homogenization (97/3 MPa) greatly enhanced the viscoelastic properties and the apparent viscosity. Rheological results indicated that unhomogenized and 15/3 MPa homogenized mixes behaved as weak gels. The 97/3 MPa treatment led to stronger gels, perhaps as the overall result of a network rearrangement or interpenetrating network formation, and the fat globules were found to behave as interactive fillers. High-pressure homogenization determined the apparent viscosity of 5% fat to be comparable to that of 8% fat unhomogenized mix.

  19. Effect of Calcifications on Breast Ultrasound Shear Wave Elastography: An Investigational Study

    PubMed Central

    Gregory, Adriana; Mehrmohammadi, Mohammad; Denis, Max; Bayat, Mahdi; Stan, Daniela L.; Fatemi, Mostafa; Alizad, Azra

    2015-01-01

    Purpose To investigate the effects of macrocalcifications and clustered microcalcifications associated with benign breast masses on shear wave elastography (SWE). Methods SuperSonic Imagine (SSI) and comb-push ultrasound shear elastography (CUSE) were performed on three sets of phantoms to investigate how calcifications of different sizes and distributions influence measured elasticity. To demonstrate the effect in vivo, three female patients with benign breast masses associated with mammographically-identified calcifications were evaluated by CUSE. Results Apparent maximum elasticity (Emax) estimates resulting from individual macrocalcifications (with diameters of 2mm, 3mm, 5mm, 6mm, 9mm, 11mm, and 15mm) showed values over 50 kPa for all cases, which represents more than 100% increase over background (~21kPa). We considered a 2cm-diameter circular region of interest for all phantom experiments. Mean elasticity (Emean) values varied from 26 kPa to 73 kPa, depending on the macrocalcification size. Highly dense clusters of microcalcifications showed higher Emax values than clusters of microcalcification with low concentrations, but the difference in Emean values was not significant. Conclusions Our results demonstrate that the presence of large isolated macrocalcifications and highly concentrated clusters of microcalcifications can introduce areas with apparent high elasticity in SWE. Considering that benign breast masses normally have significantly lower elasticity values than malignant tumors, such areas with high elasticity appearing due to presence of calcification in benign breast masses may lead to misdiagnosis. PMID:26368939

  20. 3D morphological analysis of the mouse cerebral vasculature: Comparison of in vivo and ex vivo methods

    PubMed Central

    Steinman, Joe; Koletar, Margaret M.; Stefanovic, Bojana; Sled, John G.

    2017-01-01

    Ex vivo 2-photon fluorescence microscopy (2PFM) with optical clearing enables vascular imaging deep into tissue. However, optical clearing may also produce spherical aberrations if the objective lens is not index-matched to the clearing material, while the perfusion, clearing, and fixation procedure may alter vascular morphology. We compared in vivo and ex vivo 2PFM in mice, focusing on apparent differences in microvascular signal and morphology. Following in vivo imaging, the mice (four total) were perfused with a fluorescent gel and their brains fructose-cleared. The brain regions imaged in vivo were imaged ex vivo. Vessels were segmented in both images using an automated tracing algorithm that accounts for the spatially varying PSF in the ex vivo images. This spatial variance is induced by spherical aberrations caused by imaging fructose-cleared tissue with a water-immersion objective. Alignment of the ex vivo image to the in vivo image through a non-linear warping algorithm enabled comparison of apparent vessel diameter, as well as differences in signal. Shrinkage varied as a function of diameter, with capillaries rendered smaller ex vivo by 13%, while penetrating vessels shrunk by 34%. The pial vasculature attenuated in vivo microvascular signal by 40% 300 μm below the tissue surface, but this effect was absent ex vivo. On the whole, ex vivo imaging was found to be valuable for studying deep cortical vasculature. PMID:29053753

  1. Flow Control via a Single Spanwise Wire on the Surface of a Stationary Cylinder

    NASA Astrophysics Data System (ADS)

    Ekmekci, Alis; Rockwell, Donald

    2007-11-01

    The flow structure arising from a single spanwise wire attached along the surface of a circular stationary cylinder is investigated experimentally via a cinema technique of digital particle image velocimetry (DPIV). Consideration is given to wires that have smaller and larger scales than the thickness of the unperturbed boundary layer that develops around the cylinder prior to flow separation. The wires have diameters that are 1% and 3% of the cylinder diameter. Over a certain range of angular positions with respect to the approach flow, both small- and large-scale wires show important global effects on the entire near-wake. Two critical angles are identified on the basis of the near-wake structure. These critical angles are associated with extension and contraction of the near-wake, relative to the wake in absence of the effect of a surface disturbance. The critical angle of the wire that yields near-wake extension is associated with bistable oscillations of the separating shear layer, at irregular time intervals, much longer that the time scale associated with classical Karman vortex shedding. Moreover, for the large scale wire, in specific cases, either attenuation or enhancement of the Karman mode of vortex formation is observed.

  2. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.

    2011-07-01

    Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.

  3. Beautiful Blocks of Bedrock

    NASA Image and Video Library

    2016-06-01

    This image captured by NASA Mars Reconnaissance Orbiter spacecraft targets a 3-kilometer diameter crater that occurs within the ejecta blanket of the much older Bakhuysen Crater, a 150-kilometer diameter impact crater in Noachis Terra. Impact craters are interesting because they provide a mechanism to uplift and expose underlying bedrock, allowing for the study of the subsurface and the geologic past. An enhanced color image shows the wall of the crater, which exposes layering as well as blocks of rock. There is a distinctive large block in the upper left of the crater wall, generally referred to as a "mega-block." It is an angular, light-toned, highly fragmented block, about 100 meters across. Several smaller light-toned blocks are also in the crater wall, possibly of the same rock type as the "mega-block." Ejecta blocks are thrown outward during the initial excavation of a crater, or are deposited as part of the ground-hugging flows of which the majority of the ejecta blanket is comprised. Through images like these, we are able to study the deeper subsurface of Mars that is not otherwise exposed. http://photojournal.jpl.nasa.gov/catalog/PIA20728

  4. Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy.

    PubMed

    Grabtchak, Serge; Palmer, Tyler J; Whelan, William M

    2011-07-01

    Interstitial fiber-optic-based approaches used in both diagnostic and therapeutic applications rely on localized light-tissue interactions. We present an optical technique to identify spectrally and spatially specific exogenous chromophores in highly scattering turbid media. Point radiance spectroscopy is based on directional light collection at a single point with a side-firing fiber that can be rotated up to 360 deg. A side firing fiber accepts light within a well-defined, solid angle, thus potentially providing an improved spatial resolution. Measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ∼43 deg cleaved fiber (i.e., radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid. Light was collected with 1 deg increments through 360 deg-segment. Gold nanoparticles , placed into a 3.5-mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a potential noninvasive optical modality for prostate cancer monitoring.

  5. X-Ray Vision

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Elsner, R. F.; Engelhaupt, D.; Kolodziejczak, J. J.; ODell, S. L.; Speegle, C. O.; Weisskopf, M. C.

    2004-01-01

    We are fabricating optics for the hard-x-ray region using electroless nickel replication. The attraction of this process, which has been widely used elsewhere, is that the resulting full shell optics are inherently stable and thus can have very good angular resolution. The challenge with this process is to develop lightweight optics (nickel has a relatively high density of 8.9 g/cu cm), and to keep down the costs of mandrel fabrication. We accomplished the former through the development of high-strength nickel alloys that permit very thin shells without fabrication- and handling-induced deformations. For the latter, we have utilized inexpensive grinding and diamond turning to figure the mandrels and then purpose-built polishing machines to finish the surface. In-house plating tanks and a simple water-bath separation system complete the process. To date we have built shells ranging in size from 5 cm diameter to 50 cm, and with thickness down to 100 micron. For our HERO balloon program, we are fabricating over 200 iridium-coated shells, 250 microns thick, for hard-x-ray imaging up to 75 keV. Early test results on these have indicated half-power-diameters of 15 arcsec. The status of these and other hard-x-ray optics will be reviewed.

  6. Efficient drug delivery using SiO2-layered double hydroxide nanocomposites.

    PubMed

    Li, Li; Gu, Zi; Gu, Wenyi; Liu, Jian; Xu, Zhi Ping

    2016-05-15

    MgAl-layered double hydroxide (MgAl-LDH) nanoparticles have great potentials in drug and siRNA delivery. In this work, we used a nanodot-coating strategy to prepare SiO2 dot-coated layered double hydroxide (SiO2@MgAl-LDH) nanocomposites with good dispersibility and controllable size for drug delivery. The optimal SiO2@MgAl-LDH nanocomposite was obtained by adjusting synthetic parameters including the mass ratio of MgAl-LDH to SiO2, the mixing temperature and time. The optimal SiO2@MgAl-LDH nanocomposite was shown to have SiO2 nanodots (10-15nm in diameter) evenly deposited on the surface of MgAl-LDHs (110nm in diameter) with the plate-like morphology and the average hydrodynamic diameter of 170nm. We further employed SiO2@MgAl-LDH nanocomposite as a nanocarrier to deliver methotrexate (MTX), a chemotherapy drug, to the human osteosarcoma cell (U2OS) and found that MTX delivered by SiO2@MgAl-LDH nanocomposite apparently inhibited the U2OS cell growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fluid mechanical scaling of impact craters in unconsolidated granular materials

    NASA Astrophysics Data System (ADS)

    Miranda, Colin S.; Dowling, David R.

    2015-11-01

    A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.

  8. Variations in interior morphology of 15-20 km lunar craters - Implications for a major subsurface discontinuity

    NASA Technical Reports Server (NTRS)

    De Hon, R. A.

    1980-01-01

    Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.

  9. Bringing the Visible Universe into Focus with Robo-AO

    PubMed Central

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit

    2013-01-01

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078

  10. Bringing the visible universe into focus with Robo-AO.

    PubMed

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit

    2013-02-12

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.

  11. Dust and molecular shells in asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    Zhao-Geisler, R.; Quirrenbach, A.; Köhler, R.; Lopez, B.

    2012-09-01

    Context. Asymptotic giant branch (AGB) stars are one of the largest distributors of dust into the interstellar medium. However, the wind formation mechanism and dust condensation sequence leading to the observed high mass-loss rates have not yet been constrained well observationally, in particular for oxygen-rich AGB stars. Aims: The immediate objective in this work is to identify molecules and dust species which are present in the layers above the photosphere, and which have emission and absorption features in the mid-infrared (IR), causing the diameter to vary across the N-band, and are potentially relevant for the wind formation. Methods: Mid-IR (8-13 μm) interferometric data of four oxygen-rich AGB stars (R Aql, R Aqr, R Hya, and W Hya) and one carbon-rich AGB star (V Hya) were obtained with MIDI/VLTI between April 2007 and September 2009. The spectrally dispersed visibility data are analyzed by fitting a circular fully limb-darkened disk (FDD). Results: The FDD diameter as function of wavelength is similar for all oxygen-rich stars. The apparent size is almost constant between 8 and 10 μm and gradually increases at wavelengths longer than 10 μm. The apparent FDD diameter in the carbon-rich star V Hya essentially decreases from 8 to 12 μm. The FDD diameters are about 2.2 times larger than the photospheric diameters estimated from K-band observations found in the literature. The silicate dust shells of R Aql, R Hya and W Hya are located fairly far away from the star, while the silicate dust shell of R Aqr and the amorphous carbon (AMC) and SiC dust shell of V Hya are found to be closer to the star at around 8 photospheric radii. Phase-to-phase variations of the diameters of the oxygen-rich stars could be measured and are on the order of 15% but with large uncertainties. Conclusions: From a comparison of the diameter trend with the trends in RR Sco and S Ori it can be concluded that in oxygen-rich stars the overall larger diameter originates from a warm molecular layer of H2O, and the gradual increase longward of 10 μm can be most likely attributed to the contribution of a close Al2O3 dust shell. The chromatic trend of the Gaussian FWHM in V Hya can be explained with the presence of AMC and SiC dust. The observations suggest that the formation of amorphous Al2O3 in oxygen-rich stars occurs mainly around or after visual minimum. However, no firm conclusions can be drawn concerning the mass-loss mechanism. Future modeling with hydrostatic and self-consistent dynamical stellar atmospheric models will be required for a more certain understanding. Based on observations made with the Very Large Telescope Interferometer (VLTI) at the Paranal Observatory under program IDs 079.D-0140, 080.D-0005, 081.D-0198, 082.D-0641 and 083.D-0294.Color versions of the figures and Appendices A-C are available in electronic form at http://www.aanda.orgFITS files of the calibrated visibilities are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A56

  12. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  13. ARC-1989-AC89-7054

    NASA Image and Video Library

    1989-08-28

    Voyager violet, green and ultraviolet images of Triton were map projected into cylindrical coordinates and combines to produce this false-color terrain map. Several compositionally distinct terrain and geologic features are portrayed. At center is a gray-blue unit referred to as 'cantaloupe' terrain because of its unusual topographic texture. The unit appears to predate other units to the left. Immediately adjacent to the cantaloupe terrain, is a smoother unit, represented by a reddish color, that has been dissected by a prominent fault system. This unit apparently overlies a much-higher-albedo material, seen farther left. A prominent angular albedo boundary separates relatively undisturbed smooth terrain from irregular patches which seem to emanate from circular, often bright-centered features. The parallel streaks may represent vented particulate materials blown in the same direction by winds in Triton's thin atmosphere.

  14. Goldstone radar images of near-Earth asteroids (469896) 2007 WV4, 2014 JO25, 2017 BQ6, and 2017 CS

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Benner, Lance A. M.; Naidu, Shantanu P.; Giorgini, Jon D.; Busch, Michael; Jao, Joseph; Lee, Clement; Snedeker, Lawrence; Silva, Marc; Slade, Martin A.; Lawrence, Kenneth J.

    2017-10-01

    We report Goldstone delay-Doppler radar imaging of four NEAs obtained during February-June 2017. The signal-to-noise ratios were very strong for each object and we obtained detailed images with range resolutions as fine as 3.75 m/pixel. Delay-Doppler imaging revealed that 2017 BQ6 is a strikingly angular object roughly ~200 m in diameter with a rotation period of ~3 h. The multi-faceted shape is puzzling assuming a rubble-pile structure of this asteroid. 2017 CS was discovered by Pan-STARRS 1 on February 2 and approached within 8 lunar distances on May 29. 2017 CS appears rounded on large scales but has considerable fine-scale topography evident along its leading edges. The images suggest a diameter of ~1 km and rotation visible in the images is consistent with the 40 h rotation period obtained independently by from photometry by P. Pravec (pers. comm.). The highest resolution images show evidence for meter-size boulders, ridges, and broad concavities. 2007 WV4 was imaged in late May and early June. 2007 WV4 appears distinctly angular, with a diameter in the realm of 900 meters, and with at least three large facets more than 100 m in extent. Tracking of features in the images gives a rotation period of about 12 hours. The echoes show a persistent, small topographic feature that extends out from the surface. The nature of this feature is unknown, but it may be a large boulder similar to Yoshinodai seen on 25143 Itokawa. 2014 JO25 approached within 4.6 lunar distances on April 19. This was the closest encounter by an asteroid with an absolute magnitude brighter than 18 known in advance until 2027, when 1999 AN10 will approach within one lunar distance. Radar imaging shows that 2014 JO25 is an irregular object, which consists of two components connected by a narrow neck. The asteroid has a long axis of about 1 km and a short axis of roughly 600 m. The 3.75 m range resolution imaging placed thousands of pixels on the object and reveals ridges, hills, concavities, flat regions up to 200 meters long, and radar-bright spots that are probably boulders. Tracking of features in the images yields a rotation period of about 4.5 hours that is among the fastest of the ~50 known contact binaries in the near-Earth population.

  15. Clouds and Ice of the Lambert-Amery System, East Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These views from the Multi-angle Imaging SpectroRadiometer (MISR) illustrate ice surface textures and cloud-top heights over the Amery Ice Shelf/Lambert Glacier system in East Antarctica on October 25, 2002.

    The left-hand panel is a natural-color view from MISR's downward-looking (nadir) camera. The center panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60o forward-viewing, nadir and 60o backward-viewing cameras are displayed as red, green and blue, respectively. With this display technique, surfaces which predominantly exhibit backward-scattering (generally rough surfaces) appear red/orange, while surfaces which predominantly exhibit forward-scattering (generally smooth surfaces) appear blue. Textural variation for both the grounded and sea ice are apparent. The red/orange pixels in the lower portion of the image correspond with a rough and crevassed region near the grounding zone, that is, the area where the Lambert and four other smaller glaciers merge and the ice starts to float as it forms the Amery Ice Shelf. In the natural-color view, this rough ice is spectrally blue in color.

    Clouds exhibit both forward and backward-scattering properties in the middle panel and thus appear purple, in distinct contrast with the underlying ice and snow. An additional multi-angular technique for differentiating clouds from ice is shown in the right-hand panel, which is a stereoscopically derived height field retrieved using automated pattern recognition involving data from multiple MISR cameras. Areas exhibiting insufficient spatial contrast for stereoscopic retrieval are shown in dark gray. Clouds are apparent as a result of their heights above the surface terrain. Polar clouds are an important factor in weather and climate. Inadequate characterization of cloud properties is currently responsible for large uncertainties in climate prediction models. Identification of polar clouds, mapping of their distributions, and retrieval of their heights provide information that will help to reduce this uncertainty.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 15171. The panels cover an area of 380 kilometers x 984 kilometers, and utilize data from blocks 145 to 151 within World Reference System-2 path 127.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory,Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center,Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. An empirical model for transient crater growth in granular targets based on direct observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Barnouin-Jha, Olivier S.; Toriumi, Takashi; Sugita, Seiji; Matsui, Takafumi

    2009-09-01

    The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell's Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the effect of target material properties.

  17. Numerical parametric studies of spray combustion instability

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  18. Opportunity In Situ Geologic Context of Aqueous Alteration Along Offsets in the Rim of Endeavour Crater

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Arvidson, R. E.; Farrand, W. H.; Golombek, M. P.; Grant, J. A.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T. J.

    2015-01-01

    Mars Exploration Rover Opportunity traversed 7.9 km and 27 degrees of arc along the rim of the 22 km-diameter Noachian "Endeavour" impact crater since its arrival 1200 sols ago. Areas of aqueous and low-grade thermal alteration, and changes in structure, attitude, and macroscopic texture of outcrops are notable across several discontinuities between segments of the crater rim. The discontinuities and other post-impact joints and fractures coincide with sites of apparent deep fluid circulation processes responsible for thermal and chemical alteration of local outcrops.

  19. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers fed on wheat-based diets.

    PubMed

    Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V

    2013-06-01

    1. The influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers given wheat-based diets was examined from 10 to 42 d of age. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two pellet diameters (3 and 4.76 mm) and two pellet lengths (3 and 6 mm). From 0 to 9 d of age, all birds were offered a common starter diet pelleted with a 3-mm diameter die and 3-mm length. Broiler grower (d 10 to 21) and finisher (d 22 to 42) diets, based on wheat, were formulated and then subjected to the 4 different treatments. 2. In grower diets, increasing pellet diameter and pellet length reduced the gelatinised starch (GS) content of the diets. In finisher diets, GS content of 3-mm diameter pellets did not change with increasing pellet length but decreased in 4.76-mm diameter pellets. 3. In grower and finisher diets, increments in intact pellet weight, pellet durability index and pellet hardness with increasing pellet length were greater in 3-mm diameter pellets than those with 4.76-mm diameter. 4. Increasing pellet length from 3 to 6 mm increased apparent metabolisable energy values. Neither the interaction nor main effects were significant for the ileal digestibility of nitrogen and starch. 5. During the grower period (d 10 to 21), birds given pellets of 6-mm length had greater body-weight gain than those given 3-mm length pellets. Feeding 6-mm length pellets decreased feed per body-weight gain compared to 3-mm length pellets. During the finisher (d 22 to 42) and whole grow-out (d 10 to 42) periods, while different pellet lengths had no effect on feed per body-weight gain values at 3-mm pellet diameter, increasing the pellet length decreased feed per body-weight gain at 4.76-mm pellet diameter. 6. Increasing pellet diameter and pellet length reduced the relative length of duodenum. Birds given 3-mm diameter pellets had heavier proventriculus compared to those given 4.76-mm diameter pellets. 7. Overall, the data suggest that increasing the pellet length from 3 to 6 mm improved the body-weight gain and feed per body-weight gain during the grower period (d 10 to 21). While the positive effect on body-weight gain disappeared as the birds grew older, improvements in feed per body-weight gain were maintained over the finisher and whole grow-out periods only in 4.76-mm diameter pellets. Small diameter die holes and longer pellet lengths may be considered as potential manipulations to manufacture high-quality pellets under low conditioning temperatures.

  1. An impact rotary motor based on a fiber torsional piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Han, W. X.; Zhang, Q.; Ma, Y. T.; Pan, C. L.; Feng, Z. H.

    2009-01-01

    A prototype small impact rotary motor has been fabricated based on a newly developed torsional actuator which is 15.0 mm long and 1.0 mm in diameter. The motor can rotate when it is powered with a saw-shaped voltage. The experimental results show that its angular speed is proportional to both the driving voltage's amplitude and the frequency under 1 kHz. The large nonlinearity occurs at higher driving frequency due to the resonance of the partial mechanical structure of the motor. The motor can rotate at a speed of 90 rpm with a saw-shaped driving voltage of 600Vp.-p. at 8 kHz, and produce a stall torque of 80 μN m with 1000Vp.-p. at 3 kHz.

  2. Silicon pore optics development for ATHENA

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barrière, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; van Baren, Coen; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Christensen, Finn E.

    2015-09-01

    The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.

  3. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders.

    PubMed

    van de Haar, Marie Anne; van de Groep, Jorik; Brenny, Benjamin J M; Polman, Albert

    2016-02-08

    We propose a dielectric nanoresonator geometry consisting of hollow dielectric nanocylinders which support geometrical resonances. We fabricate such hollow Si particles with an outer diameter of 108-251 nm on a Si substrate, and determine their resonant modes with cathodo-luminescence (CL) spectroscopy and optical dark-field (DF) scattering measurements. The scattering behavior is numerically investigated in a systematic fashion as a function of wavelength and particle geometry. We find that the additional design parameter as a result of the introduction of a center gap can be used to control the relative spectral spacing of the resonant modes, which will enable additional control over the angular radiation pattern of the scatterers. Furthermore, the gap offers direct access to the enhanced magnetic dipole modal field in the center of the particle.

  4. An investigation of 11 previously unstudied open star clusters

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.

    2009-02-01

    The main astrophysical properties of 11 previously unstudied open star clusters are probed with JHK Near-IR (2MASS) photometry of Cutri et al. [Cutri, R., et al., 2003. The IRSA 2MASS All-sky Point Source Catolog, NASA/IPAC Infrared Science Archive] and proper motions (NOMAD) astrometry of Zacharias et al. [Zacharias, N., Monet, D., Levine, S., Urban, S., Gaume, R., Wycoff, G., 2004. American Astro. Soc. Meeting 36, 1418]. The fundamental parameters have been derived for IC (1434, 2156); King (17, 18, 20, 23, 26); and Dias (2, 3, 4, 7, 8), for which no prior parameters are available in the literature. The clusters' centers coordinates and angular diameters are re-determined, while ages, distances, and color excesses for these clusters are estimated here for the first time.

  5. A coasting cosmology

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.

    1989-01-01

    A Friedmann-Robertson-Walker cosmology with energy density decreasing in expansion as 1/R-squared, where R is the Robertson-Walker scale factor, is studied. In such a model the universe expands with constant velocity; hence the term coasting cosmology. Observational consequences of such a model include the age of the universe, the luminosity distance-redshift relation (the Hubble diagram), the angular diameter distance-redshift relation, and the galaxy number count as a function of redshift. These observations are used to limit the parameters of the model. Among the interesting consequences of the model are the possibility of an ever-expanding closed universe, a model universe with multiple images at different redshifts of the same object, a universe with Omega - 1 not equal to 0 stable in expansion, and a closed universe with radius smaller than 1/H(0).

  6. Chromospheric activity of cool giant stars

    NASA Technical Reports Server (NTRS)

    Steiman-Cameron, T. Y.

    1986-01-01

    During the seventh year of IUE twenty-six spectra of seventeen cool giant stars ranging in spectral type from K3 thru M6 were obtained. Together with spectra of fifteen stars observed during the sixth year of IUE, these low-resolution spectra have been used to: (1) examine chromospheric activity in the program stars and late type giants in general, and (2) evaluate the extent to which nonradiative heating affects the upper levels of cool giant photospheres. The stars observed in this study all have well determined TiO band strengths, angular diameters (determined from lunar occulations), bolometric fluxes, and effective temperatures. Chromospheric activity can therefore be related to effective temperatures providing a clearer picture of activity among cool giant stars than previously available. The stars observed are listed.

  7. Optical interferometry and Gaia parallaxes for a robust calibration of the Cepheid distance scale

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Mérand, Antoine; Gallenne, Alexandre; Trahin, Boris; Borgniet, Simon; Pietrzynski, Grzegorz; Nardetto, Nicolas; Gieren, Wolfgang

    2018-04-01

    We present the modeling tool we developed to incorporate multi-technique observations of Cepheids in a single pulsation model: the Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). The combination of angular diameters from optical interferometry, radial velocities and photometry with the coming Gaia DR2 parallaxes of nearby Galactic Cepheids will soon enable us to calibrate the projection factor of the classical Parallax-of-Pulsation method. This will extend its applicability to Cepheids too distant for accurate Gaia parallax measurements, and allow us to precisely calibrate the Leavitt law's zero point. As an example application, we present the SPIPS model of the long-period Cepheid RS Pup that provides a measurement of its projection factor, using the independent distance estimated from its light echoes.

  8. CORS BAADE-WESSELINK DISTANCE TO THE LMC NGC 1866 BLUE POPULOUS CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molinaro, R.; Ripepi, V.; Marconi, M.

    2012-03-20

    We used optical, near-infrared photometry, and radial velocity data for a sample of 11 Cepheids belonging to the young LMC blue populous cluster NGC 1866 to estimate their radii and distances on the basis of the CORS Baade-Wesselink method. This technique, based on an accurate calibration of surface brightness as a function of (U - B), (V - K) colors, allows us to estimate, simultaneously, the linear radius and the angular diameter of Cepheid variables, and consequently to derive their distance. A rigorous error estimate on radii and distances was derived by using Monte Carlo simulations. Our analysis gives amore » distance modulus for NGC 1866 of 18.51 {+-} 0.03 mag, which is in agreement with several independent results.« less

  9. Twist-induced guidance in coreless photonic crystal fiber: A helical channel for light.

    PubMed

    Beravat, Ramin; Wong, Gordon K L; Frosz, Michael H; Xi, Xiao Ming; Russell, Philip St J

    2016-11-01

    A century ago, Einstein proposed that gravitational forces were the result of the curvature of space-time and predicted that light rays would deflect when passing a massive celestial object. We report that twisting the periodically structured "space" within a coreless photonic crystal fiber creates a helical channel where guided modes can form despite the absence of any discernible core structure. Using a Hamiltonian optics analysis, we show that the light rays follow closed spiral or oscillatory paths within the helical channel, in close analogy with the geodesics of motion in a two-dimensional gravitational field. The mode diameter shrinks, and its refractive index rises, as the twist rate increases. The birefringence, orbital angular momentum, and dispersion of these unusual modes are explored.

  10. Optimization study for the experimental configuration of CMB-S4

    NASA Astrophysics Data System (ADS)

    Barron, Darcy; Chinone, Yuji; Kusaka, Akito; Borril, Julian; Errard, Josquin; Feeney, Stephen; Ferraro, Simone; Keskitalo, Reijo; Lee, Adrian T.; Roe, Natalie A.; Sherwin, Blake D.; Suzuki, Aritoki

    2018-02-01

    The CMB Stage 4 (CMB-S4) experiment is a next-generation, ground-based experiment that will measure the cosmic microwave background (CMB) polarization to unprecedented accuracy, probing the signature of inflation, the nature of cosmic neutrinos, relativistic thermal relics in the early universe, and the evolution of the universe. CMB-S4 will consist of O(500,000) photon-noise-limited detectors that cover a wide range of angular scales in order to probe the cosmological signatures from both the early and late universe. It will measure a wide range of microwave frequencies to cleanly separate the CMB signals from galactic and extra-galactic foregrounds. To advance the progress towards designing the instrument for CMB-S4, we have established a framework to optimize the instrumental configuration to maximize its scientific output. The framework combines cost and instrumental models with a cosmology forecasting tool, and evaluates the scientific sensitivity as a function of various instrumental parameters. The cost model also allows us to perform the analysis under a fixed-cost constraint, optimizing for the scientific output of the experiment given finite resources. In this paper, we report our first results from this framework, using simplified instrumental and cost models. We have primarily studied two classes of instrumental configurations: arrays of large-aperture telescopes with diameters ranging from 2–10 m, and hybrid arrays that combine small-aperture telescopes (0.5-m diameter) with large-aperture telescopes. We explore performance as a function of telescope aperture size, distribution of the detectors into different microwave frequencies, survey strategy and survey area, low-frequency noise performance, and balance between small and large aperture telescopes for hybrid configurations. Both types of configurations must cover both large (~ degree) and small (~ arcmin) angular scales, and the performance depends on assumptions for performance vs. angular scale. The configurations with large-aperture telescopes have a shallow optimum around 4–6 m in aperture diameter, assuming that large telescopes can achieve good performance for low-frequency noise. We explore some of the uncertainties of the instrumental model and cost parameters, and we find that the optimum has a weak dependence on these parameters. The hybrid configuration shows an even broader optimum, spanning a range of 4–10 m in aperture for the large telescopes. We also present two strawperson configurations as an outcome of this optimization study, and we discuss some ideas for improving our simple cost and instrumental models used here. There are several areas of this analysis that deserve further improvement. In our forecasting framework, we adopt a simple two-component foreground model with spatially varying power-law spectral indices. We estimate de-lensing performance statistically and ignore non-idealities such as anisotropic mode coverage, boundary effect, and possible foreground residual. Instrumental systematics, which is not accounted for in our analyses, may also influence the conceptual design. Further study of the instrumental and cost models will be one of the main areas of study by the entire CMB-S4 community. We hope that our framework will be useful for estimating the influence of these improvements in the future, and we will incorporate them in order to further improve the optimization.

  11. Secondary Fragmentation of Comet Shoemaker-Levy 9 and the Ramifications for the Progenitor's Breakup in July 1992

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Chodas, P. W.; Yeomans, D. K.

    1998-01-01

    Comprehensive analysis of discrete events of secondary fragmentation leads to a conceptually new understanding of the process of disintegration of comet Shoemaker-Levy 9. We submit that the jovian tidal forces inflicted extensive cracks throughout the interior of the original nucleus but did not split it apart. The initial disruption was apparently accomplished by stresses exerted on the cracked object by its fast rotation during the early post-perijove period of time. We argue that this disruption was in fact a rapid sequence of episodes during July 1992 that gave birth to the 12 on-train, or primary, fragments: A, C, D, E, G, H, K, L, Q (later Q(sub 1)), R, S, and W. The discrete events of secondary fragmentation, which gave birth to the off-train fragments, are understood in this scenario as stochastic manifestations of the continuing process of progressive disintegration. Of the 13 off-train fragments considered, nine were secondary--B, F, G(sub 2), M, N, P (later P(sub 2) or P(sub 2a)), Q(sub 2), U, and V--and four tertiary (J, P(sub 1), P(sub 2b), and T). The separation parameters of 11 off-train fragments were determined. The vectorial distribution of separation velocities of these fragments shows a strong concentration toward a great circle, unquestionably an effect of the approximately conserved angular momentum of the progenitor comet since the time of its initial disruption. Also apparent is their clumping (except for P(sub 1)) to a segment along the great circle, implying that the fragments were consistently released from one side of their parents, thus explaining for the first time why the off-train fragments preferentially appeared on one side of the nuclear train. In order to obtain a consistent solution, our model requires that the points of separation be on the antisolar side of the parent fragments, where thermal stresses are likely to enhance the effect of rotation. The episodes of secondary fragmentation are found to have nine months after the close encounter with Jupiter in early July 1992, and the separation velocities ranged between 0.36 and 1.7 m/s. The spin-axis position is determined to have been nearly in the jovicentric orbit plane, which rules out the Asphaug-Benz-Solem strengthless aggregate model as a plausible breakup hypothesis. Since the separation velocities are rotational in nature, they cannot substantially exceed the critical limit for centrifugal breakup and offer an estimate for the original nuclear dimensions. The comet's nucleus is found to have been approximately 10 km in diameter and spinning rapidly. With the exception of P(sub 1) and apparently also P(sub 2) and F, no nongravitational deceleration was detected in the motions of the off-train fragments. Serious doubts are cast on continuing appreciable activity of any of these fragments. Indeed, when it was necessary to introduce a deceleration into the equations of motion, the effect appears to have been due to the action of solar radiation pressure on the centroid of centimeter-sized particulates in the disintegrating condensations.

  12. Biological characteristics of HCC by ultrasound-guided aspiration biopsy and its clinical application

    PubMed Central

    Lin, Li-Wu; Lin, Xue-Ying; He, Yi-Mi; Gao, Shang-Da; Lin, Xiao-Dong

    2003-01-01

    AIM: To probe the pathological biological characteristics of hepatocellular carcinoma (HCC) by the ultrasound-guided aspiration biopsy and assess the clinical application value of this method. METHODS: The biopsy and DNA analysis by flow cytometry (FCM) were taken in 46 cases with HCC nodules, including 26 cases and 20 cases with nodules ≤ 3 cm and > 3 cm in diameters respectively, and 12 cases with intrahepatic benign hyperplastic nodules. They were taken in 22 cases of 46 cases with HCC before and after the therapy. Fine-needles and automatic histological incised biopsy needles were used. The fresh biopsy tissue was produced into the single cell suspension, which was sent for DNA detection and ratio analysis of cell period. The ratio of each DNA period of cell proliferation of each group was calculated and compared with each other. The DNA aneuploid (AN) and apoptosis cell peak were observed and their percentages were calculated. RESULTS: The ratios of S and G2/M periods of DNA, which reflect cell hyperproliferation, in the group with HCC tumors > 3 cm in diameter were markedly higher than those of the group with HCC nodules ≤ 3 cm in diameter and the group with the benign hyperplastic nodules (P < 0.01 except A:B of S period, P < 0.05). The ratios of the middle group were also apparently higher than those of the latter group (P < 0.01). The ratio of DNA AN of 46 cases with HCC nodules was 34.8% (16/46). None of the cases with the intrahepatic hyperplastic nodules appeared AN. The DNA AN appeared more apparently with the growth of the tumors. The AN ratio of the group with tumors > 3 cm in diameter was 55% (11/20), markedly higher than that of the group with tumors ≤ 3 cm in diameter which was 19.2% (5/26) (P < 0.01). The FCM DNA analysis of 22 specimens of hepatic carcinoma tissue before therapy showed that the aneuploid peaks appeared in 5 cases (22.7%). The ratio of G1 period rose after therapy while the S period and G2/M ratios fell (P < 0.01). The aneuploid peak disappeared in the 5 cases after the therapy, while the apoptosis peaks in 12 cases (54.5%) appeared. CONCLUSION: Addition to supply the information of the pathological morphology of the tumor, the ultrasound-guided fine-needle aspiration tissue could be sent for FCM DNA analysis to comprehend its pathological biological characteristics. This can not only provide the clinic the reliable information about the occurrence, development, diagnosis, curative effect and prognosis of tumors but also supply biological information for clinic to choose therapeutic schemes. PMID:12717834

  13. The Large Impact Process Inferred from the Geology of Lunar Multiring Basins

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.

    1994-01-01

    The study of the geology of multiring impact basins on the Moon over the past ten years has given us a rudimentary understanding of how these large structures have formed and evolved on the Moon and other bodies. Two-ring basins on the Moon begin to form at diameters of about 300 km; the transition diameter at which more than two rings appear is uncertain, but it appears to be between 400 and 500 km in diameter. Inner rings tend to be made up of clusters or aligned segments of massifs and are arranged into a crudely concentric pattern; scarp-like elements may or may not be present. Outer rings are much more scarp-like and massifs are rare to absent. Basins display textured deposits, interpreted as ejecta, extending roughly an apparent basin radius exterior to the main topographic rim. Ejecta may have various morphologies, ranging from wormy and hummocky deposits to knobby surfaces; the causes of these variations are not known, but may be related to the energy regime in which the ejecta are deposited. Outside the limits of the textured ejecta are found both fields of satellitic craters (secondaries) and light plains deposits. Impact melt sheets are observed on the floors of relatively unflooded basins. Samples of impact melts from lunar basins have basaltic major-element chemistry, characterized by K, rare-earth elements (REE), P, and other trace elements of varying concentration (KREEP); ages are between 3.8 and 3.9 Ga. These lithologies cannot be produced through the fusion of known pristine (plutonic) rock types, suggesting the occurrence of unknown lithologies within the Moon. These melts were probably generated at middle to lower crustal levels. Ejecta compositions, preservation of pre-basin topography, and deposit morphologies all indicate that the excavation cavity of multiring basins is between about 0.4 and 0.6 times the diameter of the apparent crater diameter. Basin depths of excavation can be inferred from the composition of basin ejecta. A variety of mechanisms has been proposed to account for the formation of basin rings but none of them are entirely plausible. Mechanisms can be divided into two broad groups: (1) forcible uplift due to fluidization of the target; (2) concentric, brittle, fracturing and failure of the target, on regional (megaterraces) to global scales (lithospheric fracturing). Most basin rings are spaced at a constant factor on all planets. Evidence supports divergent ringforming models, so it may be that the ring-locating mechanism differs from the ring-forming mechanism. Thus, large-scale crustal foundering (megaterracing) could occur along concentric zones of weakness created by some type of resonant wave mechanism (fluidization and uplift); such immediate crustal adjustment could then be followed by long-term adjustment of the fractured lithosphere.

  14. Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribution

    NASA Astrophysics Data System (ADS)

    Aas, Eyvind; HøJerslev, Niels K.

    1999-04-01

    A primary data set consisting of 70 series of angular radiance distributions observed in clear blue western Mediterranean water and a secondary set of 12 series from the more green and turbid Lake Pend Oreille, Idaho, have been analyzed. The results demonstrate that the main variation of the shape of the downward radiance distribution occurs within the Snell cone. Outside the cone the variation of the shape decreases with increasing zenith angle. The most important shape changes of the upward radiance appear within the zenith angle range 90°-130°. The variation in shape reaches its minimum around nadir, where an almost constant upward radiance distribution implies that a flat sea surface acts like a Lambert emitter within ±8% in the zenith angle interval 140°-180° in air. The ratio Q of upward irradiance and nadir radiance, as well as the average cosines μd and μu for downward and upward radiance, respectively, have rather small standard deviations, ≤10%, within the local water type. In contrast, the irradiance reflectance R has been observed to change up to 400% with depth in the western Mediterranean, while the maximum observed change of Q with depth is only 40%. The dependence of Q on the solar elevation for blue light at 5 m depth in the Mediterranean coincides with observations from the central Atlantic as well as with model computations. The corresponding dependence of μd shows that diffuse light may have a significant influence on its value. Two simple functions describing the observed angular radiance distributions are proposed, and both functions can be determined by two field observations as input parameters. The ɛ function approximates the azimuthal means of downward radiance with an average error ≤7% and of upward radiance with an error of ˜1%. The α function describes the zenith angle dependence of the azimuthal means of upward radiance with an average error ≤7% in clear ocean water, increasing to ≤20% in turbid lake water. The a function suggests that the range of variation for μu falls between 0 and 1/2, and for Q it is between π and 2π. The limits of both ranges are confirmed by observations. By combining the ɛ and α functions, a complete angular description of the upward radiance field is achieved.

  15. Dynamic Angular Petrissage as Treatment for Axillary Web Syndrome Occurring after Surgery for Breast Cancer: a Case Report

    PubMed Central

    Lewis, Paul A.; Cunningham, Joan E.

    2016-01-01

    Background In the context of breast cancer, axillary web syndrome (AWS), also called lymphatic cording, typically presents in the weeks after axillary surgery. This painful condition, likely lymphofibrotic in origin, restricts upper extremity range of motion (ROM). There is no established treatment, although physical therapy and other approaches have been used to variable effect. This report describes treatment of a female client with AWS, who had recently undergone a unilateral simple mastectomy with sentinel node biopsy plus axillary dissection. Methods The client presented with pain upon movement (self-reported as 5 on the 0–10 Oxford Pain Scale), visible cording and restricted use of the ipsilateral upper extremity. Clinical assessment included determining the extent of AWS cording (taut, from axilla to wrist) and measuring glenohumeral joint ROM (140° flexion by goniometer). A therapeutic massage with movement protocol, termed dynamic angular petrissage, was administered over two sessions: Swedish massage combined with dynamically taking the limb through all possible angles of movement (passive ROM), controlling stretch and tension while simultaneously and segmentally applying petrissage and non-petrissage techniques to the underlying soft tissue. Careful attention was taken to not break the cord. Home care consisted of prescribed exercises performed by the patient. Results After Session One, pain was reduced (to 0/10), ROM improved (to 170° flexion), and cording was visibly reduced. After Session Two the cord was residually apparent only on hyperextension, with no ROM restrictions in glenohumeral joint flexion. Follow-up at three months revealed absence of visual or palpable evidence of cording, unrestricted glenohumeral joint ROM, and absence of movement-associated pain. Conclusion The signs and symptoms of AWS were quickly and effectively eliminated, without causing any pain or discomfort to the client. We propose that dynamic angular petrissage may be an efficient and safe treatment approach for reducing the pain, mobility restrictions, and cording of AWS. PMID:27257446

  16. Scalable MWIR and LWIR optical system designs employing a large spherical primary mirror and small refractive aberration correctors

    NASA Astrophysics Data System (ADS)

    Beach, David A.

    2001-12-01

    Design variants of a recently developed optical imaging system have been computed for the thermal infrared spectral bands, which offer some advantages for long-range surveillance and astronomy. Only the spherical primary mirror has the full pupil diameter, all other components being sub-diameter, so scaling is possible up to relatively large pupils. Low-cost fabrication is enabled by the prevalence of spherical optical surfaces. Both MWIR and LWIR spectral transmissions are enabled by the choice of corrector materials, the examples given employing germanium and sapphire for 3.5 - 5.5 micrometers and germanium and zinc selenide for 3.5 - 5.5 micrometers and 8 - 12 micrometers passbands. Diffraction at these wavelengths is the main contributor to resolution constraints, so high numerical aperture values are preferred to enable a better match of blur spot diameter to generally available pixel dimensions. The systems described can routinely be designed to have speeds of f/0.8 or faster, while maintaining diffraction-limited performance over useful angular fields. Because the new design system employs a relayed catadioptric, it is possible to make the aperture stop of the system coincident with the window of the detector cryostat, enabling precise radiometric geometry. The central obscuration provides a convenient location for a calibration source, and both this and a mask for secondary spider supports can be included within the detector cold screen structure. Dual-band operation could be enabled by inclusion of a spectral beam splitter prior to a dual relay/imager system.

  17. Non-destructive detection of cross-sectional strain and defect structure in an individual Ag five-fold twinned nanowire by 3D electron diffraction mapping.

    PubMed

    Fu, Xin; Yuan, Jun

    2017-07-24

    Coherent x-ray diffraction investigations on Ag five-fold twinned nanowires (FTNWs) have drawn controversial conclusions concerning whether the intrinsic 7.35° angular gap could be compensated homogeneously through phase transformation or inhomogeneously by forming disclination strain field. In those studies, the x-ray techniques only provided an ensemble average of the structural information from all the Ag nanowires. Here, using three-dimensional (3D) electron diffraction mapping approach, we non-destructively explore the cross-sectional strain and the related strain-relief defect structures of an individual Ag FTNW with diameter about 30 nm. The quantitative analysis of the fine structure of intensity distribution combining with kinematic electron diffraction simulation confirms that for such a Ag FTNW, the intrinsic 7.35° angular deficiency results in an inhomogeneous strain field within each single crystalline segment consistent with the disclination model of stress-relief. Moreover, the five crystalline segments are found to be strained differently. Modeling analysis in combination with system energy calculation further indicates that the elastic strain energy within some crystalline segments, could be partially relieved by the creation of stacking fault layers near the twin boundaries. Our study demonstrates that 3D electron diffraction mapping is a powerful tool for the cross-sectional strain analysis of complex 1D nanostructures.

  18. Equal channel angular pressing (ECAP) and forging of commercially pure titanium (CP-Ti)

    NASA Astrophysics Data System (ADS)

    Krystian, Maciej; Huber, Daniel; Horky, Jelena

    2017-10-01

    Pure titanium with ultra-fine grained (UFG) microstructure is an exceptionally interesting material for biomedical and dental applications due to its very good biocompatibility and high strength. Such bulk, high-strength UFG materials are commonly produced by different Severe Plastic Deformation (SPD) techniques, whereof Equal Channel Angular Pressing (ECAP) is the most commonly used one. In this investigation commercially pure (CP) titanium (grade 2) was processed by ECAP using a die with a channel diameter of 20mm and an intersection angle of 105°. Six passes using route B120 (in which the billet is rotated between subsequent passes by 120°) at a temperature of 400°C were performed leading to a substantial grain refinement and an increase of strength and hardness. Subsequently, a thermal treatment study on ECAP-processed samples at different temperatures and for different time periods was carried out revealing the stability limit for ECAP CP-Ti as well as the best conditions leading to an improvement in both, strength and ductility. Furthermore, room temperature forging of the as-received (AR; hot-rolled and annealed) as well as ECAP-processed material was conducted. Tensile tests and hardness mappings revealed that forging is capable to further increase the strength of ECAP CP-Ti by more than 20%. Moreover, the mechanical properties are significantly more homogenous than after forging only.

  19. Motion of packings of frictional grains.

    PubMed

    Halsey, Thomas C

    2009-07-01

    Friction plays a key role in controlling the rheology of dense granular flows. Counting the number of constraints vs the number of variables indicates that critical coordination numbers Zc=3 (in D=2) and Zc=4 (in D=3) are special, in that states in which all contacts roll without frictional sliding are naively possible at and below these average coordination numbers. We construct an explicit example of such a state in D=2 based on a honeycomb lattice. This state has surprisingly large values for the typical angular velocities of the particles. Solving for the forces in such a state, we conclude that organized shear can exist in this state only on scales l

  20. 3D imaging studies of rigid-fiber sedimentation

    NASA Astrophysics Data System (ADS)

    Vahey, David W.; Tozzi, Emilio J.; Scott, C. Tim; Klingenberg, Daniel J.

    2011-03-01

    Fibers are industrially important particles that experience coupling between rotational and translational motion during sedimentation. This leads to helical trajectories that have yet to be accurately predicted or measured. Sedimentation experiments and hydrodynamic analysis were performed on 11 copper "fibers" of average length 10.3 mm and diameter 0.20 mm. Each fiber contained three linear but non-coplanar segments. Fiber dimensions were measured by imaging their 2D projections on three planes. The fibers were sequentially released into silicone oil contained in a transparent cylinder of square cross section. Identical, synchronized cameras were mounted to a moveable platform and imaged the cylinder from orthogonal directions. The cameras were fixed in position during the time that a fiber remained in the field of view. Subsequently, the cameras were controllably moved to the next lower field of view. The trajectories of descending fibers were followed over distances up to 250 mm. Custom software was written to extract fiber orientation and trajectory from the 3D images. Fibers with similar terminal velocity often had significantly different terminal angular velocities. Both were well-predicted by theory. The radius of the helical trajectory was hard to predict when angular velocity was high, probably reflecting uncertainties in fiber shape, initial velocity, and fluid conditions associated with launch. Nevertheless, lateral excursion of fibers during sedimentation was reasonably predicted by fiber curl and asymmetry, suggesting the possibility of sorting fibers according to their shape.

  1. Innovative compact focal plane array for wide field vis and ir orbiting telescopes

    NASA Astrophysics Data System (ADS)

    Hugot, Emmanuel; Vives, Sébastien; Ferrari, Marc; Gaeremynck, Yann; Jahn, Wilfried

    2017-11-01

    The future generation of high angular resolution space telescopes will require breakthrough technologies to combine large diameters and large focal plane arrays with compactness and lightweight mirrors and structures. Considering the allocated volume medium-size launchers, short focal lengths are mandatory, implying complex optical relays to obtain diffraction limited images on large focal planes. In this paper we present preliminary studies to obtain compact focal plane arrays (FPA) for earth observations on low earth orbits at high angular resolution. Based on the principle of image slicers, we present an optical concept to arrange a 1D FPA into a 2D FPA, allowing the use of 2D detector matrices. This solution is particularly attractive for IR imaging requiring a cryostat, which volume could be considerably reduced as well as the relay optics complexity. Enabling the use of 2D matrices for such an application offers new possibilities. Recent developments on curved FPA allows optimization without concerns on the field curvature. This innovative approach also reduces the complexity of the telescope optical combination, specifically for fast telescopes. This paper will describe the concept and optical design of an F/5 - 1.5m telescope equipped with such a FPA, the performances and the impact on the system with a comparison with an equivalent 1.5m wide field Korsch telescope.

  2. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    NASA Astrophysics Data System (ADS)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  3. New instrumentation for precise (n,γ) measurements at ILL Grenoble

    NASA Astrophysics Data System (ADS)

    Urban, W.; Jentschel, M.; Märkisch, B.; Materna, Th; Bernards, Ch; Drescher, C.; Fransen, Ch; Jolie, J.; Köster, U.; Mutti, P.; Rzaca-Urban, T.; Simpson, G. S.

    2013-03-01

    An array of eight Ge detectors for coincidence measurements of γ rays from neutron-capture reactions has been constructed at the PF1B cold-neutron facility of the Institut Laue-Langevin. The detectors arranged in one plane every 45° can be used for angular correlation measurements. The neutron collimation line of the setup provides a neutron beam of 12 mm in diameter and the capture flux of about 108/(s × cm2) at the target position, with a negligible neutron halo. With the setup up to 109 γγ and up to 108 triple-γ coincidence events have been collected in a day measurement. Precise energy and efficiency calibrations up to 10 MeV are easily performed with 27Al(n,γ)28Al and 35Cl(n,γ)36Cl reactions. Test measurements have shown that neutron binding energies can be determined with an accuracy down to a few eV and angular correlation coefficients measured with a precision down to a percent level. The triggerless data collected with a digital electronics and acquisition allows to determine half-lives of excited levels in the nano- to microsecond range. The high resolving power of double- and triple-γ time coincidences allows significant improvements of excitation schemes reported in previous (n,γ) works and complements high-resolution γ-energy measurements at the double-crystal Bragg spectrometer GAMS of ILL.

  4. Development of the wake behind a circular cylinder impulsively started into rotatory and rectilinear motion: Intermediate rotation rates

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Ming; Ou, Yuh-Roung; Pearlstein, Arne J.

    1991-01-01

    The temporal development of two-dimensional viscous incompressible flow generated by a circular cylinder started impulsively into steady rotatory and rectilinear motion is studied by integration of a velocity/vorticity formulation of the governing equations, using an explicit finite-difference/pseudo-spectral technique and an implementation of the Biot-Savart law. Results are presented for a Reynolds number of 200 (based on the cylinder diameter 2a and the magnitude U of the rectilinear velocity) for several values of the angular/rectilinear speed ratio alpha = (omega x a)/U (where omega is the angular speed) up to 3.25. Several aspects of the kinematics and dynamics of the flow not considered earlier are discussed. For higher values of alpha, the results indicate that for Re = 200, vortex shedding does indeed occur for alpha = 3.25. The shedding process is; however, very different from that which gives rise to the usual Karman vortex street for alpha = 0. In particular, consecutive vortices shed by the body can be shed from the same side and be of the same sense, in contrast to the nonrotating case, in which mirror-image vortices of opposite sense are shed alternately on opposite sides of the body. The implications of the results are discussed in relation to the possibility of suppressing vortex shedding by open or closed-loop control of the rotation rate.

  5. Stability of Gradient Field Corrections for Quantitative Diffusion MRI.

    PubMed

    Rogers, Baxter P; Blaber, Justin; Welch, E Brian; Ding, Zhaohua; Anderson, Adam W; Landman, Bennett A

    2017-02-11

    In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fields, we predicted the obtained b-values and applied gradient directions throughout a typical field of view for brain imaging for a typical 32-direction diffusion imaging sequence. We measured the stability of these predictions over time. At 80 mm from scanner isocenter, predicted b-value was 1-6% different than intended due to gradient nonlinearity, and predicted gradient directions were in error by up to 1 degree. Over the course of one month the change in these quantities due to calibration-related factors such as scanner drift and variation in phantom placement was <0.5% for b-values, and <0.5 degrees for angular deviation. The proposed calibration procedure allows the estimation of gradient nonlinearity to correct b-values and gradient directions ahead of advanced diffusion image processing for high angular resolution data, and requires only a five-minute phantom scan that can be included in a weekly or monthly quality assurance protocol.

  6. Evaluation of three different validation procedures regarding the accuracy of template-guided implant placement: an in vitro study.

    PubMed

    Vasak, Christoph; Strbac, Georg D; Huber, Christian D; Lettner, Stefan; Gahleitner, André; Zechner, Werner

    2015-02-01

    The study aims to evaluate the accuracy of the NobelGuide™ (Medicim/Nobel Biocare, Göteborg, Sweden) concept maximally reducing the influence of clinical and surgical parameters. Moreover, the study was to compare and validate two validation procedures versus a reference method. Overall, 60 implants were placed in 10 artificial edentulous mandibles according to the NobelGuide™ protocol. For merging the pre- and postoperative DICOM data sets, three different fusion methods (Triple Scan Technique, NobelGuide™ Validation software, and AMIRA® software [VSG - Visualization Sciences Group, Burlington, MA, USA] as reference) were applied. Discrepancies between the virtual and the actual implant positions were measured. The mean deviations measured with AMIRA® were 0.49 mm (implant shoulder), 0.69 mm (implant apex), and 1.98°mm (implant axis). The Triple Scan Technique as well as the NobelGuide™ Validation software revealed similar deviations compared with the reference method. A significant correlation between angular and apical deviations was seen (r = 0.53; p < .001). A greater implant diameter was associated with greater deviations (p = .03). The Triple Scan Technique as a system-independent validation procedure as well as the NobelGuide™ Validation software are in accordance with the AMIRA® software. The NobelGuide™ system showed similar or less spatial and angular deviations compared with others. © 2013 Wiley Periodicals, Inc.

  7. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Alikhani, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2017-05-01

    Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (Ms) up to 550 and 1900 emu cm-3, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θc) is found to depend on NW length and Ms. At a constant Ms, increasing NW length decreases θc, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing Ms decreases θc in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θc. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θc.

  8. Accurate effective temperatures of the metal-poor benchmark stars HD 140283, HD 122563, and HD 103095 from CHARA interferometry

    NASA Astrophysics Data System (ADS)

    Karovicova, I.; White, T. R.; Nordlander, T.; Lind, K.; Casagrande, L.; Ireland, M. J.; Huber, D.; Creevey, O.; Mourard, D.; Schaefer, G. H.; Gilmore, G.; Chiavassa, A.; Wittkowski, M.; Jofré, P.; Heiter, U.; Thévenin, F.; Asplund, M.

    2018-03-01

    Large stellar surveys of the Milky Way require validation with reference to a set of `benchmark' stars whose fundamental properties are well determined. For metal-poor benchmark stars, disagreement between spectroscopic and interferometric effective temperatures has called the reliability of the temperature scale into question. We present new interferometric measurements of three metal-poor benchmark stars, HD 140283, HD 122563, and HD 103095, from which we determine their effective temperatures. The angular sizes of all the stars were determined from observations with the PAVO beam combiner at visible wavelengths at the CHARA array, with additional observations of HD 103095 made with the VEGA instrument, also at the CHARA array. Together with photometrically derived bolometric fluxes, the angular diameters give a direct measurement of the effective temperature. For HD 140283, we find θLD = 0.324 ± 0.005 mas, Teff = 5787 ± 48 K; for HD 122563, θLD = 0.926 ± 0.011 mas, Teff = 4636 ± 37 K; and for HD 103095, θLD = 0.595 ± 0.007 mas, Teff = 5140 ± 49 K. Our temperatures for HD 140283 and HD 103095 are hotter than the previous interferometric measurements by 253 and 322 K, respectively. We find good agreement between our temperatures and recent spectroscopic and photometric estimates. We conclude some previous interferometric measurements have been affected by systematic uncertainties larger than their quoted errors.

  9. The Earth-Moon system as a typical binary in the Solar System

    NASA Astrophysics Data System (ADS)

    Ipatov, S.

    2014-07-01

    In recent years new arguments in favor of the formation of solid planetesimals by contraction of rarefied preplanetesimals (RPPs) have been found. It is often considered that masses of some RPPs can correspond to masses of solid bodies of diameter about 1000 km. [1] showed that in the vortices launched by the Rossby wave instability in the borders of the dead zone, the solids quickly achieve critical densities and undergo gravitational collapse into protoplanetary embryos in the mass range 0.1-0.6M_E (where M_E is the mass of the Earth). [2] and [3] supposed that transneptunian binaries were formed from RPPs. It was shown in [2] that the angular momenta acquired at collisions of RPPs moving in circular heliocentric orbits could have the same values as the angular momenta of discovered transneptunian and asteroid binaries. [4] obtained that the angular momenta used in [3] as initial data in calculations of the contraction of RPPs leading to formation of transneptunian binaries could be acquired at collisions of two RPPs moving in circular heliocentric orbits. I supposed that the fraction of RPPs collided with other RPPs during their contraction can be about the fraction of small bodies of diameter d>100 km with satellites (among all such small bodies), i.e., it can be about 0.3 for objects formed in the transneptunian belt. The model of collisions of RPPs explains negative angular momenta of some observed binaries, as about 20 percent of collisions of RPPs moving in circular heliocentric orbits lead to retrograde rotation. Note that if all RPPs got their angular momenta at their formation without mutual collisions, then the angular momenta of small bodies without satellites and those with satellites could be similar (but actually they differ considerably). Most of rarefied preasteroids could turn into solid asteroids before they collided with other preasteroids. Some present asteroids can be debris of larger solid bodies, and the formation of many binaries with primaries with d<100 km can be explained by other models (not by contraction of RPPs). [5] noted that the giant impact concept, which is a popular model of the Moon formation, has several weaknesses. In particular, they calculated formation of the Earth-Moon system from a rarefied protoplanet which mass equaled to the mass of the Earth-Moon system. Using the formulas presented in [2], we obtained that the ratio r_K=K_{EM}/K_{s2} of the angular momentum K_{EM} of the Earth-Moon system to the angular momentum K_{s2} at a typical collision of two identical RPPs - Hill spheres, which masses m_2 are equal to 0.5\\cdot1.0123M_E and heliocentric orbits are circular, is about 0.0335. As K_{s2} ∝ (m_2)^{3/5} [2], then K_{s2}=K_{EM} at 2 m_2=0.0335^{3/5}\\cdot 1.0123M_E=0.13M_E. For circular heliocentric orbits, the maximum value of K_{s2} is greater by a factor of 0.6^{-1} than the above typical value. In this case, r_K=0.02 and 0.02^{3/5}=0.096. Therefore, the angular momentum of the Earth-Moon system can be acquired at a collision of two RPPs with a total mass not smaller than the mass of Mars. We suppose that solid proto-Earth and proto-Moon (with masses m_{Eo} and m_{Mo}) could be formed from a RPP (e.g., according to the models of contraction of a RPP [3,5]). Let us consider the model of the growth of proto-Earth and proto-Moon to the present masses of the Earth and the Moon (M_E and 0.0123M_E, respectively) by accumulation of smaller planetesimals for the case when the effective radii of proto-Earth and proto-Moon are proportional to r (where r is a radius of a considered object). Such proportionality can be considered for large enough eccentricities of planetesimals. In this case, r_{Mo}=m_{Mo}/M_E = [ (0.0123)^{-2/3} - k + k \\cdot (m_{Eo}/M_E)^{-2/3})]^{-3/2}, where k=(k_d)^{-2/3}, and k_d is the ratio of the density of the growing Moon to that of the growing Earth (k_d=0.6 for the present Earth and Moon). For r_{Eo}=m_{Eo}/M_E=0.1, we have r_{Mo}=0.0094 at k=1 and r_{Mo}=0.0086 at k=0.6^{-2/3}. At these values of r_{Mo}, the ratio f_M=(0.0123-r_{Mo})/0.0123 of the mass of planetesimals that were accreted by the Moon at the stage of the solid body accumulation to the present mass of the Moon is 0.24 and 0.30, respectively. If we consider that effective radii of the objects are proportional to r^2 (the case of relatively small relative velocities of planetesimals), then at r_{Eo}=0.1 for k_d equal 1 and 0.6, we obtain f_M equal to 0.04 and 0.05, respectively. In the above model, the Moon could acquire up to 1/3 of its mass at the stage of accumulation of solid bodies, while the mass of the growing Earth increased by a factor of ten, but probably the initial mass of a solid proto-Earth exceeded 0.1M_E. Probably, the RPPs that contracted and formed the embryos of other terrestrial planets did not collide with massive RPPs, and therefore they did not get large enough angular momentum needed to form massive satellites.

  10. Elevational change in woody tissue CO2 efflux in a tropical mountain rain forest in southern Ecuador.

    PubMed

    Zach, Alexandra; Horna, Viviana; Leuschner, Christoph

    2008-01-01

    Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation.

  11. Anisotropic stress correlations in two-dimensional liquids

    DOE PAGES

    Wu, Bin; Iwashita, Takuya; Egami, Takeshi

    2015-03-01

    In this paper we demonstrate the presence of anisotropic stress correlations in the simulated 2D liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic level stresses in liquids without external shear has not been explored. Besides the apparent anisotropicity with well-defined symmetry, we found that the characteristic length of shear stress correlation depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The anisotropy of the stress correlations can be explained in termsmore » of the inclusion model by Eshelby, based upon which we suggest that the mismatch between the atom and its nearest neighbor cage produces the atomic level stress as well as the long-range stress fields.« less

  12. The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent - Implications for space motion sickness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1986-01-01

    The effect of gravity on the severity of the Coriolis-induced motion sickness was investigated in ten individuals subjected to high and low G-force phases of parabolic flight maneuvers using constant level Coriolis, cross-coupled angular acceleration stimulation. Using seven levels of severity in the diagnosis of motion sickness, it was found that the subjects were less susceptible at 0 G than at +2 Gz, and that the perceived intensity and provocativeness of Coriolis stimulation decreased in 0 G and increased in +2 Gz relative to the +1 Gz baseline values. The changes in the apparent intensity of Coriolis stimulation occur virtually immediately when the background gravitatioinertial force level is varied. These findings explain why the Skylab astronauts were refractory to motion sickness during Coriolis stimulation in-flight.

  13. Broadening of resistive transition and irreversibility line for epitaxial YBa2Cu3O7-δ thin film

    NASA Astrophysics Data System (ADS)

    Xiao-jun, Xu; Ke-bin, Li; Jun, Fang; Zhi-he, Wang; Xiao-wen, Cao

    1996-04-01

    The broadening of resistive transition of c axis oriented epitaxial YBCO thin film has been measured for three configurations: (1) Hparc and H ⊥ I; (2) Hparab plane and H ⊥ I; (3) Hparab plane and HparI in magnetic field up to 8 Tesla(T), and for different angle θ of magnetic field relative to the ab plane with H = 4T. The results obtained indicate that the broadening of resistive transition is mainly determined by the angle θ, but is hardly related to the angle α made between magnetic field and tran sport current in ab plane. This means that the broadening of resistive transition is not determined by flux motion drived by apparent Lorentz force. An expression of angular dependence of irreversibility line has been given.

  14. JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields

    NASA Astrophysics Data System (ADS)

    Piedrahita-Quintero, Pablo; Trujillo, Carlos; Garcia-Sucerquia, Jorge

    2017-05-01

    JDiffraction, a GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields, is presented. Angular spectrum, Fresnel transform, and Fresnel-Bluestein transform are the numerical algorithms implemented in the methods and functions of the library to compute the scalar propagation of the complex wavefield. The functionality of the library is tested with the modeling of easy to forecast numerical experiments and also with the numerical reconstruction of a digitally recorded hologram. The performance of JDiffraction is contrasted with a library written for C++, showing great competitiveness in the apparently less complex environment of JAVA language. JDiffraction also includes JAVA easy-to-use methods and functions that take advantage of the computation power of the graphic processing units to accelerate the processing times of 2048×2048 pixel images up to 74 frames per second.

  15. Hydrothermal Preparation and Characterization of Ultralong Strontium-Substituted Hydroxyapatite Whiskers Using Acetamide as Homogeneous Precipitation Reagent

    PubMed Central

    Xu, Jianqiang; Yang, Yaoqi; Wan, Rong; Zhang, Weibin

    2014-01-01

    The ultralong strontium- (Sr-) substituted hydroxyapatite (SrHAp) whiskers were successfully prepared using acetamide as homogeneous precipitation reagent. The effect of the Sr substitution amount on the lattice constants and proliferation of human osteoblast cells (MG-63) was further investigated. The results showed that the SrHAp whiskers with diameter of 0.2–12 μm and ultralong length up to 200 μm were obtained and the Sr substitution level could be facilely tailored by regulating the initial molar ratio of Sr/(Sr + Ca) in raw materials. The Sr2+ replaced part of Ca2+ and the lattice constants increased apparently with the increase of the Sr substitution amount. Compared with the pure HAp whiskers, the Sr substitution apparently stimulated the proliferation of MG-63 at certain extracted concentrations. Our study suggested that the obtained SrHAp whiskers might be used as bioactive and mechanical reinforcement materials for hard tissue regeneration applications. PMID:24592192

  16. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    NASA Astrophysics Data System (ADS)

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N.; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-01

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10-21 J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  17. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory.

    PubMed

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  18. Starting Vortex Identified as Key to Unsteady Ejector Performance

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2004-01-01

    Unsteady ejectors are currently under investigation for use in some pulse-detonation-engine-based propulsion systems. Experimental measurements made in the past, and recently at the NASA Glenn Research Center, have demonstrated that thrust augmentation can be enhanced considerably when the driver is unsteady. In ejector systems, thrust augmentation is defined as = T(sup Total)/T(sup j), where T(sup Total) is the total thrust of the combined ejector and driving jet and T(sup j) is the thrust due to the driving jet alone. There are three images in this figure, one for each of the named thrust sources. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left, and the shape and location of each driver is shown on the far right of each image. The emitted vortex is a clearly defined "doughnut" of highly vortical (spinning) flow. In these planar images, the vortex appears as two distorted circles, one above, and one below the axis of symmetry. Because they are spinning in the opposite direction, the two circles have vorticity of opposite sign and thus are different colors. There is also a rectangle shown in each image. Its width represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. The exact mechanism behind the enhanced performance is unclear; however, it is believed to be related to the powerful vortex emitted with each pulse of the unsteady driver. As such, particle imaging velocimetry (PIV) measurements were obtained for three unsteady drivers: a pulsejet, a resonance tube, and a speaker-driven jet. All the drivers were tested with ejectors, and all exhibited performance enhancement over similarly sized steady drivers. The characteristic starting vortices of each driver are shown in these images. The images are color contours of measured instantaneous vorticity. Each image is an ensemble average of at least 150 phase-locked measurements. The flow is from right to left. The shape and location of each driver is shown on the far right of each image. The rectangle shown in each image represents the ejector diameter that was found experimentally to yield the highest thrust augmentation. It is apparent that the optimal ejector diameter is that which just "captures" the vortex: that is, the diameter bounding the outermost edge of the vortex structure. Although not shown, it was observed that the emitted vortex spread as it traveled downstream. The spreading rate for the pulsejet is shown as the dashed lines in the top image. A tapered ejector was fabricated that matched this shape. When tested, the ejector demonstrated superior performance to all those previously tested at Glenn (which were essentially of straight, cylindrical form), achieving a remarkable thrust augmentation of 2. The measured thrust augmentation is shown as a function of ejector length. Also shown are the thrust augmentation values achieved with the straight, cylindrical ejectors of varying diameters. Here, thrust augmentation is plotted as a function of ejector length for several families of ejector diameters. It can be seen that large thrust augmentation values are indeed obtained and that they are sensitive to both ejector length and diameter, particularly the latter. Five curves are shown. Four correspond to straight ejector diameters of 2.2, 3.0, 4.0, and 6.0 in. The fifth curve corresponds to the tapered ejector contoured to bound the emitted vortex. For each curve, there are several data points corresponding to different lengths. The largest value of thrust augmentation is 2.0 for the tapered ejector and 1.81 for the straight ejectors. Regardless of their diameters, all the ejectors trend toward peak performance at a particular leng. That the cross-sectional dimensions of optimal ejectors scaled precisely with the vortex dimensions on three separate pulsed thrust sources demonstrates that the action of the vortex is responsible for the enhanced ejector performance. The result also suggests that, in the absence of a complete understanding of the entrainment and augmentation mechanisms, methods of characterizing starting vortices may be useful for correlating and predicting unsteady ejector performance.

  19. Radar Imaging and Characterization of the Binary Near-Earth Asteroid (185851) 2000 DP107

    NASA Astrophysics Data System (ADS)

    Naidu, S. P.; Margot, J. L.; Taylor, P. A.; Nolan, M. C.; Busch, M. W.; Benner, L. A. M.; Brozovic, M.; Giorgini, J. D.; Jao, J. S.; Magri, C.

    2015-08-01

    The potentially hazardous asteroid (185851) 2000 DP107 was the first binary near-Earth asteroid to be imaged. Radar observations in 2000 provided images at 75 m resolution that revealed the shape, orbit, and spin-up formation mechanism of the binary. The asteroid made a more favorable flyby of the Earth in 2008, yielding images at 30 m resolution. We used these data to obtain shape models for the two components and to improve the estimates of the mutual orbit, component masses, and spin periods. The primary has a sidereal spin period of 2.7745 ± 0.0007 hr and is roughly spheroidal with an equivalent diameter of 863 m +/- 5%. It has a mass of 4.656+/- 0.43× {10}11 kg and a density of 1381 ± 244 kg m-3. It exhibits an equatorial ridge similar to the (66391) 1999 KW4 primary; however, the equatorial ridge in this case is not as regular and has a ˜300 m diameter concavity on one side. The secondary has a sidereal spin period of 1.77 ± 0.02 days commensurate with the orbital period. The secondary is slightly elongated and has overall dimensions of 377× 314× 268 m (6% uncertainties). Its mass is 0.178+/- 0.021× {10}11 kg and its density is 1047 ± 230 kg m-3. The mutual orbit has a semimajor axis of 2.659 ± 0.08 km, an eccentricity of 0.019 ± 0.01, and a period of 1.7556 ± 0.0015 days. The normalized total angular momentum of this system exceeds the amount required for the expected spin-up formation mechanism. An increase of angular momentum from non-gravitational forces after binary formation is a possible explanation. The two components have similar radar reflectivity, suggesting a similar composition consistent with formation by spin-up. The secondary appears to exhibit a larger circular polarization ratio than the primary, suggesting a rougher surface or subsurface at radar wavelength scales.

  20. Feasibility Study of Compton Cameras for X-ray Fluorescence Computed Tomography with Humans

    PubMed Central

    Vernekohl, Don; Ahmad, Moiz; Chinn, Garry; Xing, Lei

    2017-01-01

    X-ray fluorescence imaging is a promising imaging technique able to depict the spatial distributions of low amounts of molecular agents in vivo. Currently, the translation of the technique to preclinical and clinical applications is hindered by long scanning times as objects are scanned with flux-limited narrow pencil beams. The study presents a novel imaging approach combining x-ray fluorescence imaging with Compton imaging. Compton cameras leverage the imaging performance of XFCT and abolish the need of pencil beam excitation. The study examines the potential of this new imaging approach on the base of Monte-Carlo simulations. In the work, it is first presented that the particular option of slice/fan-beam x-ray excitation has advantages in image reconstruction in regard of processing time and image quality compared to traditional volumetric Compton imaging. In a second experiment, the feasibility of the approach for clinical applications with tracer agents made from gold nano-particles is examined in a simulated lung scan scenario. The high energy of characteristic x-ray photons from gold is advantageous for deep tissue penetration and has lower angular blurring in the Compton camera. It is found that Doppler broadening in the first detector stage of the Compton camera adds the largest contribution on the angular blurring; physically limiting the spatial resolution. Following the analysis of the results from the spatial resolution test, resolutions in the order of one centimeter are achievable with the approach in the center of the lung. The concept of Compton imaging allows to distinguish to some extend between scattered photons and x-ray fluorescent photons based on their difference in emission position. The results predict that molecular sensitivities down to 240 pM/l for 5 mm diameter lesions at 15 mGy for 50 nm diameter gold nano-particles are achievable. A 45-fold speed up time for data acquisition compared to traditional pencil beam XFCT could be achieved for lung imaging on cost of a small sensitivity decrease. PMID:27845933

  1. Measuring the speed of light with ultra-compact radio quasars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shuo; Biesiada, Marek; Jackson, John

    In this paper, based on a 2.29 GHz VLBI all-sky survey of 613 milliarcsecond ultra-compact radio sources with 0.0035< z <3.787, we describe a method of identifying the sub-sample which can serve as individual standard rulers in cosmology. If the linear size of the compact structure is assumed to depend on source luminosity and redshift as l {sub m} = l L {sup β} (1+ z ) {sup n} , only intermediate-luminosity quasars (10{sup 27} W/Hz< L < 10{sup 28} W/Hz) show negligible dependence (| n |≅ 10{sup −3}, |β|≅ 10{sup −4}), and thus represent a population of such rulersmore » with fixed characteristic length l =11.42 pc. With a sample of 120 such sources covering the redshift range 00.46< z <2.8, we confirm the existence of dark energy in the Universe with high significance under the assumption of a flat universe, and obtain stringent constraints on both the matter density Ω {sub m} =0.323{sup +0.245}{sub −0.145} and the Hubble constant H {sub 0}=66.30{sup +7.00}{sub −8.50} km sec{sup −1} Mpc{sup −1}. Finally, with the angular diameter distances D {sub A} measured for quasars extending to high redshifts (0 z ∼ 3.), we reconstruct the D {sub A} ( z ) function using the technique of Gaussian processes. This allows us to identify the redshift corresponding to the maximum of the D {sub A} ( z ) function: 0 z {sub m} =1.7 and the corresponding angular diameter distance D {sub A} ( z {sub m} )=1719.01±43.46 Mpc. Similar reconstruction of the expansion rate function H ( z ) based on the data from cosmic chronometers and BAO gives us H ( z {sub m} )=176.77±6.11 km sec{sup −1} Mpc{sup −1}. These measurements are used to estimate the speed of light: c =3.039(±0.180)× 10{sup 5} km/s. This is the first measurement of the speed of light in a cosmological setting referring to the distant past.« less

  2. Finding a spherically symmetric cosmology from observations in observational coordinates — advantages and challenges

    NASA Astrophysics Data System (ADS)

    Araújo, M. E.; Stoeger, W. R.

    2011-07-01

    One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions — without, for instance, assuming that the universe is almost Friedmann-Lemaître-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lemaître-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework, in which the radial coordinate y is null (light-like) and measured down the past light cone of the observer. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution — i.e. our procedure is not restricted to our past light cone — and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. We also compare the two approaches with regard to determining the cosmological constant Λ. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the possibility of constructing analytic solutions to the field equations. Smoothed data functions enable us to include properties that data must have within the model.

  3. 1-D Imaging of the Dynamical Atmosphere of the Red Supergiant Betelgeuse in the CO First Overtone Lines with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2014-09-01

    We present high-spatial and high-spectral resolution observations of the red supergiant Betelgeuse in the CO first overtone lines near 2.3μm with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). Our AMBER observations in 2008 spatially resolved the gas motions in a stellar atmosphere (photosphere and extended molecular outer atmosphere) for the first time other than the Sun. From our second observations one year later, we have reconstructed 1-D images in the individual CO lines with an angular resolution of 9.8 mas and a spectral resolution of 6000 by applying the self-calibration technique to restore the Fourier phase from the differential phase measurements. The reconstructed 1-D images reveal that the star appears different in the blue and red wing of the individual CO lines. In the blue wing, the star shows a pronounced, asymmetrically extended component at least up to 1.3 R⋆, while such a component does not appear in the red wing 1-D image. This can be explained by a model in which the CO gas patch (or clump) more than half as large as the star is moving slightly outward with 0-5 km s-1, while the gas in the remaining region is infalling fast with 20-30 km s-1. Comparison between the CO line data taken in 2008 and 2009 shows a significant time variation in the dynamics of the photosphere and outer atmosphere. However, the 1-D images in the continuum show only a slight deviation from a limb-darkened disk with an angular diameter of 42.49±0.06 mas, which leads to an effective temperature of 3690± 54 K. Moreover, the continuum data taken in 2008 and 2009 reveal no or only marginal time variations, much smaller than the maximum variation predicted by the current 3-D convection simulation. The derived continuum diameter also shows that the near-IR size of Betelgeuse has been nearly constant over the last 18 years, in marked contrast to the recently reported noticeable decrease in the mid-IR size.

  4. Thin fused silica optics for a few arcsec angular resolution and large collecting area x-ray telescope

    NASA Astrophysics Data System (ADS)

    Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.

    2013-09-01

    The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arcsec Half Energy Width, HEW), but with a much larger throughput is a very attractive perspective, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. At the beginning of the new millennium the XEUS mission has been proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, after the initial study, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a kind of mission is the SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area < 2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).

  5. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  6. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  7. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation

    DOE PAGES

    Mulroe, Megan D.; Srijanto, Bernadeta R.; Ahmadi, S. Farzad; ...

    2017-07-18

    It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, andmore » pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets while short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. Furthermore, by extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping droplet condensers for heat transfer, anti-fogging, and anti-frosting applications.« less

  8. Growth responses of mature loblolly pine to dead wood.manipulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulyshen, Michael D.; Horn, Scott; Hanula, James L.

    Large-scale manipulations of dead wood in mature Pinus taeda L. stands in the southeastern United States included a major one-time input of logs (fivefold increase in log volume) created by felling trees onsite, annual removals of all dead wood above >10 cm in diameter and >60 cm in length, and a reference in which no manipulations took place. We returned over a decade later to determine how these treatments affected tree growth using increment cores. There were no significant differences in tree density, basal area or tree diameters among treatments at the time of sampling. Although tree growth was consistentlymore » higher in the log-input plots and lower in the removal plots, this was true even during the 5 year period before the experiment began. When growth data from this initial period were included in the model as a covariate, no differences in post-treatment tree growth were detected. It is possible that treatment effects will become apparent after more time has passed, however.« less

  9. Hydrodeoxygenation of heavy oils derived from low-temperature coal gasification over NiW catalysts-effect of pore structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieter Leckel

    2008-01-15

    The effect of the pore structure on the hydroprocessing of heavy distillate oils derived from low-temperature coal gasification residues was studied using four NiW catalysts with different pore size distributions. The hydroprocessing was conducted at a pressure of 17.5 MPa, a temperature range of 370-410{sup o}C, and a 0.50 h{sup -1} space velocity. The degree of hydrodeoxygenation (HDO) in terms of phenolics removal was influenced by the catalyst pore structure, with the most preferable peak pore diameter for HDO ranging between 6.8 and 16 nm. The catalyst with the highest volume of pores in the 3.5-6 nm range showed themore » lowest HDO activity. The apparent activation energies for the HDO reaction varied between 59 and 87 kJ/mol, whereby the lowest values are obtained for the catalysts with a peak pore diameter of 11 and 16 nm. 30 refs., 5 figs., 6 tabs.« less

  10. Preliminary Model Tests of a Wing-Duct Cooling System for Radial Engines, Special Report

    NASA Technical Reports Server (NTRS)

    Biermann, David; Valentine, E. Floyd

    1939-01-01

    Wind-tunnel tests were conducted on a model wing-nacelle combination to determine the practicability of cooling radial engines by forcing the cooling air into wing-duct entrances located in the propeller slipstream, passing the air through the engine baffles from rear to front, and ejecting the air through an annular slot near the front of the nacelle. The tests, which were of a preliminary nature, were made on a 5-foot-chord wing and a 20-inch-diameter nacelle. A 3-blade, 4-foot-diameter propeller was used. The tests indicated that this method of cooling and cowling radial engines is entirely practicable providing the wing of the prospective airplane is sufficiently thick to accommodate efficient entrance ducts , The drag of the cowlings tested was definitely less than for the conventional N.A.C.A. cowling, and the pressure available at low air speed corresponding to operation on the ground and at low flying speeds was apparently sufficient for cooling most present-day radial engines.

  11. Rotation Studies of Jovian Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stephens, Robert D.; Wasserman, Lawrence H.; Lederer, Susan M.; Rohl, Derrick A.

    2011-08-01

    The Jovian Trojan asteroids appear to be fundamentally different from main belt asteroids. They formed further from the sun, they are of different composition, and their collisional history is different. Lightcurve studies provide information about the distribution of rotation frequencies of a group of asteroids. For main belt asteroids larger than about 40 km in diameter, the distribution of rotation frequencies is Maxwellian (Pravec et al. 2000). This suggests that collisions determine their rotation properties. Smaller main belt asteroids, however, show a predominance of both fast and slow rotators, with the observed spin distribution apparently controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect (Pravec et al. 2008). The Trojans larger than 100 km in diameter have been almost completely sampled, but lightcurves for smaller Trojans have been less well studied due to their low albedos and greater solar distances. We propose to investigate the rotation periods of 4-6 small (D < 50 km) Trojan asteroids and 6-9 Trojans in the 50-100 km size range.

  12. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  13. The problem of scale in planetary geomorphology

    NASA Technical Reports Server (NTRS)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  14. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE PAGES

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.; ...

    2016-07-13

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts z eff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhancemore » the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance D A(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on D A(z) and 2.9% and 2.3% constraints on H(z) for the low (z eff = 0.38) and high (z eff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance D V(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  15. WFXT Technology Overview

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Campana, S.

    The Wide Field X-ray Telescope (WFXT) is a medium class mission for X-ray surveys of the sky with an unprecedented area and sensitivity. In order to meet the effective area requirement, the design of the optical system is based on very thin mirror shells, with thicknesses in the 1-2 mm range. In order to get the desired angular resolution (10 arcsec requirement, 5 arcsec goal) across the entire 1× 1 degree FOV (Field Of View), the design of the optical system is based on nested modified grazing incidence Wolter-I mirrors realized with polynomial profiles, focal plane curvature and plate scale corrections. This design guarantees an increased angular resolution at large off-axis angle with respect to the normally used Wolter I configuration, making WFXT ideal for survey purposes. The WFXT X-ray Telescope Assembly is composed by three identical mirror modules of 78 nested shells each, with diameter up to 1.1 m. The epoxy replication process with SiC shells has already been proved to be a valuable technology to meet the angular resolution requirement of 10 arcsec. To further mature the telescope manufacturing technology and to achieve the goal of 5 arcsec, we are considering different materials for the mirror shells with particular care to quartz glass (fused silica), a well-known material with good thermo-mechanical and polishability characteristics that could meet our goal in terms of mass and stiffness, with significant cost and time saving with respect to SiC. To bring the mirror shells to the needed accuracy a deterministic direct polishing method for the mirror shells is under investigation. A direct polishing method has already been used for past missions (as Einstein, Rosat, Chandra): the technological challenge now is to apply it for almost ten times thinner shells. Our approach is based on two main steps: first quartz glass tubes available on the market are grinded to conical profiles, and second the obtained shells are polished to the required polynomial profiles by Computer Numerical Control (CNC) polishing machine.

  16. Measurement of Two-Plasmon-Decay Dependence on Plasma Density Scale Length

    NASA Astrophysics Data System (ADS)

    Haberberger, D.

    2013-10-01

    An accurate understanding of the plasma scale-length (Lq) conditions near quarter-critical density is important in quantifying the hot electrons generated by the two-plasmon-decay (TPD) instability in long-scale-length plasmas. A novel target platform was developed to vary the density scale length and an innovative diagnostic was implemented to measure the density profiles above 1021 cm-3 where TPD is expected to have the largest growth. A series of experiments was performed using the four UV (351-nm) beams on OMEGA EP that varied the Lq by changing the radius of curvature of the target while maintaining a constant Iq/Tq. The fraction of laser energy converted to hot electrons (fhot) was observed to increase rapidly from 0.005% to 1% by increasing the plasma scale length from 130 μm to 300 μm, corresponding to target diameters of 0.4 mm to 8 mm. A new diagnostic was developed based on refractometry using angular spectral filters to overcome the large phase accumulation in standard interferometric techniques. The angular filter refractometer measures the refraction angles of a 10-ps, 263-nm probe laser after propagating through the plasma. An angular spectral filter is used in the Fourier plane of the probe beam, where the refractive angles of the rays are mapped to space. The edges of the filter are present in the image plane and represent contours of constant refraction angle. These contours are used to infer the phase of the probe beam, which are used to calculate the plasma density profile. In long-scale-length plasmas, the diagnostic currently measures plasma densities from ~1019 cm-3 to ~2 × 1021 cm-3. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. In collaboration with D. H. Edgell, S. X. Hu, S. Ivancic, R. Boni, C. Dorrer, and D. H. Froula (Laboratory for Laser Energetics, U. of Rochester).

  17. Examining the Angular Resolution of the Astro-H's Soft X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Sato, Toshiki; Iizuka, Ryo; Ishida, Manabu; Kikuchi, Naomichi; Maeda, Yoshitomo; Kurashima, Sho; Nakaniwa, Nozomi; Tomikawa, Kazuki; Hayashi, Takayuki; Mori, Hideyuki; hide

    2016-01-01

    The international x-ray observatory ASTRO-H was renamed Hitomi after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to 12 keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with spot scan measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made maps of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8 mm x 8 mm beam. As a result, we estimated those errors in a quadrant to be approx. 0.9 to 1.0 and approx. 0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.

  18. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in Fourier-space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beutler, Florian; Seo, Hee -Jong; Ross, Ashley J.

    Here, we analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes 1 198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this dataset into three (overlapping) redshift bins with the effective redshifts z eff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as 1000 MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density eld reconstruction to enhancemore » the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can sep-arate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance D A(z) and the Hubble parameter H ( z ) separately. We obtain two independent 1 : 6% and 1 : 5% constraints on D A(z) and 2.9% and 2.3% constraints on H(z) for the low (z eff = 0.38) and high (z eff = 0.61) redshift bin, respectively. We obtain two independent 1% and 0.9% constraints on the angular averaged distance D V(z), when ignoring the Alcock-Paczynski e ect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within CDM. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.« less

  19. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  20. Wood anatomy of Mollinedia glabra (Spreng.) Perkins (Monimiaceae) in two Restinga Vegetation Formations at Rio das Ostras, RJ, Brazil.

    PubMed

    Novaes, Fernanda da S; Callado, Cátia H; Pereira-Moura, Maria Verônica L; Lima, Helena R P

    2010-12-01

    This paper aimed to characterize the anatomical structure of the wood of specimens of Mollinedia glabra (Spreng.) Perkins growing in two contiguous formations of restinga vegetation at Praia Virgem, in the municipality of Rio das Ostras, RJ. Both the Open Palmae (OPS) and the Sandy Strip Closed Shrub (SSCS) formations are found in coastal regions that receive between 1,100 and 1,300 mm of rainfall per year. Sapwood samples were collected in both formations. Typical anatomical features for this species include: solitary vessels, radial multiples or clusters elements, that are circular to angular in outline, 5-15 barred scalariform perforation plates, wood parenchyma scanty, septate fiber-tracheids, and wide multiseriate rays with prismatic crystals. Statistical analyses indicated a significant increase in the frequency of vessel elements and an increase in fiber-tracheid diameters in OPS individuals. These characteristics are considered structural adaptations to increased water needs caused by a greater exposure to sunlight. Continuous pruning may be responsible for the tyloses observed in OPS plants. The greater lengths and higher frequencies of the rays in SSCS trees may be due to the greater diameters of their branches. Our results suggest that M. glabra develops structural adaptations to the restinga micro-environmental variations during its development.

Top