Sample records for apparent anomalous behavior

  1. Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium

    PubMed Central

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-01-01

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851

  2. Parsing anomalous versus normal diffusive behavior of bedload sediment particles

    USGS Publications Warehouse

    Fathel, Siobhan; Furbish, David; Schmeeckle, Mark

    2016-01-01

    Bedload sediment transport is the basic physical ingredient of river evolution. Formulae exist for estimating transport rates, but the diffusive contribution to the sediment flux, and the associated spreading rate of tracer particles, are not clearly understood. The start-and-stop motions of sediment particles transported as bedload on a streambed mimic aspects of the Einstein–Smoluchowski description of the random-walk motions of Brownian particles. Using this touchstone description, recent work suggests the presence of anomalous diffusion, where the particle spreading rate differs from the linear dependence with time of Brownian behavior. We demonstrate that conventional measures of particle spreading reveal different attributes of bedload particle behavior depending on details of the calculation. When we view particle motions over start-and-stop timescales obtained from high-speed (250 Hz) imaging of coarse-sand particles, high-resolution measurements reveal ballistic-like behavior at the shortest (10−2 s) timescale, followed by apparent anomalous behavior due to correlated random walks in transition to normal diffusion (>10−1 s) – similar to Brownian particle behavior but involving distinctly different physics. However, when treated as a ‘virtual plume’ over this timescale range, particles exhibit inhomogeneous diffusive behavior because both the mean and the variance of particle travel distances increase nonlinearly with increasing travel times, a behavior that is unrelated to anomalous diffusion or to Brownian-like behavior. Our results indicate that care is needed in suggesting anomalous behavior when appealing to conventional measures of diffusion formulated for ideal particle systems.

  3. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.

    PubMed

    Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues

    2013-11-05

    Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams

    NASA Astrophysics Data System (ADS)

    Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.

    2006-05-01

    A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.

  5. Origin of Large and Highly Variable Changes in the Apparent Spin Frequencies of Accretion-Powered Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.; Dorris, D.; Clare, A.; Van Wassenhove, S.; Yu, W.; Miller, M. C.

    2006-09-01

    The spin-frequency behavior of accretion-powered millisecond pulsars is usually inferred by power spectral analysis of their X-ray waveforms. The reported behavior of the spin frequencies of several accretion-powered millisecond pulsars is puzzling in two respects. First, analysis of the waveforms of these pulsars indicates that their spin frequencies are changing faster than predicted by the standard model of accretion torques. Second, there are wild swings of both signs in their apparent spin frequencies that are not correlated with the mass accretion rates inferred from their X-ray fluxes. We have computed the expected X-ray waveforms of pulsars like these, including special and general relativistic effects, and find that the changes in their waveforms produced by physically plausible changes in the flow of accreting matter onto their surfaces can explain their apparently anomalous spin-frequency behavior. This research was supported in part by NASA grant NAG 5-12030, NSF grant AST 0098399, and funds of the Fortner Endowed Chair at Illinois, and NSF grant AST 0098436 at Maryland.

  6. Theory of the classical electron gas

    NASA Technical Reports Server (NTRS)

    Guernsey, R. L.

    1978-01-01

    In a previous paper Cohen and Murphy (1969) used the Meeron resummation (1958) of the Mayer diagrams (1950) to calculate the pair correlation for the classical electron gas in thermal equilibrium. They found that successive terms in the expression for the pair correlation were more and more singular for small interparticle spacing, actually dominating the Debye-Hueckel result for sufficiently small distances. This led to apparent divergence in the higher order contributions to the internal energy. The present paper shows that the apparent anomalies in the Cohen-Murphy results can be removed without further resummation by a more careful treatment of the region of small interparticle spacing. It is shown that there is really no anomalous behavior at short range in any order and all integrals in the expression for the internal energy converge.

  7. Relaxation and anomalous T- and H-dependence of the μ coefficient in (K,Ba)BiO3 superconductors

    NASA Astrophysics Data System (ADS)

    Klein, T.; Harneit, W.; Joumard, I.; Marcus, J.; Escribe-Filippini, C.; Feinberg, D.

    1998-04-01

    Ac shielding and classical dc relaxation experiments have been used to study the flux creep phenomena in the cubic (K,Ba)BiO3 superconductor (Tc ~ 30 K). The relaxation rate is found to be constant (S ~ 1.5%) at low temperature and magnetic field and increases sharply as the vortex-glass transition line is approached. This behavior can be attributed to an anomalous decrease of the μ exponent (U(J) = U0(J0/J)μ) close to Tg(H). In this regime, the temperature dependence of the apparent critical current J is then directly related to μ(T) as J(T) = J0/[kT/U0·ln (1/ωτ)]μ(T). A similar analysis can be made on the J(B) data recently published by Abulafia et al. (Phys. Rev. Lett., 77 (1996) 1597) on YBaCuO single crystals.

  8. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  9. Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.D.; Lau, E.L.; Turyshev, S.G.

    Radio metric data from the Pioneer 10/11, Galileo, and Ulysses spacecraft indicate an apparent anomalous, constant, acceleration acting on the spacecraft with a magnitude {approximately}8.5{times}10{sup {minus}8} cm/s{sup 2} , directed towards the Sun. Two independent codes and physical strategies have been used to analyze the data. A number of potential causes have been ruled out. We discuss future kinematic tests and possible origins of the signal. {copyright} {ital 1998} {ital The American Physical Society}

  10. Preliminary paleomagnetic results from the Coyote Creek Outdoor Classroom drill hole, Santa Clara Valley, California

    USGS Publications Warehouse

    Mankinen, Edward A.; Wentworth, Carl M.

    2003-01-01

    Paleomagnetic samples were obtained from cores taken during the drilling of a research well along Coyote Creek in San Jose, California, in order to use the geomagnetic field behavior recorded in those samples to provide age constraints for the sediment encountered. The well reached a depth of 308 meters and material apparently was deposited largely (entirely?) during the Brunhes Normal Polarity Chron, which lasted from 780 ka to the present time. Three episodes of anomalous magnetic inclinations were recorded in parts of the sedimentary sequence; the uppermost two we correlate to the Mono Lake (~30 ka) geomagnetic excursion and 6 cm lower, tentatively to the Laschamp (~45 ka) excursion. The lowermost anomalous interval occurs at 305 m and consists of less than 10 cm of fully reversed inclinations underlain by 1.5 m of normal polarity sediment. This lower anomalous interval may represent either the Big Lost excursion (~565 ka) or the polarity transition at the end of the Matuyama Reversed Polarity Chron (780 ka). The average rates of deposition for the Pleistocene section in this well, based on these two alternatives, are approximately 52 or 37 cm/kyr, respectively.

  11. Quasiperiodic oscillation and possible Second Law violation in a nanosystem

    NASA Astrophysics Data System (ADS)

    Quick, R.; Singharoy, A.; Ortoleva, P.

    2013-05-01

    Simulation of a virus-like particle reveals persistent oscillation about a free-energy minimizing structure. For an icosahedral structure of 12 human papillomavirus (HPV) L1 protein pentamers, the period is about 70 picoseconds and has amplitude of about 4 Å at 300 K and pH 7. The pentamers move radially and out-of-phase with their neighbors. As temperature increases the amplitude and period decrease. Since the dynamics are shown to be friction-dominated and free-energy driven, the oscillations are noninertial. These anomalous oscillations are an apparent violation of the Second Law mediated by fluctuations accompanying nanosystem behavior.

  12. Meteors with anomalous apparent heights from TV observations in Kyiv

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2017-12-01

    Basing on additional studying and précised processing of video-records of double-station meteor TV observations in Astronomical Observatory of Taras Shevchenko National University of Kyiv the selection of meteors with anomalous photometrical and kinematical characteristics has been carried out. A special attention was paid to the registration of meteors on extreme heights exceeding 130km. In opposite to practically proved at the moment facts about appearance of fast bright bolides created by massive bodies belonging to Leonids, Perseids and Orionids streams on heights over 130-135km, and up to even 160-195km we obtained the confirmation of appearance on the anomalous heights of low-light meteors of masses 10-3g. In 1993 during observations of Perseid meteor shower we registered for the first time the shower meteor with apparent height of 136.84 - 0.12km. In 2001 and 2003 during September observations of sporadic meteors we registered only one meteor from 98 on the height over 135km. During observations of Leonids meteor storm in 2002 we registered five relatively low-light meteors belonging to the shower with apparent heights exceeding 135-140km with masses 10^-3 g.

  13. Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes' Polydispersity.

    PubMed

    Kalwarczyk, Tomasz; Kwapiszewska, Karina; Szczepanski, Krzysztof; Sozanski, Krzysztof; Szymanski, Jedrzej; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Duszynski, Jerzy; Holyst, Robert

    2017-10-26

    This work, based on in vivo and in vitro measurements, as well as in silico simulations, provides a consistent analysis of diffusion of polydisperse nanoparticles in the cytoplasm of living cells. Using the example of fluorescence correlation spectroscopy (FCS), we show the effect of polydispersity of probes on the experimental results. Although individual probes undergo normal diffusion, in the ensemble of probes, an effective broadening of the distribution of diffusion times occurs-similar to anomalous diffusion. We introduced fluorescently labeled dextrans into the cytoplasm of HeLa cells and found that cytoplasmic hydrodynamic drag, exponentially dependent on probe size, extraordinarily broadens the distribution of diffusion times across the focal volume. As a result, the in vivo FCS data were effectively fitted with the anomalous subdiffusion model while for a monodisperse probe the normal diffusion model was most suitable. Diffusion time obtained from the anomalous diffusion model corresponds to a probe whose size is determined by the weight-average molecular weight of the polymer. The apparent anomaly exponent decreases with increasing polydispersity of the probes. Our results and methodology can be applied in intracellular studies of the mobility of nanoparticles, polymers, or oligomerizing proteins.

  14. A Long-Term Scientific Survey of the Hessdalen Phenomenon

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2004-06-01

    The balls of light which appear in the Hessdalen valley in Norway are exemplary of anomalous atmospheric luminous phenomena that occur frequently at some locations on Earth. The recurrence of the phenomenon and the existence of an instrumented observation station makes this area an ideal research site. The apparent correlation of luminous phenomena with magnetic perturbations, radio emission, and radar tracks, found by Norwegian researchers, led some Italian physicists and engineers of the EMBLA Project to reanalyze the Norwegian data. The second step was three explorative, instrumented, field-study expeditions. The behavior of the phenomenon was monitored with optical, radio, and radar techniques. The global picture of the phenomenon obtained so far shows that the phenomenon's radiant power varies, reaching values up to 19 kW. These changes are caused by sudden surface variations of the illuminated area owing to the appearance of clusters of light balls that behave in a thermally self-regulated way. Apparent characteristics consistent with a solid are strongly suspected from the study of distributions of radiant power. Other anomalous characteristics include the capability to eject smaller light balls, some unidentified frequency shift in the VLF range, and possible deposition of metallic particles. A self-consistent definitive theory of the phenomenon's nature and origin in all its aspects cannot be constructed yet quantitatively, but some of the observations can be explained by an electrochemical model for the ball-lightning phenomenon. The importance is stressed of using more sophisticated instrumentation in the future.

  15. A Falling Corona Model for the Anomalous Behavior of the Broad Emission Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Sun, Mouyuan; Xue, Yongquan; Cai, Zhenyi; Guo, Hengxiao

    2018-04-01

    NGC 5548 has been intensively monitored by the AGN Space Telescope and Optical Reverberation Mapping collaboration. Approximately after half of the light curves, the correlation between the broad emission lines and the lag-corrected ultraviolet (UV) continua becomes weak. This anomalous behavior is accompanied by an increase of soft X-ray emission. We propose a simple model to understand this anomalous behavior, i.e., the corona might fall down, thereby increasing the covering fraction of the inner disk. Therefore, X-ray and extreme-UV emission suffer from spectral variations. The UV continua variations are driven by both X-ray and extreme-UV variations. Consequently, the spectral variability induced by the falling corona would dilute the correlation between the broad emission lines and the UV continua. Our model can explain many additional observational facts, including the dependence of the anomalous behavior on velocity and ionization energy. We also show that the time lag and correlation between the X-ray and the UV variations change as NGC 5548 displays the anomalous behavior. The time lag is dramatically longer than the expectation from disk reprocessing if the anomalous behavior is properly excluded. During the anomalous state, the time lag approaches the light-travel timescale of disk reprocessing albeit with a much weaker correlation. We speculate that the time lag in the normal state is caused by reprocessing of the broad line region gas. As NGC 5548 enters the abnormal state, the contribution of the broad line region gas is smaller; the time lag reflects disk reprocessing. We also discuss alternative scenarios.

  16. Einstein Observations of X-ray emission from A stars

    NASA Astrophysics Data System (ADS)

    Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.; Cash, W., Jr.; Snow, T. P., Jr.

    1983-08-01

    Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.

  17. Comment on the Exterior Solutions and Their Geometry in Scalar-Tensor Theories of Gravity

    NASA Astrophysics Data System (ADS)

    Tsuchida, T.; Watanabe, K.

    1999-01-01

    We study series of stationary solutions with asymptotic flatness properties in the Einstein-Maxwell-free scalar system because they are locally equivalent to the exterior solutions in some class of scalar-tensor theories of gravity. First, we classify spherical exterior solutions into two types of solutions, an apparently black hole type solution and an apparently worm hole type solution. The solutions contain three parameters, and we clarify their physical significance. Second, we reduce the field equations for the axisymmetric exterior solutions. We find that the reduced equations are partially the same as the Ernst equations. As simple examples, we derive new series of static, axisymmetric exterior solutions, which correspond to Voorhees's solutions. We then establish a non-trivial relation between the spherical exterior solutions and our new solutions. Finally, since null geodesics have conformally invariant properties, we study the local geometry of the exterior solutions by using the optical scalar equations and find some anomalous behavior of the null geodesics.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoproteinmore » II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.« less

  19. An explanation for the anomalous wave profiles obtained in composition B-3 impacted by flat nosed steel rods

    NASA Astrophysics Data System (ADS)

    James, H. R.; Gustavsen, R. L.; Dattelbaum, D. M.

    2017-01-01

    In previous work involving firing flat nosed steel rods into the 60/40 RDX/TNT explosive Composition B-3, we found an apparently anomalous "hump" in particle velocity wave profiles. The "hump" occurred on the center-line established by the rod, and at relatively late times, > 1 µs, after detonation onset. Several explanations, including that of a late time reaction, were postulated. This report will present evidence that the anomalous late time "hump" is due to the arrival of rarefaction waves from the rod's periphery. Simple analytic calculations and reactive-burn hydro-code calculations will be presented supporting this hypothesis.

  20. Field-induced negative differential spin lifetime in silicon.

    PubMed

    Li, Jing; Qing, Lan; Dery, Hanan; Appelbaum, Ian

    2012-04-13

    We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.

  1. Nonlinear anomalous diffusion equation and fractal dimension: exact generalized Gaussian solution.

    PubMed

    Pedron, I T; Mendes, R S; Malacarne, L C; Lenzi, E K

    2002-04-01

    In this work we incorporate, in a unified way, two anomalous behaviors, the power law and stretched exponential ones, by considering the radial dependence of the N-dimensional nonlinear diffusion equation partial differential rho/ partial differential t=nabla.(Knablarho(nu))-nabla.(muFrho)-alpharho, where K=Dr(-theta), nu, theta, mu, and D are real parameters, F is the external force, and alpha is a time-dependent source. This equation unifies the O'Shaughnessy-Procaccia anomalous diffusion equation on fractals (nu=1) and the spherical anomalous diffusion for porous media (theta=0). An exact spherical symmetric solution of this nonlinear Fokker-Planck equation is obtained, leading to a large class of anomalous behaviors. Stationary solutions for this Fokker-Planck-like equation are also discussed by introducing an effective potential.

  2. Anomalous single-electron transfer in common-gate quadruple-dot single-electron devices with asymmetric junction capacitances

    NASA Astrophysics Data System (ADS)

    Imai, Shigeru; Ito, Masato

    2018-06-01

    In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.

  3. Long term electromagnetic monitoring at Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Kappler, Karl Neil

    Electric and magnetic fields in the (10-4-1.0) Hz band were monitored at two sites adjacent to the San Andreas Fault near Parkfield and Hollister, California. Observed fields typically comprise natural magnetotelluric fields, with cultural and instrument noise. A data window [2002-2005], enclosing the September 28, 2004 M6 Parkfield earthquake, was analyzed to determine if anomalous electric or magnetic fields, or changes in ground conductivity, occurred before the earthquake. The data were edited, removing intervals of instrument malfunction, leaving 875 days left in the four-year period. Frequent, local spike-like disturbances were removed. The distribution of these spikes was not biased around the time of the earthquake. Signal to noise ratios, estimated via magnetotelluric processing techniques, provided an index of data quality. Plots of signal and noise amplitude spectra, showed the behavior of the ULF fields to be remarkably constant over the period of analysis. From these first-order plots, it is clear that most of the recorded energy is coherent over the spatial extent of the array. Three main statistical techniques were employed to separate local anomalous electrical or magnetic fields from the dominant coherent natural fields: transfer function estimates between components at each site were employed to subtract the dominant field, and look deeper at the 'residual' fields; the data were decomposed into principal components to identify linear combinations of array channels, which are maximally uncorrelated; the technique of canonical coherences was employed to distinguish anomalous fields which are spatially broad from anomalies which occur at a single site only, and furthermore to distinguish anomalies which are present in both the electric and magnetic fields form those which are present in only one field type. Standard remote reference apparent resistivity estimates were generated daily at Parkfield. Most of the variation was observed to be seasonal, and frequency independent, suggesting a local seasonal distortion effect. Once corrected for distortion, nearly all of the variability in the apparent resistivity was removed. In all cases, high levels of sensitivity to subtle electromagnetic effects were demonstrated, but no effects which can be described as precursors to the Parkfield earthquake were found.

  4. Systematic Serendipity: A Method to Discover the Anomalous

    NASA Astrophysics Data System (ADS)

    Giles, Daniel; Walkowicz, Lucianne

    2018-01-01

    One of the challenges in the era of big data astronomical surveys is identifying anomalous data, data that exhibits as-of-yet unobserved behavior. These data may result from systematic errors, extreme (or rare) forms of known phenomena, or, most interestingly, truly novel phenomena that has historically required a trained eye and often fortuitous circumstance to identify. We describe a method that uses machine clustering techniques to discover anomalous data in Kepler lightcurves, as a step towards systematizing the detection of novel phenomena in the era of LSST. As a proof of concept, we apply our anomaly detection method to Kepler data including Boyajian's Star (KIC 8462852). We examine quarters 4, 8, 11, and 16 of the Kepler data which contain Boyajian’s Star acting normally (quarters 4 and 11) and anomalously (quarters 8 and 16). We demonstrate that our method is capable of identifying Boyajian’s Star’s anomalous behavior in quarters of interest, and we further identify other anomalous light curves that exhibit a range of interesting variability.

  5. Generalized laws of thermodynamics in the presence of correlations.

    PubMed

    Bera, Manabendra N; Riera, Arnau; Lewenstein, Maciej; Winter, Andreas

    2017-12-19

    The laws of thermodynamics, despite their wide range of applicability, are known to break down when systems are correlated with their environments. Here we generalize thermodynamics to physical scenarios which allow presence of correlations, including those where strong correlations are present. We exploit the connection between information and physics, and introduce a consistent redefinition of heat dissipation by systematically accounting for the information flow from system to bath in terms of the conditional entropy. As a consequence, the formula for the Helmholtz free energy is accordingly modified. Such a remedy not only fixes the apparent violations of Landauer's erasure principle and the second law due to anomalous heat flows, but also leads to a generally valid reformulation of the laws of thermodynamics. In this information-theoretic approach, correlations between system and environment store work potential. Thus, in this view, the apparent anomalous heat flows are the refrigeration processes driven by such potentials.

  6. Multi-Sensor Information Integration and Automatic Understanding

    DTIC Science & Technology

    2008-11-01

    also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real- world data – either using real-time...surveillance and airborne IED detection . 15. SUBJECT TERMS Multi-hypothesis tracking , particle filters, anomalous behavior detection , Bayesian...analyst to support decision making with large data sets. A key feature of the real-time tracking and behavior detection system developed is that the

  7. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    NASA Astrophysics Data System (ADS)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  8. Measurement of magnetic field aligned potential differences using high resolution conjugate photoelectron energy spectra

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Doering, J. P.; Potemra, T. A.; Bostrom, C. O.; Brace, L. H.; Heelis, R. A.; Hanson, W. B.

    1977-01-01

    Simultaneous high-resolution observations of a distinctive feature in the energy spectrum of conjugate photoelectrons and spacecraft potential relative to the local ionosphere have allowed the net potential difference between magnetic conjugate points at latitudes below the region of low-energy (i.e., lower than 100 eV) auroral electron precipitation to be determined. Measurements made at 300 km from Atmosphere Explorer C show that there is normally no net potential difference between hemispheres in this region, which extended up to invariant latitudes as high as 74 deg. Two types of apparently related anomalous behavior were infrequently observed at high latitudes. During these periods the incident flux of conjugate photoelectrons was either decelerated by about 3 eV or was not detected.

  9. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.

    PubMed

    Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas

    2012-07-01

    Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.

  10. Local Criticality and non-Fermi Liquid Behavior in Heavy Fermions

    NASA Astrophysics Data System (ADS)

    Si, Qimiao

    2002-03-01

    Quantum criticality provides a means to understand the apparent non-Fermi liquid phenomena in strongly correlated metals. Heavy fermion metals have emerged as a prototype system; many of them explicitly display a magnetic QCP. Experiments have shown that the quantum critical behavior is much richer than expected. One surprise came from neutron scattering, which found that the spin dynamics is anomalous not only near the antiferromagnetic wavevectors but also essentially everywhere in the Brillouin zone. In this talk, I will review the experiments and describe our theoretical work on the subject [1,2,3]. The notion of "local criticality" will be introduced and will be argued to apply to the heavy fermions. Some broader implications of the results will also be discussed. [1] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). [2] Q. Si, J. L. Smith and K. Ingersent, Int. Journ. Mod. Phys. B13, 2331 (1999). [3] J. L. Smith and Q. Si, Phys. Rev. B61, 5184 (2000).

  11. Anomalous behavior of 1/f noise in graphene near the charge neutrality point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Shunpei; Tanaka, Takahiro; Arakawa, Tomonori

    2016-03-07

    We investigate the noise in single layer graphene devices from equilibrium to far-from equilibrium and found that the 1/f noise shows an anomalous dependence on the source-drain bias voltage (V{sub SD}). While the Hooge's relation is not the case around the charge neutrality point, we found that it is recovered at very low V{sub SD} region. We propose that the depinning of the electron-hole puddles is induced at finite V{sub SD}, which may explain this anomalous noise behavior.

  12. The anomalous 3.43 and 3.53 micron emission features toward HD 97048 and Elias 1 - C-C vibrational modes of polycyclic aromatic hydrocarbons?

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G. G. M.; Allamandola, L. J.; Wooden, D. H.; Cohen, M.

    1990-01-01

    The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones of large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable.

  13. Fading Coronal Structure and the Onset of Turbulence in the Young Solar Wind

    NASA Technical Reports Server (NTRS)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.; Cranmer, S. R.

    2016-01-01

    Above the top of the solar corona, the young, slow solar wind transitions from low-beta, magnetically structured flow dominated by radial structures to high-beta, less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10deg from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory (STEREO/HI1) in 2008 December, covering apparent distances from approximately 4deg to 24deg from the center of the Sun and spanning this transition in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term "flocculae." We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.

  14. FADING CORONAL STRUCTURE AND THE ONSET OF TURBULENCE IN THE YOUNG SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeForest, C. E.; Matthaeus, W. H.; Viall, N. M.

    Above the top of the solar corona, the young, slow solar wind transitions from low- β , magnetically structured flow dominated by radial structures to high- β , less structured flow dominated by hydrodynamics. This transition, long inferred via theory, is readily apparent in the sky region close to 10° from the Sun in processed, background-subtracted solar wind images. We present image sequences collected by the inner Heliospheric Imager instrument on board the Solar-Terrestrial Relations Observatory ( STEREO /HI1) in 2008 December, covering apparent distances from approximately 4° to 24° from the center of the Sun and spanning this transitionmore » in the large-scale morphology of the wind. We describe the observation and novel techniques to extract evolving image structure from the images, and we use those data and techniques to present and quantify the clear textural shift in the apparent structure of the corona and solar wind in this altitude range. We demonstrate that the change in apparent texture is due both to anomalous fading of the radial striae that characterize the corona and to anomalous relative brightening of locally dense puffs of solar wind that we term “flocculae.” We show that these phenomena are inconsistent with smooth radial flow, but consistent with the onset of hydrodynamic or magnetohydrodynamic instabilities leading to a turbulent cascade in the young solar wind.« less

  15. Search for plutonium-244 tracks in mountain pass bastnaesite

    USGS Publications Warehouse

    Fleischer, R.L.; Naeser, C.W.

    1972-01-01

    WE have found that bastnaesite, a rare earth fluorocarbonate, from the Precambrian Mountain Pass deposit has an apparent Cretaceous fission track age, and hence does not reveal any anomalous fission tracks due to 244Pu. ?? 1972 Nature Publishing Group.

  16. Numerical schemes for anomalous diffusion of single-phase fluids in porous media

    NASA Astrophysics Data System (ADS)

    Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine

    2016-10-01

    Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.

  17. Anomalous behavior in the third harmonic generation z response through dispersion induced shape changes and matching χ(3)

    NASA Astrophysics Data System (ADS)

    Pillai, Rajesh S.; Brakenhoff, G. J.; Müller, M.

    2006-09-01

    The third harmonic generation (THG) axial response in the vicinity of an interface formed by two isotropic materials of normal dispersion is typically single peaked, with the maximum intensity at the interface position. Here it is shown experimentally that this THG z response may show anomalous behavior—being double peaked with a dip coinciding with the interface position—when the THG contributions from both materials are of similar magnitude. The observed anomalous behavior is explained, using paraxial Gaussian theory, by considering dispersion induced shape changes in the THG z response.

  18. TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems.

    PubMed

    Cao, Nan; Shi, Conglei; Lin, Sabrina; Lu, Jie; Lin, Yu-Ru; Lin, Ching-Yung

    2016-01-01

    Users with anomalous behaviors in online communication systems (e.g. email and social medial platforms) are potential threats to society. Automated anomaly detection based on advanced machine learning techniques has been developed to combat this issue; challenges remain, though, due to the difficulty of obtaining proper ground truth for model training and evaluation. Therefore, substantial human judgment on the automated analysis results is often required to better adjust the performance of anomaly detection. Unfortunately, techniques that allow users to understand the analysis results more efficiently, to make a confident judgment about anomalies, and to explore data in their context, are still lacking. In this paper, we propose a novel visual analysis system, TargetVue, which detects anomalous users via an unsupervised learning model and visualizes the behaviors of suspicious users in behavior-rich context through novel visualization designs and multiple coordinated contextual views. Particularly, TargetVue incorporates three new ego-centric glyphs to visually summarize a user's behaviors which effectively present the user's communication activities, features, and social interactions. An efficient layout method is proposed to place these glyphs on a triangle grid, which captures similarities among users and facilitates comparisons of behaviors of different users. We demonstrate the power of TargetVue through its application in a social bot detection challenge using Twitter data, a case study based on email records, and an interview with expert users. Our evaluation shows that TargetVue is beneficial to the detection of users with anomalous communication behaviors.

  19. An atlas of 1976 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Chan, B.; Givens, C.; Taylor, R.

    1979-01-01

    The means for locating and extracting GEOS-3 altimeter data acquired for the analysis of specific hurricanes, typhoons, and other tropical cyclones are presented. These data are also expected to be extremely useful in the analysis of the behavior of the altimeter instrument in the presence of severe meteorological disturbances as well as provide a data base which can be useful in the resolution of apparently anomalous geoid or sea surface characteristics. Geographic locations of 1976 tropical cyclones were correlated with the closest approaching orbits of the GEOS-3 satellite and its radar altimeter. The cyclone locations and altimeter data were correlated for the 1976 season. The area of coverage includes the northern hemisphere. This document is a sequel to NASA TM-X-69364 which covered the majority of the 1975 season.

  20. Contrasting molecular and morphological evidence for the identification of an anomalous Buteo: a cautionary tale for hybrid diagnosis

    PubMed Central

    2017-01-01

    An adult Buteo was found dead as a road-kill south of Sacramento, California, and was thought to represent the first state record of the eastern Red-shouldered Hawk (B. lineatus lineatus;). It is now a specimen in the Museum of Wildlife and Fisheries Biology (WFB 4816) at the University of California, Davis. We examined this specimen and found that many of its plumage characters differed from all other adult Red-shouldered Hawks examined, including nominate adults. Plumage markings and measurements were intermediate between Red-tailed Hawk (Buteo jamaicensis, ssp calurus) and Red-shouldered Hawk (ssp elegans), leading us to hypothesize that the bird was a hybrid. However, mtDNA sequences and nuDNA microsatellites proved definitively that the bird was a Red-shouldered Hawk, most likely of eastern origin. This case illustrates that apparent hybrids or apparent vagrants could be individuals with anomalous phenotypes caused by rare genetic variation or novel epigenetic effects. PMID:28097061

  1. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, T.M.; Pecora, R.

    1988-03-24

    The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less

  2. The anomalous 3. 43 and 3. 53 micron emission features toward HD 97048 and Elias 1 - C-C vibrational modes of polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schutte, W.A.; Tielens, A.G.G.M.; Allamandola, L.J.

    1990-09-01

    The 5-8 micron spectra obtained toward the two protostellar sources, HD 97048 and Elias 1 exhibit strong anomalous emission features at 3.43 and 3.53 microns. Combining these results with earlier data established that the emission in the general IR features is extended on at least a 20-arcsec scale. In view of the high energy density in the emission zone, as well as the apparent correspondence of the anomalous 3.43 and 3.53 micron features with weak emission shoulders associated with the general family of IR emission bands, an explanation for these observations in terms of C-C overtones and combination tones ofmore » large or dehydrogenated polycyclic aromatic hydrocarbons is judged to be provisionally suitable. 62 refs.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Achintya K.; Nandy, Nilmadhab; Bari, Md. Washimul

    The anomalous behavior of D-layer preparation time of the ionosphere are observed only before, during and after the earthquakes, which took place in the neighbouring region by monitoring the Very Low Frequency (VLF) signal using Gyrator II loop antenna. The anomalies were also observed in the sunrise terminator times during seismically active days. These anomalous behavior may be due to the Lithosphere-Ionosphere coupling. These anomalies may be a precursor of earthquake.

  4. Path scanning for the detection of anomalous subgraphs and use of DNS requests and host agents for anomaly/change detection and network situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neil, Joshua Charles; Fisk, Michael Edward; Brugh, Alexander William

    A system, apparatus, computer-readable medium, and computer-implemented method are provided for detecting anomalous behavior in a network. Historical parameters of the network are determined in order to determine normal activity levels. A plurality of paths in the network are enumerated as part of a graph representing the network, where each computing system in the network may be a node in the graph and the sequence of connections between two computing systems may be a directed edge in the graph. A statistical model is applied to the plurality of paths in the graph on a sliding window basis to detect anomalousmore » behavior. Data collected by a Unified Host Collection Agent ("UHCA") may also be used to detect anomalous behavior.« less

  5. Balloons Revisited

    ERIC Educational Resources Information Center

    Jeskova, Z.; Featonby, D.; Fekova, V.

    2012-01-01

    Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…

  6. Characterization of activated titanium solid reference electrodes for corrosion testing of steel in concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, P.; Maldonado, L.; Saguees, A.A.

    1996-08-01

    Small bars of Ti activated with mixed-metal oxide (commercially produced for permanent impressed-current anodes in cathodic protection) were used as embedded reference electrodes (RE) in concrete. Their electrochemical behavior was evaluated through measurements and analyses of potential, electrochemical impedance spectroscopy (EIS), cyclic polarization (CP), and galvanostatic tests in buffer solutions of pH 4, 7, and 10, saturated calcium hydroxide, simulated concrete pore solution (SPS) with pH = 13.5, and various concrete mixes with and without pozzolanic additions as cement replacement. Effects of deaeration and sodium chloride additions were evaluated. The potential of the activated Ti rod (ATR) electrodes resembled themore » expected dependence for the system Ir{sub 2}O{sub 3} + H{sub 2}O = 2IrO{sub 2} + 2H{sup +} + 2e{sup {minus}} in aqueous solutions. The ATR electrode presented generally good stability with time in concrete for up to 900 days. Anomalous behavior was found in two concrete mixes with the highest pozzolanic content. Results from EIS tests revealed a constant phase element (CPE) behavior, which agreed with results of CP tests that showed a very large apparent interfacial capacitance. The apparent capacitance was on the order of 10{sup {minus}2} F/cm{sup 2}, resulting in very low impedance, which is advantageous when using ATR electrodes to conduct EIS or polarization resistance tests. Galvanostatic application of 0.075 {mu}A/cm{sup 2} caused little variation of potential with time, indicating the presence of a finite polarization resistance. Little short-term susceptibility of the ATR electrode potential to NaCl additions was found. The ATR electrode potential also showed little short-term sensitivity to variations in oxygen partial pressure.« less

  7. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  8. Anomalous Micellization of Pluronic Block Copolymers

    NASA Astrophysics Data System (ADS)

    Leonardi, Amanda; Ryu, Chang Y.

    2014-03-01

    Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.

  9. Method and apparatus for analyzing error conditions in a massively parallel computer system by identifying anomalous nodes within a communicator set

    DOEpatents

    Gooding, Thomas Michael [Rochester, MN

    2011-04-19

    An analytical mechanism for a massively parallel computer system automatically analyzes data retrieved from the system, and identifies nodes which exhibit anomalous behavior in comparison to their immediate neighbors. Preferably, anomalous behavior is determined by comparing call-return stack tracebacks for each node, grouping like nodes together, and identifying neighboring nodes which do not themselves belong to the group. A node, not itself in the group, having a large number of neighbors in the group, is a likely locality of error. The analyzer preferably presents this information to the user by sorting the neighbors according to number of adjoining members of the group.

  10. Perceptions of nonhuman primates in human-wildlife conflict scenarios.

    PubMed

    Hill, Catherine M; Webber, Amanda D

    2010-09-01

    Nonhuman primates (referred to as primates in this study) are sometimes revered as gods, abhorred as evil spirits, killed for food because they damage crops, or butchered for sport. Primates' perceived similarity to humans places them in an anomalous position. While some human groups accept the idea that primates "straddle" the human-nonhuman boundary, for others this resemblance is a violation of the human-animal divide. In this study we use two case studies to explore how people's perceptions of primates are often influenced by these animals' apparent similarity to humans, creating expectations, founded within a "human morality" about how primates should interact with people. When animals transgress these social rules, they are measured against the same moral framework as humans. This has implications for how people view and respond to certain kinds of primate behaviors, their willingness to tolerate co-existence with primates and their likely support for primate conservation initiatives. 2010 Wiley-Liss, Inc.

  11. Propagation velocity of Alfven wave packets in a dissipative plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amagishi, Y.; Nakagawa, H.; Tanaka, M.

    1994-09-01

    We have experimentally studied the behavior of Alfven wave packets in a dissipative plasma due to ion--neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in themore » anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.« less

  12. Propagation velocity of Alfvén wave packets in a dissipative plasma

    NASA Astrophysics Data System (ADS)

    Amagishi, Yoshimitsu; Nakagawa, Hiroyuki; Tanaka, Masayoshi

    1994-09-01

    We have experimentally studied the behavior of Alfvén wave packets in a dissipative plasma due to ion-neutral-atom collisions. It is urged that the central frequency of the packet is observed to gradually decrease with traveling distance in the absorption range of frequencies because of a differential damping among the Fourier components, and that the measured average velocity of its peak amplitude is not accounted for by the conventional group velocity, but by the prediction derived by Tanaka, Fujiwara, and Ikegami [Phys. Rev. A 34, 4851 (1986)]. Furthermore, when the initial central frequency is close to the critical frequency in the anomalous dispersion, the wave packet apparently collapses when traveling along the magnetic field; however, we have found that it is decomposed into another two wave packets with the central frequencies being higher or lower than the critical frequency.

  13. Following fluctuating signs: Anomalous active superdiffusion of swimmers in anisotropic media

    NASA Astrophysics Data System (ADS)

    Toner, John; Löwen, Hartmut; Wensink, Henricus H.

    2016-06-01

    Active (i.e., self-propelled or swimming) particles moving through an isotropic fluid exhibit conventional diffusive behavior. We report anomalous diffusion of an active particle moving in an anisotropic nematic background. While the translational motion parallel to the nematic director shows ballistic behavior, the long-time transverse motion is superdiffusive, with an anomalous scaling proportional to t lnt of the mean-square displacement with time t . This behavior is predicted by an analytical theory that we present here and is corroborated by numerical simulation of active particle diffusion in a simple lattice model for a nematic liquid crystal. It is universal for any collection of self-propelled elements (e.g., bacteria or active rods) moving in a nematic background, provided only that the swimmers are sufficiently dilute that their interactions with each other can be neglected and that they do not perform hairpin turns.

  14. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egid, Adin

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides amore » useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network.« less

  15. Machine intelligence-based decision-making (MIND) for automatic anomaly detection

    NASA Astrophysics Data System (ADS)

    Prasad, Nadipuram R.; King, Jason C.; Lu, Thomas

    2007-04-01

    Any event deemed as being out-of-the-ordinary may be called an anomaly. Anomalies by virtue of their definition are events that occur spontaneously with no prior indication of their existence or appearance. Effects of anomalies are typically unknown until they actually occur, and their effects aggregate in time to show noticeable change from the original behavior. An evolved behavior would in general be very difficult to correct unless the anomalous event that caused such behavior can be detected early, and any consequence attributed to the specific anomaly. Substantial time and effort is required to back-track the cause for abnormal behavior and to recreate the event sequence leading to abnormal behavior. There is a critical need therefore to automatically detect anomalous behavior as and when they may occur, and to do so with the operator in the loop. Human-machine interaction results in better machine learning and a better decision-support mechanism. This is the fundamental concept of intelligent control where machine learning is enhanced by interaction with human operators, and vice versa. The paper discusses a revolutionary framework for the characterization, detection, identification, learning, and modeling of anomalous behavior in observed phenomena arising from a large class of unknown and uncertain dynamical systems.

  16. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.

    PubMed

    Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno

    2010-08-01

    In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.

  17. Anomalous behaviors of Wyrtki Jets in the equatorial Indian Ocean during 2013

    PubMed Central

    Duan, Yongliang; Liu, Lin; Han, Guoqing; Liu, Hongwei; Yu, Weidong; Yang, Guang; Wang, Huiwu; Wang, Haiyuan; Liu, Yanliang; Zahid; Waheed, Hussain

    2016-01-01

    In-situ measurement of the upper ocean velocity discloses significant abnormal behaviors of two Wyrtki Jets (WJs) respectively in boreal spring and fall, over the tropical Indian Ocean in 2013. The two WJs both occurred within upper 130 m depth and persisted more than one month. The exceptional spring jet in May was unusually stronger than its counterpart in fall, which is clearly against the previous understanding. Furthermore, the fall WJ in 2013 unexpectedly peaked in December, one month later than its climatology. Data analysis and numerical experiments illustrate that the anomalous changes in the equatorial zonal wind, associated with the strong intra-seasonal oscillation events, are most likely the primary reason for such anomalous WJs activities. PMID:27436723

  18. The curious case of exploding quantum dots: anomalous migration and growth behaviors of Ge under Si oxidation

    PubMed Central

    2013-01-01

    We have previously demonstrated the unique migration behavior of Ge quantum dots (QDs) through Si3N4 layers during high-temperature oxidation. Penetration of these QDs into the underlying Si substrate however, leads to a completely different behavior: the Ge QDs ‘explode,’ regressing back almost to their origins as individual Ge nuclei as formed during the oxidation of the original nanopatterned SiGe structures used for their generation. A kinetics-based model is proposed to explain the anomalous migration behavior and morphology changes of the Ge QDs based on the Si flux generated during the oxidation of Si-containing layers. PMID:23618165

  19. "To everything there is a season": some Shakespearean models of normal and anomalous aging.

    PubMed

    Donow, H S

    1992-12-01

    Shakespeare perceived aging characters as falling broadly into two categories: normal and anomalous. The former age in conformity to societal expectations, often displaying an inability to affect the outcome of events; the latter (e.g., Lear and Falstaff), deviating from these behavioral norms, dominate the action of their respective plays. Falstaff, a prime example of the anomalous ager, suffers rejection by King Henry V, his former boon companion, a consequence of ageism.

  20. Wind Observations of Anomalous Cosmic Rays from Solar Minimum to Maximum

    NASA Technical Reports Server (NTRS)

    Reames, D. V.; McDonald, F. B.

    2003-01-01

    We report the first observation near Earth of the time behavior of anomalous cosmic-ray N, O, and Ne ions through the period surrounding the maximum of the solar cycle. These observations were made by the Wind spacecraft during the 1995-2002 period spanning times from solar minimum through solar maximum. Comparison of anomalous and galactic cosmic rays provides a powerful tool for the study of the physics of solar modulation throughout the solar cycle.

  1. Anomalous Flexural Behaviors of Microtubules

    PubMed Central

    Liu, Xiaojing; Zhou, Youhe; Gao, Huajian; Wang, Jizeng

    2012-01-01

    Apparent controversies exist on whether the persistence length of microtubules depends on its contour length. This issue is particularly challenging from a theoretical point of view due to the tubular structure and strongly anisotropic material property of microtubules. Here we adopt a higher order continuum orthotropic thin shell model to study the flexural behavior of microtubules. Our model overcomes some key limitations of a recent study based on a simplified anisotropic shell model and results in a closed-form solution for the contour-length-dependent persistence length of microtubules, with predictions in excellent agreement with experimental measurements. By studying the ratio between their contour and persistence lengths, we find that microtubules with length at ∼1.5 μm show the lowest flexural rigidity, whereas those with length at ∼15 μm show the highest flexural rigidity. This finding may provide an important theoretical basis for understanding the mechanical structure of mitotic spindles during cell division. Further analysis on the buckling of microtubules indicates that the critical buckling load becomes insensitive to the tube length for relatively short microtubules, in drastic contrast to the classical Euler buckling. These rich flexural behaviors of microtubules are of profound implication for many biological functions and biomimetic molecular devices. PMID:22768935

  2. Anomalous Elasticity of 4He Films at the Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Shirahama, Keiya; Takahashi, Daisuke; Kogure, Takayuki; Yoshimura, Hitomi; Higashino, Rama

    4 He films on solid substrates exhibit a quantum phase transition between localized (nonsuperfluid) and superfluid states by changing coverage n. We have made torsional oscillator (TO) studies for 4He films adsorbed on nanoporous glasses. A TO with localized films showed an apparent ''supersolid'' behavior, an increase in TO frequency f with broad peak in Q-1. Combining with FEM analyses for TO's with different designs, we conclude that the behavior results from the softening of adsorbed 4He films at high temperatures. The features in f and Q-1 are fitted well to a Debye-like activation with a distributed energy gap Δ, so the elasticity is accounted by thermal excitation of localized atoms to an ''extended'' state. As the critical coverage nc approaches the gap decreases to zero with a powerlaw Δ ~(n -nc) 1 . 2 . Assuming that the 4He chemical potential μ (n) is located in the middle of the gap, we can estimate the elastic constant κ-1 =n2 ∂μ / ∂n . The elasticity agrees with shear moduli of 4He films obtained from the FEM analysis within factor of three. The energetics proposed from the elastic behavior naturally explains other properties of He films adsorbed on disordered substrates.

  3. Extreme Temperature Regimes during the Cool Season and their Associated Large-Scale Circulations

    NASA Astrophysics Data System (ADS)

    Xie, Z.

    2015-12-01

    In the cool season (November-March), extreme temperature events (ETEs) always hit the continental United States (US) and provide significant societal impacts. According to the anomalous amplitudes of the surface air temperature (SAT), there are two typical types of ETEs, e.g. cold waves (CWs) and warm waves (WWs). This study used cluster analysis to categorize both CWs and WWs into four distinct regimes respectively and investigated their associated large-scale circulations on intra-seasonal time scale. Most of the CW regimes have large areal impact over the continental US. However, the distribution of cold SAT anomalies varies apparently in four regimes. In the sea level, the four CW regimes are characterized by anomalous high pressure over North America (near and to west of cold anomaly) with different extension and orientation. As a result, anomalous northerlies along east flank of anomalous high pressure convey cold air into the continental US. To the middle troposphere, the leading two groups feature large-scale and zonally-elongated circulation anomaly pattern, while the other two regimes exhibit synoptic wavetrain pattern with meridionally elongated features. As for the WW regimes, there are some patterns symmetry and anti-symmetry with respect to CW regimes. The WW regimes are characterized by anomalous low pressure and southerlies wind over North America. The first and fourth groups are affected by remote forcing emanating from North Pacific, while the others appear mainly locally forced.

  4. Comment on "Troublesome aspects of the Renyi-MaxEnt treatment"

    NASA Astrophysics Data System (ADS)

    Oikonomou, Thomas; Bagci, G. Baris

    2017-11-01

    Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016), 10.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.

  5. Persistent-random-walk approach to anomalous transport of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger

    2015-06-01

    The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.

  6. Effect of rare-earth doping on the thermoelectric and electrical transport properties of the transition metal pentatelluride hafnium pentatelluride

    NASA Astrophysics Data System (ADS)

    Lowhorn, Nathan Dane

    The transition metal pentatellurides HfTe5 and ZrTe5 have been observed to possess interesting electrical transport properties. High thermopower and low resistivity values result in high thermoelectric power factors. In addition, they possess anomalous transport behavior. The temperature dependence of the resistivity is semimetallic except for a large resistive peak as a function of temperature at around 75 K for HfTe5 and 145 K for ZrTe5. At a temperature corresponding to this peak, the thermopower crosses zero as it moves from large positive values to large negative values. This behavior has been found to be extremely sensitive to changes in the energetics of the system through influences such as magnetic field, stress, pressure, microwave radiation, and substitutional doping. This behavior has yet to be fully explained. Previous doping studies have shown profound and varied effects on the anomalous transport behavior. In this study we investigate the effect on the electrical resistivity, thermopower, and magnetoresistance of doping HfTe5 with rare-earth elements. We have grown single crystals of nominal Hf0.75RE 0.25Te5 where RE = Ce, Pr, Nd, Sm, Gd, Tb, Dy, and Ho. Electrical resistivity and thermopower data from about 10 K to room temperature are presented and discussed in terms of the thermoelectric properties. Doping with rare-earth elements of increasing atomic number leads to a systematic suppression of the anomalous transport behavior. Rare-earth doping also leads to an enhancement of the thermoelectric power factor over that of previously studied pentatellurides and the commonly used thermoelectric material Bi2Te3. For nominal Hf0.75Nd0.25Te5 and Hf0.75 Sm0.25Te5, values more than a factor of 2 larger than that Bi2Te3 are observed. In addition, suppression of the anomalous transport behavior leads to a suppression of the large magnetoresistive effect observed in the parent compounds. Rare-earth doping of HfTe5 has a profound impact on the anomalous electrical transport properties of the parent pentatellurides and produces enhanced thermoelectric properties.

  7. Anomalous thermal hysteresis in dielectric permittivity of CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Zhang, L. W.

    2008-03-01

    We herein report an anomalous thermal hysteresis in dielectric permittivity in CaCu3Ti4O12. The anomalous behavior was well explained in terms of the low-temperature Maxwell-Wagner relaxation induced by frozen carriers. A multirelaxation mechanism, i.e., the coupling of the dipole relaxation to the frozen carrier-induced and blocked carrier-induced Maxwell-Wagner relaxations in the low-temperature and high-temperature regions, respectively, is proposed to be the origin of the colossal dielectric constant.

  8. WFC3 UVIS Pixel-to-Pixel QE Variations via Internal Flats Monitor

    NASA Astrophysics Data System (ADS)

    Bajaj, Varun

    2016-10-01

    The UVIS detector has a population of pixels that exhibit anomalous QE variations between anneals, characterized by a sensitivity loss that is greater in the blue than in the red. This population is randomly distributed, with evidence of clustering behavior in the UV, and is seemingly unique for each anneal cycle. This program, a continuation of cycle 23 program 14389, will aim to constrain the maximum low-sensitivity population existing before an anneal in both the UV and Visible filters. To monitor the UV behavior, internal flats with the D2 lamp will be taken through F225W and F336W. To monitor the behavior in the Visible filters, internal flats with the tungsten lamp will be taken a week before the anneal, when the population of anomalous pixels is the greatest. Internal flats with the Tungsten lamp will be taken to monitor the population in the visible filters, with data taken the week before the anneal to sample the maximum population of anomalous pixels.

  9. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    PubMed Central

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  10. Independent Confirmation of the Pioneer 10 Anomalous Acceleration

    NASA Technical Reports Server (NTRS)

    Markwardt, Craig B.

    2002-01-01

    I perform an independent analysis of radio Doppler tracking data from the Pioneer 10 spacecraft for the time period 1987-1994. All of the tracking data were taken from public archive sources, and the analysis tools were developed independently by myself. I confirm that an apparent anomalous acceleration is acting on the Pioneer 10 spacecraft, which is not accounted for by present physical models of spacecraft navigation. My best fit value for the acceleration, including corrections for systematic biases and uncertainties, is (8.60 plus or minus 1.34) x 10(exp -8) centimeters per second, directed towards the Sun. This value compares favorably to previous results. I examine the robustness of my result to various perturbations of the analysis method, and find agreement to within plus or minus 5%. The anomalous acceleration is reasonably constant with time, with a characteristic variation time scale of greater than 70 yr. Such a variation timescale is still too short to rule out on-board thermal radiation effects, based on this particular Pioneer 10 data set.

  11. Unusual behavior of quiet-time zonal and vertical plasma drift velocities over Jicamarca during the recent extended solar minimum of 2008

    NASA Astrophysics Data System (ADS)

    Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.

    2017-11-01

    The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.

  12. Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study.

    PubMed Central

    Saxton, M J

    2001-01-01

    Anomalous subdiffusion is hindered diffusion in which the mean-square displacement of a diffusing particle is proportional to some power of time less than one. Anomalous subdiffusion has been observed for a variety of lipids and proteins in the plasma membranes of a variety of cells. Fluorescence photobleaching recovery experiments with anomalous subdiffusion are simulated to see how to analyze the data. It is useful to fit the recovery curve with both the usual recovery equation and the anomalous one, and to judge the goodness of fit on log-log plots. The simulations show that the simplest approximate treatment of anomalous subdiffusion usually gives good results. Three models of anomalous subdiffusion are considered: obstruction, fractional Brownian motion, and the continuous-time random walk. The models differ significantly in their behavior at short times and in their noise level. For obstructed diffusion the approach to the percolation threshold is marked by a large increase in noise, a broadening of the distribution of diffusion coefficients and anomalous subdiffusion exponents, and the expected abrupt decrease in the mobile fraction. The extreme fluctuations in the recovery curves at and near the percolation threshold result from extreme fluctuations in the geometry of the percolation cluster. PMID:11566793

  13. Comment on "Troublesome aspects of the Renyi-MaxEnt treatment".

    PubMed

    Oikonomou, Thomas; Bagci, G Baris

    2017-11-01

    Plastino et al. [Plastino et al., Phys. Rev. E 94, 012145 (2016)1539-375510.1103/PhysRevE.94.012145] recently stated that the Rényi entropy is not suitable for thermodynamics by using functional calculus, since it leads to anomalous results unlike the Tsallis entropy. We first show that the Tsallis entropy also leads to such anomalous behaviors if one adopts the same functional calculus approach. Second, we note that one of the Lagrange multipliers is set in an ad hoc manner in the functional calculus approach of Plastino et al. Finally, the explanation for these anomalous behaviors is provided by observing that the generalized distributions obtained by Plastino et al. do not yield the ordinary canonical partition function in the appropriate limit and therefore cannot be considered as genuine generalized distributions.

  14. Anomalous photoconductive behavior of a single InAs nanowire photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Junshuai; Yan, Xin; Sun, Fukuan

    2015-12-28

    We report on a bare InAs nanowire photodetector which exhibits an anomalous photoconductive behavior. Under low-power illumination, the current is smaller than the dark current, and monotonously decreases as the excitation power increases. When the excitation power is high enough, the current starts to increase normally. The phenomenon is attributed to different electron mobilities in the “core” and “shell” of a relatively thick nanowire originating from the surface effect, which result in a quickly dropped “core current” and slowly increased “shell current” under illumination.

  15. Temperature, pressure, and compositional effects on anomalous or "self" preservation of gas hydrates

    USGS Publications Warehouse

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2003-01-01

    We previously reported on a thermal regime where pure, polycrystalline methane hydrate is preserved metastably in bulk at up to 75 K above its nominal temperature stability limit of 193 K at 0.1 MPa, following rapid release of the sample pore pressure. Large fractions (>50 vol.%) of methane hydrate can be preserved for 2-3 weeks by this method, reflecting the greatly suppressed rates of dissociation that characterize this "anomalous preservation" regime. This behavior contrasts that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) isothermal test conditions, where dissociation rates increase monotonically with increasing temperature. Here, we report on recent experiments that further investigate the effects of temperature, pressure, and composition on anomalous preservation behavior. All tests conducted on sI methane hydrate yielded self-consistent results that confirm the highly temperature-sensitive but reproducible nature of anomalous preservation behavior. Temperature-stepping experiments conducted between 250 and 268 K corroborate the relative rates measured previously in isothermal preservation tests, and elevated pore-pressure tests showed that, as expected, dissociation rates are further reduced with increasing pressure. Surprisingly, sII methane-ethane hydrate was found to exhibit no comparable preservation effect when rapidly depressurized at 268 K, even though it is thermodynamically stable at higher temperatures and lower pressures than sI methane hydrate. These results, coupled with SEM imaging of quenched sample material from a variety of dissociation tests, strongly support our earlier arguments that ice-"shielding" effects provided by partial dissociation along hydrate grain surfaces do not serve as the primary mechanism for anomalous preservation. The underlying physical-chemistry mechanism(s) of anomalous preservation remains elusive, but appears to be based more on textural or morphological changes within the hydrate material itself, rather than on compositional zoning or ice-rind development.

  16. Long-term monitoring of ULF electromagnetic fields at Parkfield, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kappler, K.N.; Morrison, H.F.; Egbert, G.D.

    2009-08-01

    Electric and magnetic fields in the (10{sup -4}-1.0) Hz band were monitored at two sites adjacent to the San Andreas Fault near Parkfield and Hollister, California from 1995 to present. A data window [2002-2005], enclosing the September 28, 2004 M6 Parkfield earthquake, was analyzed to determine if anomalous electric or magnetic fields, or changes in ground conductivity, occurred before the earthquake. The data were edited, removing intervals of instrument malfunction leaving 875 days in the four-year period. Frequent, spike-like disturbances were common, but were not more frequent around the time of the earthquake; these were removed before subsequent processing. Signalmore » to noise amplitude spectra, estimated via magnetotelluric processing showed the behavior of the ULF fields to be remarkably constant over the period of analysis. These first-order plots make clear that most of the recorded energy is coherent over the spatial extent of the array. Three main statistical techniques were employed to separate local anomalous electrical or magnetic fields from the dominant coherent natural fields: transfer function estimates between components at each site were employed to subtract the dominant field, and look deeper at the 'residual' fields; the data were decomposed into principal components to identify the dominant coherent array modes; and the technique of canonical coherences was employed to distinguish anomalous fields which are spatially broad from anomalies which occur at a single site only, and furthermore to distinguish anomalies which are present in both the electric and magnetic fields from those which are present in only one field type. Standard remote reference apparent resistivity estimates were generated daily at Parkfield. A significant seasonal component of variability was observed suggesting local distortion due to variations in near surface resistance. In all cases, high levels of sensitivity to subtle electromagnetic effects were demonstrated, but no effects which can be reasonably characterized as precursors to the Parkfield earthquake were found.« less

  17. Musical experts recruit action-related neural structures in harmonic anomaly detection: Evidence for embodied cognition in expertise

    PubMed Central

    Sherwin, Jason; Sajda, Paul

    2013-01-01

    Humans are extremely good at detecting anomalies in sensory input. For example, while listening to a piece of Western-style music, an anomalous key change or an out-of-key pitch is readily apparent, even to the non-musician. In this paper we investigate differences between musical experts and non-experts during musical anomaly detection. Specifically, we analyzed the electroencephalograms (EEG) of five expert cello players and five non-musicians while they listened to excerpts of J.S. Bach’s Prelude from Cello Suite No.1. All subjects were familiar with the piece, though experts also had extensive experience playing the piece. Subjects were told that anomalous musical events (AMEs) could occur at random within the excerpts of the piece and were told to report the number of AMEs after each excerpt. Furthermore, subjects were instructed to remain still while listening to the excerpts and their lack of movement was verified via visual and EEG monitoring. Experts had significantly better behavioral performance (i.e. correctly reporting AME counts) than non-experts, though both groups had mean accuracies greater than 80%. These group differences were also reflected in the EEG correlates of key-change detection post-stimulus, with experts showing more significant, greater magnitude, longer periods of and earlier peaks in condition-discriminating EEG activity than novices. Using the timing of the maximum discriminating neural correlates, we performed source reconstruction and compared significant differences between cellists and non-musicians. We found significant differences that included a slightly right lateralized motor and frontal source distribution. The right lateralized motor activation is consistent with the cortical representation of the left hand – i.e. the hand a cellist would use, while playing, to generate the anomalous key-changes. In general, these results suggest that sensory anomalies detected by experts may in fact be partially a result of an embodied cognition, with a model of the action for generating the anomaly playing a role in its detection. PMID:24056235

  18. Experimental investigations of recent anomalous results in superconductivity

    NASA Astrophysics Data System (ADS)

    Souw, Victor K.

    2000-12-01

    This thesis examines three recent anomalous results associated with irreversibility in type-II superconductivity: (1) The magnetic properties of the predicted superconductors LiBeH3 and Li2BeH 4, (2) the paramagnetic transition near T = Tc in Nb, and (3) a noise transition in a YBa2Cu3O7-delta thin film near the vortex-solid transition. The investigation of Li 2BeH4 and LiBeH3 was prompted by theoretical predictions of room-temperature superconductivity for Li2BeH4 and LiBeH3 and a recent report that Li2BeH4 showed magnetic irreversibilities similar to those of type-II superconductors. A modified experimental method is introduced in order to avoid artifacts due to background signals. The resulting data is suggestive of a superparamagnetic impurity from one of the reagents used in the synthesis and after subtracting this contribution, the temperature-dependent susceptibilities of Li2 BeH4 and LiBeH3 are estimated. However, no magnetic irreversibility suggestive of superconductivity is observed. The anomalous paramagnetic transition in Nb is intriguing because Nb does not share the d-wave order parameter symmetry often invoked to explain the phenomenon in other superconductors. A modified experimental method was developed in order to avoid instrumental artifacts known to produce a similar apparently paramagnetic response, but the results of this method indicate that the paramagnetic response is a physical property of the sample. Finally, a very sharp noise transition in a YBa2Cu3O7-delta thin film was found to be distinct from previously reported features in the voltage noise commonly associated with vortex fluctuations near the irreversibility line. In each of these three cases the examination of experimental techniques is an integral part of the investigation of novel vortex behavior near the onset of irreversibility.

  19. Utilizing Weak Indicators to Detect Anomalous Behaviors in Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egid, Adin Ezra

    We consider the use of a novel weak in- dicator alongside more commonly used weak indicators to help detect anomalous behavior in a large computer network. The data of the network which we are studying in this research paper concerns remote log-in information (Virtual Private Network, or VPN sessions) from the internal network of Los Alamos National Laboratory (LANL). The novel indicator we are utilizing is some- thing which, while novel in its application to data science/cyber security research, is a concept borrowed from the business world. The Her ndahl-Hirschman Index (HHI) is a computationally trivial index which provides amore » useful heuristic for regulatory agencies to ascertain the relative competitiveness of a particular industry. Using this index as a lagging indicator in the monthly format we have studied could help to detect anomalous behavior by a particular or small set of users on the network. Additionally, we study indicators related to the speed of movement of a user based on the physical location of their current and previous logins. This data can be ascertained from the IP addresses of the users, and is likely very similar to the fraud detection schemes regularly utilized by credit card networks to detect anomalous activity. In future work we would look to nd a way to combine these indicators for use as an internal fraud detection system.« less

  20. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  1. The anomalous depolarization anisotropy in the central backscattering area for turbid medium with Mie scatterers

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Lai, Jiancheng; Song, Yang; Li, Zhenhua

    2018-05-01

    It is generally recognized that circularly polarized light is preferentially maintained over linearly polarized light in turbid medium with Mie scatterers. However, in this work, the anomalous depolarization anisotropy is reported in the backscattering area near the point of illumination. Both experimental and Monte Carlo simulations show preferential retention of linear polarization states compared to circular polarization states in a specific backscattering area. Further analysis indicates that the anomalous depolarization behavior in the specific area is induced by lateral scattering events, which own low circular polarization memory. In addition, it is also found that the size of the anomalous depolarization area is related to the transport mean free path of the turbid medium.

  2. Investigation of an Anomaly Observed in Impedance Eduction Techniques

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.

    2008-01-01

    An intensive investigation into the cause of anomalous behavior commonly observed in impedance eduction techniques is performed. The investigation consists of grid refinement studies, detailed evaluation of results at and near anti-resonance frequencies, comparisons of different model results with synthesized and measured data, assessment or optimization techniques, and evaluation or boundary condition effects. Results show that the root cause of the anomalous behavior is the sensitivity of the educed impedance to small errors in the measured termination resistance at frequencies near anti-resonance or cut-on of a higher-order mode. Evidence is presented to show that the common usage of an anechoic, plane wave termination boundary condition in ducts where the "true" termination is reflective may act as a trigger for these anomalies. Replacing the exit impedance boundary condition by an exit pressure condition is shown to reduce the anomalous results.

  3. Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity

    DTIC Science & Technology

    2008-03-01

    theory. Perhaps, most the significant interpretation of BackTalk results is the apparent affirmation or the important, dual- nature of prediction and...Member) date AFIT/GCS/ENG/08-04 Abstract This thesis explores the nature of cyberspace and forms an argument for it as an intangible world. This... Significance of Research . . . . . . . . . . . . . . . . . . 93 6.4 Recommendations for Future Research . . . . . . . . . . 94 Appendix A. NuPIC Cybercraft

  4. Extraterrestrial accretion and glacial cycles

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1994-01-01

    We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.

  5. Arbitrary Steady-State Solutions with the K-epsilon Model

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.

    2006-01-01

    Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.

  6. DSCS II. Battery Anomaly Investigation Satellites 9437 and 9438.

    DTIC Science & Technology

    1980-04-25

    Chronology Prior to Identifying the Anomaly 2-1 3 . ANOMALY OBSERVATIONS 3 -1 3.1 Satellite 9437 3 -1 3.1.1 State of the Batteries Prior to the Anomaly...Observation 3 -1 3.1.2 Anomalous Behavior 3 -1 3.2 Satellite 9438 3 -6 3.2.1 State of the Batteries Prior to the Anomaly Observation 3 -6 3.2.2 Anomalous...Behavior 3 -6 4. ANOMALY INVESTIGATIONS 4-1 4.1 Scope 4-1 4.2 Postulated Causes of the Anomaly 4-1 4.3 Cell Short Circuits 4-2 4.3.1 Evidence in Support of

  7. Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior.

    PubMed

    Chang, Cui-Zu; Zhao, Weiwei; Li, Jian; Jain, J K; Liu, Chaoxing; Moodera, Jagadeesh S; Chan, Moses H W

    2016-09-16

    Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

  8. Cooper Pair-Like Systems at High Temperature and their Role on Fluctuations Near the Critical Temperature

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Dorbolo, S.

    A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2Tc where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.

  9. Volcanic rocks and pyroclastica as time markers in sedimentary sequences - but how to date them? Examples from the Quaternary Eifel volcanism, German

    NASA Astrophysics Data System (ADS)

    Zoeller, Ludwig; Richter, Daniel; Klinger, Philip; van den Bogaard, Paul

    2014-05-01

    Volcanic rocks, in particular tephra, can serve as most valuable time markers in sedimentary sequences such as loess-paleosol sequences, lake sediments, fluvial sediments, etc. Young (Quaternary) volcanic products are often difficult to date with K/Ar or Ar/Ar methods, due to the long half-life of 40K and/or the lack of K-rich minerals in mafic volcanic products. 14C dating is problematic in volcanic environments and limited to < ca 50 ka. Direct dating of volcanic minerals by TL is strongly hampered by so-called "anomalous fading" of volcanic feldspars or pyroxenes. We tested the orange-red (620 nm) R-TL emission of quartz extracted from crustal xenoliths of some Quaternary Eifel volcanoes which were heated during the eruption. The R-TL emission of quartz appears to be suitable because of its high saturation dose which should allow for dating >1 Ma, and because of the lack of anomalous fading as reported in literature. Comparing our first apparent TL ages with new laser Ar/Ar ages from small autogenic phlogopit crystals we found, however, unexpected age underestimations for some samples. Further test relate this observation to the so-called anomalous fading of the quartz separates. Apparently, the temperature experienced by the xenolithic quartz grains during eruption is relevant for their TL stability characteristics. By improving and adjusting R-TL measurement protocols we were so far able to reproduce some 14C and Ar/Ar ages in the range of ca 40 ka to ca 600 ka. Our continuing work will focus on establishing R-TL dating of heated xenolithic quartz as a reliable method for Upper and Middle Pleistocene volcanic events.

  10. Toward a Classical Thermodynamic Model for Retro-cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Edwin C.

    2011-11-29

    Retro-cognition--a human response before a randomly determined future stimulus--has always been part of our experience. Experiments over the last 80 years show a small but statistically significant effect. If this turns out to be true, then it suggests a form of macroscopic retro-causation. The 2nd Law of Thermodynamics provides an explanation for the apparent single direction of time at the macroscopic level although time is reversible at the microscopic level. In a preliminary study, I examined seven anomalous cognition (a.k.a., ESP) studies in which the entropic gradients and the entropy of their associated target systems were calculated, and the qualitymore » of the response was estimated by a rating system called the figure of merit. The combined Spearman's correlation coefficient for these variables for the seven studies was 0.211 (p = 6.4x10{sup -4}) with a 95% confidence interval for the correlation of [0.084, 0.332]; whereas, the same data for a correlation with the entropy itself was 0.028 (p = 0.36; 95% confidence interval of [-0.120-0.175]). This suggests that anomalous cognition is mediated via some kind of a sensory system in that all the normal sensory systems are more sensitive to changes than they are to inputs that are not changing. A standard relationship for the change of entropy of a binary sequence appears to provide an upper limit to anomalous cognition functioning for free response and for forced-choice Zener card guessing. This entropic relation and an apparent limit set by the entropy may provide a clue for understanding macroscopic retro-causation.« less

  11. Nonperturbative evaluation for anomalous dimension in 2-dimensional O (3 ) sigma model

    NASA Astrophysics Data System (ADS)

    Calle Jimenez, Sergio; Oka, Makoto; Sasaki, Kiyoshi

    2018-06-01

    We nonperturbatively calculate the wave-function renormalization in the two-dimensional O (3 ) sigma model. It is evaluated in a box with a finite spatial extent. We determine the anomalous dimension in the finite-volume scheme through an analysis of the step-scaling function. Results are compared with a perturbative evaluation, and reasonable behavior is observed.

  12. Anomalous behaviors during infiltration into heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; Bolster, D.; Voller, V. R.

    2018-03-01

    Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F ∼t1/2 . In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n < 1/2) and super (n > 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.

  13. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Bodi, K.; Cohen, R. H.; Krasheninnikov, S.; Rognlien, T. D.

    2010-06-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  14. Identification and detection of anomalies through SSME data analysis

    NASA Technical Reports Server (NTRS)

    Pereira, Lisa; Ali, Moonis

    1990-01-01

    The goal of the ongoing research described in this paper is to analyze real-time ground test data in order to identify patterns associated with the anomalous engine behavior, and on the basis of this analysis to develop an expert system which detects anomalous engine behavior in the early stages of fault development. A prototype of the expert system has been developed and tested on the high frequency data of two SSME tests, namely Test #901-0516 and Test #904-044. The comparison of our results with the post-test analyses indicates that the expert system detected the presence of the anomalies in a significantly early stage of fault development.

  15. Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.

    PubMed

    Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav

    2018-05-14

    Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.

  16. Composition-dependent magnetic response properties of Mn1 -xFexGe alloys

    NASA Astrophysics Data System (ADS)

    Mankovsky, S.; Wimmer, S.; Polesya, S.; Ebert, H.

    2018-01-01

    The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn1 -xFexGe alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The Dxx component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at x ≈0.85 in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at x ≈0.8 . A corresponding behavior with a sign change at x ≈0.5 is predicted also for the Fermi-sea contribution to the SOT, because this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi-sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the anomalous Hall effect and the sign change of the spin Hall effect conductivities.

  17. Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2009-03-28

    Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.

  18. NO2 column changes induced by volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  19. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE PAGES

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    2018-05-31

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  20. Anomalous surface potential behavior observed in InN by photoassisted Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoxiao; Wei, Jiandong; Wang, Xinqiang; Wang, Ping; Li, Shunfeng; Waag, Andreas; Li, Mo; Zhang, Jian; Ge, Weikun; Shen, Bo

    2017-05-01

    Lattice-polarity dependence of InN surface photovoltage has been identified by an anomalous surface potential behavior observed via photoassisted Kelvin probe force microscopy. Upon above bandgap light illumination in the ambient atmosphere, the surface photovoltage of the In-polar InN shows a pronounced decrease, while that of the N-polar one keeps almost constant. Those different behaviors between N-polar and In-polar surfaces are attributed to a polarity-related surface reactivity, which is found not to be influenced by Mg-doping. These findings provide a simple and non-destructive approach to determine the lattice polarity and allow us to suggest that the In-polar InN, especially that with buried p-type conduction, should be chosen for sensing application.

  1. Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Prashant; Smirnov, A. V.; Johnson, Duane D.

    From electronic-structure-based thermodynamic linear response, we establish chemical ordering behavior in complex solid solutions versus how Gibbs' space is traversed—applying it on prototype refractory A2 Ta-Nb-Mo-W high-entropy alloys. Near ideal stoichiometry, this alloy has anomalous, intricate chemical ordering tendencies, with long-ranged chemical interactions that produce competing short-range order (SRO) with a crossover to spinodal segregation. This atypical SRO arises from canonical band behavior that, with alloying, creates features near the Fermi surface (well defined even with disorder) that change to simple commensurate SRO with (un)filling of these states. In conclusion, our results reveal how complexity and competing electronic effects controlmore » ordering in these alloys.« less

  2. Anomalous law of cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapas, Luciano C., E-mail: luciano.lapas@unila.edu.br; Ferreira, Rogelma M. S., E-mail: rogelma.maria@gmail.com; Rubí, J. Miguel, E-mail: mrubi@ub.edu

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton’s law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law ofmore » thermodynamics.« less

  3. Nonlinear dynamics induced anomalous Hall effect in topological insulators

    PubMed Central

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-01

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics. PMID:26819223

  4. Nonlinear dynamics induced anomalous Hall effect in topological insulators.

    PubMed

    Wang, Guanglei; Xu, Hongya; Lai, Ying-Cheng

    2016-01-28

    We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

  5. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    PubMed

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  6. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    PubMed

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  7. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  8. Infrared charge-injection-device array performance at low background

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1981-01-01

    Low-background tests of a 1 x 32 Si:Bi charge-injection-device (CID) IR detector are carried out to evaluate its feasibility for space-based astronomical observations. Optimum performance is obtained at a temperature of 11 K. The sensitivity is found to compare well with that of discrete extrinsic silicon photoconductors. The measured sensitivity and the apparent absence of anomalous effects make extrinsic silicon CID arrays very promising for astronomical applications.

  9. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    PubMed Central

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-01-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show 1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and 2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements. PMID:22771528

  10. Phase-contrast MRI and CFD modeling of apparent 3He gas flow in rat pulmonary airways

    NASA Astrophysics Data System (ADS)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and (2) that remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  11. Delusions as performance failures.

    PubMed

    Gerrans, P

    2001-08-01

    Delusions are explanations of anomalous experiences. A theory of delusion requires an explanation of both the anomalous experience and the apparently irrational explanation generated by the delusional subject. Hence, we require a model of rational belief formation against which the belief formation of delusional subjects can be evaluated. I first describe such a model, distinguishing procedural from pragmatic rationality. Procedural rationality is the use of rules or procedures, deductive or inductive, that produce an inferentially coherent set of propositions. Pragmatic rationality is the use of procedural rationality in context. I then apply the distinction to the explanation of the Capgras and the Cotard delusions. I then argue that delusions are failures of pragmatic rationality. I examine the nature of these failures employing the distinction between performance and competence familiar from Chomskian linguistics. This approach to the irrationality of delusions reconciles accounts in which the explanation of the anomalous experience exhausts the explanation of delusion, accounts that appeal to further deficits within the reasoning processes of delusional subjects, and accounts that argue that delusions are not beliefs at all. (Respectively, one-stage, two-stage, and expressive accounts.) In paradigm cases that concern cognitive neuropsychiatry the irrationality of delusional subjects should be thought of as a performance deficit in pragmatic rationality.

  12. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. III. Critical use of thermodynamic parameters of activation for modeling the water penetration and drug release processes.

    PubMed

    Ferrero, Carmen; Massuelle, Danielle; Jeannerat, Damien; Doelker, Eric

    2013-09-10

    The two main purposes of this work were: (i) to critically consider the use of thermodynamic parameters of activation for elucidating the drug release mechanism from hydroxypropyl methylcellulose (HPMC) matrices, and (ii) to examine the effect of neutral (pH 6) and acidic (pH 2) media on the release mechanism. For this, caffeine was chosen as model drug and various processes were investigated for the effect of temperature and pH: caffeine diffusion in solution and HPMC gels, and drug release from and water penetration into the HPMC tablets. Generally, the kinetics of the processes was not significantly affected by pH. As for the temperature dependence, the activation energy (E(a)) values calculated from caffeine diffusivities were in the range of Fickian transport (20-40 kJ mol⁻¹). Regarding caffeine release from HPMC matrices, fitting the profiles using the Korsmeyer-Peppas model would indicate anomalous transport. However, the low apparent E(a) values obtained were not compatible with a swelling-controlled mechanism and can be assigned to the dimensional change of the system during drug release. Unexpectedly, negative apparent E(a) values were calculated for the water uptake process, which can be ascribed to the exothermic dissolution of water into the initially dry HPMC, the expansion of the matrix and the polymer dissolution. Taking these contributions into account, the true E(a) would fall into the range valid for Fickian diffusion. Consequently, a relaxation-controlled release mechanism can be dismissed. The apparent anomalous drug release from HPMC matrices results from a coupled Fickian diffusion-erosion mechanism, both at pH 6 and 2. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Anomalous physical properties of Heusler-type Co2Cr (Ga,Si) alloys and thermodynamic study on reentrant martensitic transformation

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-03-01

    Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.

  14. Survey of Anomaly Detection Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, B

    This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview ofmore » popular techniques and provide references to state-of-the-art applications.« less

  15. Relaxation from Steady States Far from Equilibrium and the Persistence of Anomalous Shock Behavior in Weakly Ionized Gases

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Auslender, Aaron H.

    1999-01-01

    The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.

  16. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  17. Anomalous Faraday effect of a system with extraordinary optical transmittance.

    PubMed

    Khanikaev, Alexander B; Baryshev, Alexander V; Fedyanin, Andrey A; Granovsky, Alexander B; Inoue, Mitsuteru

    2007-05-28

    It is shown theoretically that the Faraday rotation becomes anomalously large and exhibits extraordinary behavior near the frequencies of the extraordinary optical transmittance through optically thick perforated metal film with holes filled with a magneto-optically active material. This phenomenon is explained as result of strong confinement of the evanescent electromagnetic field within magnetic material, which occurs due to excitation of the coupled plasmon-polaritons on the opposite surfaces of the film.

  18. Anomalous Hall resistance in bilayer quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Ezawa, Z. F.; Suzuki, S.; Tsitsishvili, G.

    2007-07-01

    We present a microscopic theory of the Hall current in the bilayer quantum Hall system on the basis of noncommutative geometry. By analyzing the Heisenberg equation of motion and the continuity equation of charge, we demonstrate the emergence of the phase current in a system where the interlayer phase coherence develops spontaneously. The phase current arranges itself to minimize the total energy of the system, as it induces certain anomalous behaviors in the Hall current in the counterflow geometry and also in the drag experiment. They explain the recent experimental data for anomalous Hall resistances due to Kellogg [Phys. Rev. Lett. 88, 126804 (2002); 93, 036801 (2004)] and Tutuc [Phys. Rev. Lett. 93, 036802 (2004)] at ν=1 .

  19. Anomalous eutectic formation in the solidification of undercooled Co-Sn alloys

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wei, X. X.; Huang, Q. S.; Li, J. F.; Cheng, X. H.; Zhou, Y. H.

    2012-11-01

    Three Co-Sn alloys with compositions around the eutectic point were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification structure. It is revealed that the primary phase during rapid solidification changes complexly with the increasing undercooling in the off-eutectic alloys, while coupled eutectic growth takes place at all undercoolings in the eutectic alloy. Two types of anomalous eutectics form in the alloys: one evolving from coupled eutectics and the other from single phase dendrites or seaweeds. The crystallographic orientation of eutectic phases in the anomalous eutectic is dependent on which type their precursors belong to.

  20. Latest Results From the QuakeFinder Statistical Analysis Framework

    NASA Astrophysics Data System (ADS)

    Kappler, K. N.; MacLean, L. S.; Schneider, D.; Bleier, T.

    2017-12-01

    Since 2005 QuakeFinder (QF) has acquired an unique dataset with outstanding spatial and temporal sampling of earth's magnetic field along several active fault systems. This QF network consists of 124 stations in California and 45 stations along fault zones in Greece, Taiwan, Peru, Chile and Indonesia. Each station is equipped with three feedback induction magnetometers, two ion sensors, a 4 Hz geophone, a temperature sensor, and a humidity sensor. Data are continuously recorded at 50 Hz with GPS timing and transmitted daily to the QF data center in California for analysis. QF is attempting to detect and characterize anomalous EM activity occurring ahead of earthquakes. There have been many reports of anomalous variations in the earth's magnetic field preceding earthquakes. Specifically, several authors have drawn attention to apparent anomalous pulsations seen preceding earthquakes. Often studies in long term monitoring of seismic activity are limited by availability of event data. It is particularly difficult to acquire a large dataset for rigorous statistical analyses of the magnetic field near earthquake epicenters because large events are relatively rare. Since QF has acquired hundreds of earthquakes in more than 70 TB of data, we developed an automated approach for finding statistical significance of precursory behavior and developed an algorithm framework. Previously QF reported on the development of an Algorithmic Framework for data processing and hypothesis testing. The particular instance of algorithm we discuss identifies and counts magnetic variations from time series data and ranks each station-day according to the aggregate number of pulses in a time window preceding the day in question. If the hypothesis is true that magnetic field activity increases over some time interval preceding earthquakes, this should reveal itself by the station-days on which earthquakes occur receiving higher ranks than they would if the ranking scheme were random. This can be analysed using the Receiver Operating Characteristic test. In this presentation we give a status report of our latest results, largely focussed on reproducibility of results, robust statistics in the presence of missing data, and exploring optimization landscapes in our parameter space.

  1. Retrocausation Or Extant Indefinite Reality?

    NASA Astrophysics Data System (ADS)

    Houtkooper, Joop M.

    2006-10-01

    The possibility of retrocausation has been considered to explain the occurrence of anomalous phenomena in which the ostensible effects are preceded by their causes. A scrutiny of both experimental methodology and the experimental data is called for. A review of experimental data reveals the existence of such effects to be a serious possibility. The experimental methodology entails some conceptual difficulties, these depending on the underlying assumptions about the effects. A major point is an ambiguity between anomalous acquisition of information and retrocausation in exerted influences. A unifying theory has been proposed, based upon the fundamental randomness of quantum mechanics. Quantum mechanical randomness may be regarded as a tenacious phenomenon, that apparently is only resolved by the human observer of the random variable in question. This has led to the "observational theory" of anomalous phenomena, which is based upon the assumption that the preference of a motivated observer is able to interact with the extant indefinite random variable that is being observed. This observational theory has led to a novel prediction, which has been corroborated in experiments. Moreover, different classes of anomalous phenomena can be explained by the same basic mechanism. This foregoes retroactive causation, but, instead, requires that macroscopic physical variables remain in a state of indefinite reality and thus remain influenceable by mental efforts until these are observed. More work is needed to discover the relevant psychological and neurophysiological variables involved in effective motivated observation. Besides these practicalities, the fundamentals still have some interesting loose ends.

  2. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE PAGES

    X. Q. Xu; Bodi, K.; Cohen, R. H.; ...

    2010-05-28

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  3. TEMPEST Simulations of the Plasma Transport in a Single-Null Tokamak Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    X. Q. Xu; Bodi, K.; Cohen, R. H.

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. In order to study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. In a series of TEMPEST simulations were conducted to investigate themore » transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. Moreover, we show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.« less

  4. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  5. Deficient Behavioral Inhibition and Anomalous Selective Attention in a Community Sample of Adolescents with Psychopathic Traits and Low-Anxiety Traits

    ERIC Educational Resources Information Center

    Vitale, Jennifer E.; Newman, Joseph P.; Bates, John E.; Goodnight, Jackson; Dodge, Kenneth A.; Pettit, Gregory S.

    2005-01-01

    Socialization is the important process by which individuals learn and then effectively apply the rules of appropriate societal behavior. Response modulation is a psychobiological process theorized to aid in socialization by allowing individuals to utilize contextual information to modify ongoing behavior appropriately. Using Hare's (1991)…

  6. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.

    PubMed

    Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric

    2012-08-08

    Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.

  7. Revisiting point FRAP to quantitatively characterize anomalous diffusion in live cells.

    PubMed

    Daddysman, Matthew K; Fecko, Christopher J

    2013-02-07

    Fluorescence recovery after photobleaching (FRAP) is widely used to interrogate diffusion and binding of proteins in live cells. Herein, we apply two-photon excited FRAP with a diffraction limited bleaching and observation volume to study anomalous diffusion of unconjugated green fluorescence protein (GFP) in vitro and in cells. Experiments performed on dilute solutions of GFP reveal that reversible fluorophore bleaching can be mistakenly interpreted as anomalous diffusion. We derive a reaction-diffusion FRAP model that includes reversible photobleaching, and demonstrate that it properly accounts for these photophysics. We then apply this model to investigate the diffusion of GFP in HeLa cells and polytene cells of Drosophila larval salivary glands. GFP exhibits anomalous diffusion in the cytoplasm of both cell types and in HeLa nuclei. Polytene nuclei contain optically resolvable chromosomes, permitting FRAP experiments that focus separately on chromosomal or interchrosomal regions. We find that GFP exhibits anomalous diffusion in chromosomal regions but diffuses normally in regions devoid of chromatin. This observation indicates that obstructed transport through chromatin and not crowding by macromolecules is a source of anomalous diffusion in polytene nuclei. This behavior is likely true in other cells, so it will be important to account for this type of transport physics and for reversible photobleaching to properly interpret future FRAP experiments on DNA-binding proteins.

  8. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  9. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  10. Anomaly Detection in Dynamic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turcotte, Melissa

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. Amore » second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the communication counts. In a sequential analysis, anomalous behavior is then identified from outlying behavior with respect to the fitted predictive probability models. Seasonality is again incorporated into the model and is treated as a changepoint model on the transition probabilities of a discrete time Markov process. Second stage analytics are then developed which combine anomalous edges to identify anomalous substructures in the network.« less

  11. Theoretical Bounds for the Influence of Tissue-Level Ductility on the Apparent-Level Strength of Human Trabecular Bone

    PubMed Central

    Nawathe, Shashank; Juillard, Frédéric; Keaveny, Tony M.

    2015-01-01

    The role of tissue-level post-yield behavior on the apparent-level strength of trabecular bone is a potentially important aspect of bone quality. To gain insight into this issue, we compared the apparent-level strength of trabecular bone for the hypothetical cases of fully brittle versus fully ductile failure behavior of the trabecular tissue. Twenty human cadaver trabecular bone specimens (5 mm cube; BV/TV = 6–36%) were scanned with micro-CT to create 3D finite element models (22-micron element size). For each model, apparent-level strength was computed assuming either fully brittle (fracture with no tissue ductility) or fully ductile (yield with no tissue fracture) tissue-level behaviors. We found that the apparent-level ultimate strength for the brittle behavior was only about half the value of the apparent-level 0.2%-offset yield strength for the ductile behavior, and the ratio of these brittle to ductile strengths was almost constant (mean ± SD = 0.56 ± 0.02; n=20; R2 = 0.99 between the two measures). As a result of this small variation, although the ratio of brittle to ductile strengths was positively correlated with the bone volume fraction (R2=0.44, p=0.01) and structure model index (SMI, R2=0.58, p<0.01), these effects were small. Mechanistically, the fully ductile behavior resulted in a much higher apparent-level strength because in this case about 16-fold more tissue was required to fail than for the fully brittle behavior; also, there was more tensile- than compressive-mode of failure at the tissue level for the fully brittle behavior. We conclude that, in theory, the apparent-level strength behavior of human trabecular bone can vary appreciably depending on whether the tissue fails in a fully ductile versus fully brittle manner, and this effect is largely constant despite appreciable variations in bone volume fraction and microarchitecture. PMID:23497799

  12. WFC3 UVIS Pixel-to-Pixel QE Variations via Internal Flats Monitor

    NASA Astrophysics Data System (ADS)

    Mckay, Myles

    2017-08-01

    The UVIS detector has a population of pixels that exhibit anomalous QE variations between anneals, characterized by a sensitivity loss that is greater in the shorter wavelengths(blue) than in the longer wavelengths(red). This population is distributed randomly, with evidence of grouping behavior in the UV, and is seemingly different for each anneal cycle. This program, a continuation of cycle 24 program 14546, will aim to constrain the maximum low-sensitivity population existing before an anneal in both the UV and Visible filters. To monitor the UV behavior, internal flats with the Deuterium D2 lamp will be taken through the filters, F225W and F336W. To monitor the behavior in the Visible filters, internal flats with the tungsten lamp will be taken through F814W and F438W a week before the anneal, when the population of anomalous pixels is the greatest.

  13. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollu, Pratap, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fieldsmore » (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.« less

  14. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  15. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  16. An Evaluation of Subseasonal Intensity Variation of the South Asian High in the CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Shang, W.; Ren, X.

    2017-12-01

    The South Asian High (SAH) is a vital member among the Asian summer monsoon circulations in the upper troposphere located over the Tibetan Plateau and its surrounding areas during boreal summer. This study presents an evaluation of the characteristics of SAH's subseasonal intensity variation simulated by 18 coupled models from the Coupled Model Intercomparison Project (CMIP5). The empirical orthogonal function (EOF) analysis is used on subseasonal anomalies in 100hPa geopotential height over 20°-40°N, 35°-110°E for June, July and August from 1979 to 2005. The first EOF mode from the ERA-Interim (denoted as observation) shows a monopole pattern capturing the strengthening/weakening of SAH. The power spectrum analysis of the corresponding principal component (PC1) time series shows a period about 10-30 days. In general, all the 18 coupled models can reproduce the monopole pattern and its subseasonal oscillation to a certain extent. The four well-simulated models are: ACCESS1-3, HadGEM2-CC, MRI-CGCM3 and BNU-ESM, which EOF1 show strong positive anomalies in the 100hPa geopotential height over the SAH's region and weak negative anomalies in their north side. Lead-lag regression shows that the evolution of the EOF1 from day -12 to +3 in the above four models is also reasonably simulated. In the observation, positive rainfall band moves northward from the equatorial Indian Ocean, the Bay of Bengals and the Western North Pacific to the north of Indian Peninsula, south of Tibetan Plateau and Southeast China, accompanied by the increasing intensity of SAH. In the above four models, the northward movement of anomalous rainfall band can be well reproduced. In the observation, the spatial pattern of anomalies in integrated apparent heat source and integrated apparent moisture sink resemble that of rainfall, thus corresponding to anomalous condensation heat release. The anomalous heating stimulates positive height anomalies with an anomalous anticyclonic circulation to its northwest in the upper troposphere, causing the strengthening of SAH intensity. For the four well-simulated models, the anomalies pattern of and are realistically simulated. That is why they are able to reproduce the key features of the subseasonal intensity variation of the SAH.

  17. Anomalous Coulomb oscillation in crossed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baek, Seung Jae; Lee, Dongsu; Park, Seung Joo; Park, Yung Woo; Svensson, Johannes; Jonson, Mats; Campbell, Eleanor E. B.

    2008-03-01

    Single-walled carbon nanotube (SWCNT) crossed junctions separated by an insulating layer were fabricated to investigate the double quantum dot modulated by a single gate (DQD-sG). Anomalous Coulomb oscillations were observed on the lower CNT at low temperature, where the behavior was interpreted by the concept of a double quantum dot (DQD) system http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id =APPLAB000089000023233107000001&idtype=cvips&gifs=yes [1]. To understand it more clearly, we have intentionally fabricated crossed CNTs without oxide layer in between. The observed anomalous Coulomb oscillations indicate that the contact resistance between the two tubes becomes a potential barrier splitting the initial single QD into the DQD, and the back-gate modulates the energy levels of the DQD.

  18. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2011-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO13, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  19. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  20. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2010-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO12, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  1. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2008-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A10, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  2. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2009-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A11, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  3. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  4. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath

    2015-11-30

    X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries,more » which produces surprisingly long range effect.« less

  5. Anomalous Dynamical Behavior of Freestanding Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Ackerman, M. L.; Kumar, P.; Neek-Amal, M.; Thibado, P. M.; Peeters, F. M.; Singh, Surendra

    2016-09-01

    We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.

  6. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system has been created. The qualitative model describes the effects of seal failures on the system steady-state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  7. Rocket engine diagnostics using qualitative modeling techniques

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Maul, William; Meyer, Claudia; Sovie, Amy

    1992-01-01

    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures.

  8. Spectral Definition of the Characteristic Times for Anomalous Diffusion in a Potential

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Coffey, William T.; Titov, Serguey V.

    Characteristic times of the noninertial fractional diffusion of a particle in a potential are defined in terms of three time constants, viz., the integral, effective, and longest relaxation times. These times are described using the eigenvalues of the corresponding Fokker-Planck operator for the normal diffusion. Knowledge of them is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest. As a particular example, we consider the subdiffusion of a planar rotor in a double-well potential.

  9. Anomalous volume change of gramicidin A in ethanol solutions

    NASA Technical Reports Server (NTRS)

    Derechin, M.; Hayashi, D. M.; Jordan, B. E.

    1975-01-01

    Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.

  10. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  11. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection.

    PubMed

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-12-05

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell's law. However, the critical angle that derived from the generalized Snell's law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device.

  12. Corresponding-states behavior of SPC/E-based modified (bent and hybrid) water models

    NASA Astrophysics Data System (ADS)

    Weiss, Volker C.

    2017-02-01

    The remarkable and sometimes anomalous properties of water can be traced back at the molecular level to the tetrahedral coordination of molecules due to the ability of a water molecule to form four hydrogen bonds to its neighbors; this feature allows for the formation of a network that greatly influences the thermodynamic behavior. Computer simulations are becoming increasingly important for our understanding of water. Molecular models of water, such as SPC/E, are needed for this purpose, and they have proved to capture many important features of real water. Modifications of the SPC/E model have been proposed, some changing the H-O-H angle (bent models) and others increasing the importance of dispersion interactions (hybrid models), to study the structural features that set water apart from other polar fluids and from simple fluids such as argon. Here, we focus on the properties at liquid-vapor equilibrium and study the coexistence curve, the interfacial tension, and the vapor pressure in a corresponding-states approach. In particular, we calculate Guggenheim's ratio for the reduced apparent enthalpy of vaporization and Guldberg's ratio for the reduced normal boiling point. This analysis offers additional insight from a more macroscopic, thermodynamic perspective and augments that which has already been learned at the molecular level from simulations. In the hybrid models, the relative importance of dispersion interactions is increased, which turns the modified water into a Lennard-Jones-like fluid. Consequently, in a corresponding-states framework, the typical behavior of simple fluids, such as argon, is seen to be approached asymptotically. For the bent models, decreasing the bond angle turns the model essentially into a polar diatomic fluid in which the particles form linear molecular arrangements; as a consequence, characteristic features of the corresponding-states behavior of hydrogen halides emerge.

  13. Bloch-Siegert shift in Dirac-Weyl fermionic systems

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-04-01

    The Bloch-Siegert shift is a phenomenon in quantum optics, typically seen in two-level systems, when the driving field is sufficiently strong. The inclusion of frequency doubling effect (counter rotating term) in the conventional rotating wave approximation (RWA) changes the resonance condition thereby producing a rather small shift in the resonance condition, which is known as the Bloch-Siegert shift (BSS). Rabi oscillations in Dirac-Weyl fermionic systems exhibit anomalous behavior far from resonance, called anomalous Rabi oscillations. Therefore, in the present work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal and topological insulator (TI) far from resonance, called anomalous Bloch-Siegert shift (ABSS). It is seen that the change in the resonance condition of anomalous Rabi oscillations is drastic in Weyl semimetal and TI. The ABSS in Weyl semimetals is highly anisotropic, whereas it is isotropic in TI. In case of TI, it is the Chern number which plays a crucial role to produce substantial change in the ABSS.

  14. Degree-strength correlation reveals anomalous trading behavior.

    PubMed

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang

    2012-01-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders.

  15. Normal and anomalous nuclear spin-lattice relaxation at high temperatures in Sc-H(D), Y-H, and Lu-H solid solutions

    NASA Astrophysics Data System (ADS)

    Barnes, R. G.; Han, J.-W.; Torgeson, D. R.; Baker, D. B.; Conradi, M. S.; Norberg, R. E.

    1995-02-01

    We report the results of measurements of the proton (1H) spin-lattice relaxation rate R1 at high temperatures (to ~1400 K) in the hcp (α) solid-solution phases of the Sc-H, Y-H, and Lu-H systems, and of R1(45Sc) in Sc-H and Sc-D solid solutions. The latter measurements show unambiguous evidence of an anomalous increase at ~1000 K, whereas R1(1H) shows no such increase at any temperature. This behavior of R1(1H) contrasts with that in the bcc V-H, etc., solid solutions where anomalous relaxation occurs below ~1000 K, and in all investigated metal dihydride phases, MH2-x. The anomalous R1(1H) behavior in α-VHx, α-NbHx, etc., may be understood in terms of fast spin relaxation in the H2 gas in equilibrium with the solid, mediated by fast gas-solid exchange of hydrogen. However, in the present systems, α-ScHx, α-YHx, etc., the H2 gas pressure in equilibrium with the hcp systems is extremely low, resulting in negligible H2 concentration in the gas phase, and consequently a negligible contribution to R1(1H). In contrast, some of the present measurements indicate that the R1(45Sc) anomaly does result from the hydrogen content of the metal, but the mechanism remains unexplained.

  16. Coarse-grained theory of a realistic tetrahedral liquid model

    NASA Astrophysics Data System (ADS)

    Procaccia, I.; Regev, I.

    2012-02-01

    Tetrahedral liquids such as water and silica-melt show unusual thermodynamic behavior such as a density maximum and an increase in specific heat when cooled to low temperatures. Previous work had shown that Monte Carlo and mean-field solutions of a lattice model can exhibit these anomalous properties with or without a phase transition, depending on the values of the different terms in the Hamiltonian. Here we use a somewhat different approach, where we start from a very popular empirical model of tetrahedral liquids —the Stillinger-Weber model— and construct a coarse-grained theory which directly quantifies the local structure of the liquid as a function of volume and temperature. We compare the theory to molecular-dynamics simulations and show that the theory can rationalize the simulation results and the anomalous behavior.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquesta, Erin C.S.; Valicka, Christopher G.; Hinga, Mark B.

    As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a highly efficient means to detect anomalous flight and maritime behavior. Following the success of using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re- port will introduce a brief description of how Tracktable has been used in the past, along with an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will then allow us to compare the two problem spaces, addressing how easily the methods usedmore » by Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out- line the current limitations as well as possible path forward for using Tracktable to detect satellite maneuvers.« less

  18. Anomalous CO2 Emissions in Different Ecosystems Around the World

    NASA Astrophysics Data System (ADS)

    Sanchez-Canete, E. P.; Moya Jiménez, M. R.; Kowalski, A. S.; Serrano-Ortiz, P.; López-Ballesteros, A.; Oyonarte, C.; Domingo, F.

    2016-12-01

    As an important tool for understanding and monitoring ecosystem dynamics at ecosystem level, the eddy covariance (EC) technique allows the assessment of the diurnal and seasonal variation of the net ecosystem exchange (NEE). Despite the high temporal resolution data available, there are still many processes (in addition to photosynthesis and respiration) that, although they are being monitored, have been neglected. Only a few authors have studied anomalous CO2 emissions (non biological), and have related them to soil ventilation, photodegradation or geochemical processes. The aim of this study is: 1) to identify anomalous short term CO2 emissions in different ecosystems distributed around the world, 2) to determine the meteorological variables that are influencing these emissions, and 3) to explore the potential processes that can be involved. We have studied EC data together with other meteorological ancillary variables obtained from the FLUXNET database (version 2015) and have found more than 50 sites with anomalous CO2 emissions in different ecosystem types such as grasslands, croplands or savannas. Data were filtered according to the FLUXNET quality control flags (only data with quality control flag equal to 0 was used) and correlation analysis were performed with NEE and ancillary data. Preliminary results showed strong and highly significant correlations between meteorological variables and anomalous CO2 emissions. Correlation results showed clear differing behaviors between ecosystems types, which could be related to the different processes involved in the anomalous CO2 emissions. We suggest that anomalous CO2 emissions are happening globally and therefore, their contribution to the global net ecosystem carbon balance requires further investigation in order to better understand its drivers.

  19. First order transitions by conduction calorimetry: Application to deuterated potassium dihydrogen phosphate ferroelastic crystal under uniaxial pressure

    NASA Astrophysics Data System (ADS)

    Gallardo, M. C.; Jiménez, J.; Koralewski, M.; del Cerro, J.

    1997-03-01

    The specific heat c and the heat power W exchanged by a Deuterated Potassium Dihydrogen Phosphate ferroelectric-ferroelastic crystal have been measured simultaneously for both decreasing and increasing temperature at a low constant rate (0.06 K/h) between 175 and 240 K. The measurements were carried out under controlled uniaxial stresses of 0.3 and 4.5±0.1 bar applied to face (110). At Tt=207.9 K, a first order transition is produced with anomalous specific heat behavior in the interval where the transition heat appears. This anomalous behavior is explained in terms of the temperature variation of the heat power during the transition. During cooling, the transition occurs with coexistence of phases, while during heating it seems that metastable states are reached. Excluding data affected by the transition heat, the specific heat behavior agrees with the predictions of a 2-4-6 Landau potential in the range of 4-15 K below Tt while logarithmic behavior is obtained in the range from Tt to 1 K below Tt. Data obtained under 0.3 and 4.5 bar uniaxial stresses exhibit the same behavior.

  20. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    PubMed Central

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-01-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653

  1. Model-based reasoning for power system management using KATE and the SSM/PMAD

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian

    1993-01-01

    The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.

  2. Thermal conductivity of layered organic superconductor β-(BDA-TTP)2SbF6 in a parallel magnetic field: Anomalous effect of coreless vortices

    NASA Astrophysics Data System (ADS)

    Tanatar, M. A.; Ishiguro, T.; Toita, T.; Yamada, J.

    2005-01-01

    Thermal conductivity κ of the organic superconductor β-(BDA-TTP)2SbF6 was studied down to 0.3 K in magnetic fields H of varying orientation with respect to the superconducting plane. Anomalous plateau shape of the field dependence, κ vs H , is found for orientation of magnetic fields precisely parallel to the plane, in contrast to usual behavior observed in the perpendicular fields. We show that the lack of magnetic-field effect on the heat conduction results from coreless structure of vortices, causing both negligible scattering of phonons and constant in field electronic conduction up to the fields close to the upper critical field Hc2 . Usual behavior is recovered on approaching Hc2 and on slight field inclination from parallel direction, when normal cores are restored. This behavior points to the lack of bulk quasiparticle excitations induced by magnetic field, consistent with the conventional superconducting state.

  3. Logarithmic violation of scaling in anisotropic kinematic dynamo model

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2016-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.

  4. Anomalous behavior in temporal evolution of ripple wavelength under medium energy Ar{sup +}-ion bombardment on Si: A case of initial wavelength selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Sandeep Kumar; Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067; Cuerno, Rodolfo

    We have studied the early stage dynamics of ripple patterns on Si surfaces, in the fluence range of 1–3 × 10{sup 18} ions cm{sup −2}, as induced by medium energy Ar{sup +}-ion irradiation at room temperature. Under our experimental conditions, the ripple evolution is found to be in the linear regime, while a clear decreasing trend in the ripple wavelength is observed up to a certain time (fluence). Numerical simulations of a continuum model of ion-sputtered surfaces suggest that this anomalous behavior is due to the relaxation of the surface features of the experimental pristine surface during the initial stage of patternmore » formation. The observation of this hitherto unobserved behavior of the ripple wavelength seems to have been enabled by the use of medium energy ions, where the ripple wavelengths are found to be order(s) of magnitude larger than those at lower ion energies.« less

  5. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE PAGES

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...

    2017-12-20

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  6. Anomalous Composition-Induced Crossover in the Magnetic Properties of the Itinerant-Electron Antiferromagnet Ca 1 - x Sr x Co 2 - y As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.

    We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less

  7. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walmsley, C.M.; Churchwell, E.; Nash, A.

    We report observations of the J = 1..-->..0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1..-->..0 line are anomalous in that the F = 0..-->..1 transition is stronger than would be expected if all three components (F = 2..-->..1, F = 1..-->..1, F = 0..-->..1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with Hmore » II regions where the F = 1..-->..1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1..-->..0 transitions of HCO/sup +/ and HNC in the same objects where /sup 13/C substituted version of these species is found to be stronger than the /sup 12/C species.« less

  9. Role of nuclear stars in the light flashes observed on Skylab 4.

    PubMed

    McNulty, P J; Filz, R C; Rothwell, P L

    1977-01-01

    The astronauts on Skylab 4 observed bursts of intense visual light-flash activity when their spacecraft passed through the portion of the earth's inner trapped radiation belt known as the South Atlantic Anomaly (SAA). Two experimental sessions were carried out on board Skylab 4 under the auspices of Pinsky et al. who compare the flash rates with the measured flux of Z > or = 1 particles that would pass through the astronaut's eyes. They concluded that the flash rates, which became as great as 20/min, were anomalously high. We explored a number of alternative explanations for the anomalous flash rates that would be consistent with the accepted SAA flux values and the laboratory data on particle induced visual sensations and found that when one includes the effect of nuclear interactions in and near the retina which result in star formation (the emission of slow protons, neutrons and alpha particles form the nucleus in an evaporation-like process) the apparent anomaly is removed.

  10. Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required

    NASA Astrophysics Data System (ADS)

    Hensley, Brandon S.; Draine, B. T.

    2017-02-01

    In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).

  11. Quantum effects in the dynamics of deeply supercooled water

    DOE PAGES

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; ...

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature T g~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  12. LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.

    2016-08-04

    The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires)more » to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.« less

  13. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion.

    PubMed

    López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  14. Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: two-loop approximation.

    PubMed

    Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L

    2005-01-01

    The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.

  15. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  16. Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides

    NASA Technical Reports Server (NTRS)

    Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.

  17. Decoding Mode-mixing in Black-hole Merger Ringdown

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  18. Pressure-induced subunit dissociation and unfolding of dimeric beta-lactoglobulin.

    PubMed Central

    Valente-Mesquita, V L; Botelho, M M; Ferreira, S T

    1998-01-01

    Effects of hydrostatic pressure on dimeric beta-lactoglobulin A (beta-Lg) were investigated. Application of pressures of up to 3.5 kbar induced a significant red shift ( approximately 11 nm) and a 60% increase in intrinsic fluorescence emission of beta-Lg. These changes were very similar to those induced by guanidine hydrochloride, which caused subunit dissociation and unfolding of beta-Lg. A large hysteresis in the recovery of fluorescence parameters was observed upon decompression of beta-Lg. Pressure-induced dissociation and unfolding were not fully reversible, because of the formation of a nonnative intersubunit disulfide bond that hampered correct refolding of the dimer. Comparison between pressure dissociation/unfolding at 3 degrees C and 23 degrees C revealed a marked destabilization of beta-Lg at low temperature. The stability of beta-Lg toward pressure was significantly enhanced by 1 M NaCl, but not by glycerol (up to 20% v/v). These observations suggest that salt stabilization was not related to a general cosolvent effect, but may reflect charge screening. Interestingly, pressure-induced dissociation/unfolding was completely independent of beta-Lg concentration, in apparent violation of the law of mass action. Possible causes for this anomalous behavior are discussed. PMID:9649408

  19. Anomalous postcritical refraction behavior for certain transversely isotropic media

    USGS Publications Warehouse

    Fa, L.; Brown, R.L.; Castagna, J.P.

    2006-01-01

    Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.

  20. Phonons and elasticity of cementite through the Curie temperature

    NASA Astrophysics Data System (ADS)

    Mauger, L.; Herriman, J. E.; Hellman, O.; Tracy, S. J.; Lucas, M. S.; Muñoz, J. A.; Xiao, Yuming; Li, J.; Fultz, B.

    2017-01-01

    Phonon partial densities of states (pDOS) of Fe573C were measured from cryogenic temperatures through the Curie transition at 460 K using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that low-energy acoustic phonons shift to higher energies (stiffen) with temperature before the magnetic transition. This unexpected stiffening suggests strongly nonharmonic vibrational behavior that impacts the thermodynamics and elastic properties of cementite. Density functional theory calculations reproduced the anomalous stiffening observed experimentally in cementite by accounting for phonon-phonon interactions at finite temperatures. The calculations show that the low-energy acoustic phonon branches with polarizations along the [010] direction are largely responsible for the anomalous thermal stiffening. The effect was further localized to the motions of the FeII site within the orthorhombic structure, which participates disproportionately in the anomalous phonon stiffening.

  1. Anomalous Growth of Aging Populations

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.

    2016-04-01

    We consider a discrete-time population dynamics with age-dependent structure. At every time step, one of the alive individuals from the population is chosen randomly and removed with probability q_k depending on its age, whereas a new individual of age 1 is born with probability r. The model can also describe a single queue in which the service order is random while the service efficiency depends on a customer's "age" in the queue. We propose a mean field approximation to investigate the long-time asymptotic behavior of the mean population size. The age dependence is shown to lead to anomalous power-law growth of the population at the critical regime. The scaling exponent is determined by the asymptotic behavior of the probabilities q_k at large k. The mean field approximation is validated by Monte Carlo simulations.

  2. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Robert X.

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) Pacific–North American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the easternmore » US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also studied in (CMIP5) climate model simulations. Although the climate models considered are able to represent the overall behavior of ETEs, the frequency of WWs (CAOs) is too high (low) in many models. While all models qualitatively replicate the overall structure of the PNA pattern, a small minority of models fails to properly simulate the NAO pattern. Model shortcomings in representing the NAO and PNA patterns have important consequences for simulating associated regional variability in surface air temperature and storm track behavior. The influence of PCMs on ETEs is underestimated in most CMIP5 models. In particular, none of the models are able to accurately simulate observed linkages between ETEs and the PDO, due to a gross misrepresentation of the PDO pattern in most models. Our results indicate that predictions of future CAO and WW behavior are currently limited by the ability of climate models to accurately represent PCM characteristics. Our study also considers the behavior of PCMs known as annular modes. It is determined that north-south movements in the stratospheric jet stream (related to the Polar Annular Mode) result in long-lasting impacts upon surface weather conditions including regional air temperature anomalies. The structure and dynamics of the stratospheric northern annular mode (or SNAM, related to changes in the strength of the stratospheric jet stream) was studied in CMIP5 models. In models with poorly-resolved stratospheres, the amplitude of SNAM at stratospheric altitudes is typically too weak, consistent with weaker stratospheric jet variability. However, this distinction does not carry over to the associated tropospheric signature of SNAM. A regional analysis illustrates that most CMIP5 models (regardless of whether the stratosphere is well-resolved) have anomalously weak and eastward shifted (compared to observed SNAM events) storm track and sea level pressure anomaly patterns during SNAM events. Analyses of stratosphere–troposphere coupling reveal that large-scale wave activity in the stratosphere is anomalously weak in CMIP5 models having poorly-resolved stratospheres, due to correspondingly weak upward propagation of wave activity from the troposphere. This suggests that such models have anomalously weak stratosphere-troposphere coupling in association with SNAM events. Paradoxically, however, there is little apparent impact upon the attendant tropospheric variability.« less

  3. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    NASA Astrophysics Data System (ADS)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  4. Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN

    NASA Astrophysics Data System (ADS)

    Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro

    1999-11-01

    Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.

  5. Use of Machine Learning Techniques for Identification of Robust Teleconnections to East African Rainfall Variability

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Funk, C.

    2014-01-01

    Hidden Markov models can be used to investigate structure of subseasonal variability. East African short rain variability has connections to large-scale tropical variability. MJO - Intraseasonal variations connected with appearance of "wet" and "dry" states. ENSO/IOZM SST and circulation anomalies are apparent during years of anomalous residence time in the subseasonal "wet" state. Similar results found in previous studies, but we can interpret this with respect to variations of subseasonal wet and dry modes. Reveal underlying connections between MJO/IOZM/ENSO with respect to East African rainfall.

  6. Degree-Strength Correlation Reveals Anomalous Trading Behavior

    PubMed Central

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Wang, Zhao-Yang

    2012-01-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock markets. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying the anomalous traders using the transaction data of eight manipulated stocks and forty-four non-manipulated stocks during a one-year period. By analyzing the trading networks of stocks, we find that the trading networks of manipulated stocks exhibit significantly higher degree-strength correlation than the trading networks of non-manipulated stocks and the randomized trading networks. We further propose a method to detect anomalous traders of manipulated stocks based on statistical significance analysis of degree-strength correlation. Experimental results demonstrate that our method is effective at distinguishing the manipulated stocks from non-manipulated ones. Our method outperforms the traditional weight-threshold method at identifying the anomalous traders in manipulated stocks. More importantly, our method is difficult to be fooled by colluded traders. PMID:23082114

  7. Anomalous Lightning Behavior During the 26-27 August 2007 Northern Great Plains Severe Weather Event

    NASA Astrophysics Data System (ADS)

    Logan, Timothy

    2018-02-01

    Positive polarity lightning strokes can be useful indicators of thunderstorm behavior. A combination of National Lightning Detection Network and Next Generation Radar retrievals is used to analyze the anomalous positive cloud-to-ground (CG) lightning behavior of a rare, late summer severe weather event that occurred on 26-27 August 2007 in the Northern Great Plains region of the United States and southern Canada. Seven discrete supercells (SC1-SC7) exhibiting frequent and intense lightning were responsible for numerous reports of severe weather (e.g., severe hail and 16 tornadoes) including catastrophic damage to the town of Northwood, North Dakota, caused by SC2. Biomass burning smoke from wildfires in Idaho and Montana was present prior to convective initiation. A positive CG lightning stroke rate of nearly 30 strokes per minute was observed 10 min before the EF4 tornado struck Northwood. SC2 was also responsible for all the reports of tornadoes exceeding an EF2 rating. The strongest peak currents (>200 kA) were observed in SC1-SC4 with SC2 having a maximum value of 280 kA. SC2 dominated the statistics of the line of supercells accounting for 27% of all CG lightning strokes. Positive CG lightning accounted for over 40% of all CG lightning strokes in SC4-SC7 on average, and the maximum exceeded 90% in SC6 and SC7. Increasing positive CG lightning dominance was correlated with an increasing northward gradient of smoke aerosol loading in addition to severe weather being reported before the maximum in positive CG lighting stroke rate (SC5 and SC6). This suggests that a complex combination of synoptic forcing and aerosol perturbation likely led to the observed anomalous positive CG lightning behavior in the supercells.

  8. Apparent Negative Reflection with the Gradient Acoustic Metasurface by Integrating Supercell Periodicity into the Generalized Law of Reflection

    PubMed Central

    Liu, Bingyi; Zhao, Wenyu; Jiang, Yongyuan

    2016-01-01

    As the two dimensional version of the functional wavefront manipulation metamaterial, metasurface has become a research hot spot for engineering the wavefront at will with a subwavelength thickness. The wave scattered by the gradient metasurface, which is composed by the periodic supercells, is governed by the generalized Snell’s law. However, the critical angle that derived from the generalized Snell’s law circles the domain of the incident angles that allow the occurrence of the anomalous reflection and refraction, and no free space scattering waves could exist when the incident angle is beyond the critical angle. Here we theoretically demonstrate that apparent negative reflection can be realized by a gradient acoustic metasurface when the incident angle is beyond the critical angle. The underlying mechanism of the apparent negative reflection is understood as the higher order diffraction arising from the interaction between the local phase modulation and the non-local effects introduced by the supercell periodicity. The apparent negative reflection phenomena has been perfectly verified by the calculated scattered acoustic waves of the reflected gradient acoustic metasurface. This work may provide new freedom in designing functional acoustic signal modulation devices, such as acoustic isolator and acoustic illusion device. PMID:27917909

  9. Phonon thermodynamics of iron and cementite

    NASA Astrophysics Data System (ADS)

    Mauger, Lisa Mary

    The vibrational properties of materials are essential to understanding material stability and thermodynamics. In this thesis I outline vibrational thermodynamic models and the experimental tools that provide evidence on phonon behavior. The introductory section discusses the history of metallurgy and thermodynamic theory, with an emphasis on the role of iron and cementite, two important components of steels. The thermodynamic framework for understanding vibrational material behavior is provided alongside the growing body of experimental and computational tools that provide physical insight on vibrational properties. The high temperature vibrational behavior of iron and cementite are explored within this context in the final chapters. Body-centered-cubic iron exhibits decreasing phonon energies at elevated temperatures. The observed energy change in not uniform across phonon modes in iron, and specific phonon modes show significant decreases in energy that are not explained by simple vibrational models. This anomalously energy decrease is linked to the second-nearest-neighbor interactions in the bcc structure, through examination of fitted interatomic force constants. The large changes in phonon energy result in a significant increase in the vibrational entropy, called the nonharmonic vibrational entropy, which emulates the temperature behavior of the magnetic entropy across the Curie temperature. The nonharmonic vibrational entropy is attributed to interactions between the vibrations and state of magnetic disorder in the material, which persists above the magnetic transitions and extends the stability region of the bcc phase. Orthorombic cementite, Fe3C, exhibits anisotropic magneto-volume behavior in the ferromagnetic phase including regions very low thermal expansion. The phonon modes of cementite show anomalous temperature dependence, with low energy phonon modes increasing their energy at elevated temperatures in the ferromagnetic phase. This behavior is reversed after the magnetic transition and these same phonon modes lower their energies with temperature, consistent with observed thermal expansion. This atypical phonon behavior lowers the vibrational entropy of cementite up to the Curie temperature. The experimentally observed increase in low energy acoustic phonons affects the elastic behavior of Fe3C, increasing the isotropy of elastic response. First principles calculations link the observed phonon energy increases to specific vibrational modes that are polarized along the b-axis, which aligns with the closest Fe-Fe bonding direction. The nonharmonic behavior of the vibrational modes are discussed in the context of other observations of anomalous anisotropic magneto-volume behavior in Fe3C.

  10. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  11. Creep of Ni(3)Al in the temperature regime of anomalous flow behavior

    NASA Astrophysics Data System (ADS)

    Uchic, Michael David

    Much attention has been paid to understanding the dynamics of dislocation motion and substructure formation in Ni3Al in the anomalous flow regime. However, most of the experimental work that has been performed in the lowest temperatures of the anomalous flow regime has been under constant-strain-rate conditions. An alternative and perhaps more fundamental way to probe the plastic behavior of materials is a monotonic creep test, in which the stress and temperature are held constant while the time-dependent strain is measured. The aim of this study is to use constant-stress experiments to further explore the plastic flow anomaly in L12 alloys at low temperatures. Tension creep experiments have been carried out on <123> oriented single crystals of Ni75Al24Ta1 at temperatures between 293 and 473 K. We have observed primary creep leading to exhaustion at all temperatures and stresses, with creep rates declining faster than predicted by the logarithmic creep law. The total strain and creep strain have an anomalous dependence on temperature, which is consistent with the flow stress anomaly. We have also observed other unusual behavior in our creep experiments; for example, the reinitiation of plastic flow at low temperatures after a modest increment in applied stress shows a sigmoidal response, i.e., there is a significant time delay before the plastic strain rate accelerates to a maximum value. We also examined the ability to reinitiate plastic flow in samples that have been crept to exhaustion by simply lowering the test temperature. In addition, we have also performed conventional constant-displacement-rate experiments in the same temperature range. From these experiments, we have discovered that unlike most metals, Ni3Al displays a negative dependence of the work hardening rate (WHR) with increasing strain rate. For tests at intermediate temperatures (373 and 423 K), the WHRs of crystals tested at moderately high strain rates (10-2 s-1) are half the WHRs of crystals tested at conventional strain rates (10 -5 s-1), and this anomalous dependence has also been shown to be reversible with changes in strain rate. The implications of all results are discussed in light of our efforts to model plastic deformation in these alloys.

  12. A general framework for the solvatochromism of pyridinium phenolate betaine dyes

    NASA Astrophysics Data System (ADS)

    Rezende, Marcos Caroli; Aracena, Andrés

    2013-02-01

    A general framework for the solvatochromic behavior of pyridinium phenolate betaine dyes is presented, based on the variations with the medium of the electrophilic Fukui functions of their electron-pair donor and acceptor moieties. The model explains the ‘anomalous' solvatochromic behavior of large betaines, which change their behavior from negative to inverted, when electron-pair donor and acceptor groups are separated by a conjugated chain of variable size.

  13. Center for Dielectric Studies at the Pennsylvania State University,

    DTIC Science & Technology

    1983-05-01

    microstructure. The permittivity shows a weak peak near 100K which also has clear relaxation character and closely duplicates the behavior of higA purity...departures from the expected Curie-Weiss made by Demurov and Venevtsev.1 both hysteresis loops in P(E) behavior . Clearly. from the frequency response and...dielectric measurements, an powderl had second phase KzTa.O,,; powder II was completely anomalous behavior was observed by inelastic neutron scattering

  14. Graph Learning for Anomaly Detection using Psychological Context GLAD-PC

    DTIC Science & Technology

    2015-08-03

    comparison study of user behavior on Facebook and Gmail, ArXiv: 1305.6082, (11 2013): 0. doi: 10.1016/j.chb.2013.06.043 TOTAL: 1 Received Paper...Fournelle, Steve Gaffigan, Oliver Brdiczka, Jianqiang Shen, Juan Liu, Kendra E. Moore. Characterizing user behavior and information propagation on a...media data; and c) detecting unusual and anomalous behavior from on-line activities. (5) Summary of the most important results With regard to

  15. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  16. Anomalous behavior of cristobalite in helium under high pressure

    NASA Astrophysics Data System (ADS)

    Sato, Tomoko; Takada, Hiroto; Yagi, Takehiko; Gotou, Hirotada; Okada, Taku; Wakabayashi, Daisuke; Funamori, Nobumasa

    2013-01-01

    We have investigated the high-pressure behavior of cristobalite in helium by powder X-ray diffraction. Cristobalite transformed to a new phase at about 8 GPa. This phase is supposed to have a molar volume of about 30 % larger than cristobalite, suggesting the dissolution of helium atoms in its interstitial voids. On further compression, the new phase transformed to a different phase which showed an X-ray diffraction pattern similar to cristobalite X-I at about 21 GPa. On the other hand, when the new phase was decompressed, it transformed to another new phase at about 7 GPa, which is also supposed to have a molar volume of about 25 % larger than cristobalite. On further decompression, the second new phase transformed to cristobalite II at about 2 GPa. In contrast to cristobalite, quartz did not show anomalous behavior in helium. The behavior of cristobalite in helium was also consistent with that in other mediums up to about 8 GPa, where the volume of cristobalite became close to that of quartz. These results suggest that dissolution of helium may be controlled not only by the density (amount of voids) but also by the network structure of SiO4 tetrahedra (topology of voids).

  17. Anomalous thermomechanical properties of a self-propelled colloidal fluid

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Šarić, A.; Valeriani, C.; Cacciuto, A.

    2014-05-01

    We use numerical simulations to compute the equation of state of a suspension of spherical self-propelled nanoparticles in two and three dimensions. We study in detail the effect of excluded volume interactions and confinement as a function of the system's temperature, concentration, and strength of the propulsion. We find a striking nonmonotonic dependence of the pressure on the temperature and provide simple scaling arguments to predict and explain the occurrence of such anomalous behavior. We explicitly show how our results have important implications for the effective forces on passive components suspended in a bath of active particles.

  18. Anomalous Hall effect in two-dimensional non-collinear antiferromagnetic semiconductor Cr0.68Se

    NASA Astrophysics Data System (ADS)

    Yan, J.; Luo, X.; Chen, F. C.; Pei, Q. L.; Lin, G. T.; Han, Y. Y.; Hu, L.; Tong, P.; Song, W. H.; Zhu, X. B.; Sun, Y. P.

    2017-07-01

    Cr0.68Se single crystals with two-dimensional (2D) character have been grown, and the detailed magnetization M(T), electrical transport properties (including longitudinal resistivity ρxx and Hall resistivity ρxy), and thermal transport properties [including heat capacity Cp(T) and thermoelectric power S(T)] have been measured. There are some interesting phenomena: (i) Cr0.68Se presents a non-collinear antiferromagnetic (AFM) semiconducting behavior at the Néel temperature of TN = 42 K and with the activated energy of Eg = 3.9 meV; (ii) it exhibits the anomalous Hall effect (AHE) below TN and large negative magnetoresistance about 83.7% (2 K, 8.5 T). The AHE coefficient RS is 0.385 cm-3/C at T = 2 K, and the AHE conductivity σH is about 1 Ω-1 cm-1 at T = 40 K; (iii) the scaling behavior between the anomalous Hall resistivity ρxy A and the longitudinal resistivity ρxx is linear, and further analysis implies that the origin of the AHE in Cr0.68Se is dominated by the skew-scattering mechanism. Our results may be helpful for exploring the potential application of these kinds of 2D AFM semiconductors.

  19. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  20. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  1. Inferring Diffusion Dynamics from FCS in Heterogeneous Nuclear Environments

    PubMed Central

    Tsekouras, Konstantinos; Siegel, Amanda P.; Day, Richard N.; Pressé, Steve

    2015-01-01

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show—first using synthetic data—that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell’s nucleus as well as 2) in the cell’s cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. PMID:26153697

  2. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  3. Anomalous Structural Disorder in Supported Pt Nanoparticles

    DOE PAGES

    Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.; ...

    2017-07-02

    Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less

  4. Differences in feminine and masculine characteristics in women as a function of handedness: support for the Geschwind/Galaburda theory of brain organization.

    PubMed

    Casey, M B; Nuttall, R L

    1990-01-01

    The Geschwind/Galaburda testosterone theory successfully predicted differences in feminine sex role identification and behavior between women with anomalous dominance and standard dominance. The women with anomalous dominance (consisting of left-handed and ambidextrous as well as right-handed women with first-degree non-right-handed relatives) were compared to women with standard dominance (right-handed women with all right-handed first-degree relatives) on the Bem Test of Sex Role Identity and a tomboy scale. Across three samples, handedness classifications were related to both tomboy characteristics and sex role identification. In addition, the study showed that the anomalous dominance women had a higher masculine sex role identification as compared to the college normative sample for the Bem, while the standard dominance women had a higher feminine identification than the normative sample.

  5. Anomalous finite-size effects in the Battle of the Sexes

    NASA Astrophysics Data System (ADS)

    Cremer, J.; Reichenbach, T.; Frey, E.

    2008-06-01

    The Battle of the Sexes describes asymmetric conflicts in mating behavior of males and females. Males can be philanderer or faithful, while females are either fast or coy, leading to a cyclic dynamics. The adjusted replicator equation predicts stable coexistence of all four strategies. In this situation, we consider the effects of fluctuations stemming from a finite population size. We show that they unavoidably lead to extinction of two strategies in the population. However, the typical time until extinction occurs strongly prolongs with increasing system size. In the emerging time window, a quasi-stationary probability distribution forms that is anomalously flat in the vicinity of the coexistence state. This behavior originates in a vanishing linear deterministic drift near the fixed point. We provide numerical data as well as an analytical approach to the mean extinction time and the quasi-stationary probability distribution.

  6. Mono Lake excursion recorded in sediment of the Santa Clara Valley, California

    USGS Publications Warehouse

    Mankinen, Edward A.; Wentworth, Carl M.

    2004-01-01

    Two intervals recording anomalous paleomagnetic inclinations were encountered in the top 40 meters of research drill hole CCOC in the Santa Clara Valley, California. The younger of these two intervals has an age of 28,090 ± 330 radiocarbon years B.P. (calibrated age ∼32.8 ka). This age is in excellent agreement with the latest estimate for the Mono Lake excursion at the type locality and confirms that the excursion has been recorded by sediment in the San Francisco Bay region. The age of an anomalous inclination change below the Mono Lake excursion was not directly determined, but estimates of sedimentation rates indicate that the geomagnetic behavior it represents most likely occurred during the Mono Lake/Laschamp time interval (∼45–28 ka). If true, it may represent one of several recurring fluctuations of magnetic inclination during an interval of a weak geomagnetic dipole, behavior noted in other studies in the region.

  7. Anomalous bulk behavior in the free parafermion Z (N ) spin chain

    NASA Astrophysics Data System (ADS)

    Alcaraz, Francisco C.; Batchelor, Murray T.

    2018-06-01

    We demonstrate using direct numerical diagonalization and extrapolation methods that boundary conditions have a profound effect on the bulk properties of a simple Z (N ) model for N ≥3 for which the model Hamiltonian is non-Hermitian. For N =2 the model reduces to the well-known quantum Ising model in a transverse field. For open boundary conditions, the Z (N ) model is known to be solved exactly in terms of free parafermions. Once the ends of the open chain are connected by considering the model on a ring, the bulk properties, including the ground-state energy per site, are seen to differ dramatically with increasing N . Other properties, such as the leading finite-size corrections to the ground-state energy, the mass gap exponent, and the specific-heat exponent, are also seen to be dependent on the boundary conditions. We speculate that this anomalous bulk behavior is a topological effect.

  8. Resonant behavior of the generalized Langevin system with tempered Mittag–Leffler memory kernel

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2018-05-01

    The generalized Langevin equation describes anomalous dynamics. Noise is not only the origin of uncertainty but also plays a positive role in helping to detect signals with information, termed stochastic resonance (SR). This paper analyzes the anomalous resonant behaviors of the generalized Langevin system with a multiplicative dichotomous noise and an internal tempered Mittag–Leffler noise. For a system with a fluctuating harmonic potential, we obtain the exact expressions of several types of SR such as the first moment, the amplitude and autocorrelation function for the output signal as well as the signal–noise ratio. We analyze the influence of the tempering parameter and memory exponent on the bona fide SR and the general SR. Moreover, it is detected that the critical memory exponent changes regularly with the increase of the tempering parameter. Almost all the theoretical results are validated by numerical simulations.

  9. Singularity-free interpretation of the thermodynamics of supercooled water

    NASA Astrophysics Data System (ADS)

    Sastry, Srikanth; Debenedetti, Pablo G.; Sciortino, Francesco; Stanley, H. E.

    1996-06-01

    The pronounced increases in isothermal compressibility, isobaric heat capacity, and in the magnitude of the thermal expansion coefficient of liquid water upon supercooling have been interpreted either in terms of a continuous, retracing spinodal curve bounding the superheated, stretched, and supercooled states of liquid water, or in terms of a metastable, low-temperature critical point. Common to these two scenarios is the existence of singularities associated with diverging density fluctuations at low temperature. We show that the increase in compressibility upon lowering the temperature of a liquid that expands on cooling, like water, is not contingent on any singular behavior, but rather is a thermodynamic necessity. We perform a thermodynamic analysis for an anomalous liquid (i.e., one that expands when cooled) in the absence of a retracing spinodal and show that one may in general expect a locus of compressibility extrema in the anomalous regime. Our analysis suggests that the simplest interpretation of the behavior of supercooled water consistent with experimental observations is free of singularities. We then develop a waterlike lattice model that exhibits no singular behavior, while capturing qualitative aspects of the thermodynamics of water.

  10. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension

    NASA Astrophysics Data System (ADS)

    Kwon, Sungchul; Kim, Jin Min

    2015-01-01

    For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.

  11. Correlation between optical properties surface morphology of porous silicon electrodeposited by Fe3+ ion

    NASA Astrophysics Data System (ADS)

    Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi

    2015-01-01

    In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.

  12. Unfolding the physics of URu 2Si 2 through silicon to phosphorus substitution

    DOE PAGES

    Gallagher, A.; Chen, K. -W.; Moir, C. M.; ...

    2016-02-19

    The heavy fermion intermetallic compound URu 2Si 2 exhibits a hidden-order phase below the temperature of 17.5 K, which supports both anomalous metallic behavior and unconventional superconductivity. While these individual phenomena have been investigated in detail, it remains unclear how they are related to each other and to what extent uranium f-electron valence fluctuations influence each one. Here we use ligand site substituted URu 2Si 2-xP x to establish their evolution under electronic tuning. We find that while hidden order is monotonically suppressed and destroyed for x ≤ 0.035, the superconducting strength evolves non-monotonically with a maximum near x ≈more » 0.01 and that superconductivity is destroyed near x ≈ 0.028. This behavior reveals that hidden order depends strongly on tuning outside of the U f-electron shells. Furthermore, it also suggests that while hidden order provides an environment for superconductivity and anomalous metallic behavior, it’s fluctuations may not be solely responsible for their progression.« less

  13. A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal

    DOE PAGES

    Haugh, M. J.; Jacoby, K. D.; Barrios, M. A.; ...

    2016-08-23

    Here, we present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as amore » guide and corrections were applied to the model based upon measurements. But, the measurement of RI at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous RI behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting RI for this range of curvature and spectral energies.« less

  14. A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Jacoby, K. D.; Barrios, M. A.; Thorn, D.; Emig, J. A.; Schneider, M. B.

    2016-11-01

    We present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as a guide and corrections were applied to the model based upon measurements. But, the measurement of RI at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous RI behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting RI for this range of curvature and spectral energies.

  15. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening.

    PubMed

    Jamali, Tayeb; Naji, Ali

    2018-06-13

    We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.

  16. Predominant nonlinear atmospheric response to meridional shift of the Gulf Stream path from the WRF atmospheric model simulations

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.

    2016-02-01

    A remarkably strong nonlinear behavior of the atmospheric circulation response to North Atlantic SST anomalies (SSTA) is revealed from a set of large-ensemble, high-resolution, and hemispheric-scale Weather Research and Forecasting (WRF) model simulations. The model is forced with the SSTA associated with meridional shift of the Gulf Stream (GS) path, constructed from a lag regression of the winter SST on a GS Index from observation. Analysis of the systematic set of experiments with SSTAs of varied amplitudes and switched signs representing various GS-shift scenarios provides unique insights into mechanism for emergence and evolution of transient and equilibrium response of atmospheric circulation to extratropical SSTA. Results show that, independent of sign of the SSTA, the equilibrium response is characterized by an anomalous trough over the North Atlantic Ocean and the Western Europe concurrent with enhanced storm track, increased rainfall, and reduced blocking days. To the north of the anomalous low, an anomalous ridge emerges over the Greenland, Iceland, and Norwegian Seas accompanied by weakened storm track, reduced rainfall and increased blocking days. This nonlinear component of the total response dominates the weak and oppositely signed linear response that is directly forced by the SSTA, yielding an anomalous ridge (trough) downstream of the warm (cold) SSTA. The amplitude of the linear response is proportional to that of the SSTA, but this is masked by the overwhelmingly strong nonlinear behavior showing no clear correspondence to the SSTA amplitude. The nonlinear pattern emerges 3-4 weeks after the model initialization in November and reaches its first peak amplitude in December/January. It appears that altered baroclinic wave activity due to the GS SSTA in November lead to low-frequency height responses in December/January through transient eddy vorticity flux convergence.

  17. Behavior of hydrogen in alpha-iron at lower temperatures

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1973-01-01

    Evidence is presented that the low temperature anomalies in the hydrogen occlusive behavior of alpha iron can be explained by means of a molecular occlusion theory. This theory proposes that the stable state of the absorbed hydrogen changes from atomic at high temperatures to molecular as the temperature is lowered below a critical value. Theories proposing to explain the anomalous behavior as being due to the capture, at lower temperatures, of hydrogen in traps are shown to be unacceptable.

  18. Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands

    PubMed Central

    Long, Hao; Fuchs, Markus; Yang, Linhai; Cheng, Hongyi

    2016-01-01

    Over the Tibetan Plateau and adjacent regions, numerous 14C-based lake records revealed a ubiquitous wet climatic period during 40–25 ka (late MIS 3), which is in contradiction with the global pattern of generally cold and dry climates. This paper focuses on OSL dating results of a large set of sand dunes and alluvial sediments (50 OSL ages) from the Qinwangchuan (QWC) Basin at the northeast edge of the Tibetan Plateau, with the aim to test the validity of the anomalous wet condition for the late MIS 3 interval, evidenced by numerous lake highstands. The abrupt sand dune accumulation as indication of increased aridity in the study area was OSL dated to ~40–13 ka. This dry climatic inference of the sand dune system from QWC apparently shows no wet MIS 3a event. Thus, the anomalous wet conditions revealed by high lake levels for the late MIS 3 phase may not be a universal phenomena across entire western China. PMID:27172907

  19. Anomalous sound absorption in the Voronoi liquid

    NASA Astrophysics Data System (ADS)

    Farago, Jean; Ruscher, CéLine; Semenov, Alexandr; Baschnagel, Joerg

    The physics of simple fluids in the hydrodynamic limit, and notably the connection between the proper microscopic scales and the macroscopic hydrodynamical description are nowadays well understood. In particular, the three peak shape of the dynamical structure factor S (k , ω) is a universal feature, as well as the k-dependence of the peak position ( k), and width k2 , the latter accounting for the sound attenuation rate. In this talk, I will present a theoretical model of monodisperse fluid, whose interactions are defined via the Voronoi tessellations of the configurations (called the Voronoi liquid and first studied in), which displays at low temperatures a marked violation of the universal features of S (k , ω) with sound attenuation rate only k . This anomalous behaviour, which apparently violates the basic symmetries of the liquid state, is traced back to the existence of a timescale which is both (1) short enough for the viscoelastic features of the liquid to impact the relaxational dynamics and (2) long enough for the momentum diffusion to be substantially slower than the sound propagation on that characteristic time.

  20. Highly Anomalous Energetics of Protein Cold Denaturation Linked to Folding-Unfolding Kinetics

    PubMed Central

    Romero-Romero, M. Luisa; Inglés-Prieto, Alvaro; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2011-01-01

    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a “mirror image” of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions. PMID:21829584

  1. Origin of anomalous inverse notch effect in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Pan, J.; Zhou, H. F.; Wang, Z. T.; Li, Y.; Gao, H. J.

    2015-11-01

    Understanding notch-related failure is crucial for the design of reliable engineering structures. However, substantial controversies exist in the literature on the notch effect in bulk metallic glasses (BMGs), and the underlying physical mechanism responsible for the apparent confusion is still poorly understood. Here we investigate the physical origin of an inverse notch effect in a Zr-based metallic glass, where the tensile strength of the material is dramatically enhanced, rather than decreased (as expected from the stress concentration point of view), by introduction of a notch. Our experiments and molecular dynamics simulations show that the seemingly anomalous inverse notch effect is in fact caused by a transition in failure mechanism from shear banding at the notch tip to cavitation and void coalescence. Based on our theoretical analysis, the transition occurs as the stress triaxiality in the notched sample exceeds a material-dependent threshold value. Our results fill the gap in the current understanding of BMG strength and failure mechanism by resolving the conflicts on notch effects and may inspire re-interpretation of previous reports on BMG fracture toughness where pre-existing notches were routinely adopted.

  2. Anomalous diffusion of brain metabolites evidenced by diffusion-weighted magnetic resonance spectroscopy in vivo

    PubMed Central

    Marchadour, Charlotte; Brouillet, Emmanuel; Hantraye, Philippe; Lebon, Vincent; Valette, Julien

    2012-01-01

    Translational displacement of molecules within cells is a key process in cellular biology. Molecular motion potentially depends on many factors, including active transport, cytosol viscosity and molecular crowding, tortuosity resulting from cytoskeleton and organelles, and restriction barriers. However, the relative contribution of these factors to molecular motion in the cytoplasm remains poorly understood. In this work, we designed an original diffusion-weighted magnetic resonance spectroscopy strategy to probe molecular motion at subcellular scales in vivo. This led to the first observation of anomalous diffusion, that is, dependence of the apparent diffusion coefficient (ADC) on the diffusion time, for endogenous intracellular metabolites in the brain. The observed increase of the ADC at short diffusion time yields evidence that metabolite motion is characteristic of hindered random diffusion rather than active transport, for time scales up to the dozen milliseconds. Armed with this knowledge, data modeling based on geometrically constrained diffusion was performed. Results suggest that metabolite diffusion occurs in a low-viscosity cytosol hindered by ∼2-μm structures, which is consistent with known intracellular organization. PMID:22929443

  3. Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.

    PubMed

    Wang, Yichun; Bahng, Joong Hwan; Che, Quantong; Han, Jishu; Kotov, Nicholas A

    2015-08-25

    Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.

  4. Preliminary paleomagnetic and rock magnetic results from 17 to 22 ka sediment of Jeju Island, Korea: Geomagnetic excursional behavior or rock magnetic anomalies?

    NASA Astrophysics Data System (ADS)

    Ahn, Hyeon-Seon; Sohn, Young Kwan; Lee, Jin-Young; Kim, Jin Cheul

    2018-05-01

    Paleomagnetic and rock magnetic investigations were performed on a 64-cm-thick section of nonmarine unconsolidated muddy sediment from the Gosan Formation on Jeju Island, Korea. This sediment was recently dated to have been deposited between 22 and 17 kyr BP calibrated, with a sedimentation rate of 13-25 cm/kyr, based on many radiocarbon ages. Interestingly, stepwise alternating field (AF) demagnetization revealed characteristic natural remanent magnetizations with anomalous directions, manifested by marked deviations from the direction of today's axial dipole field, for some separate depth levels. On the other hand, stepwise thermal (TH) demagnetization showed more complex behavior, resulting in the identification of multiple remanence components. For all TH-treated specimens, consistently two different components are predominant: a low-temperature component unblocked below 240-320 °C entirely having normal-polarity apparently within the secular variation range of the Brunhes Chron, and a high-temperature component with unblocking temperatures (Tubs) between 240-320 and 520-580 °C that have anomalous directions, concentrated in the 13-34-cm-depth interval ( 17-19 ka in inferred age) and possibly below 53 cm depth (before 20 ka). Rock magnetic results also infer the dominance of low-coercivity magnetic particles having 300 and 580 °C Curie temperature as remanence carriers, suggestive of (titano)maghemite and/or Ti-rich titanomagnetite and magnetite (or Ti-poor titanomagnetite), respectively. A noteworthy finding is that AF demagnetizations in this study often lead to incomplete separation of the two remanence components possibly due to their strongly overlapping AF spectra. The unusual directions do not appear to result from self-reversal remanences. Then, one interpretation is that the low-temperature components are attributable to post-depositional chemical remanences, associated possibly with the later formation of the mineral phase having Tub 300 °C, whereas the high-temperature components are of primary detrital origin that survived later chemical influence. Accordingly, the unusual directions might record geomagnetic instability within the 17-22 ka period manifested by multiple excursional swings, partly associated with the Tianchi/Hilina Pali excursion. However, further work is needed to verify this interpretation and distinguish it from alternative explanations that invoke rock magnetic complexities as the cause of the unusual directions.[Figure not available: see fulltext.

  5. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    NASA Astrophysics Data System (ADS)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  6. Relation between boundary slip mechanisms and waterlike fluid behavior.

    PubMed

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  7. Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water.

    PubMed

    Strekalova, Elena G; Corradini, Dario; Mazza, Marco G; Buldyrev, Sergey V; Gallo, Paola; Franzese, Giancarlo; Stanley, H Eugene

    2012-01-01

    The complex behavior of liquid water, along with its anomalies and their crucial role in the existence of life, continue to attract the attention of researchers. The anomalous behavior of water is more pronounced at subfreezing temperatures and numerous theoretical and experimental studies are directed towards developing a coherent thermodynamic and dynamic framework for understanding supercooled water. The existence of a liquid-liquid critical point in the deep supercooled region has been related to the anomalous behavior of water. However, the experimental study of supercooled water at very low temperatures is hampered by the homogeneous nucleation of the crystal. Recently, water confined in nanoscopic structures or in solutions has attracted interest because nucleation can be delayed. These systems have a tremendous relevance also for current biological advances; e.g., supercooled water is often confined in cell membranes and acts as a solvent for biological molecules. In particular, considerable attention has been recently devoted to understanding hydrophobic interactions or the behavior of water in the presence of apolar interfaces due to their fundamental role in self-assembly of micelles, membrane formation and protein folding. This article reviews and compares two very recent computational works aimed at elucidating the changes in the thermodynamic behavior in the supercooled region and the liquid-liquid critical point phenomenon for water in contact with hydrophobic environments. The results are also compared to previous reports for water in hydrophobic environments.

  8. Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments

    PubMed Central

    Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal

    2007-01-01

    One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979

  9. Inferring diffusion dynamics from FCS in heterogeneous nuclear environments.

    PubMed

    Tsekouras, Konstantinos; Siegel, Amanda P; Day, Richard N; Pressé, Steve

    2015-07-07

    Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakhidov, A.A.; Yoshino, K.

    Composites of fullerene C{sub 60} with conjugated polymers (CP) like polyalkylthiophene (PAT) and polyphenylene vinylene derivative (OO-PPV) have earlier demonstrated intensive charge transfer upon photoexcitation. Doping of CP/C{sub 60} composites by A metal vapors (A=K,Rb) is aimed at C{sub 60} induced SC, in which electrons of CP chains may participate in SC pairing, induced via hybridization with C{sub 60} molecules. We have found an SC phase experimentally both in PAT. (C{sub 60}) {sub y}K{sub x} and OO.PPV (C{sub 60}){sub y}K{sub x} by a sensitive method of low field microwave absorption (LFMA), and proved by SQUID. The SCT{sub c} ranges frommore » 12 to 17 K, depending on y and x. This SC phase shows a granular behavior in LFMA, and thus originates from SC A{sub 3}C{sub 60} clusters weakly linked by Josephson junctions. True C{sub 60} induced SC might be masked by granular A{sub 3}C{sub 60}. Anomalous LFMA and paramagnetic Meissner effects observed in SQUID, indicate the existence of Josephson {pi}-junctions. CP is apparently involved in SC via spin carrying polarons P in CP chains, which play a role of {pi}-junctions. Strategies for further search of C{sub 60} induced SC are discussed.« less

  11. Thermodynamics of phase formation in the quantum critical metal Sr3Ru2O7

    PubMed Central

    Rost, A. W.; Grigera, S. A.; Bruin, J. A. N.; Perry, R. S.; Tian, D.; Raghu, S.; Kivelson, Steven Allan; Mackenzie, A. P.

    2011-01-01

    The behavior of matter near zero temperature continuous phase transitions, or “quantum critical points” is a central topic of study in condensed matter physics. In fermionic systems, fundamental questions remain unanswered: the nature of the quantum critical regime is unclear because of the apparent breakdown of the concept of the quasiparticle, a cornerstone of existing theories of strongly interacting metals. Even less is known experimentally about the formation of ordered phases from such a quantum critical “soup.” Here, we report a study of the specific heat across the phase diagram of the model system Sr3Ru2O7, which features an anomalous phase whose transport properties are consistent with those of an electronic nematic. We show that this phase, which exists at low temperatures in a narrow range of magnetic fields, forms directly from a quantum critical state, and contains more entropy than mean-field calculations predict. Our results suggest that this extra entropy is due to remnant degrees of freedom from the highly entropic state above Tc. The associated quantum critical point, which is “concealed” by the nematic phase, separates two Fermi liquids, neither of which has an identifiable spontaneously broken symmetry, but which likely differ in the topology of their Fermi surfaces. PMID:21933961

  12. Anomalous high-frequency wave activity flux preceding anomalous changes in the Northern polar jet

    NASA Astrophysics Data System (ADS)

    Nakamura, Mototaka; Kadota, Minoru; Yamane, Shozo

    2010-05-01

    Anomalous forcing by quasi-geostrophic (QG) waves has been reported as an important forcing factor in the Northern Annular Mode (NAM) in recent literatures. In order to shed a light on the dynamics of the NAM from a different angle, we have examined anomalous behavior of the winter jets in the upper troposphere and stratosphere by focusing our diagnosis on not the anomalous geopotential height (Z) itself, but on the anomalous change in the Z (dZ) between two successive months and preceding transient QG wave activity flux during the cold season. We calculated EOFs of dZ between two successive months at 150hPa for a 46-year period, from 1958 to 2003, using the monthly mean NCEP reanalysis data. We then formed anomaly composites of changes in Z and the zonal velocity (U), as well as the preceding and following wave activity flux, Z, U, and temperature at various heights, for both positive and negative phases of the first EOF. For the wave forcing fields, we adopted the diagnostic system for the three-dimensional QG transient wave activity flux in the zonally-varying three-dimensional mean flow developed by Plumb (1986) with a slight modification in its application to the data. Our choice of the Plumb86 is based on the fact that the winter mean flow in the Northern Hemisphere is characterized by noticeable zonal asymmetry, and has a symbiotic relationship with waves in the extra-tropics. The Plumb86 flux was calculated for high-frequency (period of 2 to 7 days) and low-frequency (period of 10 to 20 days) waves with the ultra-low-frequency (period of 30 days or longer) flow as the reference state for each time frame of the 6 hourly NCEP reanalysis data from 1958 to 2003. By replacing the mean flow with the ultra-low-frequency flow in the application of the Plumb86 formula, the flux fields were calculated as time series at 6 hour intervals. The time series of the wave activity flux was then averaged for each month. The patterns of composited anomalous dZ and dU clearly show anomalous acceleration or deceleration of U in the polar region, accompanied by anomalies of the opposite sign in the subtropics throughout the troposphere and stratosphere. The anomalies are conspicuously large in the polar stratosphere. The composited anomalous Z and U in the preceding and following months indicate that these large anomalies in dZ and dU occur when the polar troposphere and stratosphere are relaxing back toward the climatology from strongly anomalous states that closely resemble the positive and negative phases of the NAM. In this process of relaxation, the atmosphere actually overshoots the climatology and develops anomalies of the sign opposite to those existed initially. The anomalous wave activity flux exhibit strong signals of anomalous upward (downward) propagation of high-frequency waves in the North Atlantic storm track from the bottom of the atmosphere, penetrating up to the stratosphere, when the polar jet is anomalously strong (weak) in the preceding month. The anomalous horizontal wave activity flux shows anomalous eastward (westward) flux emanating from the North Atlantic storm track when the polar jet is anomalously strong (weak) in the preceding month. These patterns suggest that anomalous high-frequency waves originating from the North Atlantic storm track in the lower troposphere contribute to the destruction of both phases of the NAM. However, the anomalous flux divergence is very noisy everywhere due to the noisiness of the advective horizontal flux, making it difficult to ascertain the role of the high-frequency transients in the destruction of the NAM.

  13. A geophysical investigation of shallow deformation along an anomalous section of the Wasatch fault zone, Utah, USA

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Thompson, T.J.; Harper, M.P.; Eipert, A.A.; Hoopes, J.C.; Tingey, D.G.; Keach, R.W.; Okojie-Ayoro, A. O.; Gunderson, K.L.; Meirovitz, C.D.; Hicks, T.C.; Spencer, C.J.; Yaede, J.R.; Worley, D.M.

    2008-01-01

    We report the results of a geophysical study of the Wasatch fault zone near the Provo and Salt Lake City segment boundary. This area is anomalous because the fault zone strikes more east-west than north-south. Vibroseis was used to record a common mid-point (CMP) profile that provides information to depths of ???500 m. A tomographic velocity model, derived from first breaks, constrained source and receiver static corrections; this was required due to complex terrain and significant lateral velocity contrasts. The profile reveals an ???250-m-wide graben in the hanging wall of the main fault that is associated with both synthetic and antithetic faults. Faults defined by apparent reflector offsets propagate upward toward topographic gradients. Faults mapped from a nearby trench and the seismic profile also appear to correlate with topographic alignments on LiDAR gradient maps. The faults as measured in the trench show a wide range of apparent dips, 20??-90??, and appear to steepen with depth on the seismic section. Although the fault zone is likely composed of numerous small faults, the broad asymmetric structure in the hanging wall is fairly simple and dominated by two inward-facing ruptures. Our results indicate the feasibility of mapping fault zones in rugged terrain and complex near-surface geology using low-frequency vibroseis. Further, the integration of geologic mapping and seismic reflection can extend surface observations in areas where structural deformation is obscured by poorly stratified or otherwise unmappable deposits. Therefore, the vibroseis technique, when integrated with geological information, provides constraints for assessing geologic hazards in areas of potential development.

  14. A Huygens principle for diffusion and anomalous diffusion in spatially extended systems

    PubMed Central

    Gottwald, Georg A.; Melbourne, Ian

    2013-01-01

    We present a universal view on diffusive behavior in chaotic spatially extended systems for anisotropic and isotropic media. For anisotropic systems, strong chaos leads to diffusive behavior (Brownian motion with drift) and weak chaos leads to superdiffusive behavior (Lévy processes with drift). For isotropic systems, the drift term vanishes and strong chaos again leads to Brownian motion. We establish the existence of a nonlinear Huygens principle for weakly chaotic systems in isotropic media whereby the dynamics behaves diffusively in even space dimension and exhibits superdiffusive behavior in odd space dimensions. PMID:23653481

  15. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  16. Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs

    PubMed Central

    Chen, You; Malin, Bradley

    2014-01-01

    Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low a nity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models. PMID:25485309

  17. Detecting anomalous traders using multi-slice network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing

    2017-05-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock market. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying anomalous traders using the transaction data of 8 manipulated stocks and 42 non-manipulated stocks during a one-year period. For each stock, we construct a multi-slice trading network to characterize the daily trading behavior and the cross-day participation of each trader. Comparing the multi-slice trading network of manipulated stocks and non-manipulated stocks with their randomized version, we find that manipulated stocks exhibit high number of trader pairs that trade with each other in multiple days and high deviation from randomized network at correlation between trading frequency and trading activity. These findings are effective at distinguishing manipulated stocks from non-manipulated ones and at identifying anomalous traders.

  18. Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego

    2011-03-01

    The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.

  19. Terahertz conductivity of MnSi thin films

    NASA Astrophysics Data System (ADS)

    Dodge, J.; Mohtashemi, Laleh; Farahani, Amir; Karhu, Eric; Monchesky, Theodore

    2013-03-01

    We present measurements of the low-frequency optical conductivity of MnSi thin films, using time-domain terahertz spectroscopy. At low temperatures and low frequencies, we extract the DC resistivity, scattering life time and plasma frequency from a Drude fit. We obtain a value of ωp ~= 1 . 0 eV, which can be used to estimate the renormalization coefficient through comparison with band theory. At higher temperatures, deviations from Drude behavior are observed, suggesting a loss of quasi-particle coherence. In the region of low temperatures and high frequencies, we see evidence for a crossover to the anomalous power law dependence observed by Mena et al. As the temperature increases, the anomalous frequency dependence becomes more pronounced, and the plasma frequency inferred from a Drude fit decreases dramatically. Above T ~ 50 K, σ2 (ω) develops a negative slope that is inconsistent with both a Drude model and the anomalous power law observed earlier, indicating a sharp pseudogap in the conductivity spectrum.

  20. The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com

    2015-08-15

    We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less

  1. Mining Building Energy Management System Data Using Fuzzy Anomaly Detection and Linguistic Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumidu Wijayasekara; Ondrej Linda; Milos Manic

    Building Energy Management Systems (BEMSs) are essential components of modern buildings that utilize digital control technologies to minimize energy consumption while maintaining high levels of occupant comfort. However, BEMSs can only achieve these energy savings when properly tuned and controlled. Since indoor environment is dependent on uncertain criteria such as weather, occupancy, and thermal state, performance of BEMS can be sub-optimal at times. Unfortunately, the complexity of BEMS control mechanism, the large amount of data available and inter-relations between the data can make identifying these sub-optimal behaviors difficult. This paper proposes a novel Fuzzy Anomaly Detection and Linguistic Description (Fuzzy-ADLD)more » based method for improving the understandability of BEMS behavior for improved state-awareness. The presented method is composed of two main parts: 1) detection of anomalous BEMS behavior and 2) linguistic representation of BEMS behavior. The first part utilizes modified nearest neighbor clustering algorithm and fuzzy logic rule extraction technique to build a model of normal BEMS behavior. The second part of the presented method computes the most relevant linguistic description of the identified anomalies. The presented Fuzzy-ADLD method was applied to real-world BEMS system and compared against a traditional alarm based BEMS. In six different scenarios, the Fuzzy-ADLD method identified anomalous behavior either as fast as or faster (an hour or more), that the alarm based BEMS. In addition, the Fuzzy-ADLD method identified cases that were missed by the alarm based system, demonstrating potential for increased state-awareness of abnormal building behavior.« less

  2. Mechanisms and Early Detections of Multidecadal Oxygen Changes in the Interior Subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Goris, N.; Lauvset, S. K.; Heinze, C.; Olsen, A.; Schwinger, J.; Steinfeldt, R.

    2018-05-01

    The oxygen response in the subpolar North Atlantic (SPNA) to future climate change is poorly understood. We investigate the multidecadal variability in interior oxygen and its association with the subpolar gyre index (a gyre strength proxy) for models and data. During positive phases, persistent strong Labrador Sea (LS) lateral and vertical mixing entrains oxygen-rich water into the interior southern SPNA and vice versa during negative phases. This is indicated by the observed anomalously fresh, cold, and low apparent oxygen utilization, resembling LS water mass during positive phases. We use this relationship to benchmark Earth system models. Under a high CO2 future, the best performing models project a steady decline in SPNA oxygen, driven partly by lower solubility and increases in apparent oxygen utilization. The deoxygenation depends on the sensitivity of the LS mixing to warming. The time of emergence of interior oxygen is projected to be decades earlier than that of temperature and salinity.

  3. Origin of the anomalous decrease in the apparent density of polymer gels observed by multi-echo reflection ultrasound spectroscopy.

    PubMed

    Takeda, Kohsuke; Norisuye, Tomohisa; Tran-Cong-Miyata, Qui

    2013-07-01

    Multi-echo reflection ultrasound spectroscopy (MERUS), which enables one to simultaneously evaluate the attenuation coefficient α, the sound velocity v and the density ρ, has been developed for measurements of elastic moduli. In the present study, the technique was further developed to analyze systems undergoing gelation where an unphysical decrease in the apparent density was previously observed after polymerization. The main reason for this problem was that the shrinkage accompanying the gelation led to a small gap between the cell wall and the sample, resulting in the superposition of the reflected signals which were not separable into individual components. By taking into account the multiply reflecting echoes at the interface of the gap, the corrected densities were systematically obtained and compared with the results for the floating test. The present technique opens a new route to simultaneously evaluate the three parameters α, v and ρ and also the sample thickness for solid thin films. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Sea Level, Land Motion, and the Anomalous Tide at Churchill, Hudson Bay

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2015-12-01

    The importance of the tide gauge at Churchill, Manitoba, cannot be overstated. It is the only permanently operating tide gauge in the central Canadian Arctic, and it sits on a prime spot for monitoring the mantle's rebound from the Laurentide ice loss. Yet interpretation of the sea-level time series at Churchill has long been problematic, going back even to early work by Gutenberg in the 1940s. The long-term relative sea-level rates are inconsistent: approximately -4, -19, -5 ± 1 mm/y for the periods 1940-1970, 1970-1990, 1990-2014 respectively. Annual mean high water (MHW) and mean low water (MLW) reflect these trends until around 1990, after which MLW leveled off and is now nearly unchanging. Slightly later, around 2000, the semidiurnal tides became very anomalous, with falling amplitudes and slightly increasing phase lags. The amplitude of M2 was approximately 154 cm before 2000; it dropped to about 146 cm by 2010 and reached an all-time low of 142 cm in 2014. Satellite altimeter estimates of the tide in this region, although challenging because of seasonal ice cover, show no comparable M2 changes, so the tidal changes must be localized to the near vicinity of the gauge (or to the gauge itself if caused by a malfunction). On the other hand, altimetry confirms the post-1992 Churchill measurements of mean sea level, thanks to the long time series of land motion measurements obtained at GPS station CHUR, which gives a vertical uplift of 10.1 mm/y. Combining satellite altimeter data with the Churchill tide-gauge data gives an implied vertical crustal rate of about 9.0 ± 0.8 mm/y, in reasonable agreement with the GPS. In summary, we have still anomalous MSL measurements at the Churchill gauge for the intermediate 1970-1990 era, and very anomalous tidal measurements since 2000, but we have apparently quite reliable MSL rates since 1990.

  5. Attachment Disorganization.

    ERIC Educational Resources Information Center

    Solomon, Judith, Ed.; George, Carol, Ed.

    Disorganized attachment relationships were first formally identified on the basis of the anomalous behavior of some infants during laboratory separations and reunions with the parent. This book presents new research and theory on the topic of attachment disorganization, an area of investigation that is of increasing importance in the study of…

  6. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior

    USDA-ARS?s Scientific Manuscript database

    Expressions were presented to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binary nanoscale roughness and chemical heterogeneity. The influence of heterogeneity type, roughness para...

  7. Creep anomaly in electrospun fibers made of globular proteins

    NASA Astrophysics Data System (ADS)

    Regev, Omri; Arinstein, Arkadii; Zussman, Eyal

    2013-12-01

    The anomalous responses of electrospun nanofibers and film fabricated of unfolded bovine serum albumin (BSA) under constant stress (creep) is observed. In contrast to typical creep behavior of viscoelastic materials demonstrating (after immediate elastic response) a time-dependent elongation, in case of low applied stresses (<1 MPa) the immediate elastic response of BSA samples is followed by gradual contraction up to 2%. Under higher stresses (2-6 MPa) the contraction phase changes into elongation; and in case of stresses above 7 MPa only elongation was observed, with no initial contraction. The anomalous creep behavior was not observed when the BSA samples were subjected to additional creep cycles independently on the stress level. The above anomaly, which was not observed before either for viscoelastic solids or for polymers, is related to specific protein features, namely, to the ability to fold. We hypothesize that the phenomenon is caused by folding of BSA macromolecules into dry molten globule states, feasible after cross-linked bonds break up, resulting from the applied external force.

  8. Altered Connectivity and Action Model Formation in Autism Is Autism

    PubMed Central

    Mostofsky, Stewart H.; Ewen, Joshua B.

    2014-01-01

    Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306

  9. Anomalous phase behavior of first-order fluid-liquid phase transition in phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Wang, H.; Hu, D. M.; Ding, M. C.; Zhao, X. G.; Yan, J. L.

    2017-11-01

    Although the existence of liquid-liquid phase transition has become more and more convincing, whether it will terminate at a critical point and what is the order parameter are still open. To explore these questions, we revisit the fluid-liquid phase transition (FLPT) in phosphorus (P) and study its phase behavior by performing extensive first-principles molecular dynamics simulations. The FLPT observed in experiments is well reproduced, and a fluid-liquid critical point (FLCP) at T = 3000 ˜ 3500 K, P = 1.5-2.0 Kbar is found. With decreasing temperature from the FLCP along the transition line, the density difference (Δρ) between two coexisting phases first increases from zero and then anomalously decreases; however, the entropy difference (ΔS) continuously increases from zero. These features suggest that an order parameter containing contributions from both the density and the entropy is needed to describe the FLPT in P, and at least at low temperatures, the entropy, instead of the density, governs the FLPT.

  10. Water infiltration in prewetted porous media: dynamic capillary pressure and Green-Ampt modeling

    NASA Astrophysics Data System (ADS)

    Hsu, S.; Hilpert, M.

    2013-12-01

    Recently, an experimental study has shown that the modified Green-Ampt (GA) model, which accounts for a velocity-dependent capillary pressure, can describe water infiltration in dry sand columns better than the classical GA model. Studies have also shown that the initial water content of prewetted porous media affects the dynamic capillary pressure during infiltration. In this study, we performed a series of downward water infiltration experiments in prewetted sand columns for four different initial water contents: 0%, 3.3%, 6.5%, and 13.8%. We also used three different ponding heights: 10 cm, 20 cm, and 40 cm. As expected, an increase in ponding height resulted in a monotonic increase in cumulative infiltration. However, we found anomalous behavior, in that the cumulative infiltration did not monotonically decrease as the initial water content increased. When modeling the experiments with the modified GA approach, we linked this anomalous behavior to the reduction factor in the model for dynamic capillary pressure that is a function of initial water content.

  11. Anomalous behavior of the ionosphere before strong earthquakes

    NASA Astrophysics Data System (ADS)

    Peddi Naidu, P.; Madhavi Latha, T.; Madhusudhana Rao, D. N.; Indira Devi, M.

    2017-12-01

    In the recent years, the seismo-ionospheric coupling has been studied using various ionospheric parameters like Total Electron Content, Critical frequencies, Electron density and Phase and amplitude of Very Low Frequency waves. The present study deals with the behavior of the ionosphere in the pre-earthquake period of 3-4 days at various stations adopting the critical frequencies of Es and F2 layers. The relative phase measurements of 16 kHz VLF wave transmissions from Rugby (UK), received at Visakhapatnam (India) are utilized to study the D-region during the seismically active periods. The results show that, f0Es increases a few hours before the time of occurrence of the earthquake and day time values f0F2 are found to be high during the sunlit hours in the pre-earthquake period of 2-3 days. Anomalous VLF phase fluctuations are observed during the sunset hours before the earthquake event. The results are discussed in the light of the probable mechanism proposed by previous investigators.

  12. Anomalous compression behavior of ˜12 nm nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Li, Shourui; Peng, Fang; Lei, Li; Hu, Qiwei; Wang, Pei; Nan, Xiaolong; Liu, Jing; Zhu, Wenjun; He, Duanwei

    2017-06-01

    When the grain size decreases, there inevitably exists a critical size (dc) where the contribution of surface atoms to the physical properties is competitive with that of the interior atoms, giving rise to a wide variety of new phenomena. The behavior of granular materials near dc is particularly interesting because of the crossover, a continuous transition from one type of mechanism to another. In situ high-pressure x-ray diffraction experiments showed that the compression curve of nanocrystalline anatase TiO2 with grain size near dc reached a platform after about 5%-6% of deformation under hydrostatic compression. Eventually, the unit cell volume of anatase expanded at ˜14-16 GPa. We propose that the anomalous compression behavior is attributed to the formation and thickening of the stiff high density amorphous shell under high pressure, giving rise to a great arching effect at the grain boundary at the nanolevel. This process results in a remarkable difference in stress between inside and outside of the shell, generating the illusions of the hardening and the negative compressibility. This study offers a new insight into the mechanical properties of nanomaterials under extreme conditions.

  13. Dynamics of comb-of-comb-network polymers in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2016-12-01

    We analyze the dynamics of comb-of-comb-network polymers in the presence of external random flows. The dynamics of such structures is evaluated through relevant physical quantities, viz., average square displacement (ASD) and the velocity autocorrelation function (VACF). We focus on comparing the dynamics of the comb-of-comb network with the linear polymer. The present work displays an anomalous diffusive behavior of this flexible network in the random layered flows. The effect of the polymer topology on the dynamics is analyzed by varying the number of generations and branch lengths in these networks. In addition, we investigate the influence of external flow on the dynamics by varying flow parameters, like the flow exponent α and flow strength Wα. Our analysis highlights two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The anomalous long-time dynamics is governed by the temporal exponent ν of ASD, viz., ν =2 -α /2 . Compared to a linear polymer, the comb-of-comb network shows a shorter crossover time (from the subdiffusive to superdiffusive regime) but a reduced magnitude of ASD. Our theory displays an anomalous VACF in the random layered flows that scales as t-α /2. We show that the network with greater total mass moves faster.

  14. Anomalous meridional thermospheric neutral winds in the AE-E NATE data: Effects of the equatorial nighttime pressure bulge

    NASA Technical Reports Server (NTRS)

    Goembel, L.; Herrero, F. A.

    1995-01-01

    The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.

  15. Superluminal propagation in a poly-chromatically driven gain assisted four-level N-type atomic system

    NASA Astrophysics Data System (ADS)

    Amin Bacha, Bakht; Ahmad, Iftikhar; Ullah, Arif; Ali, Hazrat

    2013-10-01

    We investigate the behavior of light propagation in an N-type four-level gain assisted model (Agarwal and Dasgupta 2004 Phys. Rev. A 70 023802) under poly-chromatic pump fields. The system exhibits interesting results of multiple controllable pairs of the gain doublet profile with changes in the intensity of the control field. We observe multiple anomalous dispersive regions for superluminal propagation in the medium. A negative group velocity of -37.50 m s-1 with a negative time delay of -8 ms is observed between each gain doublet in anomalous dispersive regions. This generalized model and its predictions can be tested with existing experimental setups.

  16. Anomalous diffusion analysis of the lifting events in the event-chain Monte Carlo for the classical XY models

    NASA Astrophysics Data System (ADS)

    Kimura, Kenji; Higuchi, Saburo

    2017-11-01

    We introduce a novel random walk model that emerges in the event-chain Monte Carlo (ECMC) of spin systems. In the ECMC, the lifting variable specifying the spin to be updated changes its value to one of its interacting neighbor spins. This movement can be regarded as a random walk in a random environment with a feedback. We investigate this random walk numerically in the case of the classical XY model in 1, 2, and 3 dimensions to find that it is superdiffusive near the critical point of the underlying spin system. It is suggested that the performance improvement of the ECMC is related to this anomalous behavior.

  17. Anomalous temperature-dependent heat transport in one-dimensional momentum-conserving systems with soft-type interparticle interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing

    2017-04-01

    We numerically investigate the heat transport problem in a one-dimensional momentum-conserving lattice with a soft-type (ST) anharmonic interparticle interaction. It is found that with the increase of the system's temperature, while the introduction of ST anharmonicity softens phonons and decreases their velocities, this type of nonlinearity like its hard type (HT) counterpart, can still not be able to fully damp the longest wavelength phonons. Therefore, a usual anomalous temperature dependence of heat transport with certain scaling properties similarly to those shown in the Fermi-Pasta-Ulam-β -like systems with HT interactions can be seen. Our detailed examination from simulations verifies this temperature-dependent behavior well.

  18. Irradiate-anneal screening of total dose effects in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Price, W. E.

    1976-01-01

    Judicious choice of radiation dose and parameter change acceptance criteria, absence of anomalous anneal phenomena, and absence of anomalous reirradiation effects are recognized as essential for a successful irradiation-anneal (IRAN) screening procedure to ensure that no device will fall, upon reirradiation, above parametric limits assigned for the worst case application. Reirradiation and irradiation-anneal behavior of various semiconductor devices are compared and those that do not lend themselves to IRAN screening are singled out. Information needed to judge the suitability of an IRAN type screening program is detailed. Reasons for success of the limited IRAN screening of flight parts for the Mariner Jupiter/Saturn (MJS '77) spacecraft are indicated.

  19. Anomalous reversal of transverse thermoelectric voltage in CoδFe100-δ /YIG junction

    NASA Astrophysics Data System (ADS)

    Ramos, R.; Wongjom, P.; Iguchi, R.; Yagmur, A.; Qiu, Z.; Pinitsoontorn, S.; Uchida, K.; Saitoh, E.

    2018-02-01

    We have studied thermoelectric conversion in all-ferromagnetic CoδFe100-δ /YIG bilayer junctions as a function of the chemical composition δ . We performed measurements of the transverse thermoelectric voltage upon application of a magnetic field. The voltage measured in the longitudinal spin Seebeck effect configuration shows a sign reversal at δ = 40%, which cannot be explained by the conventional electronic transport, such as the anomalous Nernst and Hall effects in the CoδFe100-δ layer. Our results suggest a possible role of the sd-type exchange interaction between Co40Fe60 and YIG at the interface as a possible origin for the observed behavior.

  20. Interpreting anomalous electron pairs as new particle decays

    NASA Astrophysics Data System (ADS)

    Wilczynski, Henryk

    1999-08-01

    In heavy particle decays found in cosmic ray interactions recorded in the JACEE emulsion chambers, multiple electron pairs were previously reported. These pairs apparently originated from conversions of photons emitted in the decays. It is difficult to explain the overall properties of these decays in terms of known heavy particle decay modes. A recently published compilation of low-energy nuclear data suggests existence of excess electron pairs with invariant mass about 9 MeV/c2 , which may be explained by postulating a new neutral boson decaying into the electron pair. The feasibility of explaining the JACEE electron pairs with this hypothesis is presented.

  1. DEVILS DEN ROADLESS AREA, VERMONT.

    USGS Publications Warehouse

    Slack, John F.; Sabin, Andrew E.

    1984-01-01

    A mineral-resource survey was made of the Devils Den Roadless Area, Vermont, Geochemical sampling found traces of gold, copper, barium, lead, molybdenum, silver, tin, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to identify any resource potential. The only apparent resources are nonmetallic commodities including abundant rock suitable for crushihg, and very small deposits of sand and gravel and marble; these also occur outside the roadless area. The area was also evaluated for bedrock uranium and thorium deposits, but not anomalously high radioactive bedrock was found. A potential may exist for oil or natural gas at great depth, but this cannot be evaluated by the present study.

  2. Applicability of Visual Analytics to Defence and Security Operations

    DTIC Science & Technology

    2011-06-01

    It shows the events importance in the news over time. Topics are extracted from fused video, audio and closed captions. Since viewing video...Detection of Anomalous Maritime Behavior, In Banissi, E. et al. (Eds.) Proceedings of the 12th IEEE International Conference on Information Visualisation

  3. Contributions of nanoscale roughness to anomalous colloid retention and stability behavior

    USDA-ARS?s Scientific Manuscript database

    All natural surfaces exhibit nanoscale roughness (NR) and chemical heterogeneity (CH) to some extent. Expressions were developed to determine the mean interaction energy between a colloid and a solid-water interface (SWI), as well as for colloid-colloid interactions, when both surfaces contain binar...

  4. Searches for sterile neutrinos with NOvA

    DOE PAGES

    Davies, Gavin S.; Aurisano, Adam; Kafka, Gareth K.; ...

    2016-11-15

    Contradictory evidence has been presented on the issue of neutrino mixing between the three known active neutrinos and light sterile neutrino species. Apparent short-baseline neutrino oscillations observed by the LSND and MiniBooNE experiments, the collective evidence of the reactor neutrino anomaly, and the gallium anomaly all point towards sterile neutrinos with mass at the 1 eV level. While these results are tantalizing, they are not conclusive as they are in tension with null results from other short-baseline experiments, and with disappearance searches in longbaseline and atmospheric experiments. The NOvA (NuMI Off-Axis v e Appearance) experiment may help clarify the situationmore » by searching for disappearance of active neutrinos from the NuMI (Neutrinos from the Main Injector) beam over a baseline of 810 km. We describe the method used by NOvA to look for oscillations into sterile neutrinos at the Far Detector (FD) through the disappearance of neutral-current (NC) neutrino events, including preliminary results of this search. In addition, the Near Detector (ND) is well suited for searching for anomalous short-baseline oscillations and probing the LSND and MiniBooNE sterile neutrino allowed regions using a variety of final states. We also present a novel method for selecting samples with high purity at the ND using convolutional neural networks. Furthermore, based on this method, the sensitivity to anomalous short-baseline nt appearance are shown, and searches for anomalous v e appearance and v μ disappearance at the NOvA ND are presented.« less

  5. Rare earth element analysis indicates micropollutants in an urban estuary

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. J.; Johannesson, K. H.; Kolker, A.; Burdige, D. J.; Chevis, D.

    2011-12-01

    Rare earth element analysis of Bayou Bienvenue waters shows anomalously high gadolinium, Gd, concentrations relative to its nearest neighbors in the REE series, europium and terbium. The anomalously high Gd concentrations indicate anthropogenic input from waste-water treatment plants in the area as anthropogenic Gd input can be traced back to its use as a contrast agent in magnetic resonance imaging in hospitals. Others have shown that anomalously high levels of Gd in natural waters are likely to be associated with other micropollutants that also occur in hospital effluent and that are not removed in the wastewater treatment process, including pharmaceuticals in the form of steroids, antihistamines, and antibiotics. Estuaries serve as many important ecological roles and have been shown to act as a filter for pollutants. To better understand the transport, biogeochemical cycling, and ultimate fate of trace elements in estuaries, I collected surface water samples from Bayou Bienvenue, a wetland triangle that covers an area of 427 acres directly adjacent to New Orleans, Louisiana. Water samples from Bayou Bienvenue were collected along the salinity gradient and subsequently filtered through progressively smaller pore-size filters. The resulting fractions were analyzed for trace element concentions, including the REEs, by magnetic sector ICP-MS. The attached figure shows the Gd anomaly present in the particulate (>0.45μm) fraction. Upper continental crust (UCC)-normalized plots of colloidal REEs (0.02μm - 0.45μm) fraction is lacking this anomaly indicating anthropogenic Gd is found chiefly in the particulate fraction in Bayou Bienvenue. No clear relationship between Gd concentration and salinity was apparent.

  6. Possible Charge-Exchange X-Ray Emission in the Cygnus Loop Detected with Suzaku

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Kosugi, Hiroko; Kimura, Masashi; Nakajima, Hiroshi; Takakura, Satoru; Petre, Robert; Hewitt. John W.; hide

    2011-01-01

    X-ray spectroscopic measurements of the Cygnus Loop supernova remnant indicate that metal abundances throughout most of the remnant s rim are depleted to approx.0.2 times the solar value. However, recent X-ray studies have revealed in some narrow regions along the outermost rim anomalously "enhanced" abundances (up to approx. 1 solar). The reason for these anomalous abundances is not understood. Here, we examine X-ray spectra in annular sectors covering nearly the entire rim of the Cygnus Loop using Suzaku (21 pointings) and XMM-Newton (1 pointing). We find that spectra in the "enhanced" abundance regions commonly show a strong emission feature at approx.0.7 keV. This feature is likely a complex of He-like O K(gamma + delta + epsilon), although other possibilities cannot be fully excluded. The intensity of this emission relative to He-like O K(alpha) appears to be too high to be explained as thermal emission. This fact, as well as the spatial concentration of the anomalous abundances in the outermost rim, leads us to propose an origin from charge-exchange processes between neutrals and H-like O. We show that the presence of charge-exchange emission could lead to the inference of apparently "enhanced" metal abundances using pure thermal emission models. Accounting for charge-exchange emission, the actual abundances could be uniformly low throughout the rim. The overall abundance depletion remains an open question. Subject headings: ISM: abundances ISM: individual objects (Cygnus Loop) ISM: supernova remnants X-rays: ISM atomic processes

  7. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than earthquakes occurring on mature faults. We have identified earthquake pairs in which an interplate-thrust and an intraslab-normal earthquake occurred remarkably close in space and time. The intraslab-normal member of each pair radiated anomalously high amounts of energy compared to its thrust-fault counterpart. These intraslab earthquakes probably ruptured intact slab mantle and are dramatic examples in which Mc (an energy magnitude) is shown to be a far better estimate of the potential for earthquake damage than Mw. This discovery may help explain why loss of life as a result of intraslab earthquakes was greater in the 20th century in Latin America than the fatalities associated with interplate-thrust events that represented much higher total moment release. ?? 2004 RAS.

  8. Computation of molecular vibrational frequencies using anomalous harmoniclike potentials.

    PubMed

    Li, Xiangzhu; Paldus, Josef

    2009-07-28

    The instabilities of Hartree-Fock (HF) solutions at or near the equilibrium geometry of symmetric molecular species imply the existence of broken-symmetry solutions having a lower energy than the corresponding symmetry-adapted ones. Moreover, the distortion of the nuclear framework along the normal modes that are implied by such broken-symmetry solutions results in an anomalous or even singular behavior in the corresponding cuts of the potential energy surface (PES). Using such HF solutions as a reference, these anomalies propagate to a post-HF level and make it impossible to determine reliable harmonic or fundamental vibrational frequencies for such modes by relying on either numerical or analytical differentiation of the PES, requiring instead a numerical integration of the Schrodinger equation for the nuclear motion. This, in turn, requires a detailed knowledge on the PES in a wide range of geometries, necessitating a computation of the potential energy function in a large number of points. We present an alternative approach to this problem, referred to as the integral averaging method (IAM), which facilitates this task by significantly reducing the number of geometries for which one has to compute the potential energy while yielding results of practically the same accuracy as the solution of the Schrodinger equation. The IAM is applied to several ABA-type triatomics and to the allyl radical, whose asymmetric stretching mode potential suffers from an anomalous behavior due to the spin-preserving instabilities in restricted open-shell HF solutions.

  9. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development,more » and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.« less

  10. The Anomalous Low State of LMC X-3

    NASA Technical Reports Server (NTRS)

    Smale, A. P.; Boyd, P. T.; Markwardt, C. B.

    2009-01-01

    Archival RXTE ASM and PCA observations of the black hole binary LMC X-3 reveal a dramatic and extended low state lasting from December 8, 2003 until March 18, 2004, unprecedented both in its Low luminosity (Lx(2-10keV)=4.2x 1035 ergs s-1, approximately 4 times fainter than ever before seen from LMC X-3 in its low/hard state, and representing 0.15% of its X-ray luminosity during the high/soft state); and Long duration (approximately equal to 100 days, as compared with 5-20 days for 'normal' low/hard state excursions). During this anomalous low state no significant variability is observed on timescales of days-weeks, and the spectrum is well described by a simple power law with index 1.7 plus or minus 0.2. We examine the variability characteristics of LMC X-3 before and after this event using conventional and topological methods, and show that with the exception of the anomalous low state itself the long-term behavior of the source in topological phase space can be completely described in terms of a well-understood nonlinear dynamics system known as the Duffing oscillator, implying that the accretion disk in LMC X-3 is a driven, dissipative system with two solutions competing for control of its time evolution. This work shows that dynamical information and constraints revealed by topological analysis methods can provide a valuable addition to traditional studies of accretion disk behavior.

  11. Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T.

    2017-03-01

    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov et al., Theor. Math. Phys. 110, 305 (1997), 10.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and ɛ expansion, where y is the exponent associated with the random force and ɛ =4 -d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and ɛ . All calculations are performed in the leading one-loop approximation.

  12. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates.

    PubMed

    Krishnan, N M Anoop; Wang, Bu; Falzone, Gabriel; Le Pape, Yann; Neithalath, Narayanan; Pilon, Laurent; Bauchy, Mathieu; Sant, Gaurav

    2016-12-28

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

  13. Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates

    DOE PAGES

    Krishnan, N. M. Anoop; Wang, Bu; Falzone, Gabriel; ...

    2016-12-06

    Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development,more » and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C–S–H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C–S–H shows a sudden increase when the CaO/SiO 2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C–S–H’s nanostructure. We identify that confinement is dictated by the topology of the C–S–H’s atomic network. Altogether, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.« less

  14. Physiological Environment Induces Quick Response – Slow Exhaustion Reactions

    PubMed Central

    Hiroi, Noriko; Lu, James; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Flamm, Christoph; Oka, Kotaro; Köhler, Gottfried; Funahashi, Akira

    2011-01-01

    In vivo environments are highly crowded and inhomogeneous, which may affect reaction processes in cells. In this study we examined the effects of intracellular crowding and an inhomogeneity on the behavior of in vivo reactions by calculating the spectral dimension (ds), which can be translated into the reaction rate function. We compared estimates of anomaly parameters obtained from fluorescence correlation spectroscopy (FCS) data with fractal dimensions derived from transmission electron microscopy (TEM) image analysis. FCS analysis indicated that the anomalous property was linked to physiological structure. Subsequent TEM analysis provided an in vivo illustration; soluble molecules likely percolate between intracellular clusters, which are constructed in a self-organizing manner. We estimated a cytoplasmic spectral dimension ds to be 1.39 ± 0.084. This result suggests that in vivo reactions initially run faster than the same reactions in a homogeneous space; this conclusion is consistent with the anomalous character indicated by FCS analysis. We further showed that these results were compatible with our Monte-Carlo simulation in which the anomalous behavior of mobile molecules correlates with the intracellular environment, leading to description as a percolation cluster, as demonstrated using TEM analysis. We confirmed by the simulation that the above-mentioned in vivo like properties are different from those of homogeneously concentrated environments. Additionally, simulation results indicated that crowding level of an environment might affect diffusion rate of reactant. Such knowledge of the spatial information enables us to construct realistic models for in vivo diffusion and reaction systems. PMID:21960972

  15. Discriminating bot accounts based solely on temporal features of microblog behavior

    NASA Astrophysics Data System (ADS)

    Pan, Junshan; Liu, Ying; Liu, Xiang; Hu, Hanping

    2016-05-01

    As the largest microblog service in China, Sina Weibo has attracted numerous automated applications (known as bots) due to its popularity and open architecture. We classify the active users from Sina Weibo into human, bot-based and hybrid groups based solely on the study of temporal features of their posting behavior. The anomalous burstiness parameter and time-interval entropy value are exploited to characterize automation. We also reveal different behavior patterns among the three types of users regarding their reposting ratio, daily rhythm and active days. Our findings may help Sina Weibo manage a better community and should be considered for dynamic models of microblog behaviors.

  16. Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts

    NASA Astrophysics Data System (ADS)

    Li, Mingjun; Kuribayashi, Kazuhiko

    2003-12-01

    Co-20.5 at. pct Sn and Ni-21.4 at. pct Si eutectic alloys have been levitated and undercooled in an electromagnetic levitator (EML) and then solidified spontaneously at different undercoolings. The original surface and cross-sectional morphologies of these solidified samples consist of separate eutectic colonies regardless of melt undercooling, indicating that microstructures in the free solidification of the eutectic systems are nucleation controlled. Regular lamellae always grow from the periphery of an independent anomalous eutectic grain in each eutectic colony. This typical morphology shows that the basic unit should be a single eutectic colony, when discussing the solidification behavior. Special emphasis is focused on the anomalous eutectic formation after a significant difference in linear kinetic coefficients is recognized for terminal eutectic phases, in particular when a eutectic reaction contains a nonfaceted disordered solid solution and a faceted ordered intermetallic compound as the terminal eutectic phases. It is this remarkable difference in the linear kinetic coefficients that leads to a pronounced difference in kinetic undercoolings. The sluggish kinetics in the interface atomic attachment of the intermetallic compound originates the occurrence of the decoupled growth of two eutectic phases. Hence, the current eutectic models are modified to incorporate kinetic undercooling, in order to account for the competitive growth behavior of eutectic phases in a single eutectic colony. The critical condition for generating the decoupled growth of eutectic phases is proposed. Further analysis reveals that a dimensionless critical undercooling may be appropriate to show the tendency for the anomalous eutectic-forming ability when considering the difference in linear kinetic coefficients of terminal eutectic phases. This qualitative criterion, albeit crude with several approximations and assumptions, can elucidate most of the published experimental results with the correct order of magnitude. Solidification modes in some eutectic alloys are predicted on the basis of the present criterion. Future work that may result in some probable errors is briefly directed to improve the model.

  17. Collective magnetic response of inhomogeneous nanoisland FeNi films around the percolation transition

    NASA Astrophysics Data System (ADS)

    Kovaleva, Natalia N.; Bagdinov, Anton V.; Stupakov, Alexandr; Dejneka, Alexandr; Demikhov, Evgenii I.; Gorbatsevich, Alexandr A.; Pudonin, Fedor A.; Kugel, Kliment I.; Kusmartsev, Feodor V.

    2018-04-01

    By using superconducting quantum interference device (SQUID) magnetometry, we investigated anisotropic high-field ( H ≲ 7T) low-temperature (10 K) magnetization response of inhomogeneous nanoisland FeNi films grown by rf sputtering deposition on Sitall (TiO2) glass substrates. In the grown FeNi films, the FeNi layer nominal thickness varied from 0.6 to 2.5 nm, across the percolation transition at the d c ≃ 1.8 nm. We discovered that, beyond conventional spin-magnetism of Fe21Ni79 permalloy, the extracted out-of-plane magnetization response of the nanoisland FeNi films is not saturated in the range of investigated magnetic fields and exhibits paramagnetic-like behavior. We found that the anomalous out-of-plane magnetization response exhibits an escalating slope with increase in the nominal film thickness from 0.6 to 1.1 nm, however, it decreases with further increase in the film thickness, and then practically vanishes on approaching the FeNi film percolation threshold. At the same time, the in-plane response demonstrates saturation behavior above 1.5-2T, competing with anomalously large diamagnetic-like response, which becomes pronounced at high magnetic fields. It is possible that the supported-metal interaction leads to the creation of a thin charge-transfer (CT) layer and a Schottky barrier at the FeNi film/Sitall (TiO2) interface. Then, in the system with nanoscale circular domains, the observed anomalous paramagnetic-like magnetization response can be associated with a large orbital moment of the localized electrons. In addition, the inhomogeneous nanoisland FeNi films can possess spontaneous ordering of toroidal moments, which can be either of orbital or spin origin. The system with toroidal inhomogeneity can lead to anomalously strong diamagnetic-like response. The observed magnetization response is determined by the interplay between the paramagnetic- and diamagnetic-like contributions.

  18. Anomalous Mössbauer fraction in small magnetic particles due to magnetostriction

    NASA Astrophysics Data System (ADS)

    Mohie-Eldin, M.-E. Y.; Gunther, L.

    1993-10-01

    The biological molecule ferritin and its proven synthetic counterpart polysaccharide iron complex (PIC) have been shown to contain small (< 100 Å in diameter) antiferrimagnetic cores at their centers. Mössbauer studies of these molecules have revealed an anomalous drop in the Mössbauer fraction (ƒ-factor) as the temperature rises above 30 K for mammalian ferritin and 60 K for PIC. Above the blocking temperature, superparamagnetic relaxation results in the disappearance of hyperfine splitting. Data that are treated with FFT procedures to eliminate the thickness effect still exhibit this anomaly. We have investigated the effect of superparamagnetic relaxation on the ƒ-factor. Spin-lattice relaxation was excluded based upon a calculation of the rate of energy transfer from the spin system to the lattice. We have found the following process as a plausible explanation of the anomaly: Superparamagnetic relaxation brings about a dynamical displacement of the Mössbauer nucleus through magnetostriction. These displacements produce a Doppler broadening of the Mössbauer spectrum that reduces the apparent ƒ-factor. The temperature dependence of the theoretically calculated ƒ-factor agrees qualitatively with experiment. Finally, there is semi-quantitative agreement if the as yet unknown dimensionless magnetostriction constant were to be on the order of 10 -3.

  19. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  20. Electrostatic coupling between DNA and its counterions modulates the observed translational diffusion coefficients.

    PubMed

    Stellwagen, Earle; Stellwagen, Nancy C

    2015-09-01

    Free solution capillary electrophoresis (CE) is a useful technique for measuring the translational diffusion coefficients of charged analytes. The measurements are relatively fast if the polarity of the electric field is reversed to drive the analyte back and forth past the detection window during each run. We have tested the validity of the resulting diffusion coefficients using double-stranded DNA molecules ranging in size from 20 to 960 base pairs as the model system. The diffusion coefficients of small DNAs are equal to values in the literature measured by other techniques. However, the diffusion coefficients of DNA molecules larger than ∼30 base pairs are anomalously high and deviate increasingly from the literature values with increasing DNA molar mass. The anomalously high diffusion coefficients are due to electrostatic coupling between the DNA and its counterions. As a result, the measured diffusion coefficients vary with the diffusion coefficient of the counterion, as well as with cation concentration and electric field strength. These effects can be reduced or eliminated by measuring apparent diffusion coefficients of the DNA at several different electric field strengths and extrapolating the results to zero electric field.

  1. The influence of polymer architectures on the dewetting behavior of thin polymer films: from linear chains to ring chains.

    PubMed

    Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia

    2017-05-03

    The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.

  2. Impact of Stress on Anomalous Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2016-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the large heterogeneity of fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transport through fractured rock remains largely unexplored. The link between anomalous (non-Fickian) transport and confining stress has been shown only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of confining stress on flow and transport through discrete fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM), which can capture the deformation of matrix blocks, reactivation and propagation of cracks. We implement a joint constitutive model within the FEMDEM framework to simulate the effect of fracture roughness. We apply the model to a fracture network extracted from the geological map of an actual outcrop to obtain the aperture field at different stress conditions (Figure 1). We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture networks, and show that this anomalous behavior can be linked to the stress state of the rock. Finally, we develop an effective transport model that captures the anomalous transport through stressed fractures. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in discrete fractured networks. [1] P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport in stressed rough fractures. Earth and Planetary Science Letters, to appear (2016). Figure (a) Map of maximum principal stress with a vertical normal compressive stress of 3 MPa at top and bottom boundaries, and 1MPa at left and right boundaries. (b) Normal compressive stress of 15 MPa at top and bottom boundaries, and 5MPa at left and right boundaries.

  3. Anomalous variations of lithosphere magnetic field before several earthquakes

    NASA Astrophysics Data System (ADS)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  4. 1D momentum-conserving systems: the conundrum of anomalous versus normal heat transport

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Liu, Sha; Li, Nianbei; Hänggi, Peter; Li, Baowen

    2015-04-01

    Transport and the spread of heat in Hamiltonian one dimensional momentum conserving nonlinear systems is commonly thought to proceed anomalously. Notable exceptions, however, do exist of which the coupled rotator model is a prominent case. Therefore, the quest arises to identify the origin of manifest anomalous energy and momentum transport in those low dimensional systems. We develop the theory for both, the statistical densities for momentum- and energy-spread and particularly its momentum-/heat-diffusion behavior, as well as its corresponding momentum/heat transport features. We demonstrate that the second temporal derivative of the mean squared deviation of the momentum spread is proportional to the equilibrium correlation of the total momentum flux. Subtracting the part which corresponds to a ballistic momentum spread relates (via this integrated, subleading momentum flux correlation) to an effective viscosity, or equivalently, to the underlying momentum diffusivity. We next put forward the intriguing hypothesis: normal spread of this so adjusted excess momentum density causes normal energy spread and alike normal heat transport (Fourier Law). Its corollary being that an anomalous, superdiffusive broadening of this adjusted excess momentum density in turn implies an anomalous energy spread and correspondingly anomalous, superdiffusive heat transport. This hypothesis is successfully corroborated within extensive molecular dynamics simulations over large extended time scales. Our numerical validation of the hypothesis involves four distinct archetype classes of nonlinear pair-interaction potentials: (i) a globally bounded pair interaction (the noted coupled rotator model), (ii) unbounded interactions acting at large distances (the coupled rotator model amended with harmonic pair interactions), (iii) the case of a hard point gas with unbounded square-well interactions and (iv) a pair interaction potential being unbounded at short distances while displaying an asymptotic free part (Lennard-Jones model). We compare our findings with recent predictions obtained from nonlinear fluctuating hydrodynamics theory.

  5. The electrical behavior of GaAs-insulator interfaces - A discrete energy interface state model

    NASA Technical Reports Server (NTRS)

    Kazior, T. E.; Lagowski, J.; Gatos, H. C.

    1983-01-01

    The relationship between the electrical behavior of GaAs Metal Insulator Semiconductor (MIS) structures and the high density discrete energy interface states (0.7 and 0.9 eV below the conduction band) was investigated utilizing photo- and thermal emission from the interface states in conjunction with capacitance measurements. It was found that all essential features of the anomalous behavior of GaAs MIS structures, such as the frequency dispersion and the C-V hysteresis, can be explained on the basis of nonequilibrium charging and discharging of the high density discrete energy interface states.

  6. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  7. Anomalous glassy dynamics in simple models of dense biological tissue

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-02-01

    In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.

  8. Waterlike anomalies in a two-dimensional core-softened potential

    NASA Astrophysics Data System (ADS)

    Bordin, José Rafael; Barbosa, Marcia C.

    2018-02-01

    We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.

  9. Anomalous expansion of Nb nanowires in a NiTi matrix under high pressure

    DOE PAGES

    Yu, Cun; Ren, Yang; Cui, Lishan; ...

    2016-10-17

    Under high pressure, materials usually shrink during compression as described by an equation of state. Here, we present the anomalous volume expansion behavior of a one-dimensional Nb nanowire embedded in a NiTi transforming matrix, while the matrix undergoes a pressure-induced martensitic transformation. The Nb volume expansion depends on the NiTi transition pressure range from the matrix, which is controlled by the shear strain induced by different pressure transmitting media. The transformation-induced interfacial stresses between Nb and NiTi may play a major role in this anomaly. In conclusion, our discovery sheds new light on the nano-interfacial effect on mechanical anomalies inmore » heterogeneous systems during a pressure-induced phase transition.« less

  10. A nonlinear Fokker-Planck equation approach for interacting systems: Anomalous diffusion and Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Marin, D.; Ribeiro, M. A.; Ribeiro, H. V.; Lenzi, E. K.

    2018-07-01

    We investigate the solutions for a set of coupled nonlinear Fokker-Planck equations coupled by the diffusion coefficient in presence of external forces. The coupling by the diffusion coefficient implies that the diffusion of each species is influenced by the other and vice versa due to this term, which represents an interaction among them. The solutions for the stationary case are given in terms of the Tsallis distributions, when arbitrary external forces are considered. We also use the Tsallis distributions to obtain a time dependent solution for a linear external force. The results obtained from this analysis show a rich class of behavior related to anomalous diffusion, which can be characterized by compact or long-tailed distributions.

  11. Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.

    1994-01-01

    No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms.

  12. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  13. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.

    PubMed

    Berry, Hugues; Chaté, Hugues

    2014-02-01

    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent α<1 (subdiffusion). While the detailed mechanisms causing such behaviors are not always elucidated, movement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.

  14. Origin of anomalous giant dielectric performance in novel perovskite: Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+)

    PubMed Central

    Liu, Xiao; Fan, Huiqing; Shi, Jing; Li, Qiang

    2015-01-01

    Dielectric properties and dielectric relaxation behaviors of A/B sites co-substituted Bi0.5Na0.5TiO3 perovskite-type ferroelectrics are reported. The Bi0.5−xLaxNa0.5−xLixTi1−yMyO3 (M = Mg2+, Ga3+) exhibits anomalous giant dielectric permittivity (ε’) of ~105 under a heterogeneous constitution with easily discernible grain and grain boundary conductivity. The lone pairs substitution theory as well as extrinsic disorders are used to clarify the significant structural evolution and the origin of the dielectric performance. A bigger free volume promotes the anomalous relaxation between oxygen sites, and the polarization direction on the nanoscale deviates from the average polarization direction at its ferroelectric state. Furthermore, no obvious phase transition indicates the considerable static substitutional disorder at the Bi/Na sites, which facilitates delocalized conduction of oxygen ions in the intermediate temperature range. PMID:26239525

  15. Low-temperature dependence of the thermomagnetic transport properties of the SrTiO3/LaAlO3 interface

    NASA Astrophysics Data System (ADS)

    Lerer, S.; Ben Shalom, M.; Deutscher, G.; Dagan, Y.

    2011-08-01

    Transport measurements are reported, including Hall, Seebeck, and Nernst effects. All of these transport properties exhibit anomalous field and temperature dependencies, with a change of behavior observed at H˜1.5 T and T˜15 K. The low-temperature, low-field behaviors of all transport properties were reconciled using a simple two-band analysis. A more detailed model is required in order to explain the high-magnetic-field regime.

  16. Interaction of antimicrobial preservatives with blow-fill-seal packs: correlating sorption with solubility parameters.

    PubMed

    Amin, Aeshna; Dare, Manish; Sangamwar, Abhay; Bansal, Arvind Kumar

    2012-01-01

    The aim of this work was to study the interaction of four commonly used ophthalmic antimicrobial preservatives [benzyl alcohol (BA), chlorbutol (CBL), benzalkonium chloride (BKC), and chlorhexidine gluconate (CG)] with Blow-Fill-Seal (BFS) packs. Effect of packaging material [low-density polyethylene (LDPE), polypropylene (PP)], humidity (25% RH, 75% RH) and concentration (0.5, 1.0, 2.0 mM BA/CBL in LDPE) was studied. BKC and CG gave negligible loss (<4%) in BFS packs over a period of 3 months. BA and CBL, however, gave marked losses in LDPE (ca. 70-90%) and PP (ca. 7-25%) packs. Humidity did not have any effect on the sorption loss of any preservative. Loss of BA switched from Case II to anomalous behavior with increasing initial concentration. A two-stage sorption behavior was inherent at all concentrations. Loss of CBL followed anomalous behavior with biphasic kinetics of loss. It was concluded that all the four preservatives were appropriate for use in PP BFS packs. However, only BKC and CG were amenable to be used in LDPE BFS packs. Lastly, an empirical expression consisting of the "solubility parameter distance" and "molar volume" of preservatives was developed to correlate the preservative loss in LDPE with the physicochemical properties of the preservatives.

  17. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .

  18. "Alcohol Myopia," Expectations, Social Interests, and Sorority Pledge Status.

    ERIC Educational Resources Information Center

    Elias, Jeffrey W.; And Others

    1996-01-01

    Examines "alcohol myopia" (an increased use of alcohol in the face of increased negative consequences of use) in freshman college women with or without sorority pledge status. Increased alcohol use and alcohol myopia were present in the sorority pledge group. Both groups showed anomalous myopic behavior as alcohol use increased. (RJM)

  19. Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.

    The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.

  20. Anomalous swelling behavior of FM 5055 carbon phenolic composite

    NASA Technical Reports Server (NTRS)

    Stokes, E. H.

    1992-01-01

    The swelling response of a typical carbon phenolic composite was measured in the three primary material directions. The data obtained sugrest that at low and high relative humidities the incremental increase in moisture absorption can be attributed primarily to the resin. At intermediate relative humidities, the water is moving largely into the carbonized fibers.

  1. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  2. New intrinsic mechanism on gum-like superelasticity of multifunctional alloys

    PubMed Central

    Liu, Jia-Peng; Wang, Yan-Dong; Hao, Yu-Lin; Wang, Yunzhi; Nie, Zhi-Hua; Wang, Dong; Ren, Yang; Lu, Zhao-Ping; Wang, Jinguo; Wang, Haoliang; Hui, Xidong; Lu, Ning; Kim, Moon J.; Yang, Rui

    2013-01-01

    Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to α″ martensite and those with BCC structure transform to δ martensite. PMID:23831664

  3. High-field specific heats of A15 V3Si and Nb3Sn

    NASA Astrophysics Data System (ADS)

    Stewart, G. R.; Brandt, B. L.

    1984-04-01

    In order to further understand the anomalous behavior of the specific heat of Nb3Sn in an 18-T magnetic field discovered by Stewart, Cort, and Webb

    [Phys. Rev. B 24, 3841 (1981)]
    , we have performed specific-heat measurements on a different sample of Nb3Sn at lower fields both in the normal and mixed states, as well as measurement to 19 T on both transforming and nontransforming V3Si. The high-field data for V3Si indicate that this material behaves quite normally, and that γtrans<γnontrans, in agreement with a recent analysis by Junod and Muller
    [Solid State Commun. 36, 721 (1980)]
    . Nb3Sn, however, remains anomalous, with both the same "kink" in the normal-state field data as observed by Stewart, Cort, and Webb (although at a slightly higher temperature) and unusual mixed-state behavior. The mixed-state specific heat of the V3Si samples is as expected, based on earlier work on the mixed-state specific heat of V and Nb.

  4. Elastic moduli of rock glasses under pressure to 8 kilobars and geophysical implications.

    USGS Publications Warehouse

    Meister, R.; Robertson, E.C.; Werke, R.W.; Raspet, R.

    1980-01-01

    Shear and longitudinal velocities were measured by the ultrasonic phase comparison method as a function of pressure to 8 kbar on synthetic glasses of basalt, andesite, rhyolite, and quartz composition and on natural obsidian. Velocities of most of the glasses decrease anomalously with pressure, but increasingly more-normal behavior occurs with decrease in SiO2 content. The pressure derivatives of rigidity and bulk modulus increase linearly, from -3.39 to -0.26 and from -5.91 to +2.09, respectively, with decrease in SiO2 content from 100 to 49%. The change from negative to positive in the pressure derivatives of both moduli and observed at Poisson's ratio of about 0.25 is consitent with the Smyth model for the anomalous elastic behavior of glass. If the temperature in the upper mantle is about 1500oC, tholeiitic basalt would be molten in accordance with the partial melt explanation for the low-velocity zone; at 1300oC and below, basalt would be in the glassy state, especially if more felsic than tholeiite. -Authors

  5. Comb model for the anomalous diffusion with dual-phase-lag constitutive relation

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zheng, Liancun; Fan, Yu; Chen, Yanping; Liu, Fawang

    2018-10-01

    As a development of the Fick's model, the dual-phase-lag constitutive relationship with macroscopic and microscopic relaxation characteristics is introduced to describe the anomalous diffusion in comb model. The Dirac delta function in the formulated governing equation represents the special spatial structure of comb model that the horizontal current only exists on the x axis. Solutions are obtained by analytical method with Laplace transform and Fourier transform. The dependence of concentration field and mean square displacement on different parameters are presented and discussed. Results show that the macroscopic and microscopic relaxation parameters have opposite effects on the particle distribution and mean square displacement. Furthermore, four significant results with constant 1/2 are concluded, namely the product of the particle number and the mean square displacement on the x axis equals to 1/2, the exponent of mean square displacement is 1/2 at the special case τq= τP, an asymptotic form of mean square displacement (MSD∼t1/2 as t→0, ∞) is obtained as well at the short time behavior and the long time behavior.

  6. Novel behaviors of anomalous Hall effect in TbFeCo ferrimagnetic thin films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi; Sato, Shiori; Kaneta, Shingo; Hara, Yoshiaki

    2018-05-01

    We investigate the temperature dependence and the thickness dependence of anomalous Hall effect (AHE) of TbFeCo ultra-thin films under high magnetic field. The sign change on temperature dependence of AHE in 20nm-thick TbFeCo film with rare-earth (RE) rich composition was observed. The AHE sign at low temperature is negative while it gradually becomes positive as the temperature increases. Moreover, the AHE sign for 5nm-thick TbFeCo film remains positive while that for 50nm-thick TbFeCo film remains negative at temperature in the range from 5 K to 400 K. The similar thickness dependence of AHE in TM-rich samples was also observed. From the mean-field approximation, the sign change temperature in AHE is related to the compensation temperature and the existence of interfacial region, which has the TM-rich composition and the weak anisotropy. Therefore, We clarified that the novel behavior of AHE sign changes in TbFeCo thin films with different thickness can be explained by the interfacial layer with weak anisotropy and two phase model.

  7. Experimental studies on hybrid superconductor-topological insulator nanoribbon Josephson devices

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Jauregui, Luis; Kazakov, Aleksander; Miotkowski, Ireneusz; Rokhinson, Leonid; Chen, Yong

    The spin-helical topological surface states (TSS) of topological insulators in proximity with an s-wave superconductor are predicted to demonstrate signatures of topological superconductivity and host Majorana fermions. Here, we report on the observation of gate-tunable proximity-induced superconductivity in an intrinsic BiSbTeSe2 topological insulator nanoribbon (TINR) based Josephson junction (JJ) with Nb contacts. We observe a gate-tunable critical current (IC) with an anomalous behavior in the temperature (T) dependence of IC. We discuss various possible scenarios that could be relevant to this anomalous behavior, such as (i) the different temperature dependence of supercurrent generated by in-gap, where phase slip plays an important role, and out-of-gap Andreev bound states or (ii) the different critical temperatures associated with the top and bottom topological surface states. Our modeling of IC vs. T suggests the possible existence of one pair of in-gap Andreev bound states in our TINR. We have also studied the effects of magnetic fields on the critical current in our TINR Josephson junctions.

  8. Treating inertia in passive microbead rheology.

    PubMed

    Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina

    2012-02-01

    The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be attenuated inside the window. This attenuation is realized even in the absence of a purely viscous element. Finally, fluid inertia also affects the bead autocorrelation through the Basset force and the fluid dragged around with the bead. We show that the Basset force plays the same role as the purely viscous element in high-frequency regime, and the oscillation of MSD is suppressed if fluid density and bead density are comparable. © 2012 American Physical Society

  9. The origin of anomalous transport in porous media - is it possible to make a priori predictions?

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Blunt, Martin

    2013-04-01

    Despite the range of significant applications of flow and solute transport in porous rock, including contaminant migration in subsurface hydrology, geological storage of carbon-dioxide and tracer studies and miscible displacement in oil recovery, even the qualitative behavior in the subsurface is uncertain. The non-Fickian nature of dispersive processes in heterogeneous porous media has been demonstrated experimentally from pore to field scales. However, the exact relationship between structure, velocity field and transport has not been fully understood. Advances in X ray imaging techniques made it possible to accurately describe structure of the pore space, helping predict flow and anomalous transport behaviour using direct simulation. This is demonstrated by simulating solute transport through 3D images of rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a sandstone, and a carbonate. A novel methodology is developed that predicts solute transport at the pore scale by using probability density functions of displacement (propagators) and probability density function of transit time between the image voxels, and relates it to probability density function of normalized local velocity. A key advantage is that full information on velocity and solute concentration is retained in the models. The methodology includes solving for Stokes flow by Open Foam, solving for advective transport by the novel streamline simulation method, and superimposing diffusive transport diffusion by the random walk method. It is shown how computed propagators for beadpack, sandstone and carbonate depend on the spread in the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behaviour where the propagators rapidly become Gaussian; the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed; in the carbonate with the widest velocity distribution the stagnant concentration peak is persistent, while the emergence of a smaller secondary mobile peak is observed, leading to a highly anomalous behavior. This defines different generic nature of non-Fickian transport in the three media and quantifies the effect of pore structure on transport. Moreover, the propagators obtained by the model are in a very good agreement with the propagators measured on beadpack, Bentheimer sandstone and Portland carbonate cores in nuclear magnetic resonance experiments. These findings demonstrate that it is possible to make a priori predictions of anomalous transport in porous media. The importance of these findings for transport in complex carbonate rock micro-CT images is discussed, classifying them in terms of degree of anomalous transport that can have an impact at the field scale. Extensions to reactive transport will be discussed.

  10. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    NASA Astrophysics Data System (ADS)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.

    2018-03-01

    We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  11. Inelastic response of silicon to shock compression.

    PubMed

    Higginbotham, A; Stubley, P G; Comley, A J; Eggert, J H; Foster, J M; Kalantar, D H; McGonegle, D; Patel, S; Peacock, L J; Rothman, S D; Smith, R F; Suggit, M J; Wark, J S

    2016-04-13

    The elastic and inelastic response of [001] oriented silicon to laser compression has been a topic of considerable discussion for well over a decade, yet there has been little progress in understanding the basic behaviour of this apparently simple material. We present experimental x-ray diffraction data showing complex elastic strain profiles in laser compressed samples on nanosecond timescales. We also present molecular dynamics and elasticity code modelling which suggests that a pressure induced phase transition is the cause of the previously reported 'anomalous' elastic waves. Moreover, this interpretation allows for measurement of the kinetic timescales for transition. This model is also discussed in the wider context of reported deformation of silicon to rapid compression in the literature.

  12. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, M.; Yamamoto, K.; Mizokawa, T.

    In this work, we have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. Lastly, the large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  13. Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe

    DOE PAGES

    Maeda, M.; Yamamoto, K.; Mizokawa, T.; ...

    2018-03-23

    In this work, we have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. Lastly, the large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.

  14. Searching for concentric low variance circles in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas

    2015-12-01

    In a recent paper, Gurzadyan & Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies, i.e., they are entirely consistent with the predictions of the standard cosmological model.

  15. Structure and other properties of Jupiter's distant magnetotail

    NASA Technical Reports Server (NTRS)

    Lepping, R. P.; Desch, M. D.; Klein, L. W.; Sittler, E. C., Jr.; Sullivan, J. D.; Kurth, W. S.; Behannon, K. W.

    1983-01-01

    Analyses of data from Voyager 2 experiments provide evidence for, and characteristics of, a Jovian magnetotail extending at least to 9,000 Jovian radii from the planet. During approximately (25 day) periodic sightings of the tail, the magnetic field tended to point radially towards or away from Jupiter, indicating preservation to large distances of the bipolar, lobe like structure observed near the planet. This periodicity, along with various properties of the solar wind at this time, indicates that the tail is apparently influenced by recurrent solar wind features. Anomalous magnetic fields, not aligned with the nominal tail axis, also exist within the tail, especially in the low density, central (core) region, indicating some complexity of internal structure.

  16. Anomalous magnetic behavior of Sm0.8Ca0.2MnO3 nanoparticles.

    PubMed

    Mogilyansky, D; Fita, I; Wisniewski, A; Markovich, V; Puzniak, R; Gorodetsky, G

    2012-11-01

    Magnetic properties of compacted Sm0.8Ca0.2MnO3 (SCMO) particles with average particle size of 23-100 nm, prepared by the glycine-nitrate method, have been investigated. It was found that the relative volume of the ferromagnetic phase decreases with decreasing particle size. Curves of field cooled and zero filed cooled magnetization (M(ZFC)) exhibit a bifurcation just below the Curie temperature (T(c) approximately 55-64 K) for all particles studied. The field dependence of M(ZFC) peak follows de Almeida-Thouless line. Both features are characteristic of spin-glasses (SG). Measurements of ac-susceptibility in the temperature range 5-300 K and the frequency range f = 10 Hz-10 kHz show a sharp peak for both real and imaginary components in the vicinity of T(c), apparently attributed to the Hopkinson effect. A second small peak is seemingly associated with antiferromagnetic or ferrimagnetic ordering. Though, for smaller particles both peaks depend on frequency, no shift to higher temperatures with increasing f, characteristic for SG systems, was observed. The dissimilarity in magnetic properties and dynamic characteristics observed for SCMO and for La0.8Ca0.2MnO3 nanoparticles is discussed, taking into account a difference in the width of the band and the strength of double exchange and interparticle interactions.

  17. Log-correlated random-energy models with extensive free-energy fluctuations: Pathologies caused by rare events as signatures of phase transitions

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Fyodorov, Yan V.; Le Doussal, Pierre

    2018-02-01

    We address systematically an apparent nonphysical behavior of the free-energy moment generating function for several instances of the logarithmically correlated models: the fractional Brownian motion with Hurst index H =0 (fBm0) (and its bridge version), a one-dimensional model appearing in decaying Burgers turbulence with log-correlated initial conditions and, finally, the two-dimensional log-correlated random-energy model (logREM) introduced in Cao et al. [Phys. Rev. Lett. 118, 090601 (2017), 10.1103/PhysRevLett.118.090601] based on the two-dimensional Gaussian free field with background charges and directly related to the Liouville field theory. All these models share anomalously large fluctuations of the associated free energy, with a variance proportional to the log of the system size. We argue that a seemingly nonphysical vanishing of the moment generating function for some values of parameters is related to the termination point transition (i.e., prefreezing). We study the associated universal log corrections in the frozen phase, both for logREMs and for the standard REM, filling a gap in the literature. For the above mentioned integrable instances of logREMs, we predict the nontrivial free-energy cumulants describing non-Gaussian fluctuations on the top of the Gaussian with extensive variance. Some of the predictions are tested numerically.

  18. Lunar and Planetary Science XXXVI, Part 3

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics discussed include: Characterization of Non-Organized Soils at Gusev Crater with the Spirit Rover Data; Searching for Life with Rovers: Exploration Methods & Science Results from the 2004 Field Campaign of the "Life in the Atacama" Project and Applications to Future Mars Missions; Analysis of the Lunar Surface with Global Mineral and Mg-Number Maps ALH77005: The Magmatic History from Rehomogenized Melt Inclusions; New 70-cm Radar Mapping of the Moon; Cryptomare Deposits Revealed by 70-cm Radar; Construction of a PZT Sensor Network for Low and Hypervelocity Impact Detection; Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps; Physical Properties of Volcanic Deposits on Venus from Radar Polarimetry; Science Alert Demonstration with a Rover Traverse Science Data Analysis System; Earth and Mars, Similar Features and Parallel Lives? Didactic Activities; Expected Constraints on Rhea s Interior from Cassini; Microbially Induced Precipitates: Examples from CO3, Si-, Mn- and Fe-rich Deposits; Li, B - Behavior in Lunar Basalts During Shock and Thermal Metamorphism: Implications for H2O in Martian Magmas; Evaluation of CO Self-Shielding as a Possible Mechanism for Anomalous Oxygen Isotopic Composition of Early Solar System Materials; Effect of Ground Ice on Apparent Thermal Inertia on Mars; Utah Marbles and Mars Blueberries: Comparative Terrestrial Analogs for Hematite Concretions on Mars; Newly Discovered Meteor Crater Metallic Impact Spherules: Report and Implications; and Evidence of Very Young Glacial Processes in Central Candor Chasma, Mars.

  19. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    NASA Astrophysics Data System (ADS)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  20. Acceleration and Propagation of Anomalous Cosmic Rays and Near-Relativistic Electrons in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2017-12-01

    Voyager 1/2 LECP observations at the termination shock (TS) crossings established that energetic ions (40keV-1MeV) appeared to be locally accelerated "termination shock particles", and since then have exhibited remarkably steady and similar intensities at both spacecraft throughout the heliosheath (HS). On the other hand, the anomalous cosmic rays (ACRs, 4-80 MeV total energy H, He, and O ions) increased more or less steadily across the shock and then gradually peaked years later. All the time in the HS, the ACRs at each spacecraft exhibited a striking "common spectrum", i.e., closely similar intensity histories when ordered by total energy. Near-relativistic electrons (30 keV-1 MeV) exhibited seemingly mutually inconsistent behavior while the two Voyagers transited the shock and HS, with the VGR2 electrons peaking at the shock, but later disappearing for a year (in 2010) and then slowly recovering, as opposed to the less variable VGR1 electrons whose remarkably smooth time history (2008-2012) was very similar to the VGR1 ACRs. Consequently, shock acceleration seems to be operating locally at the TS along with another spatially distributed acceleration/transport mechanism within the HS. The "reservoir" equation (Roelof, AIP Conf. Proc., 1500, 174-179 and 180-184, 2012) offers quantitative explanations for many of these apparently disparate observations. Meso-scale gradients and curvatures in the magnetic field produce transverse transport of energetic particles and (in direct consequence) "transverse compressive" acceleration that relates the fractional rate of momentum d(lnp)/dt=-(1/3)div(Vperp) to the divergence of the component of the plasma velocity transverse to the magnetic field. However, this acceleration rate must compete with the extinction rate of singly-charged ions due to charge exchange with the cold interstellar neutral H-atoms that permeate the HS. The agreement of the Voyager 1/2 LECP observations with the acceleration/extinction processes has significant implications for the large-scale configuration of the magnetic field and plasma flow throughout the HS.

  1. Toward establishing a definitive Late-Mid Jurassic (M-series) Geomagnetic Polarity Reversal Time Scale through unraveling the nature of Jurassic Quiet Zone.

    NASA Astrophysics Data System (ADS)

    Tominaga, M.; Tivey, M.; Sager, W.

    2017-12-01

    Two major difficulties have hindered improving the accuracy of the Late-Mid Jurassic geomagnetic polarity time scale: a dearth of reliable high-resolution radiometric dates and the lack of a continuous Jurassic geomagnetic polarity time scale (GPTS) record. We present the latest effort towards establishing a definitive Mid Jurassic to Early Cretaceous (M-series) GPTS model using three high-resolution, multi-level (sea surface [0 km], mid-water [3 km], and near-source [5.2 km]) marine magnetic profiles from a seamount-free corridor adjacent to the Waghenaer Fracture Zone in the western Pacific Jurassic Quiet Zone (JQZ). The profiles show a global coherency in magnetic anomaly correlations between two mid ocean ridge systems (i.e., Japanese and Hawaiian lineations). Their unprecedented high data resolution documents a detailed anomaly character (i.e., amplitudes and wavelengths). We confirm that this magnetic anomaly record shows a coherent anomaly sequence from M29 back in time to M42 with previously suggested from the Japanese lineation in the Pigafetta Basin. Especially noticeable is the M39-M41 Low Amplitude Zone defined in the Pigafetta Bsin, which potentially defines the bounds of JQZ seafloor. We assessed the anomaly source with regard to the crustal architecture, including the effects of Cretaceous volcanism on crustal magnetization and conclude that the anomaly character faithfully represents changes in geomagnetic field intensity and polarity over time and is mostly free of any overprint of the original Jurassic magnetic remanence by later Cretaceous volcanism. We have constructed polarity block models (RMS <5 nT [normalized] between observed and calculated profiles) for each of the survey lines, yielding three potential GPTS candidate models with different source-to-sensor resolutions, from M19-M38, which can be compared to currently available magnetostratigraphic records. The overall polarity reversal rates calculated from each of the models are anomalously high, which is consistent with previous observations from the Japanese M-series sequence. The anomalously high reversal rates during a period of apparent low field intensity suggests a unique period of geomagnetic field behavior in Earth's history.

  2. ENSO modulation of seasonal rainfall and extremes in Indonesia

    NASA Astrophysics Data System (ADS)

    Supari; Tangang, Fredolin; Salimun, Ester; Aldrian, Edvin; Sopaheluwakan, Ardhasena; Juneng, Liew

    2017-12-01

    This paper provides a detailed description of how ENSO events affect seasonal and extreme precipitation over Indonesia. Daily precipitation data from 97 stations across Indonesia covering the period from 1981 to 2012 were used to investigate the effects of El Niño and La Niña on extreme precipitation characteristics including intensity, frequency and duration, as defined based on a subset of the Expert Team on Climate Change Detection and Indices (ETCCDI). Although anomalous signals in these three indices were consistent with those of total rainfall, anomalies in the duration of extremes [i.e., consecutive dry days (CDD) and consecutive wet days (CWD)] were much more robust. El Niño impacts were particularly prominent during June-July-August (JJA) and September-October-November (SON), when anomalously dry conditions were experienced throughout the country. However, from SON, a wet anomaly appeared over northern Sumatra, later expanding eastward during December-January-February (DJF) and March-April-May (MAM), creating contrasting conditions of wet in the west and dry in the east. We attribute this apparent eastward expansion of a wet anomaly during El Niño progression to the equatorial convergence of two anti-cyclonic circulations, one residing north of the equator and the other south of the equator. These anti-cyclonic circulations strengthen and weaken according to seasonal changes and their coupling with regional seas, hence shaping moisture transport and convergence. During La Niña events, the eastward expansion of an opposite (i.e., dry) anomaly was also present but less prominent than that of El Niño. We attribute this to differences in regional ocean—atmosphere coupling, which result in the contrasting seasonal evolution of the two corresponding anomalous cyclonic circulations and in turn suggests the strong nonlinearity of El Niño and La Niña responses over the Maritime Continent. Based on the seasonal behaviour of anomalous CDD and CWD, we propose five sub-divisions of the Indonesian region for both El Niño and La Niña.

  3. Long-Term Memory: A Natural Mechanism for the Clustering of Extreme Events and Anomalous Residual Times in Climate Records

    NASA Astrophysics Data System (ADS)

    Bunde, Armin; Eichner, Jan F.; Kantelhardt, Jan W.; Havlin, Shlomo

    2005-01-01

    We study the statistics of the return intervals between extreme events above a certain threshold in long-term persistent records. We find that the long-term memory leads (i)to a stretched exponential distribution of the return intervals, (ii)to a pronounced clustering of extreme events, and (iii)to an anomalous behavior of the mean residual time to the next event that depends on the history and increases with the elapsed time in a counterintuitive way. We present an analytical scaling approach and demonstrate that all these features can be seen in long climate records. The phenomena should also occur in heartbeat records, Internet traffic, and stock market volatility and have to be taken into account for an efficient risk evaluation.

  4. Two-dimensional lattice-fluid model with waterlike anomalies.

    PubMed

    Buzano, C; De Stefanis, E; Pelizzola, A; Pretti, M

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  5. Anomalous behavior of curves of pseudo-elastic deformation of Ni-Fe-Ga-Co alloy crystals as a result of interphase stresses

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Nikolaev, V. I.; Averkin, A. I.; Zograf, A. P.

    2016-12-01

    The compression diagram of Ni49Fe18Ga27Co6 alloy crystals in the [011] direction was studied until full shape memory strain at various temperatures in the range of 259-340 K. It is found that all load curves are anomalously shaped and contain portions of sharp and gradual decreases in deformation stresses. Simulation of pseudo-elastic stress-strain curves within the theory of diffuse martensitic transitions, describing not only equilibrium of phases, but also the kinetics of the transition between them, shows that elastic interphase stresses during martensitic reactions Ll 2 → 14 M and 14 M → Ll 0 characteristic of this alloy can be responsible for the extraordinary shape of compression diagrams.

  6. Enhanced densification under shock compression in porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Thompson, Aidan P.; Vogler, Tracy J.

    2014-10-01

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. We demonstrate a molecular mechanism that drives this behavior. We also present evidence from atomistic simulation that silicon belongs to this anomalous class of materials. Atomistic simulations indicate that local shear strain in the neighborhood of collapsing pores nucleates a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  7. Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating.

    PubMed

    Yang, Liu; Kou, Pengfei; He, Nan; Dai, Hao; He, Sailing

    2017-06-26

    A facile polymethyl methacrylate-assisted turnover-transfer approach is developed to fabricate uniform hexagonal gold nanobowl arrays. The bare array shows inferior light trapping ability compared to its inverted counterpart (a gold nanospherical shell array). Surprisingly, after being coated with a 60-nm thick amorphous silicon film, an anomalous light trapping enhancement is observed with a significantly enhanced average absorption (82%), while for the inverted nanostructure, the light trapping becomes greatly weakened with an average absorption of only 66%. Systematic experimental and theoretical results show that the main reason for the opposite light trapping behaviors lies in the top amorphous silicon coating, which plays an important role in mediating the excitation of surface plasmon polaritons and the electric field distributions in both nanostructures.

  8. Fractional Brownian motion with a reflecting wall

    NASA Astrophysics Data System (ADS)

    Wada, Alexander H. O.; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior ˜tα , the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α >1 , the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α <1 , in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  9. How anomalous is the interstellar extinction in NGC 3372, the Carina Nebula?

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Roth, M.; Marraco, H.; Ruiz, M. T.

    Near-infrared JHKL photometry of more than 200 stars in the open clusters Tr 14, Tr 15, Tr 16, Cr 228, and Cr 232 in the Carina Nebula is presented. By comparing these results with the available visual photometry and spectroscopy, it is found that the intracluster reddening is characterized, except in Tr 15, by a 'normal' extinction law for lambda greater than 0.5 micron, but is highly anomalous and variable in the U and B bands. Provisional two-color visual polarimetry suggests that the wavelength of maximum polarization is similar to that in the general interstellar medium. This behavior may be explained by the presence of intracluster interstellar grains 'processed' by the passage of shock waves, presumably associated with the violent history of Eta Carinae.

  10. Anomalous Nonlocal Resistance and Spin-Charge Conversion Mechanisms in Two-Dimensional Metals

    NASA Astrophysics Data System (ADS)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2017-09-01

    We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. First, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Second, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (the Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin-diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and they may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.

  11. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  12. Weakly sheared active suspensions: hydrodynamics, stability, and rheology.

    PubMed

    Cui, Zhenlu

    2011-03-01

    We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.

  13. Anomalous Gray Matter Patterns in Specific Reading Comprehension Deficit Are Independent of Dyslexia

    ERIC Educational Resources Information Center

    Bailey, Stephen; Hoeft, Fumiko; Aboud, Katherine; Cutting, Laurie

    2016-01-01

    Specific reading comprehension deficit (SRCD) affects up to 10 % of all children. SRCD is distinct from dyslexia (DYS) in that individuals with SRCD show poor comprehension despite adequate decoding skills. Despite its prevalence and considerable behavioral research, there is not yet a unified cognitive profile of SRCD. While its neuroanatomical…

  14. Anomalous creep in Sn-rich solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ho Geon; Morris Jr., John W.; Hua, Fay

    2002-03-15

    This paper discusses the creep behavior of example Sn-rich solders that have become candidates for use in Pb-free solder joints. The specific solders discussed are Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-0.7Cu and Sn-10In-3.1Ag, used in thin joints between Cu and Ni-Au metallized pads.

  15. Picosecond solvation dynamics—A potential viewer of DMSO—Water binary mixtures

    NASA Astrophysics Data System (ADS)

    Banik, Debasis; Kundu, Niloy; Kuchlyan, Jagannath; Roy, Arpita; Banerjee, Chiranjib; Ghosh, Surajit; Sarkar, Nilmoni

    2015-02-01

    In this work, we have investigated the composition dependent anomalous behavior of dimethyl sulfoxide (DMSO)-water binary mixture by collecting the ultrafast solvent relaxation response around a well known solvation probe Coumarin 480 (C480) by using a femtosecond fluorescence up-conversion spectrometer. Recent molecular dynamics simulations have predicted two anomalous regions of DMSO-water binary mixture. Particularly, these studies encourage us to investigate the anomalies from experimental background. DMSO-water binary mixture has repeatedly given evidences of its dual anomalous nature in front of our systematic investigation through steady-state and time-resolved measurements. We have calculated average solvation times of C480 by two individual well-known methods, among them first one is spectral-reconstruction method and another one is single-wavelength measurement method. The results of both the methods roughly indicate that solvation time of C480 reaches maxima in the mole fraction of DMSO XD = 0.12-0.17 and XD = 0.27-0.35, respectively. Among them, the second region (XD = 0.27-0.35) is very common as most of the thermodynamic properties exhibit deviation in this range. Most probably, the anomalous solvation trend in this region is fully guided by the shear viscosity of the medium. However, the first region is the most interesting one. In this region due to formation of strongly hydrogen bonded 1DMSO:2H2O complexes, hydration around the probe C480 decreases, as a result of which solvation time increases.

  16. Interpretation of VLF-EM & VLF-R data using tipper and impedance analyses: A case study from Candi Umbul-Telomoyo, Magelang, Indonesia

    NASA Astrophysics Data System (ADS)

    Prastyani, Erina; Niasari, Sintia Windhi

    2017-07-01

    The goal of all geophysical survey techniques is to image the properties of the Earth's subsurface. Very Low Frequency (VLF) is one of the geophysical survey technique that has been commonly used for ore exploration and mapping faults or fracture zones. Faults or fracture zones are necessary components in providing the fluid pathway in geothermal systems. The Candi Umbul-Telomoyo is one of the geothermal prospect sites in Indonesia, which is located in Magelang, Central Java. Recent studies hypothesized that this site was an outflow area of Telomoyo volcano geothermal complex. We used the VLF-EM and VLF-R techniques to infer faults or fracture zones that might be a path for geothermal fluids in the Candi Umbul-Telomoyo. From the measurements, we got tilt angle, ellipticity, primary and secondary magnetic fieldfor VLF-EM data; and apparent resistivity, phase angle, electric and magnetic field for VLF-R data. To interpret the data, we used tipper and impedance analyses. The result of both analyses show similarities in the directions and positions of anomalous current concentrations. We conclude these anomalous current concentrations as faults. Our interpretation is agreeing with the Geologic Map of the Semarang and Magelang Quadrangles that shows the expected fault beneath the Mt. Telomoyo.

  17. Magnetic Resonance Imaging of Tissues Compatible with Supernumerary Extraocular Muscles

    PubMed Central

    Khitri, Monica R.; Demer, Joseph L.

    2010-01-01

    PURPOSE To determine by magnetic resonance imaging (MRI) the prevalence and anatomy of anomalous EOM bands. DESIGN Prospective, observational case series. METHODS High resolution, multi-positional, surface coil orbital MRI was performed using T1 or T2 fast spin echo weighting with target fixation control under a prospective protocol in normal adult subjects and a diverse group of strabismic patients between 1996 and 2009. Images demonstrating anomalous EOM bands were analyzed digitally to evaluate their sizes and paths, correlating findings with complete ophthalmic and motility examinations. RESULTS Among 118 orthotropic and 453 strabismic subjects, one (0.8%) orthotropic and 11 (2.4%) strabismic subjects exhibited unilateral or bilateral orbital bands having MRI signal characteristics identical to EOM. Most bands occurred without other EOM dysplasia and coursed in the retrobulbar space between rectus EOMs such as medial (MR) to lateral rectus (LR), or superior (SR) to inferior rectus (IR), or from one EOM to the globe. In two cases, horizontal bands from MR to LR immediately posterior to the globe apparently limited supraduction by collision with the optic nerve. All bands were too deep to be approached via conventional strabismus surgical approaches. CONCLUSIONS About 2% of humans exhibit on MRI deep orbital bands consistent with supernumerary EOMs. While band anatomy is non-oculorotary, some bands may cause restrictive strabismus. PMID:20801423

  18. Role of helical edge modes in the chiral quantum anomalous Hall state.

    PubMed

    Mani, Arjun; Benjamin, Colin

    2018-01-22

    Although indications are that a single chiral quantum anomalous Hall(QAH) edge mode might have been experimentally detected. There have been very many recent experiments which conjecture that a chiral QAH edge mode always materializes along with a pair of quasi-helical quantum spin Hall (QSH) edge modes. In this work we deal with a substantial 'What If?' question- in case the QSH edge modes, from which these QAH edge modes evolve, are not topologically-protected then the QAH edge modes wont be topologically-protected too and thus unfit for use in any applications. Further, as a corollary one can also ask if the topological-protection of QSH edge modes does not carry over during the evolution process to QAH edge modes then again our 'What if?' scenario becomes apparent. The 'how' of the resolution of this 'What if?' conundrum is the main objective of our work. We show in similar set-ups affected by disorder and inelastic scattering, transport via trivial QAH edge mode leads to quantization of Hall resistance and not that via topological QAH edge modes. This perhaps begs a substantial reinterpretation of those experiments which purported to find signatures of chiral(topological) QAH edge modes albeit in conjunction with quasi helical QSH edge modes.

  19. Integrated electromagnetic (EM) and Electrical Resistivity Tomography (ERT) geophysical studies of environmental impact of Awotan dumpsite in Ibadan, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin

    2018-04-01

    This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.

  20. Critical behavior in graphene with Coulomb interactions.

    PubMed

    Wang, Jianhui; Fertig, H A; Murthy, Ganpathy

    2010-05-07

    We demonstrate that, in the presence of Coulomb interactions, electrons in graphene behave like a critical system, supporting power law correlations with interaction-dependent exponents. An asymptotic analysis shows that the origin of this behavior lies in particle-hole scattering, for which the Coulomb interaction induces anomalously close approaches. With increasing interaction strength the relevant power law changes from real to complex, leading to an unusual instability characterized by a complex-valued susceptibility in the thermodynamic limit. Measurable quantities, as well as the connection to classical two-dimensional systems, are discussed.

  1. Analog of small Holstein polaron in hydrogen-bonded amide systems

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.

    1985-01-01

    A class of amide-I (C = O stretch) related excitations and their contribution to the spectral function for infrared absorption is determined by use of the Davydov Hamiltonian. The treatment is a fully quantum, finite-temperature one. A consistent picture and a quantitative fit to the absorption data for crystalline acetanilide confirms that the model adequately explains the anomalous behavior cited by Careri et al. The localized excitation responsible for this behavior is the vibronic analog of the small Holstein polaron. The possible extension to other modes and biological relevance is examined.

  2. Crossover from ballistic to normal heat transport in the ϕ4 lattice: If nonconservation of momentum is the reason, what is the mechanism?

    NASA Astrophysics Data System (ADS)

    Xiong, Daxing; Saadatmand, Danial; Dmitriev, Sergey V.

    2017-10-01

    Anomalous (non-Fourier) heat transport is no longer just a theoretical issue since it has been observed experimentally in a number of low-dimensional nanomaterials, such as SiGe nanowires, carbon nanotubes, and others. To understand these anomalous behaviors, exploring the microscopic origin of normal (Fourier) heat transport is a fascinating theoretical topic. However, this issue has not yet been fully understood even for one-dimensional (1D) model chains, in spite of a great amount of thorough studies done to date. From those studies, it has been widely accepted that the conservation of momentum is a key ingredient to induce anomalous heat transport, while momentum-nonconserving systems usually support normal heat transport where Fourier's law is valid. But if the nonconservation of momentum is the reason, what is the underlying microscopic mechanism for the observed normal heat transport? Here we carefully revisit a typical 1D momentum-nonconserving ϕ4 model, and we present evidence that the mobile discrete breathers, or, in other words, the moving intrinsic localized modes with frequency components above the linear phonon band, can be responsible for that.

  3. Glass dynamics and anomalous aging in a family of ionic liquids above the glass transition temperature.

    PubMed

    Shamim, Nabila; McKenna, Gregory B

    2010-12-09

    The present paper reports the results of a systematic rheological study of the dynamic moduli of 1-butyl 3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl 3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-ethyl 3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) in the vicinity of their respective glass transition temperatures. The results show an anomalous aging in that the dynamic and the low shear rate viscosities decrease with time at temperatures near to, but above, the glass transition temperature, and this is described. The samples that are aged into equilibrium obey the time-temperature superposition principle, and the shift factors and the viscosities follow classic super-Arrhenius behaviors with intermediate fragility values as the glass transition is approached. Similar experiments using a high-purity [Bmim][BF(4)] show that using a higher purity of the ionic liquid, while changing absolute values of the properties, does not eliminate the anomalous aging response. The data are also analyzed in a fashion similar to that used for polymer melts, and we find that these ionic liquids do not follow, for example, the Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity.

  4. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe3 -xGeTe2

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; Petrovic, C.

    2018-04-01

    We report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe3 -xGeTe2 (x ≈0.36 ) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρx y/μ0Heff and longitudinal resistivity ρxx 2M /μ0Heff implies that the AHE in Fe3 -xGeTe2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear-M Hall conductivity σxy A below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.

  5. Creep properties of Pb-free solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H.G.; Morris Jr., J.W.; Hua, F.

    2002-04-01

    Describes the creep behavior of three Sn-rich solders that have become candidates for use in Pb-free solder joints: Sn-3.5Ag, Sn-3Ag-0.5Cu and Sn-0.7Cu. The three solders show the same general behavior when tested in thin joints between Cu and Ni/Au metallized pads at temperatures between 60 and 130 C. Their steady-state creep rates are separated into two regimes with different stress exponents(n). The low-stress exponents range from {approx}3-6, while the high-stress exponents are anomalously high (7-12). Strikingly, the high-stress exponent has a strong temperature dependence near room temperature, increasing significantly as the temperature drops from 95 to 60 C. The anomalousmore » creep behavior of the solders appears to be due to the dominant Sn constituent. Joints of pure Sn have stress exponents, n, that change with stress and temperature almost exactly like those of the Sn-rich solder joints. Research on creep in bulk samples of pure Sn suggests that the anomalous temperature dependence of the stress exponent may show a change in the dominant mechanism of creep. Whatever its source, it has the consequence that conventional constitutive relations for steady-state creep must be used with caution in treating Sn-rich solder joints, and qualification tests that are intended to verify performance should be carefully designed.« less

  6. Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-01-01

    Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.

  7. Interface-Dependent Effective Mobility in Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Ahlberg, Patrik; Hinnemo, Malkolm; Zhang, Shi-Li; Olsson, Jörgen

    2018-03-01

    By pretreating the substrate of a graphene field-effect transistor (G-FET), a stable unipolar transfer characteristic, instead of the typical V-shape ambipolar behavior, has been demonstrated. This behavior is achieved through functionalization of the SiO2/Si substrate that changes the SiO2 surface from hydrophilic to hydrophobic, in combination with postdeposition of an Al2O3 film by atomic layer deposition (ALD). Consequently, the back-gated G-FET is found to have increased apparent hole mobility and suppressed apparent electron mobility. Furthermore, with addition of a top-gate electrode, the G-FET is in a double-gate configuration with independent top- or back-gate control. The observed difference in mobility is shown to also be dependent on the top-gate bias, with more pronounced effect at higher electric field. Thus, the combination of top and bottom gates allows control of the G-FET's electron and hole mobilities, i.e., of the transfer behavior. Based on these observations, it is proposed that polar ligands are introduced during the ALD step and, depending on their polarization, result in an apparent increase of the effective hole mobility and an apparent suppressed effective electron mobility.

  8. Searching for concentric low variance circles in the cosmic microwave background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAbreu, Adam; Contreras, Dagoberto; Scott, Douglas, E-mail: adeabreu@sfu.ca, E-mail: dagocont@phas.ubc.ca, E-mail: dscott@phas.ubc.ca

    In a recent paper, Gurzadyan and Penrose claim to have found directions in the sky around which there are multiple concentric sets of annuli with anomalously low variance in the cosmic microwave background (CMB). These features are presented as evidence for a particular theory of the pre-Big Bang Universe. We are able to reproduce the analysis these authors presented for data from the WMAP satellite and we confirm the existence of these apparently special directions in the newer Planck data. However, we also find that these features are present at the same level of abundance in simulated Gaussian CMB skies,more » i.e., they are entirely consistent with the predictions of the standard cosmological model.« less

  9. SAGE II observations of a previously unreported stratospheric volcanic aerosol cloud in the northern polar summer of 1990

    NASA Technical Reports Server (NTRS)

    Yue, Glenn K.; Veiga, Robert E.; Wang, Pi-Huan

    1994-01-01

    Analysis of aerosol extinction profiles obtained by the spaceborne SAGE II sensor reveals that there was an anomalous increase of aerosol extinction below 18.5 km at latitudes poleward of 50 deg N from July 28 to September 9, 1990. This widespread increase of aerosol extinction in the lower stratosphere was apparently due to a remote high-latitude volcanic eruption that has not been reported to date. The increase in stratospheric optical depth in the northern polar region was about 50% in August and had diminished by October 1990. This eruption caused an increase in stratospheric aerosol mass of about 0.33 x 10(exp 5) tons, assuming the aerosol was composed of sulfuric acid and water.

  10. The Outer Heliosphere: Solar Wind, Cosmic Ray and VLF Radio Emission Variations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.

    1995-01-01

    The Voyager 1 and 2 spacecraft now 45 astronomical units (AU) from Earth continue to monitor the outer heliosphere field and particles environment on a daily basis during their journey to the termination shock of the solar wind. Strong transient shocks continue to be detected in the solar wind plasma. The largest of these are associated with Global Merged Interaction Regions (GMIR's) which, in turn, block cosmic ray entry into the inner heliosphere and are apparently responsible for triggering the two major episodes of VLF radio emissions now thought to come from the heliopause. Distance estimates to the termination shock are consistent with those determined from observations of anomalous cosmic rays. Current observations and implications for heliospheric structure are discussed.

  11. Antarctic aerosols - A review

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  12. Efficient near-infrared up-conversion photoluminescence in carbon nanotubes

    PubMed Central

    Akizuki, Naoto; Aota, Shun; Mouri, Shinichiro; Matsuda, Kazunari; Miyauchi, Yuhei

    2015-01-01

    Photoluminescence phenomena normally obey Stokes' law of luminescence according to which the emitted photon energy is typically lower than its excitation counterparts. Here we show that carbon nanotubes break this rule under one-photon excitation conditions. We found that the carbon nanotubes exhibit efficient near-infrared photoluminescence upon photoexcitation even at an energy lying >100–200 meV below that of the emission at room temperature. This apparently anomalous phenomenon is attributed to efficient one-phonon-assisted up-conversion processes resulting from unique excited-state dynamics emerging in an individual carbon nanotube with accidentally or intentionally embedded localized states. These findings may open new doors for energy harvesting, optoelectronics and deep-tissue photoluminescence imaging in the near-infrared optical range. PMID:26568250

  13. Anomalous Hydrodynamic Drafting of Interacting Flapping Flags

    NASA Astrophysics Data System (ADS)

    Ristroph, Leif; Zhang, Jun

    2008-11-01

    In aggregates of objects moving through a fluid, bodies downstream of a leader generally experience reduced drag force. This conventional drafting holds for objects of fixed shape, but interactions of deformable bodies in a flow are poorly understood, as in schools of fish. In our experiments on “schooling” flapping flags, we find that it is the leader of a group who enjoys a significant drag reduction (of up to 50%), while the downstream flag suffers a drag increase. This counterintuitive inverted drag relationship is rationalized by dissecting the mutual influence of shape and flow in determining drag. Inverted drafting has never been observed with rigid bodies, apparently due to the inability to deform in response to the altered flow field of neighbors.

  14. Thermal Expansion: Using Calculator-Based Laboratory Technology to Observe the Anomalous Behavior of Water

    ERIC Educational Resources Information Center

    Branco, Mario; Soletta, Isabella

    2005-01-01

    An experiment that consists of following the changes in temperature at different depths in a precooled liquid while the liquid slowly warms up to the temperature of the surrounding environment is presented. The experiment might be used in a course on temperature, on heat transmission, and in particular in the study of convection currents.

  15. An Extreme-Value Approach to Anomaly Vulnerability Identification

    NASA Technical Reports Server (NTRS)

    Everett, Chris; Maggio, Gaspare; Groen, Frank

    2010-01-01

    The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.

  16. The phase diagram of ammonium nitrate.

    PubMed

    Chellappa, Raja S; Dattelbaum, Dana M; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-14

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH(4)NO(3)] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  17. The phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Velisavljevic, Nenad; Sheffield, Stephen

    2012-08-01

    The pressure-temperature (P-T) phase diagram of ammonium nitrate (AN) [NH4NO3] has been determined using synchrotron x-ray diffraction (XRD) and Raman spectroscopy measurements. Phase boundaries were established by characterizing phase transitions to the high temperature polymorphs during multiple P-T measurements using both XRD and Raman spectroscopy measurements. At room temperature, the ambient pressure orthorhombic (Pmmn) AN-IV phase was stable up to 45 GPa and no phase transitions were observed. AN-IV phase was also observed to be stable in a large P-T phase space. The phase boundaries are steep with a small phase stability regime for high temperature phases. A P-V-T equation of state based on a high temperature Birch-Murnaghan formalism was obtained by simultaneously fitting the P-V isotherms at 298, 325, 446, and 467 K, thermal expansion data at 1 bar, and volumes from P-T ramping experiments. Anomalous thermal expansion behavior of AN was observed at high pressure with a modest negative thermal expansion in the 3-11 GPa range for temperatures up to 467 K. The role of vibrational anharmonicity in this anomalous thermal expansion behavior has been established using high P-T Raman spectroscopy.

  18. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels

    NASA Astrophysics Data System (ADS)

    Wang, Jiuling; Yang, Yiwei; Yu, Miaorong; Hu, Guoqing; Gan, Yong; Gao, Huajian; Shi, Xinghua

    2018-03-01

    It is known that rod-like nanoparticles (NPs) can achieve higher diffusivity than their spherical counterparts in biological porous media such as mucus and tumor interstitial matrix, but the underlying mechanisms still remain elusive. Here, we present a joint experimental and theoretical study to show that the aspect ratio (AR) of NPs and their adhesive interactions with the host medium play key roles in such anomalous diffusion behaviors of nanorods. In an adhesive polymer solution/gel (e.g., mucus), hopping diffusion enables nanorods to achieve higher diffusivity than spherical NPs with diameters equal to the minor axis of the rods, and there exists an optimal AR that leads to maximum diffusivity. In contrast, the diffusivity of nanorods decreases monotonically with increasing AR in a non-adhesive polymer solution/gel (e.g., hydroxyethyl cellulose, HEC). Our theoretical model, which captures all the experimental observations, generalizes the so-called obstruction-scaling model by incorporating the effects of the NPs/matrix interaction via the mean first passage time (MFPT) theory. This work reveals the physical origin of the anomalous diffusion behaviors of rod-like NPs in biological gels and may provide guidelines for a range of applications that involve NPs diffusion in complex porous media.

  19. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Renzhong; Sun, Gang; Xu, Limei, E-mail: limei.xu@pku.edu.cn

    A group of materials including water and silicon exhibit many anomalous behaviors, e.g., density anomaly and diffusivity anomaly (increase upon compression). These materials are hypothesized to have a liquid-liquid phase transition (LLPT) and the critical fluctuation in the vicinity of the liquid-liquid critical point is considered as the origin of different anomalies. Liquid gallium was also reported to have a LLPT, yet whether it shows similar water-like anomalies is not yet studied. Using molecular dynamics simulations on a modified embedded-atom model, we study the thermodynamic, dynamic, and structural properties of liquid gallium as well as its LLPT. We find that,more » similar to water-like materials predicted to have the LLPT, gallium also shows different anomalous behaviors (e.g., density anomaly, diffusivity anomaly, and structural anomaly). We also find that its thermodynamic and structural response functions are continuous and show maxima in the supercritical region, the loci of which asymptotically approach to the other and merge to the Widom line. These phenomena are consistent with the supercritical phenomenon in a category of materials with a liquid-liquid critical point, which could be common features in most materials with a LLPT.« less

  1. Explanation of the conductivity minimum in tin- and tellurium-doped bismuth

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Banerjee, Dipali; Bhattacharya, Ramendranarayan

    1995-01-01

    The presence of a minimum observed in the variation of conductivity of bismuth with impurity concentrations at a constant temperature (4.2 K) has remained unexplained for a long time. An attempt to explain this anomalous behavior is reported here. In order to do so, a calculation has been made to find the change in the number of free carriers in bismuth with the addition of impurities (donors or acceptors). The calculation has been made using simple parabolic bands. It is known that when tin or tellurium atoms are added as impurities to bismuth all of the atoms are ionized. It has been found here that the number of free carriers initially shows a slow rate of decrease (for donors) or a slow rate of increase (for acceptors) as the impurity concentration is increased, as long as the impurity concentration is small, i.e., as long as the shift of the Fermi level is small. For a higher impurity concentration the number of carriers increases at a rate equal to that of the impurity concentration. This finding, combined with the scattering by impurity ions, could explain the anomalous behavior satisfactorily.

  2. Anomalous low temperature resistivity in CeCr0.8V0.2Ge3

    NASA Astrophysics Data System (ADS)

    Singh, Durgesh; Patidar, Manju Mishra; Mishra, A. K.; Krishnan, M.; Ganesan, V.

    2018-04-01

    Resistivity (8T) and heat capacity (0T) of CeCr0.8V0.2Ge3 at low temperatures and high magnetic fields are reported. Resistivity curve shows a Kondo like behavior at an anomalously high temperature of 250K. A broad peak at 20K is observed in resistivity. A sharp change in resistivity around 7.3K is due to magnetic ordering mediated by coherence effects. Similar low temperature peak is also observed in heat capacity around 7.2K. A small magnetic field of the order of 1T shifts the peak towards lower temperatures confirming the antiferromagnetic ordering. A broad feature, which appears in resistivity at 20K, is absent in heat capacity. This feature shift towards higher temperatures with magnetic field, and may be due to the partial ferromagnetic ordering or due to geometrical frustration which opposes the magnetic ordering. The system shows a moderate heavy fermion behavior with Sommerfeld coefficient (γ) of 111mJ/mol-K2. Debye temperature of the compound is 250K. Shifting of TN in magnetic fields towards 0K indicates a possibility of quantum criticality in this system.

  3. Anomalous stress response of ultrahard WB n compounds

    DOE PAGES

    Li, Quan; Zhou, Dan; Zheng, Weitao; ...

    2015-10-29

    Boron-rich tungsten borides are premier prototypes of a new class of ultrahard compounds. Here, we show by first-principles calculations that their stress-strain relations display surprisingly diverse and anomalous behavior under a variety of loading conditions. Most remarkable is the dramatically changing bonding configurations and deformation modes with rising boron concentration in WB n (n=2, 3, 4), resulting in significantly different stress responses and unexpected indentation strength variations. This novel phenomenon stems from the peculiar structural arrangements in tungsten borides driven by boron’s ability to form unusually versatile bonding states. Our results elucidate the intriguing deformation mechanisms that define a distinctmore » type of ultrahard material. Here, these new insights underscore the need to explore unconventional structure-property relations in a broad range of transition-metal light-element compounds.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vila, Fernando D.; Rehr, John J.; Nuzzo, Ralph G.

    Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show in this paper that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting themore » evolution of mean nanoparticle geometry. Finally, as a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.« less

  5. Anomalous Change of Hall Coefficient in Overdoped La2-xSrxCu1-yZnyO4 around x = 0.2

    NASA Astrophysics Data System (ADS)

    Tonishi, Jun; Suzuki, Takao; Goto, Takayuki

    2006-09-01

    The Hall coefficient (RH) has been measured in 0.5% Zn-doped La2-xSrxCu0.995Zn0.005O4 under high magnetic fields up to 12 T. With decreasing temperature, RH increases and begins to decrease below a temperature TRH. This characteristic temperature TRH has the local maximum around x = 0.195, and this Sr-concentration coincides with that the superconducting transition temperature is slightly suppressed. This behavior is quite similar to the phenomena observed in the stripe phase in x ˜ 0.12. These results suggest that the anomalous decrease of RH around x = 0.195 observed in this study is responsible for the "1/4"-anomaly [as reported by Kakinuma et al., Phys. Rev. B 59, 1491 (1999).].

  6. Anomalous doping of a molecular crystal monitored with confocal fluorescence microscopy: Terrylene in a p-terphenyl crystal

    NASA Astrophysics Data System (ADS)

    Białkowska, Magda; Deperasińska, Irena; Makarewicz, Artur; Kozankiewicz, Bolesław

    2017-09-01

    Highly terrylene doped single crystals of p-terphenyl, obtained by co-sublimation of both components, showed bright spots in the confocal fluorescence images. Polarization of the fluorescence excitation spectra, blinking and bleaching, and saturation behavior allowed us to attribute them to single molecules of terrylene anomalously embedded between two neighbor layers of the host crystal, in the (a,b) plane. Such an orientation of terrylene molecules results in much more efficient absorption and collection of the fluorescence photons than in the case of previously investigated molecules embedded in the substitution sites. The above conclusion was supported by quantum chemistry calculations. We postulate that the kind of doping considered in this work should be possible in other molecular crystals where the host molecules are organized in a herringbone pattern.

  7. Two-dimensional lattice-fluid model with waterlike anomalies

    NASA Astrophysics Data System (ADS)

    Buzano, C.; de Stefanis, E.; Pelizzola, A.; Pretti, M.

    2004-06-01

    We investigate a lattice-fluid model defined on a two-dimensional triangular lattice, with the aim of reproducing qualitatively some anomalous properties of water. Model molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three bonding arms. Bond formation depends both on orientation and local density. We work out phase diagrams, response functions, and stability limits for the liquid phase, making use of a generalized first order approximation on a triangle cluster, whose accuracy is verified, in some cases, by Monte Carlo simulations. The phase diagram displays one ordered (solid) phase which is less dense than the liquid one. At fixed pressure the liquid phase response functions show the typical anomalous behavior observed in liquid water, while, in the supercooled region, a reentrant spinodal is observed.

  8. Fractional Brownian motion with a reflecting wall.

    PubMed

    Wada, Alexander H O; Vojta, Thomas

    2018-02-01

    Fractional Brownian motion, a stochastic process with long-time correlations between its increments, is a prototypical model for anomalous diffusion. We analyze fractional Brownian motion in the presence of a reflecting wall by means of Monte Carlo simulations. Whereas the mean-square displacement of the particle shows the expected anomalous diffusion behavior 〈x^{2}〉∼t^{α}, the interplay between the geometric confinement and the long-time memory leads to a highly non-Gaussian probability density function with a power-law singularity at the barrier. In the superdiffusive case α>1, the particles accumulate at the barrier leading to a divergence of the probability density. For subdiffusion α<1, in contrast, the probability density is depleted close to the barrier. We discuss implications of these findings, in particular, for applications that are dominated by rare events.

  9. Anomalous critical slowdown at a first order phase transition in single polymer chains.

    PubMed

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I; Skvortsov, Alexander M; Yan, Dadong; Schmid, Friederike

    2017-08-14

    Using Brownian dynamics, we study the dynamical behavior of a polymer grafted onto an adhesive surface close to the mechanically induced adsorption-stretching transition. Even though the transition is first order (in the infinite chain length limit, the stretching degree of the chain jumps discontinuously), the characteristic relaxation time is found to grow according to a power law as the transition point is approached. We present a dynamic effective interface model which reproduces these observations and provides an excellent quantitative description of the simulation data. The generic nature of the theoretical model suggests that the unconventional mixing of features that are characteristic for first-order transitions (a jump in an order parameter) and features that are characteristic of critical points (an anomalous slowdown) may be a common phenomenon in force-driven phase transitions of macromolecules.

  10. Anomalous pressure dependence of thermal conductivities of large mass ratio compounds

    DOE PAGES

    Lindsay, Lucas R; Broido, David A.; Carrete, Jesus; ...

    2015-03-27

    The lattice thermal conductivities (k) of binary compound materials are examined as a function of hydrostatic pressure P using a first-principles approach. Compound materials with relatively small mass ratios, such as MgO, show an increase in k with P, consistent with measurements. Conversely, compounds with large mass ratios (e.g., BSb, BAs, BeTe, BeSe) exhibit decreasing with increasing P, a behavior that cannot be understood using simple theories of k. This anomalous P dependence of k arises from the fundamentally different nature of the intrinsic scattering processes for heat-carrying acoustic phonons in large mass ratio compounds compared to those with smallmore » mass ratios. We find this work demonstrates the power of first principles methods for thermal properties and advances the understanding of thermal transport in non-metals.« less

  11. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    NASA Astrophysics Data System (ADS)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  12. High-Field Fast-Risetime Pulse Failures in 4H- and 6H-SiC pn Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian

    1996-01-01

    We report the observation of anomalous reverse breakdown behavior in moderately doped (2-3 x 10(exp 17 cm(exp -3)) small-area micropipe-free 4H- and 6H-SiC pn junction diodes. When measured with a curve tracer, the diodes consistently exhibited very low reverse leakage currents and sharp repeatable breakdown knees in the range of 140-150 V. However, when subjected to single-shot reverse bias pulses (200 ns pulsewidth, 1 ns risetime), the diodes failed catastrophically at pulse voltages of less than 100 V. We propose a possible mechanism for this anomalous reduction in pulsed breakdown voltage relative to dc breakdown voltage. This instability must be removed so that SiC high-field devices can operate with the same high reliability as silicon power devices.

  13. The anomalous yield behavior of fused silica glass

    NASA Astrophysics Data System (ADS)

    Schill, W.; Heyden, S.; Conti, S.; Ortiz, M.

    2018-04-01

    We develop a critical-state model of fused silica plasticity on the basis of data mined from molecular dynamics (MD) calculations. The MD data is suggestive of an irreversible densification transition in volumetric compression resulting in permanent, or plastic, densification upon unloading. The MD data also reveals an evolution towards a critical state of constant volume under pressure-shear deformation. The trend towards constant volume is from above, when the glass is overconsolidated, or from below, when it is underconsolidated. We show that these characteristic behaviors are well-captured by a critical state model of plasticity, where the densification law for glass takes the place of the classical consolidation law of granular media and the locus of constant-volume states defines the critical-state line. A salient feature of the critical-state line of fused silica, as identified from the MD data, that renders its yield behavior anomalous is that it is strongly non-convex, owing to the existence of two well-differentiated phases at low and high pressures. We argue that this strong non-convexity of yield explains the patterning that is observed in molecular dynamics calculations of amorphous solids deforming in shear. We employ an explicit and exact rank-2 envelope construction to upscale the microscopic critical-state model to the macroscale. Remarkably, owing to the equilibrium constraint the resulting effective macroscopic behavior is still characterized by a non-convex critical-state line. Despite this lack of convexity, the effective macroscopic model is stable against microstructure formation and defines well-posed boundary-value problems.

  14. Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Ni, Feixiang; Lin, Lifeng; Lv, Wangyong; Zhu, Hongqiang

    2018-09-01

    In some complex viscoelastic mediums, it is ubiquitous that absorbing and desorbing surrounding Brownian particles randomly occur in coupled systems. The conventional method is to model a variable-mass system driven by both multiplicative and additive noises. In this paper, an improved mathematical model is created based on generalized Langevin equations (GLE) to characterize the random interaction with locally fluctuating number of coupled particles in the elastically coupled factional Brownian motors (FBM). By the numerical simulations, the effect of fluctuating interactions on collective transport behaviors is investigated, and some abnormal phenomena, such as cooperative behaviors, stochastic resonance (SR) and anomalous transport, are observed in the regime of sub-diffusion.

  15. The Anomalous Hall Effect and Non-Equilibrium Transport

    NASA Astrophysics Data System (ADS)

    Ye, Fei

    1995-01-01

    This thesis contains three relatively independent research areas. In the first part of this thesis, the anomalous Hall effect of amorphous, high-resistance, Fe films (2 -10 monolayers thick) is investigated as a function of temperature. We find a logarithmic temperature dependence of the anomalous Hall resistance similar to the Coulomb anomaly of the resistance but twice its magnitude. The measurements are in excellent agreement with a theoretical calculation and provide us with an independent confirmation of the influence of the enhanced Coulomb interaction in disordered electron systems on transport properties. In the second part of the thesis, the nonequilibrium transport properties of metallic microstructures are studied. An electron beam lithography technique is used in making small structures. The electron temperature and phonon temperature are calculated. It is confirmed that the electron temperatures obtained from both thermometers (weak localization and the Coulomb anomaly) are consistent. It is also found that the phonon temperature in the film is considerably higher than the substrate temperature in the experiments. In addition, the dimensionality of the phonon system in the film is discussed, as well as the phonon escape time. In the third part, the magnetic behavior of V on Au films is studied. Weak localization and the anomalous Hall effect are used to investigate the magnetic properties of sub-mono, mono-, and multilayers of Vanadium on the surface of an Au film. Dilute V atoms possess a strong magnetic moment. For a monolayer the magnetic scattering is reduced by a factor of about 40. This suggests a strongly reduced moment of V compared with the dilute V coverage. From the anomalous Hall effect, it is concluded that the magnetic structure is anti-ferromagnetic; the moment per V atom in multilayers progressively diminishes but is still finite for 16 atomic layers of V. In Appendix A, the nonequilibrium distribution of the phonon system in a metal film is evaluated. The phonon escape time and the effective phonon temperature are calculated.

  16. On the quantum mechanics of consciousness, with application to anomalous phenomena

    NASA Astrophysics Data System (ADS)

    Jahn, Robert G.; Dunne, Brenda J.

    1986-08-01

    Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrödinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition. With these established, a number of the generic features of quantum mechanics, such as the wave/particle duality, and the uncertainty, indistinguishability, and exclusion principles, display metaphoric relevance to familiar individual and collective experiences. Similarly, such traditional quantum theoretic exercises as the central force field and atomic structure, covalent molecular bonds, barrier penetration, and quantum statistical collective behavior become useful analogies for representation of a variety of consciousness experiences, both normal and anomalous, and for the design of experiments to study these systematically.

  17. Some Generalization and Follow-Up Measures on Autistic Children in Behavior Therapy.

    ERIC Educational Resources Information Center

    Lovaas, O. Ivar; And Others

    Reported was a behavior therapy program emphasizing language training for 20 autistic children who variously exhibited apparent sensory deficit, severe affect isolation, self stimulatory behavior, mutism, echolalic speech, absence of receptive speech and social and self help behaviors, and self destructive tendencies. The treatment emphasized…

  18. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an absence of surface water ice deposits, which is consistent with Viking Mars atmospheric water detector (MAWD) measurements which show low atmospheric water vapor abundances throughout the summer season.

  19. U-Th-Pb systematics of some granitoids from the northeastern Yilgarn Block, Western Australia and implications for uranium source rock potential.

    USGS Publications Warehouse

    Stuckless, J.S.; Bunting, J.A.; Nkomo, I.T.

    1981-01-01

    The Mount Boreas-type granite and spatially associated syenitic granitoid of Western Australia yield Pb/Pb ages of 2370+ or -100Ma and 2760+ or -210Ma, respectively. Th/Pb ages, although less precise, are concordant with these ages, and therefore the apparent ages are interpreted to be the crystallisation ages for these two units. U/Pb ages are variable and for the most part anomalously old, which suggests a Cainozoic uranium loss. However, this loss is generally small (<3mu g/g); therefore, neither granitoid in its fresh state provides a good source for nearby calcrete-hosted uranium deposits. The possibility remains that the Mount Boreas- type granite that has been completely weathered during the Tertiary could have been a source for the calcrete-type uranium deposits in W.A. Although the Mount Boreas-type granite is highly fractionated, it does not bear a strong geochemical imprint of a sedimentary precursor. This feature contrasts it with apparently fresh granitoids from other parts of the world that have lost large amounts of uranium (approx 20mu g/g) and are associated with large roll-type and other low temperature-type uranium deposits.-Authors

  20. Single speckle SRS threshold as determined by electron trapping, collisions and speckle duration

    NASA Astrophysics Data System (ADS)

    Rose, Harvey; Daughton, William; Yin, Lin; Langdon, Bruce

    2008-11-01

    Speckle SRS intensity threshold has been shown to increase with spatial dimension, D, because both diffraction and trapped electron escape rate increase with D, though the net effect is to substantially decrease the threshold compared to 1D linear gain calculations. On the other hand, the apparent threshold appears to decrease with integration time in PIC simulations. We present an optimum nonlinearly resonant calculation of the SRS threshold, taking into account large fluctuations of the SRS seed reflectivity, R0. Such fluctuations, absent in 1D, are caused by a gap in the linear reflectivity gain spectrum which leads to an exponential probability distribution for R0. While the SRS threshold intensity is of course finite, these fluctuations lead to a decrease of apparent threshold with increasing speckle lifetime. L. Yin et al., Physics of Plasmas 15, 013109 (2008). D. S. Montgomery et al., 9, 2311(2002). Bruce Langdon et al., 38^th Anomalous Absorption Conference (2008). Harvey A. Rose, Physics of Plasmas 10, 1468 (2003). Harvey A. Rose and L. Yin, Physics of Plasmas 15, 042311 (2008)., Harvey A. Rose and David A. Russell, Phys. Plasma 8, 4784 (2001).

  1. An apparent Acanthamoeba genotype is the product of a chimeric 18S rDNA artifact.

    PubMed

    Corsaro, Daniele; Venditti, Danielle

    2018-02-01

    Free-living amoebae of the genus Acanthamoeba are potentially pathogenic protozoa widespread in the environment. The detection/diagnosis as well as environmental survey strategies is mainly based on the identification of the 18S rDNA sequences of the strains that allow the recovery of various distinct genotypes/subgenotypes. The accurate recording of such data is important to better know the environmental distribution of distinct genotypes and how they may be preferentially associated with disease. Recently, a putative new acanthamoebal genotype T99 was introduced, which comprises only environmental clones apparently with some anomalous features. Here, we analyze these sequences through partial treeing and BLAST analyses and find that they are actually chimeras. Our results show that the putative T99 genotype is very likely formed by chimeric sequences including a middle fragment from acanthamoebae of genotype T13, while the 5'- and 3'-end fragments came from a nematode and a cercozoan, respectively. Molecular phylogenies of Acanthamoeba including T99 are consequently erroneous as genotype T99 does not exist in nature. Careful identification of Acanthamoeba genotypes is therefore critical for both phylogenetic and diagnostic applications.

  2. The Nature and Cause of Spectral Variability in LMC X-1

    NASA Technical Reports Server (NTRS)

    Ruhlen, L.; Smith, D. M.; Scank, J. H.

    2011-01-01

    We present the results of a long-term observation campaign of the extragalactic wind-accreting black-hole X-ray binary LMC X-1, using the Proportional Counter Array on the Rossi X-Ray Timing Explorer (RXTE). The observations show that LMC X-1's accretion disk exhibits an anomalous temperature-luminosity relation. We use deep archival RXTE observations to show that large movements across the temperature-luminosity space occupied by the system can take place on time scales as short as half an hour. These changes cannot be adequately explained by perturbations that propagate from the outer disk on a viscous timescale. We propose instead that the apparent disk variations reflect rapid fluctuations within the Compton up-scattering coronal material, which occults the inner parts of the disk. The expected relationship between the observed disk luminosity and apparent disk temperature derived from the variable occultation model is quantitatively shown to be in good agreement with the observations. Two other observations support this picture: an inverse correlation between the flux in the power-law spectral component and the fitted inner disk temperature, and a near-constant total photon flux, suggesting that the inner disk is not ejected when a lower temperature is observed.

  3. Probing the magnetic behavior of single nanodots.

    PubMed

    Neumann, Alexander; Thönnissen, Carsten; Frauen, Axel; Hesse, Simon; Meyer, Andreas; Oepen, Hans Peter

    2013-05-08

    In this paper, a method is presented that has the sensitivity to measure magnetization behavior of single nanostructures. It is demonstrated that the technique gives the ability to separate different signals of single nanodots from a small ensemble of structures. Our method is based on the anomalous Hall-Effect and allows for resolving signals from spherical nanoparticles with diameter down to 3.5 nm. The method gives access to magnetic properties of particles in a wide thermal and dynamical range. The potential of the technique is demonstrated utilizing particles that are created from Co films sandwiched by Pt layers.

  4. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    NASA Astrophysics Data System (ADS)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  5. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  6. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing

    DOE PAGES

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. We present a simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined.more » In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. In conclusion, this means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.« less

  7. Can I solve my structure by SAD phasing? Anomalous signal in SAD phasing.

    PubMed

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. A simple theoretical framework for describing measurements of anomalous differences and the resulting useful anomalous correlation and anomalous signal in a SAD experiment is presented. Here, the useful anomalous correlation is defined as the correlation of anomalous differences with ideal anomalous differences from the anomalous substructure. The useful anomalous correlation reflects the accuracy of the data and the absence of minor sites. The useful anomalous correlation also reflects the information available for estimating crystallographic phases once the substructure has been determined. In contrast, the anomalous signal (the peak height in a model-phased anomalous difference Fourier at the coordinates of atoms in the anomalous substructure) reflects the information available about each site in the substructure and is related to the ability to find the substructure. A theoretical analysis shows that the expected value of the anomalous signal is the product of the useful anomalous correlation, the square root of the ratio of the number of unique reflections in the data set to the number of sites in the substructure, and a function that decreases with increasing values of the atomic displacement factor for the atoms in the substructure. This means that the ability to find the substructure in a SAD experiment is increased by high data quality and by a high ratio of reflections to sites in the substructure, and is decreased by high atomic displacement factors for the substructure.

  8. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  9. A total life prediction model for stress concentration sites

    NASA Technical Reports Server (NTRS)

    Hartman, G. A.; Dawicke, D. S.

    1983-01-01

    Fatigue crack growth tests were performed on center crack panels and radial crack hole samples. The data were reduced and correlated with the elastic parameter-K taking into account finite width and corner crack corrections. The anomalous behavior normally associated with short cracks was not observed. Total life estimates for notches were made by coupling an initiation life estimate with a propagation life estimate.

  10. Temperature anomalies of shock and isentropic waves of quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.

    2018-01-01

    In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.

  11. Attention focusing and anomaly detection in systems monitoring

    NASA Technical Reports Server (NTRS)

    Doyle, Richard J.

    1994-01-01

    Any attempt to introduce automation into the monitoring of complex physical systems must start from a robust anomaly detection capability. This task is far from straightforward, for a single definition of what constitutes an anomaly is difficult to come by. In addition, to make the monitoring process efficient, and to avoid the potential for information overload on human operators, attention focusing must also be addressed. When an anomaly occurs, more often than not several sensors are affected, and the partially redundant information they provide can be confusing, particularly in a crisis situation where a response is needed quickly. The focus of this paper is a new technique for attention focusing. The technique involves reasoning about the distance between two frequency distributions, and is used to detect both anomalous system parameters and 'broken' causal dependencies. These two forms of information together isolate the locus of anomalous behavior in the system being monitored.

  12. Anomalous Diffusion of Single Particles in Cytoplasm

    PubMed Central

    Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.

    2013-01-01

    The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.E. Mynick; A.H. Boozer

    We study the effect on neoclassical transport of applying a fluctuating electrostatic spectrum, such as produced either by plasma turbulence, or imposed externally. For tokamaks, it is usually assumed that the neoclassical and ''anomalous'' contributions to the transport roughly superpose, D = D{sub nc} + D{sub an}, an intuition also used in modeling stellarators. An alternate intuition, however, is one where it is the collisional and anomalous scattering frequencies which superpose, {nu}{sub ef} = {nu} + {nu}{sub an}. For nonaxisymmetric systems, in regimes where {partial_derivative}D/{partial_derivative}{nu} < 0, this ''{nu}{sub ef} picture'' implies that turning on the fluctuations can decrease themore » total radial transport. Using numerical and analytic means, it is found that the total transport has contributions conforming to each of these intuitions, either of which can dominate. In particular, for stellarators, the {nu}{sub ef} picture is often valid, producing transport behavior differing from tokamaks.« less

  14. Record high magnetic ordering temperature in a lanthanide at extreme pressure

    DOE PAGES

    Lim, J.; Fabbris, G.; Haskel, D.; ...

    2017-11-07

    Today's best permanent magnet materials, SmCo 5 and Nd 2Fe 14B, could likely be made signi fi cantly more powerful were it not necessary to dilute the strong magnetism of the rare earth ions (Sm, Nd) with the 3 d transition elements (Fe, Co). Since the rare-earth metals order magnetically at relatively low temperatures T o <= 292 K, transition elements must be added to bring T o to temperatures well above ambient. Under pressure T o (P) for the neighboring lanthanides Gd, Tb, and Dy follows a notably nonmonotonic, but nearly identical, dependence to similar to 60 GPa. Atmore » higher pressures, however, Tb and Dy exhibit highly anomalous behavior, T o for Dy soaring to temperatures well above ambient. In conclusion, we suggest that this anomalously high magnetic ordering temperature is an heretofore unrecognized feature of the Kondo lattice state.« less

  15. Anomalous Dynamics of Water Confined in Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Chong, Song-Ho; Ham, Sihyun

    2016-10-06

    Confined water often exhibits anomalous properties not observable in the bulk phase. Although water in hydrophobic confinement has been the focus of intense investigation, the behavior of water confined between hydrophilic surfaces, which are more frequently found in biological systems, has not been fully explored. Here, we investigate using molecular dynamics simulations dynamical properties of the water confined in hydrophilic protein-protein and protein-DNA interfaces. We find that the interfacial water exhibits glassy slow relaxations even at 300 K. In particular, the rotational dynamics show a logarithmic decay that was observed in glass-forming liquids at deeply supercooled states. We argue that such slow water dynamics are indeed induced by the hydrophilic binding surfaces, which is in opposition to the picture that the hydration water slaves protein motions. Our results will significantly impact the view on the role of water in biomolecular interactions.

  16. Anomalous spectral correlations between SERS enhancement and far-field optical responses in roughened Au mesoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Chen, Yun; Gao, Weixiang; Yang, Zhengxuan; Wang, Lingling

    2018-04-01

    Depending on the experimental conditions and plasmonic systems, the correlations between near-field surface enhanced Raman scattering (SERS) behaviors and far-field optical responses have sometimes been accepted directly, or argued, or explored. In this work, we have numerically demonstrated the anomalous spectral correlations between the near- and far-field properties for roughened Au mesoparticles. As a counterexample, it is witnessed that the dipole extinction peak of the mesoparticles may mislead us in seeking favorable SERS performance. The simple Rayleigh scattering spectra can also be misguided in the presence of dark modes. For roughened mesoparticles with a moderate size here, the huge near-field enhancement is a synergistic result of the overall dark quadrupole mode and the substructural bonding dipole coupling. The conclusions demonstrated here would be of general interest to the field of plasmonics, especially the optimization of single-particle SERS substrates.

  17. Anomalous group velocity at the high energy range of real 3D photonic nanostructures

    NASA Astrophysics Data System (ADS)

    Botey, Muriel; Martorell, Jordi; Lozano, Gabriel; Míguez, Hernán; Dorado, Luis A.; Depine, Ricardo A.

    2010-05-01

    We perform a theoretical study on the group velocity for finite thin artificial opal slabs made of a reduced number of layers in the spectral range where the light wavelength is on the order of the lattice parameter. The vector KKR method including extinction allows us to evaluate the finite-size effects on light propagation in the ΓL and ΓX directions of fcc close-packed opal films made of dielectric spheres. The group is index determined from the phase delay introduced by the structure to the forwardly transmitted electric field. We show that for certain frequencies, light propagation can either be superluminal -positive or negative- or approach zero depending on the crystal size and absorption. Such anomalous behavior can be attributed to the finite character of the structure and provides confirmation of recently emerged experimental results.

  18. Identification of structural motifs as tunneling two-level systems in amorphous alumina at low temperatures

    NASA Astrophysics Data System (ADS)

    Paz, Alejandro Pérez; Lebedeva, Irina V.; Tokatly, Ilya V.; Rubio, Angel

    2014-12-01

    One of the most accepted models that describe the anomalous thermal behavior of amorphous materials at temperatures below 1 K relies on the quantum mechanical tunneling of atoms between two nearly equivalent potential energy wells forming a two-level system (TLS). Indirect evidence for TLSs is widely available. However, the atomistic structure of these TLSs remains an unsolved topic in the physics of amorphous materials. Here, using classical molecular dynamics, we found several hitherto unknown bistable structural motifs that may be key to understanding the anomalous thermal properties of amorphous alumina at low temperatures. We show through free energy profiles that the complex potential energy surface can be reduced to canonical TLSs. The tunnel splitting predicted from instanton theory, the number density, dipole moment, and coupling to external strain of the discovered motifs are consistent with experiments.

  19. Enhanced densification under shock compression in porous silicon

    DOE PAGES

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  20. Anomaly-Induced Dynamical Refringence in Strong-Field QED

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Hebenstreit, F.; Berges, J.

    2016-08-01

    We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of heavy-ion collision experiments.

  1. Anomalous transport in fluid field with random waiting time depending on the preceding jump length

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Li, Guo-Hua

    2016-11-01

    Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).

  2. Record high magnetic ordering temperature in a lanthanide at extreme pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.; Fabbris, G.; Haskel, D.

    Today's best permanent magnet materials, SmCo 5 and Nd 2Fe 14B, could likely be made signi fi cantly more powerful were it not necessary to dilute the strong magnetism of the rare earth ions (Sm, Nd) with the 3 d transition elements (Fe, Co). Since the rare-earth metals order magnetically at relatively low temperatures T o <= 292 K, transition elements must be added to bring T o to temperatures well above ambient. Under pressure T o (P) for the neighboring lanthanides Gd, Tb, and Dy follows a notably nonmonotonic, but nearly identical, dependence to similar to 60 GPa. Atmore » higher pressures, however, Tb and Dy exhibit highly anomalous behavior, T o for Dy soaring to temperatures well above ambient. In conclusion, we suggest that this anomalously high magnetic ordering temperature is an heretofore unrecognized feature of the Kondo lattice state.« less

  3. On the role of quantum ion dynamics for the anomalous melting of lithium

    NASA Astrophysics Data System (ADS)

    Elatresh, Sabri; Bonev, Stanimir

    2011-03-01

    Lithium has attracted a lot of interest in relation to a number of counterintuitive electronic and structural changes that it exhibits under pressure. One of the most remarkable properties of dense lithium is its anomalous melting. This behavior was first predicted theoretically based on first-principles molecular dynamics (FPMD) simulations, which treated the ions classically. The lowest melting temperature was determined to be about 275~K at 65~GPa. Recent experiments measured a melting temperature about 100~K lower at the same pressure. In this talk, we will present FPMD calculations of solid and liquid lithium free energies up to 100 GPa that take into account ion quantum dynamics. We examine the significance of the quantum effects for the finite-temperature phase boundaries of lithium and, in particular, its melting curve. Work supported by NSERC, Acenet, and LLNL under Contract DE-AC52-07NA27344.

  4. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    PubMed Central

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  5. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  6. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 − x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus

    2018-04-09

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  7. Anomalous negative magnetoresistance of two-dimensional electrons

    NASA Astrophysics Data System (ADS)

    Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.

    2018-05-01

    Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.

  8. Anomalous Polarized Raman Scattering and Large Circular Intensity Differential in Layered Triclinic ReS2.

    PubMed

    Zhang, Shishu; Mao, Nannan; Zhang, Na; Wu, Juanxia; Tong, Lianming; Zhang, Jin

    2017-10-24

    The Raman tensor of a crystal is the derivative of its polarizability tensor and is dependent on the symmetries of the crystal and the Raman-active vibrational mode. The intensity of a particular mode is determined by the Raman selection rule, which involves the Raman tensor and the polarization configurations. For anisotropic two-dimensional (2D) layered crystals, polarized Raman scattering has been used to reveal the crystalline orientations. However, due to its complicated Raman tensors and optical birefringence, the polarized Raman scattering of triclinic 2D crystals has not been well studied yet. Herein, we report the anomalous polarized Raman scattering of 2D layered triclinic rhenium disulfide (ReS 2 ) and show a large circular intensity differential (CID) of Raman scattering in ReS 2 of different thicknesses. The origin of CID and the anomalous behavior in polarized Raman scattering were attributed to the appearance of nonzero off-diagonal Raman tensor elements and the phase factor owing to optical birefringence. This can provide a method to identify the vertical orientation of triclinic layered materials. These findings may help to further understand the Raman scattering process in 2D materials of low symmetry and may indicate important applications in chiral recognition by using 2D materials.

  9. FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems

    NASA Astrophysics Data System (ADS)

    Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.

    2016-12-01

    Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.

  10. Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: effects of strong compressibility and large-scale anisotropy.

    PubMed

    Antonov, N V; Kostenko, M M

    2014-12-01

    The field theoretic renormalization group and the operator product expansion are applied to two models of passive scalar quantities (the density and the tracer fields) advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. The original stochastic problems are reformulated as multiplicatively renormalizable field theoretic models; the corresponding renormalization group equations possess infrared attractive fixed points. It is shown that various correlation functions of the scalar field, its powers and gradients, demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. The validity of the one-loop approximation and comparison with Gaussian models are briefly discussed.

  11. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    NASA Astrophysics Data System (ADS)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  12. Chiral extrapolation of the leading hadronic contribution to the muon anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2017-04-01

    A lattice computation of the leading-order hadronic contribution to the muon anomalous magnetic moment can potentially help reduce the error on the Standard Model prediction for this quantity, if sufficient control of all systematic errors affecting such a computation can be achieved. One of these systematic errors is that associated with the extrapolation to the physical pion mass from values on the lattice larger than the physical pion mass. We investigate this extrapolation assuming lattice pion masses in the range of 200 to 400 MeV with the help of two-loop chiral perturbation theory, and we find that such an extrapolation is unlikely to lead to control of this systematic error at the 1% level. This remains true even if various tricks to improve the reliability of the chiral extrapolation employed in the literature are taken into account. In addition, while chiral perturbation theory also predicts the dependence on the pion mass of the leading-order hadronic contribution to the muon anomalous magnetic moment as the chiral limit is approached, this prediction turns out to be of no practical use because the physical pion mass is larger than the muon mass that sets the scale for the onset of this behavior.

  13. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE PAGES

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus; ...

    2018-04-09

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  14. Anomalous Hall effect in the van der Waals bonded ferromagnet Fe 3 - x GeTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu; Stavitski, Eli; Attenkofer, Klaus

    Here, we report the anomalous Hall effect (AHE) in single crystals of a quasi-two-dimensional Fe 3–xGeTe 2 (x ≈ 0.36) ferromagnet grown by the flux method which induces defects on the Fe site and bad metallic resistivity. Fe K-edge x-ray absorption spectroscopy was measured to provide information on the local atomic environment in such crystals. The dc and ac magnetic susceptibility measurements indicate a second-stage transition below 119 K in addition to the paramagnetic to ferromagnetic transition at 153 K. A linear scaling behavior between the modified anomalous Hall resistivity ρxy/μ0Heff and longitudinal resistivity ρ 2 xxM/μ 0H eff impliesmore » that the AHE in Fe 3–xGeTe 2 should be dominated by the intrinsic Karplus-Luttinger mechanism rather than the extrinsic skew-scattering and side-jump mechanisms. The observed deviation in the linear- M Hall conductivity σ A xy below 30 K is in line with its transport characteristic at low temperatures, implying the scattering of conduction electrons due to magnetic disorder and the evolution of the Fermi surface induced by a possible spin-reorientation transition.« less

  15. Anomalous rheological behavior of long glass fiber reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hak; Lee, Young Sil; Son, Younggon

    2012-12-01

    Dynamic rheological properties of PP-based long glass fiber-reinforced thermoplastics (LFT) were investigated. Weight fractions of the glass fibers investigated in the present study ranged from 0.15 to 0.5, which are higher than those of previous studies. We observed very abnormal rheological behavior. Complex viscosity (η*) of the LFT increased with the glass fiber content up to 40 wt. %. However, the η* with a weight fraction of 0.5 is observed to be lower than that of LFT with a weight fraction of 0.4 in spite of higher glass fiber content. From various experiments, we found that this abnormal behavior is analogous to the rheological behavior of a lyotropic liquid crystalline polymer solution and concluded that the abnormal rheological behavior for the LFT is attributed to the formation of a liquid crystal- like structure at high concentrations of long glass fibers.

  16. Complex local Moho topography in the Western Carpathians: Indication of the ALCAPA and the European Plate contact

    NASA Astrophysics Data System (ADS)

    Hrubcová, Pavla; Środa, Piotr

    2015-01-01

    Seismic data from deep refraction and wide-angle reflection profiles intersecting the Western Carpathians show distinct upper-mantle Pn phases with anomalous apparent velocities identified in the first and later arrivals. Their systematic analysis indicates that such phases are present in numerous seismic sections both for in-line and off-line shots. They are observed in data from profiles intersecting the Carpathians in the west at the contact with the Bohemian Massif; similar feature was also found in data at the northern edge of the Carpathians at the contact with the North European Platform. Modelling of these anomalous Pn phases shows that they originate due to local structural anomalies of the Moho discontinuity detected in several places along the Western Carpathian arc. Such anomalies are located in close lateral proximity of the Pieniny Klippen Belt representing the contact between the stable European Plate in the north and the ALCAPA (Alpine-Carpathian-Pannonian) microplate in the south. Thus, the complex local Moho topography modelled from the Pn phases suggests tectonic relation to the formation of the Carpathian orogen. The result is supported by correlation with the large-scale Carpathian conductivity anomaly modelled in the Carpathians at a mid-crustal level. Relative lateral position of these two structures together with the Pieniny Klippen Belt at the surface delineates a zone affected by deformations at various depths along the whole Western Carpathian arc.

  17. Anomalous Anticipatory Responses in Networked Random Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Roger D.; Bancel, Peter A.

    2006-10-16

    We examine an 8-year archive of synchronized, parallel time series of random data from a world spanning network of physical random event generators (REGs). The archive is a publicly accessible matrix of normally distributed 200-bit sums recorded at 1 Hz which extends from August 1998 to the present. The primary question is whether these data show non-random structure associated with major events such as natural or man-made disasters, terrible accidents, or grand celebrations. Secondarily, we examine the time course of apparently correlated responses. Statistical analyses of the data reveal consistent evidence that events which strongly affect people engender small butmore » significant effects. These include suggestions of anticipatory responses in some cases, leading to a series of specialized analyses to assess possible non-random structure preceding precisely timed events. A focused examination of data collected around the time of earthquakes with Richter magnitude 6 and greater reveals non-random structure with a number of intriguing, potentially important features. Anomalous effects in the REG data are seen only when the corresponding earthquakes occur in populated areas. No structure is found if they occur in the oceans. We infer that an important contributor to the effect is the relevance of the earthquake to humans. Epoch averaging reveals evidence for changes in the data some hours prior to the main temblor, suggestive of reverse causation.« less

  18. First evidence for high anelastic attenuation beneath the Red Sea from Love wave analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadiouche, Ouiza

    Attenuation coefficients of Love waves are determined for two seismic paths along the Red Sea. The attenuation coefficients are obtained using the multiple filter method for periods from 25 to 130 s along one path and from 40 to 130 s along the second one. The two sets of observations are in good agreement with anomalously high attenuation coefficients similar to those reported across a young part of the Pacific Ocean. Indeed, the values lie on average between 3.3 {plus minus} 0.6 and 1.1 {plus minus} 0.3 (10{sup {minus}4}km{sup {minus}1}) higher values being observed at shorter periods. In a secondmore » part of the paper, these apparent attenuation observations are interpreted in terms of a distribution of intrinsic absorption in the upper mantle. A frequency independent Q{sub {beta}} model is obtained using a trial-and-error method. The best fit to the data required a large and very low Q{sub {beta}} (30-50) zone below a depth of 50 km, underlying a thin and high Q{sub {beta}} (200-300) lid. These results are consistent with high heat flows and low velocities which characterize this tectonically active area, and corroborate the inference of anomalously high temperatures and low viscosity in the upper mantle beneath the Red Sea from recent seismological results.« less

  19. Condition factor variations over time and trophic position among four species of Characidae from Amazonian floodplain lakes: effects of an anomalous drought.

    PubMed

    Tribuzy-Neto, I A; Conceição, K G; Siqueira-Souza, F K; Hurd, L E; Freitas, C E C

    2018-05-01

    The effects of extreme droughts on freshwater fish remain unknown worldwide. In this paper, we estimated the condition factor, a measure of relative fitness based on the relationship of body weight to length, in four fish species representing two trophic levels (omnivores and piscivores) from Amazonian floodplain lakes for three consecutive years: 2004, 2005 (an anomalous drought year), and 2006. The two omnivores, Colossoma macropomum and Mylossoma duriventre, exhibited trends consistent with their life cycles in 2004 and 2006: high values during the hydrologic seasons of high water, receding water, and low water, with a drop following reproduction following the onset of rising water. However during the drought year of 2005 the condition factor was much lower than normal during receding and low water seasons, probably as a result of an abnormal reduction in resource availability in a reduced habitat. The two piscivorous piranhas, Serrasalmus spilopleura and S. elongatus, maintained relatively stable values of condition factor over the hydrologic cycles of all three years, with no apparent effect of the drought, probably because the reduction in habitat is counterbalanced by the resulting increase in relative prey density. We suggest that if predictions of increasing drought in the Amazon are correct, predatory species may benefit, at least in the short run, while omnivores may be negatively affected.

  20. Non-Abelian fermionization and fractional quantum Hall transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    2018-02-01

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].

  1. Adolescent Ethnolinguistic Stability and Change: A Longitudinal Study

    ERIC Educational Resources Information Center

    Kohn, Mary Elizabeth

    2013-01-01

    Most sociolinguistic studies rely on apparent time, cross-sectional methods to analyze language change. On the basis of apparent time data, sociolinguists have hypothesized that cultural processes of lifespan change create predictable cycles of linguistic behavior in which adolescents lead in the use of vernacular variants and advance sound change…

  2. Local structure of numerically generated worm hole spacetime.

    NASA Astrophysics Data System (ADS)

    Siino, M.

    The author investigates the evolution of the apparent horizons in a numerically gererated worm hole spacetime. The behavior of the apparent horizons is affected by the dynamics of the matter field. By using the local mass of the system, he interprets the evolution of the worm hole structure.

  3. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  4. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  5. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling

    PubMed

    Brown; Zhao; Nelson; Hauck; Alsdorf; Ross; Cogan; Clark; Liu; Che

    1996-12-06

    INDEPTH seismic reflection profiling shows that the decollement beneath which Indian lithosphere underthrusts the Himalaya extends at least 225 kilometers north of the Himalayan deformation front to a depth of approximately 50 kilometers. Prominent reflections appear at depths of 15 to 18 kilometers near where the decollement reflector apparently terminates. These reflections extend north of the Zangbo suture to the Damxung graben of the Tibet Plateau. Some of these reflections have locally anomalous amplitudes (bright spots) and coincident negative polarities implying that they are produced by fluids in the crust. The presence of geothermal activity and high heat flow in the regions of these reflections and the tectonic setting suggest that the bright spots mark granitic magmas derived by partial melting of the tectonically thickened crust.

  6. Annular modes and apparent eddy feedbacks in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Byrne, Nicholas J.; Shepherd, Theodore G.; Woollings, Tim; Plumb, R. Alan

    2016-04-01

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  7. Annular modes and apparent eddy feedbacks in the Southern Hemisphere.

    PubMed

    Byrne, Nicholas J; Shepherd, Theodore G; Woollings, Tim; Plumb, R Alan

    2016-04-28

    Lagged correlation analysis is often used to infer intraseasonal dynamical effects but is known to be affected by nonstationarity. We highlight a pronounced quasi 2 year peak in the anomalous zonal wind and eddy momentum flux convergence power spectra in the Southern Hemisphere, which is prima facie evidence for nonstationarity. We then investigate the consequences of this nonstationarity for the Southern Annular Mode and for eddy momentum flux convergence. We argue that positive lagged correlations previously attributed to the existence of an eddy feedback are more plausibly attributed to nonstationary interannual variability external to any potential feedback process in the midlatitude troposphere. The findings have implications for the diagnosis of feedbacks in both models and reanalysis data as well as for understanding the mechanisms underlying variations in the zonal wind.

  8. Evidence of scattering effects on the sizes of interplanetary Type III radio bursts

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Hoang, S.; Dulk, G. A.

    1985-01-01

    An analysis is conducted of 162 interplanetary Type III radio bursts; some of these bursts have been observed in association with fast electrons and Langmuir wave events at 1 AU and, in addition, have been subjected to in situ plasma parameter measurements. It is noted that the sizes of burst sources are anomalously large, compared to what one would anticipate on the basis of the interplanetary plasma density distribution, and that the variation of source size with frequency, when compared with the plasma frequency variation measured in situ, implies that the source sizes expand with decreasing frequency to fill a cone whose apex is at the sun. It is also found that some local phenomenon near the earth controls the apparent size of low frequency Type III sources.

  9. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    NASA Astrophysics Data System (ADS)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  10. What Determines Different Anomalous Transport Behavior in Different Porous Media?

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Raeini, A.; Mostaghimi, P.; Blunt, M. J.

    2012-12-01

    Solute transport in porous media is of importance in many scientific fields and applications, notably in contaminant migration in subsurface hydrology, geological storage of carbon-dioxide, packed bed reactors and chromatography in chemical engineering, and tracer studies in enhanced oil recovery. The non-Fickian nature of dispersive processes in heterogeneous media has been demonstrated experimentally from pore to field scales. However, the exact relationship between structure, velocity field and transport has not been fully understood. We study and explain the origin of non-Fickian transport behavior as a function of pore-scale heterogeneity by simulating flow and transport directly on micro-CT images of pore space of the media with increasing pore-scale complexity: beadpack, Bentheimer sandstone and Portland limestone. The Navier-Stokes equations are solved to compute the flow field and the streamline method is used to transport particles by advection, while the random walk method is used for diffusion. The connectivity of the fast flow paths for beadpack, Bentheimer sandstone and Portland carbonate is presented in Figs.1a-c. We show how computed propagators (concentration vs. displacement) for beadpack, sandstone and carbonate depend on the spread in the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behaviour where the propagators rapidly become Gaussian (Fig.1d); the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed (Fig.1e); in the carbonate with the widest velocity distribution the stagnant concentration peak is persistent, while the emergence of a smaller secondary mobile peak is observed, leading to a highly anomalous behavior (Fig.1f). This defines different generic nature of transport in the three media and quantifies the effect of pore structure on transport. Moreover, the propagators obtained by the model are in a very good agreement with the propagators measured on beadpack, Bentheimer sandstone and Portland carbonate cores in NMR experiments. We discuss the importance of these findings on a suite of six carbonate micro-CT images, classifying them in terms of degree of anomalous transport that can have an impact on the field scale transport.igure 1 Normalized flow fields, presented as the ratios of the magnitude of u at the voxel centers divided by the average flow speed u av for (a) beadpack (b) Bentheimer sandstone and (c) Portland carbonate. Probability of molecular displacement P(ς) in the image as a function of displacement ς at t=2s for (d) beadpack, (e) Bentheimer sandstone, and (f) Portland carbonate. The coordinates are rescaled by the nominal mean displacement <ς> 0 = uavt.

  11. Complex local Moho topography in the Western Carpathians: Indication of the ALCAPA and the European Plate contact

    NASA Astrophysics Data System (ADS)

    Hrubcová, Pavla; Środa, Piotr

    2015-04-01

    Seismic data from deep refraction and wide-angle reflection profiles intersecting the Western Carpathians show distinct upper-mantle Pn phases with anomalous apparent velocities identified in the first and later arrivals. Their systematic analysis indicates that such phases are present in numerous seismic sections both for in-line and off-line shots. They are observed in data from profiles intersecting the Carpathians in the west at the contact with the Bohemian Massif; similar feature was also found in data at the northern edge of the Carpathians at the contact with the North European Platform. Modelling of these anomalous Pn phases shows that they originate due to local structural anomalies of the Moho discontinuity detected in several places along the Western Carpathian arc. Such anomalies are located in close lateral proximity of the Pieniny Klippen Belt representing the contact between the stable European Plate in the north and the ALCAPA (Alpine-Carpathian-Pannonian) microplate in the south. Thus, the complex local Moho topography modelled from the Pn phases suggests tectonic relation to the formation of the Carpathian orogen. The result is supported by correlation with the large-scale Carpathian conductivity anomaly modelled in the Carpathians at a mid-crustal level. Relative lateral position of these two structures together with the Pieniny Klippen Belt at the surface delineates a zone affected by deformations at various depths along the whole Western Carpathian arc. Tectonically, such course of the anomalous zone suggests that its origin is connected with the lithospheric deformations occurring near the contact of the European Plate and the ALCAPA microplate during the Carpathian orogeny, i.e., it is related to the collisional/transpressional processes during and after the Tertiary. Reference: Hrubcová, P., and Środa, P., Complex local Moho topography in the Western Carpathians: Indication of the ALCAPA and the European Plate contact. Tectonophysics, 2014, doi: 10.1016/j.tecto.2014.10.013.

  12. Anomalous Lead Isotopic Composition of Galena and Age of Altered Uranium Minerals: a Case study of Chauli Deposits, Chatkal-Qurama District, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.

    2017-11-01

    The enrichment of lead isotopic composition of nonuranium minerals, in the first place galena in 206Pb and 207Pb, as compared to common lead is a remarkable feature of uranium deposits. The study of such lead isotopic composition anomalous in 206Pb and 207Pb in uranium minerals provides an opportunity for not only identification of superimposed processes resulting in transformation of uranium ores during deposit history but also calculation of age of these processes under certain model assumptions. Galena from the Chauli deposit in the Chatkal-Qurama district, Uzbekistan, a typical representative of hydrothermal uranium deposits associated with domains of Phanerozoic continental volcanism, has been examined with the highprecision (±0.02%) MC-ICP-MS method. Twenty microsamples of galena were taken from polished sections. Six of them are galena hosted in carbonate adjacent to pitchblende spherulites or filling thin veinlets (approximately 60 μm) cutting pitchblende. Isotopically anomalous lead with 206Pb/204Pb and 207Pb/204Pb values reaching 20.462 and 15.743, respectively, has been found in these six microsamples in contrast to another fourteen in which the Pb-Pb characteristics are consistent with common lead. On the basis of these data and with account for the 292 ± 2 Ma age for the Chauli deposit, the age of epigenetic transformation of uranium ores of this deposit has been estimated. During this process, radiogenic lead partly lost from pitchblende was captured into galena. The obtained date is 170 Ma. In the Chatkal-Qurama district, these epigenetic processes are apparently caused by the interaction of uranium minerals with activated underground water under tectonic activity and relief transformation, which took place from the post-Permian (i.e., after the Chauli formation) to the Jurassic period.

  13. Thermal behavior of horizontally mixed surfaces on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.

  14. Anomalous transport in fracture networks: field scale experiments and modelling

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Bour, O.; Dentz, M.; Juanes, R.

    2012-12-01

    Anomalous transport is widely observed in different settings and scales of transport through porous and fractured geologic media. A common signature of anomalous transport is the late-time power law tailing in breakthrough curves (BTCs) during tracer tests. Various conceptual models of anomalous transport have been proposed, including multirate mass transfer, continuous time random walk, and stream tube models. Since different conceptual models can produce equally good fits to a single BTC, tracer test interpretation has been plagued with ambiguity. Here, we propose to resolve such ambiguity by analyzing BTCs obtained from both convergent and push-pull flow configurations at two different fracture planes. We conducted field tracer tests in a fractured granite formation close to Ploemeur, France. We observe that BTC tailing depends on the flow configuration and the injection fracture. Specifically the tailing disappears under push-pull geometry, and when we injected at a fracture with high flux (Figure 1). This indicates that for this fractured granite, BTC tailing is controlled by heterogeneous advection and not by matrix diffusion. To explain the change in tailing behavior for different flow configurations, we employ a simple lattice network model with heterogeneous conductivity distribution. The model assigns random conductivities to the fractures and solves the Darcy equation for an incompressible fluid, enforcing mass conservation at fracture intersections. The mass conservation constraint yields a correlated random flow through the fracture system. We investigate whether BTC tailing can be explained by the spatial distribution of preferential flow paths and stagnation zones, which is controlled by the conductivity variance and correlation length. By combining the results from the field tests and numerical modeling, we show that the reversibility of spreading is a key mechanism that needs to be captured. We also demonstrate the dominant role of the injection fracture on the tailing behavior: where we inject makes the difference in the tailing. Blue line is a BTC with injection into a slow velocity zone under convergent flow configuration. The late-time tailing observed for the convergent test diminished for push-pull experiment performed in the same zone(red line). Black line is a BTC with injection into a high velocity zone under convergent flow configuration. Insets: illustration of convergent and push-pull tracer tests using a double packer system.

  15. Predicting Vessel Trajectories from Ais Data Using R

    DTIC Science & Technology

    2017-06-01

    future position at the expectation level set by the user, therefore producing a valid methodology for both estimating the future vessel location and... methodology for both estimating the future vessel location and for assessing anomalous vessel behavior. vi THIS PAGE INTENTIONALLY LEFT BLANK vii... methodology , that brings them one step closer to attaining these goals. A key idea in the current literature is that the series of vessel locations

  16. Laser Window Studies

    DTIC Science & Technology

    1975-08-01

    CONT’D) Nuniln 21 23 24 26 20 30 31 34 3 5 ■A 6 37 39 Title Page Nomarski Fnterference Microscopy of Surface of 61 Film Substrates Tes...Potassium Chloride Surfaces 83 Anomalous Indentation Behavior 85 Indentations in As.;S Films - Nomarski Microscopy 92 Indentations in As9S...minimum load required to remove the film. Nomarski interference microscopy was used to inspect the scratched surfaces. The method was found to be less

  17. Non-Equilibrium Thermodynamics of Transcriptional Bursts

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique

    Gene transcription or Gene Expression (GE) is the process which transforms the information encoded in DNA into a functional RNA message. It is known that GE can occur in bursts or pulses. Transcription is irregular, with strong periods of activity, interspersed by long periods of inactivity. If we consider the average behavior over millions of cells, this process appears to be continuous. But at the individual cell level, there is considerable variability, and for most genes, very little activity at any one time. Some have claimed that GE bursting can account for the high variability in gene expression occurring between cells in isogenic populations. This variability has a big impact on cell behavior and thus on phenotypic conditions and disease. In view of these facts, the development of a thermodynamic framework to study gene expression and transcriptional regulation to integrate the vast amount of molecular biophysical GE data is appealing. Application of such thermodynamic formalism is useful to observe various dissipative phenomena in GE regulatory dynamics. In this chapter we will examine at some detail the complex phenomena of transcriptional bursts (specially of a certain class of anomalous bursts) in the context of a non-equilibrium thermodynamics formalism and will make some initial comments on the relevance of some irreversible processes that may be connected to anomalous transcriptional bursts.

  18. High-pressure structural parameters and equation of state of osmium to 207 GPa

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Vohra, Yogesh K.; ...

    2017-09-08

    We studied the most incompressible transition metal osmium (Os) under high pressure. There is significant interest in Os because of the structural anomalies attributed to topological transitions in the Fermi surface for valence electrons in the hexagonal close-packed phase. We report on measurements of structural parameters and equation of state on Os metal to a pressure of 207 GPa at ambient temperature using platinum as a pressure standard. We also obtained angle-dispersive X-ray diffraction data at a synchrotron source with closely spaced pressure intervals to observe any discontinuities or anomalies in the axial c/a ratio at high pressures. Rietveld refinementsmore » of X-ray diffraction data show a slowly varying axial ratio (c/a) with a broad minimum at 75 GPa. Our data do not provide any evidence of anomalous behavior in the c/a ratio in Os at 25 or 150 GPa as have been reported in previous studies. These experimental results are in agreement with theoretical calculations that do not predict any anomalous behavior in c/a ratio in Os under extreme conditions. We present an equation of state for Os to 207 GPa (V/V 0 = 0.761) at ambient temperature and compare our results with the previously published data.« less

  19. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  20. High-pressure structural parameters and equation of state of osmium to 207 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Vohra, Yogesh K.

    We studied the most incompressible transition metal osmium (Os) under high pressure. There is significant interest in Os because of the structural anomalies attributed to topological transitions in the Fermi surface for valence electrons in the hexagonal close-packed phase. We report on measurements of structural parameters and equation of state on Os metal to a pressure of 207 GPa at ambient temperature using platinum as a pressure standard. We also obtained angle-dispersive X-ray diffraction data at a synchrotron source with closely spaced pressure intervals to observe any discontinuities or anomalies in the axial c/a ratio at high pressures. Rietveld refinementsmore » of X-ray diffraction data show a slowly varying axial ratio (c/a) with a broad minimum at 75 GPa. Our data do not provide any evidence of anomalous behavior in the c/a ratio in Os at 25 or 150 GPa as have been reported in previous studies. These experimental results are in agreement with theoretical calculations that do not predict any anomalous behavior in c/a ratio in Os under extreme conditions. We present an equation of state for Os to 207 GPa (V/V 0 = 0.761) at ambient temperature and compare our results with the previously published data.« less

  1. Anomalous frequency and temperature-dependent scattering and Hund's coupling in the almost quantum critical heavy-fermion system CeFe2Ge2

    NASA Astrophysics Data System (ADS)

    Bossé, G.; Pan, LiDong; Li, Yize S.; Greene, L. H.; Eckstein, J.; Armitage, N. P.

    2016-02-01

    We present THz range optical conductivity data of a thin film of the near quantum critical heavy-fermion compound CeFe2Ge2 . Our complex conductivity measurements find a deviation from conventional Drude-like transport in a temperature range previously reported to exhibit unconventional behavior. We calculate the frequency-dependent effective mass and scattering rate using an extended Drude model analysis. We find the inelastic scattering rate can be described by a temperature-dependent power law ωn (T ), where n (T ) approaches ˜1.0 ±0.2 at 1.5 K. This is compared to the ρ ˜T1.5 behavior claimed in dc resistivity data and the ρ ˜T2 expected from Fermi-liquid theory. In addition to a low-temperature mass renormalization, we find an anomalous mass renormalization that persists to high temperature. We attribute this to a Hund's coupling in the Fe states in a manner similar to that recently proposed in the ferropnictides. CeFe2Ge2 appears to be a very interesting system where one may study the interplay between the usual 4 f lattice Kondo effect and this Hund's enhanced Kondo effect in the 3 d states.

  2. Distribution Behavior of B and P during Al-Si Melt Directional Solidification with Open-Ended Crucible

    NASA Astrophysics Data System (ADS)

    Bai, Xiaolong; Ban, Boyuan; Li, Jingwei; Peng, Zhijian; Chen, Jian

    2018-03-01

    Distribution behavior of B and P during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys has been investigated. Macrostructure of the Al-Si alloy ingots and concentration profile of elements B and P reveal that the elements segregate to eutectic Al-Si melt during growth of primary Si flakes, and P gradually segregates to the top of the ingots during directional solidification. An apparent segregation coefficient, ka, is introduced to describe the segregation behavior of B and P between the primary Si and the Al-Si melt and compared with thermodynamic theoretical equilibrium coefficients. The apparent segregation coefficients of B and P decrease with increase of solidification temperature.

  3. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal.

    PubMed

    Terwilliger, Thomas C; Bunkóczi, Gábor; Hung, Li Wei; Zwart, Peter H; Smith, Janet L; Akey, David L; Adams, Paul D

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016), Acta Cryst. D72, 346-358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.

  4. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal

    DOE PAGES

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; ...

    2016-03-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, we describe algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment. A simple theoretical framework [Terwilliger et al.(2016),Acta Cryst.D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. Thephenix.plan_sad_experimenttool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimatemore » the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. Thephenix.scale_and_mergetool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and thephenix.anomalous_signaltool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.« less

  5. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, we describe algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment. A simple theoretical framework [Terwilliger et al.(2016),Acta Cryst.D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. Thephenix.plan_sad_experimenttool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimatemore » the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. Thephenix.scale_and_mergetool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and thephenix.anomalous_signaltool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing.« less

  6. Geochemical prospecting for Cu mineralization in an arid terrain-central Iran

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Fatehi, Moslem; Shahrestani, Shahed; Pournik, Peyman

    2014-12-01

    Geochemical sampling and data processing were implemented for prospecting Cu mineralization through catchment basin approach in central Iran, Yazd province, over drainage systems in order to determine areas of interest for the detailed exploration program. The target zone, inside an area called Kalout-e-Ashrafa in Yazd province-Iran, was characterized by the collection of 107 stream sediment samples. Catchment basin modeling was conducted based on digital elevation model (DEM) and geological map of the study area. Samples were studied by univariate and multivariate statistical techniques of exploratory data analysis, classical statistical analysis and cluster analysis. The results showed that only Cu had anomalous behavior and it did not exhibit a considerable correlation with other elements. Geochemical maps were prepared for Cu and anomalous zones and separated for potential copper mineralization. It was concluded that due to especial geomorphological and geographical characteristics (smooth topography, negligible annual precipitation and insufficient thickness of silicified Cu-bearing outcrops of the area), low concentrations of Cu would be expected for the delineation of promising zones in similar trains. Using cluster analysis showed that there was a strong correlation between Ag, Sr and S. Calcium and Pb present moderate correlation with Cu. Additionally, there was a strong correlation between Zn and Li, thereby indicating a meaningful correlation with Fe, P, Ti and Mg. Aluminum, Sc and V had a correlation with Be and K. Applying threshold value according to MAD (median absolute deviation) helped us to distinguish anomalous catchments more properly. Finally, there was a significant kind of conformity among anomalous catchment basins and silicified veins and veinlets (as validating index) at the central part of the area.

  7. Shear-induced autorotation of freely rotatable cylinder in a channel flow at moderate Reynolds number

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung

    2018-04-01

    Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.

  8. Nonverbal Behavior and the Communication Process.

    ERIC Educational Resources Information Center

    Duke, Charles R.

    The effect of nonverbal behavior on communication is apparent, but educators are left with the question of how an awareness of nonverbal behavior can fit into the classroom. In fact the average classroom offers a vast supply of information about nonverbal communication that remains relatively untouched in scientific studies. The processes of…

  9. Continental Assembly and Anisotropy Beneath the CANOE Array

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Gaherty, J. B.; Revenaugh, J.

    2007-12-01

    The Canadian Northwest Experiment (CANOE) is an array of nearly sixty broadband seismometers reaching from the Slave Craton in the Northwest Territories (NWT), across a series of Proterozoic orogens and the Canadian Rockies in the NWT, northern British Columbia, and southern Yukon, and across the Churchill Province south to Edmonton, Alberta. The array traverses a wide variety of continental settings, allowing the study of mantle variability associated with the formation of continental cratons and continental assembly over a time span of nearly 4 Ga. The close spacing of instruments in the CANOE array provides a detailed view of the mantle and lithosphere across these transitions. We examine splitting of the shear phases SKS, SKKS, and sSKS to study anisotropy beneath the region. The dataset consists of ~~70 teleseismic events of either magnitude > 5.6 and depth > 500 km or magnitude > 6.4 with depth < 500 km. All earthquakes were recorded at CANOE or nearby Canadian National Seismic Network stations between May 2003 and September 2005. Splitting times derived from multi-event station averages average ~1.4 s, and fast directions are coherent yet suggestive of strong variability of mantle anisotropy across the region. Stations on the craton show a dominant NE-SW fast direction that is roughly consistent with mantle flow dominated by plate motion. At the Cordillera boundary, fast directions flip abruptly to NW-SE, and continuing west across the Cordillera the fast directions rotate from NW-SE to roughly E-W before returning to NW-SE near the edge of the continent. These patterns are suggestive of dominant transpressional deformation through the lithosphere during continental accretion. Within the craton, there is an anomalous cluster of stations with N-S fast directions; these stations sit astride an apparent ancient suture zone (subducted slab?) detected through previous scattered-wave and seismic reflection studies. We will explore the possible relationship between this slab-like feature and the anomalous anisotropy. In addition to describing the general patterns of anisotropy beneath the region, we also investigate variations in the fast directions and delay times suggestive of complexity in the region. A number of stations exhibit "null" behavior even in the multi-event average analysis, and individual event solutions are highly variable. Critical factors to be evaluated include back azimuth, the phase of interest, and frequency content.

  10. An index of anomalous convective instability to detect tornadic and hail storms

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong

    2017-12-01

    In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.

  11. Vantage Theory and the Use of English Demonstrative Determiners with Proper Nouns

    ERIC Educational Resources Information Center

    Riddle, Elizabeth M.

    2010-01-01

    This article discusses some apparently paradoxical behavior of the English demonstratives "this/these" and "that/those" as determiners of proper nouns and as metaphorical signals of epistemic and affective stance within the proximal-distal opposition. It is argued that the apparent paradoxes are actually cases of shifting perspectives or points of…

  12. Characterization of TM8, a MADS-box gene expressed in tomato flowers.

    PubMed

    Daminato, Margherita; Masiero, Simona; Resentini, Francesca; Lovisetto, Alessandro; Casadoro, Giorgio

    2014-11-30

    The identity of flower organs is specified by various MIKC MADS-box transcription factors which act in a combinatorial manner. TM8 is a MADS-box gene that was isolated from the floral meristem of a tomato mutant more than twenty years ago, but is still poorly known from a functional point of view in spite of being present in both Angiosperms and Gymnosperms, with some species harbouring more than one copy of the gene. This study reports a characterization of TM8 that was carried out in transgenic tomato plants with altered expression of the gene. Tomato plants over-expressing either TM8 or a chimeric repressor form of the gene (TM8:SRDX) were prepared. In the TM8 up-regulated plants it was possible to observe anomalous stamens with poorly viable pollen and altered expression of several floral identity genes, among them B-, C- and E-function ones, while no apparent morphological modifications were visible in the other whorls. Oblong ovaries and fruits, that were also parthenocarpic, were obtained in the plants expressing the TM8:SRDX repressor gene. Such ovaries showed modified expression of various carpel-related genes. No apparent modifications could be seen in the other flower whorls. The latter plants had also epinastic leaves and malformed flower abscission zones. By using yeast two hybrid assays it was possible to show that TM8 was able to interact in yeast with MACROCALIX. The impact of the ectopically altered TM8 expression on the reproductive structures suggests that this gene plays some role in the development of the tomato flower. MACROCALYX, a putative A-function MADS-box gene, was expressed in all the four whorls of fully developed flowers, and showed quantitative variations that were opposite to those of TM8 in the anomalous stamens and ovaries. Since the TM8 protein interacted in vitro only with the A-function MADS-box protein MACROCALYX, it seems that for the correct differentiation of the tomato reproductive structures possible interactions between TM8 and MACROCALYX proteins might be important.

  13. Size dependent anomalous dielectric behavior in nanoparticle Gd2 O 3 : SiO2 glass composite system

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sudip; Lin, Yu-Hsing; Kao, Ting-Hui; Chou, C. C.; Yang, H. D.

    2011-03-01

    Gd 2 O3 (0.5 mol%) nanoparticles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700& circ; C and above. Compared with the parent material Si O2 , this nano-glass composite system shows enhancement of dielectric constant and diffuse phase transition along with magnetodielectric effect around room temperature. Observed conduction mechanism is found to be closely related to the thermally activated oxygen vacancies. Magnetodielectric behavior is strongly associated with magnetoresistance changes, depending on the nanoparticle size and separation. Such a material might be treated as a potential candidate for device miniaturization.

  14. A model of return intervals between earthquake events

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Chechkin, Aleksei; Sokolov, Igor M.; Kantz, Holger

    2016-06-01

    Application of the diffusion entropy analysis and the standard deviation analysis to the time sequence of the southern California earthquake events from 1976 to 2002 uncovered scaling behavior typical for anomalous diffusion. However, the origin of such behavior is still under debate. Some studies attribute the scaling behavior to the correlations in the return intervals, or waiting times, between aftershocks or mainshocks. To elucidate a nature of the scaling, we applied specific reshulffling techniques to eliminate correlations between different types of events and then examined how it affects the scaling behavior. We demonstrate that the origin of the scaling behavior observed is the interplay between mainshock waiting time distribution and the structure of clusters of aftershocks, but not correlations in waiting times between the mainshocks and aftershocks themselves. Our findings are corroborated by numerical simulations of a simple model showing a very similar behavior. The mainshocks are modeled by a renewal process with a power-law waiting time distribution between events, and aftershocks follow a nonhomogeneous Poisson process with the rate governed by Omori's law.

  15. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This "Weakly Anomalous to Anomalous Surface Temperature" dataset differs from the "Anomalous Surface Temperature" dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1o and 2o above the mean, as opposed to the greater than 2o temperatures contained in the "Anomalous Surface Temperature" dataset. Note: 'o' is used in this description to represent lowercase sigma

  16. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal

    PubMed Central

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; Zwart, Peter H.; Smith, Janet L.; Akey, David L.; Adams, Paul D.

    2016-01-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016 ▸), Acta Cryst. D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing. PMID:26960123

  17. Recovery Characteristics of Anomalous Stress-Induced Leakage Current of 5.6 nm Oxide Films

    NASA Astrophysics Data System (ADS)

    Inatsuka, Takuya; Kumagai, Yuki; Kuroda, Rihito; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2012-04-01

    Anomalous stress-induced leakage current (SILC), which has a much larger current density than average SILC, causes severe bit error in flash memories. To suppress anomalous SILC, detailed evaluations are strongly required. We evaluate the characteristics of anomalous SILC of 5.6 nm oxide films using a fabricated array test pattern, and recovery characteristics are observed. Some characteristics of typical anomalous cells in the time domain are measured, and the recovery characteristics of average and anomalous SILCs are examined. Some of the anomalous cells have random telegraph signals (RTSs) of gate leakage current, which are characterized as discrete and random switching phenomena. The dependence of RTSs on the applied electric field is investigated, and the recovery tendency of anomalous SILC with and without RTSs are also discussed.

  18. Relationship between the anomalous diffusion and the fractal dimension of the environment

    NASA Astrophysics Data System (ADS)

    Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter

    2018-03-01

    In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.

  19. Elastic behavior of brain simulants in comparison to porcine brain at different loading velocities.

    PubMed

    Falland-Cheung, Lisa; Scholze, Mario; Hammer, Niels; Waddell, J Neil; Tong, Darryl C; Brunton, Paul A

    2018-01-01

    Blunt force impacts to the head and the resulting internal force transmission to the brain and other cranial tissue are difficult to measure. To model blunt force impact scenarios, the compressive properties resembling tissue elasticity are of importance. Therefore, this study investigated and compared the elastic behavior of gelatin, alginate, agar/glycerol and agar/glycerol/water simulant materials to that of porcine brain in a fresh and unfixed condition. Specimens, 10 × 10 × 10mm 3 , were fabricated and tested at 22°C, apart from gelatin which was conditioned to 4°C prior to testing. For comparison, fresh porcine brains were sourced and prepared to the same dimensions as the simulants. Specimens underwent compression tests at crosshead displacement rates of 2.5, 10 and 16mms -1 (equivalent to strain rates of 0.25, 1 and 1.6s -1 ), obtaining apparent elastic moduli values at different strain rate intervals (0-0.2, 0.2-0.4 and 0.4-0.5). The results of this study indicate that overall all simulant materials had an apparent elastic moduli similar in magnitude across all strain ranges compared to brain, even though comparatively higher, especially the apparent elastic moduli values of alginate. In conclusion, while agar/glycerol/water and agar/glycerol had similar apparent elastic moduli in magnitude and the closest apparent elastic moduli in the initial strain range (E 1 ), gelatin showed the most similar values to fresh porcine brain at the transitional (E 2 ) and higher strain range (E 3 ). The simulant materials and the fresh porcine brain exhibited strain rate dependent behavior, with increasing elastic moduli upon increasing loading velocities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fractional Diffusion Equations and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  1. Anomalous Transport in Natural Fracture Networks Induced by Tectonic Stress

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Lei, Q.; Lee, S.; Dentz, M.; Juanes, R.

    2017-12-01

    Fluid flow and transport in fractured rock controls many natural and engineered processes in the subsurface. However, characterizing flow and transport through fractured media is challenging due to the high uncertainty and large heterogeneity associated with fractured rock properties. In addition to these "static" challenges, geologic fractures are always under significant overburden stress, and changes in the stress state can lead to changes in the fracture's ability to conduct fluids. While confining stress has been shown to impact fluid flow through fractures in a fundamental way, the impact of confining stress on transportthrough fractured rock remains poorly understood. The link between anomalous (non-Fickian) transport and confining stress has been shown, only recently, at the level of a single rough fracture [1]. Here, we investigate the impact of geologic (tectonic) stress on flow and tracer transport through natural fracture networks. We model geomechanical effects in 2D fractured rock by means of a finite-discrete element method (FEMDEM) [2], which can capture the deformation of matrix blocks, reactivation of pre-existing fractures, and propagation of new cracks, upon changes in the stress field. We apply the model to a fracture network extracted from the geological map of an actual rock outcrop to obtain the aperture field at different stress conditions. We then simulate fluid flow and particle transport through the stressed fracture networks. We observe that anomalous transport emerges in response to confining stress on the fracture network, and show that the stress state is a powerful determinant of transport behavior: (1) An anisotropic stress state induces preferential flow paths through shear dilation; (2) An increase in geologic stress increases aperture heterogeneity that induces late-time tailing of particle breakthrough curves. Finally, we develop an effective transport model that captures the anomalous transport through the stressed fracture network. Our results point to a heretofore unrecognized link between geomechanics and anomalous transport in natural fractured media. [1] P. K. Kang, S. Brown, and R. Juanes, Earth and Planetary Science Letters, 454, 46-54 (2016). [2] Q. Lei, J. P. Latham, and C. F. Tsang, Computers and Geotechnics, 85, 151-176 (2017).

  2. Anomalous magnetotransport behavior in Fe-doped MnNiGe alloys

    NASA Astrophysics Data System (ADS)

    Dutta, P.; Pramanick, S.; Singh, Vijay; Major, Dan Thomas; Das, D.; Chatterjee, S.

    2016-04-01

    The electrical dc transport properties of hexagonal magnetic equiatomic alloys of nominal composition Mn1 -xFexNiGe (x =0.2 and0.25 ) have been investigated experimentally as well as theoretically using first-principles electronic structure calculations. Thermal hysteresis in the magnetization data indicates that the alloys undergo a first-order martensitic transition. Both the alloys show unusual nonmetallic resistivity behavior and a noticeable amount of training effect in resistivity when thermally cycled through the first-order martensitic transition. We observe moderate negative magnetoresistance (˜-11.5 % for 150 kOe) at 5 K (well below the martensitic transition temperature) associated with clear virgin line effect for both the alloys. We have adapted different flavors of density functional theory approach to understand the experimentally observed nonmetallic transport behavior.

  3. Experimental dynamic metamorphism of mineral single crystals

    USGS Publications Warehouse

    Kirby, S.H.; Stern, L.A.

    1993-01-01

    This paper is a review of some of the rich and varied interactions between non-hydrostatic stress and phase transformations or mineral reactions, drawn mainly from results of experiments done on mineral single crystals in our laboratory or our co-authors. The state of stress and inelastic deformation can enter explicitly into the equilibrium phase relations and kinetics of mineral reactions. Alternatively, phase transformations can have prominent effects on theology and on the nature of inelastic deformation. Our examples represent five types of structural phase changes, each of which is distinguished by particular mechanical effects. In increasing structural complexity, these include: (1) displacive phase transformations involving no bond-breaking, which may produce anomalous brittle behavior. A primary example is the a-?? quartz transition which shows anomalously low fracture strength and tertiary creep behavior near the transition temperature; (2) martensitic-like transformations involving transformation strains dominated by shear deformation. Examples include the orthoenstatite ??? clinoenstatite and w u ??rtzite ??? sphalerite transformations; (3) coherent exsolution or precipitation of a mineral solute from a supersaturated solid-solution, with anisotropy of precipitation and creep rates produced under nonhydrostatic stress. Examples include exsolution of corundum from MgO ?? nAl2O3 spinels and Ca-clinopyroxene from orthopyroxene; (4) order-disorder transformations that are believed to cause anomalous plastic yield strengthening, such as MgO - nAl2O3 spinels; and (5) near-surface devolatilization of hydrous silicate single-crystals that produces a fundamental brittleness thought to be connected with dehydration at microcracks at temperatures well below nominal macroscopic dehydration temperatures. As none of these interactions between single-crystal phase transformations and non-hydrostatic stress is understood in detail, this paper serves as a challenge to field structural geologists to test whether interactions of these types occur in nature, and to theoreticians to reach a deeper understanding of the complex relations between phase transformations, the local state of stress and associated deformation and deformation rates. ?? 1993.

  4. Anomalous diffusion for bed load transport with a physically-based model

    NASA Astrophysics Data System (ADS)

    Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.

    2013-12-01

    Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.

  5. Fractional Progress Toward Understanding the Fractional Diffusion Limit: The Electromagnetic Response of Spatially Correlated Geomaterials

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Beskardes, G. D.; Everett, M. E.

    2016-12-01

    In this presentation we review the observational evidence for anomalous electromagnetic diffusion in near-surface geophysical exploration and how such evidence is consistent with a detailed, spatially-correlated geologic medium. To date, the inference of multi-scale geologic correlation is drawn from two independent methods of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an electromagnetic pulse is plotted as a function of transmitter/receiver separation. The "anomalous" diffusion is evident by the fractional-order power law behavior of these arrival times, with an exponent value between unity (pure diffusion) and 2 (lossless wave propagation). The second line of evidence comes from spectral analysis of small-scale fluctuations in electromagnetic profile data which cannot be explained in terms of instrument, user or random error. Rather, the power-law behavior of the spectral content of these signals (i.e., power versus wavenumber) and their increments reveals them to lie in a class of signals with correlations over multiple length scales, a class of signals known formally as fractional Brownian motion. Numerical results over simulated geology with correlated electrical texture - representative of, for example, fractures, sedimentary bedding or metamorphic lineation - are consistent with the (albeit limited, but growing) observational data, suggesting a possible mechanism and modeling approach for a more realistic geology. Furthermore, we show how similar simulated results can arise from a modeling approach where geologic texture is economically captured by a modified diffusion equation containing exotic, but manageable, fractional derivatives. These derivatives arise physically from the generalized convolutional form for the electromagnetic constitutive laws and thus have merit beyond mere mathematical convenience. In short, we are zeroing in on the anomalous, fractional diffusion limit from two converging directions: a zooming down of the macroscopic (fractional derivative) view; and, a heuristic homogenization of the atomistic (brute force discretization) view.

  6. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  7. Monsoon Variability in the Arabian Sea from Global 0.08 deg HYCOM Simulations

    DTIC Science & Technology

    2015-09-30

    modes to help explain the series of events leading up to the anomalous behavior in the SC, the GW and upwelling strength . WORK COMPLETED...Number: N00014-15-1-2189 LONG-TERM GOALS The Arabian Sea upper ocean circulation switches direction seasonally due to the change in direction ...of the prevailing winds associated with the Indian Monsoon. Predictability of the monsoon circulation however is uncertain due to incomplete

  8. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    PubMed

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 1 / f α noise and generalized diffusion in random Heisenberg spin systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Kartiek; Demler, Eugene; Martin, Ivar

    2015-11-01

    We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less

  10. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity

    NASA Astrophysics Data System (ADS)

    Manzo, Carlo; Torreno-Pina, Juan A.; Massignan, Pietro; Lapeyre, Gerald J.; Lewenstein, Maciej; Garcia Parajo, Maria F.

    2015-01-01

    Molecular transport in living systems regulates numerous processes underlying biological function. Although many cellular components exhibit anomalous diffusion, only recently has the subdiffusive motion been associated with nonergodic behavior. These findings have stimulated new questions for their implications in statistical mechanics and cell biology. Is nonergodicity a common strategy shared by living systems? Which physical mechanisms generate it? What are its implications for biological function? Here, we use single-particle tracking to demonstrate that the motion of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), a receptor with unique pathogen-recognition capabilities, reveals nonergodic subdiffusion on living-cell membranes In contrast to previous studies, this behavior is incompatible with transient immobilization, and, therefore, it cannot be interpreted according to continuous-time random-walk theory. We show that the receptor undergoes changes of diffusivity, consistent with the current view of the cell membrane as a highly dynamic and diverse environment. Simulations based on a model of an ordinary random walk in complex media quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as the cause of DC-SIGN behavior. By studying different receptor mutants, we further correlate receptor motion to its molecular structure, thus establishing a strong link between nonergodicity and biological function. These results underscore the role of disorder in cell membranes and its connection with function regulation. Because of its generality, our approach offers a framework to interpret anomalous transport in other complex media where dynamic heterogeneity might play a major role, such as those found, e.g., in soft condensed matter, geology, and ecology.

  11. [An autopsied case of senile onset frontotemporal lobar degeneration].

    PubMed

    Iwasaki, Yasushi; Mori, Keiko; Ito, Masumi; Deguchi, Akira; Yoshida, Mari

    2011-06-01

    A Japanese male with no family history of neurological disease or dementia showed behavioral abnormalities including egocentric and antisocial behavior at the age of 80. Over the next few years, other psychiatric symptoms such as allotriophagy and stereotypical behavior were also observed and his abnormal behavior became a social problem. Neurological examination revealed no apparent motor abnormalities, pyramidal and extrapyramidal signs, or ataxia. Aphasia, including semantic dementia was not apparent. The severity of memory disturbance was relatively milder than his psychiatric symptoms. Daily living activities and conversational ability were relatively maintained until shortly before his death at the age of 86. The clinical diagnosis was Alzheimer disease. Autopsy revealed that the brain weighed 950 g; frontotemporal atrophy with lateral ventricular dilatation was apparent. Neuron loss, gliosis, and tissue rarefaction were recognized in the frontotemporal cortex, subiculum, transentorhinal cortex, amygdala, and insular cortex and were particularly noticeable in the superficial layer of the cortex. Many ubiquitin-positive/TDP-43 positive but tau-negative dystrophic neurites with a few neuronal cytoplasmic inclusions were widely observed. Neuronal cytoplasmic inclusions were also observed in the dentate gyrus of the hippocampus. Although the spinal cord was not investigated, there was no apparent involvement of the motor neuron system. Small numbers of neurofibrillary tangles and senile plaques were observed, corresponding to Braak stage II and CERAD stage B, respectively. Argyrophilic grains, Lewy bodies and Pick bodies were not observed. The patient was pathologically diagnosed with frontotemporal lobar degeneration with ubiquitin-positive/TDP-43-positive inclusions (FTLD-TDP) and without motor neuron disease. No mutation was found in the TDP-43 gene. We considered the psychiatric symptoms and head CT findings of the present patient to be important observations for helping to discriminate between Alzheimer disease or other neurodegenerative diseases with dementia, and FTLD-TDP.

  12. Color-specific conditioning effects due to both orange and blue stimuli are observed in a Halobacterium salinarum strain devoid of putative methylatable sites on HtrI.

    PubMed

    Lucia, S; Cercignani, G; Frediani, A; Petracchi, D

    2003-01-01

    Behavioral responses of Halobacterium salinarum appear as changes in the frequency of motion reversals. Turning on orange light decreases the reversal frequency, whereas blue light induces reversals. Light pulses normally induce the same response as step-up stimuli. However, anomalous behavioral reactions, including inverse responses, are seen when stimuli are applied in sequence. The occurrence of a prior stimulus is conditioning for successive stimulation on a time scale of the same order of adaptational processes. These prolonged conditioning effects are color-specific. The only adaptation process identified so far is methylation of the transducers, and this could be somehow color-specific. Therefore we tested for the behavioral anomalies in a mutant in which all methylation sites on the transducer have been eliminated. The results show that behavioral anomalies are unaffected by the absence of methylation processes on the transducer.

  13. Fast Risetime Reverse Bias Pulse Failures in SiC PN Junction Diodes

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Fazi, Christian; Parsons, James D.

    1996-01-01

    SiC-based high temperature power devices are being developed for aerospace systems which will require high reliability. One behavior crucial to power device reliability. To date, it has necessarily been assumed to date is that the breakdown behavior of SiC pn junctions will be similar to highly reliable silicon-based pn junctions. Challenging this assumption, we report the observation of anomalous unreliable reverse breakdown behavior in moderately doped (2-3 x 10(exp 17) cm(exp -3)) small-area 4H- and 6H-SiC pn junction diodes at temperatures ranging from 298 K (25 C) to 873 K (600 C). We propose a mechanism in which carrier emission from un-ionized dopants and deep level defects leads to this unstable behavior. The fundamental instability mechanism is applicable to all wide bandgap semiconductors whose dopants are significantly un-ionized at typical device operating temperatures.

  14. On the association between the recent episode of the quasi-biennial oscillation and the strong El Niño event

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Sarlis, Nikos V.; Efstathiou, Maria

    2017-07-01

    Since February 2016, the equatorial quasi-biennial oscillation (QBO) in zonal wind of the lower stratosphere exhibited anomalous behavior. In more detail, it broke down from its typical pattern and the eastward stratospheric winds unexpectedly reversed to a westward direction. We herewith attempt to detect whether this unprecedented event could be considered as a result of plausible long-range correlations in the QBO temporal evolution. The analyses performed using all the available QBO data sets showed that such an interpretation could not be inferred, because the temporal evolution of the equatorial zonal wind in the lower stratosphere does not exhibit power-law behavior. Further, the natural time analysis of the QBO data indicates precursory behavior before the maximization of the zonal wind velocity and that the recent strong El Niño event might be related with the aforementioned unprecedented behavior.

  15. Possible Mechanisms for Generation of Anomalously High PGA During the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Pavlenko, O. V.

    2017-08-01

    Mechanisms are suggested that could explain anomalously high PGAs (peak ground accelerations) exceeding 1 g recorded during the 2011 Tohoku earthquake ( M w = 9.0). In my previous research, I studied soil behavior during the Tohoku earthquake based on KiK-net vertical array records and revealed its `atypical' pattern: instead of being reduced in the near-source zones as usually observed during strong earthquakes, shear moduli in soil layers increased, indicating soil hardening, and reached their maxima at the moments of the highest intensity of strong motion, then reduced. We could explain this assuming that the soils experienced some additional compression. The observed changes in the shapes of acceleration time histories with distance from the source, such as a decrease of the duration and an increase of the intensity of strong motion, indicate phenomena similar to overlapping of seismic waves and a shock wave generation, which led to the compression of soils. The phenomena reach their maximum in the vicinity of stations FKSH10, TCGH16, and IBRH11, where the highest PGAs were recorded; at larger epicentral distances, PGAs sharply fall. Thus, the occurrence of anomalously high PGAs on the surface can result from the combination of the overlapping of seismic waves at the bottoms of soil layers and their increased amplification by the pre-compressed soils.

  16. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  17. Anomalous low strain induced by surface charge in nanoporous gold with low relative density.

    PubMed

    Liu, Feng; Ye, Xing-Long; Jin, Hai-Jun

    2017-07-26

    The surface stress induced axial strain in a fiber-like solid is larger than its radical strain, and is also greater than the radical strain in similar-sized spherical solids. It is thus envisaged that the surface-induced macroscopic dimension change (i.e., actuation strain) in nanoporous gold (NPG) increases with decreasing relative density, or alternatively, with an increasing ratio between volumes of fiber-like ligaments and sphere-like nodes. In this study, electrochemical actuations of NPG with similar structure sizes, same (oxide-covered) surface state but different relative densities were characterized in situ in response to surface charging/discharging. We found that the actuation strain amplitude did not increase, but decreased dramatically with decreasing relative density of NPG, in contrast to the above prediction. The actuation strain decreased abruptly when the relative density of NPG was decreased to below 0.25, when the Au content in the AuAg precursor was below 20 at%. Further studies indicate that this anomalous behavior cannot be explained by potential- or size-dependences of the elasticity, the structure difference arising from different dealloying rates, or additional strain induced by the external load during dilatometry experiments. In NPG with low relative density, mutual movements of nano-ligaments may occur in the pore space and disconnected regions, which may compensate the local strain in ligaments and account for the anomalous low actuation strain in macroscopic NPG samples.

  18. IR-stimulated visible fluorescence in pink and brown diamond.

    PubMed

    Byrne, K S; Chapman, J G; Luiten, A N

    2014-03-19

    Irradiation of natural pink and brown diamond by middle-ultraviolet light (photon energy ϵ ≥ 4.1 eV ) is seen to induce anomalous fluorescence phenomena at N3 defect centres (structure N3-V). When diamonds primed in this fashion are subsequently exposed to infrared light (even with a delay of many hours), a transient burst of blue N3 fluorescence is observed. The dependence of this IR-triggered fluorescence on pump wavelength and intensity suggest that this fluorescence phenomena is intrinsically related to pink diamond photochromism. An energy transfer process between N3 defects and other defect species can account for both the UV-induced fluorescence intensity changes, and the apparent optical upconversion of IR light. From this standpoint, we consider the implications of this N3 fluorescence behaviour for the current understanding of pink diamond photochromism kinetics.

  19. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J.

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosomemore » 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.« less

  20. Reversed-polarity regions

    NASA Technical Reports Server (NTRS)

    Tang, F.

    1980-01-01

    The 58 RPRS studied have a lifespan comparable to normal active regions and have no tendency to rotate toward a more normal alignment. They seem to have stable configurations with no apparent evidence suggesting stress due to their anomalous magnetic alignment. Magnetic complexity in RPRs is the key to flare productivity just as it is in normal regions - weak field RPRs produced no flares and regions with complex spots produced more flares than regions with noncomplex spots by a factor of 5. The RPRs however, differ from normal regions in the frequency of having complex spots, particularly the long lived complex spots, in them. Less than 17 percent of normal ARs have complex spots; less than 1.8 percent have long lived complex spots. In contrast, 41 percent of RPRs have complex spots and 24 percent have long lived complex spots.

  1. New evidence for chemical fractionation of radioactive xenon precursors in fission chains

    NASA Astrophysics Data System (ADS)

    Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.

    2016-04-01

    Mass-spectrometric analyses of Xe released from acid-treated U ore reveal that apparent Xe fission yields significantly deviate from the normal values. The anomalous Xe structure is attributed to chemically fractionated fission (CFF), previously observed only in materials experienced neutron bursts. The least retentive CFF-Xe isotopes, 136Xe and 134Xe, typically escape in 2:1 proportion. Xe retained in the sample is complimentarily depleted in these isotopes. This nucleochemical process allows understanding of unexplained Xe isotopic structures in several geophysical environments, which include well gasses, ancient anorthosite, some mantle rocks, as well as terrestrial atmosphere. CFF is likely responsible for the isotopic difference in Xe in the Earth's and Martian atmospheres and it is capable of explaining the relationship between two major solar system Xe carriers: the Sun and phase-Q, found in meteorites.

  2. Integration of local motion is normal in amblyopia

    NASA Astrophysics Data System (ADS)

    Hess, Robert F.; Mansouri, Behzad; Dakin, Steven C.; Allen, Harriet A.

    2006-05-01

    We investigate the global integration of local motion direction signals in amblyopia, in a task where performance is equated between normal and amblyopic eyes at the single element level. We use an equivalent noise model to derive the parameters of internal noise and number of samples, both of which we show are normal in amblyopia for this task. This result is in apparent conflict with a previous study in amblyopes showing that global motion processing is defective in global coherence tasks [Vision Res. 43, 729 (2003)]. A similar discrepancy between the normalcy of signal integration [Vision Res. 44, 2955 (2004)] and anomalous global coherence form processing has also been reported [Vision Res. 45, 449 (2005)]. We suggest that these discrepancies for form and motion processing in amblyopia point to a selective problem in separating signal from noise in the typical global coherence task.

  3. The refractive index and electronic gap of water and ice increase with increasing pressure

    PubMed Central

    Pan, Ding; Wan, Quan; Galli, Giulia

    2014-01-01

    Determining the electronic and dielectric properties of water at high pressure and temperature is an essential prerequisite to understand the physical and chemical properties of aqueous environments under supercritical conditions, for example, in the Earth interior. However, optical measurements of compressed ice and water remain challenging, and it has been common practice to assume that their band gap is inversely correlated with the measured refractive index, consistent with observations reported for hundreds of materials. Here we report ab initio molecular dynamics and electronic structure calculations showing that both the refractive index and the electronic gap of water and ice increase with increasing pressure, at least up to 30 GPa. Subtle electronic effects, related to the nature of interband transitions and band edge localization under pressure, are responsible for this apparently anomalous behaviour. PMID:24861665

  4. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  5. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  6. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2016-06-01

    The Bayan Obo Mine, the largest rare earth element (REE) deposit ever found in the world, has been mined for nearly 60 years for iron and rare earth elements. To assess the influences of mining activities on geochemical behavior of REEs in soils, 27 surface soil samples and three soil profile samples were collected from different directions in the vicinity of the mine area. The total concentrations of REEs in surface soils varied from 149.75 to 18,891.81 mg kg(-1) with an average value of 1906.12 mg kg(-1), which was apparently higher than the average values in China (181 mg kg(-1)). The order of the average concentrations of individual REEs in surface soils was similar to that in Bayan Obo ores, which confirmed that the concentration and distribution of REEs in the soils was influenced by the mining activities. The concentrations of single REE in the soil profiles showed a similar trend with depth with an increase at 0-25 cm section, then decreased and remained relatively stable in the deep part. The normalized curves inclined to the right side, showing the conspicuous fractionation between the light and heavy REEs, which supported by the North American Shale Composite (NASC) and Post-Archean Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La N /Yb N , La N /Sm N , Gd N /Yb N ). Slight positive Ce anomaly and negative Eu anomaly were also observed.

  7. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  8. Analytic cognitive style predicts paranormal explanations of anomalous experiences but not the experiences themselves: Implications for cognitive theories of delusions.

    PubMed

    Ross, Robert M; Hartig, Bjoern; McKay, Ryan

    2017-09-01

    It has been proposed that delusional beliefs are attempts to explain anomalous experiences. Why, then, do anomalous experiences induce delusions in some people but not in others? One possibility is that people with delusions have reasoning biases that result in them failing to reject implausible candidate explanations for anomalous experiences. We examine this hypothesis by studying paranormal interpretations of anomalous experiences. We examined whether analytic cognitive style (i.e. the willingness or disposition to critically evaluate outputs from intuitive processing and engage in effortful analytic processing) predicted anomalous experiences and paranormal explanations for these experiences after controlling for demographic variables and cognitive ability. Analytic cognitive style predicted paranormal explanations for anomalous experiences, but not the anomalous experiences themselves. We did not study clinical delusions. Our attempts to control for cognitive ability may have been inadequate. Our sample was predominantly students. Limited analytic cognitive style might contribute to the interpretation of anomalous experiences in terms of delusional beliefs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Interparental conflict, parent psychopathology, hostile parenting, and child antisocial behavior: examining the role of maternal versus paternal influences using a novel genetically sensitive research design.

    PubMed

    Harold, Gordon T; Elam, Kit K; Lewis, Gemma; Rice, Frances; Thapar, Anita

    2012-11-01

    Past research has linked interparental conflict, parent psychopathology, hostile parenting, and externalizing behavior problems in childhood. However, few studies have examined these relationships while simultaneously allowing the contribution of common genetic factors underlying associations between family- and parent-level variables on child psychopathology to be controlled. Using the attributes of a genetically sensitive in vitro fertilization research design, the present study examined associations among interparental conflict, parents' antisocial behavior problems, parents' anxiety symptoms, and hostile parenting on children's antisocial behavior problems among genetically related and genetically unrelated mother-child and father-child groupings. Path analyses revealed that for genetically related mothers, interparental conflict and maternal antisocial behavior indirectly influenced child antisocial behavior through mother-to-child hostility. For genetically unrelated mothers, effects were apparent only for maternal antisocial behavior on child antisocial behavior through mother-to-child hostility. For both genetically related and genetically unrelated fathers and children, interparental conflict and paternal antisocial behavior influenced child antisocial behavior through father-to-child hostility. Effects of parental anxiety symptoms on child antisocial behavior were apparent only for genetically related mothers and children. Results are discussed with respect to the relative role of passive genotype-environment correlation as a possible confounding factor underlying family process influences on childhood psychopathology.

  10. Geophysical investigation of seepage beneath an earthen dam.

    PubMed

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone. © 2014, National Ground Water Association.

  11. The morphology of faint galaxies in Medium Deep Survey images using WFPC2

    NASA Technical Reports Server (NTRS)

    Griffiths, R. E.; Casertano, S.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G. F.; Glazebrook, K.; Santiago, B.; Huchra, J. P.; Windhorst, R. A.

    1994-01-01

    First results from Hubble Space Telescope (HST) Medium Deep Survey images taken with Wide Field/Planetary Camera-2 (WFPC2) demonstrate that galaxy classifications can be reliably performed to magnitudes I814 approximately less than 22.0 in the F815W band. Published spectroscopic surveys to this depth indicate a mean redshift of bar-z approximately 0.5. We have classified over 200 galaxies in nine WFPC2 fields according to a basic morphological scheme. The majority of these faint galaxies appear to be similar to regular Hubble-sequence examples observed at low redshift. To the precision of our classification scheme, the relative proportion of spheroidal and disk systems of normal appearance is as expected from nearby samples, indicating that the bulk of the local galaxy population was in place at half the Hubble time. However, the most intriguing result is the relatively high proportion (approximately 40%) of objects which are in some way anomalous, and which may be of relevance in understanding the origin of the familiar excess population of faint galaxies established by others. These diverse objects include apparently interacting pairs whose multiple structure is only revealed with HST's angular resolution, galaxies with superluminous star-forming regions, diffuse low surface brightness galaxies of various forms, and compact galaxies. These anomalous galaxies contribute a substantial fraction of the excess counts at our limiting magnitude, and may provide insights into the 'faint blue galaxy' problem.

  12. Influence of meteorological conditions on RSV infection in Portugal

    NASA Astrophysics Data System (ADS)

    Oliveira-Santos, M.; Santos, J. A.; Soares, J.; Dias, A.; Quaresma, M.

    2016-12-01

    Acute viral bronchiolitis is a common cause for infant hospital admissions. Of all etiological agents, respiratory syncytial virus (RSV) is commonly the most frequent. The present study assesses relationships between atmospheric factors and RSV infections in under 3-year-old patients admitted to the Inpatient Paediatric Service of Vila Real (North of Portugal). For this purpose, (1) clinical files of children admitted with a diagnosis of acute bronchiolitis from September 2005 to December 2015 (>10 years) were scrutinised and (2) local daily temperature/precipitation series, as well as six weather types controlling meteorological conditions in Portugal, were used. Fifty-five percent of all 770 admitted children were effectively infected with a given virus, whilst 48 % (367) were RSV+, i.e. 87 % of virus-infected children were RSV+. The bulk of incidence is verified in the first year of age (82 %, 302), slightly higher in males. RSV outbreaks are typically from December to March, but important inter-annual variability is found in both magnitude and shape. Although no clear connections were found between monthly temperatures/precipitation and RSV outbreaks apart from seasonality, a linkage to wintertime cold spells is apparent on a daily basis. Anomalously low minimum temperatures from the day of admittance back to 10 days before are observed. This relationship is supported by anomalously high occurrences of the E and AA weather types over the same period, which usually trigger dry and cold weather. These findings highlight some predictability in the RSV occurrences, revealing potential for modelling and risk assessments.

  13. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  14. The Effects of Behavioral Objectives on Learning: A Review of Empirical Studies.

    ERIC Educational Resources Information Center

    Duchastel, Philippe C.; Merrill, Paul F.

    In a review of over 25 empirical investigations of effects of communicating behavioral objectives to students, several trends were apparent. Advance knowledge of behavioral objectives led to improved posttest performance in five of ten studies and to improved retention in two of three instances. Only two of seven studies found an interaction…

  15. Brush in the bath of active particles: Anomalous stretching of chains and distribution of particles

    NASA Astrophysics Data System (ADS)

    Li, Hui-shu; Zhang, Bo-kai; Li, Jian; Tian, Wen-de; Chen, Kang

    2015-12-01

    The interaction between polymer brush and colloidal particles has been intensively studied in the last two decades. Here, we consider a flat chain-grafted substrate immersed in a bath of active particles. Simulations show that an increase in the self-propelling force causes an increase in the number of particles that penetrate into the brush. Anomalously, the particle density inside the main body of the brush eventually becomes higher than that outside the brush at very large self-propelling force. The grafted chains are further stretched due to the steric repulsion from the intruded particles. Upon the increase of the self-propelling force, distinct stretching behaviors of the chains were observed for low and high grafting densities. Surprisingly, we find a weak descent of the average end-to-end distance of chains at high grafting density and very large force which is reminiscent of the compression effect of a chain in the active bath.

  16. Effect of IrMn inserted layer on anomalous-Hall resistance and spin-Hall magnetoresistance in Pt/IrMn/YIG heterostructures

    NASA Astrophysics Data System (ADS)

    Shang, T.; Yang, H. L.; Zhan, Q. F.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2016-10-01

    We report an investigation of anomalous-Hall resistance (AHR) and spin-Hall magnetoresistance (SMR) in Pt/Ir20Mn80/Y3Fe5O12 (Pt/IrMn/YIG) heterostructures. The AHR of Pt/IrMn/YIG heterostructures with an antiferromagnetic inserted layer is dramatically enhanced as compared to that of the Pt/YIG bilayer. The temperature dependent AHR behavior is nontrivial, while the IrMn thickness dependent AHR displays a peak at an IrMn thickness of 3 nm. The observed SMR in the temperature range of 10-300 K indicates that the spin current generated in the Pt layer can penetrate the IrMn layer (≤3 nm) to interact with the ferromagnetic YIG layer. The lack of conventional anisotropic magnetoresistance (AMR) implies that the insertion of the IrMn layer between Pt and YIG could efficiently suppress the magnetic proximity effect (MPE) on induced Pt moments by YIG.

  17. Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms

    NASA Astrophysics Data System (ADS)

    Nobukane, Hiroyoshi; Matsuyama, Toyoki; Tanda, Satoshi

    2017-01-01

    The quantum anomaly that breaks the symmetry, for example the parity and the chirality, in the quantization leads to a physical quantity with a topological Chern invariant. We report the observation of a Chern structure in the Bose-insulating phase of Sr2RuO4 nanofilms by employing electric transport. We observed the superconductor-to-insulator transition by reducing the thickness of Sr2RuO4 single crystals. The appearance of a gap structure in the insulating phase implies local superconductivity. Fractional quantized conductance was observed without an external magnetic field. We found an anomalous induced voltage with temperature and thickness dependence, and the induced voltage exhibited switching behavior when we applied a magnetic field. We suggest that there was fractional magnetic-field-induced electric polarization in the interlayer. These anomalous results are related to topological invariance. The fractional axion angle Θ = π/6 was determined by observing the topological magneto-electric effect in the Bose-insulating phase of Sr2RuO4 nanofilms.

  18. Why You Should Believe Cold Fusion is Real

    NASA Astrophysics Data System (ADS)

    Storms, Edmund K.

    2005-03-01

    Nuclear reactions are now claimed to be initiated in certain solid materials at an energy too low to overcome the Coulomb barrier. These reactions include fusion, accelerated radioactive decay, and transmutation involving heavy elements. Evidence is based on hundreds of measurements of anomalous energy using a variety of calorimeters at levels far in excess of error, measurement of nuclear products using many normally accepted techniques, observations of many patterns of behavior common to all studies, measurement of anomalous energetic emissions using accepted techniques, and an understanding of most variables that have hindered reproducibility in the past. This evidence can be found at www.LENR-CANR.orgwww.LENR-CANR.org. Except for an accepted theory, the claims have met all requirements normally required before a new idea is accepted by conventional science, yet rejection continues. How long can the US afford to reject a clean and potentially cheap source of energy, especially when other nations are attempting to develop this energy and the need for such an energy source is so great?

  19. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    PubMed Central

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  20. Anisotropic lattice compression of α- and β-CePdZn

    NASA Astrophysics Data System (ADS)

    Oomi, Gendo; Eto, Tetsujiro; Okada, Taku; Uwatoko, Yoshiya

    2018-05-01

    The lattice constants of ZrNiAl type α-CePdZn and TiNiSi type β-CePdZn were measured at high pressure up to 14 GPa at room temperature using X-ray diffraction (XRD) and a diamond anvil cell. The pressure dependence of lattice constants and volume of α-CePdZn were found to be smooth without any discontinuity, and having a bulk modulus, B0, and its pressure derivative, B0‧, of 67 GPa and 5.1, respectively. On the other hand, the a and b axes as well as volume of β-CePdZn were found to show anomalous pressure dependence at around 8 GPa. B0 and B0‧ of β-CePdZn were 90 GPa and 2.1, respectively. These results suggest that a crossover in the electronic states is induced by applying pressure to β-CePdZn. The origins of these anomalous behaviors are discussed in connection with crossover and change in the topology of Fermi surface.

Top