DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanski, R., E-mail: rszymans@cbmm.lodz.pl; Sosnowski, S.; Maślanka, Ł.
2016-03-28
Theoretical analysis and computer simulations (Monte Carlo and numerical integration of differential equations) show that the statistical effect of a small number of reacting molecules depends on a way the molecules are distributed among the small volume nano-reactors (droplets in this study). A simple reversible association A + B = C was chosen as a model reaction, enabling to observe both thermodynamic (apparent equilibrium constant) and kinetic effects of a small number of reactant molecules. When substrates are distributed uniformly among droplets, all containing the same equal number of substrate molecules, the apparent equilibrium constant of the association is highermore » than the chemical one (observed in a macroscopic—large volume system). The average rate of the association, being initially independent of the numbers of molecules, becomes (at higher conversions) higher than that in a macroscopic system: the lower the number of substrate molecules in a droplet, the higher is the rate. This results in the correspondingly higher apparent equilibrium constant. A quite opposite behavior is observed when reactant molecules are distributed randomly among droplets: the apparent association rate and equilibrium constants are lower than those observed in large volume systems, being the lower, the lower is the average number of reacting molecules in a droplet. The random distribution of reactant molecules corresponds to ideal (equal sizes of droplets) dispersing of a reaction mixture. Our simulations have shown that when the equilibrated large volume system is dispersed, the resulting droplet system is already at equilibrium and no changes of proportions of droplets differing in reactant compositions can be observed upon prolongation of the reaction time.« less
Plummer, Niel; Sundquist, Eric T.
1982-01-01
We have calculated the total individual ion activity coefficients of carbonate and calcium, and , in seawater. Using the ratios of stoichiometric and thermodynamic constants of carbonic acid dissociation and total mean activity coefficient data measured in seawater, we have obtained values which differ significantly from those widely accepted in the literature. In seawater at 25°C and 35%. salinity the (molal) values of and are 0.038 ± 0.002 and 0.173 ± 0.010, respectively. These values of and are independent of liquid junction errors and internally consistent with the value . By defining and on a common scale (), the product is independent of the assigned value of and may be determined directly from thermodynamic measurements in seawater. Using the value and new thermodynamic equilibrium constants for calcite and aragonite, we show that the apparent constants of calcite and aragonite are consistent with the thermodynamic equilibrium constants at 25°C and 35%. salinity. The demonstrated consistency between thermodynamic and apparent constants of calcite and aragonite does not support a hypothesis of stable Mg-calcite coatings on calcite or aragonite surfaces in seawater, and suggests that the calcite critical carbonate ion curve of Broecker and Takahashi (1978,Deep-Sea Research25, 65–95) defines the calcite equilibrium boundary in the oceans, within the uncertainty of the data.
Recommendations for terminology and databases for biochemical thermodynamics.
Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V
2011-05-01
Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.
Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin
2010-02-18
Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.
Excess zinc ions are a competitive inhibitor for carboxypeptidase A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirose, J.; Ando, S.; Kidani, Y.
The mechanism for inhibition of enzyme activity by excess zinc ions has been studied by kinetic and equilibrium dialysis methods at pH 8.2, I = 0.5 M. With carboxypeptidase A (bovine pancreas), peptide (carbobenzoxyglycyl-L-phenylalanine and hippuryl-L-phenylalanine) and ester (hippuryl-L-phenyl lactate) substrates were inhibited competitively by excess zinc ions. The K/sub i/ values for excess zinc ions with carboxypeptidase A at pH 8.2 are all similar. The apparent constant for dissociation of excess zinc ions from carboxypeptidase A was also obtained by equilibrium dialysis at pH 8.2 and was 2.4 x 10/sup -5/ M, very close to the K/sub i/ valuesmore » above. With arsanilazotyrosine-248 carboxypeptidase A ((Azo-CPD)Zn)), hippuryl-L-phenylalanine, carbobenzoxyglycyl-L-phenylalanine, and hippuryl-L-phenyl lactate were also inhibited with a competitive pattern by excess zinc ions, and the K/sub i/ values were (3.0-3.5) x 10/sup -5/ M. The apparent constant for dissociation of excess zinc ions from arsanilazotyrosine-248 carboxypeptidase A, which was obtained from absorption changes at 510 nm, was 3.2 x 10/sup -5/ M and is similar to the K/sub i/ values for ((Azo-CPD)Zn). The apparent dissociation and inhibition constants, which were obtained by inhibition of enzyme activity and spectrophotometric and equilibrium dialysis methods with native carboxypeptidase A and arsanilazotyrosine-248 carboxypeptidase A, were almost the same. This agreement between the apparent dissociation and inhibition constants indicates that the zinc binding to the enzymes directly relates to the inhibition of enzyme activity by excess zinc ions. Excess zinc ions were competitive inhibitors for both peptide and ester substrates. This behavior is believed to arise by the excess zinc ions fixing the enzyme in a conformation to which the substrates cannot bind.« less
Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...
Equilibrium muscle cross-bridge behavior. Theoretical considerations.
Schoenberg, M
1985-01-01
We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539
Plummer, Niel; Busenberg, E.
1987-01-01
Neither equilibrium nor stoichiometric saturation is observed at 76°C during laboratory recrystallization of strontianite-aragonite solid solutions even after apparent 100 percent conversion to a narrow secondary composition and demonstration of a nearly constant composition system for periods of 300 hours.
NASA Astrophysics Data System (ADS)
Bernabé-Pineda, Margarita; Ramírez-Silva, María. Teresa; Romero-Romo, Mario; González-Vergara, Enrique; Rojas-Hernández, Alberto
2004-04-01
The stability of curcumin (H 3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur 3- species of 1.39 (10 -9) M min -1. There were three acidity constants measured for the curcumin as follows: p KA3=10.51±0.01 corresponding to the equilibrium HCur 2-=Cur 3-+H +, a p KA2=9.88±0.02 corresponding to the equilibrium H 2Cur -=HCur -2+H +. These p KA values were attributed to the hydrogen of the phenol part of the curcumin, while the p KA1=8.38±0.04 corresponds to the equilibrium H 3Cur=H 2Cur -+H + and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.
Metal biosorption equilibria in a ternary system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.H.; Volesky, B.
Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data andmore » with conclusions postulated from the three possible binary subsystems.« less
He, Fuyuan; Deng, Kaiwen; Shi, Jilian; Liu, Wenlong; Pi, Fengjuan
2011-11-01
To establish the unitive multicomponent quality system bridged macrostate mathematic model parameters of material quality and microstate component concentration for Chinese materia medica (CMM). According to law of biologic laws of thermodynamics, the state functions of macrostate qulity of the CMM were established. The validation test was carried out as modeling drug as alcohol extract of Radix Rhozome (AERR), their enthalpy of combustion was determined, and entropy and the capability of information by chromatographic fingerprint were assayed, and then the biologic apparent macrostate parameters were calculated. The biologic macrostate mathematic models, for the CMM quality controll, were established as parameters as the apparent equilibrium constant, biologic enthalpy, Gibbs free energy and biologic entropy etc. The total molarity for the 10 batchs of AERR were 0.153 4 mmol x g(-1) with 28.26% of RSD, with the average of apparent equilibrium constants, biologic enthalpy, Gibbs free energy and biologic entropy were 0.039 65, 8 005 J x mol(-1), -2.408 x 10(7) J x mol(-1) and - 8.078 x 10(4) J x K(-1) with RSD as 6.020%, 1.860%, 42.32% and 42.31%, respectively. The macrostate quality models for CMM can represent their intrinsic quality for multicomponent dynamic system such as the CMM, to manifest out as if the forest away from or tree near from to see it.
Kinetics and equilibria of cyanide binding to prostaglandin H synthase.
MacDonald, I D; Dunford, H B
1989-09-01
Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.
The effect of alumina in slag on manganese and silicon distributions in silicomanganese smelting
NASA Astrophysics Data System (ADS)
Swinbourne, D. R.; Rankin, W. J.; Eric, R. H.
1995-02-01
The distribution ratios of manganese and silicon between silicomanganese alloy and slag, in equilibrium with carbon, were investigated at 1500 °C. The alumina content of the slag was varied from about 9 to 32 pct. Both distribution ratios decreased as A12O3 increased to about 20 pct and, thereafter, remained constant. The value of the “apparent equilibrium constant” displayed a maximum at about 24 pct A12O3, mainly because of the variation in the values of the activity coefficients of SiO2 and MnO. It was concluded that the slag and silicomanganese alloy in a submerged arc furnace are at, or at least close to, equilibrium.
Iron Isotopic Fractionation in Igneous Systems: Looking for Anharmonicity
NASA Astrophysics Data System (ADS)
Dauphas, N.; Roskosz, M.; Hu, M. Y.; Neuville, D. R.; Alp, E. E.; Hu, J.; Heard, A.; Zhao, J.
2017-12-01
Igneous rocks display variations in their Fe isotopic compositions that can be used to trace partial melting, magma differentiation, the origin of mineral zoning, and metasomatic processes. While tremendous progress has been made in our understanding of how iron isotopes can be fractionated at equilibrium or during diffusion, significant work remains to be done to establish equilibrium fractionation factors between phases relevant to igneous petrology. A virtue of iron isotope systematics is that iron possesses a Mössbauer isotope, 57Fe, and one can use the method of NRIXS to measure the force constant of iron bonds, from which beta-factors can be calculated. These measurements are done at a few synchrotron beamlines around the world, such as sector 3ID of the APS (Argonne). Tremendous insights have already been gained by applying this technique to Earth science materials. It was shown for instance that significant equilibrium fractionation exists between Fe2+ and Fe3+ at magmatic temperature, that the iron isotopic fractionation resulting from core formation must be small, and that iron isotopic fractionation is influenced by the polymerization of the melt. Combining NRIXS and ab initio studies, there are approximately 130 geologically-relevant solids and aqueous species for which beta-factors have been reported. A potential limitation of applying published NRIXS data to igneous petrology is that all the force constants have been measured at room temperature and the beta-factors are extrapolated to magmatic temperatures assuming that the systems are harmonic, which has never been demonstrated. One way to test this critical assumption is to measure the apparent force constant of iron bonds at various temperatures, so that the interatomic potential of iron bonds can be probed. A further virtue of NRIXS is that the data also allows us to derive the mean square displacement. If significant anharmonicity is present, it should be manifested as a decrease in the apparent force constant with increasing temperature and increasing mean square displacement. We have measured the Fe force constant of basalt glass and olivine using a wire furnace. At the conference, we will report on these experiments and will discuss some implications for igneous petrology.
Brocklehurst, K
1979-01-01
To facilitate mechanistic interpretation of the kinetics of time-dependent inhibition of enzymes and of similar protein modification reactions, it is important to know when the equilibrium assumption may be applied to the model: formula: (see text). The conventional criterion of quasi-equilibrium, k + 2 less than k-1, is not always easy to assess, particularly when k + 2 cannot be separately determined. It is demonstrated that the condition k + 2 less than k-1 is necessarily true, however, when the value of the apparent second-order rate constant for the modification reaction is much smaller than the value of k + 1. Since k + 1 is commonly at least 10(7)M-1.S-1 for substrates, it is probable that the equilibrium assumption may be properly applied to most irreversible inhibitions and modification reactions. PMID:518556
Barros, T C; Cuccovia, I M; Farah, J P S; Masini, J C; Chaimovich, H; Politi, M J
2006-01-07
The study of highly conjugated, carbonyl-containing molecules such as 1,4,5,8-naphthalene tetracarboxylic dianhydride, III, is of interest since reactivity differences and transmission of electronic effects through the conjugated framework can be evidenced. The kinetics of hydrolysis of III in aqueous solution were determined from 5 M acid to pH 10. In basic solution hydrolysis of III yields, sequentially, 1,4,5,8-naphthalene diacid monoanhydride, II, and 1,4,5,8-naphthalene tetracarboxylic acid, I. The second order rate constant for alkaline hydrolysis is 200 fold higher for the first ring opening. The water-catalyzed hydrolysis of III yields a pH-dependent mixture of ionic forms of I and II. The rate constant for water-catalyzed hydrolysis of III is 25 fold higher than that for II. In concentrated acid the rates for reaching equilibrium (I, II and III) increase and III is the major product. The pK(a)s of I (3.24, 5.13 and 6.25) and II (3.05, 5.90) were determined by potentiometric, fluorescence and UV spectroscopy titrations and by quantitative fit of the kinetic and equilibrium data. The apparent, pH-dependent, equilibrium constants, K(EqII), for anhydride formation between I and II were obtained from the UV spectra. The quantitative fit of kinetic and equilibrium data are consistent with the assumption that anhydride formation only proceeds with the fully protonated species for both I and II and permitted the estimation of the equilibrium constants for anhydride formation, K(EqII). The value of K(EqII) (I <==> II) between pH 1 and 6 was ca. 5. Geometry optimization calculations in the gas phase of the reactions of III in alkaline, neutral and acid conditions, at the DFT level of theory, gave electronic distributions that were qualitatively consistent with the experimental results.
Organic additives stabilize RNA aptamer binding of malachite green.
Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J
2016-11-01
Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzha, N. M., E-mail: magazine@miee.ru
2010-12-15
Deposition kinetics of silicon nitride layers at lowered reactor pressures of 10-130 Pa and temperatures in the range 973-1073 K has been studied. The equilibrium constant of the bimolecular reaction of dichlorosilane with ammonia has been calculated. The apparent activation energies calculated taking into account the experimental growth rate nearly coincide with the experimental data. Recommendations for improving the quality of silicon nitride layers are made.
The equilibrium point hypothesis and its application to speech motor control.
Perrier, P; Ostry, D J; Laboissière, R
1996-04-01
In this paper, we address a number of issues in speech research in the context of the equilibrium point hypothesis of motor control. The hypothesis suggests that movements arise from shifts in the equilibrium position of the limb or the speech articulator. The equilibrium is a consequence of the interaction of central neural commands, reflex mechanisms, muscle properties, and external loads, but it is under the control of central neural commands. These commands act to shift the equilibrium via centrally specified signals acting at the level of the motoneurone (MN) pool. In the context of a model of sagittal plane jaw and hyoid motion based on the lambda version of the equilibrium point hypothesis, we consider the implications of this hypothesis for the notion of articulatory targets. We suggest that simple linear control signals may underlie smooth articulatory trajectories. We explore as well the phenomenon of intraarticulator coarticulation in jaw movement. We suggest that even when no account is taken of upcoming context, that apparent anticipatory changes in movement amplitude and duration may arise due to dynamics. We also present a number of simulations that show in different ways how variability in measured kinematics can arise in spite of constant magnitude speech control signals.
Calculation of individual isotope equilibrium constants for implementation in geochemical models
Thorstenson, Donald C.; Parkhurst, David L.
2002-01-01
Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.
ERIC Educational Resources Information Center
Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca
2013-01-01
A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…
Calculation of individual isotope equilibrium constants for geochemical reactions
Thorstenson, D.C.; Parkhurst, D.L.
2004-01-01
Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. The derivations can be extended to calculation of individual isotope equilibrium constants for ion pairs and equilibrium constants for isotopic species of other chemical elements. The individual isotope approach calculates the same phase isotopic compositions as existing methods, but also provides concentrations of individual species, which are needed in calculations of mass-dependent effects in transport processes. The equilibrium constants derived in this paper are used to calculate the example of gas-water equilibrium for CO2 in an acidic aqueous solution. ?? 2004 Elsevier Ltd.
Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite
NASA Astrophysics Data System (ADS)
Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-12-01
Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.
Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno
2004-01-01
The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented.
Warren, Jeffrey J.; Mayer, James M.
2010-01-01
Ascorbate (Vitamin C) is a ubiquitous biological cofactor. While its aqueous solution chemistry has long been studied, many in vivo reactions of ascorbate occur in enzyme active sites or at membrane interfaces, which have varying local environments. This report shows that the rate and driving force of oxidations of two ascorbate derivatives by the TEMPO radical (2,2′-6,6′-tetramethylpiperidine-1-oxyl) in acetonitrile are very sensitive to the presence of various additives. These reactions proceed by the transfer of a proton and an electron (a hydrogen atom), as is typical of biological ascorbate reactions. The measured rate and equilibrium constants vary substantially with added water or other polar solutes in acetonitrile solutions, indicating large shifts in the reducing power of ascorbate. The correlation of rate and equilibrium constants indicates that this effect has a thermochemical origin rather than being a purely kinetic effect. This contrasts with previous examples of solvent effects on hydrogen atom transfer reactions. Potential biological implications of this apparently unique effect are discussed. PMID:20476757
Assessment of Stable Isotope Distribution in Complex Systems
NASA Astrophysics Data System (ADS)
He, Y.; Cao, X.; Wang, J.; Bao, H.
2017-12-01
Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern recognition techniques.
Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.
Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L
2009-07-01
The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.
Profiles of equilibrium constants for self-association of aromatic molecules
NASA Astrophysics Data System (ADS)
Beshnova, Daria A.; Lantushenko, Anastasia O.; Davies, David B.; Evstigneev, Maxim P.
2009-04-01
Analysis of the noncovalent, noncooperative self-association of identical aromatic molecules assumes that the equilibrium self-association constants are either independent of the number of molecules (the EK-model) or change progressively with increasing aggregation (the AK-model). The dependence of the self-association constant on the number of molecules in the aggregate (i.e., the profile of the equilibrium constant) was empirically derived in the AK-model but, in order to provide some physical understanding of the profile, it is proposed that the sources for attenuation of the equilibrium constant are the loss of translational and rotational degrees of freedom, the ordering of molecules in the aggregates and the electrostatic contribution (for charged units). Expressions are derived for the profiles of the equilibrium constants for both neutral and charged molecules. Although the EK-model has been widely used in the analysis of experimental data, it is shown in this work that the derived equilibrium constant, KEK, depends on the concentration range used and hence, on the experimental method employed. The relationship has also been demonstrated between the equilibrium constant KEK and the real dimerization constant, KD, which shows that the value of KEK is always lower than KD.
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-01-01
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-07-16
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.
The Conceptual Change Approach to Teaching Chemical Equilibrium
ERIC Educational Resources Information Center
Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer
2006-01-01
This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…
Chemical Principles Revisited: Chemical Equilibrium.
ERIC Educational Resources Information Center
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Evidence for two distinct intracellular pools of inorganic sulfate in Penicillium notatum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, D.R.; Segel, I.H.
1985-06-01
A strain of Penicillium notatum unable to metabolize inorganic sulfate can accumulate sulfate internally to an apparent equilibrium concentration 10/sup 5/ times greater than that remaining in the medium. The apparent K/sub eq/ is near constant at all initial external sulfate concentrations below that which would eventually exceed the internal capacity of the cells. Under equilibrium conditions of zero net flux, external /sup 35/SO/sub 4//sup 2 -/ exchanges with internal, unlabeled SO/sub 4//sup 2 -/ at a rate consistent with the kinetic constants with the sulfate transport system. Efflux experiments demonstrated that sulfate occupies two distinct intracellular pools. Pool 1more » is characterized by the rapid release of /sup 35/SO/sub 4//sup 2 -/ when the suspension of preloaded cells is adjusted to 10 mM azide at pH 8.4 (t/sub 1/2/, 0.38 min). /sup 35/SO/sub 4//sup 2 -/ in pool 1 also rapidly exchanges with unlabeled medium sulfate. Pool 2 is characterized by the slow release of /sup 35/SO/sub 4//sup 2 -/ induced by azide at pH 8.4 or unlabeled sulfate (t/sub 1/2/, 32 to 49 min). Early in the /sup 35/SO/sub 4//sup 2 -/ accumulation process, up to 78% of the total transported substrate is found in pool 1. At equilibrium, pool 1 accounts for only about 2% of the total accumulated /sup 35/SO/sub 4//sup 2 -/. Monensin (33 ..mu..m) accelerates the transfer of /sup 35/SO/sub 4//sup 2 -/ from pool 1 to pool 2. Valinomycin (0.2 ..mu..M) and tetraphynylboron/sup -/ (1 mM) retard the transfer of /sup 35/SO/sub 4//sup 2 -/ from pool 1 to pool 2. Pool 2 may reside in a vacuole or other intracellular organelle. A model for the transfer of sulfate from pool 1 to pool 2 is presented.« less
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant
ERIC Educational Resources Information Center
Beach, Darrell H.
1969-01-01
Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)
Investigation of the hydrochlorination of SiCl4
NASA Technical Reports Server (NTRS)
Mui, J. Y. P.
1983-01-01
A basic, experimental study on the hydrochlorination of silicon tetrachloride and metallurgical grade silicon with hydrogen gas to form trichlorosilane was carried out to greatly expand the range of reaction conditions. The equilibrium constant, K sub p, for the hydrochlorination reaction was measured as a function of temperature, pressure and concentration. The variation of the equilibrium constant as a function of temperature provided the measurement on the heat of reaction, delta H, by the Second Law Method. The value of delta H was measured to give 10.6 Kcal/mole. The equilibrium constant was also studied as a function of concentration. In agreement with the theory, the equilibrium constant remained constant with respect to the varying H2/SiCl4 feed ratios. On the other hand, the effect of pressure on the equilibrium constant was found to be more complex.
Pagnanelli, Francesca; Vegliò, Francesco; Toro, Luigi
2004-02-01
In this paper a comparison about kinetic behaviour, acid-base properties and copper removal capacities was carried out between two different adsorbent materials used for heavy metal removal from aqueous solutions: an aminodiacetic chelating resin as commercial product (Lewatit TP207) and a lyophilised bacterial biomass of Sphaerotilus natans. The acid-base properties of a S. natans cell suspension were well described by simplified mechanistic models without electrostatic corrections considering two kinds of weakly acidic active sites. In particular the introduction of two-peak distribution function for the proton affinity constants allows a better representation of the experimental data reproducing the site heterogeneity. A priori knowledge about resin functional groups (aminodiacetic groups) is the base for preliminary simulations of titration curve assuming a Donnan gel structure for the resin phase considered as a concentrated aqueous solution of aminodiacetic acid (ADA). Departures from experimental and simulated data can be interpreted by considering the heterogeneity of the functional groups and the effect of ionic concentration in the resin phase. Two-site continuous model describes adequately the experimental data. Moreover the values of apparent protonation constants (as adjustable parameters found by non-linear regression) are very near to the apparent constants evaluated by a Donnan model assuming the intrinsic constants in resin phase equal to the equilibrium constants in aqueous solution of ADA and considering the amphoteric nature of active sites for the evaluation of counter-ion concentration in the resin phase. Copper removal outlined the strong affinity of the active groups of the resin for this ion in solution compared to the S. natans biomass according to the complexation constants between aminodiacetic and mono-carboxylic groups and copper ions.
Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise
ERIC Educational Resources Information Center
Bindel, Thomas H.
2012-01-01
A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…
Mirzahosseini, Arash; Somlyay, Máté; Noszál, Béla
2015-08-13
Microscopic redox equilibrium constants, a new species-specific type of physicochemical parameters, were introduced and determined to quantify thiol-disulfide equilibria of biological significance. The thiol-disulfide redox equilibria of glutathione with cysteamine, cysteine, and homocysteine were approached from both sides, and the equilibrium mixtures were analyzed by quantitative NMR methods to characterize the highly composite, co-dependent acid-base and redox equilibria. The directly obtained, pH-dependent, conditional constants were then decomposed by a new evaluation method, resulting in pH-independent, microscopic redox equilibrium constants for the first time. The 80 different, microscopic redox equilibrium constant values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.
Anion binding by bambus[6]uril probed in the gas phase and in solution.
Révész, Agnes; Schröder, Detlef; Svec, Jan; Wimmerová, Michaela; Sindelar, Vladimir
2011-10-20
Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.
ERIC Educational Resources Information Center
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2015-01-01
A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…
Doppler-resolved kinetics of saturation recovery
Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; ...
2015-04-08
Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, J.M.; Balcavage, W.X.; Ramachandran, B.R.
Currently, a great deal of interest exists in developing quantitative descriptions of the transport behavior for organic chemical compounds in the environment. Transport between water and air is of particular significance in this regard. A new method for measurement of thermodynamic Henry`s law constants (H) is reported. In this method, the optical absorbance of a dilute aqueous solution containing an organic compound is followed with time as the compound partitions into the air above the solution in a sealed vessel. The change in optical absorbance and the vapor to liquid volume ratio of the vessel are then used to calculatemore » the value for H. The concentration of the organic compound in the aqueous and vapor phases need not be known. This method allows the approach to equilibrium to be observed in real time so that attainment of equilibrium is readily apparent. This method works particularly well for water-soluble compounds having low vapor pressures. The applicability of this method is limited to compounds that exhibit significant optical absorbance in the ultraviolet and visible regions of the electromagnetic spectrum. Values for H and their temperature dependencies measured using this new method are reported for methacrolein, methyl vinyl ketone, benzaldehyde, and acetophenone. Values for H are also reported for benzene, toluene, and ethylbenzene at 298 K. All reported H data are compared with previously reported values.« less
Loss of iron to gold capsules in rock-melting experiments
Ratajeski, K.; Sisson, T.W.
1999-01-01
Gold is used widely for capsules in high-temperature rock-melting studies because it is generally thought to absorb negligible Fe from silicate samples. However, we observed significant losses of Fe from fluid-absent melting experiments on hornblende gabbros at 800-975 ??C and 8 kbar, using standard piston-cylinder techniques. The extent of Fe loss from the sample is dependent on the relative masses of the sample and the capsule. Low sample to capsule mass ratios (~0.04) lead to the highest Fe losses (32-49% relative). Concentrations of Fe in silicate melt and used gold capsules define an apparent equilibrium constant (K') that follows a linear 1n K' vs. 1/T relation (at an estimated log f(O)(2) of QFM-1). The apparent equilibrium constant is used to make limiting upper estimates on the amount of Fe that could be lost during rock-melting experiments for a range of f(O)(2) and sample to capsule mass ratios. At high f(O)(2) (NNO + 2), loss of Fe to gold is negligible (<2% relative) for a wide range of sample to capsule mass ratios. At an f(O)(2) of NNO, Fe loss can be kept to <10% relative by using a sample to capsule mass ratio of 0.2 or greater. At low f(O)(2) (QFM-1), presaturating the Au with Fe would be necessary to ensure that Fe losses remained <10% relative. Fe loss can compromise experimental results for small samples run at low f(O)(2) conditions, be they buffered, imposed by the pressure media, or produced by intrinsically reduced (graphitic) starting materials.
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2007-05-08
Pb(II) biosorption onto algae Gelidium, algal waste from agar extraction industry and a composite material was studied. Discrete and continuous site distribution models were used to describe the biosorption equilibrium at different pH (5.3, 4 and 3), considering competition among Pb(II) ions and protons. The affinity distribution function of Pb(II) on the active sites was calculated by the Sips distribution. The Langmuir equilibrium constant was compared with the apparent affinity calculated by the discrete model, showing higher affinity for lead ions at higher pH values. Kinetic experiments were conducted at initial Pb(II) concentrations of 29-104 mgl(-1) and data fitted to pseudo-first Lagergren and second-order models. The adsorptive behaviour of biosorbent particles was modelled using a batch mass transfer kinetic model, which successfully predicts Pb(II) concentration profiles at different initial lead concentration and pH, and provides significant insights on the biosorbents performance. Average values of homogeneous diffusivity, D(h), are 3.6 x 10(-8); 6.1 x 10(-8) and 2.4 x 10(-8)cm(2)s(-1), respectively, for Gelidium, algal waste and composite material. The concentration of lead inside biosorbent particles follows a parabolic profile that becomes linear near equilibrium.
ERIC Educational Resources Information Center
Sattar, Simeen
2011-01-01
Tris(1,10-phenanthroline)iron(II) is the basis of a suite of four experiments spanning 5 weeks. Students determine the rate law, activation energy, and equilibrium constant for the dissociation of the complex ion in acid solution and base dissociation constant for phenanthroline. The focus on one chemical system simplifies a daunting set of…
Nakai, Yoichi; Hidaka, Hiroshi; Watanabe, Naoki; Kojima, Takao M
2016-06-14
We measured equilibrium constants for H3O(+)(H2O)n-1 + H2O↔H3O(+)(H2O)n (n = 4-9) reactions taking place in an ion drift tube with various applied electric fields at gas temperatures of 238-330 K. The zero-field reaction equilibrium constants were determined by extrapolation of those obtained at non-zero electric fields. From the zero-field reaction equilibrium constants, the standard enthalpy and entropy changes, ΔHn,n-1 (0) and ΔSn,n-1 (0), of stepwise association for n = 4-8 were derived and were in reasonable agreement with those measured in previous studies. We also examined the electric field dependence of the reaction equilibrium constants at non-zero electric fields for n = 4-8. An effective temperature for the reaction equilibrium constants at non-zero electric field was empirically obtained using a parameter describing the electric field dependence of the reaction equilibrium constants. Furthermore, the size dependence of the parameter was thought to reflect the evolution of the hydrogen-bond structure of H3O(+)(H2O)n with the cluster size. The reflection of structural information in the electric field dependence of the reaction equilibria is particularly noteworthy.
NASA Astrophysics Data System (ADS)
Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.
2018-05-01
It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.
Direct Measurement of Equilibrium Constants for High-Affinity Hemoglobins
Kundu, Suman; Premer, Scott A.; Hoy, Julie A.; Trent, James T.; Hargrove, Mark S.
2003-01-01
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (KD ≪ 1 μM) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and ∼100 μM−1 respectively, indicate that they are not capable of facilitating oxygen transport. PMID:12770899
NASA Astrophysics Data System (ADS)
Craig, Norman C.; Demaison, J.; Rudolph, Heinz Dieter; Gurusinghe, Ranil M.; Tubergen, Michael; Coudert, L. H.; Szalay, Peter; Császár, Attila
2017-06-01
FT microwave spectra have been observed and analyzed for the S (in-plane) and A (out-of-plane) conformers of propene-3-{d}_1 in the 10-22 GHz region. Both conformers display splittings due to deuterium quadrupole coupling; for the latter one only, a 19 MHz splitting due to internal rotation of the partially deuterated methyl group has been observed. In addition to rotational constants, the analysis yielded quadrupole coupling constants and parameters describing the tunneling splitting and its rotational dependence. Improved rotational constants for parent propene and the three ^{13}C_1 species are recently available. Use of vibration-rotation interaction constants computed at the MP2(FC)/cc-pVTZ level gave equilibrium rotational constants for these six species and for fourteen more deuterium isotopologues with diminished accuracy from early literature data. A semiexperimental equilibrium structure, r_e^{SE}, has been determined for propene by fitting fourteen structural parameters to the equilibrium rotational constants. The new r_e^{SE} structure compares well with an ab initio equilibrium structure computed with the all-electron CCSD(T)/cc-pV(Q,T)Z model and with a structure obtained using the mixed regression method with predicates and equilibrium rotational constants. N. C. Craig, P. Groner, A. R. Conrad, R. Gurusinghe, M. J. Tubergen J. Mol. Spectrosc. 248, 1-6 (2016).
Vidot, Kévin; Achir, Nawel; Mertz, Christian; Sinela, André; Rawat, Nadirah; Prades, Alexia; Dangles, Olivier; Fulcrand, Hélène; Dornier, Manuel
2016-05-25
Delphinidin-3-O-sambubioside and cyanidin-3-O-sambubioside are the main anthocyanins of Hibiscus sabdariffa calyces, traditionally used to make a bright red beverage by decoction in water. At natural pH, these anthocyanins are mainly in their flavylium form (red) in equilibrium with the quinonoid base (purple) and the hemiketal (colorless). For the first time, their acidity and hydration equilibrium constants were obtained from a pH-jump method followed by UV-vis spectroscopy as a function of temperature from 4 to 37 °C. Equilibrium constant determination was also performed by multivariate curve resolution (MCR). Acidity and hydration constants of cyanidin-3-O-sambubioside at 25 °C were 4.12 × 10(-5) and 7.74 × 10(-4), respectively, and were significantly higher for delphinidin-3-O-sambubioside (4.95 × 10(-5) and 1.21 × 10(-3), respectively). MCR enabled the obtaining of concentration and spectrum of each form but led to overestimated values for the equilibrium constants. However, both methods showed that formations of the quinonoid base and hemiketal were endothermic reactions. Equilibrium constants of anthocyanins in the hibiscus extract showed comparable values as for the isolated anthocyanins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Y.; Kawai, R.; McManaway, M.
(3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Ronald; Nunez, Oswaldo
Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changesmore » in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)« less
Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D
2017-06-01
Kinetic sorption of bisphenol A (BPA), carbamazepine (CMZ) and ciprofloxacin (CIP) by three palygorskite-montmorillonite (Pal-Mt) granule sizes was studied. For BPA, CMZ and CIP, apparent sorption equilibrium was reached within about 3, 5 and 16 h, respectively. The highest and the lowest sorption capacities were by the small and the large granule sizes, respectively. Experimental results were compared to various sorption kinetics models to gain insights regarding the sorption processes and achieve a predictive capacity. The pseudo-second order (PSO) and the Elovich models performed the best while the pseudo-first order (PFO) model was only adequate for CMZ. The intraparticle-diffusion (IPD) model showed a two-step linear plot of BPA, CMZ and CIP sorption versus square root of time that was indicative of surface-sorption followed by IPD as a rate-limiting process before equilibrium was reached. Using the pseudo-first order (PFO) and the pseudo-second order (PSO) rate constants combined with previously-established Langmuir equilibrium sorption models, the kinetic sorption (k a ) and desorption (k d ) Langmuir kinetic rate constants were theoretically calculated for BPA and CIP. Kinetic sorption was then simulated using these theoretically calculated k a and k d values, and the simulations were compared to the observed behavior. The simulations fit the observed sorbed concentrations better during the early part of the experiments; the observed sorption during later times occurred more slowly than expected, supporting the hypothesis that IPD becomes a rate-limiting process during the course of the experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rapid-Equilibrium Enzyme Kinetics
ERIC Educational Resources Information Center
Alberty, Robert A.
2008-01-01
Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…
NASA Technical Reports Server (NTRS)
1976-01-01
The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.
Polymerization Evaluation by Spectrophotometric Measurements.
ERIC Educational Resources Information Center
Dunach, Jaume
1985-01-01
Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)
Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa
2014-08-14
Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.
Constant-pH molecular dynamics using stochastic titration
NASA Astrophysics Data System (ADS)
Baptista, António M.; Teixeira, Vitor H.; Soares, Cláudio M.
2002-09-01
A new method is proposed for performing constant-pH molecular dynamics (MD) simulations, that is, MD simulations where pH is one of the external thermodynamic parameters, like the temperature or the pressure. The protonation state of each titrable site in the solute is allowed to change during a molecular mechanics (MM) MD simulation, the new states being obtained from a combination of continuum electrostatics (CE) calculations and Monte Carlo (MC) simulation of protonation equilibrium. The coupling between the MM/MD and CE/MC algorithms is done in a way that ensures a proper Markov chain, sampling from the intended semigrand canonical distribution. This stochastic titration method is applied to succinic acid, aimed at illustrating the method and examining the choice of its adjustable parameters. The complete titration of succinic acid, using constant-pH MD simulations at different pH values, gives a clear picture of the coupling between the trans/gauche isomerization and the protonation process, making it possible to reconcile some apparently contradictory results of previous studies. The present constant-pH MD method is shown to require a moderate increase of computational cost when compared to the usual MD method.
Bernatowicz, Piotr; Nowakowski, Michał; Dodziuk, Helena; Ejchart, Andrzej
2006-08-01
Association constants in weak molecular complexes can be determined by analysis of chemical shifts variations resulting from changes of guest to host concentration ratio. In the regime of very fast exchange, i.e., when exchange rate is several orders of magnitude larger than the Larmor angular frequency difference of the observed resonance in free and complexed molecule, the apparent position of averaged resonance is a population-weighted mean of resonances of particular forms involved in the equilibrium. The assumption of very fast exchange is often, however, tacitly admitted in literature even in cases where the process of interest is much slower than required. We show that such an unjustified simplification may, under certain circumstances, lead to significant underestimation of association constant and, in consequence, to non-negligible errors in Gibbs free energy under determination. We present a general method, based on iterative numerical NMR line shape analysis, which allows one for the compensation of chemical exchange effects, and delivers both the correct association constants and the exchange rates. The latter are not delivered by the other mentioned method. Practical application of our algorithm is illustrated by the case of camphor-alpha-cyclodextrin complexes.
Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium
NASA Astrophysics Data System (ADS)
Sugisaki, Ryuichi; Nagamine, Koichiro
1995-06-01
The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.
Schacht, Veronika J; Grant, Sharon C; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline
2016-06-01
Partitioning of super-hydrophobic organic contaminants (SHOCs) to dissolved or colloidal materials such as surfactants can alter their behaviour by enhancing apparent aqueous solubility. Relevant partition constants are, however, challenging to quantify with reasonable accuracy. Partition constants to colloidal surfactants can be measured by introducing a polymer (PDMS) as third phase with known PDMS-water partition constant in combination with the mass balance approach. We quantified partition constants of PCBs and PCDDs (log KOW 5.8-8.3) between water and sodium dodecyl sulphate monomers (KMO) and micelles (KMI). A refined, recently introduced swelling-based polymer loading technique allowed highly precise (4.5-10% RSD) and fast (<24 h) loading of SHOCs into PDMS, and due to the miniaturisation of batch systems equilibrium was reached in <5 days for KMI and <3 weeks for KMO. SHOC losses to experimental surfaces were substantial (8-26%) in monomer solutions, but had a low impact on KMO (0.10-0.16 log units). Log KMO for PCDDs (4.0-5.2) were approximately 2.6 log units lower than respective log KMI, which ranged from 5.2 to 7.0 for PCDDs and 6.6-7.5 for PCBs. The linear relationship between log KMI and log KOW was consistent with more polar and moderately hydrophobic compounds. Apparent solubility increased with increasing hydrophobicity and was highest in micelle solutions. However, this solubility enhancement was also considerable in monomer solutions, up to 200 times for OCDD. Given the pervasive presence of surfactant monomers in typical field scenarios, these data suggest that low surfactant concentrations may be effective long-term facilitators for subsurface transport of SHOCs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buryak, Ilya; Vigasin, Andrey A
2015-12-21
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buryak, Ilya; Vigasin, Andrey A., E-mail: vigasin@ifaran.ru
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data basedmore » on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.« less
ERIC Educational Resources Information Center
Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce
2011-01-01
A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…
Experimental determination of thermodynamic equilibrium in biocatalytic transamination.
Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M
2012-08-01
The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.
Hammett analyses of halocarbene-halocarbanion equilibria.
Wang, Lei; Moss, Robert A; Krogh-Jespersen, Karsten
2013-04-19
Substituted arylchlorocarbenes (X = H, p-Cl, p-CF3, p-F, m-Cl) reacted reversibly with Cl(-) in dichloroethane to form the corresponding aryldichloromethide carbanions. Equilibrium constants and rate constants for the forward and reverse reactions were correlated by the Hammett equation. DFT methods were used to compute equilibrium constants and electronic absorption spectra.
Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.
Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R
2008-06-15
Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.
NASA Astrophysics Data System (ADS)
Shimada, Toru; Hasegawa, Takeshi
2017-10-01
The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.
Shimada, Toru; Hasegawa, Takeshi
2017-10-05
The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.
Fukada, H; Sturtevant, J M; Quiocho, F A
1983-11-10
The thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli have been studied by isothermal and scanning calorimetry. The binding reaction with arabinose is characterized by an enthalpy change of -15.3 +/- 0.5 kcal mol-1 at 25 degrees C, and a large decrease in apparent heat capacity, amounting to -0.44 +/- 0.05 kcal K-1 mol-1, which is constant over the temperature range 8 to 30 degrees C. Very similar results were obtained with D-galactose. These calorimetric results have been combined with binding constants determined by equilibrium dialysis (Clark, A. F., Gerken, T. A., and Hogg, R. W. (1982) Biochemistry 21, 2227-2233) to obtain free energy and entropy changes over the range 5 to 30 degrees C, and by extrapolation to 60 degrees C. The protein undergoes reversible unfolding on being heated with an increase in enthalpy at 53.5 degrees C of 151.8 +/- 1.1 kcal mol-1 (169.2 +/- 1.2 kcal mol-1 at 59.0 degrees C) and in apparent heat capacity of 3.16 +/- 0.07 kcal K-1 mol-1. In the presence of arabinose, the unfolding enthalpy is increased to 200.7 +/- 1.8 kcal mol-1 at 59.0 degrees C, the increase being due to the enthalpy of dissociation of the ligand which amounts to 31 kcal mol-1 at the unfolding temperature. The unfolding temperature is increased by the presence of excess arabinose or galactose, an effect which is due solely to displacement by the added ligand of the unfolding-dissociation equilibrium. The thermodynamic data are discussed in connection with the detailed structural information available for this system from x-ray crystallography (Newcomer, M. E., Gilliland, G. L. and Quiocho, F. A. (1981) J. Biol. Chem. 256, 13213-13217, and references cited therein).
ERIC Educational Resources Information Center
Nyasulu, Frazier; Barlag, Rebecca
2011-01-01
The well-known colorimetric determination of the equilibrium constant of the iron(III-thiocyanate complex is simplified by preparing solutions in a cuvette. For the calibration plot, 0.10 mL increments of 0.00100 M KSCN are added to 4.00 mL of 0.200 M Fe(NO[subscript 3])[subscript 3], and for the equilibrium solutions, 0.50 mL increments of…
ERIC Educational Resources Information Center
Vargas, Francisco M.
2014-01-01
The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
NASA Astrophysics Data System (ADS)
Wang, Shoucheng; Huang, Guoqing; Wu, Xin
2018-02-01
In this paper, we survey the effect of dissipative forces including radiation pressure, Poynting–Robertson drag, and solar wind drag on the motion of dust grains with negligible mass, which are subjected to the gravities of the Sun and Jupiter moving in circular orbits. The effect of the dissipative parameter on the locations of five Lagrangian equilibrium points is estimated analytically. The instability of the triangular equilibrium point L4 caused by the drag forces is also shown analytically. In this case, the Jacobi constant varies with time, whereas its integral invariant relation still provides a probability for the applicability of the conventional fourth-order Runge–Kutta algorithm combined with the velocity scaling manifold correction scheme. Consequently, the velocity-only correction method significantly suppresses the effects of artificial dissipation and a rapid increase in trajectory errors caused by the uncorrected one. The stability time of an orbit, regardless of whether it is chaotic or not in the conservative problem, is apparently longer in the corrected case than in the uncorrected case when the dissipative forces are included. Although the artificial dissipation is ruled out, the drag dissipation leads to an escape of grains. Numerical evidence also demonstrates that more orbits near the triangular equilibrium point L4 escape as the integration time increases.
Krop, H B; van Noort, P C; Govers, H A
2001-01-01
Literature on the equilibrium constant for distribution between dissolved organic carbon (DOC) (Kdoc) data of strongly hydrophobic organic contaminants were collected and critically analyzed. About 900 Kdoc entries for experimental values were retrieved and tabulated, including those factors that can influence them. In addition, quantitative structure-activity relationship (QSAR) prediction equations were retrieved and tabulated. Whether a partition or association process between the contaminant and DOC takes place could not be fully established, but indications toward an association process are strong in several cases. Equilibrium between a contaminant and DOC in solution was shown to be achieved within a minute. When the equilibrium shifts in time, this was caused by either a physical or chemical change of the DOC, affecting the lighter fractions most. Adsorption isotherms turned out to be linear in the contaminant concentration for the relevant DOC concentration up to 100 mg of C/L. Eighteen experimental methods have been developed for the determination of the pertinent distribution constant. Experimental Kdoc values revealed the expected high correlation with partition coefficients over n-octanol and water (Kow) for all experimental methods, except for the HPLC and apparent solubility (AS) method. Only fluorescence quenching (FQ) and solid-phase microextraction (SPME) methods could quantify fast equilibration. Only 21% of the experimental values had a 95% confidence interval, which was statistically significantly different from zero. Variation in Kdoc values was shown to be high, caused mainly by the large variation of DOC in water samples. Even DOC from one sample gave different equilibrium constants for different DOC fractions. Measured Kdoc values should, therefore, be regarded as average values. Kdoc was shown to increase on increasing molecular mass, indicating that the molecular mass distribution is a proper normalization function for the average Kdoc at the current state of knowledge. The weakly bound fraction could easily be desorbed when other adsorbing media, such as a SepPak column or living organism, are present. The amount that moves from the DOC to the other medium will depend, among other reasons, on the size of the labile DOC fraction and the equilibrium constant of the other medium. Variation of Kdoc with temperature turned out to be small, probably caused by a small enthalpy of transfer from water to DOC. Ionic strength turned out to be more important, leading to changes of a factor of 2-5. The direction of this effect depends on the type of ion. With respect to QSAR relationships between Kdoc and macroscopic or molecular descriptors, it was concluded that only a small number of equations are available in the literature, for apolar compounds only, and with poor statistics and predictive power. Therefore, a first requirement is the improvement of the availability and quality of experimental data. Along with this, theoretical (mechanistic) models for the relationship between DOC plus contaminant descriptors on the one side and Kdoc on the other should be further developed. Correlations between Kdoc and Kow and those between the soil-water partition constant (Koc) and Kow were significantly different only in the case of natural aquatic DOC, pointing at substantial differences between these two types of organic material and at a high correspondence for other types of commercial and natural DOC.
Analysis of the surface heat balance over the world ocean
NASA Technical Reports Server (NTRS)
Esbenson, S. K.
1981-01-01
The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.
Fourier transform infrared emission spectra of MnH and MnD
NASA Astrophysics Data System (ADS)
Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.
2005-01-01
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.
Description of two-metal biosorption equilibria by Langmuir-type models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.H.; Volesky, B.
A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-metal systems containing either (Cu+Zn), (Cu+Cd), or (Zn+Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 ``affinity`` for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu of Cd were present. The uptake ofmore » Cd was much more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the ``affinity`` of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal.« less
Formation of nitric acid hydrates - A chemical equilibrium approach
NASA Technical Reports Server (NTRS)
Smith, Roland H.
1990-01-01
Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.
Temperature-Dependent Estimation of Gibbs Energies Using an Updated Group-Contribution Method.
Du, Bin; Zhang, Zhen; Grubner, Sharon; Yurkovich, James T; Palsson, Bernhard O; Zielinski, Daniel C
2018-06-05
Reaction-equilibrium constants determine the metabolite concentrations necessary to drive flux through metabolic pathways. Group-contribution methods offer a way to estimate reaction-equilibrium constants at wide coverage across the metabolic network. Here, we present an updated group-contribution method with 1) additional curated thermodynamic data used in fitting and 2) capabilities to calculate equilibrium constants as a function of temperature. We first collected and curated aqueous thermodynamic data, including reaction-equilibrium constants, enthalpies of reaction, Gibbs free energies of formation, enthalpies of formation, entropy changes of formation of compounds, and proton- and metal-ion-binding constants. Next, we formulated the calculation of equilibrium constants as a function of temperature and calculated the standard entropy change of formation (Δ f S ∘ ) using a model based on molecular properties. The median absolute error in estimating Δ f S ∘ was 0.013 kJ/K/mol. We also estimated magnesium binding constants for 618 compounds using a linear regression model validated against measured data. We demonstrate the improved performance of the current method (8.17 kJ/mol in median absolute residual) over the current state-of-the-art method (11.47 kJ/mol) in estimating the 185 new reactions added in this work. The efforts here fill in gaps for thermodynamic calculations under various conditions, specifically different temperatures and metal-ion concentrations. These, to our knowledge, new capabilities empower the study of thermodynamic driving forces underlying the metabolic function of organisms living under diverse conditions. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Polylogarithmic equilibrium treatment of molecular aggregation and critical concentrations.
Michel, Denis; Ruelle, Philippe
2017-02-15
A full equilibrium treatment of molecular aggregation is presented for prototypes of 1D and 3D aggregates, with and without nucleation. By skipping complex kinetic parameters like aggregate size-dependent diffusion, the equilibrium treatment allows us to predict directly time-independent quantities such as critical concentrations. The relationships between the macroscopic equilibrium constants for different paths are first established by statistical corrections and so as to comply with the detailed balance constraints imposed by nucleation, and the composition of the mixture resulting from homogeneous aggregation is then analyzed using a polylogarithmic function. Several critical concentrations are distinguished: the residual monomer concentration at equilibrium (RMC) and the critical nucleation concentration (CNC), which is the threshold concentration of total subunits necessary for initiating aggregation. When increasing the concentration of total subunits, the RMC converges more strongly to its asymptotic value, the equilibrium constant of depolymerization, for 3D aggregates and in the case of nucleation. The CNC moderately depends on the number of subunits in the nucleus, but sharply increases with the difference between the equilibrium constants of polymerization and nucleation. As the RMC and CNC can be numerically but not analytically determined, ansatz equations connecting them to thermodynamic parameters are proposed.
NASA Astrophysics Data System (ADS)
Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar
2010-07-01
This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates ( Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted "near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suenram, Richard D.; Pate, Brooks H.; Lesarri, Alberto
Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three 13C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (κ ) -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C6more » backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased π-electron delocalization in comparison with butadiene, the first member of the polyene series.« less
NMR Chemical Exchange as a Probe for Ligand-Binding Kinetics in a Theophylline-Binding RNA Aptamer
Latham, Michael P.; Zimmermann, Grant R.; Pardi, Arthur
2009-01-01
The apparent on- and off-rate constants for theophylline binding to its RNA aptamer in the absence of Mg2+ were determined here by 2D 1H-1H NMR ZZ-exchange spectroscopy. Analysis of the build-up rate of the exchange cross peaks for several base-paired imino protons in the RNA yielded an apparent kon of 600 M-1 s-1. This small apparent kon results from the free RNA existing as a dynamic equilibrium of inactive states rapidly interconverting with a low population of active species. The data here indicate that the RNA aptamer employs a conformational selection mechanism for binding theophylline in the absence of Mg2+. The kinetic data here also explain a very unusual property of this RNA-theophylline system, slow exchange on the NMR chemical shift timescale for a weak-binding complex. To our knowledge, it is unprecedented to have such a weak binding complex (Kd ≈ 3.0 mM at 15 °C) show slow exchange on the NMR chemical shift timescale, but the results clearly demonstrate that slow exchange and weak binding are readily rationalized by a small kon. Comparisons with other ligand-receptor interactions are presented. PMID:19317486
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.
2014-01-01
The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values attained at very low metal loading conditions are compared to existing literature data. Overall, experimental data suggest that the tetravalent transition metal/-actinide-humic acid complexation is important over a wide range of pH values, including mildly acidic conditions, and thus, these complexes should be included in speciation models.
Equilibrium constant for calcium ion and ascorbate ion.
Tsao, C S
1984-02-15
The combination of calcium and ascorbic acid in water at 25 degrees C has been examined by measuring the change of free calcium ion concentration as ascorbate was added in small increment to a solution of calcium. The data show clearly that complex formation between calcium ion and ascorbate ion occurred. At ionic strength mu = 0.1-0.2, the equilibrium constant of Ca++ and the singly-charged ascorbate ion has been measured to be 2.1 M-1. The precision of the result is better than 5% and the accuracy is estimated to be better than 20%. The application of the equilibrium constants is discussed.
Beeram, Sandya; Bi, Cong; Zheng, Xiwei; Hage, David S
2017-05-12
Interactions with serum proteins such as alpha 1 -acid glycoprotein (AGP) can have a significant effect on the behavior and pharmacokinetics of drugs. Ultrafast affinity extraction and peak profiling were used with AGP microcolumns to examine these processes for several model drugs (i.e., chlorpromazine, disopyramide, imipramine, lidocaine, propranolol and verapamil). The association equilibrium constants measured for these drugs with soluble AGP by ultrafast affinity extraction were in the general range of 10 4 -10 6 M -1 at pH 7.4 and 37°C and gave good agreement with literature values. Some of these values were dependent on the relative drug and protein concentrations that were present when using a single-site binding model; these results suggested a more complex mixed-mode interaction was actually present, which was also then used to analyze the data. The apparent dissociation rate constants that were obtained by ultrafast affinity extraction when using a single-site model varied from 0.14 to 7.0s -1 and were dependent on the relative drug and protein concentrations. Lower apparent dissociation rate constants were obtained by this approach as the relative amount of drug versus protein was decreased, with the results approaching those measured by peak profiling at low drug concentrations. This information should be useful in better understanding how these and other drugs interact with AGP in the circulation. In addition, the chromatographic approaches that were optimized and used in this report to examine these systems can be adapted for the analysis of other solute-protein interactions of biomedical interest. Copyright © 2017 Elsevier B.V. All rights reserved.
Beig, Avital; Miller, Jonathan M; Dahan, Arik
2013-11-01
The purpose of this study was to investigate the interaction of 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 2,6-dimethyl-β-cyclodextrin (DMβCD) with the lipophilic drug nifedipine and to investigate the subsequent solubility-permeability interplay. Solubility curves of nifedipine with HPβCD and DMβCD in MES buffer were evaluated using phase solubility methods. Then, the apparent permeability of nifedipine was investigated as a function of increasing HPβCD/DMβCD concentration in the hexadecane-based PAMPA model. The interaction with nifedipine was CD dependent; significantly higher stability constant was obtained for DMβCD in comparison with HPβCD. Moreover, nifedipine displays different type of interaction with these CDs; a 1:1 stoichiometric inclusion complex was apparent with HPβCD, while 1:2 stoichiometry was apparent for DMβCD. In all cases, decreased apparent intestinal permeability of nifedipine as a function of increasing CD level and nifedipine apparent solubility was obtained. A quasi-equilibrium mass transport analysis was developed to explain this solubility-permeability interplay; the model enabled excellent quantitative prediction of nifedipine's permeability as a function of CD concentrations. This work demonstrates that when using CDs in solubility-enabling formulations, a trade-off exists between solubility increase and permeability decrease that must not be overlooked. This trade-off was found to be independent of the type of CD-drug interaction. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. Copyright © 2013 Elsevier B.V. All rights reserved.
A New Application for Radioimmunoassay: Measurement of Thermodynamic Constants.
ERIC Educational Resources Information Center
Angstadt, Carol N.; And Others
1983-01-01
Describes a laboratory experiment in which an equilibrium radioimmunoassay (RIA) is used to estimate thermodynamic parameters such as equilibrium constants. The experiment is simple and inexpensive, and it introduces a technique that is important in the clinical chemistry and research laboratory. Background information, procedures, and results are…
NASA Astrophysics Data System (ADS)
Stolzberg, Richard J.
1999-05-01
Students are challenged to investigate the hypothesis that an equilibrium constant, Kc, measured as a product and quotient of molar concentrations, is constant at constant temperature. Spectrophotometric measurements of absorbance of a solution of Fe3+(aq) and SCN-(aq) treated with different amounts of KNO3 are made to determine Kc for the formation of FeSCN2+(aq). Students observe a regular decrease in the value of Kc as the concentration of added KNO3 is increased.
Time variation of effective climate sensitivity in GCMs
NASA Astrophysics Data System (ADS)
Williams, K. D.; Ingram, W. J.; Gregory, J. M.
2009-04-01
Effective climate sensitivity is often assumed to be constant (if uncertain), but some previous studies of General Circulation Model (GCM) simulations have found it varying as the simulation progresses. This complicates the fitting of simple models to such simulations, as well as having implications for the estimation of climate sensitivity from observations. This study examines the evolution of the feedbacks determining the climate sensitivity in GCMs submitted to the Coupled Model Intercomparison Project. Apparent centennial-timescale variations of effective climate sensitivity during stabilisation to a forcing can be considered an artefact of using conventional forcings which only allow for instantaneous effects and stratospheric adjustment. If the forcing is adjusted for processes occurring on timescales which are short compared to the climate stabilisation timescale then there is little centennial timescale evolution of effective climate sensitivity in any of the GCMs. We suggest that much of the apparent variation in effective climate sensitivity identified in previous studies is actually due to the comparatively fast forcing adjustment. Persistent differences are found in the strength of the feedbacks between the coupled atmosphere - ocean (AO) versions and their atmosphere - mixed-layer ocean (AML) counterparts, (the latter are often assumed to give the equilibrium climate sensitivity of the AOGCM). The AML model can typically only estimate the equilibrium climate sensitivity of the parallel AO version to within about 0.5K. The adjustment to the forcing to account for comparatively fast processes varies in magnitude and sign between GCMs, as well as differing between AO and AML versions of the same model. There is evidence from one AOGCM that the forcing adjustment may take a couple of decades, with implications for observationally based estimates of equilibrium climate sensitivity. We suggest that at least some of the spread in 21st century global temperature predictions between GCMs is due to differing adjustment processes, hence work to understand these differences should be a priority.
Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition
NASA Astrophysics Data System (ADS)
Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei
2018-03-01
Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.
Teaching Chemical Equilibrium with the Jigsaw Technique
NASA Astrophysics Data System (ADS)
Doymus, Kemal
2008-03-01
This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).
Pankow, J.F.; McKenzie, S.W.
1991-01-01
The manner in which a chemical material partitions among the dissolved (D), participate (P), and colloidal (C) phases affects both its chemical and physical behavior in the aquatic environment. The fractions of the chemical that are present in each of these three phases will be determined by the values of two simple parameters, KpSp/??w and KcSc/??w. The variables Kp and Kc are the particle/water and colloid/water partition constants (mL/g), respectively, Sp and Sc are the volume concentrations of particulate and colloidal material (mg/L), respectively, and ??w is the fractional volume of the system that is aqueous. This parameterization allows a rapid overview of how partitioning (1) changes as a function of chemical partitioning properties and water type, (2) affects apparent partition constants (i.e., Kpapp values) computed between the particulate phase and the remainder of the system, and (3) causes Kpapp values to become independent of chemical properties at high values of KcSc/??w. ?? 1991 American Chemical Society.
Steady-state studies of the reactions of H2O-CO and CO2-H2 mixtures with liquid iron
NASA Astrophysics Data System (ADS)
Sasaki, Y.; Belton, G. R.
1998-08-01
Studies have been made of the steady-stata composition of liquid iron exposed to high flow rates of H2O-CO mixtures at 1550 °C to 1700 °C and CO2-H2 mixtures at 1600 °C. Values of the steady-state activity of oxygen have been established by measurement of either the carbon concentration or the silicon concentration when the iron was held in a silica crucible. Additions of sulfur or selenium to the iron have been found to result in steady-state oxygen activities, which differ significantly from those expected from water-gas equilibrium. The results are interpreted to show that the ratio of the apparent first-order rate constants for the reactions of H2O and CO2 with liquid iron is about 3 at 1600 °C. It is shown that the dependencies of the rate constants on the activities of sulfur, oxygen, and selenium must, even if complex, be similar for the H2O and CO2 reactions with liquid iron, to a good approximation.
Mussel-inspired histidine-based transient network metal coordination hydrogels
Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.
2013-01-01
Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102
Thermodynamics and Kinetics of Chemical Equilibrium in Solution.
ERIC Educational Resources Information Center
Leenson, I. A.
1986-01-01
Discusses theory of thermodynamics of the equilibrium in solution and dissociation-dimerization kinetics. Describes experimental procedure including determination of molar absorptivity and equilibrium constant, reaction enthalpy, and kinetics of the dissociation-dimerization reaction. (JM)
NASA Astrophysics Data System (ADS)
Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.
2012-07-01
We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.
Achieving Chemical Equilibrium: The Role of Imposed Conditions in the Ammonia Formation Reaction
ERIC Educational Resources Information Center
Tellinghuisen, Joel
2006-01-01
Under conditions of constant temperature T and pressure P, chemical equilibrium occurs in a closed system (fixed mass) when the Gibbs free energy G of the reaction mixture is minimized. However, when chemical reactions occur under other conditions, other thermodynamic functions are minimized or maximized. For processes at constant T and volume V,…
Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy
NASA Astrophysics Data System (ADS)
Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.
1988-06-01
The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritti, Fabrice; Guiochon, Georges A
2005-11-01
The retention of most compounds in RPLC proceeds through a combination of several independent mechanisms. We review a series of recent studies made on the behavior of several commercial C{sub 18}-bonded stationary phases and of the complex, mixed retention mechanisms that were observed in RPLC. These studies are essentially based on the acquisition of adsorption isotherm data, on the modeling, and on the interpretation of these data. Because linear chromatography deals only with the initial slope of the global, overall, or apparent isotherm, it is unable fully to describe the complete adsorption mechanism. It cannot even afford clues as tomore » the existence of several overlaid retention mechanisms. More specifically, it cannot account for the consequences of the surface heterogeneity of the packing material. The acquisition of equilibrium data in a wide concentration range is required for this purpose. Frontal analysis (FA) of selected probes gives data that can be modeled into equilibrium isotherms of these probes and that can also be used to calculate their adsorption or affinity energy distribution (AED). The combination of these data, the detailed study of the best constants of the isotherm model, the determination of the influence of experimental parameters (e.g., buffer pH and pI, temperature) on the isotherm constants provide important clues regarding the heterogeneity of the adsorbent surface and the main properties of the adsorption mechanisms. The comparison of similar data obtained for the adsorption of neutral and ionizable compounds, treated with the same approach, and the investigation of the influence on the thermodynamics of phase equilibrium of the experimental conditions (temperature, average pressure, mobile phase composition, nature of the organic modifier, and, for ionizable compounds, of the ionic strength, the nature, the concentration of the buffer, and its pH) brings further information. This review provides original conclusions regarding retention mechanisms in RPLC.« less
NASA Astrophysics Data System (ADS)
Furuta, Yuma; Surblys, Donatas; Yamaguchi, Yastaka
2016-11-01
Molecular dynamics simulations of the equilibrium wetting behavior of hemi-cylindrical argon droplets on solid surfaces with a periodic roughness were carried out. The rough solid surface is located at the bottom of the calculation cell with periodic boundary conditions in surface lateral directions and mirror boundary condition at the top boundary. Similar to on a smooth surface, the change of the cosine of the droplet contact angle was linearly correlated to the potential well depth of the inter-atomic interaction between liquid and solid on a surface with a short roughness period while the correlation was deviated on one with a long roughness period. To further investigate this feature, solid-liquid, solid-vapor interfacial free energies per unit projected area of solid surface were evaluated by using the thermodynamic integration method in independent quasi-one-dimensional simulation systems with a liquid-solid interface or vapor-solid interface on various rough solid surfaces at a constant pressure. The cosine of the apparent contact angles estimated from the density profile of the droplet systems corresponded well with ones calculated from Young's equation using the interfacial energies evaluated in the quasi-one dimensional systems.
Unstable equilibrium behaviour in collapsible tubes.
Bertram, C D
1986-01-01
Thick-walled silicone rubber tube connected to rigid pipes upstream and downstream was externally pressurised (pe) to cause collapse while aqueous fluid flowed through propelled by a constant upstream head. Three types of equilibrium were found: stable equilibria (steady flow) at high downstream flow resistance R2, self-excited oscillations at low R2, and 'unattainable' (by varying external pressure) or exponentially unstable equilibria at intermediate R2. The self-excited oscillations were highly non-linear and appeared in four, apparently discrete, frequency bands: 2.7 Hz, 3.8-5.0 Hz, 12-16 Hz and 60-63 Hz, suggesting that the possible oscillation modes may be harmonically related. Stable, intermediate 'two-in-every-three-beats' oscillation was also observed, with a repetition frequency in the 3.8-5.0 Hz band. As pe was increased, self-excited oscillations were eventually suppressed, leaving internal fluid pressure varying with no single dominant frequency as a result of turbulent jet dissipation at the downstream rigid pipe connection. Comparison of pressure-wave velocity calculated from the local pressure-area relation for the tube with fluid velocity indicated that supercritical velocities were attained in the course of the self-excited oscillations.
Pinger, Cody W; Heller, Andrew A; Spence, Dana M
2017-07-18
Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.
Does the Addition of Inert Gases at Constant Volume and Temperature Affect Chemical Equilibrium?
ERIC Educational Resources Information Center
Paiva, Joao C. M.; Goncalves, Jorge; Fonseca, Susana
2008-01-01
In this article we examine three approaches, leading to different conclusions, for answering the question "Does the addition of inert gases at constant volume and temperature modify the state of equilibrium?" In the first approach, the answer is yes as a result of a common students' alternative conception; the second approach, valid only for ideal…
ERIC Educational Resources Information Center
Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.
2012-01-01
An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…
On the ratio of dynamic topography and gravity anomalies in a dynamic Earth
NASA Astrophysics Data System (ADS)
Colli, L.; Ghelichkhan, S.; Bunge, H. P.
2016-12-01
Growing evidence from a variety of geologic indicators points to significant topography maintained convectively by viscous stresses in the mantle. However, while gravity is sensitive to dynamically supported topography, there are only small free-air gravity anomalies (<30 mGal) associated with Earth's long-wavelength topography. This has been used to suggest that surface heights computed assuming a complete isostatic equilibrium provide a good approximation to observed topography. Here we show that the apparent paradox is resolved by the well-established formalism of global, self-gravitating, viscously stratified Earth models. The models predict a complex relation between dynamic topography, mass, and gravity anomalies that is not summarized by a constant admittance—i.e., ratio of gravity anomalies to surface deflections—as one would infer from analytic flow solutions formulated in a half-space.
Fletcher, Mary H.
1960-01-01
Zirconium reacts with 2,2',4'-trihydroxyazobenzene-5-sulfonic acid in acid solutions to Form two complexes in which the ratios of dye to zirconium are 1 to 1 and 2 to 1. Both complexes are true chelates, with zirconium acting as a bridge between the two orthohydroxy dye groups. Apparent equilibrium constants for the reactions to form each of the complexes are determined. The reactions are used as a basis for the determination of the active component in the dye and a graphical method for the determination of reagent purity is described. Four absorption spectra covering the wave length region from 350 to 750 mu are given, which completely define the color system associated with the reactions in solutions where the hydrochloric acid concentration ranges from 0.0064N to about 7N.
Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A
2015-03-28
Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, F., E-mail: fw237@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Harrison, M. G.
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and themore » results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.« less
Geng, Qijin; Tang, Shankang; Wang, Lintong; Zhang, Yunchen
2015-01-01
The adsorption and photocatalytic degradation of gaseous benzene were investigated considering the operating variables and kinetic mechanism using nano-titania agglomerates in an annular fluidized bed photocatalytic reactor (AFBPR) designed. The special adsorption equilibrium constant, adsorption active sites, and apparent reaction rate coefficient of benzene were determined by linear regression analysis at various gas velocities and relative humidities (RH). Based on a series of photocatalytic degradation kinetic equations, the influences of operating variables on degradation efficiency, apparent reaction rate coefficient and half-life were explored. The findings indicated that the operating variables have obviously influenced the adsorption/photocatalytic degradation and corresponding kinetic parameters. In the photocatalytic degradation process, the relationship between photocatalytic degradation efficiency and RH indicated that water molecules have a dual-function which was related to the structure characteristics of benzene. The optimal operating conditions for photocatalytic degradation of gaseous benzene in AFBPR were determined as the fluidization number at 1.9 and RH required related to benzene concentration. This investigation highlights the importance of controlling RH and benzene concentration in order to obtain the desired synergy effect in photocatalytic degradation processes.
K+-selective nanospheres: maximising response range and minimising response time.
Ruedas-Rama, Maria Jose; Hall, Elizabeth A H
2006-12-01
Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking physiological conditions.
Weng Larsen, S; Engelbrecht Thomsen, A E; Rinvar, E; Friis, G J; Larsen, C
2001-03-23
The rate constants for transfer of a homologous series of nicotinic acid esters from oil vehicles to aqueous buffer phases were determined using a rotating dialysis cell. The chemical stability of butyl nicotinate has been investigated at 60 degrees C over pH range 0.5--10. Maximum stability occurs at pH 4--5 and an inflection point was seen around the pK(a). For the nicotinic acid esters, a linear correlation was established between the first-order rate constant related to attainment of equilibrium, k(obs) and the apparent partition coefficient, P(app): log k(obs)=-0.83log P(app)+0.26 (k(obs) in h(-1), n=9). For hexyl nicotinate with a true partition coefficient of 4 it was possible to determine k(obs) by decreasing pH in the aqueous release medium to 2.05. Thus, under the latter experimental conditions estimation of the relative release rates for the esters were performed. The ratio between the specific rate constant k(ow), related to the transport from oil vehicle to aqueous phase, for ethyl and hexyl nicotinate was 139. The hydrophobic substituent constant for a methylene group, pi(CH(2)), was determined for nicotinic acid esters in different oil/buffer partitioning systems to 0.54--0.58. Addition of hydroxypropyl-beta-cyclodextrin to the aqueous release medium did not enhance the transport rate of the esters from the oil phase.
Modeling of equilibrium hollow objects stabilized by electrostatics.
Mani, Ethayaraja; Groenewold, Jan; Kegel, Willem K
2011-05-18
The equilibrium size of two largely different kinds of hollow objects behave qualitatively differently with respect to certain experimental conditions. Yet, we show that they can be described within the same theoretical framework. The objects we consider are 'minivesicles' of ionic and nonionic surfactant mixtures, and shells of Keplerate-type polyoxometalates. The finite-size of the objects in both systems is manifested by electrostatic interactions. We emphasize the importance of constant charge and constant potential boundary conditions. Taking these conditions into account, indeed, leads to the experimentally observed qualitatively different behavior of the equilibrium size of the objects.
NASA Astrophysics Data System (ADS)
Welch, Kyle; Liebman-Pelaez, Alexander; Corwin, Eric
Equilibrium statistical mechanics is traditionally limited to thermal systems. Can it be applied to athermal, non-equilibrium systems that nonetheless satisfy the basic criteria of steady-state chaos and isotropy? We answer this question using a macroscopic system of chaotic surface waves which is, by all measures, non-equilibrium. The waves are generated in a dish of water that is vertically oscillated above a critical amplitude. We have constructed a rheometer that actively measures the drag imparted by the waves on a buoyant particle, a quantity entirely divorced in origin from the drag imparted by the fluid in which the particle floats. We also perform a separate, passive measurement, extracting a diffusion constant and effective temperature. Having directly measured all three properties (temperature, diffusion constant, and drag coefficient) we go on to show that our macroscopic, non-equilibrium case is wholly consistent with the Einstein relation, a classic result for equilibrium thermal systems.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Enthalpy versus entropy: What drives hard-particle ordering in condensed phases?
Anthamatten, Mitchell; Ou, Jane J.; Weinfeld, Jeffrey A.; ...
2016-07-27
In support of mesoscopic-scale materials processing, spontaneous hard-particle ordering has been actively pursued for over a half-century. The generally accepted view that entropy alone can drive hard particle ordering is evaluated. Furthermore, a thermodynamic analysis of hard particle ordering was conducted and shown to agree with existing computations and experiments. Conclusions are that (i) hard particle ordering transitions between states in equilibrium are forbidden at constant volume but are allowed at constant pressure; (ii) spontaneous ordering transitions at constant pressure are driven by enthalpy, and (iii) ordering under constant volume necessarily involves a non-equilibrium initial state which has yet tomore » be rigorously defined.« less
Grinding kinetics and equilibrium states
NASA Technical Reports Server (NTRS)
Opoczky, L.; Farnady, F.
1984-01-01
The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.
Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material
NASA Astrophysics Data System (ADS)
Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf
2012-03-01
Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.
Basicity of pyridine and some substituted pyridines in ionic liquids.
Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella
2010-06-04
The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.
NASA Astrophysics Data System (ADS)
Maskaeva, L. N.; Fedorova, E. A.; Yusupov, R. A.; Markov, V. F.
2018-05-01
The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009-1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2-H2O-NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.
Naresh, Kottari; Avaji, Prakash Gouda; Maiti, Krishnagopal; Bharati, Binod K; Syal, Kirtimaan; Chatterji, Dipankar; Jayaraman, Narayanaswamy
2012-04-01
Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, β-arabinofuranoside trisaccharide glycolipids constituted with β-(1→2), β-(1→3) and β-(1→2), β-(1→5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying β-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few α-anomeric arabinofuranoside glycolipids showed that glycolipids with β-anomeric linkages were having relatively lower equilibrium binding constants than those with α-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with α-anomeric linkages.
Holm, René; Olesen, Niels Erik; Alexandersen, Signe Dalgaard; Dahlgaard, Birgitte N; Westh, Peter; Mu, Huiling
2016-05-25
Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments. Copyright © 2015 Elsevier B.V. All rights reserved.
A CRDS approach to gas phase equilibrium constants: the case of N 2O 4 ↔ 2NO 2 at 283 K
NASA Astrophysics Data System (ADS)
Tuchler, Matthew F.; Schmidt, Kierstin L.; Morgan, Mackenzie
2005-01-01
We report a general technique for determining the gas phase equilibrium constant, KP, of the A ↔ 2C system using cavity ringdown spectroscopy (CRDS). Working at a constant temperature, the absorption of one of the equilibrium species is measured at two different total pressures. KP is determined from the total pressures of the equilibrium mixture and the ratio of the absorptions. Theoretical limits on sensitivity of this technique are described as a function of experimental conditions. We present results from the reaction N 2O 4 ↔ 2NO 2 measured at T = 283 K. KP measured in this experiment, 21 (±5) Torr, is found to be lower than that recommended by the NASA Panel for Data Evaluation, 32 Torr. [S.P. Sander, A.R. Ravishankara, D.M. Golden, C.E. Kolb, M.J. Kurylo, R.E. Huie, V.L. Orkin, M.J. Molina, G.K. Moortgat, B.J. Finlayson-Pitts, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies. Evaluation No. 14; Jet Propulsion Laboratory, Pasadena, CA, 2003].
Distance-dependent diffusion-controlled reaction of •NO and O2•- at chemical equilibrium with ONOO-.
Botti, Horacio; Möller, Matías N; Steinmann, Daniel; Nauser, Thomas; Koppenol, Willem H; Denicola, Ana; Radi, Rafael
2010-12-16
The fast reaction of (•)NO and O(2)(•-) to give ONOO(-) has been extensively studied at irreversible conditions, but the reasons for the wide variations in observed forward rate constants (3.8 ≤ k(f) ≤ 20 × 10(9) M(-1) s(-1)) remain unexplained. We characterized the diffusion-dependent aqueous (pH > 12) chemical equilibrium of the form (•)NO + O(2)(•-) = ONOO(-) with respect to its dependence on temperature, viscosity, and [ONOO(-)](eq) by determining [ONOO(-)](eq) and [(•)NO](eq). The equilibrium forward reaction rate constant (k(f)(eq)) has negative activation energy, in contrast to that found under irreversible conditions. In contradiction to the law of mass action, we demonstrate that the equilibrium constant depends on ONOO(-) concentration. Therefore, a wide range of k(f)(eq) values could be derived (7.5-21 × 10(9) M(-1) s(-1)). Of general interest, the variations in k(f) can thus be explained by its dependence on the distance between ONOO(-) particles (sites of generation of (•)NO and O(2)(•-)).
Stability and Optimal Harvesting of Modified Leslie-Gower Predator-Prey Model
NASA Astrophysics Data System (ADS)
Toaha, S.; Azis, M. I.
2018-03-01
This paper studies a modified of dynamics of Leslie-Gower predator-prey population model. The model is stated as a system of first order differential equations. The model consists of one predator and one prey. The Holling type II as a predation function is considered in this model. The predator and prey populations are assumed to be beneficial and then the two populations are harvested with constant efforts. Existence and stability of the interior equilibrium point are analysed. Linearization method is used to get the linearized model and the eigenvalue is used to justify the stability of the interior equilibrium point. From the analyses, we show that under a certain condition the interior equilibrium point exists and is locally asymptotically stable. For the model with constant efforts of harvesting, cost function, revenue function, and profit function are considered. The stable interior equilibrium point is then related to the maximum profit problem as well as net present value of revenues problem. We show that there exists a certain value of the efforts that maximizes the profit function and net present value of revenues while the interior equilibrium point remains stable. This means that the populations can live in coexistence for a long time and also maximize the benefit even though the populations are harvested with constant efforts.
The Gaseous Explosive Reaction : The Effect of Inert Gases
NASA Technical Reports Server (NTRS)
Stevens, F W
1928-01-01
Attention is called in this report to previous investigations of gaseous explosive reactions carried out under constant volume conditions, where the effect of inert gases on the thermodynamic equilibrium was determined. The advantage of constant pressure methods over those of constant volume as applied to studies of the gaseous explosive reaction is pointed out and the possibility of realizing for this purpose a constant pressure bomb mentioned. The application of constant pressure methods to the study of gaseous explosive reactions, made possible by the use of a constant pressure bomb, led to the discovery of an important kinetic relation connecting the rate of propagation of the zone of explosive reaction within the active gases, with the initial concentrations of those gases: s = K(sub 1)(A)(sup n1)(B)(sup n2)(C)(sup n3)------. By a method analogous to that followed in determining the effect of inert gases on the equilibrium constant K, the present paper records an attempt to determine their kinetic effect upon the expression given above.
Janovská, Marika; Kubala, Martin; Simánek, Vilím; Ulrichová, Jitka
2009-09-01
The quaternary isoquinoline alkaloid, sanguinarine (SG) plays an important role in both traditional and modern medicine, exhibiting a wide range of biological activities. Under physiological conditions, there is an equilibrium between the quaternary cation (SG+) and a pseudobase (SGOH) forms of SG. In the gastrointestinal tract, SG is converted to dihydrosanguinarine (DHSG). All forms exhibit bright fluorescence. However, their spectra overlap, which limited the use of powerful techniques based on fluorescence spectroscopy/microscopy. Our experiments using a combination of steady-state and time-resolved techniques enabled the separation of individual components. The results revealed that (a) the equilibrium constant between SG+ and SGOH is pKa = 8.06, while fluorescence of DHSG exhibited no changes in the pH range 5-12, (b) the SGOH has excitation/emission spectra with maxima at 327/418 nm and excited-state lifetime 3.2 ns, the spectra of the SG+ have maxima at 475/590 nm and excited-state lifetime 2.4 ns. The DHSG spectra have maxima at 327/446 nm and 2-exponential decay with components 4.2 and 2.0 ns, (c) NADH is able to convert SG to DHSG, while there is no apparent interaction between NADH and DHSG. These techniques are applicable for monitoring the SG to DHSG conversion in hepatocytes.
NASA Astrophysics Data System (ADS)
Sheth, Swapnil Suhas
Narrow molecular weight fractions of poly(epsilon-caprolactone) were successfully obtained using the successive precipitation fractionation technique with toluene/n-heptane as a solvent/nonsolvent pair. Calorimetric studies of the melting behavior of fractions that were crystallized either isothermally or under constant cooling rate conditions suggested that the isothermal crystallization of the samples should be used for a proper evaluation of the molecular weight dependence of the observed melting temperature and degree of crystallinity in PCL. The molecular weight and temperature dependence of the spherulitic growth rate of fractions was studied in the context of the Lauritzen-Hoffman two-phase model and the Strobl three-phase model of polymer crystallization. The zero-growth rate temperatures, determined from spherulitic growth rates using four different methods, are consistent with each other and increase with chain length. The concomitant increase in the apparent secondary nucleation constant was attributed to two factors. First, for longer chains there is an increase in the probability that crystalline stems belong to loose chain-folds, hence, an increase in fold surface free energy. It is speculated that the increase in loose folding and resulting decrease in crystallinity with increasing chain length are associated with the ester group registration requirement in PCL crystals. The second contribution to the apparent nucleation constant arises from chain friction associated with segmental transport across the melt/crystal interface. These factors were responsible for the much stronger chain length dependence of spherulitic growth rates at fixed undercooling observed here with PCL than previously reported for PE and PEO. In the case of PCL, the scaling exponent associated with the chain length dependence of spherulitic growth rates exceeds the upper theoretical bound of 2 predicted from the Brochard- DeGennes chain pullout model. Observation that zero-growth and equilibrium melting temperature values are identical with each other within the uncertainty of their determinations casts serious doubt on the validity of Strobl three-phase model. A novel method is proposed to determine the Porod constant necessary to extrapolate the small angle X-ray scattering intensity data to large scattering vectors. The one-dimensional correlation function determined using this Porod constant yielded the values of lamellar crystal thickness, which were similar to these estimated using the Hosemann-Bagchi Paracrystalline Lattice model. The temperature dependence of the lamellar crystal thickness was consistent with both LH and the Strobl model of polymer crystallization. However, in contrast to the predictions of Strobl's model, the value of the mesomorph-to-crystal equilibrium transition temperature was very close to the zero-growth temperature. Moreover, the lateral block sizes (obtained using wide angle X-ray diffraction) and the lamellar thicknesses were not found to be controlled by the mesomorph-to-crystal equilibrium transition temperature. Hence, we concluded that the crystallization of PCL is not mediated by a mesophase. Metallocene-catalyzed linear low-density (m-LLDPE with 3.4 mol% 1-octene) and conventional low-density (LDPE) polyethylene blends of different compositions were investigated for their melt-state miscibility and concurrent crystallization tendency. Differential scanning calorimetric studies and morphological studies using atomic force microscopy confirm that these blends are miscible in the melt-state for all compositions. LDPE chains are found to crystallize concurrently with m-LLDPE chains during cooling in the m-LLDPE crystallization temperature range. While the extent of concurrent crystallization was found to be optimal in .. .. iv blends with highest m-LLDPE content studied, strong evidence was uncovered for the existence of a saturation effect in the concurrent crystallization behavior. This observation leads us to suggest that co-crystallization, rather than mere concurrent crystallization, of LDPE with m- LLDPE can indeed take place. Matching of the respective sequence length distributions in LDPE and m-LLDPE is suggested to control the extent of co-crystallization.
Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sijm, D.T.H.M.; Broersen, K.W.; Roode, D.F. de
1998-09-01
Algal density-dependent bioconcentration factors and rate constants were determined for a series of hydrophobic compounds in Chlorella pyrenoidosa. The apparent uptake rate constants of the hydrophobic compounds in algae varied between 200 and 710,000 L/kg/d, slightly increased with hydrophobicity within an experiment, were relatively constant for each algal density, and fitted fairly within existing allometric relationships. The bioavailability of the hydrophobic test compounds was significantly reduced by sorption by algal exudates. The sorption coefficients of the hydrophobic compounds to the algal exudates were between 80 and 1,200 L/kg, and were for most algal densities in the same order of magnitudemore » as the apparent bioconcentration factors to the algae, that is, between 80 and 60,200 L/kg. In typical field situations, however, no significant reduction in bioavailability due to exudates is expected. The apparent elimination rate constants of the hydrophobic compounds were high and fairly constant for each algal density and varied between 2 and 190/d. Because the apparent elimination rate constants were higher than the growth rate constant, and were independent of hydrophobicity, the authors speculated that other factors dominate excretion, such as exudate excretion-enhanced elimination. Bioconcentration factors increased less than proportional with hydrophobicity, i.e., the octanol-water partition coefficient [K{sub ow}]. The role of algal composition in bioconcentration is evaluated. Bioconcentrations (kinetics) of hydrophobic compounds that are determined at high algal densities should be applied with caution to field situations.« less
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.
Bittner, Dror M; Walker, Nicholas R; Legon, Anthony C
2016-02-21
A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ (e) or ΔJ (e), the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ (e) or ΔJ (e) for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ (0) or ΔJ (0) for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ∼ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.
NASA Astrophysics Data System (ADS)
Bittner, Dror M.; Walker, Nicholas R.; Legon, Anthony C.
2016-02-01
A two force-constant model is proposed for complexes of the type B⋯MX, in which B is a simple Lewis base of at least C2v symmetry and MX is any diatomic molecule lying along a Cn axis (n ≥ 2) of B. The model assumes a rigid subunit B and that force constants beyond quadratic are negligible. It leads to expressions that allow, in principle, the determination of three quadratic force constants F11, F12, and F22 associated with the r(B⋯M) = r2 and r(M-X) = r1 internal coordinates from the equilibrium centrifugal distortion constants DJ e or ΔJ e , the equilibrium principal axis coordinates a1 and a2, and equilibrium principal moments of inertia. The model can be applied generally to complexes containing different types of intermolecular bond. For example, the intermolecular bond of B⋯MX can be a hydrogen bond if MX is a hydrogen halide, a halogen-bond if MX is a dihalogen molecule, or a stronger, coinage-metal bond if MX is a coinage metal halide. The equations were tested for BrCN, for which accurate equilibrium spectroscopic constants and a complete force field are available. In practice, equilibrium values of DJ e or ΔJ e for B⋯MX are not available and zero-point quantities must be used instead. The effect of doing so has been tested for BrCN. The zero-point centrifugal distortion constants DJ 0 or ΔJ 0 for all B⋯MX investigated so far are of insufficient accuracy to allow F11 and F22 to be determined simultaneously, even under the assumption F12 = 0 which is shown to be reasonable for BrCN. The calculation of F22 at a series of fixed values of F11 reveals, however, that in cases for which F11 is sufficiently larger than F22, a good approximation to F22 is obtained. Plots of F22 versus F11 have been provided for Kr⋯CuCl, Xe⋯CuCl, OC⋯CuCl, and C2H2⋯AgCl as examples. Even in cases where F22 ˜ F11 (e.g., OC⋯CuCl), such plots will yield either F22 or F11 if the other becomes available.
NASA Astrophysics Data System (ADS)
Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Skvortsova, I. V.
2011-05-01
A procedure was proposed for the calculation of the acid-base equilibrium constants at an alumina/electrolyte interface from experimental data on the adsorption of singly charged ions (Na+, Cl-) at various pH values. The calculated constants (p K {1/0}= 4.1, p K {2/0}= 11.9, p K {3/0}= 8.3, and p K {4/0}= 7.7) are shown to agree with the values obtained from an experimental pH dependence of the electrokinetic potential and the results of potentiometric titration of Al2O3 suspensions.
Xiong, Yongliang
2016-04-16
Here, Gautier et al. (2014) recently published their determination of hydromagnesite solubility constant and hydromagnesite growth kinetics. Although their raw data appear to be of high quality, there is an oversight in their calculations of the hydromagnesite solubility constants given the solution compositions in their experiments. The oversight lies in the fact that they did not consider the constraint of simultaneous equilibrium with brucite. This oversight causes their newly calculated equilibrium constant for hydromagnesite to be discordant with the literature values (Königsberger et al., 1992 and Xiong, 2011).
Baumhardt, Jordan M; Dorsey, Benjamin M; McLauchlan, Craig C; Jones, Marjorie A
2015-08-01
Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent constants can be derived from this plot: K max , K min , and K inflect . K max and K min represent the substrate to inhibitor concentration ratio for complete inhibition and minimal inhibition, respectively. K inflect represents the substrate to inhibitor concentration ratio at which the enzyme-substrate complex is equal to the inhibitory complex. These constants can be interpolated from the graph or calculated using the first and second derivative of the plot. We conclude that a steeper slope and a shift of the line to the right (increased x-axis values) would indicate a better inhibitor. Since initial velocity is not a linear function of the substrate/inhibitor ratio, this means that inhibition changes more quickly with the change in the [S]/ [I] ratio. When preincubating the enzyme with substrate before the addition of inhibitor, preincubating the enzyme with inhibitor before the addition of substrate or with concurrent addition of both substrate and inhibitor, modest changes in the slopes and y-intercepts were obtained. This plot appears useful for known competitive and non-competitive inhibitors and may have general applicability.
Diagnostic modeling of trace metal partitioning in south San Francisco Bay
Wood, T. W.; Baptista, A. M.; Kuwabara, J.S.; Flegal, A.R.
1995-01-01
The numerical results indicate that aqueous speciation will control basin-scale spatial variations in the apparent distribution coefficient, Kda, if the system is close to equilibrium. However, basin-scale spatial variations in Kda are determined by the location of the sources of metal and the suspended solids concentration of the receiving water if the system is far from equilibrium. The overall spatial variability in Kda also increases as the system moves away from equilibrium.
Perfluorinated Surfactant Chain-Length Effects on Sonochemical Kinetics
NASA Astrophysics Data System (ADS)
Campbell, Tammy Y.; Vecitis, Chad D.; Mader, Brian T.; Hoffmann, Michael R.
2009-08-01
The sonochemical degradation kinetics of the aqueous perfluorochemicals (PFCs) perfluorobutanoate (PFBA), perfluorobutanesulfonate (PFBS), perfluorohexanoate (PFHA), and perfluorohexanesulfonate (PFHS) have been investigated. Surface tension measurements were used to evaluate chain-length effects on equilibrium air-water interface partitioning. The PFC air-water interface partitioning coefficients, KeqPF, and maximum surface concentrations, ΓmaxPF, were determined from the surface pressure equation of state for PFBA, PFBS, PFHA, and PFHS. Relative KeqPF values were dependent upon chain length KeqPFHS ≅ 2.1KeqPFHA ≅ 3.9KeqPFBS ≅ 5.0KeqPFBA, whereas relative ΓmaxPF values had minimal chain length dependence ΓmaxPFHS ≅ ΓmaxPFHA ≅ ΓmaxPFBS ≅ 2.2ΓmaxPFBA. The rates of sonolytic degradation were determined over a range of frequencies from 202 to 1060 kHz at dilute (<1 μM) initial PFC concentrations and are compared to previously reported results for their C8 analogs: perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Under all conditions, the time-dependent PFC sonolytic degradation was observed to follow pseudo-first-order kinetics, i.e., below kinetic saturation, suggesting bubble-water interface populations were significantly below the adsorption maximum. The PFHX (where X = A or S) sonolysis rate constant was observed to peak at an ultrasonic frequency of 358 kHz, similar to that for PFOX. In contrast, the PFBX degradation rate constants had an apparent maximum at 610 kHz. Degradation rates observed for PFHX are similar to previously determined PFOX rates, kapp,358PFOX ≅ kapp,358PFHX. PFOX is sonolytically pyrolyzed at the transiently cavitating bubble-water interface, suggesting that rates should be proportional to equilibrium interfacial partitioning. However, relative equilibrium air-water interfacial partitioning predicts that KeqPFOX ≅ 5KeqPFHX. This suggests that at dilute PFC concentrations, adsorption to the bubble-water interface is ultrasonically enhanced due to high-velocity radial bubble oscillations. PFC sonochemical kinetics are slower for PFBS and further diminished for PFBA as compared to longer analogs, suggesting that PFBX surface films are of lower stability due to their greater water solubility.
Valenzuela-Calahorro, C; Cuerda-Correa, E; Navarrete-Guijosa, A; Gonzalez-Pradas, E
2002-06-01
The knowledge of sorption processes of nonelectrolytes in solution by solid adsorbents implies the study of kinetics, equilibrium, and thermodynamic functions. However, quite frequently the equilibrium isotherms are studied by comparing them with those corresponding to the Giles et al. classification (1); these isotherms are also analyzed by fitting them to equations based on thermodynamic or kinetic criteria, and even to empirical equations. Nevertheless, information obtained is more coherent and satisfactory if the adsorption isotherms are fitted by using an equation describing the equilibrium isotherms according to the kinetic laws. These mentioned laws would determine each one of the unitary processes (one or more) which condition the global process. In this paper, an adsorption process of prednisolone in solution by six carbonaceous materials is explained according to a previously proposed single model, which allows to establish a kinetic law which fits satisfactorily most of C vs t isotherms (2). According to the above-mentioned kinetic law, equations describing sorption equilibrium processes have been deducted, and experimental data points have been fitted to these equations; such a fitting yields to different values of adsorption capacity and kinetic equilibrium constants for the different processes at several temperatures. However, in spite of their practical interest, these constants have no thermodynamic signification. Thus, the thermodynamic equilibrium constant (K) has been calculated by using a modified expression of the Gaines et al. equation (3). Global average values of the thermodynamic functions have also been calculated from the K values. Information related to variations of DeltaH and DeltaS with the surface coverage fraction was obtained by using the corresponding Clausius-Clapeyron equations.
NASA Astrophysics Data System (ADS)
Kleinboehl, A.; Canty, T. P.; Salawitch, R. J.; Khosravi, M.; Urban, J.; Toon, G. C.; Kuellmann, H.; Notholt, J.
2011-12-01
Significant differences exist between different laboratory measurements of the photolysis cross-sections of ClO-dimer, and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. This leads to uncertainties in the calculations of stratospheric ozone loss in the winter polar regions. One way to constrain the plausibility of these parameters is the measurement of ClO across the terminator in the activated polar vortex. Here we analyze measurements of ClO taken by the airborne submillimeter radiometer ASUR in the Arctic winter of 1999/2000. We use measured ClO at low solar zenith angles (SZA) to estimate the total active chlorine (ClOx). We estimate total available inorganic chlorine (Cly) using ASUR measurements of N2O in January 2000 and a N2O-Cly correlation established by a balloon measurement of the MarkIV interferometer in December 1999. We compare the ClOx estimates based on different photolysis rates of ClO-Dimer. Our results show that cross-sections leading to fast photolysis rates like the ones by Burkholder et al. [1990] or Papanastasiou et al. [2009] give ClOx mixing ratios that overlap with our estimated range of available Cly. Slower photolysis rates like the ones by von Hobe et al. [2009] and Pope et al. [2007] lead to ClOx values that are significantly higher than the available Cly. We use the calculated ClOx from low SZA to estimate the ClO in darkness with different equilibrium constants, and compare it with ASUR ClO measurements before sunrise (SZA > 95). We find that calculations with equilibrium constants published in the JPL evaluation of the last few years all give good agreement with observed ClO mixing ratios. The equilibrium constant estimated by von Hobe et al. [2005] yields ClO values that are higher than the ones observed.
Spreading out of perturbations in reversible reaction networks
NASA Astrophysics Data System (ADS)
Maslov, Sergei; Sneppen, Kim; Ispolatov, I.
2007-08-01
Using an example of physical interactions between proteins, we study how a perturbation propagates in the equilibrium of a network of reversible reactions governed by the law of mass action. We introduce a matrix formalism to describe the linear response of all equilibrium concentrations to shifts in total abundances of individual reactants, and reveal its heuristic analogy to the flow of electric current in a network of resistors. Our main conclusion is that, on average, the induced changes in equilibrium concentrations decay exponentially as a function of network distance from the source of perturbation. We analyze how this decay is influenced by such factors as the topology of a network, binding strength, and correlations between concentrations of neighboring nodes. We find that the minimal branching of the network, small values of dissociation constants, and low equilibrium free (unbound) concentrations of reacting substances all decrease the decay constant and thus increase the range of propagation. Exact analytic expressions for the decay constant are obtained for the case of equally strong interactions and uniform as well as oscillating concentrations on the Bethe lattice. Our general findings are illustrated using a real network of protein-protein interactions in baker's yeast with experimentally determined protein concentrations.
NASA Technical Reports Server (NTRS)
Gordon, Sanford; Mcbride, Bonnie J.
1994-01-01
This report presents the latest in a number of versions of chemical equilibrium and applications programs developed at the NASA Lewis Research Center over more than 40 years. These programs have changed over the years to include additional features and improved calculation techniques and to take advantage of constantly improving computer capabilities. The minimization-of-free-energy approach to chemical equilibrium calculations has been used in all versions of the program since 1967. The two principal purposes of this report are presented in two parts. The first purpose, which is accomplished here in part 1, is to present in detail a number of topics of general interest in complex equilibrium calculations. These topics include mathematical analyses and techniques for obtaining chemical equilibrium; formulas for obtaining thermodynamic and transport mixture properties and thermodynamic derivatives; criteria for inclusion of condensed phases; calculations at a triple point; inclusion of ionized species; and various applications, such as constant-pressure or constant-volume combustion, rocket performance based on either a finite- or infinite-chamber-area model, shock wave calculations, and Chapman-Jouguet detonations. The second purpose of this report, to facilitate the use of the computer code, is accomplished in part 2, entitled 'Users Manual and Program Description'. Various aspects of the computer code are discussed, and a number of examples are given to illustrate its versatility.
Interfaces at equilibrium: A guide to fundamentals.
Marmur, Abraham
2017-06-01
The fundamentals of the thermodynamics of interfaces are reviewed and concisely presented. The discussion starts with a short review of the elements of bulk thermodynamics that are also relevant to interfaces. It continues with the interfacial thermodynamics of two-phase systems, including the definition of interfacial tension and adsorption. Finally, the interfacial thermodynamics of three-phase (wetting) systems is discussed, including the topic of non-wettable surfaces. A clear distinction is made between equilibrium conditions, in terms of minimizing energies (internal, Gibbs or Helmholtz), and equilibrium indicators, in terms of measurable, intrinsic properties (temperature, chemical potential, pressure). It is emphasized that the equilibrium indicators are the same whatever energy is minimized, if the boundary conditions are properly chosen. Also, to avoid a common confusion, a distinction is made between systems of constant volume and systems with drops of constant volume. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nayak, Gouranga C.
2017-12-01
Recently we have proved the factorization of NRQCD S-wave heavy quarkonium production at all orders in coupling constant. In this paper we extend this to prove the factorization of infrared divergences in χ _{cJ} production from color singlet c{\\bar{c}} pair in non-equilibrium QCD at RHIC and LHC at all orders in coupling constant. This can be relevant to study the quark-gluon plasma at RHIC and LHC.
Hawking radiation and nonequilibrium quantum critical current noise.
Sonner, Julian; Green, A G
2012-08-31
The dynamical scaling of quantum critical systems in thermal equilibrium may be inherited in the driven steady state, leading to universal out-of-equilibrium behavior. This attractive notion has been demonstrated in just a few cases. We demonstrate how holography-a mapping between the quantum critical system and a gravity dual-provides an illuminating perspective and new results. Nontrivial out-of-equilibrium universality is particularly apparent in current noise, which is dual to Hawking radiation in the gravitational system. We calculate this in a two-dimensional system driven by a strong in-plane electric field and deduce a universal scaling function interpolating between previously established equilibrium and far-from-equilibrium current noise. Since this applies at all fields, out-of-equilibrium experiments no longer require very high fields for comparison with theory.
Analysis of cholera toxin-ganglioside interactions by flow cytometry.
Lauer, Sabine; Goldstein, Byron; Nolan, Rhiannon L; Nolan, John P
2002-02-12
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.
THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE
Johnson, F. H.; Eyring, H.; Steblay, R.; Chaplin, H.; Huber, C.; Gherardi, G.
1945-01-01
On the basis of available data with regard to the chemical and physical properties of the "substrate" luciferin (LH2) and enzyme, luciferase (A), and of kinetic data derived both from the reaction in extracts of Cypridina, and from the luminescence of intact bacteria, the fundamental reactions involved in the phenomenon of bioluminescence have been schematized. These reactions provide a satisfactory basis for interpreting the known characteristics of the system, as well as the theoretical chemistry with regard to the control of its over-all velocity in relation to various factors. These factors, here studied experimentally wholly with bacteria, Photobacterium phosphoreum in particular, include pH, temperature, pressure, and the drugs sulfanilamide, urethane, and alcohol, separately and in relation to each other. Under steady state conditions of bacterial luminescence, with excess of oxidizable substrate and with oxygen not limiting, the data indicate that the chief effects of these agents center around the pace setting reactions, which may be designated by the equation: A + LH2 → ALH2 following which light emission is assumed proportional to the amount of the excited molecule, AL*. The relation between pH and luminescence intensity varies with (a), the buffer mixture and concentration, (b), the temperature, and (c), the hydrostatic pressure. At an optimum temperature for luminescence of about 22° C. in P. phosphoreum, the effects of increasing or decreasing the hydrogen ion concentration are largely reversible over the range between pH 3.6 and pH 8.8. The relation between luminescence intensity and pH, under the experimental conditions employed, is given by the following equation, in which I 1 represents the maximum intensity, occurring about pH 6.5; I 2 the intensity at any other given pH; K 5 the equilibrium constant between hydrogen ions and the AL-; and K 6 the corresponding constant with respect to hydroxyl ions: See PDF for Equation The value of K 5, as indicated by the data, amounts to 4.84 x 104, while that of K 6 amounts to 4.8 x 105. Beyond the range between approximately pH 3.8 and 8.8, destructive effects of the hydrogen and hydroxyl ions, respectively, were increasingly apparent. By raising the temperature above the optimum, the destructive effects were apparent at all pH, and the intensity of the luminescence diminished logarithmically with time. With respect to pH, the rate of destruction of the light-emitting system at temperatures above the optimum was slowest between pH 6.5 and 7.0, and increased rapidly with more acid or more alkaline reactions of the medium. The reversible effects of slightly acid pH vary with the temperature in the manner of an inhibitor (Type I) that acts independently of the normal, reversible denaturation equilibrium (K 1) of the enzyme. The per cent inhibition caused by a given acid pH in relation to the luminescence intensity at optimum pH, is much greater at low temperatures, and decreases as the temperature is raised towards the optimum temperature. The observed maximum intensity of luminescence is thus shifted to slightly higher temperatures by increase in (H+). The apparent activation energy of luminescence is increased by a decrease in pH. The value of ΔH‡ at pH 5.05 was calculated to be 40,900 calories, in comparison with 20,700 at a pH of 6.92. The difference of 20,200 is taken to represent an estimate of the heat of ionization of ALH in the activation process, and compares roughtly with the 14,000 calories estimated for the same process, by analyzing the data from the point of view of hydrogen ions as an inhibitor. The decreasing temperature coefficient for luminescence in proceeding from low temperatures towards the optimum is accounted for in part by the greater degree of ionization of ALH. At the optimum temperature and acid reactions, pressures up to about 500 atmospheres retard the velocity of the luminescent oxidation. At the same temperature, with decrease in hydrogen ion concentration, the pressure effect is much less, indicating a considerable volume increase in the process of ionization and activation. In the extremely alkaline range, beyond pH 9, luminescence is greatly reduced, as compared with the intensity at neutrality, and under these conditions pressure causes a pronounced increase in intensity, presumably by acting upon the reversible denaturation equilibrium of the protein enzyme, A. Sulfanilamide, in neutral solutions, acts on luminescence in a manner very much resembling that of hydrogen ions at acidities between pH 4.0 and pH 6.5. Like the hydrogen ion equilibrium, the sulfanilamide equilibrium involves a ratio of approximately one inhibitor molecule to one enzyme molecule. The heat of reaction amounts to about 11,600 calories or more in a reversible combination that evidently evolves heat. Like the action of H ions, sulfanilamide causes a slight shifting of maximum luminescence intensity in the direction of higher temperatures, and an increase in the energy of activation. The effect of sulfanilamide on the growth of broth cultures of eight species of luminous bacteria indicates that there is no regular relationship among the different organisms between the concentration of the drug that prevents growth, and that which prevents luminescence in the cells which develop in the presence of sulfanilamide. p-Aminobenzoic acid (PAB) antagonizes the sulfanilamide inhibition of growth in luminous bacteria, and the cultures that develop are luminous. When (PAB) is added to cells from fully developed cultures, it has no effect on luminescence, or causes a slight inhibition, depending on the concentration. With luminescence partly inhibited by sulfanilamide, the addition of PAB has no effect, or has an inhibitory effect which adds to that caused by sulfanilamide. Two different, though possibly related, enzyme systems thus appear to limit growth and luminescence, respectively. The possible mechanism through which both the inhibitions and the antagonism take place is discussed. The irreversible destruction of the luminescent system at temperatures above that of the maximum luminescence, in a medium of favorable pH to which no inhibitors have been added, proceeds logarithmically with time at both normal and increased hydrostatic pressures. Pressure retards the rate of the destruction, and the analysis of the data indicates that a volume increase of roughly 71 cc. per gm. molecule at 32° C. takes place in going from the normal to the activated state in this reaction. At normal pressure, the rate of destruction has a temperature coefficient of approximately 90,000 calories, or about 20,000 calories more than the heat of reaction in the reversible denaturation equilibrium. The data indicate that the equilibrium and the rate process are two distinct reactions. The equation for luminescence intensity, taking into account both the reversible and irreversible phases of the reaction is given below. In the equation b is a proportionality constant; k' the rate constant of the luminescent reaction; A0 the total luciferase; A0i the total initial luciferase at time t equals 0; kn the rate constant for the destruction of the native, active form of the enzyme; kd the rate constant for the destruction of the reversibly denatured, inactive form; t the time; and the other symbols are as indicated above: See PDF for Equation For reasons cited in the text, kn evidently equals kd. Urethane and alcohol, respectively, act in a manner (Type II) that promotes the breaking of the type of bonds broken in both the reversible and irreversible reactions and so promotes the irreversible denaturation. This result is in contrast to the effects of sulfanilamide, which at appropriate concentrations may give rise to the same initial inhibition as that caused by urethane, but remains constant with time. The inhibition caused by urethane and alcohol, respectively, increases as the temperature is raised. As a result, the apparent optimum is shifted to lower temperatures, and the activation energy for the over-all process of luminescence diminishes. An analysis for the approximate heat of reaction in the equilibrium between these drugs and the enzyme, indicates 65,000 calories for urethane, and 37,000 for alcohol. A similar analysis with respect to the effect of hydroxyl ions as the inhibitor gives 60,300 calories. The effects of alcohol and urethane are sensitive to hydrostatic pressure. Moderate inhibitions at optimum temperature and pH, caused by relatively small concentrations of either drug, are completely abolished by pressures of 3,000 to 4,000 pounds per square inch. At optimum temperature and pH, increasing concentrations of alcohol caused the apparent optimum pressure for luminescence to shift markedly in the direction of higher pressures. Analysis of the data with respect to concentration of alcohol at different pressures indicated that the ratio of alcohol to enzyme molecules amounted to approximately 4, at 7,000 pounds, but only about 2.8 at normal pressures. This phenomenon was taken to indicate that more than one equilibrium is established between the alcohol and the protein. A similar interpretation was suggested in connection with the fact that analysis of the relation between concentration of urethane and amount of inhibition at different temperatures also indicated a ratio of urethane to enzyme molecules that increased with temperature in the equilibria involved. Analysis of the data with respect to pressure and the inhibition caused by a given concentration of alcohol at different temperatures indicated that the volume change involved in the combination of alcohol with the enzyme must be very small, while the actual effect of pressure is apparently mediated through the reversible denaturation of the protein enzyme, which is promoted by alcohol, urethane, and drugs of similar type. PMID:19873433
How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms?
Xia, Xinghui; Li, Husheng; Yang, Zhifeng; Zhang, Xiaotian; Wang, Haotian
2015-04-21
It is well-known that the body burden of hydrophobic organic compounds (HOCs) increases with the trophic level of aquatic organisms. However, the mechanism of HOC biomagnification is not fully understood. To fill this gap, this study investigated the effect of predation on the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs), one type of HOC, in low-to-high aquatic trophic levels under constant freely dissolved PAH concentrations (1, 5, or 10 μg L(-1)) maintained by passive dosing systems. The tested PAHs included phenanthrene, anthracene, fluoranthene, and pyrene. The test organisms included zebrafish, which prey on Daphnia magna, and cichlids, which prey on zebrafish. The results revealed that for both zebrafish and cichlids, predation elevated the uptake and elimination rates of PAHs. The increase of uptake rate constant ranged from 20.8% to 39.4% in zebrafish with the amount of predation of 5 daphnids per fish per day, and the PAH uptake rate constant increased with the amount of predation. However, predation did not change the final bioaccumulation equilibrium; the equilibrium concentrations of PAHs in fish only depended on the freely dissolved concentration in water. Furthermore, the lipid-normalized water-based bioaccumulation factor of each PAH was constant for fish at different trophic levels. These findings infer that the final bioaccumulation equilibrium of PAHs is related to a partition between water and lipids in aquatic organisms, and predation between trophic levels does not change bioaccumulation equilibrium but bioaccumulation kinetics at stable freely dissolved PAH concentrations. This study suggests that if HOCs have not reached bioaccumulation equilibrium, biomagnification occurs due to enhanced uptake rates caused by predation in addition to higher lipid contents in higher trophic organisms. Otherwise, it is only due to the higher lipid contents in higher trophic organisms.
Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard
2016-09-02
The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).
Weikl, Thomas R.; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard
2016-01-01
ABSTRACT The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant K2D and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between K2D and the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D). PMID:27294442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, Thomas; Hin, Celine; Savara, Aditya
Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, Thomas; Hin, Celine; Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10{sup −26} to 10{sup 13}. The equations have been shown to be general for any value of the adsorption equilibrium constant.« less
Assessment of tautomer distribution using the condensed reaction graph approach
NASA Astrophysics Data System (ADS)
Gimadiev, T. R.; Madzhidov, T. I.; Nugmanov, R. I.; Baskin, I. I.; Antipin, I. S.; Varnek, A.
2018-03-01
We report the first direct QSPR modeling of equilibrium constants of tautomeric transformations (logK T ) in different solvents and at different temperatures, which do not require intermediate assessment of acidity (basicity) constants for all tautomeric forms. The key step of the modeling consisted in the merging of two tautomers in one sole molecular graph ("condensed reaction graph") which enables to compute molecular descriptors characterizing entire equilibrium. The support vector regression method was used to build the models. The training set consisted of 785 transformations belonging to 11 types of tautomeric reactions with equilibrium constants measured in different solvents and at different temperatures. The models obtained perform well both in cross-validation (Q2 = 0.81 RMSE = 0.7 logK T units) and on two external test sets. Benchmarking studies demonstrate that our models outperform results obtained with DFT B3LYP/6-311 ++ G(d,p) and ChemAxon Tautomerizer applicable only in water at room temperature.
How important is thermodynamics for identifying elementary flux modes?
Peres, Sabine; Jolicœur, Mario; Moulin, Cécile
2017-01-01
We present a method for computing thermodynamically feasible elementary flux modes (tEFMs) using equilibrium constants without need of internal metabolite concentrations. The method is compared with the method based on a binary distinction between reversible and irreversible reactions. When all reactions are reversible, adding the constraints based on equilibrium constants reduces the number of elementary flux modes (EFMs) by a factor of two. Declaring in advance some reactions as irreversible, based on reliable biochemical expertise, can in general reduce the number of EFMs by a greater factor. But, even in this case, computing tEFMs can rule out some EFMs which are biochemically irrelevant. We applied our method to two published models described with binary distinction: the monosaccharide metabolism and the central carbon metabolism of Chinese hamster ovary cells. The results show that the binary distinction is in good agreement with biochemical observations. Moreover, the suppression of the EFMs that are not consistent with the equilibrium constants appears to be biologically relevant. PMID:28222104
Danielson, Thomas; Hin, Celine; Savara, Aditya
2016-08-10
Lattice based kinetic Monte Carlo (KMC) simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and for estimating the coverage at a certain pressure. The generalized form has been calculatedmore » by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. Finally, the equations have been shown to be general for any value of the adsorption equilibrium constant.« less
An experiment on radioactive equilibrium and its modelling using the ‘radioactive dice’ approach
NASA Astrophysics Data System (ADS)
Santostasi, Davide; Malgieri, Massimiliano; Montagna, Paolo; Vitulo, Paolo
2017-07-01
In this article we describe an educational activity on radioactive equilibrium we performed with secondary school students (17-18 years old) in the context of a vocational guidance stage for talented students at the Department of Physics of the University of Pavia. Radioactive equilibrium is investigated experimentally by having students measure the activity of 214Bi from two different samples, obtained using different preparation procedures from an uraniferous rock. Students are guided in understanding the mathematical structure of radioactive equilibrium through a modelling activity in two parts. Before the lab measurements, a dice game, which extends the traditional ‘radioactive dice’ activity to the case of a chain of two decaying nuclides, is performed by students divided into small groups. At the end of the laboratory work, students design and run a simple spreadsheet simulation modelling the same basic radioactive chain with user defined decay constants. By setting the constants to realistic values corresponding to nuclides of the uranium decay chain, students can deepen their understanding of the meaning of the experimental data, and also explore the difference between cases of non-equilibrium, transient and secular equilibrium.
A hierarchical approach to cooperativity in macromolecular and self-assembling binding systems.
Garcés, Josep Lluís; Acerenza, Luis; Mizraji, Eduardo; Mas, Francesc
2008-04-01
The study of complex macromolecular binding systems reveals that a high number of states and processes are involved in their mechanism of action, as has become more apparent with the sophistication of the experimental techniques used. The resulting information is often difficult to interpret because of the complexity of the scheme (large size and profuse interactions, including cooperative and self-assembling interactions) and the lack of transparency that this complexity introduces into the interpretation of the indexes traditionally used to describe the binding properties. In particular, cooperative behaviour can be attributed to very different causes, such as direct chemical modification of the binding sites, conformational changes in the whole structure of the macromolecule, aggregation processes between different subunits, etc. In this paper, we propose a novel approach for the analysis of the binding properties of complex macromolecular and self-assembling systems. To quantify the binding behaviour, we use the global association quotient defined as K(c) = [occupied sites]/([free sites] L), L being the free ligand concentration. K(c) can be easily related to other measures of cooperativity (such as the Hill number or the Scatchard plot) and to the free energies involved in the binding processes at each ligand concentration. In a previous work, it was shown that K(c) could be decomposed as an average of equilibrium constants in two ways: intrinsic constants for Adair binding systems and elementary constants for the general case. In this study, we show that these two decompositions are particular cases of a more general expression, where the average is over partial association quotients, associated with subsystems from which the system is composed. We also show that if the system is split into different subsystems according to a binding hierarchy that starts from the lower, microscopic level and ends at the higher, aggregation level, the global association quotient can be decomposed following the hierarchical levels of macromolecular organisation. In this process, the partial association quotients of one level are expressed, in a recursive way, as a function of the partial quotients of the level that is immediately below, until the microscopic level is reached. As a result, the binding properties of very complex macromolecular systems can be analysed in detail, making the mechanistic explanation of their behaviour transparent. In addition, our approach provides a model-independent interpretation of the intrinsic equilibrium constants in terms of the elementary ones.
Gülfen, Mustafa; Özdemir, Abdil; Lin, Jung-Lee; Chen, Chung-Hsuan
2017-10-01
In this study, the dissociation and formation equilibrium constants of Na(I)-insulin and K(I)-insulin complexes have been calculated after the quantifying them on ESI mass spectrometer. The ESI-MS spectra of the complexes were measured by using the solvents as 50% MeOH in water and 100% water. The effect of pH on the Na(I)-insulin and K(I)-insulin complex formation were examined. Serial binding of Na(I) and K(I) ions to the insulin molecule were observed in the ESI-MS measurements. The first formation equilibrium constants were calculated as K f1 : 5.48×10 3 1/M for Na(I)-insulin complex and K f1 : 4.87×10 3 1/M for K(I)-insulin in water. The binding capability of Na(I) ions to insulin molecule is higher than the capability of K(I) ions. In case of a comparison together with Ca(II)-insulin and Mg(II)-insulin, the formation equilibrium constants (K f1 ) are in order of Ca(II)-insulin>Mg(II)-insulin>Na(I)-insulin>K(I)-insulin in water. The results showed that Na(I) and K(I) ions are involved in the formation of the non-covalent complexes with insulin molecule, since high extracellular and intracellular concentrations of them in the body. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetics of enzymes with iso-mechanisms: analysis of product inhibition.
Rebholz, K L; Northrop, D B
1993-01-01
Isomerizations of free enzyme can be detected in kinetic patterns of product inhibition when the isomerization is partially rate-limiting. The kinetic pattern is non-competitive, owing to binding of substrate and product to different forms of free enzyme. This adds an additional term to the rate equation, sometimes represented as KSP. Several kineticists have noted that, as the rate of isomerization becomes high in relation to catalytic turnover, the intercept effect will become small, KSP will approach infinity, and the pattern will look competitive. Britton [(1973) Biochem. J. 133, 255-261] asserted that KSP will also approach infinity when the rate of isomerization becomes low. This second assertion is incorrect and can be traced to the particular model and graphical representation used to examine KSP as a function of relative rate constants. The function portrayed as a parabola with two roots for KSP is, instead, a straight line with one root. The algebraic condition justifying the second root obtains in the limit of zero in the rate of reaction and thus is not experimentally relevant, and the appearance of competitive inhibition, based on KSP alone, is not valid. Using a more general model, new equations are derived and presented which provide direct calculations of the apparent rate constants for free enzyme isomerizations from product-inhibition data when the equilibrium of the isomerization is near 1, and useful limits for the rate constants when greater than or less than 1. PMID:7980736
The kinetics of competitive antagonists on guinea-pig ileum.
Roberts, F; Stephenson, R P
1976-01-01
1 The kinetics of action of some competitive muscarinic and histamine antagonists were examined on guinea-pig isolated ileum and their behaviour compared with the predictions of the interaction-limited model described by Paton (1961). 2 The kinetics of antagonism were not consistent with the predictions of this model: (1) The apparent dissociation rate constant calculated from the decrease in occupancy on washout was not independent of the concentration of antagonist. (2) The dissociation rate constant of a 'slow' antagonist calculated from the change in occupancy when a 'fast' antagonist was superimposed varied with the concentration of fast antagonist. (3) If the concentration of slow antagonist was increased when the fast antagonist was superimposed so that the equilibrium occupancy of the 'slow' was the same as before, a transitional phase was observed. 3 The kinetics of antagonism were observed in longitudinal muscle strips and intact pieces of ileum, bathed in Tyrode or Krebs solution, and with isometric and isotonic recording. No evidence was found that the discrepancies between the interaction-limited model and the observed kinetics could be accounted for by the experimental method used. 4 It is therefore concluded that either access is rate-limiting in these circumstances or, if interaction is rate-limiting, some alternative interaction-limited model is required to describe the kinetics of antagonism. In either case it would seem unwise at this time to calculate antagonist-receptor rate constants from the observed kinetics of antagonism. PMID:974378
Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.
Irving, M; Maylie, J; Sizto, N L; Chandler, W K
1990-04-01
Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.
Accelerated Self-Replication under Non-Equilibrium, Periodic Energy Delivery
NASA Astrophysics Data System (ADS)
Zhang, Rui; Olvera de La Cruz, Monica
2014-03-01
Self-replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self-replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self-replication is explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light switchable colloids is considered where light is used to control the interactions. Conditions under which self-replication can be significantly more effective under non-equilibrium, cyclic energy delivery than under equilibrium constant energy conditions are identified. Optimal self-replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates. This work was supported by the Non-Equilibrium Energy Research Center (NERC), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.
Kimura, Yasuyuki; Siméon, Fabrice G; Zoghbi, Sami S; Zhang, Yi; Hatazawa, Jun; Pike, Victor W; Innis, Robert B; Fujita, Masahiro
2012-02-01
A new PET ligand, 3-fluoro-5-(2-(2-(18)F-(fluoromethyl)-thiazol-4-yl)ethynyl)benzonitrile (18F-SP203) can quantify metabotropic glutamate subtype 5 receptors (mGluR5) in human brain by a bolus injection and kinetic modeling. As an alternative approach to a bolus injection, binding can simply be measured as a ratio of tissue to metabolite-corrected plasma at a single time point under equilibrium conditions achieved by administering the radioligand with a bolus injection followed by a constant infusion. The purpose of this study was to validate the equilibrium method as an alternative to the standard kinetic method for measuring 18F-SP203 binding in the brain. Nine healthy subjects were injected with 18F-SP203 using a bolus plus constant infusion for 300 min. A single ratio of bolus-to-constant infusion (the activity of bolus equaled to that of infusion over 219 min) was applied to all subjects to achieve equilibrium in approximately 120 min. As a measure of ligand binding, we compared total distribution volume (VT) calculated by the equilibrium and kinetic methods in each scan. The equilibrium method calculated VT by the ratio of radioactivity in the brain to the concentration of 18F-SP203 in arterial plasma at 120 min, and the kinetic method calculated VT by a two-tissue compartment model using brain and plasma dynamic data from 0 to 120 min. VT obtained via the equilibrium method was highly correlated with VT obtained via kinetic modeling. Inter-subject variability of VT obtained via the equilibrium method was slightly smaller than VT obtained via the kinetic method. VT obtained via the equilibrium method was ~10% higher than VT obtained via the kinetic method, indicating a small difference between the measurements. Taken together, the results of this study show that using the equilibrium method is an acceptable alternative to the standard kinetic method when using 18F-SP203 to measure mGluR5. Although small differences in the measurements obtained via the equilibrium and kinetic methods exist, both methods consistently measured mGluR5 as indicated by the highly correlated VT values; the equilibrium method was slightly more precise, as indirectly measured by the smaller coefficient of variability across subjects. In addition, when using 18F-SP203, the equilibrium method is more efficient because it requires much less data. Copyright © 2011. Published by Elsevier Inc.
Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.
Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G
2018-04-25
This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.
ERIC Educational Resources Information Center
Bindel, Thomas H.
2010-01-01
Entropy analyses as a function of the extent of reaction are presented for a number of physicochemical processes, including vaporization of a liquid, dimerization of nitrogen dioxide, and the autoionization of water. Graphs of the total entropy change versus the extent of reaction give a visual representation of chemical equilibrium and the second…
NASA Astrophysics Data System (ADS)
Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.
2015-12-01
In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.
Collett, Christopher J; Massey, Richard S; Taylor, James E; Maguire, Oliver R; O'Donoghue, AnnMarie C; Smith, Andrew D
2015-01-01
Rate and equilibrium constants for the reaction between N-aryl triazolium N-heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3-(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2-substituent in these reactions and provide insight into the chemoselectivity of cross-benzoin reactions. PMID:25908493
Collett, Christopher J.; Massey, Richard S.; Taylor, James E.; Maguire, Oliver R.
2015-01-01
Abstract Rate and equilibrium constants for the reaction between N‐aryl triazolium N‐heterocyclic carbene (NHC) precatalysts and substituted benzaldehyde derivatives to form 3‐(hydroxybenzyl)azolium adducts under both catalytic and stoichiometric conditions have been measured. Kinetic analysis and reaction profile fitting of both the forward and reverse reactions, plus onwards reaction to the Breslow intermediate, demonstrate the remarkable effect of the benzaldehyde 2‐substituent in these reactions and provide insight into the chemoselectivity of cross‐benzoin reactions. PMID:27478264
NASA Astrophysics Data System (ADS)
Budaev, Bair V.; Bogy, David B.
2018-06-01
We extend the statistical analysis of equilibrium systems to systems with a constant heat flux. This extension leads to natural generalizations of Maxwell-Boltzmann's and Planck's equilibrium energy distributions to energy distributions of systems with a net heat flux. This development provides a long needed foundation for addressing problems of nanoscale heat transport by a systematic method based on a few fundamental principles. As an example, we consider the computation of the radiative heat flux between narrowly spaced half-spaces maintained at different temperatures.
Marinsky, J.A.; Reddy, M.M.
1984-01-01
We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.
Kanoatov, Mirzo; Galievsky, Victor A; Krylova, Svetlana M; Cherney, Leonid T; Jankowski, Hanna K; Krylov, Sergey N
2015-03-03
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.
Larson-Miller Constant of Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu
2013-06-01
Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.
Exposure strategy and crystallization of Ge-Sb-Te thin film by maskless phase-change lithography
NASA Astrophysics Data System (ADS)
Ni, Ri Wen; Zeng, Bi Jian; Huang, Jun Zhu; Luo, Teng; Li, Zhen; Miao, Xiang Shui
2015-04-01
Maskless phase-change lithographic technology is developed as a photoresist of phase-change materials. The controllable growth behavior of the crystallization region on an amorphous thin film of Ge2Sb2Te5 (GST) irradiated by a laser beam is investigated; the GST thin film is deposited on a silicon substrate by the sputtering method. The results of a series of the experiments and the simulations all show that the width of a crystalline pattern is not only closely related to laser power and pulse duration, but also is apparently affected by the interactive area between the focused laser spot and thin film. The width maintains a nonlinear growth with the enhancement of the laser power until the thin film approaches melting, whereas it gradually reaches a constant value due to the local thermal equilibrium. This equilibrium makes the width irrelevant to the moving velocity with certain constraints when the laser works in continuous-wave mode. Within a defocus range of 15 μm, the widths of the crystalline patterns are obtained in a broad range from 690 nm to 8.13 μm under a 0.4-NA objective lens. By adjusting the defocus amount, some crystalline square patterns with expected widths in a wide range are fabricated, and the mean percentage error between the expected and fabricated widths is only 1.495%.
Soil-moisture constants and their variation
Walter M. Broadfoot; Hubert D. Burke
1958-01-01
"Constants" like field capacity, liquid limit, moisture equivalent, and wilting point are used by most students and workers in soil moisture. These constants may be equilibrium points or other values that describe soil moisture. Their values under specific soil and cover conditions have been discussed at length in the literature, but few general analyses and...
Effective Torsion and Spring Constants in a Hybrid Translational-Rotational Oscillator
ERIC Educational Resources Information Center
Nakhoda, Zein; Taylor, Ken
2011-01-01
A torsion oscillator is a vibrating system that experiences a restoring torque given by [tau] = -[kappa][theta] when it experiences a rotational displacement [theta] from its equilibrium position. The torsion constant [kappa] (kappa) is analogous to the spring constant "k" for the traditional translational oscillator (for which the restoring force…
Numerical Experiments Based on the Catastrophe Model of Solar Eruptions
NASA Astrophysics Data System (ADS)
Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.
2017-11-01
On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which is predicted by the Lin-Forbes model and observations. Formation of the fast mode shock ahead of the flux rope is observed in our experiments. Outward motions of the flux rope are smooth, and magnetic energy is continuously converted into the other types of energy because both the diffusions are considered in calculations, and magnetic reconnection is allowed to occur successively in the current sheet behind the flux rope.
Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik
2011-01-01
We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.
Determining the elastic properties of aptamer-ricin single molecule multiple pathway interactions
NASA Astrophysics Data System (ADS)
Wang, Bin; Park, Bosoon; Kwon, Yongkuk; Xu, Bingqian
2014-05-01
We report on the elastic properties of ricin and anti-ricin aptamer interactions, which showed three stable binding conformations, each of which has its special elastic properties. These different unbinding pathways were investigated by the dynamic force spectroscopy. A series-spring model combining the worm-like-chain model and Hook's law was used to estimate the apparent spring constants of the aptamer and linker molecule polyethylene glycol. The aptamer in its three different unbinding pathways showed different apparent spring constants. The two reaction barriers in the unbinding pathways also influence the apparent spring constant of the aptamer. This special elastic behavior of aptamer was used to distinguish its three unbinding pathways under different loading rates. This method also offered a way to distinguish and discard the non-specific interactions in single molecule experiments.
Calculation of the equilibrium distribution for a deleterious gene by the finite Fourier transform.
Lange, K
1982-03-01
In a population of constant size every deleterious gene eventually attains a stochastic equilibrium between mutation and selection. The individual probabilities of this equilibrium distribution can be computed by an application of the finite Fourier transform to an appropriate branching process formula. Specific numerical examples are discussed for the autosomal dominants, Huntington's chorea and chondrodystrophy, and for the X-linked recessive, Becker's muscular dystrophy.
Bahlman, Joseph W.; Swartz, Sharon M.; Riskin, Daniel K.; Breuer, Kenneth S.
2013-01-01
Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60–125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight. PMID:23256188
Bahlman, Joseph W; Swartz, Sharon M; Riskin, Daniel K; Breuer, Kenneth S
2013-03-06
Gliding is an efficient form of travel found in every major group of terrestrial vertebrates. Gliding is often modelled in equilibrium, where aerodynamic forces exactly balance body weight resulting in constant velocity. Although the equilibrium model is relevant for long-distance gliding, such as soaring by birds, it may not be realistic for shorter distances between trees. To understand the aerodynamics of inter-tree gliding, we used direct observation and mathematical modelling. We used videography (60-125 fps) to track and reconstruct the three-dimensional trajectories of northern flying squirrels (Glaucomys sabrinus) in nature. From their trajectories, we calculated velocities, aerodynamic forces and force coefficients. We determined that flying squirrels do not glide at equilibrium, and instead demonstrate continuously changing velocities, forces and force coefficients, and generate more lift than needed to balance body weight. We compared observed glide performance with mathematical simulations that use constant force coefficients, a characteristic of equilibrium glides. Simulations with varying force coefficients, such as those of live squirrels, demonstrated better whole-glide performance compared with the theoretical equilibrium state. Using results from both the observed glides and the simulation, we describe the mechanics and execution of inter-tree glides, and then discuss how gliding behaviour may relate to the evolution of flapping flight.
Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella
2017-06-14
Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.
CO/sub 2/ absorption into aqueous MDEA and MDEA/MEA solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Critchfield, J.; Rochelle, G.T.
1987-01-01
The rate of absorption of CO/sub 2/ into 2 molal MDEA was measured by following solution composition in a stirred-cell batch reactor. The conditions investigated were 9.5 - 62/sup 0/C at a nominal CO/sub 2/ pressure of 1 atm. The data were modelled with a combined mass transfer and equilibrium model which treated the reaction of CO/sub 2/ with MDEA as second order and reversible, rather than pseudo-first order. The resulting activation energy was 13.7 kcal/gmol, and the rate constant at 30.5/sup 0/C was 4.0 (Ms)/sup -1/. The assumption of pseudo-first order conditions was found to reduce the apparent activationmore » energy to approximately 9 kcal/gmol. CO/sub 2/ absorption into 1.36 molal MDEA/0.61 molal MEA was studied at 31/sup 0/C. The experimental data were predicted better by a mass transfer model based on a shuttle mechanism than by one with two parallel reactions.« less
NASA Astrophysics Data System (ADS)
Mirzahosseini, Arash; Noszál, Béla
2016-11-01
Microscopic standard redox potential, a new physico-chemical parameter was introduced and determined to quantify thiol-disulfide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of thiols could so far be converted into pH-dependent, apparent redox potentials (E’°) only. Since the formation of stable metal-thiolate complexes precludes the direct thiol-disulfide redox potential measurements by usual electrochemical techniques, an indirect method had to be elaborated. In this work, the species-specific, pH-independent standard redox potentials of glutathione were determined primarily by comparing it to 1-methylnicotinamide, the simplest NAD+ analogue. Secondarily, the species-specific standard redox potentials of the two-electron redox transitions of cysteamine, cysteine, homocysteine, penicillamine, and ovothiol were determined using their microscopic redox equilibrium constants with glutathione. The 30 different, microscopic standard redox potential values show close correlation with the respective thiolate basicities and provide sound means for the development of potent agents against oxidative stress.
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
Equilibrium and stability of a satellite influenced by gravitational and aerodynamic torques
NASA Technical Reports Server (NTRS)
Galaboff, Z. J.
1981-01-01
A circular orbit and constant atmospheric density was assumed. A computer program which determines equilibrium attitudes and the associated eigenvalues of these attitudes is presented. Demonstration of the use of this program was made using the former Skylab satellite as an example.
Viscosity and viscoelasticity of two-phase systems having diffuse interfaces
NASA Technical Reports Server (NTRS)
Hopper, R. W.
1976-01-01
The equilibrium stability criterion for diffuse interfaces in a two-component solution with a miscibility gap requires that the interdiffusion flux vanish. If the system is continuously deformed, convective fluxes disrupt the equilibrium in the interface regions and induce a counter diffusive flux, which is dissipative and contributes to the apparent viscosity of the mixture. Chemical free energy is recoverably stored, causing viscoelastic phenomena. Both effects are significant.
Sun, Jin; Sakai, Shigeko; Tauchi, Yoshihiko; Deguchi, Yoshiharu; Cheng, Gang; Chen, Jimin; Morimoto, Kazuhiro
2003-09-01
This study was performed to characterize the protonation equilibrium at the molecular level and pH-dependent lipophilicity of olamufloxacin. The deprotonation fraction of the carboxyl group as a function of pH was specifically calculated at the critical wavelength 294 nm, where UV pH-dependent absorbance of olamufloxacin was independent of the ionized state of the aminopyrrolidinyl amino group but heavily depended on that of the carboxyl moiety. Accordingly, micro-protonation equilibrium could be described using a nonlinear least-squares regression program MULTI. In contrast, macro-protonation equilibrium was depicted at most wavelengths where olamufloxacin absorbance was influenced by ionized states of both proton-binding groups, results coinciding with the former. Furthermore, distribution features of four microspecies in aqueous phase were assessed. The apparent partition coefficient versus pH profile of olamufloxacin showed a parabolic curve in n-octanol/buffer system which reached peak near pH 8, agreeing with the above determined isoelectric point (pI). Ion-pair effect was observed for olamufloxacin under an acidic condition, eliciting experimental values higher than those theoretically calculated, which was similar to ciprofloxacin but not levofloxacin due to amino group type. Moreover, olamufloxacin was moderately lipophilic in comparison with other quinolones, with an apparent partition coefficient of 1.95 at pH 7.4.
Beeler, N.M.; Wong, T.-F.; Hickman, S.H.
2003-01-01
We consider expected relationships between apparent stress ??a and static stress drop ????s using a standard energy balance and find ??a = ????s (0.5 - ??), where ?? is stress overshoot. A simple implementation of this balance is to assume overshoot is constant; then apparent stress should vary linearly with stress drop, consistent with spectral theories (Brune, 1970) and dynamic crack models (Madariaga, 1976). Normalizing this expression by the static stress drop defines an efficiency ??sw = ??sa/????s as follows from Savage and Wood (1971). We use this measure of efficiency to analyze data from one of a number of observational studies that find apparent stress to increase with seismic moment, namely earthquakes recorded in the Cajon Pass borehole by Abercrombie (1995). Increases in apparent stress with event size could reflect an increase in seismic efficiency; however, ??sw for the Cajon earthquakes shows no such increase and is approximately constant over the entire moment range. Thus, apparent stress and stress drop co-vary, as expected from the energy balance at constant overshoot. The median value of ??sw for the Cajon earthquakes is four times lower than ??sw for laboratory events. Thus, these Cajon-recorded earthquakes have relatively low and approximately constant efficiency. As the energy balance requires ??sw = 0.5 - ??, overshoot can be estimated directly from the Savage-Wood efficiency; overshoot is positive for Cajon Pass earthquakes. Variations in apparent stress with seismic moment for these earthquakes result primarily from systematic variations in static stress drop with seismic moment and do not require a relative decrease in sliding resistance with increasing event size (dynamic weakening). Based on the comparison of field and lab determinations of the Savage-Wood efficiency, we suggest the criterion ??sw > 0.3 as a test for dynamic weakening in excess of that seen in the lab.
NASA Astrophysics Data System (ADS)
Song, Y. Z.; Wei, K. X.; Lv, J. S.
2013-12-01
DFT calculations were performed for diphenyl sulfide and diphenyl sulfone. The electrochemistry of diphenyl sulfide on the gold electrode was investigated by cyclic voltammety and the results show that standard electrode potential for redox couple diphenyl sulfone/diphenyl sulfide is 1.058 V, which is consistent with that of 1.057 calculated at B3LYP/6-31++G( d, p)-IEFPCM level. The front orbit theory and Mulliken charges of molecular explain well on the oxidation of diphenyl sulfide in oxidative desulfurization. According to equilibrium theory the experimental equilibrium constant in the oxidative desulfurization of H2O2, is 1.17 × 1048, which is consistent with the theoretical equilibrium constant is 2.18 × 1048 at B3LYP/6-31++G( d, p)-IEFPCM level.
Dynamic Multi-Component Hemiaminal Assembly
You, Lei; Long, S. Reid; Lynch, Vincent M.
2012-01-01
A simple approach to generating in situ metal templated tris-(2-picolyl)amine-like multi-component assemblies with potential applications in molecular recognition and sensing is reported. The assembly is based on the reversible covalent association between di-(2-picolyl)amine and aldehydes. Zinc ion is the best for inducing assembly among the metal salts investigated, while 2-picolinaldehyde is the best among the heterocyclic aldehydes studied. Although an equilibrium constant of 6.6 * 103 M-1 was measured for the assembly formed by 2-picolinaldehdye, di-(2-picolyl)amine, and zinc triflate, the equilibrium constants for other systems are in the 102 M-1 range. X-ray structural analysis revealed that zinc adopts a trigonal bipyramidal geometry within the assembled ligand. The diversity and equilibrium of the assemblies are readily altered by simply changing concentrations, varying components, or adding counter anions. PMID:21919095
Investigation of the Hydrochlorination of SiCl4
NASA Technical Reports Server (NTRS)
Mui, J. Y. P.
1983-01-01
The hydrochlorination of silicon tetrachloride with hydrogen and metallurgical grade (m.g.) silicon metal, 3 SiCl4 + 2 H2 + Si yields 4 SiHCl3 was shown to be an efficient process to produce trichlorosilane. A research and development program was carried out to study the hydrochlorination reaction over a wide range of reaction conditions. Equilibrium constant and reaction kinetics measurements were made to provide the basis for a theoretical study on the hydrochlorination process. Thermodynamic properties of the hydrochlorination reaction were also measured. The effects of temperature, pressure, and concentration on the equilibrium constant, K sub p, were studied.
NASA Technical Reports Server (NTRS)
Cantrell, C. A.; Davidson, J. A.; Mcdaniel, A. H.; Shetter, R. E.; Calvert, J. G.
1988-01-01
Direct determinations of the equilibrium constant for the reaction N2O5 = NO2 + NO3 were carried out by measuring NO2, NO3, and N2O5 using long-path visible and infrared absorption spectroscopy as a function of temperature from 243 to 397 K. The first-order decay rate constant of N2O5 was experimentally measured as a function of temperature. These results are in turn used to derive a value for the rate coefficient for the NO-forming channel in the reaction of NO3 with NO2. The implications of the results for atmospheric chemistry, the thermodynamics of NO3, and for laboratory kinetics studies are discussed.
Frozen Orbits-Near Constant or Beneficially Varying Orbital Parameters.
1986-05-15
89 6.3 Equatorial Near-Circular Orbits ............................... 92 6.4 Stable and Unstable Equilibrium Points ...Angle Libration Period......................................... 78 5-2 Lunar Gravitational Effect on Near-Circular Orbits .................... 80 5-3...6-1 Period of Oscillation about the Stable Equilibrium Point ............... 102 FIGURES Figure 2.1 Orbital Parameters
The Extraction of Metals from Their Oxides and Sulphides.
ERIC Educational Resources Information Center
Price, Alun H.
1980-01-01
Briefly describes the application of thermodynamics (system at equilibrium) to the study of the extraction of metals from their oxides (dynamic situation). It is more relevant to study the temperature variation of the equilibrium constants of the reaction than to study the free energy approach. (Author/SK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heng, Kevin; Tsai, Shang-Min; Lyons, James R., E-mail: kevin.heng@csh.unibe.ch
2016-01-10
We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equatemore » to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.« less
NASA Astrophysics Data System (ADS)
Heng, Kevin; Lyons, James R.; Tsai, Shang-Min
2016-01-01
We present a self-consistent formalism for computing and understanding the atmospheric chemistry of exoplanets from the viewpoint of an astrophysicist. Starting from the first law of thermodynamics, we demonstrate that the van’t Hoff equation (which describes the equilibrium constant), Arrhenius equation (which describes the rate coefficients), and procedures associated with the Gibbs free energy (minimization, rescaling) have a common physical and mathematical origin. We address an ambiguity associated with the equilibrium constant, which is used to relate the forward and reverse rate coefficients, and restate its two definitions. By necessity, one of the equilibrium constants must be dimensionless and equate to an exponential function involving the Gibbs free energy, while the other is a ratio of rate coefficients and must therefore possess physical units. We demonstrate that the Arrhenius equation takes on a functional form that is more general than previously stated without recourse to tagging on ad hoc functional forms. Finally, we derive analytical models of chemical systems, in equilibrium, with carbon, hydrogen, and oxygen. We include acetylene and are able to reproduce several key trends, versus temperature and carbon-to-oxygen ratio, published in the literature. The rich variety of behavior that mixing ratios exhibit as a function of the carbon-to-oxygen ratio is merely the outcome of stoichiometric book-keeping and not the direct consequence of temperature or pressure variations.
Seo, Daisuke; Soeta, Takahiro; Sakurai, Hidehiro; Sétif, Pierre; Sakurai, Takeshi
2016-06-01
Ferredoxin-NADP(+) oxidoreductase ([EC1.18.1.2], FNR) from Bacillus subtilis (BsFNR) is a homodimeric flavoprotein sharing structural homology with bacterial NADPH-thioredoxin reductase. Pre-steady-state kinetics of the reactions of BsFNR with NADP(+), NADPH, NADPD (deuterated form) and B. subtilis ferredoxin (BsFd) using stopped-flow spectrophotometry were studied. Mixing BsFNR with NADP(+) and NADPH yielded two types of charge-transfer (CT) complexes, oxidized FNR (FNR(ox))-NADPH and reduced FNR (FNR(red))-NADP(+), both having CT absorption bands centered at approximately 600n m. After mixing BsFNR(ox) with about a 10-fold molar excess of NADPH (forward reaction), BsFNR was almost completely reduced at equilibrium. When BsFNR(red) was mixed with NADP(+), the amount of BsFNR(ox) increased with increasing NADP(+) concentration, but BsFNR(red) remained as the major species at equilibrium even with about 50-fold molar excess NADP(+). In both directions, the hydride-transfer was the rate-determining step, where the forward direction rate constant (~500 s(-1)) was much higher than the reverse one (<10 s(-1)). Mixing BsFd(red) with BsFNR(ox) induced rapid formation of a neutral semiquinone form. This process was almost completed within 1 ms. Subsequently the neutral semiquinone form was reduced to the hydroquinone form with an apparent rate constant of 50 to 70 s(-1) at 10°C, which increased as BsFd(red) increased from 40 to 120 μM. The reduction rate of BsFNR(ox) by BsFd(red) was markedly decreased by premixing BsFNR(ox) with BsFd(ox), indicating that the dissociation of BsFd(ox) from BsFNR(sq) is rate-limiting in the reaction. The characteristics of the BsFNR reactions with NADP(+)/NADPH were compared with those of other types of FNRs. Copyright © 2016 Elsevier B.V. All rights reserved.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...
We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...
Local conformational dynamics in alpha-helices measured by fast triplet transfer.
Fierz, Beat; Reiner, Andreas; Kiefhaber, Thomas
2009-01-27
Coupling fast triplet-triplet energy transfer (TTET) between xanthone and naphthylalanine to the helix-coil equilibrium in alanine-based peptides allowed the observation of local equilibrium fluctuations in alpha-helices on the nanoseconds to microseconds time scale. The experiments revealed faster helix unfolding in the terminal regions compared with the central parts of the helix with time constants varying from 250 ns to 1.4 micros at 5 degrees C. Local helix formation occurs with a time constant of approximately 400 ns, independent of the position in the helix. Comparing the experimental data with simulations using a kinetic Ising model showed that the experimentally observed dynamics can be explained by a 1-dimensional boundary diffusion with position-independent elementary time constants of approximately 50 ns for the addition and of approximately 65 ns for the removal of an alpha-helical segment. The elementary time constant for helix growth agrees well with previously measured time constants for formation of short loops in unfolded polypeptide chains, suggesting that helix elongation is mainly limited by a conformational search.
Hemoglobin in Frankia, a Nitrogen-Fixing Actinomycete†
Tjepkema, John D.; Cashon, Robert E.; Beckwith, Jason; Schwintzer, Christa R.
2002-01-01
Frankia strain CcI3 grown in culture produced a hemoglobin which had optical absorption bands typical of a hemoglobin and a molecular mass of 14.1 kDa. Its equilibrium oxygen binding constant was 274 nM, the oxygen dissociation rate constant was 56 s−1, and the oxygen association rate constant was 206 μM−1 s−1. PMID:11976149
van Dyck, C H; Soares, J C; Tan, P Z; Staley, J K; Baldwin, R M; Amici, L A; Fu, X; Garg, P K; Seibyl, J P; Charney, D S; Innis, R B
2000-11-01
[(18)F]Altanserin has emerged as a promising positron emission tomography (PET) ligand for serotonin-2A (5-HT(2A)) receptors. The deuterium substitution of both of the 2'-hydrogens of altanserin ([(18)F]deuteroaltanserin) yields a metabolically more stable radiotracer with higher ratios of parent tracer to radiometabolites and increased specific brain uptake than [(18)F]altanserin. The slower metabolism of the deuterated analog might preclude the possibility of achieving stable plasma and brain activities with a bolus plus constant infusion within a reasonable time frame for an (18)F-labeled tracer (T(1/2) 110 min). Thus, the purpose of this study was to test the feasibility in human subjects of a constant infusion paradigm for equilibrium modeling of [(18)F]deuteroaltanserin with PET. Seven healthy male subjects were injected with [(18)F]deuteroaltanserin as a bolus plus constant infusion lasting 10 h postinjection. PET acquisitions and venous blood sampling were performed throughout the infusion period. Linear regression analysis revealed that time-activity curves for both specific brain uptake and plasma [(18)F]deuteroaltanserin concentration stabilized after about 5 h. This permitted equilibrium modeling and estimation of V(')(3) (ratio of specific uptake to total plasma parent concentration) and the binding potential V(3) (ratio of specific uptake to free plasma parent concentration). Cortical/cerebellar ratios were increased by 26% relative to those we previously observed with [(18)F]altanserin using similar methodology in a somewhat older subject sample. These results demonstrate feasibility of equilibrium imaging with [(18)F]deuteroaltanserin and suggest that it may be superior to [(18)F]altanserin as a PET radioligand.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
Thermodynamic equilibrium with acceleration and the Unruh effect
NASA Astrophysics Data System (ADS)
Becattini, F.
2018-04-01
We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.
Understanding the kinetics of the ClO dimer cycle
NASA Astrophysics Data System (ADS)
von Hobe, M.; Salawitch, R. J.; Canty, T.; Keller-Rudek, H.; Moortgat, G. K.; Grooß, J.-U.; Müller, R.; Stroh, F.
2006-08-01
Among the major factors controlling ozone loss in the polar winter is the kinetics of the ClO dimer catalytic cycle. The most important issues are the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate. All these issues have been addressed in a large number of laboratory, field and theoretical studies, but large discrepancies between individual results exist and a self-consistent set of parameters compatible with field observations of ClO and Cl2O2 has not been identified. Here, we use thermodynamic calculations and unimolecular rate theory to constrain the ClO/Cl2O2 equilibrium constant and the rate constants for Cl2O2 formation and dissociation. This information is used together with available atmospheric data to examine Cl2O2 photolysis rates based on different Cl2O2 absorption cross sections. Good overall consistency is achieved using a ClO/Cl2O2 equilibrium constant recently suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on averaged absorption cross sections that are roughly intermediate between the JPL 2002 assessment and a laboratory study by Burkholder et al. (1990).
Measurements of VOC adsorption/desorption characteristics of typical interior building materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Y.; Zhang, J.S.; Shaw, C.Y.
2000-07-01
The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model wasmore » based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.« less
NASA Astrophysics Data System (ADS)
Li, Ming-zhou; Zhou, Jie-min; Tong, Chang-ren; Zhang, Wen-hai; Chen, Zhuo; Wang, Jin-liang
2018-05-01
Based on the principle of multiphase equilibrium, a mathematical model of the copper flash converting process was established by the equilibrium constant method, and a computational system was developed with the use of MetCal software platform. The mathematical model was validated by comparing simulated outputs, industrial data, and published data. To obtain high-quality blister copper, a low copper content in slag, and increased impurity removal rate, the model was then applied to investigate the effects of the operational parameters [oxygen/feed ratio (R OF), flux rate (R F), and converting temperature (T)] on the product weights, compositions, and the distribution behaviors of impurity elements. The optimized results showed that R OF, R F, and T should be controlled at approximately 156 Nm3/t, within 3.0 pct, and at approximately 1523 K (1250 °C), respectively.
NASA Astrophysics Data System (ADS)
Ali, Ismat H.
2015-06-01
The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).
Bounded energy states in homogeneous turbulent shear flow - An alternative view
NASA Technical Reports Server (NTRS)
Bernard, P. S.; Speziale, C. G.
1992-01-01
The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if a residual vortex stretching term is maintained in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are presented for a k-epsilon model modified to account for net vortex stretching.
Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.
Spruijt, E; Biesheuvel, P M
2014-02-19
In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of state. Finally, we demonstrate that our model is not limited to hard spheres, by extending it to charged spherical particles, and to dumbbells, trimers and short chains of connected beads.
Cardiolipin modulates allosterically peroxynitrite detoxification by horse heart cytochrome c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it; Ciaccio, Chiara; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, I-70126 Bari
2011-01-07
Research highlights: {yields} Cardiolipin binding to cytochrome c. {yields} Cardiolipin-dependent peroxynitrite isomerization by cytochrome c. {yields} Cardiolipin-cytochrome c complex plays pro-apoptotic effects. {yields} Cardiolipin-cytochrome c complex plays anti-apoptotic effects. -- Abstract: Upon interaction with bovine heart cardiolipin (CL), horse heart cytochrome c (cytc) changes its tertiary structure disrupting the heme-Fe-Met80 distal bond, reduces drastically the midpoint potential out of the range required for its physiological role, binds CO and NO with high affinity, and displays peroxidase activity. Here, the effect of CL on peroxynitrite isomerization by ferric cytc (cytc-Fe(III)) is reported. In the absence of CL, hexa-coordinated cytc does notmore » catalyze peroxynitrite isomerization. In contrast, CL facilitates cytc-Fe(III)-mediated isomerization of peroxynitrite in a dose-dependent fashion inducing the penta-coordination of the heme-Fe(III)-atom. The value of the second order rate constant for CL-cytc-Fe(III)-mediated isomerization of peroxynitrite (k{sub on}) is (3.2 {+-} 0.4) x 10{sup 5} M{sup -1} s{sup -1}. The apparent dissociation equilibrium constant for CL binding to cytc-Fe(III) is (5.1 {+-} 0.8) x 10{sup -5} M. These results suggest that CL-cytc could play either pro-apoptotic or anti-apoptotic effects facilitating lipid peroxidation and scavenging of reactive nitrogen species, such as peroxynitrite, respectively.« less
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water
Chitpong, Nithinart; Husson, Scott M.
2016-01-01
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394
Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.
Chitpong, Nithinart; Husson, Scott M
2016-12-20
An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.
Na(+) transport, and the E(1)P-E(2)P conformational transition of the Na(+)/K(+)-ATPase.
Babes, A; Fendler, K
2000-01-01
We have used admittance analysis together with the black lipid membrane technique to analyze electrogenic reactions within the Na(+) branch of the reaction cycle of the Na(+)/K(+)-ATPase. ATP release by flash photolysis of caged ATP induced changes in the admittance of the compound membrane system that are associated with partial reactions of the Na(+)/K(+)-ATPase. Frequency spectra and the Na(+) dependence of the capacitive signal are consistent with an electrogenic or electroneutral E(1)P <--> E(2)P conformational transition which is rate limiting for a faster electrogenic Na(+) dissociation reaction. We determine the relaxation rate of the rate-limiting reaction and the equilibrium constants for both reactions at pH 6.2-8.5. The relaxation rate has a maximum value at pH 7.4 (approximately 320 s(-1)), which drops to acidic (approximately 190 s(-1)) and basic (approximately 110 s(-1)) pH. The E(1)P <--> E(2)P equilibrium is approximately at a midpoint position at pH 6.2 (equilibrium constant approximately 0.8) but moves more to the E(1)P side at basic pH 8.5 (equilibrium constant approximately 0.4). The Na(+) affinity at the extracellular binding site decreases from approximately 900 mM at pH 6.2 to approximately 200 mM at pH 8.5. The results suggest that during Na(+) transport the free energy supplied by the hydrolysis of ATP is mainly used for the generation of a low-affinity extracellular Na(+) discharge site. Ionic strength and lyotropic anions both decrease the relaxation rate. However, while ionic strength does not change the position of the conformational equilibrium E(1)P <--> E(2)P, lyotropic anions shift it to E(1)P. PMID:11053130
Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons
NASA Astrophysics Data System (ADS)
Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-04-01
Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.
Density controls the kinetic stability of ultrastable glasses
NASA Astrophysics Data System (ADS)
Fullerton, Christopher J.; Berthier, Ludovic
2017-08-01
We use a swap Monte Carlo algorithm to numerically prepare bulk glasses with kinetic stability comparable to that of glass films produced experimentally by physical vapor deposition. By melting these systems into the liquid state, we show that some of our glasses retain their amorphous structures longer than 105 times the equilibrium structural relaxation time. This “exceptional” kinetic stability cannot be achieved for bulk glasses produced by slow cooling. We perform simulations at both constant volume and constant pressure to demonstrate that the density mismatch between the ultrastable glass and the equilibrium liquid accounts for a major part of the observed kinetic stability.
NASA Astrophysics Data System (ADS)
Kato, Masato; Watanabe, Masashi; Matsumoto, Taku; Hirooka, Shun; Akashi, Masatoshi
2017-04-01
Oxygen potential of (U,Pu)O2±x was evaluated based on defect chemistry using an updated experimental data set. The relationship between oxygen partial pressure and deviation x in (U,Pu)O2±x was analyzed, and equilibrium constants of defect formation were determined as functions of Pu content and temperature. Brouwer's diagrams were constructed using the determined equilibrium constants, and a relational equation to determine O/M ratio was derived as functions of O/M ratio, Pu content and temperature. In addition, relationship between oxygen potential and oxygen diffusion coefficients were described.
Lee, M T; Ahmed, T; Friedman, M E
1989-01-01
Purified bovine liver beta-glucuronidase (beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32) and wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) were inhibited with freshly dissolved and 24 h aquated tetrahaloaurate (III) compounds. Rate and equilibrium inhibition constants were measured. From this data two acid phosphatases species were observed. Equilibrium inhibition constants ranged from 1 to 12.5 microM for the various gold compounds toward both enzymes. The first order rate constants ranged between 0.005 and 0.04 min.-1 for most reactions with the exception of the fast reacting acid phosphatase which had values as high as 2.6 and 2.8 min.-1. It is observed that the beta-glucuronidase is rapidly inhibited during the equilibrium phase before the more slower reaction covalent bond formation takes place. The acid phosphatases form the covalent bonds more rapidly, especially the faster reacting species suggesting a unique difference in the active site geometry to that of the more slowly reacting species. The tightly bonded gold (III)-enzyme complex is probably the reason for its toxicity and non-anti-inflammatory use as a drug.
Bringing metabolic networks to life: convenience rate law and thermodynamic constraints
Liebermeister, Wolfram; Klipp, Edda
2006-01-01
Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669
Xiong, Yongliang; Kirkes, Leslie Dawn; Knox, Jandi; ...
2018-02-03
In this work, solubility measurements regarding boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6·2H 2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log 10K 0) for boracite in terms of the following reaction, Mg 3B 7O 13Cl(cr) + 15H 2O(l) ⇌ 3Mg 2+ + 7B(OH) 4 – + Cl – + 2H + is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB 6O 7(OH) 6•2H 2O(cr) + 9H 2O(l) ⇌ Mg 2+ + 6B(OH) 4 – + 4H + is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔHmore » $$0\\atop{f}$$ =-6063.70 ± 4.85 kJ·mol -1, ΔG =-5492.55 ± 2.32 kJ·mol -1, and S 0 = 344.62 ± 1.85 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$$0\\atop{f}$$ is from the literature, determined by calorimetry; and S 0 is computed in the present work from ΔG$$0\\atop{f}$$ and ΔH$$0\\atop{f}$$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$$0\\atop{f}$$ =-6575.02 ± 2.25 kJ·mol -1, ΔG$$0\\atop{f}$$ =-6178.35 ± 2.25 kJ·mol -1, and S 0 = 253.6 ± 0.5 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for boracite determined by this study; S 0 is from the literature, determined by calorimetry; and ΔH$$0\\atop{f}$$ is computed in this work from ΔG$$0\\atop{f}$$ and S 0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste management, iodide boracite [Mg 3B 7O 13I(cr)] is proposed as a waste form for radioactive 129I. Therefore, the solubility constant for chloride boracite [Mg 3B 7O 13Cl(cr)] will provide the guidance for the performance of iodide boracite in geological repositories. Boracite/aksaite themselves in geological repositories in salt formations may be solubility-controlling phase(s) for borate. Finally, solubility constants of boracite and aksaite will enable researchers to predict borate concentrations in equilibrium with boracite/aksaite in salt formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Knox, Jandi
In this work, solubility measurements regarding boracite [Mg 3B 7O 13Cl(cr)] and aksaite [MgB 6O 7(OH) 6·2H 2O(cr)] from the direction of supersaturation were conducted at 22.5 ± 0.5 °C. The equilibrium constant (log 10K 0) for boracite in terms of the following reaction, Mg 3B 7O 13Cl(cr) + 15H 2O(l) ⇌ 3Mg 2+ + 7B(OH) 4 – + Cl – + 2H + is determined as -29.49 ± 0.39 (2σ) in this study. The equilibrium constant for aksaite according to the following reaction, MgB 6O 7(OH) 6•2H 2O(cr) + 9H 2O(l) ⇌ Mg 2+ + 6B(OH) 4 – + 4H + is determined as -44.41 ± 0.41 (2σ) in this work. This work recommends a set of thermodynamic properties for aksaite at 25 °C and 1 bar as follows: ΔHmore » $$0\\atop{f}$$ =-6063.70 ± 4.85 kJ·mol -1, ΔG =-5492.55 ± 2.32 kJ·mol -1, and S 0 = 344.62 ± 1.85 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for aksaite determined by this study; ΔH$$0\\atop{f}$$ is from the literature, determined by calorimetry; and S 0 is computed in the present work from ΔG$$0\\atop{f}$$ and ΔH$$0\\atop{f}$$. This investigation also recommends a set of thermodynamic properties for boracite at 25 °C and 1 bar as follows: ΔH$$0\\atop{f}$$ =-6575.02 ± 2.25 kJ·mol -1, ΔG$$0\\atop{f}$$ =-6178.35 ± 2.25 kJ·mol -1, and S 0 = 253.6 ± 0.5 J·mol -1·K -1. Among them, ΔG$$0\\atop{f}$$ is derived from the equilibrium constant for boracite determined by this study; S 0 is from the literature, determined by calorimetry; and ΔH$$0\\atop{f}$$ is computed in this work from ΔG$$0\\atop{f}$$ and S 0. The thermodynamic properties determined in this study can find applications in many fields. For instance, in the field of material science, boracite has many useful properties including ferroelectric and ferroelastic properties. The equilibrium constant of boracite determined in this work will provide guidance for economic synthesis of boracite in an aqueous medium. Similarly, in the field of nuclear waste management, iodide boracite [Mg 3B 7O 13I(cr)] is proposed as a waste form for radioactive 129I. Therefore, the solubility constant for chloride boracite [Mg 3B 7O 13Cl(cr)] will provide the guidance for the performance of iodide boracite in geological repositories. Boracite/aksaite themselves in geological repositories in salt formations may be solubility-controlling phase(s) for borate. Finally, solubility constants of boracite and aksaite will enable researchers to predict borate concentrations in equilibrium with boracite/aksaite in salt formations.« less
The Final Frontier of pH and the Undiscovered Country Beyond
Bal, Wojciech; Kurowska, Ewa; Maret, Wolfgang
2012-01-01
The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, K w = [H+]×[OH−].We used K w [in a reversed way] to calculate the number of undissociated H2O molecules required by this equilibrium constant to yield at least one of its daughter ions, H+ or OH− at a given pH. In this way we obtained a formula that relates pH to the minimal volume VpH required to provide a physical meaning to K w, (where N A is Avogadro’s number). For example, at pH 7 (neutral at 25°C) VpH = 16.6 aL. Any deviation from neutral pH results in a larger VpH value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H+ ions at equilibrium, thus the definition of pH based on K w is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H+ ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H+ ions as a general source for biochemical reactions. Consequences of this finding are discussed. PMID:23049874
Mouw, M; Pintel, D J
1998-11-10
GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede
2017-05-01
The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.
Transient rheology of crystallizing andesitic magmas
NASA Astrophysics Data System (ADS)
de Biasi, L. J.; Chevrel, M. O.; Hanson, J. B.; Cimarelli, C.; Lavallée, Y.; Dingwell, D. B.
2012-04-01
The viscosity of magma strongly influences its rheological behaviour, which is a key determinant of magma transport processes and volcanic eruptions. Understanding the factors controlling the viscosity of magma is important to our assessment of hazards posed by active volcanoes. In nature, magmas span a very wide range in viscosity (10-1 to 1014 Pa s), depending on chemical composition (including volatile content), temperature, and importantly, crystal fraction, which further induces a complex strain rate dependence (i.e. non-Newtonian rheology). Here, we present results of transient viscosities of a crystallizing andesitic melt (57 wt.% SiO2) from Tungurahua volcano (Ecuador). We followed the experimental method developed by Vona et al. (2011) for the concentric cylinder apparatus, but optimized its implementation by leaving the spindle in situ before quenching the experimental products, to preserve the complete developed texture of the sample. The viscosity is investigated under super-liquidus (1400 ° C) and sub-liquidus temperatures (1162 and 1167 ° C). For each temperature increment, thermal equilibrium is achieved over a period of days while the spindle constantly stirs the magma. Simultaneous monitoring of the torque is used to calculate the apparent viscosity of the transient suspension. To get a better understanding of the nucleation and crystal growth processes that are involved at sub-liquidus conditions, further time-step experiments were carried out, where the samples were quenched at various equilibration stages. The mineralogical assemblage, as well as the crystal fraction, distribution and preferential alignment were then quantitatively analyzed. At temperatures below the liquidus, the suspension shows a progressive, but irregular increase of the relative shear viscosity. First, the viscosity slightly increases, possibly due to the crystallization of small, equant oxides and the formation of plagioclase nuclei. After some time (1.5-2.5 days), crystallization of large, tabular plagioclase begins, inducing a significantly stronger increase in apparent viscosity until thermo-chemical equilibration is achieved. After continued stirring the apparent viscosity slightly decreases, likely due to increasing crystal alignment. The analysis of pre-equilibrium quenched samples indicates that crystals nucleate and grow preferentially in proximity to both the spindle and the crucible wall. Furthermore, decreasing the stirring rate (aka strain rate) results in an increase in the apparent viscosity, which evidences the non-Newtonian characteristics of the magmatic suspension. In conclusion, these experiments indicate that natural andesitic magmas undergo significant rheological changes at the onset of crystallization. The observed thermo-chemical variations elucidate a transient viscosity, which deserves consideration into all problems of magma transport. Reference: Vona, A., Romano, C., Dingwell, D.B., Giordano, D. 2011. The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim. Cosmochim. Acta, 75, 3214-3236.
ERIC Educational Resources Information Center
Perez-Benito, Joaquin F.
2017-01-01
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
NASA Astrophysics Data System (ADS)
Anggriani, N.; Supriatna, A. K.; Soewono, E.
2015-06-01
In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi
1992-01-01
The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.
IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Hughes, John P., E-mail: rsmith@cfa.harvard.ed, E-mail: jph@physics.rutgers.ed
2010-07-20
Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z inmore » a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.« less
NASA Technical Reports Server (NTRS)
Simmonds, A. L.; Miller, C. G., III; Nealy, J. E.
1976-01-01
Equilibrium thermodynamic properties for pure ammonia were generated for a range of temperature from 500 to 50,000 K and pressure from 0.01 to 40 MN/sq m and are presented in tabulated and graphical form. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, specific heat at constant pressure, specific heat at constant volume, isentropic exponent, and species mole fractions. These properties were calculated by the method which is based on minimization of the Gibbs free energy. The data presented herein are for an 18-species ammonia model. Heats of formation and spectroscopic constants used as input data are presented. Comparison of several thermodynamic properties calculated with the present program and a second computer code is performed for a range of pressure and for temperatures up to 30,000 K.
NASA Astrophysics Data System (ADS)
Loh, C. W.
1980-03-01
A method was developed for determining equilibrium constants, heat of reaction, and change in free energy and entropy during a 1:1 complex formation in solutions. The measurements were carried out on ternary systems containing two interacting solutes in an inert solvent. The procedures was applied to the investigation of hydrogen bond complex formations in two mixtures systems, phenol and pyridine in carbon tetrachloride, and 4, 5, 6, 7-tetrachloro-2-trifluoromethylbenzimidazole (TTFB) and alkyl acetate in styrene. The first mixture system was studied in order to compare the results with those obtained by other methods. Results for the second mixture system indicated strong association between molecules of TTFB and alkyl acetate and suggested that the blocking of valinomycin-mediated bilayer membrane conductance by substituted benzimidazoles was due to competition for a limited number of adsorption sites on the membrane surface.
Trapote, Arturo; García, Mariano; Prats, Daniel
2016-12-01
Siloxanes present in the biogas produced during anaerobic digestion in wastewater treatment plants (WWTPs) can damage the mechanism of cogeneration heat engines and obstruct the process of energy valorization. The objective of this research is to detect the presence of siloxanes in the biogas and evaluate a procedure for their elimination. A breakthrough curve of a synthetic decamethylcyclopentasiloxane on an experimental bed of activated carbon was modeled and the theoretical mathematical model of the adsorption process was adjusted. As a result, the constants of the model were obtained: the mass transfer constant, Henry's equilibrium constant, and the Eddy diffusion. The procedure developed allows the adsorption equilibrium of siloxanes on activated carbon to be predicted, and makes it possible to lay the basis for the design of an appropriate activated carbon module for the elimination of siloxanes in a WWTP.
Fluid dynamics of out of equilibrium boost invariant plasmas
NASA Astrophysics Data System (ADS)
Blaizot, Jean-Paul; Yan, Li
2018-05-01
By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.
Dating thermal events at Cerro Prieto using fission track annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, S.J.; Elders, W..
1981-01-01
Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.
Local thermodynamic equilibrium for globally disequilibrium open systems under stress
NASA Astrophysics Data System (ADS)
Podladchikov, Yury
2016-04-01
Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.
The mechanism and thermodynamics of transesterification of acetate-ester enolates in the gas phase
NASA Astrophysics Data System (ADS)
Haas, George W.; Giblin, Daryl E.; Gross, Michael L.
1998-01-01
In solution, base-catalyzed hydrolysis and transesterification of esters are initiated by hydroxide- or alkoxide-ion attack at the carbonyl carbon. At low pressures in the gas phase, however, transesterification proceeds by an attack of the enolate anion of an acetate ester on an alcohol. Fourier transform mass spectrometry (FTMS) indicates that the reaction is the second-order process: -CH2-CO2-R + R'-OH --> - CH2-CO2-R' + R-OH and there is little to no detectable production of either alkoxide anion. Labeling studies show that the product and reactant enolate anion esters undergo exchange of hydrogens located [alpha] to the carbonyl carbon with the deuterium of R'-OD. The extent of the H/D exchange increases with reaction time, pointing to a short-lived intermediate. The alcoholysis reaction rate constants increase with increasing acidity of the primary, straight-chained alkyl alcohols, whereas steric effects associated with branched alcohols cause the rate constants to decrease. Equilibrium constants, which were determined directly from measurements at equilibrium and which were calculated from the forward and reverse rate constants, are near unity and show internal consistency. In the absence of steric effects, the larger enolate is always the favored product at equilibrium. The intermediate for the transesterification reaction, which can be generated at a few tenths of a torr in a tandem mass spectrometer, is tetrahedral, but other adducts that are collisionally stabilized under these conditions are principally loosely bound complexes.
A study of estrogen metabolic clearance rates and transfer factors
Hembree, W. C.; Bardin, C. W.; Lipsett, M. B.
1969-01-01
We have attempted to measure the metabolic clearance rates (MCR) and the transfer factors of estradiol (E2) and estrone (E1) during 2-hr and 12-hr infusions. When estradiol-3H was infused for 2 hr, apparent equilibrium was reached at 70 min; the 12-hr infusions showed that plasma estradiol-3H levels increased slowly throughout the infusion. When estrone-3H was infused, constancy of estrone-3H levels was not attained in either the 2-hr infusions or in the two 12-hr infusions. The tritium level in the metabolite of the infused estrogen did not become constant in 50% of the short infusions and increased during all the long infusions. Thus, the conversion ratios CE1E2 and CE2E1 continually changed and transfer factors could not be calculated. The apparent “MCR'S” calculated on the basis of the 2-hr studies expressed as liters/24 hr per m2 ±SD were: “MCRE1” (women) 980 ±94, (men) 1170 ±95; “MCRE2” (women) 615 ±17, (men) 830 ±30. The estradiol “MCR's” differed significantly between men and women. “MCRE2” was the same using either estradiol-14C or -3H and was unchanged by the infusion of 170 μg of estradiol daily. Postmenopausal women had estrogen “MCR's” in the same range as premenopausal women. Excess glucocorticoids increased the “MCRE2.” PMID:5822587
Frick, L; Yang, C; Marquez, V E; Wolfenden, R
1989-11-28
Cytidine deaminase, purified to homogeneity from constitutive mutants of Escherichia coli, was found to bind the competitive inhibitors pyrimidin-2-one ribonucleoside (apparent Ki = 3.6 x 10(-7) M) and 5-fluoropyrimidin-2-one ribonucleoside (apparent Ki = 3.5 x 10(-8) M). Enzyme binding resulted in a change of the lambda max of pyrimidin-2-one ribonucleoside from 303 nm for the free species to 239 nm for the bound species. The value for the bound species was identical with that of an oxygen adduct formed by combination of hydroxide ion with 1,3-dimethyl-2-oxopyrimidinium (239 nm), but lower than that of a sulfur adduct formed by combination of the thiolate anion of N-acetylcysteamine with 1,3-dimethyl-2-oxopyrimidinium (259 nm). The results suggest that pyrimidin-2-one ribonucleoside is bound by cytidine deaminase as an oxygen adduct, probably the covalent hydrate 3,4-dihydrouridine, rather than intact or as an adduct involving a thiol group of the enzyme. In dilute solution at 25 degrees C, the equilibrium constant for formation of a single diastereomer of 3,4-dihydrouridine from pyrimidin-2-one ribonucleoside was estimated as approximately 4.7 x 10(-6), from equilibria of dissociation of water, protonation of 1-methylpyrimidin-2-one, and combination of the 1,3-dimethylpyrimidinium cation with the hydroxide ion.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C.
2014-09-01
Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Metastable phases of silver and gold in hexagonal structure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2004-07-01
Metastable phases of silver and gold in hexagonal close-packed structures are investigated by means of first-principles total-energy calculations. Two different methods are employed to find the equilibrium states: determination of the minima along the hexagonal epitaxial Bain path, and direct determination of minima of the total energy by a new minimum-path procedure. Both metals have two equilibrium states at different values of the hexagonal axial ratio c/a. For both metals, the elastic constants show that the high-c/a states are stable, hence, since the ground states are face-centred cubic, these states represent hexagonal close-packed metastable phases. The elastic constants of the low-c/a states show that they are unstable.
Dynamics of storage of organochlorine pollutants in herring gulls
Anderson, D.W.; Hickey, J.J.
1976-01-01
Several organochlorine pollutants were studied over the period of one annual cycle in caged juvenile and wild-collected adult herring gulls (Lagus argentatus) from Lake Michigan. Fish, mostly alewives (Alosa pseudoharengus), comprised the major year-round food items in the wild; alewives were also fed to the caged juveniles. Fish residues averaged around 3 mg/kg of p,p'-DDE, 2 mg/kg p,p'DDT + p,p'-TDE, and 2 mg/kg apparent PCBs. Juvenile body-burdens of DDE and PCBs showed a continual buildup after fledging, then a temporary dynamic equilibrium, related only in part to annual lipid deposition. Maximum body-burdens were reached in both juveniles and adults when winter fat deposits were declining prior to the breeding season?followed by a return to dynamic equilibrium. Residues of DDT and TDE followed closely the annual pattern of lipid deposition in both juveniles and adults. Total body-burdens in both age classes were similar after the buildups to equilibrium in juveniles in their eighth month after fledging. Seasonal variations of residues of DDE and PCBs were characterised by two phases in adults and three in juveniles, which gradually assumed the adult cyclic pattern. The maximum body-burdens attained by caged juveniles fed a diet of Lake Michigan alewives were 290 mg/kg DDE, 19 mg/kg DDT + TDE, and 200 mg/kg apparent PCBs. Residues in wild adults at the same time were 300, 4, and 200 mg/kg of the same residues. Apparent PCBs and DDE were highly accumulative, although DDE levels resulted from dietary DDE, as well as conversion from DDT.
Sloat, Amy L; Roper, Michael G; Lin, Xiuli; Ferrance, Jerome P; Landers, James P; Colyer, Christa L
2008-08-01
In response to a growing interest in the use of smaller, faster microchip (mu-chip) methods for the separation of proteins, advancements are proposed that employ the asymmetric squarylium dye Red-1c as a noncovalent label in mu-chip CE separations. This work compares on-column and precolumn labeling methods for the proteins BSA, beta-lactoglobulin B (beta-LB), and alpha-lactalbumin (alpha-LA). Nonequilibrium CE of equilibrium mixtures (NECEEM) represents an efficient method to determine equilibrium parameters associated with the formation of intermolecular complexes, such as those formed between the dye and proteins in this work, and it allows for the use of weak affinity probes in protein quantitation. In particular, nonequilibrium methods employing both mu-chip and conventional CE systems were implemented to determine association constants governing the formation of noncovalent complexes of the red luminescent squarylium dye Red-1c with BSA and beta-LB. By our mu-chip NECEEM method, the association constants K(assoc) for beta-LB and BSA complexes with Red-1c were found to be 3.53 x 10(3) and 1.65 x 10(5) M(-1), respectively, whereas association constants found by our conventional CE-LIF NECEEM method for these same protein-dye systems were some ten times higher. Despite discrepancies between the two methods, both confirmed the preferential interaction of Red-1c with BSA. In addition, the effect of protein concentration on measured association constant was assessed by conventional CE methods. Although a small decrease in K(assoc) was observed with the increase in protein concentration, our studies indicate that absolute protein concentration may affect the equilibrium determination less than the relative concentration of protein-to-dye.
Equilibrium, kinetic, and reactive transport models for plutonium
NASA Astrophysics Data System (ADS)
Schwantes, Jon Michael
Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive transport model; (2) a simulation of the effects of dissolution of PuO2 solid and radiolysis on the behavior of Pu diffusing out of a confined pore space; and (3) application of a steady-state three phase reactive transport model to groundwater at the Nevada Test Site.
Vishnuganth, M A; Remya, Neelancherry; Kumar, Mathava; Selvaraju, N
2016-10-01
The photocatalytic removal of carbofuran (CBF) from aqueous solution in the presence of granular activated carbon supported TiO2 (GAC-TiO2) catalyst was investigated under batch-mode experiments. The presence of GAC enhanced the photocatalytic efficiency of the TiO2 catalyst. Experiments were conducted at different concentrations of CBF to clarify the dependence of apparent rate constant (kapp) in the pseudo first-order kinetics on CBF photodegradation. The general relationship between the adsorption equilibrium constant (K) and reaction rate constant (kr) were explained by using the modified Langmuir-Hinshelwood (L-H) model. From the observed kinetics, it was observed that the surface reaction was the rate limiting step in the GAC-TiO2 catalyzed photodegradation of CBF. The values of K and kr for this pseudo first-order reaction were found to be 0.1942 L mg(-1) and 1.51 mg L(-1) min(-1), respectively. In addition, the dependence of kapp on the half-life time was determined by calculating the electrical energy per order experimentally (EEO experimental) and also by modeling (EEO model). The batch-mode experimental outcomes revealed the possibility of 100% CBF removal (under optimized conditions and at an initial concentration of 50 mg L(-1) and 100 mg L(-1)) at a contact time of 90 min and 120 min, respectively. Both L-H kinetic model and EEO model fitted well with the batch-mode experimental data and also elucidated successfully the phenomena of photocatalytic degradation in the presence of GAC-TiO2 catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.
A rumor transmission model with incubation in social networks
NASA Astrophysics Data System (ADS)
Jia, Jianwen; Wu, Wenjiang
2018-02-01
In this paper, we propose a rumor transmission model with incubation period and constant recruitment in social networks. By carrying out an analysis of the model, we study the stability of rumor-free equilibrium and come to the local stable condition of the rumor equilibrium. We use the geometric approach for ordinary differential equations for showing the global stability of the rumor equilibrium. And when ℜ0 = 1, the new model occurs a transcritical bifurcation. Furthermore, numerical simulations are used to support the analysis. At last, some conclusions are presented.
Cytotoxicity, DNA binding and localisation of novel bis-naphthalimidopropyl polyamine derivatives.
Pavlov, V; Kong Thoo Lin, P; Rodilla, V
2001-07-31
Bis-naphthalimidopropyl spermidine (BNIPSpd), spermine (BNIPSpm) and oxa-spermine (BNIPOSpm) showed high in vitro cytotoxicity against human breast cancer MCF-7 cells with IC(50) values of 1.38, 2.91 and 8.45 microM, respectively. These compounds were found to effectively displace the intercalating agent ethidium bromide bound to the calf thymus DNA using fluorimetric methods (C(50) 0.08-0.12 microM) and their apparent equilibrium binding constants (K(app)) were calculated to be in the range of 10.5-18 x 10(7) M(-1). Furthermore, strong stabilisation of calf thymus DNA duplex in the presence of bis-naphthalimidopropyl polyamine derivatives (BNIPSpd, BNIPSpm and BNIPOSpm) was observed by UV spectrophotometric analysis (T(m)=93.3-97 degrees C compared with 75 degrees C for calf thymus DNA without drug). Because of their inherent fluorescence, these compounds were localised preferentially inside the nucleus as evidenced by their direct observation under the fluorescence microscope. The results obtained suggest that the cytotoxic activity of the bis-naphthalimidopropyl polyamines may be in part, caused by their effects on DNA.
Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy
NASA Astrophysics Data System (ADS)
Ocaya, R. O.; Terblans, J. J.
2017-10-01
Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.
Menéndez-López, Nuria; Valimaña-Traverso, Jesús; Castro-Puyana, María; Salgado, Antonio; García, María Ángeles; Marina, María Luisa
2017-05-10
Two analytical methodologies were developed by CE enabling the enantiomeric separation of colchicine, an antiuremic drug commercialized as pure enantiomer. Succinyl-γ-CD and Sulfated-γ-CD were selected as chiral selectors after a screening with different anionic CDs. Under the optimized conditions, chiral resolutions of 5.6 in 12min and 3.2 in 8min were obtained for colchicine with Succinyl-γ-CD and Sulfated-γ-CD, respectively. An opposite enantiomeric migration order was observed with these two CDs being S-colchicine the first-migrating enantiomer with Succinyl-γ-CD and the second-migrating enantiomer with Sulfated-γ-CD. H NMR experiments showed a 1:1 stoichiometry for the enantiomer-CD complexes in both cases. However, the apparent and averaged equilibrium constants for the enantiomer-CD complexes could be calculated only for Succinyl-γ-CD. The developed methods were applied to the analysis of pharmaceutical formulations but only the use of Succinyl-γ-CD enabled to detect a 0.1% of enantiomeric impurity in colchicine formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Radebaugh, C A; Kubaska, W M; Hoffman, L H; Stiffler, K; Paule, M R
1998-10-16
The fundamental transcription initiation factor (TIF) for ribosomal RNA expression by eukaryotic RNA polymerase I, TIF-IB, has been purified to near homogeneity from Acanthamoeba castellanii using standard techniques. The purified factor consists of the TATA-binding protein and four TATA-binding protein-associated factors with relative molecular weights of 145,000, 99,000, 96,000, and 91,000. This yields a calculated native molecular weight of 460, 000, which compares well with its mass determined by scanning transmission electron microscopy (493,000) and its sedimentation rate, which is close to RNA polymerase I (515,000). Both impure and nearly homogeneous TIF-IB exhibit an apparent equilibrium dissociation constant of 56 +/- 3 pM. However, although impure TIF-IB can form a promoter-DNA complex resistant to challenge by other promoter-containing DNAs, near homogeneous TIF-IB cannot do so. An additional transcription factor, dubbed TIF-IE, restores the ability of near homogeneous TIF-IB to sequester DNA into a committed complex.
Carbonyl reductase of dog liver: purification, properties, and kinetic mechanism.
Hara, A; Nakayama, T; Deyashiki, Y; Kariya, K; Sawada, H
1986-01-01
A carbonyl reductase has been extracted into 0.5 M KCl from dog liver and purified to apparent homogeneity by a three-step procedure consisting of chromatography on CM-Sephadex, Matrex green A, and Sephadex G-100 in high-ionic-strength buffers. The enzyme is a dimer composed of two identical subunits of molecular weight 27,000. The pH optimum is 5.5 and the isoelectric point of the enzyme is 9.3. The enzyme reduces aromatic ketones and aldehydes; the aromatic ketones with adjacent medium alkyl chains are the best substrates. Quinones, ketosteroids, prostaglandins, and aliphatic carbonyl compounds are poor or inactive substrates for the enzyme. As a cofactor the enzyme utilizes NADPH, the pro-S hydrogen atom of which is transferred to the substrate. Two moles of NADPH bind to one mole of the enzyme molecule, causing a blue shift and enhancement of the cofactor fluorescence. The reductase reaction is reversible and the equilibrium constant determined at pH 7.0 is 12.8. Steady-state kinetic measurements in both directions suggest that the reaction proceeds through a di-iso ordered bi-bi mechanism.
Dang, Duc Huy; Evans, R Douglas
2018-03-01
High resolution electrospray ionization mass spectrometry (ESI-HRMS) was used to study the speciation of molybdate in interaction with halides (Cl, F, Br). Desolvation during electrospray ionization induced alteration of aqueous species but method optimization successfully suppressed artefact compounds. At low Mo concentrations, chloro(oxo)molybdate and fluoro(oxo)molybdate species were found and in natural samples, MoO 3 Cl was detected for the first time, to the best of our knowledge. Apparent equilibrium constants for Cl substitution on molybdate were calculated for a range of pH values from 4.5 to 8.5. A minor alteration in speciation during the gas phase (conversion of doubly charged MoO 4 2- to HMoO 4 - ) did not allow investigation of the molybdate acid-base properties; however this could be determined by speciation modeling. This study provides further evidence that ESI-HRMS is a fast and suitable tool to Deceasedassess the speciation of inorganic compounds such as Mo. Copyright © 2017 Elsevier B.V. All rights reserved.
Q-Speciation and Network Structure Evolution in Invert Calcium Silicate Glasses.
Kaseman, Derrick C; Retsinas, A; Kalampounias, A G; Papatheodorou, G N; Sen, S
2015-07-02
Binary silicate glasses in the system CaO-SiO2 are synthesized over an extended composition range (42 mol % ≤ CaO ≤ 61 mol %), using container-less aerodynamic levitation techniques and CO2-laser heating. The compositional evolution of Q speciation in these glasses is quantified using (29)Si and (17)O magic angle spinning nuclear magnetic resonance spectroscopy. The results indicate progressive depolymerization of the silicate network upon addition of CaO and significant deviation of the Q speciation from the binary model. The equilibrium constants for the various Q species disproportionation reactions for these glasses are found to be similar to (much smaller than) those characteristic of Li (Mg)-silicate glasses, consistent with the corresponding trends in the field strengths of these modifier cations. Increasing CaO concentration results in an increase in the packing density and structural rigidity of these glasses and consequently in their glass transition temperature Tg. This apparent role reversal of conventional network-modifying cations in invert alkaline-earth silicate glasses are compared and contrasted with that in their alkali silicate counterparts.
Solubilization and purification of melatonin receptors from lizard brain.
Rivkees, S A; Conron, R W; Reppert, S M
1990-09-01
Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.
Gholami, S; Bordbar, A K; Akvan, N; Parastar, H; Fani, N; Gretskaya, N M; Bezuglov, V V; Haertlé, T
2015-12-01
A computational approach to predict the main binding modes of two adrenalin derivatives, arachidonoyl adrenalin (AA-AD) and arachidonoyl noradrenalin (AA-NOR) with the β-lactoglubuline (BLG) as a nano-milk protein carrier is presented and assessed by comparison to the UV-Vis absorption spectroscopic data using chemometric analysis. Analysis of the spectral data matrices by using the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm led to the pure concentration calculation and spectral profiles resolution of the chemical constituents and the apparent equilibrium constants computation. The negative values of entropy and enthalpy changes for both compound indicated the essential role of hydrogen bonding and van der Waals interactions as main driving forces in stabilizing protein-ligand complex. Computational studies predicted that both derivatives are situated in the calyx pose and remained in that pose during the whole time of simulation with no any significant protein structural changes which pointed that the BLG could be considered as a suitable carrier for these catecholamine compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation.
Wang, Yingling; Liu, Haijin; Liu, Guoguang; Xie, Youhai; Gao, Shuyan
2015-02-15
The reaction kinetics and toxicity of diclofenac (DCF) oxidation by ferrate (VI) under simulated water disinfection conditions were investigated. Experimental results indicated that the reaction between DCF and Fe(VI) followed first-order kinetics with respect to each reactant. Furthermore, the effects of pH and temperature on DCF oxidation by Fe(VI) were elucidated using a systematic examination. The apparent second-order rate constants (kapp) increased significantly from 2.54 to 11.6M(-1)s(-1), as the pH of the solution decreased from 11.0 to 7.0, and the acid-base equilibriums of Fe(VI) and DCF were proposed to explain the pH dependence of kapp. The acute toxicity of DCF solution during Fe(VI) oxidation was evaluated using a Microtox bioassay. Overall, the DCF degradation process resulted in a rapid increase of the inhibition rate of luminescent bacteria. These toxicity tests suggest that the formation of enhanced toxic intermediates during the Fe(VI) disinfection process may pose potential health risk to consumers. Copyright © 2014 Elsevier B.V. All rights reserved.
Apparent-contact-angle model at partial wetting and evaporation: impact of surface forces.
Janeček, V; Nikolayev, V S
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20° larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Apparent-contact-angle model at partial wetting and evaporation: Impact of surface forces
NASA Astrophysics Data System (ADS)
Janeček, V.; Nikolayev, V. S.
2013-01-01
This theoretical and numerical study deals with evaporation of a fluid wedge in contact with its pure vapor. The model describes a regime where the continuous wetting film is absent and the actual line of the triple gas-liquid-solid contact appears. A constant temperature higher than the saturation temperature is imposed at the solid substrate. The fluid flow is solved in the lubrication approximation. The introduction of the surface forces in the case of the partial wetting is discussed. The apparent contact angle (the gas-liquid interface slope far from the contact line) is studied numerically as a function of the substrate superheating, contact line velocity, and parameters related to the solid-fluid interaction (Young and microscopic contact angles, Hamaker constant, etc.). The dependence of the apparent contact angle on the substrate temperature is in agreement with existing approaches. For water, the apparent contact angle may be 20∘ larger than the Young contact angle for 1 K superheating. The effect of the surface forces on the apparent contact angle is found to be weak.
Galvanic Cells and the Determination of Equilibrium Constants
ERIC Educational Resources Information Center
Brosmer, Jonathan L.; Peters, Dennis G.
2012-01-01
Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…
Spontaneity and Equilibrium III: A History of Misinformation
ERIC Educational Resources Information Center
Raff, Lionel M.
2014-01-01
Necessary and sufficient criteria for reaction spontaneity in a given direction and for spontaneity of finite transformations in single-reaction, closed systems are developed. The criteria are general in that they hold for reactions conducted under either conditions of constant T and p or constant T and V. These results are illustrated using a…
Activation of muscle nicotinic acetylcholine receptor channels by nicotinic and muscarinic agonists
Akk, Gustav; Auerbach, Anthony
1999-01-01
The dose-response parameters of recombinant mouse adult neuromuscular acetylcholine receptor channels (nAChR) activated by carbamylcholine, nicotine, muscarine and oxotremorine were measured. Rate constants for agonist association and dissociation, and channel opening and closing, were estimated from single-channel kinetic analysis.The dissociation equilibrium constants were (mM): ACh (0.16)
Tailoring of Nano- and Microstructure in Biomimetically Synthesized Ceramic Films
2006-11-01
Eq. 5 where the Hamaker constant (A) for a flat and infinitely large substrate (subscript 1) and a spherical particle...is determined as (Israelachvili 1985): 232 12a A RV x = − Eq. 7 where the Hamaker constant for two like spherical particle (2) in a medium...close enough to be attracted to the equilibrium separation (0.3 nm). The Hamaker constants and the minimal interaction energies for substrate-solution
Ashiq Ur Rahman, M; Khan, S Ajmal; Lyla, P S; Kadharsha, K; Chander, P Mohan; John, B Akbar
2013-04-01
Determination of Length-weight Relationship (LWR) of any commercially important fish is crucial to validate the wild stock level, to predict their wellbeing in the natural habitat and for various sustainable fishery management practices. Liza subviridis (Valenciennes) is noted to be highly abundant along the coast of Parangipettai, South east coast of India. Hence, the present study was aimed to establish Length-weight relationship and condition factor of Greenback mullet, Liza subviridis (Valenciennes) occurring in Vellar estuary, Parangipettai (lat. 11 degrees 30' N, long. 79 degrees 46' E) using least square method. To determine the actual relationship between length and weight of L. subviridis exponent coefficient or equilibrium constant (b) and relative condition factor (Kn) analysis were adopted. The females were found to be heavier than males at similar length. The equilibrium constant 'b' was found to be 2.7106 in males and 2.8927 in females. The corresponding parabolic representation for male was W = 0.0462L(2.7106) and for female W = 0.0382L(2.8927). The equilibrium constant did not obey the cube law as it deviated significantly from 3 in the case of males. The relative condition factor around 1 and little over it revealed the well-being of L. subviridis in Parangipettai waters.
Dye-induced aggregation of single stranded RNA: a mechanistic approach.
Biver, Tarita; Ciatto, Carlo; Secco, Fernando; Venturini, Marcella
2006-08-15
The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.
One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.
Harrison, Michael G; Neukirch, Thomas
2009-04-03
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.
Determination of the equilibrium constant of C60 fullerene binding with drug molecules.
Mosunov, Andrei A; Pashkova, Irina S; Sidorova, Maria; Pronozin, Artem; Lantushenko, Anastasia O; Prylutskyy, Yuriy I; Parkinson, John A; Evstigneev, Maxim P
2017-03-01
We report a new analytical method that allows the determination of the magnitude of the equilibrium constant of complexation, K h , of small molecules to C 60 fullerene in aqueous solution. The developed method is based on the up-scaled model of C 60 fullerene-ligand complexation and contains the full set of equations needed to fit titration datasets arising from different experimental methods (UV-Vis spectroscopy, 1 H NMR spectroscopy, diffusion ordered NMR spectroscopy, DLS). The up-scaled model takes into consideration the specificity of C 60 fullerene aggregation in aqueous solution and allows the highly dispersed nature of C 60 fullerene cluster distribution to be accounted for. It also takes into consideration the complexity of fullerene-ligand dynamic equilibrium in solution, formed by various types of self- and hetero-complexes. These features make the suggested method superior to standard Langmuir-type analysis, the approach used to date for obtaining quantitative information on ligand binding with different nanoparticles.
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Bioconcentration of lipophilic compounds by some aquatic organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawker, D.W.; Connell, D.W.
1986-04-01
With nondegradable, lipophilic compounds having log P values ranging from 2 to 6, direct linear relationships have been found between the logarithms of the equilibrium bioconcentration factors, and also reciprocal clearance rate constants, with log P for daphnids and molluscs. These relationships permit calculation of the times required for equilibrium and significant bioconcentration of lipophilic chemicals. Compared with fish, these time periods are successively shorter for molluscs, then daphnids. The equilibrium biotic concentration was found to decrease with increasing chemical hydrophobicity for both molluscs and daphnids. Also, new linear relationships between the logarithm of the bioconcentration factor and log Pmore » were found for compounds not attaining equilibrium within finite exposure times.« less
NASA Astrophysics Data System (ADS)
Cugliandolo, Leticia F.; Lozano, Gustavo S.; Nessi, Nicolás; Picco, Marco; Tartaglia, Alessandro
2018-06-01
We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N ‑ 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs–Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.
NASA Astrophysics Data System (ADS)
Maggi, F.; Riley, W. J.
2016-12-01
We propose a mathematical framework to introduce the concept of differential free energy of activation in enzymatically catalyzed reactions, and apply it to N uptake by microalgae and bacteria. This framework extends the thermodynamic capabilities of the classical transition-state theory in and harmonizes the consolidated definitions of kinetic parameters with their thermodynamic and physical meaning. Here, the activation energy is assumed to be a necessary energetic level for equilibrium complexation between reactants and activated complex; however, an additional energy contribution is required for the equilibrium activated complex to release reaction products. We call this "differential free energy of activation"; it can be described by a Boltzmann distribution, and corresponds to a free energy level different from that of complexation. Whether this level is above or below the free energy of activation depends on the reaction, and defines energy domains that correspond to "superactivated", "activated", and "subactivated" complexes. The activated complex reaching one of those states will eventually release the products from an energy level different than that of activation. The concept of differential free energy of activation was tested on 57 independent experiments of NH4+ and NO3- uptake by various microalgae and bacteria at temperatures ranging between 1 and 45oC. Results showed that the complexation equilibrium always favored the activated complex, but the differential energy of activation led to an apparent energy barrier consistent with observations. Temperature affected all energy levels within this framework but did not alter substantially these thermodynamic features. Overall the approach: (1) provides a thermodynamic and mathematical link between Michaelis-Menten and rate constants; (2) shows that both kinetic parameters can be described or approximated by Arrhenius' like equations; (3) describes the likelihood of formation of sub-, super-, and activated complexes; and (4) shows direction and thermodynamic likelihood of each reaction branch within the transition state. The approach suites particularly well for calibration of kinetic parameters against experimentally acquired reaction dynamics measurements of nutrient biogeochemical cycles.
A dye-binding assay for measurement of the binding of Cu(II) to proteins.
Wilkinson-White, Lorna E; Easterbrook-Smith, Simon B
2008-10-01
We analysed the theory of the coupled equilibria between a metal ion, a metal ion-binding dye and a metal ion-binding protein in order to develop a procedure for estimating the apparent affinity constant of a metal ion:protein complex. This can be done by analysing from measurements of the change in the concentration of the metal ion:dye complex with variation in the concentration of either the metal ion or the protein. Using experimentally determined values for the affinity constant of Cu(II) for the dye, 2-(5-bromo-2-pyridylaxo)-5-(N-propyl-N-sulfopropylamino) aniline (5-Br-PSAA), this procedure was used to estimate the apparent affinity constants for formation of Cu(II):transthyretin, yielding values which were in agreement with literature values. An apparent affinity constant for Cu(II) binding to alpha-synuclein of approximately 1 x 10(9)M(-1) was obtained from measurements of tyrosine fluorescence quenching by Cu(II). This value was in good agreement with that obtained using 5-Br-PSAA. Our analysis and data therefore show that measurement of changes in the equilibria between Cu(II) and 5-Br-PSAA by Cu(II)-binding proteins provides a general procedure for estimating the affinities of proteins for Cu(II).
The Oxygen Equilibrium of Mammalian Hemoglobin
Roughton, F. J. W.
1965-01-01
The three chief physicochemical theories of the oxygen-hemoglobin equilibrium in vogue 40 years ago still influence current thought on the problem. Although the Hill theory lost its fundamental basis some 40 years ago, the famous empiric equation to which it gave rise is still much used, as a useful phenomenological expression, only involving two disposable constants. The Haldane theory, of which a difference in aggregation of oxygenated and deoxygenated hemoglobin was a fundamental feature, lay for many years dormant but has recently had an astonishing reawakening through the work on lamprey hemoglobin, which clearly reveals such differences in aggregation. Lamprey hemoglobin might thus be called a "Haldane type" hemoglobin. Adair's four-stage intermediate compound theory still seems applicable in the case of hemoglobins such as those of sheep, whose tetramer molecules do not tend to dissociate into dimers, and which might therefore be called "Adair type" hemoglobins. Horse and human hemoglobins appear to reveal both "Haldane" and "Adair" behaviour. The effects of pH, temperature, and protein concentration on the oxygen-equilibrium of sheep hemoglobin are summarised, and it is shown that, although the equilibrium curves are often isomorphous over their middle range, intensive work at the top and bottom of the curves reveals considerable differences in the relative effects of these factors on the several equilibrium constants of Adair's four intermediate equations. In the last section an account is given of preliminary experimental attempts to interpret the oxygen- and carbon monoxide—equilibrium curves of whole human blood, under physiological conditions in terms of the Adair intermediate compound hypothesis. PMID:5859923
Thermodynamic analysis of the interaction of factor VIII with von Willebrand factor.
Dimitrov, Jordan D; Christophe, Olivier D; Kang, Jonghoon; Repessé, Yohann; Delignat, Sandrine; Kaveri, Srinivas V; Lacroix-Desmazes, Sébastien
2012-05-22
Factor VIII (FVIII) is a glycoprotein that plays an important role in the intrinsic pathway of coagulation. In circulation, FVIII is protected upon binding to von Willebrand factor (VWF), a chaperone molecule that regulates its half-life, distribution, and activity. Despite the biological significance of this interaction, its molecular mechanisms are not fully characterized. We determined the equilibrium and activation thermodynamics of the interaction between FVIII and VWF. The equilibrium affinity determined by surface plasmon resonance was temperature-dependent with a value of 0.8 nM at 35 °C. The FVIII-VWF interaction was characterized by very fast association (8.56 × 10(6) M(-1) s(-1)) and fast dissociation (6.89 × 10(-3) s(-1)) rates. Both the equilibrium association and association rate constants, but not the dissociation rate constant, were dependent on temperature. Binding of FVIII to VWF was characterized by favorable changes in the equilibrium and activation entropy (TΔS° = 89.4 kJ/mol, and -TΔS(++) = -8.9 kJ/mol) and unfavorable changes in the equilibrium and activation enthalpy (ΔH° = 39.1 kJ/mol, and ΔH(++) = 44.1 kJ/mol), yielding a negative change in the equilibrium Gibbs energy. Binding of FVIII to VWF in solid-phase assays demonstrated a high sensitivity to acidic pH and a sensitivity to ionic strength. Our data indicate that the interaction between FVIII and VWF is mediated mainly by electrostatic forces, and that it is not accompanied by entropic constraints, suggesting the absence of conformational adaptation but the presence of rigid "pre-optimized" binding surfaces.
Henry's law constants for dimethylsulfide in freshwater and seawater
NASA Technical Reports Server (NTRS)
Dacey, J. W. H.; Wakeham, S. G.; Howes, B. L.
1984-01-01
Distilled water and several waters of varying salinity were subjected, over a 0-32 C temperature range, to measurements for Henry's law constants for dimethylsulfide. Values for distilled water and seawater of the solubility parameters A and C are obtained which support the concept that the concentration of dimethylsulfide in the atmosphere is far from equilibrium with seawater.
Wu, Xiongwu; Brooks, Bernard R.
2015-01-01
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245
Wu, Xiongwu; Brooks, Bernard R
2015-10-01
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.
Suzuki, Yuji
2006-06-01
In a dye-binding method using a pH indicator, color development has reportedly been affected by the kind of buffer solution used in the color reagent. This phenomenon was analyzed by using a calculation based on the assumption that the anion of the buffer solution also reacts with protein. Color development decreases with increases in the anion concentration of the buffer solution and in the equilibrium constant of the reaction between the anion and protein. The differences in color development due to the kind of buffer solution can be attributed to differences in the equilibrium constant of the reaction forming the anion-protein complex and to the concentration of the anion between the buffer solutions.
Satz, Alexander L
2016-07-11
Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.
NASA Astrophysics Data System (ADS)
Motorina, E. V.; Lomova, T. N.
2017-11-01
The results from a quantitative study of reactions between hydroxyoxo(5,10,15,20-tetraphenylporphinato)molybdenum(V) (O=Mo(OH)TPP) and 3,5-dimethylpyrazole, a biologically active base, in toluene are presented. The chemical structure and key parameters of intermediates and reaction products are determined by spectral means. The equilibrium constant ( K = 51.3 L/mol) is calculated and a full kinetic description of simple reactions that occur in this system during complex transformation is obtained. The prospect of using a mixed porphyrin-containing complex as a receptor for 3,5-dimethylpyrazole, a building block for alkaloids and pharmaceutical preparations, is substantiated.
Simple Chaotic Flow with Circle and Square Equilibrium
NASA Astrophysics Data System (ADS)
Gotthans, Tomas; Sprott, Julien Clinton; Petrzela, Jiri
Simple systems of third-order autonomous nonlinear differential equations can exhibit chaotic behavior. In this paper, we present a new class of chaotic flow with a square-shaped equilibrium. This unique property has apparently not yet been described. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are interesting and important in engineering applications. The mathematical model is accompanied by an electrical circuit implementation, demonstrating structural stability of the strange attractor. The circuit is simulated with PSpice, constructed, and analyzed (measured).
Relaxation and Self-Diffusion of a Polymer Chain in a Melt
NASA Astrophysics Data System (ADS)
Hagita, Katsumi; Takano, Hiroshi
2004-04-01
Relaxation and self-diffusion of a polymer chain in a melt are discussed on the basis of the results of our recent Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is considered. Polymer chains are located on an L × L × L simple cubic lattice under periodic boundary conditions. Each chain consists of N segments, each of which occupies 2 × 2 × 2 unit cells. The results for N = 32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction φ ≃ 0.5 are examined, where L = 128 for N ⩽ 256 and L = 192 for N ⩾ 384. The longest relaxation time τ is estimated by solving generalized eigenvalue problems for the equilibrium time correlation matrices of the positions of segments of a polymer chain. The self-diffusion constant D is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than τ. From the data for N = 256, 384 and 512, the apparent exponents x r and xd, which describe the power law dependences of τ and D on N as τ ∝ N xr and D ∝ N-xd, are estimated to be xr ≃ 3.5 and xd ≃ 2.4, respectively. For N = 192, 256, 384 and 512, Dτ/
Kinetics of transient pump currents generated by the (H,K)-ATPase after an ATP concentration jump.
Stengelin, M; Fendler, K; Bamberg, E
1993-03-01
(H,K)-ATPase containing membranes from hog stomach were attached to black lipid membranes. Currents induced by an ATP concentration jump were recorded and analyzed. A sum of three exponentials (tau 1(-1) approximately 400 sec-1, tau 2(-1) approximately 100 sec-1, tau 3(-1) approximately 10 sec-1; T = 300 K, pH 6, MgCl2 3 mM, no K+) was fitted to the transient signal. The dependence of the resulting time constants and the peak current on electrolyte composition, ATP conversion rate, temperature, and membrane conductivity was recorded. The results are consistent with a reaction scheme similar to that proposed by Albers and Post for the NaK-ATPase. Based on this model the following assignments were made: tau 2 corresponds to ATP binding and exchange with caged ATP. tau 1 describes the phosphorylation reaction E1 x ATP-->E1P. The third, slowest time constant tau 3 is tentatively assigned to the E1P-->E2P transition. This is the first electrogenic step and is accelerated at high pH and by ATP via a low affinity binding site. The second electrogenic step is the transition from E2K to E1H. The E2K<==>E1H equilibrium is influenced by potassium with an apparent K0.5 of 3 mM and by the pH. Low pH and low potassium concentration stabilize the E1 conformation.
Carbon dioxide stripping in aquaculture. part 1: terminology and reporting
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
The removal of carbon dioxide gas in aquacultural systems is much more complex than for oxygen or nitrogen gas because of liquid reactions of carbon dioxide and their kinetics. Almost all published carbon dioxide removal information for aquaculture is based on the apparent removal value after the CO2(aq) + HOH ⇔ H2CO3 reaction has reached equilibrium. The true carbon dioxide removal is larger than the apparent value, especially for high alkalinities and seawater. For low alkalinity freshwaters (<2000 μeq/kg), the difference between the true and apparent removal is small and can be ignored for many applications. Analytical and reporting standards are recommended to improve our understanding of carbon dioxide removal.
NASA Astrophysics Data System (ADS)
Haas, George W.; Giblin, Daryl E.; Gross, Michael L.
1998-02-01
In solution, base-catalyzed hydrolysis and transesterification of esters are initiated by hydroxide- or alkoxide-ion attack at the carbonyl carbon. At low pressures in the gas phase, however, transesterification proceeds by an attack of the enolate anion of an acetate ester on an alcohol. Fourier transform mass spectrometry (FTMS) indicates that the reaction is the second-order process: -CH2-CO2-R+R'-OH-->-CH2-CO2-R'+R-OH and there is little to no detectable production of either alkoxide anion. Labeling studies show that the product and reactant enolate anion esters undergo exchange of hydrogens located [alpha] to the carbonyl carbon with the deuterium of R'--OD. The extent of the H/D exchange increases with reaction time, pointing to a short-lived intermediate. The alcoholysis reaction rate constants increase with increasing acidity of the primary, straight-chained alkyl alcohols, whereas steric effects associated with branched alcohols cause the rate constants to decrease. Equilibrium constants, which were determined directly from measurements at equilibrium and which were calculated from the forward and reverse rate constants, are near unity and show internal consistency. In the absence of steric effects, the larger enolate is always the favored product at equilibrium. The intermediate for the transesterification reaction, which can be generated at a few tenths of a torr in a tandem mass spectrometer, is tetrahedral, but other adducts that are collisionally stabilized under these conditions are principally loosely bound complexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.
trans-Hexatriene-1-13C1 (tHTE-1-13C1) has been synthesized, and its high-resolution (0.0015 cm-1) infrared spectrum has been recorded. The rotational structure in the C-type bands for v26 at 1011 cm-1 and v30 at 894 cm-1 has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A0 = 0.8728202(9), B0 = 0.0435868(4), and C0 = 0.0415314(2) cm-1. Upper state rotational constants for the v30 band were also fitted. Predictions of the ground state rotational constants for t-HTE-1-13C1 from a B3LYP/cc-pVTZ model with scale factors based on the normal speciesmore » were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three 13C1 isotopologues of cis-hexatriene (cHTE), as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three 13C1 isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C6 backbone of tHTE. This structure shows increased structural effects of pi-electron delocalization in comparison with butadiene.« less
Cravotta, Charles A.
2015-01-01
Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the model results for Fe(II) or pH. In contrast, the model results for pH and Fe(II) were sensitive to the CO2 mass transfer rate constant (kL,CO2a). The value of kL,CO2a estimated for the stream (0.010 min−1) was within the range for the batch aeration experiments (0–0.033 min−1). These results indicate that the abiotic homogeneous Fe(II) oxidation rate law, with adjustments for variations in temperature and CO2 outgassing rate, may be applied to predict changes in aqueous iron and pH for net-alkaline, ferruginous waters within a stream (natural conditions) or a CMD treatment system (engineered conditions).
The final frontier of pH and the undiscovered country beyond.
Bal, Wojciech; Kurowska, Ewa; Maret, Wolfgang
2012-01-01
The comparison of volumes of cells and subcellular structures with the pH values reported for them leads to a conflict with the definition of the pH scale. The pH scale is based on the ionic product of water, K(w) = [H(+)]×[OH(-)].We used K(w) [in a reversed way] to calculate the number of undissociated H(2)O molecules required by this equilibrium constant to yield at least one of its daughter ions, H(+) or OH(-) at a given pH. In this way we obtained a formula that relates pH to the minimal volume V(pH) required to provide a physical meaning to K(w), V(pH)=10(pH-pK(w/2) x 10(pK(w/2)/N(A) (where N(A) is Avogadro's number). For example, at pH 7 (neutral at 25°C) V(pH) =16.6 aL. Any deviation from neutral pH results in a larger V(pH) value. Our results indicate that many subcellular structures, including coated vesicles and lysosomes, are too small to contain free H(+) ions at equilibrium, thus the definition of pH based on K(w) is no longer valid. Larger subcellular structures, such as mitochondria, apparently contain only a few free H(+) ions. These results indicate that pH fails to describe intracellular conditions, and that water appears to be dissociated too weakly to provide free H(+) ions as a general source for biochemical reactions. Consequences of this finding are discussed.
Equilibrium energy spectrum of point vortex motion with remarks on ensemble choice and ergodicity
NASA Astrophysics Data System (ADS)
Esler, J. G.
2017-01-01
The dynamics and statistical mechanics of N chaotically evolving point vortices in the doubly periodic domain are revisited. The selection of the correct microcanonical ensemble for the system is first investigated. The numerical results of Weiss and McWilliams [Phys. Fluids A 3, 835 (1991), 10.1063/1.858014], who argued that the point vortex system with N =6 is nonergodic because of an apparent discrepancy between ensemble averages and dynamical time averages, are shown to be due to an incorrect ensemble definition. When the correct microcanonical ensemble is sampled, accounting for the vortex momentum constraint, time averages obtained from direct numerical simulation agree with ensemble averages within the sampling error of each calculation, i.e., there is no numerical evidence for nonergodicity. Further, in the N →∞ limit it is shown that the vortex momentum no longer constrains the long-time dynamics and therefore that the correct microcanonical ensemble for statistical mechanics is that associated with the entire constant energy hypersurface in phase space. Next, a recently developed technique is used to generate an explicit formula for the density of states function for the system, including for arbitrary distributions of vortex circulations. Exact formulas for the equilibrium energy spectrum, and for the probability density function of the energy in each Fourier mode, are then obtained. Results are compared with a series of direct numerical simulations with N =50 and excellent agreement is found, confirming the relevance of the results for interpretation of quantum and classical two-dimensional turbulence.
Rakowska, Magdalena I; Kupryianchyk, Darya; Koelmans, Albert A; Grotenhuis, Tim; Rijnaarts, Huub H M
2014-12-15
Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC. Copyright © 2014. Published by Elsevier Ltd.
Emergence of currents as a transient quantum effect in nonequilibrium systems
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2011-09-01
Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.
Possible applications of time domain reflectometry in planetary exploration missions
NASA Technical Reports Server (NTRS)
Heckendorn, S.
1982-01-01
The use of a time domain reflectometer (TDR) for planetary exploration is considered. Determination of the apparent dielectric constant and hence, the volumetric water content of frozen and unfrozen soils using the TDR is described. Earth-based tests were performed on a New York state sandy soil and a Wyoming Bentonite. Use of both a cylindrical coaxial transmission line and a parallel transmission line as probes was evaluated. The water content of the soils was varied and the apparent dielectric constant measured in both frozen and unfrozen states. Advantages and disadvantages of the technique are discussed.
Xiong, Yongliang; Kirkes, Leslie; KNOX, Jandi; ...
2017-11-01
In this paper, solubility measurements were conducted for sodium polyborates in MgCl 2 solutions at 22.5 ± 0.5 °C. According to solution chemistry and XRD patterns, di-sodium tetraborate decahydrate (borax) dissolves congruently, and is the sole solubility-controlling phase, in a 0.01 mol/kg MgCl 2 solution: Na 2B 4O 7•10H 2O(cr) ⇌ 2Na + + 4B(OH) 4 + 2H + + H 2O(l). However, in a 0.1 mol/kg MgCl 2 solution borax dissolves incongruently and is in equilibrium with di-sodium hexaborate tetrahydrate: 2Na 2B 6O 10•4H 2O(cr) + 2Na + + 23H 2O(l) ⇌ 3Na 2B 4O 7•10H 2O(cr) + 2Hmore » +. In this study, the equilibrium constant (log K 0) for Reaction 2 at 25 °C and infinite dilution was determined to be –16.44 ± 0.13 (2σ) based on the experimental data and the Pitzer model for calculations of activity coefficients of aqueous species. In accordance with the log K 0 for Reaction 1 from a previous publication from this research group, and log K 0 for Reaction 2 from this study, the equilibrium constant for dissolution of di-sodium hexaborate tetrahydrate at 25 °C and at infinite dilution, Na 2B 6O 10•4H 2O(cr) + 10H 2O(l) ⇌ 2Na + + 6B(OH) 4 - + 4H + was derived to be –45.42 ± 0.16 (2σ). The equilibrium constants determined in this study can find applications in many fields. For example, in the field of nuclear waste management, the formation of di-sodium hexaborate tetrahydrate in brines containing magnesium will decrease borate concentrations, making less borate available for interactions with Am(III). In the field of experimental investigations, based on the equilibrium constant for Reaction 2, the experimental systems can be controlled in terms of acidity around neutral pH by using the equilibrium assemblage of borax and di-sodium hexaborate tetrahydrate at 25 °C. As salt lakes and natural brines contain both borate and magnesium as well as sodium, the formation of sodium hexaborate tetrahydrate may influence the chemical evolution of salt lakes and natural brines. Di-sodium hexaborate tetrahydrate is a polymorph of the mineral ameghinite [chemical formula Na 2B 6O 10•4H 2O; structural formula NaB 3O 3(OH) 4 or Na 2B 6O 6(OH) 8]. Finally, di-sodium hexaborate tetrahydrate could be a precursor of ameghinite and could be transformed when borate deposits are subject to diagenesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie; KNOX, Jandi
In this paper, solubility measurements were conducted for sodium polyborates in MgCl 2 solutions at 22.5 ± 0.5 °C. According to solution chemistry and XRD patterns, di-sodium tetraborate decahydrate (borax) dissolves congruently, and is the sole solubility-controlling phase, in a 0.01 mol/kg MgCl 2 solution: Na 2B 4O 7•10H 2O(cr) ⇌ 2Na + + 4B(OH) 4 + 2H + + H 2O(l). However, in a 0.1 mol/kg MgCl 2 solution borax dissolves incongruently and is in equilibrium with di-sodium hexaborate tetrahydrate: 2Na 2B 6O 10•4H 2O(cr) + 2Na + + 23H 2O(l) ⇌ 3Na 2B 4O 7•10H 2O(cr) + 2Hmore » +. In this study, the equilibrium constant (log K 0) for Reaction 2 at 25 °C and infinite dilution was determined to be –16.44 ± 0.13 (2σ) based on the experimental data and the Pitzer model for calculations of activity coefficients of aqueous species. In accordance with the log K 0 for Reaction 1 from a previous publication from this research group, and log K 0 for Reaction 2 from this study, the equilibrium constant for dissolution of di-sodium hexaborate tetrahydrate at 25 °C and at infinite dilution, Na 2B 6O 10•4H 2O(cr) + 10H 2O(l) ⇌ 2Na + + 6B(OH) 4 - + 4H + was derived to be –45.42 ± 0.16 (2σ). The equilibrium constants determined in this study can find applications in many fields. For example, in the field of nuclear waste management, the formation of di-sodium hexaborate tetrahydrate in brines containing magnesium will decrease borate concentrations, making less borate available for interactions with Am(III). In the field of experimental investigations, based on the equilibrium constant for Reaction 2, the experimental systems can be controlled in terms of acidity around neutral pH by using the equilibrium assemblage of borax and di-sodium hexaborate tetrahydrate at 25 °C. As salt lakes and natural brines contain both borate and magnesium as well as sodium, the formation of sodium hexaborate tetrahydrate may influence the chemical evolution of salt lakes and natural brines. Di-sodium hexaborate tetrahydrate is a polymorph of the mineral ameghinite [chemical formula Na 2B 6O 10•4H 2O; structural formula NaB 3O 3(OH) 4 or Na 2B 6O 6(OH) 8]. Finally, di-sodium hexaborate tetrahydrate could be a precursor of ameghinite and could be transformed when borate deposits are subject to diagenesis.« less
Equilibrium constants and protonation site for N-methylbenzenesulfonamides
Rosa da Costa, Ana M; García-Río, Luis; Pessêgo, Márcia
2011-01-01
Summary The protonation equilibria of four substituted N-methylbenzenesulfonamides, X-MBS: X = 4-MeO (3a), 4-Me (3b), 4-Cl (3c) and 4-NO2 (3d), in aqueous sulfuric acid were studied at 25 °C by UV–vis spectroscopy. As expected, the values for the acidity constants are highly dependent on the electron-donor character of the substituent (the pK BH+ values are −3.5 ± 0.2, −4.2 ± 0.2, −5.2 ± 0.3 and −6.0 ± 0.3 for 3a, 3b, 3c and 3d, respectively). The solvation parameter m* is always higher than 0.5 and points to a decrease in the importance of solvation on the cation stabilization as the electron-donor character of the substituent increases. Hammett plots of the equilibrium constants showed a better correlation with the σ+ substituent parameter than with σ, which indicates that the initial protonation site is the oxygen atom of the sulfonyl group. PMID:22238552
Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M
1997-01-01
The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232
Thermal Non-Equilibrium Flows in Three Space Dimensions
NASA Astrophysics Data System (ADS)
Zeng, Yanni
2016-01-01
We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.
The quasi-equilibrium response of MOS structures: Quasi-static factor
NASA Astrophysics Data System (ADS)
Okeke, M.; Balland, B.
1984-07-01
The dynamic response of a MOS structure driven into a non-equilibrium behaviour by a voltage ramp is presented. In contrast to Khun's quasi-static technique it is shown that any ramp-driven MOS structure has some degree of non-equilibrium. A quasi staticity factor μAK which serves as a measure of the degree of quasi-equilibrium, has been introduced for the first time. The mathematical model presented in the paper allows a better explanation of the experimental recordings. It is shown that this model could be used to analyse the various features of the response of the structure and that such physical parameters as the generation-rate, trap activation energy, and the effective capture constants could be obtained.
A kinetic study of jack-bean urease denaturation by a new dithiocarbamate bismuth compound
NASA Astrophysics Data System (ADS)
Menezes, D. C.; Borges, E.; Torres, M. F.; Braga, J. P.
2012-10-01
A kinetic study concerning enzymatic inhibitory effect of a new bismuth dithiocarbamate complex on jack-bean urease is reported. A neural network approach is used to solve the ill-posed inverse problem arising from numerical treatment of the subject. A reaction mechanism for the urease denaturation process is proposed and the rate constants, relaxation time constants, equilibrium constants, activation Gibbs free energies for each reaction step and Gibbs free energies for the transition species are determined.
Volkán-Kacsó, Sándor; Marcus, Rudolph A.
2015-01-01
A theoretical model of elastically coupled reactions is proposed for single molecule imaging and rotor manipulation experiments on F1-ATPase. Stalling experiments are considered in which rates of individual ligand binding, ligand release, and chemical reaction steps have an exponential dependence on rotor angle. These data are treated in terms of the effect of thermodynamic driving forces on reaction rates, and lead to equations relating rate constants and free energies to the stalling angle. These relations, in turn, are modeled using a formalism originally developed to treat electron and other transfer reactions. During stalling the free energy profile of the enzymatic steps is altered by a work term due to elastic structural twisting. Using biochemical and single molecule data, the dependence of the rate constant and equilibrium constant on the stall angle, as well as the Børnsted slope are predicted and compared with experiment. Reasonable agreement is found with stalling experiments for ATP and GTP binding. The model can be applied to other torque-generating steps of reversible ligand binding, such as ADP and Pi release, when sufficient data become available. PMID:26483483
Energy conservation and maximal entropy production in enzyme reactions.
Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš
2017-08-01
A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.
Hernández-Muñoz, P; Catalá, R; Gavara, R
2002-01-01
Knowledge of the extent of food/packaging interactions is essential to provide assurance of food quality and shelf life, especially in migration and sorption processes that commonly reach equilibrium during the lifetime of a commercial packaged foodstuff. The limits of sorption and migration must be measured in the presence of the specific food or an appropriate food simulant. The partition equilibrium of food aroma compounds between plastic films and foods or food simulants (K(A,P/L) has been characterized. Two polymers (LLDPE and PET), three organic compounds (ethyl caproate, hexanal and 2-phenylethanol), four food products with varying fat content (milk cream, mayonnaise, margarine and oil) and three simulants (ethanol 95%, n-heptane and isooctane) were selectedfor study. The results show the effect of the aroma compound volatility, and polarity, as well as its compatibility with the polymer and the food or food simulant. Equilibrium constants for the organic compound between the polymers and a gaseous phase (K(A,P/V)) as well as between the food (or food simulant) and a gaseous phase (K(A,L/V)) were also determined. An approach is presented to estimate K(A,P/V) from the binary equilibrium constants K(A,P/V) and K(A,L/V). Calculated results were shown to describe experimental data very well and indicated that compatibility between the aroma and the food or food simulant is the main contributing factor to the partition equilibrium describing the extent of food/packaging interactions. Therefore, the measurement of liquid/vapour equilibrium can be regarded as a powerful tool to compare the effectiveness of food simulants as substitutes of a particular food product and can be used as a guide for the selection of the appropriate simulant.
Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger
2016-11-01
All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and gas influx due to gas oversaturation in the aqueous medium.
Transscleral diffusion of ethacrynic acid and sodium fluorescein
Lin, Cheng-Wen; Wang, Yong; Challa, Pratap; Epstein, David L.
2007-01-01
Purpose One of the current limitations in developing novel glaucoma drugs that target the trabecular meshwork (TM) is the induced corneal toxicity from eyedrop formulations. To avoid the corneal toxicity, an alternative approach would be to deliver TM drugs through the sclera. To this end, we quantified ex vivo diffusion coefficient of a potential TM drug, ethacrynic acid (ECA), and investigated mechanisms of ECA transport in the sclera. Methods An Ussing-type diffusion apparatus was built to measure the apparent diffusion coefficient of ECA in fresh porcine sclera at 4 °C. To understand mechanisms of ECA transport, we quantified the transscleral transport of a fluorescent tracer, sodium fluorescein (NaF), that has a similar molecular weight but is more hydrophilic compared to ECA. Furthermore, we developed a mathematical model to simulate the transport processes and used it to analyze the experimental data. The model was also used to investigate the dependence of diffusion coefficients on volume fraction of viable cells and the binding of NaF and ECA to scleral tissues. Results The diffusion coefficients of ECA and NaF in the sclera were 48.5±15.1x10-7 cm2/s (n=9) and 5.23±1.93x10-7 cm2/s (n=8), respectively. Both diffusion coefficients were insensitive to cell shrinkage caused by ECA during the diffusion experiments and cell damage caused by the storage of tissues ex vivo before the experiments. Binding of ECA to scleral tissues could not be detected. The apparent maximum binding capacity and the apparent equilibrium dissociation constant for NaF were 80±5 mM and 2.5±0.5 mM (n=3), respectively. Conclusions These data demonstrated that ECA diffusion was minimally hindered by structures in the sclera, presumably due to the lack of cells and binding sites for ECA in the sclera. PMID:17356511
NASA Astrophysics Data System (ADS)
Foustoukos, Dionysis I.; Mysen, Bjorn O.
2012-06-01
A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the O-D⋯O environment. This difference allows enhanced gas solubility in the denser and more polar H2O clusters, and thus, affects the D/H exchange between the H2-D2 volatiles and the coexisting H2O-D2O mixtures. The proposed role of temperature in promoting differences in the density and polarity of hydrogen-bonded OHO and ODO molecules may be explained with isotope-specific molar volume effects similar to those suggested to account for the hydrogen isotope fractionation between H2O and hydroxide mineral phases (e.g. brucite) across large pressure intervals.
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
NASA Astrophysics Data System (ADS)
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
Equilibrium and kinetic adsorption study of a cationic dye by a natural adsorbent--silkworm pupa.
Noroozi, B; Sorial, G A; Bahrami, H; Arami, M
2007-01-02
In this work the use of silkworm pupa, which is the waste of silk spinning industries has been investigated as an adsorbent for the removal of C.I. Basic Blue 41. The amino acid nature of the pupa provided a reasonable capability for dye removal. Equilibrium adsorption isotherms and kinetics were investigated. The adsorption equilibrium data were analyzed by using various adsorption isotherm models and the results have shown that adsorption behavior of the dye could be described reasonably well by either Langmuir or Freundlich models. The characteristic parameters for each isotherm have been determined. The monolayer adsorption capacity was determined to be 555 mg/g. Kinetic studies indicated that the adsorption follows pseudo-second-order kinetics with a rate constant of 0.0434 and 0.0572 g/min mg for initial dye concentration of 200 mg/l at 20 and 40 degrees C, respectively. Kinetic studies showed that film diffusion and intra-particle diffusion were simultaneously operating during the adsorption process. The rate constant for intra-particle diffusion was estimated to be 1.985 mg/g min(0.5).
NASA Astrophysics Data System (ADS)
Darugar, V. R.; Vakili, M.; Nekoei, A. R.; Tayyari, S. F.; Afzali, R.
2017-12-01
Para halo, X = F, Cl, and Br, substitution effect on tautomerism, keto-enol content, molecular structure, intramolecular hydrogen bonding, and enol-enol equilibrium constants of 4,4,4-trifluoro-1-phenyl-1,3-butanedione, known as trifluorobenzoylacetone (TFBA), have been investigated by means of density functional theory calculations and NMR, IR, and UV-Vis spectroscopic methods. Comparing the calculated and experimental results suggests coexisting of two stable cis-enol forms of titled molecules in comparable proportions in the sample. The theoretical and experimental results show that the equilibrium constants between both stable cis-enol forms of the studied molecules are similar, about 1.1-1.2. According to the AIM calculated results performed at the B3LYP/6-311++G∗∗ level, the target para halo molecules have a hydrogen bond strength of about 18.6 kcal/mol, as a medium hydrogen bond, similar to that of TFBA. The theoretical and experimental results indicate that there is no considerable difference between the hydrogen bond strength of the X-substituted titled molecules.
NASA Technical Reports Server (NTRS)
Treybig, J. H.
1975-01-01
Thermal and equilibrium glide boundaries were used to analyze and/or design shuttle orbiter entry trajectories. Plots are presented of orbiter thermal and equilibrium glide boundaries in the drag/mass-relative velocity dynamic pressure-relative velocity, and altitude-relative velocity planes for an orbiter having a 32,000 pound payload and a 67.5% center of gravity location. These boundaries were defined for control points 1 through 4 of the shuttle orbiter for 40 deg-30 deg and 38 deg-28 deg ramped angle of attack entry profiles and 40 deg, 38 deg, 35 deg, 30 deg, 28 deg, and 25 deg constant angle of attack entry profiles each at 20 deg, 15 deg, and 10 deg constant body flap settings.
Disease Extinction Versus Persistence in Discrete-Time Epidemic Models.
van den Driessche, P; Yakubu, Abdul-Aziz
2018-04-12
We focus on discrete-time infectious disease models in populations that are governed by constant, geometric, Beverton-Holt or Ricker demographic equations, and give a method for computing the basic reproduction number, [Formula: see text]. When [Formula: see text] and the demographic population dynamics are asymptotically constant or under geometric growth (non-oscillatory), we prove global asymptotic stability of the disease-free equilibrium of the disease models. Under the same demographic assumption, when [Formula: see text], we prove uniform persistence of the disease. We apply our theoretical results to specific discrete-time epidemic models that are formulated for SEIR infections, cholera in humans and anthrax in animals. Our simulations show that a unique endemic equilibrium of each of the three specific disease models is asymptotically stable whenever [Formula: see text].
Separation of charge-regulated polyelectrolytes by pH-assisted diffusiophoresis.
Hsu, Jyh-Ping; Hsu, Yen-Rei; Shang-Hung, Hsieh; Tseng, Shiojenn
2017-03-29
The potential of separating colloidal particles through simultaneous application of a salt gradient and a pH gradient, or pH-assisted diffusiophoresis, is evaluated by considering the case of spherical polyelectrolytes (PEs) having different equilibrium dissociation constants in an aqueous solution with KCl as the background salt. The simulation results gathered reveal that the dependence of the particle velocity on pH is more sensitive than that in pH-assisted electrophoresis, where an electric field and a pH gradient are applied simultaneously. This implies that the separation efficiency of pH-assisted diffusiophoresis can be better than that of pH-assisted electrophoresis. In particular, two types of PE having different equilibrium dissociation constants can be separated effectively by applying the former by enhancing/reducing their diffusiophoretic velocities.
Efficient estimation of diffusion during dendritic solidification
NASA Technical Reports Server (NTRS)
Yeum, K. S.; Poirier, D. R.; Laxmanan, V.
1989-01-01
A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Shang, Hua-Yan
2017-08-01
In this paper, we apply a car-following model, fuel consumption model, emission model and electricity consumption model to explore the influences of energy consumption and emissions on each commuter's trip costs without late arrival at the equilibrium state. The numerical results show that the energy consumption and emissions have significant impacts on each commuter's trip cost without late arrival at the equilibrium state. The fuel cost and emission cost prominently enhance each commuter's trip cost and the trip cost increases with the number of vehicles, which shows that considering the fuel cost and emission cost in the trip cost will destroy the equilibrium state. However, the electricity cost slightly enhances each commuter's trip cost, but the trip cost is still approximately a constant, which indicates that considering the electricity cost in the trip cost does not destroy the equilibrium state.
A New Equilibrium State for Singly Synchronous Binary Asteroids
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.
2018-04-01
The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.
Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates
NASA Astrophysics Data System (ADS)
Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang
2018-03-01
Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.
Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates
NASA Astrophysics Data System (ADS)
Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang
2018-06-01
Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
NASA Astrophysics Data System (ADS)
Zhao, Yanliang; Wang, Meishan; Yang, Chuanlu; Ma, Xiaoguang; Li, Jing
2018-02-01
The construction of the complete third and the semi-diagonal quartic force fields including the anharmonicity of the ground state (X˜2A1) for yttrium dicarbide (YC2) is carried out employing the vibrational second-order perturbation theory (VPT2) in combination with the density functional theory (DFT). The equilibrium geometries optimization, anharmonic force field and vibrational spectroscopic constants of YC2 are calculated by B3LYP, B3PW91 and B3P86 methods. Aug-cc-pVnZ (n = D, T, Q) and cc-pVnZ-PP (n = D, T, Q) basis sets are chosen for C and Y atoms, respectively. The calculated geometry parameters of YC2 agree well with the corresponding experimental and previous theoretical results. The bonding characters of Ysbnd C2 or Csbnd C are discussed. Based on the optimized equilibrium geometries, the spectroscopic constants and anharmonic force field of YC2 are calculated. Comparing with the spectroscopic constants of YC2 derived from the experiment, the calculated results show that the B3PW91 and B3P86 methods are superior to B3LYP for YC2. The Coriolis coupling constants, cubic and quartic force constants of YC2 are reasonably predicted. Besides, the spectroscopic constants and anharmonic force field of Y13C2 (X˜2A1) and Y13CC (X˜2A‧) are calculated for the first time, which are expected to guide the high resolution experimental work for YC2 and its 13C isotopologues.
Robie, R.A.; Finch, C.B.; Hemingway, B.S.
1982-01-01
At 298.15 K, 017Cop and So are 131.9 and 151.0 J/(mole.K). Also 045DELTA Hof,298 = -1478.17 and 045DELTA Gof,298 = -1378.98 kJ/mole. The temperature dependence of the equilibrium constant for the quartz - fayalite - magnetite buffer reaction is thus calculated.-K.A.R.
Effect of Dunaliella tertiolecta organic exudates on the Fe(II) oxidation kinetics in seawater.
González, A G; Santana-Casiano, J M; González-Dávila, M; Pérez-Almeida, N; Suárez de Tangil, M
2014-07-15
The role played by the natural organic ligands excreted by the green algae Dunaliella tertiolecta on the Fe(II) oxidation rate constants was studied at different stages of growth. The concentration of dissolved organic carbon increased from 2.1 to 7.1 mg L(-1) over time of culture. The oxidation kinetics of Fe(II) was studied at nanomolar levels and under different physicochemical conditions of pH (7.2-8.2), temperature (5-35 °C), salinity (10-37), and dissolved organic carbon produced by cells (2.1-7.1 mg L(-1)). The experimental rate always decreased in the presence of organic exudates with respect to that in the control seawater. The Fe(II) oxidation rate constant was also studied in the context of Marcus theory, where ΔG° was 39.31-51.48 kJ mol(-1). A kinetic modeling approach was applied for computing the equilibrium and rate constants for Fe(II) and exudates present in solution, the Fe(II) speciation, and the contribution of each Fe(II) species to the overall oxidation rate constant. The best fit model took into account two acidity equilibrium constants for the Fe(II) complexing ligands with pKa,1=9.45 and pKa,2=4.9. The Fe(II) complexing constants were KFe(II)-LH=3×10(10) and KFe(II)-L=10(7), and the corresponding computed oxidation rates were 68±2 and 36±8 M(-1) min(-1), respectively.
Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H
2015-10-06
The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.
Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Kleinhenz, Julie E.
2011-01-01
The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C
Chétrite, G; Cassoly, R
1985-10-05
The cytoplasmic fragment of band 3 protein isolated from the human erythrocyte membrane was linked to a CNBr-activated Sepharose matrix in an attempt to measure, in batch experiments, its equilibrium binding constant with oxy- and deoxyhemoglobin at physiological pH and ionic strength values and in the presence or the absence of 2,3-diphosphoglycerate. All the experiments were done at pH 7.2, and equilibrium constants were computed on the basis of one hemoglobin tetramer bound per monomer of fragment. In 10 mM-phosphate buffer, a dissociation constant KD = 2 X 10(-4)M was measured for oxyhemoglobin and was shown to increase to 8 X 10(-4)M in the presence of 50 mM-NaCl. Association could not be demonstrated at higher salt concentrations. Diphosphoglycerate-stripped deoxyhemoglobin was shown to associate more strongly with the cytoplasmic fragment of band 3. In 10 mM-bis-Tris (pH 7.2) and in the presence of 120 mM-NaCl, a dissociation constant KD = 4 X 10(-4)M was measured. Upon addition of increasing amounts of 2,3-diphosphoglycerate, the complex formed between deoxyhemoglobin and the cytoplasmic fragment of band 3 was dissociated. On the reasonable assumption that the hemoglobin binding site present on band 3 fragment was not modified upon linking the protein to the Sepharose matrix, the results indicated that diphosphoglycerate-stripped deoxyhemoglobin or partially liganded hemoglobin tetramers in the T state could bind band 3 inside the intact human red blood cell.
Post, C B; Ray, W J; Gorenstein, D G
1989-01-24
Time-dependent 31P saturation-transfer studies were conducted with the Cd2+-activated form of muscle phosphoglucomutase to probe the origin of the 100-fold difference between its catalytic efficiency (in terms of kcat) and that of the more efficient Mg2+-activated enzyme. The present paper describes the equilibrium mixture of phosphoglucomutase and its substrate/product pair when the concentration of the Cd2+ enzyme approaches that of the substrate and how the nine-spin 31P NMR system provided by this mixture was treated. It shows that the presence of abortive complexes is not a significant factor in the reduced activity of the Cd2+ enzyme since the complex of the dephosphoenzyme and glucose 1,6-bisphosphate, which accounts for a large majority of the enzyme present at equilibrium, is catalytically competent. It also shows that rate constants for saturation transfer obtained at three different ratios of enzyme to free substrate are mutually compatible. These constants, which were measured at chemical equilibrium, can be used to provide a quantitative kinetic rationale for the reduced steady-state activity elicited by Cd2+ relative to Mg2+ [cf. Ray, W.J., Post, C.B., & Puvathingal, J.M. (1989) Biochemistry (following paper in this issue)]. They also provide minimal estimates of 350 and 150 s-1 for the rate constants describing (PO3-) transfer from the Cd2+ phosphoenzyme to the 6-position of bound glucose 1-phosphate and to the 1-position of bound glucose 6-phosphate, respectively. These minimal estimates are compared with analogous estimates for the Mg2+ and Li+ forms of the enzyme in the accompanying paper.
Lomozik, Lechoslaw; Jastrzab, Renata
2003-01-15
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.
An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors.
Jadey, Snehal; Auerbach, Anthony
2012-07-01
In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes ("catch" and "hold") that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement ("capping"). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.
An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors
Jadey, Snehal
2012-01-01
In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation. PMID:22732309
Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis C; Zhang, Yi; Su, Lei; Land, Donald P; Zhou, Feimeng
2009-03-12
At the air/buffer solution interface the kinetics of adsorption of amyloid beta peptide, Abeta(1-42), whose bulk concentration (submicromolar) is more than 2 orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure-time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Abeta adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Abeta bulk concentration and the solution temperature. A large activation energy (62.2 +/- 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Abeta bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Abeta transferred to a solid substrate and circular dichroism measurements of Abeta in the solution layer near the interface reveal that the natively unstructured Abeta in the bulk undergo a conformation change (folding) to mainly the alpha-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Abeta conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Abeta adsorption is kinetically controlled and the apparent rate constant is proportional to the Abeta bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Abeta aggregation/ fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial A/beta conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Abeta fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Abeta misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate.
Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis; Zhang, Yi; Su, Lei; Land, Donald; Zhou, Feimeng
2011-01-01
The kinetics of adsorption at the air/buffer solution interface of amyloid beta peptide, Aβ(1–42), whose bulk concentration (submicromolar) is more than two orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure–time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Aβ adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Aβ bulk concentration and the solution temperature. A large activation energy (62.2 ± 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Aβ bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Aβ transferred to a solid substrate and circular dichroism measurements of Aβ in the solution layer near the interface reveal that the natively unstructured Aβ in the bulk undergo a conformation change (folding) to mainly the α-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Aβ conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Aβ adsorption is kinetically controlled and the apparent rate constant is proportional to the Aβ bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Aβ aggregation/fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial Aβ conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Aβ fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Aβ misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate. PMID:19260715
Kumar, K Vasanth; Sivanesan, S
2005-08-31
Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.
NASA Astrophysics Data System (ADS)
Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.
This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.
Blurring out hydrogen: The dynamical structure of teflic acid
NASA Astrophysics Data System (ADS)
Herbers, S.; Obenchain, D. A.; Kraus, P.; Wachsmuth, D.; Grabow, J.-U.
2018-05-01
The microwave spectra of 10 teflic acid isotopologues were recorded in the frequency range of 3-25 GHz using supersonic jet-expansion Fourier transform microwave spectroscopy. Despite being asymmetric in its equilibrium structure, the delocalization of the hydrogen atom leads to a symmetric top vibrational ground state structure. In this work, we present the zero point structure obtained from the experimental rotational constants and an approach to determine the semi-experimental equilibrium structure aided by ab initio data. The Te-O bond length determined in the equilibrium structure is accurate to the picometer and can be used as a benchmark for computational methods treating relativistic effects.
In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.
Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana
2018-06-12
Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.
Effects of crowders on the equilibrium and kinetic properties of protein aggregation
NASA Astrophysics Data System (ADS)
Bridstrup, John; Yuan, Jian-Min
2016-08-01
The equilibrium and kinetic properties of protein aggregation systems in the presence of crowders are investigated using simple, illuminating models based on mass-action laws. Our model yields analytic results for equilibrium properties of protein aggregates, which fit experimental data of actin and ApoC-II with crowders reasonably well. When the effects of crowders on rate constants are considered, our kinetic model is in good agreement with experimental results for actin with dextran as the crowder. Furthermore, the model shows that as crowder volume fraction increases, the length distribution of fibrils becomes narrower and shifts to shorter values due to volume exclusion.
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
Cobbs, Gary
2012-08-16
Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.
Computer analysis of potentiometric data of complexes formation in the solution
NASA Astrophysics Data System (ADS)
Jastrzab, Renata; Kaczmarek, Małgorzata T.; Tylkowski, Bartosz; Odani, Akira
2018-02-01
The determination of equilibrium constants is an important process for many branches of chemistry. In this review we provide the readers with a discussion on computer methods which have been applied for elaboration of potentiometric experimental data generated during complexes formation in solution. The review describes both: general basis of modeling tools and examples of the use of calculated stability constants.
Ng, Yee-Hong; Bettens, Ryan P A
2016-03-03
Using the method of modified Shepard's interpolation to construct potential energy surfaces of the H2O, O3, and HCOOH molecules, we compute vibrationally averaged isotropic nuclear shielding constants ⟨σ⟩ of the three molecules via quantum diffusion Monte Carlo (QDMC). The QDMC results are compared to that of second-order perturbation theory (PT), to see if second-order PT is adequate for obtaining accurate values of nuclear shielding constants of molecules with large amplitude motions. ⟨σ⟩ computed by the two approaches differ for the hydrogens and carbonyl oxygen of HCOOH, suggesting that for certain molecules such as HCOOH where big displacements away from equilibrium happen (internal OH rotation), ⟨σ⟩ of experimental quality may only be obtainable with the use of more sophisticated and accurate methods, such as quantum diffusion Monte Carlo. The approach of modified Shepard's interpolation is also extended to construct shielding constants σ surfaces of the three molecules. By using a σ surface with the equilibrium geometry as a single data point to compute isotropic nuclear shielding constants for each descendant in the QDMC ensemble representing the ground state wave function, we reproduce the results obtained through ab initio computed σ to within statistical noise. Development of such an approach could thereby alleviate the need for any future costly ab initio σ calculations.
Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium
Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues
2013-01-01
Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851
NASA Astrophysics Data System (ADS)
Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro
2018-02-01
The viscoelastic deformation of an elastic-viscoelastic composite system is significantly different from that of a simple viscoelastic medium. Here, we show that complicated transient deformation due to viscoelastic stress relaxation after a megathrust earthquake can occur even in a very simple situation, in which an elastic surface layer (lithosphere) is underlain by a viscoelastic substratum (asthenosphere) under gravity. Although the overall decay rate of the system is controlled by the intrinsic relaxation time constant of the asthenosphere, the apparent decay time constant at each observation point is significantly different from place to place and generally much longer than the intrinsic relaxation time constant of the asthenosphere. It is also not rare that the sense of displacement rate is reversed during the viscoelastic relaxation. If we do not bear these points in mind, we may draw false conclusions from observed deformation data. Such complicated transient behavior can be explained mathematically from the characteristics of viscoelastic solution: for an elastic-viscoelastic layered half-space, the viscoelastic solution is expressed as superposition of three decaying components with different relaxation time constants that depend on wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Luther W.; Campbell, James A.; Clark, Sue B.
2014-01-21
Electrospray ionization - mass spectrometry (ESI-MS) was used for the characterization of uranyl complexed to tributyl phosphate (TBP) and dibutyl phosphate (DBP). The stoichiometry of uranyl with TBP and DBP was determined, and the gas phase speciation was found to be dependent on the cone voltage applied to induce fragmentation on the gas phase complexes. To quantitatively compare the gas phase distribution of species to solution, apparent stability constants were calculated. With a cone voltage of 80V, the apparent stability constants for the complexes UO2(NO3)2•2TBP, UO2(NO3)2(H2O)•2TBP, and UO2(DBP)+ were determined. With a lower cone voltage applied, larger complexes were observedmore » and stability constants for the complexes UO2(NO3)2•3TBP and UO2(DBP)42- were determined.« less
Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.
Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet
2009-01-15
Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.
Torun, Mehmet; Dincer, Cuneyt; Topuz, Ayhan; Sahin-Nadeem, Hilal; Ozdemir, Feramuz
2015-05-01
In the present study, aqueous extraction kinetics of total soluble solids (TSS), total phenolic content (TPC) and total flavonoid content (TFC) from Salvia fruticosa leaves were investigated throughout 150 min. of extraction period against temperature (60-80 °C), particle size (2-8 mm) and loading percentage (1-4 %). The extract yielded 25 g/100 g TSS which contained 30 g/100 g TPC and 25 g/100 g TFC. The extraction data in time course fit with reversible first order kinetic model. All tested variables showed significant effect on the estimated kinetic parameters except equilibrium concentration. Increasing the extraction temperature resulted high extraction rate constants and equilibrium concentrations of the tested variables notably above 70 °C. By using the Arrhenius relationship, activation energy of the TSS, TPC and TFC were determined as 46.11 ± 5.61, 36.80 ± 3.12 and 33.52 ± 2.23 kj/mol, respectively. By decreasing the particle size, the extraction rate constants and diffusion coefficients exponentially increased whereas equilibrium concentrations did not change significantly. The equilibrium concentrations of the tested parameters showed linear behavior with increasing the loading percentage of the sage, however; the change in extraction rates did not show linear behavior due to submerging effect of 4 % loading.
NASA Astrophysics Data System (ADS)
Valente, Pedro; Vassilicos, Christos
2012-11-01
The cornerstone assumption that Cɛ ≡ ɛL /u3 ~ constant was found to breakdown in certain nonequilibrium regions of decaying grid-generated turbulence with wide power-law near -5/3 spectra where the behaviour of Cɛ is, instead, very close to Cɛ ~ ReL- 1 (Valente & Vassilicos, 2012 [Phys. Rev. Lett. 108, 214503]). We investigate nonequilibrium turbulence by measuring with two cross wire anemometers the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence. For the nonequilibrium case it is shown that the production and transport terms are negligible for scales smaller than about a third of L. For both cases it is shown that the peak of the scale-by-scale energy transfer scales as u3 / L which is the expected behaviour for equilibrium turbulence. However, for the nonequilibrium case this implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the equilibrium case. P. V. acknowledges the financial support from Fundação para a Ciência e a Tecnologia (SFRH/BD/61223/2009, cofinanced by POPH/FSE).
Stress-stress fluctuation formula for elastic constants in the NPT ensemble
NASA Astrophysics Data System (ADS)
Lips, Dominik; Maass, Philipp
2018-05-01
Several fluctuation formulas are available for calculating elastic constants from equilibrium correlation functions in computer simulations, but the ones available for simulations at constant pressure exhibit slow convergence properties and cannot be used for the determination of local elastic constants. To overcome these drawbacks, we derive a stress-stress fluctuation formula in the NPT ensemble based on known expressions in the NVT ensemble. We validate the formula in the NPT ensemble by calculating elastic constants for the simple nearest-neighbor Lennard-Jones crystal and by comparing the results with those obtained in the NVT ensemble. For both local and bulk elastic constants we find an excellent agreement between the simulated data in the two ensembles. To demonstrate the usefulness of the formula, we apply it to determine the elastic constants of a simulated lipid bilayer.
The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane.
Scheller, Silvan; Goenrich, Meike; Boecher, Reinhard; Thauer, Rudolf K; Jaun, Bernhard
2010-06-03
Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.
Hurtado, Pablo I
2005-10-01
We investigate the nonequilibrium behavior of a one-dimensional binary fluid on the basis of Boltzmann equation, using an infinitely strong shock wave as probe. Density, velocity, and temperature profiles are obtained as a function of the mixture mass ratio mu. We show that temperature overshoots near the shock layer, and that heavy particles are denser, slower, and cooler than light particles in the strong nonequilibrium region around the shock. The shock width omega(mu), which characterizes the size of this region, decreases as omega(mu) approximately mu(1/3) for mu-->0. In this limit, two very different length scales control the fluid structure, with heavy particles equilibrating much faster than light ones. Hydrodynamic fields relax exponentially toward equilibrium: phi(chi) approximately exp[-chi/lambda]. The scale separation is also apparent here, with two typical scales, lambda1 and lambda2, such that lambda1 approximately mu(1/2 as mu-->0, while lambda2, which is the slow scale controlling the fluid's asymptotic relaxation, increases to a constant value in this limit. These results are discussed in light of recent numerical studies on the nonequilibrium behavior of similar one-dimensional binary fluids.
Grant-Preece, Paris; Fang, Hongjuan; Schmidtke, Leigh M; Clark, Andrew C
2013-11-01
The efficiency of different white wine antioxidant systems in preventing aldehyde production from amino acids by oxidative processes is not well understood. The aim of this study was to assess the efficiency of sulphur dioxide alone and in combination with either glutathione, ascorbic acid or its stereoisomer erythorbic acid, in preventing formation of the sensorially important compounds methional and phenylacetaldehyde from methionine and phenylalanine in model white wine. UHPLC, GC-MS/MS, LC-MS/MS, flow injection analysis and luminescence sensors determined both compositional changes during storage, and sulphur dioxide-aldehyde apparent equilibrium constants. Depending on temperature (25 or 45°C) or extent of oxygen supply, sulphur dioxide was equally or more efficient in impeding the production of methional compared to the other antioxidant systems. For phenylacetaldehyde, erythorbic acid or glutathione with sulphur dioxide provided improved inhibition compared to sulphur dioxide alone, in conditions of limited oxygen consumption. The results also demonstrate the extent to which sulphur dioxide addition can lower the free aldehyde concentrations to below their aroma thresholds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perić, M; Jerosimić, S; Mitić, M; Milovanović, M; Ranković, R
2015-05-07
In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is considered as a combination of the usual Renner-Teller effect, appearing in triatomic species, and a kind of the Jahn-Teller effect, similar to the original one arising in highly symmetric molecules. Only four parameters (plus the spin-orbit constant, if the spin effects are taken into account), which can be extracted from ab initio calculations carried out at five appropriate (planar) molecular geometries, are sufficient for building up the Hamiltonian matrix whose diagonalization results in the complete low-energy (bending) vibronic spectrum. The main result of the present study is the proof that the diabatization scheme, hidden beneath the apparent simplicity of the model, can safely be carried out, at small-amplitude bending vibrations, without cumbersome computation of non-adiabatic matrix elements at large number of molecular geometries.
Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin
2007-12-01
Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.
Solubilization and purification of melatonin receptors from lizard brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.
Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less
Mathematical modeling of two phase stratified flow in a microchannel with curved interface
NASA Astrophysics Data System (ADS)
Dandekar, Rajat; Picardo, Jason R.; Pushpavanam, S.
2017-11-01
Stratified or layered two-phase flows are encountered in several applications of microchannels, such as solvent extraction. Assuming steady, unidirectional creeping flow, it is possible to solve the Stokes equations by the method of eigenfunctions, provided the interface is flat and meets the wall with a 90 degree contact angle. However, in reality the contact angle depends on the pair of liquids and the material of the channel, and differs significantly from 90 degrees in many practical cases. For unidirectional flow, this implies that the interface is a circular arc (of constant curvature). We solve this problem within the framework of eigenfunctions, using the procedure developed by Shankar. We consider two distinct cases: (a) the interface meets the wall with the equilibrium contact angle; (b) the interface is pinned by surface treatment of the walls, so that the flow rates determine the apparent contact angle. We show that the contact angle appreciably affects the velocity profile and the volume fractions of the liquids, while limiting the range of flow rates that can be sustained without the interface touching the top/bottom walls. Non-intuitively, we find that the pressure drop is reduced when the more viscous liquid wets the wall.
Characterization of autoantibodies to vasoactive intestinal peptide in asthma.
Paul, S; Said, S I; Thompson, A B; Volle, D J; Agrawal, D K; Foda, H; de la Rocha, S
1989-07-01
Vasoactive intestinal peptide (VIP) is a potent relaxant of the airway smooth muscle. In this study, VIP-binding autoantibodies were observed in the plasma of 18% asthma patients and 16% healthy subjects. Immunoprecipitation studies and chromatography on DEAE-cellulose and immobilized protein G indicated that the plasma VIP-binding activity was largely due to IgG antibodies. Saturation analysis of VIP binding by the plasmas suggested the presence of one or two classes of autoantibodies, distinguished by their apparent equilibrium affinity constants (Ka). The autoantibodies from asthma patients exhibited a larger VIP-binding affinity compared to those from healthy subjects (Ka 7.8 x 10(9) M-1 and 0.13 x 10(9) M-1, respectively; P less than 0.005). The antibodies were specific for VIP, judged by their poor reaction with peptides bearing partial sequence homology with VIP (peptide histidine isoleucine, growth hormone releasing factor and secretin). IgG prepared from the plasma of an antibody-positive asthma patient inhibited the saturable binding of 125I-VIP by receptors in guinea pig lung membranes (by 39-59%; P less than 0.001). These observations are consistent with a role for the VIP autoantibodies in the airway hyperresponsiveness of asthma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H.A. Jr.
1962-08-01
I. Methyl 2-methyl-2-thiazoline-4-carboxylate was synthesized and converted to the corresponding acid. The behavior of the carboxythiazoline in various concentrations of mineral acids was studied spectrophotometrically. The cyclization of N-acetylcysteine to form a thiazoline-ring compound in concentrated mineral acids was also studied by this means. N-Acetylcysteine in concentrated mineral acid solutions yielded 2-methyl-2-thiazoline-4-carboxylic acid, which also was obtained by controlied hydrolysis of the corresponding methyl ester. Hydrolysis of methyl 2-methyl2-thiazoline-4-carboxylate, pK 3.05, in 0.1M sodium hydroxide yielded the corresponding carboxythiazoline in solution, pK 2.20 and 4.95. The carboxythiazoline was hydrolyzed very slowly in 7M hydrochloric acid, but the velocity of reactionmore » increased with decreasing acid concentration to a maximum at about pH 1.7; the products were N- and Sacetylcysteine, as well as cysteine and acetic acid. At acid concentrations below 0.2M, the last two products were formed slowly, and a pseudo-equilibrium could be established between thiazolinium ion, N-, and S-acetylcysteine. Equilibrium constants were determined. II. 4,4'-Dithiobis (benzenesulfonic acid) (I) and 4,4'-dithiobis(1-naphthalenesulfonic acid) (II) were synthesized from sulfanilic and naphthionic acids, respectively. The absorption spectra of I and II and of the corresponding mercaptans were determined. The thiol-disuifide interchange reactions were studied by spectrophotometric means for the reactions of cysteine with I and with II, and the equilibrium constants were determined. The systems had spectra very similar to those of the respective mixed disuifides with cysteine, and it was not possible to determine the concentrations from absorbancy measurements. On the other hand, the mercaptide ions had spectra different from the other species, with maxima at 285 and 348 m mu , respectively, and the concentrations of the corresponding mercaptans could be calculated from the absorbancies at these wavelengths. By appropriate choice of the initial concentrations and of pH, the equilibrium concentrations could be made negligible, and the equilibrium constants determined.« less
Friedly, J.C.; Kent, D.B.; Davis, J.A.
2002-01-01
Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results suggest that the published solubility for ferrihydrite reasonably approximates the Fe solubility of the hydroxypolymer coatings on the sediments. Aluminum may be somewhat more soluble than represented by the equilibrium constant for gibbsite, and its dissolution may be rate controlled when reacting with Ca - EDTA complexes.
Exact analytical thermodynamic expressions for a Brownian heat engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2015-09-01
The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.
Exact analytical thermodynamic expressions for a Brownian heat engine.
Taye, Mesfin Asfaw
2015-09-01
The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t. Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.
Interaction between methyl glyoxal and ascorbic acid: experimental and theoretical aspects
NASA Astrophysics Data System (ADS)
Banerjee, D.; Koll, A.; Filarowski, A.; Bhattacharyya, S. P.; Mukherjee, S.
2004-06-01
The absorption spectral change of methyl glyoxal (MG) due to the interaction with ascorbic acid (AA or Vitamin C) has been investigated using steady-state spectroscopic technique. A plausible explanation for the spectral change has been discussed on the basis of hydrogen bonding interaction between the two interacting species. The equilibrium constant for the complex formation due to hydrogen bonding interaction between MG and AA has been obtained from absorption spectral changes. Ab inito calculations with DFT B3LYP/6/31G (d,p) basis sets have been used to find out the molecular structure of the hydrogen bonded complex. The O⋯H distance found in the OH⋯O hydrogen bond turns out to be quite short (1.974 Å) which is in conformity with the large value of the equilibrium constant determined experimentally.
NMR structural study of the prototropic equilibrium in solution of Schiff bases as model compounds.
Ortegón-Reyna, David; Garcías-Morales, Cesar; Padilla-Martínez, Itzia; García-Báez, Efren; Aríza-Castolo, Armando; Peraza-Campos, Ana; Martínez-Martínez, Francisco
2013-12-31
An NMR titration method has been used to simultaneously measure the acid dissociation constant (pKa) and the intramolecular NHO prototropic constant ΔKNHO on a set of Schiff bases. The model compounds were synthesized from benzylamine and substituted ortho-hydroxyaldehydes, appropriately substituted with electron-donating and electron-withdrawing groups to modulate the acidity of the intramolecular NHO hydrogen bond. The structure in solution was established by 1H-, 13C- and 15N-NMR spectroscopy. The physicochemical parameters of the intramolecular NHO hydrogen bond (pKa, ΔKNHO and ΔΔG°) were obtained from 1H-NMR titration data and pH measurements. The Henderson-Hasselbalch data analysis indicated that the systems are weakly acidic, and the predominant NHO equilibrium was established using Polster-Lachmann δ-diagram analysis and Perrin model data linearization.
Relaxation of vacuum energy in q-theory
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
NASA Astrophysics Data System (ADS)
Shock, Everetr L.; Koretsky, Carla M.
1995-04-01
Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.
Romero, Eduardo E; Hernandez, Florencio E
2018-01-03
Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.
Millimeter Wave Spectroscopy and Equilibrium Structure Determination of Pyrimidine (m-C_4H_4N_2)
NASA Astrophysics Data System (ADS)
Heim, Zachary N.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.
2015-06-01
Pyrimidine, the meta substituted dinitrogen analog of benzene, has been studied in the mm-wave region from 260 - 360 GHz, expanding on previous studies up to 337 GHz. The spectra of all four of the singly-substituted 13C and 15N isotopologues were observed in natural abundance. Samples of deuterium enriched pyrimidine were synthesized, giving access to several deuterium-substituted isotopologues. The experimental rotational constants have been corrected for vibration-rotation coupling and electron mass. The vibration-rotation corrections were calculated with an anharmonic frequency calculation at the CCSD[T]/ANO1 level using CFOUR. An equilibrium structure determination has been performed using the corrected rotational constants with the xrefit module of CFOUR. Several vibrational satellites of pyrimidine have also been studied. Their rotational constants have been compared to those obtained computationally. Z. Kisiel, L. Pszczolkowski, I. R. Medvedev, M. Winnewisser, F. C. De Lucia, E. Herbst, J. Mol. Spectrosc. 233, 231-243 (2005). G. L. Blackman, R. D. Brown, F. R. Burden, J. Mol. Spectrosc. 35, 444-454 (1970). W. Caminati, D. Damiani, Chem. Phys. Lett. 179, 460-462 (1991).
Stresses and elastic constants of crystalline sodium, from molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.
1985-02-01
The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the resultsmore » to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya
The paper by Campbell et al. was recently brought to my attention. This comment is written to provide greater clarity to the community to prevent misconceptions regarding the entropies being discussed in that work and to clarify the differences between the adsorbate standard states suggested by Campbell and by Savara.
Savara, Aditya
2016-08-15
The paper by Campbell et al. was recently brought to my attention. This comment is written to provide greater clarity to the community to prevent misconceptions regarding the entropies being discussed in that work and to clarify the differences between the adsorbate standard states suggested by Campbell and by Savara.
Methane and carbon at equilibrium in source rocks
2013-01-01
Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266
Virtual trajectories of single-joint movements performed under two basic strategies.
Latash, M L; Gottlieb, G L
1992-01-01
The framework of the equilibrium point hypothesis has been used to analyse motor control processes for single-joint movements. Virtual trajectories and joint stiffness were reconstructed for different movement speeds and distances when subjects were instructed either to move "as fast as possible" or to intentionally vary movement speed. These instructions are assumed to be associated with similar or different rates of change of hypothetical central control variables (corresponding to the speed-sensitive and speed-insensitive strategies). The subjects were trained to perform relatively slow, moderately fast and very fast (nominal movement times 800, 400 and 250 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the motor command for a series of movements while ignoring possible changes in the external torque which could slowly and unpredictably increase, decrease, or remain constant. The total muscle torque was calculated as a sum of external and inertial components. Fast movements over different distances were made with the speed-insensitive strategy. They were characterized by an increase in joint stiffness near the midpoint of the movements which was relatively independent of movement amplitude. Their virtual trajectories had a non-monotonic N-shape. All three arms of the N-shape scaled with movement amplitude. Movements over one distance at different speeds were made with a speed-sensitive strategy. They demonstrated different patterns of virtual trajectories and joint stiffness that depended on movement speed. The N-shape became less apparent for moderately fast movements and virtually disappeared for the slow movements. Slow movements showed no visible increase in joint stiffness.(ABSTRACT TRUNCATED AT 250 WORDS)
Güzel, Fuat; Yakut, Hakan; Topal, Giray
2008-05-30
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.
NASA Astrophysics Data System (ADS)
Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong
2017-12-01
The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.
Gulick, Sean P S; Jaeger, John M; Mix, Alan C; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L; Berbel, Glaucia B B; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Kioka, Arata; Konno, Susumu; LeVay, Leah J; März, Christian; Matsuzaki, Kenji M; McClymont, Erin L; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R; Ridgway, Kenneth D; Romero, Oscar E; Slagle, Angela L; Stoner, Joseph S; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D; Worthington, Lindsay L; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M
2015-12-08
Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.
Diffusion model validation and interpretation of stable isotopes in river and lake ice
Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.
2002-01-01
The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.
Guzun, Rita; Saks, Valdur
2010-03-08
The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.
Jaeger, John M.; Mix, Alan C.; Asahi, Hirofumi; Bahlburg, Heinrich; Belanger, Christina L.; Berbel, Glaucia B. B.; Childress, Laurel; Cowan, Ellen; Drab, Laureen; Forwick, Matthias; Fukumura, Akemi; Ge, Shulan; Gupta, Shyam; Konno, Susumu; LeVay, Leah J.; März, Christian; McClymont, Erin L.; Moy, Chris; Müller, Juliane; Nakamura, Atsunori; Ojima, Takanori; Ribeiro, Fabiana R.; Ridgway, Kenneth D.; Romero, Oscar E.; Slagle, Angela L.; Stoner, Joseph S.; St-Onge, Guillaume; Suto, Itsuki; Walczak, Maureen D.; Worthington, Lindsay L.; Bailey, Ian; Enkelmann, Eva; Reece, Robert; Swartz, John M.
2015-01-01
Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8–1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2–0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50–80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale. PMID:26598689
Lin, Wei; Jiang, Ruifen; Shen, Yong; Xiong, Yaxin; Hu, Sizi; Xu, Jianqiao; Ouyang, Gangfeng
2018-04-13
Pre-equilibrium passive sampling is a simple and promising technique for studying sampling kinetics, which is crucial to determine the distribution, transfer and fate of hydrophobic organic compounds (HOCs) in environmental water and organisms. Environmental water samples contain complex matrices that complicate the traditional calibration process for obtaining the accurate rate constants. This study proposed a QSAR model to predict the sampling rate constants of HOCs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides) in aqueous systems containing complex matrices. A homemade flow-through system was established to simulate an actual aqueous environment containing dissolved organic matter (DOM) i.e. humic acid (HA) and (2-Hydroxypropyl)-β-cyclodextrin (β-HPCD)), and to obtain the experimental rate constants. Then, a quantitative structure-activity relationship (QSAR) model using Genetic Algorithm-Multiple Linear Regression (GA-MLR) was found to correlate the experimental rate constants to the system state including physicochemical parameters of the HOCs and DOM which were calculated and selected as descriptors by Density Functional Theory (DFT) and Chem 3D. The experimental results showed that the rate constants significantly increased as the concentration of DOM increased, and the enhancement factors of 70-fold and 34-fold were observed for the HOCs in HA and β-HPCD, respectively. The established QSAR model was validated as credible (R Adj. 2 =0.862) and predictable (Q 2 =0.835) in estimating the rate constants of HOCs for complex aqueous sampling, and a probable mechanism was developed by comparison to the reported theoretical study. The present study established a QSAR model of passive sampling rate constants and calibrated the effect of DOM on the sampling kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....
Local Equilibrium and Retardation Revisited.
Hansen, Scott K; Vesselinov, Velimir V
2018-01-01
In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Rao, Govind S.; Rao, Marie Luise; Thilmann, Astrid; Quednau, Hans D.
1981-01-01
1. Influx and efflux of l-tri-[125I]iodothyronine with isolated rat liver parenchymal cells and their plasma-membrane vesicles were studied by a rapid centrifugation technique. 2. At 23°C and in the concentration range that included the concentration of free l-tri-iodothyronine in rat plasma (3–5pm) influx into cells was saturable; an apparent Kt value of 8.6±1.6pm was obtained. 3. At 5pm-l-tri-[125I]iodothyronine in the external medium the ratios of the concentrations inside to outside in cells and plasma-membrane vesicles were 38:1 and 366:1 respectively after 7s of incubation. At equilibrium (60s at 23°C) uptake of l-tri-[125I]iodothyronine by cells was linear with the hormone concentration, whereas that by plasma-membrane vesicles exhibited an apparent saturation with a Kd value of 6.1±1.3pm. 4. Efflux of l-tri-[125I]iodothyronine from cells equilibrated with the hormone (5–123pm) was constant up to 21 s; the amount that flowed out was 17.7±3.8% when cells were equilibrated with 5pm-hormone. When plasma-membrane vesicles were equilibrated with l-tri-[125I]iodothyronine (556–1226pm) 66.8±5.8% flowed out after 21 s. 5. From a consideration of the data on efflux from cells and binding of l-tri-[125I]iodothyronine to the liver homogenate, as studied by the charcoal-adsorption and equilibrium-dialysis methods, it appears that 18–22% of the hormone exists in the free form in the cell. 6. Vinblastine and colchicine diminished the uptake of l-tri-[125I]iodothyronine by cells but not by plasma-membrane vesicles; binding to the cytosol fraction was not affected. Phenylbutazone, 6-n-propyl-2-thiouracil, methimazole and corticosterone diminished the uptake by cells, plasma-membrane vesicles and binding to the cytosol fraction to different extents. 7. These results suggest that at low concentrations of l-tri-[125I]iodothyronine rat liver cells and their plasma-membrane vesicles accumulated the hormone against an apparent gradient by a membrane-mediated process. Contribution of cytoplasmic proteins to uptake by plasma-membrane vesicles was negligible. The amount of l-tri-[125I]iodothyronine required to achieve half-maximal uptake agrees with that occurring in the free form in the blood, conferring physiological importance to the transporting system in the plasma membrane of the liver cell. PMID:6275848
Spectroscopy of selected metal-containing diatomic molecules
NASA Astrophysics Data System (ADS)
Gordon, Iouli E.
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Sigma+ electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH, and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant oe for MnH was found to be 1546.84518(65) cm-1, the equilibrium rotational constant Be was found to be 5.6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1.7308601(47) A. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3.5 mum region using a Fourier transform spectrometer. Many bands were observed for the A'3phi- X3phi electronic transition of CoH and CoD. In addition, a new [13.3]4 electronic state was found by observing the [13.3]4-X3phi3 and [13.3]4- X3phi4 transitions in the spectrum of CoD. Analysis of the transitions with DeltaO = 0, +/-1 provided more accurate values of spin-orbit splittings between O = 4 and O = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800--11 300 cm-1 were recorded at a resolution of 0.04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1Sigma+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, lambda, and Fermi contact parameter, bF, in the ground X9Sigma- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.
Spectroscopy of selected metal-containing diatomic molecules
NASA Astrophysics Data System (ADS)
Gordon, Iouli
Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7[sigma]+ electronic state. The vibration-rotation bands from v = 1 to 0 to v = 3 to 2 for MnH, and from v = 1 to 0 to v = 4 to 3 for MnD were recorded at an instrumental resolution of 0. 0085 cm-1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant [omega]e for MnH was found to be 1546. 84518(65) cm-1, the equilibrium rotational constant Be was found to be 5. 6856789(103) cm-1 and the equilibrium bond distance re was determined to be 1. 7308601(47) ?. New high resolution emission spectra of CoH and CoD molecules have been recorded in the 640 nm to 3. 5 _m region using a Fourier transform spectrometer. Many bands were observed for the A'3?-X3? electronic transition of CoH and CoD. In addition, a new [13. 3]4 electronic state was found by observing the [13. 3]4- X3?3 and [13. 3]4-X3?4 transitions in the spectrum of CoD. Analysis of the transitions with [delta][omega] = 0, ?1 provided more accurate values of spin-orbit splittings between [omega] = 4 and [omega] = 3 components. The ground state for both molecules was fitted both to band and Dunham-type constants. The estimated band constants of the perturbed upper states were also obtained. The emission spectrum of gas-phase YbO has been investigated using a Fourier transform spectrometer. A total of 8 red-degraded bands in the range 9 800 ? 11 300 cm-1 were recorded at a resolution of 0. 04 cm-1. Because of the multiple isotopomers present in the spectra, only 3 bands were rotationally analyzed. Perturbations were identified in two of these bands and all 3 transitions were found to terminate at the X1[sigma]+ ground electronic state. The electronic configurations that give rise to the observed states are discussed and molecular parameters for all of the analyzed bands are reported. Electronic spectra of the previously unobserved EuH and EuD molecules were studied by means of Fourier transform spectroscopy and laser-induced fluorescence. The extreme complexity of these transitions made rotational assignments of EuH bands impossible. However, the spin-spin interaction constant, [lambda], and Fermi contact parameter, bF, in the ground X9[sigma]- electronic state were estimated for the 151EuH and 153EuH isotopologues. Electronic spectra of SmH, SmCl, TmH and ErF molecules were recorded for the first time using Fourier transform spectrometer. The poor signal to noise ratio of the observed bands coupled with their complexity prevented a rotational analysis. The electronic states that may be involved in the observed transitions are discussed.
Acoustic positioning and orientation prediction
NASA Technical Reports Server (NTRS)
Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)
1990-01-01
A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.
The economic impact of public resource supply constraints in northeast Oregon.
Edward C Waters; David W. Holland; Richard W. Haynes
1977-01-01
Traditional, fixed-price (input-output) economic models provide a useful framework for conceptualizing links in a regional economy. Apparent shortcomings in these models, however, can severely restrict our ability to deduce valid prescriptions for public policy and economic development. A more efficient approach using regional computable general equilibrium (CGE)...
Simulating equilibrium processes in the Ga(NO3)3-H2O-NaOH system
NASA Astrophysics Data System (ADS)
Fedorova, E. A.; Bakhteev, S. A.; Maskaeva, L. N.; Yusupov, R. A.; Markov, V. F.
2016-06-01
Equilibrium processes in the Ga(NO3)3-H2O-NaOH system are simulated with allowance for the formation of precipitates of various compositions using experimental data from potentiometric titration and theoretical studies. The values of the instability constants are calculated along with the stoichiometric compositions of the resulting compounds. It is found that pH ranges of 1.0 to 4.3 and 12.0 to 14.0 are best for the deposition of gallium chalcogenide films.
Chiral recognition by formation of paramagnetic diastereomeric complexes
NASA Astrophysics Data System (ADS)
Scheffler, K.; Höfler, U.; Schuler, P.; Stegmann, H. B.
The chiral 4-(α-hydroxy-benzyl)-2,6-di-tert. butyl-phenoxyl has been examined in its racemic form in toluene and carbontetrachloride. On adding of chiral auxiliaries (R)-resp. (S)-N,N-dimethyl-1-phenylethylamine or (S)-phenylethyl-amine two different couplings of the β-proton are recorded by ENDOR spectroscopy. The experimental results are interpreted by a ternary equilibrium between radical, solvent and auxiliary. A model for the suggested association processes is given and equilibrium constants and corresponding enthalpies are calculated.
1982-03-01
observed coherent structure of the wall layer flow and will now be briefly described. Over the past decade, it has been well documented (see, for example...D2, and x are all arbitrary constants. Equilibrium flows have been examined experimentally for a number of years and an equilibrium boundary layer...CP93, Paper No. 27, 6. Clauser, F.H. (1954). "Turbulent Boundary Layers in Adverse Pressure Gradients", J. Aeronaut. Sci., 21, pp. 91-108. 7. Clauser
NASA Astrophysics Data System (ADS)
Ibrahim, Adyda; Saaban, Azizan; Zaibidi, Nerda Zura
2017-11-01
This paper considers an n-firm oligopoly market where each firm produces a single homogenous product under a constant unit cost. Nonlinearity is introduced into the model of this oligopoly market by assuming the market has an isoelastic demand function. Furthermore, instead of the usual assumption of perfectly rational firms, they are assumed to be boundedly rational in adjusting their outputs at each period. The equilibrium of this n discrete dimensional system is obtained and its local stability is calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalchukova, O. V., E-mail: okovalchukova@mail.ru; Strashnova, S. B.; Romashkina, E. P.
2013-03-15
3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.
Photocatalytic degradation of p,p'-DDT under UV and visible light using interstitial N-doped TiO₂.
Ananpattarachai, Jirapat; Kajitvichyanukul, Puangrat
2015-01-01
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (or p,p'-DDT) is one of the most persistent pesticides. It is resistant to breakdown in nature and cause the water contamination problem. In this work, a major objective was to demonstrate the application of N-doped TiO2 in degradation and mineralization of the p,p'-DDT under UV and visible light in aqueous solution. The N-doped TiO2 nanopowders were prepared by a simple modified sol-gel procedure using diethanolamine (DEA) as a nitrogen source. The catalyst characteristics were investigated using XRD, SEM, TEM, and XPS. The adsorption and photocatalytic oxidation of p,p'-DDT using the synthesized N-doped TiO2 under UV and visible light were conducted in a batch photocatalytic experiment. The kinetics and p,p'-DDT degradation performance of the N-doped TiO2 were evaluated. Results show that the N-doped TiO2 can degrade p,p'-DDT effectively under both UV and visible lights. The rate constant of the p,p'-DDT degradation under UV light was only 0.0121 min(-1), whereas the rate constant of the p,p'-DDT degradation under visible light was 0.1282 min(-1). Under visible light, the 100% degradation of p,p'-DDT were obtained from N-doped TiO2 catalyst. The reaction rate of p,p'-DDT degradation using N-doped TiO2 under visible light was sixfold higher than that under UV light. According to Langmuir-Hinshelwood model, the adsorption equilibrium constant (K) for the N-doped TiO2 under visible light was 0.03078 L mg(-1), and the apparent reaction rate constant (k) was 1.3941 mg L(-1)-min. Major intermediates detected during the p,p'-DDT degradation were p,p'-DDE, o,p'-DDE, p,p'-DDD and p,p'-DDD. Results from this work can be applied further for the breakdown of p,p'-DDT molecule in the real contaminated water using this technology.
Jin, Wanchun; Yamaguchi, Yoshihiro; Kimura, Kouji; Kumar, Anupriya; Yamada, Mototsugu; Morinaka, Akihiro; Sakamaki, Yoshiaki; Yonezawa, Minoru; Kurosaki, Hiromasa; Arakawa, Yoshichika
2017-01-01
ABSTRACT The development of effective inhibitors that block extended-spectrum β-lactamases (ESBLs) and restore the action of β-lactams represents an effective strategy against ESBL-producing Enterobacteriaceae. We evaluated the inhibitory effects of the diazabicyclooctanes avibactam and OP0595 against TLA-3, an ESBL that we identified previously. Avibactam and OP0595 inhibited TLA-3 with apparent inhibitor constants (Ki app) of 1.71 ± 0.10 and 1.49 ± 0.05 μM, respectively, and could restore susceptibility to cephalosporins in the TLA-3-producing Escherichia coli strain. The value of the second-order acylation rate constant (k2/K, where k2 is the acylation rate constant and K is the equilibrium constant) of avibactam [(3.25 ± 0.03) × 103 M−1 · s−1] was closer to that of class C and D β-lactamases (k2/K, <104 M−1 · s−1) than that of class A β-lactamases (k2/K, >104 M−1 · s−1). In addition, we determined the structure of TLA-3 and that of TLA-3 complexed with avibactam or OP0595 at resolutions of 1.6, 1.6, and 2.0 Å, respectively. TLA-3 contains an inverted Ω loop and an extended loop between the β5 and β6 strands (insertion after Ser237), which appear only in PER-type class A β-lactamases. These structures might favor the accommodation of cephalosporins harboring bulky R1 side chains. TLA-3 presented a high catalytic efficiency (kcat/Km) against cephalosporins, including cephalothin, cefuroxime, and cefotaxime. Avibactam and OP0595 bound covalently to TLA-3 via the Ser70 residue and made contacts with residues Ser130, Thr235, and Ser237, which are conserved in ESBLs. Additionally, the sulfate group of the inhibitors formed polar contacts with amino acid residues in a positively charged pocket of TLA-3. Our findings provide a structural template for designing improved diazabicyclooctane-based inhibitors that are effective against ESBL-producing Enterobacteriaceae. PMID:28739781
Jin, Wanchun; Wachino, Jun-Ichi; Yamaguchi, Yoshihiro; Kimura, Kouji; Kumar, Anupriya; Yamada, Mototsugu; Morinaka, Akihiro; Sakamaki, Yoshiaki; Yonezawa, Minoru; Kurosaki, Hiromasa; Arakawa, Yoshichika
2017-10-01
The development of effective inhibitors that block extended-spectrum β-lactamases (ESBLs) and restore the action of β-lactams represents an effective strategy against ESBL-producing Enterobacteriaceae We evaluated the inhibitory effects of the diazabicyclooctanes avibactam and OP0595 against TLA-3, an ESBL that we identified previously. Avibactam and OP0595 inhibited TLA-3 with apparent inhibitor constants ( K i app ) of 1.71 ± 0.10 and 1.49 ± 0.05 μM, respectively, and could restore susceptibility to cephalosporins in the TLA-3-producing Escherichia coli strain. The value of the second-order acylation rate constant ( k 2 / K , where k 2 is the acylation rate constant and K is the equilibrium constant) of avibactam [(3.25 ± 0.03) × 10 3 M -1 · s -1 ] was closer to that of class C and D β-lactamases ( k 2 / K , <10 4 M -1 · s -1 ) than that of class A β-lactamases ( k 2 / K , >10 4 M -1 · s -1 ). In addition, we determined the structure of TLA-3 and that of TLA-3 complexed with avibactam or OP0595 at resolutions of 1.6, 1.6, and 2.0 Å, respectively. TLA-3 contains an inverted Ω loop and an extended loop between the β5 and β6 strands (insertion after Ser237), which appear only in PER-type class A β-lactamases. These structures might favor the accommodation of cephalosporins harboring bulky R1 side chains. TLA-3 presented a high catalytic efficiency ( k cat / K m ) against cephalosporins, including cephalothin, cefuroxime, and cefotaxime. Avibactam and OP0595 bound covalently to TLA-3 via the Ser70 residue and made contacts with residues Ser130, Thr235, and Ser237, which are conserved in ESBLs. Additionally, the sulfate group of the inhibitors formed polar contacts with amino acid residues in a positively charged pocket of TLA-3. Our findings provide a structural template for designing improved diazabicyclooctane-based inhibitors that are effective against ESBL-producing Enterobacteriaceae . Copyright © 2017 American Society for Microbiology.
Microwave spectra and molecular structures of (Z)-pent-2-en-4-ynenitrile and maleonitrile.
Halter, R J; Fimmen, R L; McMahon, R J; Peebles, S A; Kuczkowski, R L; Stanton, J F
2001-12-12
Accurate equilibrium structures have been determined for (Z)-pent-2-en-4-ynenitrile (8) and maleonitrile (9) by combining microwave spectroscopy data and ab initio quantum chemistry calculations. The microwave spectra of 10 isotopomers of 8 and 5 isotopomers of 9 were obtained using a pulsed nozzle Fourier transform microwave spectrometer. The ground-state rotational constants were adjusted for vibration-rotation interaction effects calculated from force fields obtained from ab initio calculations. The resultant equilibrium rotational constants were used to determine structures that are in very good agreement with those obtained from high-level ab initio calculations (CCSD(T)/cc-pVTZ). The geometric parameters in 8 and 9 are very similar; they also do not differ significantly from the all-carbon analogue, (Z)-hex-3-ene-1,5-diyne (7), the parent molecule for the Bergman cyclization. A small deviation from linearity about the alkyne and cyano linkages is observed for 7-9 and several related species where accurate equilibrium parameters are available. The data on 7-9 should be of interest to radioastronomy and may provide insights on the formation and interstellar chemistry of unsaturated species such as the cyanopolyynes.
Mapping heat exchange in an allosteric protein.
Gupta, Shaweta; Auerbach, Anthony
2011-02-16
Nicotinic acetylcholine receptors (AChRs) are synaptic ion channels that spontaneously isomerize (i.e., gate) between resting and active conformations. We used single-molecule electrophysiology to measure the temperature dependencies of mouse neuromuscular AChR gating rate and equilibrium constants. From these we estimated free energy, enthalpy, and entropy changes caused by mutations of amino acids located between the transmitter binding sites and the middle of the membrane domain. The range of equilibrium enthalpy change (13.4 kcal/mol) was larger than for free energy change (5.5 kcal/mol at 25°C). For two residues, the slope of the rate-equilibrium free energy relationship (Φ) was approximately constant with temperature. Mutant cycle analysis showed that both free energies and enthalpies are additive for energetically independent mutations. We hypothesize that changes in energy associated with changes in structure mainly occur close to the site of the mutation, and, hence, that it is possible to make a residue-by-residue map of heat exchange in the AChR gating isomerization. The structural correlates of enthalpy changes are discussed for 12 different mutations in the protein. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci
DOE Office of Scientific and Technical Information (OSTI.GOV)
DasGupta, S.; Schonberg, J.A.; Kim, I.Y.
1993-05-01
The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamakermore » constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.« less
Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L
2010-08-02
Antiviral drugs often suffer from poor intestinal permeability, preventing their delivery via the oral route. The goal of this work was to enhance the intestinal absorption of the low-permeability antiviral agents zanamivir heptyl ester (ZHE) and guanidino oseltamivir (GO) utilizing an ion-pairing approach, as a critical step toward making them oral drugs. The counterion 1-hydroxy-2-naphthoic acid (HNAP) was utilized to enhance the lipophilicity and permeability of the highly polar drugs. HNAP substantially increased the log P of the drugs by up to 3.7 log units. Binding constants (K(11(aq))) of 388 M(-1) for ZHE-HNAP and 2.91 M(-1) for GO-HNAP were obtained by applying a quasi-equilibrium transport model to double-reciprocal plots of apparent octanol-buffer distribution coefficients versus HNAP concentration. HNAP enhanced the apparent permeability (P(app)) of both compounds across Caco-2 cell monolayers in a concentration-dependent manner, as substantial P(app) (0.8-3.0 x 10(-6) cm/s) was observed in the presence of 6-24 mM HNAP, whereas no detectable transport was observed without counterion. Consistent with a quasi-equilibrium transport model, a linear relationship with slope near 1 was obtained from a log-log plot of Caco-2 P(app) versus HNAP concentration, supporting the ion-pair mechanism behind the permeability enhancement. In the rat jejunal perfusion assay, the addition of HNAP failed to increase the effective permeability (P(eff)) of GO. However, the rat jejunal permeability of ZHE was significantly enhanced by the addition of HNAP in a concentration-dependent manner, from essentially zero without HNAP to 4.0 x 10(-5) cm/s with 10 mM HNAP, matching the P(eff) of the high-permeability standard metoprolol. The success of ZHE-HNAP was explained by its >100-fold stronger K(11(aq)) versus GO-HNAP, making ZHE-HNAP less prone to dissociation and ion-exchange with competing endogenous anions and able to remain intact during membrane permeation. Overall, this work presents a novel approach to enable the oral delivery of highly polar antiviral drugs, and provides new insights into the underlying mechanisms governing the success or failure of the ion-pairing strategy to increase oral absorption.
Bounded energy states in homogeneous turbulent shear flow: An alternative view
NASA Technical Reports Server (NTRS)
Bernard, Peter S.; Speziale, Charles G.
1990-01-01
The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.
Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS.
McDonald, Luther W; Campbell, James A; Vercouter, Thomas; Clark, Sue B
2016-03-01
Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO2(NO3)2(TBP)2], [UO2(NO3)2(H2O)(TBP)2], and [UO2(NO3)2(TBP)3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO2(DBP)], [UO2(DBP)3], and [UO2(DBP)4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.
Ansorge, Martin; Dubský, Pavel; Ušelová, Kateřina
2018-03-01
The partial-filling affinity capillary electrophoresis (pf-ACE) works with a ligand present in a background electrolyte that forms a weak complex with an analyte. In contrast to a more popular mobility-shift affinity capillary electrophoresis, only a short plug of the ligand is introduced into a capillary in the pf-ACE. Both methods can serve for determining apparent stability constants of the formed complexes but this task is hindered in the pf-ACE by the fact that the analyte spends only a part of its migration time in a contact with the ligand. In 1998, Amini and Westerlund published a linearization strategy that allows for extracting an effective mobility of an analyte in the presence of a neutral ligand out of the pf-ACE data. The main purpose of this paper is to show that the original formula is only approximate. We derive a new formula and demonstrate its applicability by means of computer simulations. We further inspect several strategies of data processing in the pf-ACE regarding a risk of an error propagation. This establishes a good practice of determining apparent stability constants of analyte-ligand complexes by means of the pf-ACE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extracellular Zinc Ion Inhibits ClC-0 Chloride Channels by Facilitating Slow Gating
Chen, Tsung-Yu
1998-01-01
Extracellular Zn2+ was found to reversibly inhibit the ClC-0 Cl− channel. The apparent on and off rates of the inhibition were highly temperature sensitive, suggesting an effect of Zn2+ on the slow gating (or inactivation) of ClC-0. In the absence of Zn2+, the rate of the slow-gating relaxation increased with temperature, with a Q10 of ∼37. Extracellular Zn2+ facilitated the slow-gating process at all temperatures, but the Q10 did not change. Further analysis of the rate constants of the slow-gating process indicates that the effect of Zn2+ is mostly on the forward rate (the rate of inactivation) rather than the backward rate (the rate of recovery from inactivation) of the slow gating. When ClC-0 is bound with Zn2+, the equilibrium constant of the slow-gating process is increased by ∼30-fold, reflecting a 30-fold higher Zn2+ affinity in the inactivated channel than in the open-state channel. As examined through a wide range of membrane potentials, Zn2+ inhibits the opening of the slow gate with equal potency at all voltages, suggesting that a two-state model is inadequate to describe the slow-gating transition. Following a model originally proposed by Pusch and co-workers (Pusch, M., U. Ludewig, and T.J. Jentsch. 1997. J. Gen. Physiol. 109:105–116), the effect of Zn2+ on the activation curve of the slow gate can be well described by adding two constraints: (a) the dissociation constant for Zn2+ binding to the open channel is 30 μM, and (b) the difference in entropy between the open state and the transition state of the slow-gating process is increased by 27 J/ mol/°K for the Zn2+-bound channel. These results together indicate that extracellular Zn2+ inhibits ClC-0 by facilitating the slow-gating process. PMID:9834141
Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I
2018-05-16
To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.
NASA Astrophysics Data System (ADS)
Budhijanto, Budhijanto; Subagyo, Albertus F. P. H.
2017-05-01
Palm Fatty Acid Distillate (PFAD) is one of the wastes from the conversion of crude palm oil (CPO) into cooking oil. The PFAD is currently only utilized as the raw material for low grade soap and biofuel. To improve the economic value of PFAD, it was converted into monoglyceride by esterification process. Furthermore, the monoglyceride could be polymerized to form alkyd resin, which is a commodity of increasing importance. This study aimed to propose a kinetics model for esterification of PFAD with epichlorohydrin using cation exchange resin catalyst. The reaction was the first step from a series of reactions to produce the monoglyceride. In this study, the reaction between PFAD and epichlorohydirne was run in a stirred batch reactor. The stirrer was operated at a constant speed of 400 RPM. The reaction was carried out for 180 minutes on varied temperatures of 60°C, 70°C, 80°C, dan 90°C. Cation exchange resin was applied as solid catalysts. Analysis was conducted periodically by measuring the acid number of the samples, which was further used to calculate PFAD conversion. The data were used to determine the rate constants and the equilibrium constants of the kinetics model. The kinetics constants implied that the reaction was reversible and controlled by the intrinsic surface reaction. Despite the complication of the heterogeneous nature of the reaction, the kinetics data well fitted the elementary rate law. The effect of temperature on the equilibrium constants indicated that the reaction is exothermic.
Apparent directional selection by biased pleiotropic mutation.
Tanaka, Yoshinari
2010-07-01
Pleiotropic effects of deleterious mutations are considered to be among the factors responsible for genetic constraints on evolution by long-term directional selection acting on a quantitative trait. If pleiotropic phenotypic effects are biased in a particular direction, mutations generate apparent directional selection, which refers to the covariance between fitness and the trait owing to a linear association between the number of mutations possessed by individuals and the genotypic values of the trait. The present analysis has shown how the equilibrium mean value of the trait is determined by a balance between directional selection and biased pleiotropic mutations. Assuming that genes act additively both on the trait and on fitness, the total variance-standardized directional selection gradient was decomposed into apparent and true components. Experimental data on mutation bias from the bristle traits of Drosophila and life history traits of Daphnia suggest that apparent selection explains a small but significant fraction of directional selection pressure that is observed in nature; the data suggest that changes induced in a trait by biased pleiotropic mutation (i.e., by apparent directional selection) are easily compensated for by (true) directional selection.
Allosteric monofunctional aspartate kinases from Arabidopsis.
Curien, Gilles; Laurencin, Mathieu; Robert-Genthon, Mylène; Dumas, Renaud
2007-01-01
Plant monofunctional aspartate kinase is unique among all aspartate kinases, showing synergistic inhibition by lysine and S-adenosyl-l-methionine (SAM). The Arabidopsis genome contains three genes for monofunctional aspartate kinases. We show that aspartate kinase 2 and aspartate kinase 3 are inhibited only by lysine, and that aspartate kinase 1 is inhibited in a synergistic manner by lysine and SAM. In the absence of SAM, aspartate kinase 1 displayed low apparent affinity for lysine compared to aspartate kinase 2 and aspartate kinase 3. In the presence of SAM, the apparent affinity of aspartate kinase 1 for lysine increased considerably, with K(0.5) values for lysine inhibition similar to those of aspartate kinase 2 and aspartate kinase 3. For all three enzymes, the inhibition resulted from an increase in the apparent K(m) values for the substrates ATP and aspartate. The mechanism of aspartate kinase 1 synergistic inhibition was characterized. Inhibition by lysine alone was fast, whereas synergistic inhibition by lysine plus SAM was very slow. SAM by itself had no effect on the enzyme activity, in accordance with equilibrium binding analyses indicating that SAM binding to aspartate kinase 1 requires prior binding of lysine. The three-dimensional structure of the aspartate kinase 1-Lys-SAM complex has been solved [Mas-Droux C, Curien G, Robert-Genthon M, Laurencin M, Ferrer JL & Dumas R (2006) Plant Cell18, 1681-1692]. Taken together, the data suggest that, upon binding to the inactive aspartate kinase 1-Lys complex, SAM promotes a slow conformational transition leading to formation of a stable aspartate kinase 1-Lys-SAM complex. The increase in aspartate kinase 1 apparent affinity for lysine in the presence of SAM thus results from the displacement of the unfavorable equilibrium between aspartate kinase 1 and aspartate kinase 1-Lys towards the inactive form.
Detection of some irradiated spices on the basis of radiation induced damage of starch
NASA Astrophysics Data System (ADS)
Farkas, J.; Sharif, M. M.; Koncz, Á.
Untreated and irradiated samples of spices were suspended in water, alkalized, and after heat-gelatinization, the apparent viscosity was determined by a rotational viscometer. Several spices, i.e. white pepper, black pepper, nutmeg and ginger showed considerable loss of viscosity as a function of γ-radiation dose in the dose range required for microbial decontamination of natural spices. Less promising results were obtained with spices such as allspice, garlic powder, and onion powder forming low-viscosity heat-treated suspensions even when unirradiated viscometric studies were also performed with a number of pepper samples of various origin to estimate the "natural" variation of rheological properties. Irradiation and storage studies were performed with ground black pepper samples of moisture contents in equilibrium with air of 25%, 50% and 75% R.H., respectively, either untreated or irradiated with 4, 8, 16 or 32 kGy, to study the effect of equilibrium relative humidity and storage time on detectability of radiation treatment. During the entire storage period of 100 days, statistically significant differences of the apparent viscosities of heat-gelatinized suspensions remained detectable between untreated samples and those irradiated with 8 kGy or higher doses. The apparent viscosity of high-moisture (75% E.R.H.) untreated samples was decreasing during long-term storage. Differences between viscosities of untreated and irradiated samples were enlarged when measured at elevated temperatures such as 50°C in the rotational viscometer, or in the boiling-water bath of a falling number apparatus. Other analytical indices such as onset and peak temperatures of gelatinization endotherms by DSC (damaged starch content), by colorimetry, reducing sugar content, alcohol-induced turbidity of hot water extracts of pepper samples, have been changed less dramatically by irradiation than the apparent viscosity of the gelatinized suspensions
Pleiotropic Models of Polygenic Variation, Stabilizing Selection, and Epistasis
Gavrilets, S.; de-Jong, G.
1993-01-01
We show that in polymorphic populations many polygenic traits pleiotropically related to fitness are expected to be under apparent ``stabilizing selection'' independently of the real selection acting on the population. This occurs, for example, if the genetic system is at a stable polymorphic equilibrium determined by selection and the nonadditive contributions of the loci to the trait value either are absent, or are random and independent of those to fitness. Stabilizing selection is also observed if the polygenic system is at an equilibrium determined by a balance between selection and mutation (or migration) when both additive and nonadditive contributions of the loci to the trait value are random and independent of those to fitness. We also compare different viability models that can maintain genetic variability at many loci with respect to their ability to account for the strong stabilizing selection on an additive trait. Let V(m) be the genetic variance supplied by mutation (or migration) each generation, V(g) be the genotypic variance maintained in the population, and n be the number of the loci influencing fitness. We demonstrate that in mutation (migration)-selection balance models the strength of apparent stabilizing selection is order V(m)/V(g). In the overdominant model and in the symmetric viability model the strength of apparent stabilizing selection is approximately 1/(2n) that of total selection on the whole phenotype. We show that a selection system that involves pairwise additive by additive epistasis in maintaining variability can lead to a lower genetic load and genetic variance in fitness (approximately 1/(2n) times) than an equivalent selection system that involves overdominance. We show that, in the epistatic model, the apparent stabilizing selection on an additive trait can be as strong as the total selection on the whole phenotype. PMID:8325491
Compilation of Henry's law constants (version 4.0) for water as solvent
NASA Astrophysics Data System (ADS)
Sander, R.
2015-04-01
Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles. Therefore, it is necessary to understand the distribution between the phases. According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 17 350 values of Henry's law constants for 4632 species, collected from 689 references. It is also available at http://www.henrys-law.org.
Compilation of Henry's law constants, version 3.99
NASA Astrophysics Data System (ADS)
Sander, R.
2014-11-01
Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles. Therefore, it is necessary to understand the distribution between the phases. According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 14775 values of Henry's law constants for 3214 species, collected from 639 references. It is also available on the internet at http://www.henrys-law.org.
Absolute rate of the reaction of Cl(p-2) with molecular hydrogen from 200 - 500 K
NASA Technical Reports Server (NTRS)
Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.
1976-01-01
Rate constants for the reaction of atomic chlorine with hydrogen are measured from 200 - 500 K using the flash photolysis-resonance fluorescence technique. The results are compared with previous work and are discussed with particular reference to the equilibrium constant for the reaction and to relative rate data for chlorine atom reactions. Theoretical calculations, using the BEBO method with tunneling, give excellent agreement with experiment.
Effect of flavonols on wine astringency and their interaction with human saliva.
Ferrer-Gallego, Raúl; Brás, Natércia F; García-Estévez, Ignacio; Mateus, Nuno; Rivas-Gonzalo, Julián C; de Freitas, Victor; Escribano-Bailón, M Teresa
2016-10-15
The addition of external phenolic compounds to wines in order to improve their sensory quality is an established winemaking practice. This study was aimed at evaluating the effect of the addition of quercetin 3-O-glucoside on the astringency and bitterness of wines. Sensory results showed that the addition of this flavonol to wines results in an increase in astringency and bitterness. Additionally, flavonol-human salivary protein interactions were studied using fluorescence spectroscopy, dynamic light scattering and molecular dynamic simulations (MD). The apparent Stern-Volmer (KsvApp) and the apparent bimolecular quenching constants (kqApp) were calculated from fluorescence spectra. The KsvApp was 12620±390M(-1), and the apparent biomolecular constant was 3.94×10(12)M(-1)s(-1), which suggests that a complex was formed between the human salivary proteins and quercetin 3-O-glucoside. MD simulations showed that the quercetin 3-O-glucoside molecules have the ability to bind to the IB937 model peptide. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.
2016-10-01
We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a unified open-source framework for modeling chemically reactive systems.
Experimental studies of magnetite formation in the solar nebula
NASA Astrophysics Data System (ADS)
Hong, Y.; Fegley, B., Jr.
1998-09-01
Oxidation of Fe metal and Gibeon meteorite metal to magnetite via the net reaction 3 Fe (metal) + 4 H2O (gas) = Fe3O4 (magnetite) + 4 H2 (gas) was experimentally studied at ambient atmospheric pressure at 91-442oC in H2 and H2-He gas mixtures with H2/H2O molar ratios of ~4-41. The magnetite produced was identified by X-ray diffraction. Electron microprobe analyses showed 3.3 wt% NiO and 0.24 wt% CoO (presumably as NiFe2O4 and CoFe2O4) in magnetite formed from Gibeon metal. The NiO and CoO concentrations are higher than expected from equilibrium between metal and oxide under the experimental conditions. Elevated NiO contents in magnetite were also observed by metallurgists during initial stages of oxidation of Fe-Ni alloys. The rate constants for magnetite formation were calculated from the weight gain data using a constant surface area model and the Jander, Ginstling-Brounshtein, and Valensi-Carter models for powder reactions. Magnetite formation followed parabolic (i.e., diffusion controlled) kinetics. The rate constants and apparent activation energies for Fe metal and Gibeon metal are: cm2 hour-1 Eact = 92=B15(2s) kJ mol-1 cm2 hour-1 Eact = 95=B112(2s) kJ mol-1 These rate constants are significantly smaller than the parabolic rate constants for FeS growth on Fe metal in H2S-H2 gas mixtures containing 1000 or 10,000 ppmv H2S (Lauretta et al. 1996a). The experimental data for Fe and Gibeon metal are used to model the reaction time of Fe alloy grains in the solar nebula as a function of grain size and temperature. The reaction times for 0.1-1 micron radius metal grains are generally within estimated lifetimes of the solar nebula (0.1-10 million years). However, the calculated reaction times are probably lower limits and further study of magnetite formation at larger H2/H2O ratios, at lower temperatures and pressures, and as a function of metal alloy composition is needed for further modeling of nebular magnetite formation.
Chemical properties of ground water and their corrosion and encrustation effects on wells
Barnes, Ivan; Clarke, Frank Eldridge
1969-01-01
Well waters in Egypt, Nigeria, and West Pakistan were studied for their chemical properties and corrosive or encrusting behavior. From the chemical composition of the waters, reaction states with reference to equilibrium were tested for 29 possible coexisting oxides, carbonates, sulfides, and elements. Of the 29 solids considered, only calcite, CaCO3, and ferric hydroxide, Fe(OH)3, showed any correlation with the corrosiveness of the waters to mild steel (iron metal). All 39 of the waters tested were out of equilibrium with iron metal, but those waters in equilibrium or supersaturated with both calcite and ferric hydroxide were the least corrosive. Supersaturation with other solid phases apparently was unrelated to corrosion. A number of solids may form surface deposits in wells and lead to decreased yields by fouling well intakes (screens and gravel packs) or increasing friction losses in casings. Calcite, CaCO3; ferric hydroxide, Fe(OH)3; magnetite, Fe3O4; siderite, FeCO3; hausmannite, Mn304 (tetragonal); manganese spinel, Mn3O4 (isometric); three iron sulfides mackinawite, FeS (tetragonal); greigite, Fe3S4 (isometric); and smythite, Fe3S4 (rhombohedral)-copper hydroxide, Co(OH)2; and manganese hydroxide, Mn(OH)2, were all at least tentatively identified in the deposits sampled. Of geochemical interest is the demonstration that simple stable equilibrium models fail in nearly every case to predict compositions of water yielded by the wells studied. Only one stable phase (calcite) was found to exhibit behavior approximately predictable from stable equilibrium considerations. No other stable phase was found to behave as would be predicted from equilibrium considerations. All the solids found to precipitate (except calcite) are metastable in that they are not the least soluble phases possible in the systems studied. In terms of metastable equilibrium, siderite and ferric hydroxide behave approximately as would be predicted from equilibrium considerations, but both are metastable and the presence of neither would be anticipated if only the most stable phases were considered. The behaviors of none of the other solids would be predictable from either stable or metastable equilibrium considerations. An unanswered problem raised by the study reported here is how, or by what paths, truly stable phases form if first precipitates are generally metastable.The utility of the findings in well design and operation is in no way impaired by the general lack of equilibrium. Conditions leading to either corrosion (which is related to lack of supersaturation with protective phases), or encrustation (supersaturation with phases that were found to precipitate), or both, apparently can be identified. The application of the methods described can be of great importance in developing unexploited ground-water resources in that certain practical problems can be identified before extensive well construction and unnecessary well failure.
Interactions of tea tannins and condensed tannins with proteins.
Frazier, Richard A; Deaville, Eddie R; Green, Rebecca J; Stringano, Elisabetta; Willoughby, Ian; Plant, John; Mueller-Harvey, Irene
2010-01-20
Binding parameters for the interactions of four types of tannins: tea catechins, grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins, and sorghum procyanidins (mDP=17), with gelatin and bovine serum albumin (BSA) have been determined from isothermal titration calorimetry data. Equilibrium binding constants determined for the interaction with gelatin were in the range 10(4) to 10(6) M(-1) and in the order: sorghum procyanidins > grape seed proanthocyanidins > mimosa 5-deoxy proanthocyanidins > tea catechins. Interaction with BSA was generally weaker, with equilibrium binding constants of < or =10(3)M(-1) for grape seed proanthocyanidins, mimosa 5-deoxy proanthocyanidins and tea catechins, and 10(4)M(-1) for the sorghum procyanidins. In all cases the interactions with proteins were exothermic and involved multiple binding sites on the protein. The data are discussed in relation to the structures and the known nutritional effects of the condensed tannins.
Rough-to-smooth transition of an equilibrium neutral constant stress layer
NASA Technical Reports Server (NTRS)
Logan, E., Jr.; Fichtl, G. H.
1975-01-01
Purpose of research on rough-to-smooth transition of an equilibrium neutral constant stress layer is to develop a model for low-level atmospheric flow over terrains of abruptly changing roughness, such as those occurring near the windward end of a landing strip, and to use the model to derive functions which define the extent of the region affected by the roughness change and allow adequate prediction of wind and shear stress profiles at all points within the region. A model consisting of two bounding logarithmic layers and an intermediate velocity defect layer is assumed, and dimensionless velocity and stress distribution functions which meet all boundary and matching conditions are hypothesized. The functions are used in an asymptotic form of the equation of motion to derive a relation which governs the growth of the internal boundary layer. The growth relation is used to predict variation of surface shear stress.
[Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].
Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei
2013-05-01
A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.
Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)
NASA Astrophysics Data System (ADS)
Pal, Dharm; Keshav, Amit
2016-04-01
An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.
Carvalho, M N; da Motta, M; Benachour, M; Sales, D C S; Abreu, C A M
2012-11-15
The removal process of BTEX and phenol was evaluated. The smectite organoclay for single-solute system reached removal was evaluated by adsorption on smectite organoclay adsorbent by kinetic and equilibrium efficiencies between 55 and 90% while was reached between 30 and 90% for multi-solute system at 297 K and pH 9. The Langmuir-Freundlich model was used to fit the experimental data with correlation coefficient between 0.98 and 0.99 providing kinetic and equilibrium parameter values. Phenol and ethylbenzene presented high maximum adsorbed amount, 8.28 and 6.67 mg/g, respectively, compared to the other compounds for single-solute. Toluene and p-xylene presented high values of adsorption constant which indicates a high adsorption affinity of compounds to organoclay surface and high binding energy of adsorption. Phenol presented low kinetic adsorption constant value indicating slow rate of adsorption. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume
2017-10-01
Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.
An equilibrium method for prediction of transverse shear stresses in a thick laminated plate
NASA Technical Reports Server (NTRS)
Chaudhuri, R. Z.
1986-01-01
First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.
Simulated space environment tests on cadmium sulfide solar cells
NASA Technical Reports Server (NTRS)
Clarke, D. R.; Oman, H.
1971-01-01
Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.
Crenshaw, Charisse M.; Wade, Jacqueline E.; Arthanari, Haribabu; Frueh, Dominique; Lane, Benjamin F.; Núñez, Megan E.
2011-01-01
The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G→T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using CD spectroscopy and UV melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy)2chrysi3+ cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. NMR spectra are also consistent with a well-conserved B-form duplex structure. In the 2D NOESY spectra, base-sugar and imino-imino crosspeaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2–3 base pairs immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10−6. This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair. PMID:21902242
Wang, Xiao-Tao; Chan, Ting Fai; Lam, Veronica M S; Engel, Paul C
2008-08-01
Human glucose 6-phosphate dehydrogenase, purified after overexpression in E. coli, was shown to contain one molecule/subunit of acid-extractable "structural" NADP+ and no NADPH. This tightly bound NADP+ was reduced by G6P, presumably following migration to the catalytic site. Gel-filtration yielded apoenzyme, devoid of bound NADP+ but, surprisingly, still fully active. Mr of the main component of "stripped" enzyme by gel filtration was approximately 100,000, suggesting a dimeric apoenzyme (subunit Mr = 59,000). Holoenzyme also contained tetramer molecules and, at high protein concentration, a dynamic equilibrium gave an apparent intermediate Mr of 150 kDa. Fluorescence titration of the stripped enzyme gave the K d for structural NADP+ as 37 nM, 200-fold lower than for "catalytic" NADP+. Structural NADP+ quenches 91% of protein fluorescence. At 37 degrees C, stripped enzyme, much less stable than holoenzyme, inactivated irreversibly within 2 d. Inactivation at 4 degrees C was partially reversed at room temperature, especially with added NADP+. Apoenzyme was immediately active, without any visible lag, in rapid-reaction studies. Human G6PD thus forms active dimer without structural NADP+. Apparently, the true role of the second, tightly bound NADP+ is to secure long-term stability. This fits the clinical pattern, G6PD deficiency affecting the long-lived non-nucleate erythrocyte. The Kd values for two class I mutants, G488S and G488V, were 273 nM and 480 nM, respectively (seven- and 13-fold elevated), matching the structural prediction of weakened structural NADP+ binding, which would explain decreased stability and consequent disease. Preparation of native apoenzyme and measurement of Kd constant for structural NADP+ will now allow quantitative assessment of this defect in clinical G6PD mutations.
Goodwin, K.D.; Varner, R.K.; Crill, P.M.; Oremland, R.S.
2001-01-01
Pure cultures of methylotrophs and methanotrophs are known to oxidize methyl bromide (MeBr); however, their ability to oxidize tropospheric concentrations (parts per trillion by volume [pptv]) has not been tested. Methylotrophs and methanotrophs were able to consume MeBr provided at levels that mimicked the tropospheric mixing ratio of MeBr (12 pptv) at equilibrium with surface waters (???2 pM). Kinetic investigations using picomolar concentrations of MeBr in a continuously stirred tank reactor (CSTR) were performed using strain IMB-1 and Leisingeria methylohalidivorans strain MB2T - terrestrial and marine methylotrophs capable of halorespiration. First-order uptake of MeBr with no indication of threshold was observed for both strains. Strain MB2T displayed saturation kinetics in batch experiments using micromolar MeBr concentrations, with an apparent Ks of 2.4 ??M MeBr and a Vmax of 1.6 nmol h-1 (106 cells)-1. Apparent first-order degradation rate constants measured with the CSTR were consistent with kinetic parameters determined in batch experiments, which used 35- to 1 ?? 107-fold-higher MeBr concentrations. Ruegeria algicola (a phylogenetic relative of strain MB2T), the common heterotrophs Escherichia coli and Bacillus pumilus, and a toluene oxidizer, Pseudomonas mendocina KR1, were also tested. These bacteria showed no significant consumption of 12 pptv MeBr; thus, the ability to consume ambient mixing ratios of MeBr was limited to C1 compound-oxidizing bacteria in this study. Aerobic C1 bacteria may provide model organisms for the biological oxidation of tropospheric MeBr in soils and waters.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
Frustration in protein elastic network models
NASA Astrophysics Data System (ADS)
Lezon, Timothy; Bahar, Ivet
2010-03-01
Elastic network models (ENMs) are widely used for studying the equilibrium dynamics of proteins. The most common approach in ENM analysis is to adopt a uniform force constant or a non-specific distance dependent function to represent the force constant strength. Here we discuss the influence of sequence and structure in determining the effective force constants between residues in ENMs. Using a novel method based on entropy maximization, we optimize the force constants such that they exactly reporduce a subset of experimentally determined pair covariances for a set of proteins. We analyze the optimized force constants in terms of amino acid types, distances, contact order and secondary structure, and we demonstrate that including frustrated interactions in the ENM is essential for accurately reproducing the global modes in the middle of the frequency spectrum.
Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles
NASA Technical Reports Server (NTRS)
Marlow, William H.
1997-01-01
The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.
Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl
NASA Astrophysics Data System (ADS)
Popp, Robert K.; Frantz, John D.
1980-07-01
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.
Deleterious Mutations, Apparent Stabilizing Selection and the Maintenance of Quantitative Variation
Kondrashov, A. S.; Turelli, M.
1992-01-01
Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations. PMID:1427047
Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.
Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues
2013-11-05
Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Population and prehistory II: Space-limited human populations in constant environments
Puleston, Cedric O.; Tuljapurkar, Shripad
2010-01-01
We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single nontrivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact. PMID:18598711
Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel
2014-01-01
This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487
Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel
2014-01-01
This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
1990-01-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
NASA Astrophysics Data System (ADS)
Glass, Christopher E.
1990-08-01
The computer program EASI, an acronym for Equilibrium Air Shock Interference, was developed to calculate the inviscid flowfield, the maximum surface pressure, and the maximum heat flux produced by six shock wave interference patterns on a 2-D, cylindrical configuration. Thermodynamic properties of the inviscid flowfield are determined using either an 11-specie, 7-reaction equilibrium chemically reacting air model or a calorically perfect air model. The inviscid flowfield is solved using the integral form of the conservation equations. Surface heating calculations at the impingement point for the equilibrium chemically reacting air model use variable transport properties and specific heat. However, for the calorically perfect air model, heating rate calculations use a constant Prandtl number. Sample calculations of the six shock wave interference patterns, a listing of the computer program, and flowcharts of the programming logic are included.
Spectral Quasi-Equilibrium Manifold for Chemical Kinetics.
Kooshkbaghi, Mahdi; Frouzakis, Christos E; Boulouchos, Konstantinos; Karlin, Iliya V
2016-05-26
The Spectral Quasi-Equilibrium Manifold (SQEM) method is a model reduction technique for chemical kinetics based on entropy maximization under constraints built by the slowest eigenvectors at equilibrium. The method is revisited here and discussed and validated through the Michaelis-Menten kinetic scheme, and the quality of the reduction is related to the temporal evolution and the gap between eigenvalues. SQEM is then applied to detailed reaction mechanisms for the homogeneous combustion of hydrogen, syngas, and methane mixtures with air in adiabatic constant pressure reactors. The system states computed using SQEM are compared with those obtained by direct integration of the detailed mechanism, and good agreement between the reduced and the detailed descriptions is demonstrated. The SQEM reduced model of hydrogen/air combustion is also compared with another similar technique, the Rate-Controlled Constrained-Equilibrium (RCCE). For the same number of representative variables, SQEM is found to provide a more accurate description.
Population and prehistory II: space-limited human populations in constant environments.
Puleston, Cedric O; Tuljapurkar, Shripad
2008-09-01
We present a population model to examine the forces that determined the quality and quantity of human life in early agricultural societies where cultivable area is limited. The model is driven by the non-linear and interdependent relationships between the age distribution of a population, its behavior and technology, and the nature of its environment. The common currency in the model is the production of food, on which age-specific rates of birth and death depend. There is a single non-trivial equilibrium population at which productivity balances caloric needs. One of the most powerful controls on equilibrium hunger level is fertility control. Gains against hunger are accompanied by decreases in population size. Increasing worker productivity does increase equilibrium population size but does not improve welfare at equilibrium. As a case study we apply the model to the population of a Polynesian valley before European contact.
NASA Astrophysics Data System (ADS)
Valenzuela-Calahorro, Cristóbal; Navarrete-Guijosa, Antonio; Stitou, Mostafa; Cuerda-Correa, Eduardo M.
2007-04-01
In this paper the adsorption process of a natural steroid hormone (progesterone) by a carbon black and a commercial activated carbon has been studied. The corresponding equilibrium isotherms have been analyzed according to a previously proposed model which establishes a kinetic law satisfactorily fitting the C versus t isotherms. The analysis of the experimental data points out the existence of two well-defined sections in the equilibrium isotherms. A general equation including these two processes has been proposed, the global adsorption process being fitted to such equation. From the values of the kinetic equilibrium constant so obtained, values of standard average adsorption enthalpy ( ΔH°) and entropy ( ΔS°) have been calculated. Finally, information related to variations of differential adsorption enthalpy ( ΔH) and entropy ( ΔS) with the surface coverage fraction ( θ) was obtained by using the corresponding Clausius-Clapeyron equations.
Koppenol, Willem H.
2013-01-01
The mercapto group of cysteine (Cys) is a predominant target for oxidative modification, where one-electron oxidation leads to the formation of Cys thiyl radicals, CysS•. These Cys thiyl radicals enter 1,2- and 1,3-hydrogen transfer reactions, for which rate constants are reported in this paper. The products of these 1,2- and 1,3-hydrogen transfer reactions are carbon-centered radicals at position C3 (α-mercaptoalkyl radicals) and C2 (•Cα radicals) of Cys, respectively. Both processes can be monitored separately in Cys analogues such as cysteamine (CyaSH) and penicillamine (PenSH). At acidic pH, thiyl radicals from CyaSH permit only the 1,2-hydrogen transfer according to equilibrium 12, +H3NCH2CH2S• ⇌ +H3NCH2 •CH–SH, where rate constants for forward and reverse reaction are k12 ≈ 105 s−1 and k−12 ≈ 1.5 × 105s−1, respectively. In contrast, only the 1,3-hydrogen transfer is possible for thiyl radicals from PenSH according to equilibrium 14, (+H3N/CO2H)Cα–C(CH3)2–S• ⇌ (+H3N/CO2H)•Cα–C(CH3)2–SH, where rate constants for the forward and the reverse reaction are k14 = 8 × 104 s−1 and k−14 = 1.4 × 106 s−1. The •Cα radicals from PenSH and Cys have the additional opportunity for β-elimination of HS•/S•−, which proceeds with k39 ≈ (3 ± 1) × 104 s−1 from •Cα radicals from PenSH and k−34 ≈ 5 × 103 s−1 from •Cα radicals from Cys. The rate constants quantified for the 1,2- and 1,3-hydrogen transfer reactions can be used as a basis to calculate similar processes for Cys thiyl radicals in proteins, where hydrogen transfer reactions, followed by the addition of oxygen, may lead to the irreversible modification of target proteins. PMID:22483034
Stabilities and partitioning of arenonium ions in aqueous media.
Lawlor, D A; More O'Ferrall, R A; Rao, S N
2008-12-31
The phenathrenonium ion is formed as a reactive intermediate in the solvolysis of 9-dichloroacetoxy-9,10-dihydrophenanthrene in aqueous acetonitrile and undergoes competing reactions with water acting as a base and nucleophile. Measurements of product ratios in the presence of azide ion as a trap and 'clock' yield rate constants kp = 3.7 x 10(10) and kH2O = 1.5 x 10(8) s(-1), respectively. Combining these with rate constants for the reverse reactions (protonation of phenanthrene and acid-catalyzed aromatization of its water adduct) gives equilibrium constants pKa = -20.9 and pK(R) = -11.6. For a series of arenonium and benzylic cations, correlation of log kp with pKa, taking account of the limit to kp set by the relaxation of water (10(11) s(-1)), leads to extrapolation of kp = 9.0 x 10(10) s(-1) and pKa = -24.5 for the benzenonium ion and kp = 6.5 x 10(10) s(-1) and pKa = -22.5 for the 1-naphthalenonium ion. Combining these pKa's with estimates of equilibrium constants pKH2O for the hydration of benzene and naphthalene, and the relationship pKR = pKa + pKH2O based on Hess's law, gives pKR = -2.3 and -8.0 respectively, and highlights the inherent stability of the benzenonium ion. A correlation exists between the partitioning ratio, kp/kH2O, for carbocations reacting in water and KH2O the equilibrium constant between the respective reaction products, i.e., log(kp/kH2O) = 0.46pKH2O - 3.7. It implies that kp exceeds kH2O only when KH2O > 10(8). This is consistent with the proton transfer (a) possessing a lower intrinsic reactivity than reaction of the carbocation with water as a nucleophile and (b) being rate-determining in the hydration of alkenes (and dehydration of alcohols) except when the double bond of the alkene is unusually stabilized, as in the case of aromatic molecules.
Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.
Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard
2016-01-01
Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.
Reduced magnetohydrodynamic theory of oblique plasmoid instabilities
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Bhattacharjee, A.; Huang, Y.-M.
2012-02-01
The three-dimensional nature of plasmoid instabilities is studied using the reduced magnetohydrodynamic equations. For a Harris equilibrium with guide field, represented by Bo=Bpotanh(x /λ)ŷ+Bzoẑ, a spectrum of modes are unstable at multiple resonant surfaces in the current sheet, rather than just the null surface of the poloidal field Byo(x)=Bpotanh(x /λ), which is the only resonant surface in 2D or in the absence of a guide field. Here, Bpo is the asymptotic value of the equilibrium poloidal field, Bzo is the constant equilibrium guide field, and λ is the current sheet width. Plasmoids on each resonant surface have a unique angle of obliquity θ ≡arctan(kz/ky). The resonant surface location for angle θ is xs=λarctanh(μ), where μ =tanθBzo/Bpo and the existence of a resonant surface requires |θ |
All human Na(+)-K(+)-ATPase alpha-subunit isoforms have a similar affinity for cardiac glycosides.
Wang, J; Velotta, J B; McDonough, A A; Farley, R A
2001-10-01
Three alpha-subunit isoforms of the sodium pump, which is the receptor for cardiac glycosides, are expressed in human heart. The aim of this study was to determine whether these isoforms have distinct affinities for the cardiac glycoside ouabain. Equilibrium ouabain binding to membranes from a panel of different human tissues and cell lines derived from human tissues was compared by an F statistic to determine whether a single population of binding sites or two populations of sites with different affinities would better fit the data. For all tissues, the single-site model fit the data as well as the two-site model. The mean equilibrium dissociation constant (K(d)) for all samples calculated using the single-site model was 18 +/- 6 nM (mean +/- SD). No difference in K(d) was found between nonfailing and failing human heart samples, although the maximum number of binding sites in failing heart was only approximately 50% of the number of sites in nonfailing heart. Measurement of association rate constants and dissociation rate constants confirmed that the binding affinities of the different human alpha-isoforms are similar to each other, although calculated K(d) values were lower than those determined by equilibrium binding. These results indicate both that the affinity of all human alpha-subunit isoforms for ouabain is similar and that the increased sensitivity of failing human heart to cardiac glycosides is probably due to a reduction in the number of pumps in the heart rather than to a selective inhibition of a subset of pumps with different affinities for the drugs.
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
NASA Astrophysics Data System (ADS)
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
Zheng, Xiliang; Wang, Jin
2015-01-01
We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity), the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics. PMID:25885453
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Gyrokinetic Magnetohydrodynamics and the Associated Equilibrium
NASA Astrophysics Data System (ADS)
Lee, W. W.; Hudson, S. R.; Ma, C. H.
2017-10-01
A proposed scheme for the calculations of gyrokinetic MHD and its associated equilibrium is discussed related a recent paper on the subject. The scheme is based on the time-dependent gyrokinetic vorticity equation and parallel Ohm's law, as well as the associated gyrokinetic Ampere's law. This set of equations, in terms of the electrostatic potential, ϕ, and the vector potential, ϕ , supports both spatially varying perpendicular and parallel pressure gradients and their associated currents. The MHD equilibrium can be reached when ϕ -> 0 and A becomes constant in time, which, in turn, gives ∇ . (J|| +J⊥) = 0 and the associated magnetic islands. Examples in simple cylindrical geometry will be given. The present work is partially supported by US DoE Grant DE-AC02-09CH11466.
Non-equilibrium reaction rates in chemical kinetic equations
NASA Astrophysics Data System (ADS)
Gorbachev, Yuriy
2018-05-01
Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.
Measurement of magnetic fluctuation-induced heat transport in tokamaks and RFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiksel, G.; Hartog, D.D.; Cekic, M.
1996-08-01
It has long been recognized that fluctuations in the magnetic field are a potent mechanism for the anomalous transport of energy in confined plasmas. The energy transport process originates from particle motion along magnetic fields, which have a fluctuating component in the radial direction (perpendicular to the confining equilibrium magnetic surfaces). A key feature is that the transport can be large even if the fluctuation amplitude is small. If the fluctuations are resonant with the equilibrium magnetic field (i.e., the fluctuation amplitude is constant along an equilibrium field line) then a small fluctuation can introduce stochasticity to the field linemore » trajectories. Particles following the chaotically wandering field lines can rapidly carry energy across the plasma.« less
Cosmic curvature from de Sitter equilibrium cosmology.
Albrecht, Andreas
2011-10-07
I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Vidmar, L.; Ronzheimer, J. P.; Hodgman, S.; Schreiber, M.; Braun, S.; Langer, S.; Bloch, I.; Schneider, U.
2016-05-01
Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant d. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta +/-(π / 2)(ℏ / d) in the momentum distribution function. Supported by the DFG via FOR 801.
NASA Astrophysics Data System (ADS)
Martyushev, Leonid M.
2018-03-01
The paper [1] is certainly very useful and important for understanding living systems (e.g. brain) as adaptive, self-organizing patterns. There is no need to enumerate all advantages of the paper, they are obvious. The purpose of my brief comment is to discuss one issue which, as I see it, was not thought out by the authors well enough. As a consequence, their ideas do not find as wide distribution as they otherwise could have found. This issue is related to the name selected for the principle forming the basis of their approach: free-energy principle (FEP). According to the sec. 2.1 [1]: "It asserts that all biological systems maintain their integrity by actively reducing the disorder or dispersion (i.e., entropy) of their sensory and physiological states by minimizing their variational free energy." Let us note that the authors suggested different names for the principle in their earlier works (an objective function, a function of the ensemble density encoded by the organism's configuration and the sensory data to which it is exposed, etc.), and explicitly and correctly mentioned that the free energy and entropy considered by them had nothing in common with the quantities employed in physics [2,3]. It is also obvious that a purely information-theoretic approach used by the authors with regard to the problems under study allows many other wordings and interpretations. However, in spite of this fact, in their last papers as well as in the present paper, the authors choose specifically FEP. Apparently, it may be explained by the intent to additionally base their approach on the foundation of statistical thermodynamics and therefore to demonstrate the universality of the described method. However, this is exactly what might cause misunderstandings specifically among physicists and consequently in their rejection and ignoring of FEP. The physical analogy employed by the authors has the following fundamental inconsistencies: In physics, free energy is used to describe processes occurring at constant temperatures and volumes. In physics, the minimum free energy corresponds to an equilibrium state to which an isochoric-isothermal system relaxes [4,5]. It is obvious that the biological systems considered by the authors are fundamentally non-equilibrium, do not seek equilibrium, and, in most cases, do not retain their volumes as they develop. For a biological system, the equilibrium means death, decay. Therefore, to base the idea of life on FEP is the same as to state that the pursuit of death is the purpose and meaning of life. In order to consider processes addressed by the authors, one needs functionals employed in non-equilibrium rather than equilibrium thermodynamics [6-8]. Specifically, I would like to draw their attention to the rate of change of the Gibbs energy with time, or entropy production (the maximum entropy production principle can be useful here [7,9-12]).
[Drying characteristics and apparent change of sludge granules during drying].
Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun
2011-08-01
Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.
NASA Astrophysics Data System (ADS)
Baker, D. R.
2012-12-01
Measurements of volcanic gas compositions are often presumed to be directly related to equilibrium compositions of fluids exsolved at depth in magmatic systems that rapidly escape into the atmosphere. In particular, changes in the ratios of volatile species concentrations in volcanic gases have been interpreted to reflect influx of new magma batches or changes in the degassing depth. However, other mechanisms can also yield changes in volcanic gas compositions. One such mechanism is diffusive fractionation during rapid bubble growth. Such fractionation can occur because radial growth rates of bubbles in magmas are estimated to be in the range of 10-6 to 10-3 m s-1 and diffusion coefficients of minor volatiles (e.g., Cl, F, S, CO2) are orders of magnitude slower, 10-12 to 10-9 m2 s-1. Thus a bubble that rapidly grows and subsequently loses its volatiles to the surface may contribute a fluid sample whose concentration is affected by the interplay between the kinetics of bubble growth and volatile diffusion in the melt. A finite difference code was developed to calculate the effects of rapid bubble growth on the concentration of minor elements in the bubble for a spherical growth geometry. The bubble is modeled with a fixed growth rate and a constant equilibrium fluid-melt partition coefficient, KD. Bubbles were modeled to grow to a radius of 50 μm, the size at which the dominant bubble growth mechanism appears to change from diffusion to coalescence. The critical variables that control the departure from equilibrium behavior are the K D and the ratio of the growth velocity, V, to the diffusivity, D. Modeling bubble growth in a magma chamber at 100 MPa demonstrates that when KD is in the range of 10 to 1000 at low V/D values (e.g., 103 m-1) the composition of the fluid is at, or near, equilibrium with the melt. However, as V/D increases the bubble composition deviates increasingly from equilibrium. For V/D ratios of 105 and equilibrium KD's of either 50 or 100 (similar to estimates for S), a bubble with a 50 μm radius will contain a fluid whose concentration was apparently determined by a KD of less than 10. These models also demonstrate that the combination of rapid bubble growth with slow diffusion can deplete the melt in the volatile species only within the immediate neighborhood, on the order of 100 μm. If bubbles are spaced further apart the melts may retain significant concentrations of dissolved volatiles, which could lead to secondary and tertiary nucleation events. These models for diffusive fractionation during rapid bubble growth suggest that changes in the ratios of minor elements in volcanic gases may be influenced by bubble growth rate changes. Volatiles with lower diffusivities and volatiles with very high or very low partition coefficients will be more influenced by this process. Diffusive fractionation may be responsible for the drop in the CO2/SO2 ratios sometimes observed prior to large eruptions of Stromboli volcano.
Thermochemical Data for Propellant Ingredients and their Products of Explosion
1949-12-01
oases except perhaps at temperatures below 2000°K. The logarithms of all the equilibrium constants except Ko have been tabulated since these logarithms...have almost constant first differences. Linear interpolation may lead to an error of a unit or two in the third decimal place for Ko but the...dissociation products OH, H and KO will be formed and at still higher temperatures the other dissociation products 0*, 0, N and C will begin to appear
Metastability in the Spin-1 Blume-Emery-Griffiths Model within Constant Coupling Approximation
NASA Astrophysics Data System (ADS)
Ekiz, C.
2017-02-01
In this paper, the equilibrium properties of spin-1 Blume-Emery-Griffiths model are studied by using constant-coupling approximation. The dipolar and quadrupolar order parameters, the stable, metastable and unstable states and free energy of the model are investigated. The states are defined in terms of local minima of the free energy of system. The numerical calculations are presented for several values of exchange interactions on the simple cubic lattice with q = 6.
Ray, W J; Post, C B; Puvathingal, J M
1989-01-24
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
Di Stefano, Stefano; Ercolani, Gianfranco
2017-01-26
An extension of the Jacobson-Stockmayer theory is presented to include the reversible formation of [2]catenanes in a ring-chain system under thermodynamic control. The extended theory is based on the molar catenation constant, measuring the ease of catenation of two ring oligomers, whose expression was obtained in a previous work. Two scenarios have been considered: that of "thick" (hydrocarbon-like) chains and that of "thin" (DNA-like) chains. In the case of "thick" chains, the formation of catenanes can be neglected, unless in the unlikely case of a very large value of the equilibrium constant for linear propagation (K ≈ 10 8 mol -1 L, or larger). For K tending to infinity, the system becomes a chain-free system where only ring-catenane equilibria occur. Under this condition, there is a critical concentration below which only rings are present at equilibrium and above which the ring fraction remains constant, and the excess monomer is converted only into catenanes. In the case of "thin" chains, the formation of catenanes cannot be neglected even for values of K as low as 10 2 mol -1 L, thus justifying the use of the extended theory.
Thermodynamic Analysis of Chemically Reacting Mixtures-Comparison of First and Second Order Models.
Pekař, Miloslav
2018-01-01
Recently, a method based on non-equilibrium continuum thermodynamics which derives thermodynamically consistent reaction rate models together with thermodynamic constraints on their parameters was analyzed using a triangular reaction scheme. The scheme was kinetically of the first order. Here, the analysis is further developed for several first and second order schemes to gain a deeper insight into the thermodynamic consistency of rate equations and relationships between chemical thermodynamic and kinetics. It is shown that the thermodynamic constraints on the so-called proper rate coefficient are usually simple sign restrictions consistent with the supposed reaction directions. Constraints on the so-called coupling rate coefficients are more complex and weaker. This means more freedom in kinetic coupling between reaction steps in a scheme, i.e., in the kinetic effects of other reactions on the rate of some reaction in a reacting system. When compared with traditional mass-action rate equations, the method allows a reduction in the number of traditional rate constants to be evaluated from data, i.e., a reduction in the dimensionality of the parameter estimation problem. This is due to identifying relationships between mass-action rate constants (relationships which also include thermodynamic equilibrium constants) which have so far been unknown.
Approaches to the Treatment of Equilibrium Perturbations
NASA Astrophysics Data System (ADS)
Canagaratna, Sebastian G.
2003-10-01
Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.
Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun
2008-01-01
An Escherichia coli galactose kinase gene knockout (ΔgalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the ΔgalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37°C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A ΔmglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions. PMID:18263746
Kim, Jin-Ha; Lim, Byung-Chul; Yeom, Soo-Jin; Kim, Yeong-Su; Kim, Hye-Jung; Lee, Jung-Kul; Lee, Sook-Hee; Kim, Seon-Won; Oh, Deok-Kun
2008-04-01
An Escherichia coli galactose kinase gene knockout (DeltagalK) strain, which contains the l-arabinose isomerase gene (araA) to isomerize d-galactose to d-tagatose, showed a high conversion yield of tagatose compared with the original galK strain because galactose was not metabolized by endogenous galactose kinase. In whole cells of the DeltagalK strain, the isomerase-catalyzed reaction exhibited an equilibrium shift toward tagatose, producing a tagatose fraction of 68% at 37 degrees C, whereas the purified l-arabinose isomerase gave a tagatose equilibrium fraction of 36%. These equilibrium fractions are close to those predicted from the measured equilibrium constants of the isomerization reaction catalyzed in whole cells and by the purified enzyme. The equilibrium shift in these cells resulted from the higher uptake and lower release rates for galactose, which is a common sugar substrate, than for tagatose, which is a rare sugar product. A DeltamglB mutant had decreased uptake rates for galactose and tagatose, indicating that a methylgalactoside transport system, MglABC, is the primary contributing transporter for the sugars. In the present study, whole-cell conversion using differential selectivity of the cell membrane was proposed as a method for shifting the equilibrium in sugar isomerization reactions.
Investigation of CNTD Mechanism and its Effect on Microstructural Properties.
1980-10-01
Equilibrium Degree of Completion of SiCl4 Reduction 31 as a Function of Temperature, Pressure and Degree ofDilution. 9. Equilibrium Degree of Completion...Disproportionation Study with SiCl4 . A) 500/2500X B) 600/3000X 11. Morphology of Deposit Made in the Silicon Halide 39 Disproportionation Study with SiHCl 3. A...at a constant ratio of SiCl4 to NH 3 of 0.2 (except run #29, see Table A-1 Appendix I). The active gas partial pressure was calculated according to the
DSMC modeling of flows with recombination reactions
NASA Astrophysics Data System (ADS)
Gimelshein, Sergey; Wysong, Ingrid
2017-06-01
An empirical microscopic recombination model is developed for the direct simulation Monte Carlo method that complements the extended weak vibrational bias model of dissociation. The model maintains the correct equilibrium reaction constant in a wide range of temperatures by using the collision theory to enforce the number of recombination events. It also strictly follows the detailed balance requirement for equilibrium gas. The model and its implementation are verified with oxygen and nitrogen heat bath relaxation and compared with available experimental data on atomic oxygen recombination in argon and molecular nitrogen.
Erickson, Robert P.
1970-01-01
The molecular weight of Escherichia coli β-galactosidase was determined in 6m- and 8m-guanidine hydrochloride by meniscus-depletion sedimentation equilibrium, sedimentation velocity and viscosity. Sedimentation equilibrium revealed heterogeneity with the smallest component having a molecular weight of about 50000. At lower speeds, the apparent weight-average molecular weight is about 80000. By use of a calculation based on an empirical correlation for proteins that are random coils in 6m-guanidine hydrochloride, sedimentation velocity gave a molecular weight of 91000, and the intrinsic viscosity indicated a viscosity-average molecular weight of 84000. Heating in 6m-guanidine hydrochloride lowered the viscosity of β-galactosidase in a variable manner. PMID:4924171
SORPTION KINETICS OF PAHS IN METHANOL-WATER SYSTEMS
The objectives of this study were to evaluate the relationships between the equilibrium sorption constant (Kp), the first-order desorption rate coefficient (k2), and the volumetric fraction of water miscible solvent (fc); and to utilize SPARC-calculated (SPARC Performs Automatic ...
Nawathe, Shashank; Juillard, Frédéric; Keaveny, Tony M.
2015-01-01
The role of tissue-level post-yield behavior on the apparent-level strength of trabecular bone is a potentially important aspect of bone quality. To gain insight into this issue, we compared the apparent-level strength of trabecular bone for the hypothetical cases of fully brittle versus fully ductile failure behavior of the trabecular tissue. Twenty human cadaver trabecular bone specimens (5 mm cube; BV/TV = 6–36%) were scanned with micro-CT to create 3D finite element models (22-micron element size). For each model, apparent-level strength was computed assuming either fully brittle (fracture with no tissue ductility) or fully ductile (yield with no tissue fracture) tissue-level behaviors. We found that the apparent-level ultimate strength for the brittle behavior was only about half the value of the apparent-level 0.2%-offset yield strength for the ductile behavior, and the ratio of these brittle to ductile strengths was almost constant (mean ± SD = 0.56 ± 0.02; n=20; R2 = 0.99 between the two measures). As a result of this small variation, although the ratio of brittle to ductile strengths was positively correlated with the bone volume fraction (R2=0.44, p=0.01) and structure model index (SMI, R2=0.58, p<0.01), these effects were small. Mechanistically, the fully ductile behavior resulted in a much higher apparent-level strength because in this case about 16-fold more tissue was required to fail than for the fully brittle behavior; also, there was more tensile- than compressive-mode of failure at the tissue level for the fully brittle behavior. We conclude that, in theory, the apparent-level strength behavior of human trabecular bone can vary appreciably depending on whether the tissue fails in a fully ductile versus fully brittle manner, and this effect is largely constant despite appreciable variations in bone volume fraction and microarchitecture. PMID:23497799
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, J.V.
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS
McDonald, Luther W.; Campbell, James A.; Vercouter, Thomas; ...
2016-03-01
Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO 2(NO 3) 2(TBP) 2],more » [UO 2(NO 3) 2(H 2O)(TBP) 2], and [UO 2(NO 3) 2(TBP) 3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO 2(DBP)], [UO 2(DBP) 3], and [UO 2(DBP) 4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.« less
Eggert, Matthew D; Kumar, Satish
2004-10-01
We perform a set of experiments to study the nonlinear nature of an instability that arises in low-Reynolds-number flow past polymer gels. A layer of a viscous liquid is placed on a polydimethylsiloxane (PDMS) gel in a parallel-plate rheometer which is operated in stress-controlled mode. As the shear stress on the top plate increases, the apparent viscosity stays relatively constant until a transition stress where it sharply increases. If the stress is held at a level slightly above the transition stress, the apparent viscosity oscillates with time. If the stress is increased to a value above the transition stress and then decreased back to zero, the apparent viscosity shows hysteretic behavior. If the stress is instead decreased to a constant value and held there, the apparent viscosity is different from its pretransition value and exhibits sustained oscillations. This can happen even if the stress is held at values below the transition stress. Our observations suggest that the instability studied here is subcritical and leads to a flow that is oscillatory and far from viscometric. The phenomena reported here may be useful in applications such as microfluidics, membrane separations, and polymer processing. They may also provide insight into the rheological behavior of complex fluids that undergo flow-induced gelation.
Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy
NASA Technical Reports Server (NTRS)
Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim
2015-01-01
Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas
2015-11-15
Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels.more » This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.« less
Zhang, X; Patel, L A; Beckwith, O; Schneider, R; Weeden, C J; Kindt, J T
2017-11-14
Micelle cluster distributions from molecular dynamics simulations of a solvent-free coarse-grained model of sodium octyl sulfate (SOS) were analyzed using an improved method to extract equilibrium association constants from small-system simulations containing one or two micelle clusters at equilibrium with free surfactants and counterions. The statistical-thermodynamic and mathematical foundations of this partition-enabled analysis of cluster histograms (PEACH) approach are presented. A dramatic reduction in computational time for analysis was achieved through a strategy similar to the selector variable method to circumvent the need for exhaustive enumeration of the possible partitions of surfactants and counterions into clusters. Using statistics from a set of small-system (up to 60 SOS molecules) simulations as input, equilibrium association constants for micelle clusters were obtained as a function of both number of surfactants and number of associated counterions through a global fitting procedure. The resulting free energies were able to accurately predict micelle size and charge distributions in a large (560 molecule) system. The evolution of micelle size and charge with SOS concentration as predicted by the PEACH-derived free energies and by a phenomenological four-parameter model fit, along with the sensitivity of these predictions to variations in cluster definitions, are analyzed and discussed.
Jenke, Dennis; Odufu, Alex; Poss, Mitchell
2006-02-01
Material/water equilibrium interaction constants (E(b)) were determined for 12 organic model solutes and a plastic material used in pharmaceutical product containers (non-PVC polyolefin). An excellent correlation was obtained between the measured interaction constants and the organic solute's octanol/water partition coefficient. The effect of solvent polarity on E(b) was assessed by examining the interaction between the plastic and selected model solutes in binary ethanol/water mixtures. In general, logE(b) could be linearily related to the polarity of the ethanol/water mixture. This information, coupled with the interaction model, was used to estimate the levels to which container leachables could accumulate in contacted solutions. Such estimates were made for six known leachables of the polyolefin material and compared to the leachable's measured accumulation levels in binary ethanol/water systems. In general, the accumulation level of the leachables increased with increasing solution polarity. For most of the leachables, the measured accumulation level was less than the calculated levels, suggesting that equilibrium was not achieved in the leaching portion of this study. This lack of equilibrium is attributable to the layered structure of the material studied, as such layering retards the migration of the leachables that are derived from the material's non-solution contact layers.
First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys
NASA Astrophysics Data System (ADS)
Al-Zoubi, N.
2018-04-01
Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.
NASA Astrophysics Data System (ADS)
Sousa, Tânia; Domingos, Tiago
2006-11-01
We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.
Electrochemical Transfer of S Between Molten Steel and Molten Slag
NASA Astrophysics Data System (ADS)
Kim, Dong-Hyun; Kim, Wook; Kang, Youn-Bae
2018-06-01
S transfer between molten steel and molten slag was investigated in view of the electrochemical character of S transfer. C-saturated molten steel containing S was allowed to react with CaO-SiO2-Al2O3-MgO slag at 1673 K (1400 °C) until the two phases arrive at a chemical equilibrium. The application of an electric field of constant current through graphite electrodes lowered the S content in the molten steel below its chemical equilibrium level, and the system arrived at a new equilibrium level (electrochemical equilibrium). However, subsequent shutting off of the electric field did not lead to the system reverting to the original chemical equilibrium: reversion of S was observed but to a limited extent. The application of an electric field of opposite direction or flowing of CO gas allowed significant reversion of S. Side reactions (decomposition of oxide components) were observed, and these were considered to be coupled to the transfer of S. An electrochemical reaction mechanism was proposed based on the experimental observations found in the present study.
Modeling a distribution of point defects as misfitting inclusions in stressed solids
NASA Astrophysics Data System (ADS)
Cai, W.; Sills, R. B.; Barnett, D. M.; Nix, W. D.
2014-05-01
The chemical equilibrium distribution of point defects modeled as non-overlapping, spherical inclusions with purely positive dilatational eigenstrain in an isotropically elastic solid is derived. The compressive self-stress inside existing inclusions must be excluded from the stress dependence of the equilibrium concentration of the point defects, because it does no work when a new inclusion is introduced. On the other hand, a tensile image stress field must be included to satisfy the boundary conditions in a finite solid. Through the image stress, existing inclusions promote the introduction of additional inclusions. This is contrary to the prevailing approach in the literature in which the equilibrium point defect concentration depends on a homogenized stress field that includes the compressive self-stress. The shear stress field generated by the equilibrium distribution of such inclusions is proved to be proportional to the pre-existing stress field in the solid, provided that the magnitude of the latter is small, so that a solid containing an equilibrium concentration of point defects can be described by a set of effective elastic constants in the small-stress limit.
Effect of SR-49059, a vasopressin V1a antagonist, on human vascular smooth muscle cells.
Serradeil-Le Gal, C; Herbert, J M; Delisee, C; Schaeffer, P; Raufaste, D; Garcia, C; Dol, F; Marty, E; Maffrand, J P; Le Fur, G
1995-01-01
The effects of SR-49059, a new nonpeptide and selective arginine vasopressin (AVP) V1a antagonist, were investigated in binding and functional studies on cultured human aortic vascular smooth muscle cells (VSMC). Characterization of human vascular V1a receptors, using a specific V1a radioiodinated ligand, showed that [125I]-linear AVP antagonist binding to human VSMC membranes was time dependent, reversible, and saturable. A single population of high-affinity binding sites (apparent equilibrium dissociation constant = 15 +/- 6 pM; maximum binding density = 36 +/- 5 fmol/mg protein, i.e., approximately 3,000 sites/cell) with the expected V1a profile was identified. Exposure of these cells to AVP dose-dependently produced cytosolic free [Ca2+] increase [AVP concentration required to obtain a half-maximal response (EC50) = 23 +/- 9 nM] and proliferation (EC50 = 3.2 +/- 0.5 nM). SR-49059 strongly and stereospecifically inhibited [125I]-linear AVP antagonist binding to VSMC V1a receptors [inhibition constant (Ki) = 1.4 +/- 0.3 nM], AVP-evoked Ca2+ increase [concentration of inhibitor required to obtain 50% inhibition of specific binding (IC50) = 0.41 +/- 0.06 nM], and the mitogenic effects induced by 100 nM AVP (IC50 = 0.83 +/- 0.04 nM). OPC-21268, another nonpeptide V1a antagonist, was more than two orders of magnitude less potent than SR-49059 in these models. However, the consistent affinity (Ki = 138 +/- 21 nM) and activity found with OPC-21268 on human VSMC in comparison with the inactivity already observed for other human V1a receptors (liver, platelets, adrenals, and uterus) strongly suggested the existence of human AVP V1a-receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)
Positive and negative ion mode ESI-MS and MS/MS for studying drug-DNA complexes
NASA Astrophysics Data System (ADS)
Rosu, Frédéric; Pirotte, Sophie; Pauw, Edwin De; Gabelica, Valérie
2006-07-01
We report systematic investigation of duplex DNA complexes with minor groove binders (Hoechsts 33258 and 33342, netropsin and DAPI) and intercalators (daunomycin, doxorubicin, actinomycin D, ethidium, cryptolepine, neocryptolepine, m-Amsacrine, proflavine, ellipticine and mitoxantrone) by ESI-MS and ESI-MS/MS in the negative ion mode and in the positive ion mode. The apparent solution phase equilibrium binding constants can be determined by measuring relative intensities in the ESI-MS spectrum. While negative ion mode gives reliable results, positive ion mode gives a systematic underestimation of the binding constants and even a complete suppression of the complexes for intercalators lacking functional groups capable of interacting in the grooves. In the second part of the paper we systematically compare MS/MS fragmentation channels and breakdown curves in the positive and the negative modes, and discuss the possible uses and caveats of MS/MS in drug-DNA complexes. In the negative mode, the drugs can be separated in three groups: (1) those that leave the complex with no net charge; (2) those that leave the complex with a negative charge; and (3) those that remain attached on the strands upon dissociation of the duplex due to their positive charge. In the positive ion mode, all complexes fragment via the loss of protonated drug. Information on the stabilization of the complex by drug-DNA noncovalent interactions can be obtained straightforwardly only in the case of neutral drug loss. In all other cases, proton affinity (in the positive ion mode), gas-phase basicity (in the negative ion mode) and coulombic repulsion are the major factors influencing the fragmentation channel and the dissociation kinetics.
Savara, Aditya
2017-06-28
There was an error in the original Comment. The entropy term arising from 1/N! should be free from dimensional dependence, but also negative. In the original Comment, the nN A arising from 1/N! was inadvertently moved into the dimensional dependent term of Eqs. 2 and 3. To avoid confusion and to keep the same numbering as before, the equations should be as follows.
Theoretical Motions of Hydrofoil Systems
1947-06-01
mentioned in the main test. 22 NACA TIT No. 1285 By the use of D ’ Alemberts principle , the" following equations of equilibrium at the center of gravity...spacing-is d ^Bii;a^i§_iiv order; tominimize the.-effepts-of unavo idable.. change s iiic enter-: of, r gravi ty. location. eine ouster ej._ $n...disturbance to hydrofoil system k, empirical constant used to determine value 1 *(WJ* of d (CT) /ÖZ1 fco> k5 empirical constants used to determine
Jenke, Dennis; Couch, Tom; Gillum, Amy
2010-01-01
Material/water equilibrium binding constants (E(b)) were determined for 11 organic solutes and 2 plastic materials commonly used in pharmaceutical product containers (plasticized polyvinyl chloride and polyolefin). In general, solute binding by the plasticized polyvinyl chloride material was greater, by nearly an order of magnitude, than the binding by the polyolefin (on an equal weight basis). The utilization of the binding constants to facilitate container compatibility assessments (e.g., drug loss by container binding) for drug-containing products is discussed.
Applications of Programmable Calculators in Chemistry Classes
ERIC Educational Resources Information Center
Holdsworth, David
1977-01-01
Described is the use of calculators in two experiments. In the first, students determine the relative atomic mass of magnesium. In the second, students use a calculator to determine a constant for gaseous concentrations of two reactants and the product at equilibrium. (AJ)
Dielectric properties of CaCu3Ti4O12-silicone resin composites
NASA Astrophysics Data System (ADS)
Babu, Sanjesh; Singh, Kirti; Govindan, Anil
2012-06-01
CaCu3Ti4O12 (CCTO)-silicone resin composites with various CCTO volume fractions were prepared. Relatively high dielectric constant ( ɛ=119) and low loss (tan δ=0.35) of the composites with CCTO volume fraction of 0.9 were observed. Two theoretical models were employed to predict the dielectric constant of these composites; the dielectric constant obtained via the Maxwell-Garnett model was in close agreement with the experimental data. The dielectric constant of CCTO-silicone resin composites showed a weak frequency dependence at the measuring frequency range and the loss tangent apparently decreases with increase in frequency.
Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao
2013-10-01
Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Lee, Timothy J.; Rendell, Alistair P.
1990-01-01
The recently proposed quadratic configuration interaction (QCI) method is compared with the more rigorous coupled cluster (CC) approach for a variety of chemical systems. Some of these systems are well represented by a single-determinant reference function and others are not. The finite order singles and doubles correlation energy, the perturbational triples correlation energy, and a recently devised diagnostic for estimating the importance of multireference effects are considered. The spectroscopic constants of CuH, the equilibrium structure of cis-(NO)2 and the binding energies of Be3, Be4, Mg3, and Mg4 were calculated using both approaches. The diagnostic for estimating multireference character clearly demonstrates that the QCI method becomes less satisfactory than the CC approach as non-dynamical correlation becomes more important, in agreement with a perturbational analysis of the two methods and the numerical estimates of the triple excitation energies they yield. The results for CuH show that the differences between the two methods become more apparent as the chemical systems under investigation becomes more multireference in nature and the QCI results consequently become less reliable. Nonetheless, when the system of interest is dominated by a single reference determinant both QCI and CC give very similar results.
Solar photodegradation of a textile azo dye using synthesized ZnO/Bentonite.
Boutra, B; Trari, M
2017-03-01
The present work is devoted to the synthesis of a new photocatalyst ZnO (7.5%)/Bentonite prepared by impregnation method and its successful application for the degradation of Solophenyl Red 3BL (SR 3BL) under solar light (∼660 W/m 2 ). The X-ray diffraction (XRD) indicates mixed phases of the nanocomposite catalyst (ZnO/Bentonite), characterized by scanning electron microscopy, X-ray fluorescence and attenuated total reflection. The optical properties confirm the presence of the Wurtzite ZnO phase with an optical gap of 3.27 eV. The catalyst dose (0.25-1 gL -1 ), pH solution (2.5-11) and initial dye concentration (5-75 mg/L) are optimized. The optimal pH (∼6.7) is close to the natural environment. The photodegradation yield increases with decreasing the SR 3BL concentration. The equilibrium is reached within 160 min and the data are well fitted by the Langmuir-Hinshelwood model; the SR 3BL disappearance obeys to a first-order kinetic with an apparent rate constant of 10 - 2 mn - 1 . The best yield of SR 3BL photodegradation (92%) is achieved for a concentration of 5 mg/L and a catalyst dose of 0.75 gL -1 at free pH.
Design of the Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI)
NASA Astrophysics Data System (ADS)
Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; McCollam, K. J.; Jarboe, T. R.; Nelson, B. A.; Redd, A. J.; Rogers, J. A.; Shumlak, U.
2000-10-01
Steady Inductive Helicity Injection (SIHI) is an inductive current drive method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma(T.R. Jarboe, Fusion Technology 36), p. 85, 1999. SIHI directly produces a rotating magnetic field structure, and the current profile is nearly time independent in the frame of the rotating field. The Helicity Injected Torus with SIHI (HIT-SI) is a ``bow tie'' spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. SIHI is accomplished using two inductive helicity injectors that operate 90^o out of phase with each other. Each helicity injector is a 180^o segment of a ZT-P size (a ≈ 8cm, R ≈ 32cm) RFP. The presence of a spheromak equilibrium will be readily apparent on several diagnostics, including the surface magnetic probes. The design of HIT-SI is presented, including the manufacturing techniques and metallurgical processes being used in the construction of the one-meter diameter close-fitting flux conserver. Several small prototype tests have been performed to prove the vacuum seal and electrical insulation capabilities of the design, and a finite element stress analysis of the flux conserver will be presented.
Evolutionarily stable learning schedules and cumulative culture in discrete generation models.
Aoki, Kenichi; Wakano, Joe Yuichiro; Lehmann, Laurent
2012-06-01
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium. Copyright © 2012 Elsevier Inc. All rights reserved.
Aoki, Kenichi
2018-04-05
In apparent contradiction to the theoretically predicted effect of population size on the quality/quantity of material culture, statistical analyses on ethnographic hunter-gatherers have shown an absence of correlation between population size and toolkit size. This has sparked a heated, if sometimes tangential, debate as to the usefulness of the theoretical models and as to what modes of cultural transmission humans are capable of and hunter-gatherers rely on. I review the directly relevant theoretical literature and argue that much of the confusion is caused by a mismatch between the theoretical variable and the empirical observable. I then confirm that a model incorporating the appropriate variable does predict a positive association between population size and toolkit size for random oblique, vertical, best-of- K , conformist, anticonformist, success bias and one-to-many cultural transmission, with the caveat that for all populations sampled, the population size has remained constant and toolkit size has reached the equilibrium for this population size. Finally, I suggest three theoretical scenarios, two of them involving variable population size, that would attenuate or eliminate this association and hence help to explain the empirical absence of correlation.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
Numerical Modeling of River Fluxes Under Changing Environmental Conditions (Invited)
NASA Astrophysics Data System (ADS)
Simpson, G.
2013-12-01
High frequency climate cycles have a major impact on landscapes, but it remains uncertain if alluvial rivers can transfer the resulting sediment pulses downstream to sedimentary basins. Stratigraphic records located near the mouth of rivers exhibit cyclicity consistent with orbital forcing. However, in some cases, the sediment supply from rivers appears to have remained remarkably constant despite changes in climate, which has been interpreted to indicate that rivers dampen rapid variability. Here, we employ a physically-based numerical model to resolve this outstanding problem. Our simulations show that rivers forced with water flux cycles exhibit highly pulsed sediment outflux records, even when the period of forcing is several orders of magnitude shorter than river response times. This non-linear amplified system response characterised by positive feedback is related to the strong negative correlation between water flux and the equilibrium slope of a river. We also show that the apparent stability of sediment fluxes based on time-averaged data is an artifact of integrating highly episodic records over multiple cycles rather than a signature of diffusive floodplain processes. We conclude that marine sedimentary basins may record sediment-flux cycles resulting from discharge (and ultimately climate) variability, whereas they may be relatively insensitive to pure sediment-flux perturbations (such as for example those induced by tectonics).
Allosteric Models for Cooperative Polymerization of Linear Polymers
Miraldi, Emily R.; Thomas, Peter J.; Romberg, Laura
2008-01-01
In the cytoskeleton, unfavorable nucleation steps allow cells to regulate where, when, and how many polymers assemble. Nucleated polymerization is traditionally explained by a model in which multistranded polymers assemble cooperatively, whereas linear, single-stranded polymers do not. Recent data on the assembly of FtsZ, the bacterial homolog of tubulin, do not fit either category. FtsZ can polymerize into single-stranded protofilaments that are stable in the absence of lateral interactions, but that assemble cooperatively. We developed a model for cooperative polymerization that does not require polymers to be multistranded. Instead, a conformational change allows subunits in oligomers to associate with high affinity, whereas a lower-affinity conformation is favored in monomers. We derive equations for calculating polymer concentrations, subunit conformations, and the apparent affinity of subunits for polymer ends. Certain combinations of equilibrium constants produce the sharp critical concentrations characteristic of cooperative polymerization. In these cases, the low-affinity conformation predominates in monomers, whereas virtually all polymers are composed of high-affinity subunits. Our model predicts that the three routes to forming HH dimers all involve unstable intermediates, limiting nucleation. The mathematical framework developed here can represent allosteric assembly systems with a variety of biochemical interpretations, some of which can show cooperativity, and others of which cannot. PMID:18502809
Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan
2017-10-01
Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Hong; Kitova, Elena N.; Klassen, John S.
2014-01-01
Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β- D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β- D-Gal p-(1→4)-β-D-Glc p (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M-1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M-1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.
Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem
NASA Astrophysics Data System (ADS)
Minesaki, Yukitaka
2018-04-01
We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.
On the freestream matching condition for stagnation point turbulent flows
NASA Technical Reports Server (NTRS)
Speziale, C. G.
1989-01-01
The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.