NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.
2003-01-01
Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.
The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure
ERIC Educational Resources Information Center
Dunlap, Richard A.
2012-01-01
It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple model of a nanocrystal with spherical shape and centro-symmetric strain at the surface shell we obtain theoretical alp-Q values which match very well the alp-Q plots determined experimentally for Sic, GaN, and diamond nanopowders. The theoretical models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the surface shell. According to our calculations, the part of the diffraction pattern measured at relatively low diffraction vectors Q (below 10/angstrom) provides information on the surface strain, whle determination of the lattice parameters in the grain core requires measurements at large Q-values (above 15 - 20/angstrom).
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H. P.; Janik, J. F.; Palosz, W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The effect of the chemical state of the surface of nanoparticles on the relaxation in the near-surface layer was examined using the concept of the apparent lattice parameter (alp) determined for different diffraction vectors Q. The apparent lattice parameter is a lattice parameter determined either from an individual Bragg reflection, or from a selected region of the diffraction pattern. At low diffraction vectors the Bragg peak positions are affected mainly by the structure of the near-surface layer, while at high Q-values only the interior of the nano-grain contributes to the diffraction pattern. Following the measurements on raw (as prepared) powders we investigated powders cleaned by annealing at 400C under vacuum, and the same powders wetted with water. Theoretical alp-Q plots showed that the structure of the surface layer depends on the sample treatment. Semi-quantitative analysis based on the comparison of the experimental and theoretical alp-Q plots was performed. Theoretical alp-Q relations were obtained from the diffraction patterns calculated for models of nanocrystals with a strained surface layer using the Debye functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merkle, K. L.; Csencsits, R.; Rynes, K. L.
In the absence of high-order aberrations, the lattice fringe technique should allow measurement of grain boundary rigid-body displacements to accuracies about an order of magnitude better than the point-to-point resolution of the transmission electron microscope. The three-fold astigmatism, however, introduces shifts of the lattice fringe pattern that depend on the orientation of the lattice relative to the direction of the three-fold astigmatism and thus produces an apparent shift between the two grains bordering the grain boundary. By image simulation of grain boundary model structures, the present paper explores the effect of these extraneous shifts on grain boundary volume expansion measurements.more » It is found that the shifts depend, among others, on zone axis direction and the magnitude of the lattice parameter. For many grain boundaries of interest, three-fold astigmatism correction to better than 100 nm appears necessary to achieve the desired accuracies.« less
Observation of oxide particles below the apparent oxygen solubility limit in tantalum
NASA Technical Reports Server (NTRS)
Stecura, S.
1973-01-01
The apparent solubility of oxygen in polycrystalline tantalum as determined by the X-ray diffraction lattice parameter technique is about 1.63 atomic percent at 820 C. However, oxide particles were identified in samples containing as low as 0.5 atomic percent of oxygen. These oxide particles were present at the grain boundaries and within the grains. The number of oxide particles increased with increasing oxygen concentration in tantalum. The presence of oxide particles suggests that the true solubility of oxygen in the polycrystalline tantalum metal is probably significantly lower than that reported in the literature.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.;
2002-01-01
Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.
Sukop, Michael C.; Huang, Haibo; Alvarez, Pedro F.; Variano, Evan A.; Cunningham, Kevin J.
2013-01-01
Lattice Boltzmann flow simulations provide a physics-based means of estimating intrinsic permeability from pore structure and accounting for inertial flow that leads to departures from Darcy's law. Simulations were used to compute intrinsic permeability where standard measurement methods may fail and to provide better understanding of departures from Darcy's law under field conditions. Simulations also investigated resolution issues. Computed tomography (CT) images were acquired at 0.8 mm interscan spacing for seven samples characterized by centimeter-scale biogenic vuggy macroporosity from the extremely transmissive sole-source carbonate karst Biscayne aquifer in southeastern Florida. Samples were as large as 0.3 m in length; 7–9 cm-scale-length subsamples were used for lattice Boltzmann computations. Macroporosity of the subsamples was as high as 81%. Matrix porosity was ignored in the simulations. Non-Darcy behavior led to a twofold reduction in apparent hydraulic conductivity as an applied hydraulic gradient increased to levels observed at regional scale within the Biscayne aquifer; larger reductions are expected under higher gradients near wells and canals. Thus, inertial flows and departures from Darcy's law may occur under field conditions. Changes in apparent hydraulic conductivity with changes in head gradient computed with the lattice Boltzmann model closely fit the Darcy-Forchheimer equation allowing estimation of the Forchheimer parameter. CT-scan resolution appeared adequate to capture intrinsic permeability; however, departures from Darcy behavior were less detectable as resolution coarsened.
NASA Technical Reports Server (NTRS)
Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.
2003-01-01
The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.
Zeng, Y.; Hunter, A.; Beyerlein, I. J.; ...
2015-09-14
In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τ crit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τ crit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results showmore » that the value of τ crit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τ crit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τ crit values.« less
3D Photonic Crystals Build Up By Self-Organization Of Nanospheres
2006-05-23
variance for simple tetragonal Vst , of which general form is defined in Equation (5), could be an important parameter affecting band structure, and it is...plotted along with gap size both as a function of lattice parameter ratio c/a in Figure 2. Apparently, the inverse of variance, i.e. 1/ Vst , shows a...possible. 0.8 1.0 1.2 1.4 1.6 1.8 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 gap size (%) 1/ Vst c/a of simple tetragonal g ap s iz e (% ) 0.85 0.86
Thin film growth of CaFe2As2 by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.
2016-01-01
Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakol, Z.; Owoc, D.; Przewoznik, J.
2012-08-15
X-ray powder diffraction was measured in Fe{sub 3-x}Me{sub x}O{sub 4} (Me=Zn, Ti, Al; x<0.065), in T range 70-300 K to see the effect of different doping on global lattice properties. The experimental results have shown that some lattice properties (e.g., the cell volume) are dopand specific. This can be attributed to the difference in preferential sites occupation by dopants. As confirmed by EXAFS, Zn enters tetrahedral, while Ti octahedral lattice sites, differently affecting crucial octahedral iron positions in the spinel lattice. However, despite this fact, it was found that T dependence of both monoclinic angle and lattice parameters is universalmore » for studied samples above and below the Verwey transition temperature T{sub V}. So, not the iron atoms in octahedral positions individually, but interactions between them are responsible for the Verwey transition character change with doping. - Graphical abstract: A low temperature magnetite cell volume vs. dopants content. Apparently, Zn, Ti and Al atoms have different effect on the global lattice properties at individual temperatures. However, the Verwey transition reacts to dopants in a similar manner, despite the different way the octahedral iron positions are affected. Highlights: Black-Right-Pointing-Pointer We measure powder diffraction and EXAFS on Fe{sub 3-x}Me{sub x}O{sub 4}, Me=Zn, Ti, Al (x<0.065), in T range 70-300 K. Black-Right-Pointing-Pointer XRD: atom-type independent changes of lattice parameters with T. Black-Right-Pointing-Pointer EXAFS: Zn replaces Fe on tetrahedral positions, Ti on octahedral positions. Black-Right-Pointing-Pointer Thus, some secondary interactions between ordering orbitals, not the primary one driving the Verwey transition, control the transition order.« less
Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia
2010-02-05
We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.
Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, Koji; Hattori, Nozomu; Kubo, Hirofumi
2009-03-15
Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are revisited in lattice perturbation theory. The calculations have been done mostly with dimensional regularization so far. In order to establish that the existence of ANTs is independent of the regularization scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration variables from group elements to 'pion' fields, we employ lattice regularization, in which everything (including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces ANTs in the four-point functions of the pion fields at one-loopmore » and the Jacobian does not play an important role in generating ANTs.« less
NASA Astrophysics Data System (ADS)
Mishra, Karuna Kara; Bevara, Samatha; Ravindran, T. R.; Patwe, S. J.; Gupta, Mayanak K.; Mittal, Ranjan; Krishnan, R. Venkata; Achary, S. N.; Tyagi, A. K.
2018-02-01
Herein we reported structural stability, vibrational and thermal properties of K2Ce[PO4]2, a relatively underexplored complex phosphate of tetravalent Ce4+ from in situ high-pressure Raman spectroscopic investigations up to 28 GPa using a diamond anvil cell. The studies identified the soft phonons that lead to a reversible phase transformation above 8 GPa, and a phase coexistence of ambient (PI) and high pressure (PII) phases in a wider pressure region 6-11 GPa. From a visual representation of the computed eigen vector displacements, the Ag soft mode at 82 cm-1 is assigned as a lattice mode of K+ cation. Pressure-induced positional disorder is apparent from the substantial broadening of internal modes and the disappearance of low frequency lattice and external modes in phase PII above 18 GPa. Isothermal mode Grüneisen parameters γi of the various phonon modes are calculated and compared for several modes. Using these values, thermal properties such as average Grüneisen parameter, and thermal expansion coefficient are estimated as 0.47, and 2.5 × 10-6 K-1, respectively. The specific heat value was estimated from all optical modes obtained from DFT calculations as 314 J-mol-1 K-1. Our earlier reported temperature dependence of phonon frequencies is used to decouple the "true anharmonic" (explicit contribution at constant volume) and "quasi harmonic" (implicit contribution brought out by volume change) contributions from the total anharmonicity. In addition to the 81 cm-1 Ag lattice mode, several other lattice and external modes of PO43- ions are found to be strongly anharmonic.
Paraequilibrium Carburization of Duplex and Ferritic Stainless Steels
NASA Astrophysics Data System (ADS)
Michal, G. M.; Gu, X.; Jennings, W. D.; Kahn, H.; Ernst, F.; Heuer, A. H.
2009-08-01
AISI 301 and E-BRITE stainless steels were subjected to low-temperature (743 K) carburization experiments using a commercial technology developed for carburization of 316 austenitic stainless steels. The AISI 301 steel contained ~40 vol pct ferrite before carburization but had a fully austenitic hardened case, ~20- μm thick, and a surface carbon concentration of ~8 at. pct after treatment; this “colossal” paraequilibrium carbon supersaturation caused an increase in lattice parameter of ~3 pct. The E-BRITE also developed a hardened case, 12- to 18- μm thick, but underwent a more modest (~0.3 pct) increase in lattice parameter; the surface carbon concentration was ~10 at. pct. While the hardened case on the AISI 301 stainless steel appeared to be single-phase austenite, evidence for carbide formation was apparent in X-ray diffractometer (XRD) scans of the E-BRITE. Paraequilibrium phase diagrams were calculated for both AISI 301 and E-BRITE stainless steels using a CALPHAD compound energy-based interstitial solid solution model. In the low-temperature regime of interest, and based upon measured paraequilibrium carbon solubilities, more negative Cr-carbon interaction parameters for austenite than those in the current CALPHAD data base may be appropriate. A sensitivity analysis involving Cr-carbon interaction parameters for ferrite found a strong dependence of carbon solubility on relatively small changes in the magnitude of these parameters.
Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates
Norman, Andrew G; Ptak, Aaron J
2013-08-13
Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a substrate having a crystalline surface with a known lattice parameter (a). The method further includes growing a crystalline semiconductor layer on the crystalline substrate surface by coincident site lattice matched epitaxy, without any buffer layer between the crystalline semiconductor layer and the crystalline surface of the substrate. The crystalline semiconductor layer will be prepared to have a lattice parameter (a') that is related to the substrate lattice parameter (a). The lattice parameter (a') maybe related to the lattice parameter (a) by a scaling factor derived from a geometric relationship between the respective crystal lattices.
Condensation of collective charge ordering in chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, A.; Marsh, M. J.; Dietze, S. H.
2015-03-01
We report on the dynamics of the structural order parameter in a chromium film using synchrotron radiation in response to photoinduced ultrafast excitations. Following transient optical excitations the effective lattice temperature of the film rises close to the Neel temperature and the charge-density wave (CDW) amplitude is reduced but does not appear to ever be fully destroyed. The persistence of the CDW diffraction signal demonstrates that the CDW, if destroyed by the laser pulse, must be reestablished within the 100-ps time resolution of the synchrotron x-ray pulses. Furthermore, at all times after photoexcitation, the CDW retains its low-temperature periodicity, rathermore » than regenerating with its high-temperature period shortly after photoexcitation. The long-term evolution shows that the CDW reverts to its ground state on a time scale of 370 +/- 40 ps. We attribute the apparent persistence of the CDW to the long-lived periodic lattice displacement in chromium. This study highlights the fundamental role of the lattice distortion and its impact on the recondensation dynamics of the charge ordered state in strongly correlated materials.« less
Effects of cobalt on the microstructure of Udimet 700. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Engel, M. A.
1982-01-01
Cobalt, a critical and "strategic" alloying element in many superalloys, was systematically substituted by nickel in experimental alloys Udimet 700 containing 0.1, 4.3, 8.6, 12.8 and the standard 17.0 wt.% cobalt. Electrolytic and chemical extraction techniques, X-ray diffraction, scanning electron and optical microscopy were used for the microstructural studies. The total weight fraction of gamma' was not significantly affected by the cobalt content, although a difference in the size and quantities of the primary and secondary gamma' phases was apparent. The lattice parameters of the gamma' were found to increase with increasing cobalt content while the lattice mismatch between the gamma matrix and gamma' phases decreased. Other significant effects of cobalt on the weight fraction, distribution and formation of the carbide and boride phases as well as the relative stability of the experimental alloys during long-time aging are also discussed.
Possible 3rd order phase transition at T=0 in 4D gluodynamics
NASA Astrophysics Data System (ADS)
Li, L.; Meurice, Y.
2006-02-01
We revisit the question of the convergence of lattice perturbation theory for a pure SU(3) lattice gauge theory in four dimensions. Using a series for the average plaquette up to order 10 in the weak coupling parameter β-1, we show that the analysis of the extrapolated ratio and the extrapolated slope suggests the possibility of a nonanalytical power behavior of the form (1/β-1/5.7(1))1.0(1), in agreement with another analysis based on the same assumption. This would imply that the third derivative of the free energy density diverges near β=5.7. We show that the peak in the third derivative of the free energy present on 44 lattices disappears if the size of the lattice is increased isotropically up to a 104 lattice. On the other hand, on 4×L3 lattices, a jump in the third derivative persists when L increases, and follows closely the known values of βc for the first order finite temperature transition. We show that the apparent contradiction at zero temperature can be resolved by moving the singularity in the complex 1/β plane. If the imaginary part of the location of the singularity Γ is within the range 0.001<Γ<0.01, it is possible to limit the second derivative of P within an acceptable range without affecting drastically the behavior of the perturbative coefficients. We discuss the possibility of checking the existence of these complex singularities by using the strong coupling expansion or calculating the zeroes of the partition function.
Transmission Electron Microscope Measures Lattice Parameters
NASA Technical Reports Server (NTRS)
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Lattice Parameter Behavior with Different Nd and O Concentrations in (U 1-yNd y)O 2±x Solid Solution
Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.; ...
2016-02-02
The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less
Lattice matched crystalline substrates for cubic nitride semiconductor growth
Norman, Andrew G; Ptak, Aaron J; McMahon, William E
2015-02-24
Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Roberts, Tyler; de Pablo, Juan; dePablo Team
2014-11-01
Liquid crystals (LC) posses anisotropic viscoelastic properties, and, as such, LC flow can be incredibly complicated. Here we employ a hybrid lattice Boltzmann method (pioneered by Deniston, Yeomans and Cates) to systematically study the hydrodynamics of nematic liquid crystals (LCs) with and without solid particles. This method evolves the velocity field through lattice Boltzmann and the LC-order parameter via a finite-difference solver of the Beris-Edwards equation. The evolution equation of the boundary points with finite anchoring is obtained through Poisson bracket formulation. Our method has been validated by matching the Ericksen-Leslie theory. We demonstrate two applications in the flow alignment regime. We first investigate a hybrid channel flow in which the top and bottom walls have different anchoring directions. By measuring the apparent shear viscosity in terms of Couette flow, we achieve a viscosity inhomogeneous system which may be applicable to nano particle processing. In the other example, we introduce a homeotropic spherical particle to the channel, and focus on the deformations of the defect ring due to anchorings and flow. The results are then compared to the molecular dynamics simulations of a colloid particle in an LC modeled by a Gay-Berne potential.
From solid solution to cluster formation of Fe and Cr in α-Zr
NASA Astrophysics Data System (ADS)
Burr, P. A.; Wenman, M. R.; Gault, B.; Moody, M. P.; Ivermark, M.; Rushton, M. J. D.; Preuss, M.; Edwards, L.; Grimes, R. W.
2015-12-01
To understand the mechanisms by which the re-solution of Fe and Cr additions increase the corrosion rate of irradiated Zr alloys, the solubility and clustering of Fe and Cr in model binary Zr alloys was investigated using a combination of experimental and modelling techniques - atom probe tomography (APT), x-ray diffraction (XRD), thermoelectric power (TEP) and density functional theory (DFT). Cr occupies both interstitial and substitutional sites in the α-Zr lattice; Fe favours interstitial sites, and a low-symmetry site that was not previously modelled is found to be the most favourable for Fe. Lattice expansion as a function of Fe and Cr content in the α-Zr matrix deviates from Vegard's law and is strongly anisotropic for Fe additions, expanding the c-axis while contracting the a-axis. Matrix content of solutes cannot be reliably estimated from lattice parameter measurements, instead a combination of TEP and APT was employed. Defect clusters form at higher solution concentrations, which induce a smaller lattice strain compared to the dilute defects. In the presence of a Zr vacancy, all two-atom clusters are more soluble than individual point defects and as many as four Fe or three Cr atoms could be accommodated in a single Zr vacancy. The Zr vacancy is critical for the increased apparent solubility of defect clusters; the implications for irradiation induced microstructure changes in Zr alloys are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung Min; Knight, Travis W.; Voit, Stwart L.
The solid solution of (U1-yFPy)O- 2±x, has the same fluorite structure as UO 2±x lambda, and the lattice parameter is affected by dissolved fission product and oxygen concentrations. We investigated the relation between the lattice parameter and the concentrations of neodymium and oxygen in the fluorite structure of (U 1-yNd y)O 2±x using X-ray diffraction. Moreover, the lattice parameter behavior in the (U 1-yNd y)O 2±x, solid solution shows a linear change as a function of the oxygen-to-metal ratio and solubility of neodymium. The lattice parameter depends on the radii of ions forming the fluorite structure and also can bemore » expressed by a particular rule (modified Vegard's law). Furthermore, the numerical analyses of the lattice parameters for the stoichiometric and nonstoichionietric solid solutions were conducted, and the lattice parameter model for the (U1-yNdy)O 2±x, solid solution was assessed. There is a very linear relationship between the lattice parameter and the Nd and O concentration for the stoichiometry and nonstoichiometry of the (U 1-yNd y)O 2±x solid solution was verified.« less
Single-hole spectral function and spin-charge separation in the t-J model
NASA Astrophysics Data System (ADS)
Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.
2001-07-01
Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1<=J/t<=0.4 on lattices with up to L×L=32×32 sites at a temperature as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.
Bulk and monolayer ordering of block copolymer blends
NASA Astrophysics Data System (ADS)
Onikoyi, Adetunji J.
The control of the nanoscale structure or morphology of a block copolymer is a desired goal for nanolithography applications. In this work, we are particularly interested in providing guides for controlling domain size, domain shape and defect densities in block copolymers and their blends for thin film applications. To reach this goal, a sphere forming PS-b-P2VP (having a PS majority block) and its blends with PS homopolymer or cylinder forming PS-b-P2VP are studied in both the bulk and thin films. Structure characterization is performed using a variety of experimental techniques including small angle X-ray scattering, scanning force microscopy and transmission electron microscopy. In the bulk, the spherical domains of the pure, sphere forming PS-b-P2VP arrange on a BCC lattice. On adding PS homopolymer (hPS), the lattice parameter of the BCC spheres increases, while the order-to-disorder temperature (ODT) of the BCC lattice simultaneously decreases. At a given hPS composition, the use of larger sized hPS leads to larger increases in the lattice parameter and larger decreases in the ODT. In bulk blends of cylinder forming PS-b-P2VP with sphere forming PS-b-P2VP, the ordered morphology changes (e.g., cylindrical morphology → coexisting spherical and cylindrical morphologies → spherical morphology) as the sphere forming PS-b-P2VP volume fraction phis increases, while the ODT of the cylindrical morphology decreases. The phase boundaries of these morphologies in monolayers shift to lower phis compared to those of the bulk, apparently caused by a selective adsorption of the cylindrical PS-b-P2VP to form a brush on the substrate. This selective adsorption leads to a preference for spherical domains in diamond-shaped lateral confinements when cylindrical domains are stabilized outside the confinements on the same substrate. Finally, we explore the use of graphoepitaxy to order monolayers of sphere forming PS-b-P2VP and its blends with hPS. The probability of forming isolated dislocations, or of adding (or removing) a full row of spherical domains, in diamond-shaped lateral confinements is shown to be higher when the well size is incommensurate with the lattice parameter. Square-shaped lateral confinement leads to a preference for square sphere packing if the PS-b-P2VP is blended with appropriate amounts of hPS.
Modified screening interaction potential on dust lattice waves in dusty plasma ring
NASA Astrophysics Data System (ADS)
He, Kerong; Chen, Hui; Liu, Sanqiu
2017-05-01
In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.
Lattice parameters guide superconductivity in iron-arsenides
NASA Astrophysics Data System (ADS)
Konzen, Lance M. N.; Sefat, Athena S.
2017-03-01
The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.
Lattice parameters guide superconductivity in iron-arsenides.
Konzen, Lance M N; Sefat, Athena S
2017-03-01
The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.
Lattice parameters guide superconductivity in iron-arsenides
Konzen, Lance M. N.; Sefat, Athena S.
2017-01-12
The discovery of superconducting materials has led to their use in modern technological marvels, such as magnetic field sensors in MRI machines, powerful research magnets, and high-speed trains. Despite such applications, the uses of superconductors are not widespread due to high cooling costs. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), numerous studies have tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition uponmore » small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor of superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-based materials (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-based superconductors presented here, should guide synthesis of new materials and give clues for superconductivity.« less
Lattice matched semiconductor growth on crystalline metallic substrates
Norman, Andrew G; Ptak, Aaron J; McMahon, William E
2013-11-05
Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.
Determination of a Two-Phase Structure of Nanocrystals: GaN and SiC
NASA Technical Reports Server (NTRS)
Palosz, W.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Lojkowski, W.; Bismayer, U.; Neuefeind, J.; Weber, H.-P.; Janik, J. F.;
2001-01-01
The properties of nano-crystalline materials are critically dependent on the structure of the constituent grains. Experimental conditions necessary to perform structural analysis of nanocrystalline materials as a two-phase core-surface shell system are discussed. It is shown, that a standard X-ray diffraction measurements and analysis are insufficient and may lead to incorrect conclusions as to the real structure of the materials. A new method of evaluation of powder diffraction data based on the analysis of the shift of the Bragg reflections from their perfect-lattice positions was developed. "Apparent lattice parameters" quantity, alp, was introduced and calculated from the actual positions of each individual Bragg reflection. The alp values plotted versus diffraction vector (Q) show characteristic features that are used for evaluation of the experimental results. The study was based on modeling of nano-grains and simulations of theoretical intensity profiles using the Debye functions. The method was applied to the analysis of synchrotron X-ray diffraction data of GaN and SiC nanocrystals. A presence of strained surface shell and a considerable internal pressure (GaN) in the nanoparticles was concluded.
Kelly, B.G.; Loether, A.; DiChiara, A. D.; ...
2017-04-20
An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.G.; Loether, A.; DiChiara, A. D.
An in-situ optical pump/x-ray probe technique has been used to study the size dependent lattice parameter of Pt nanoparticles subjected to picosecond duration optical laser pulses. The as-prepared Pt nanoparticles exhibited a contracted lattice parameter consistent with the response of an isolated elastic sphere to a compressive surface stress. During photo-thermally induced sintering and grain growth, however, the Pt lattice parameter did not evolve with the inverse particle size dependence predicted by simple surface stress models. Lastly, the observed behavior could be attributed to the combined effects of a compressive surface/interface stress and a tensile stress arising from intergranular material.
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
NASA Astrophysics Data System (ADS)
Hauke, Philipp; Roscilde, Tommaso; Murg, Valentin; Cirac, J. Ignacio; Schmied, Roman
2011-07-01
We study the ground-state phases of the S=1/2 Heisenberg quantum antiferromagnet on the spatially anisotropic triangular lattice (SATL) and on the square lattice with up to next-next-nearest-neighbor coupling (the J1J2J3 model), making use of Takahashi's modified spin-wave (MSW) theory supplemented by ordering vector optimization. We compare the MSW results with exact diagonalization and projected-entangled-pair-states calculations, demonstrating their qualitative and quantitative reliability. We find that the MSW theory correctly accounts for strong quantum effects on the ordering vector of the magnetic phases of the models under investigation: in particular, collinear magnetic order is promoted at the expense of non-collinear (spiral) order, and several spiral states that are stable at the classical level disappear from the quantum phase diagram. Moreover, collinear states and non-collinear ones are never connected continuously, but they are separated by parameter regions in which the MSW theory breaks down, signaling the possible appearance of a non-magnetic ground state. In the case of the SATL, a large breakdown region appears also for weak couplings between the chains composing the lattice, suggesting the possible occurrence of a large non-magnetic region continuously connected with the spin-liquid state of the uncoupled chains. This shows that the MSW theory is—despite its apparent simplicity—a versatile tool for finding candidate regions in the case of spin-liquid phases, which are among prime targets for relevant quantum simulations.
Superconductivity in the Penson-Kolb Model on a Triangular Lattice
NASA Astrophysics Data System (ADS)
Ptok, A.; Mierzejewski, M.
2008-07-01
We investigate properties of the two-dimensional Penson-Kolb model with repulsive pair hopping interaction. In the case of a bipartite square lattice this interaction may lead to the η-type pairing, when the phase of superconducting order parameter changes from one lattice site to the neighboring one. We show that this interaction may be responsible for the onset of superconductivity also for a triangular lattice. We discuss the spatial dependence of the superconducting order parameter and demonstrate that the total momentum of the paired electrons is determined by the lattice geometry.
Magnetism and phase transitions in LaCoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, David P; Durand, Alice M; Booth, C
2013-01-01
Neutron scattering and magnetometry measurements have been used to study phase transitions in LaCoO3 (LCO). For H 100 Oe, evidence for a ferromagnetic (FM) transition is observed at Tc 87 K. For 1 kOe H 60 kOe, no transition is apparent. For all H, Curie Weiss analysis shows predominantly antiferromagnetic (AFM) interactions for T > Tc, but the lack of long-range AFM order indicates magnetic frustration. We argue that the weak ferromagnetism in bulk LCO is induced by lattice strain, as is the case with thin films and nanoparticles. The lattice strain is present at the bulk surfaces and atmore » the interfaces between the LCO and a trace cobalt oxide phase. The ferromagnetic ordering in the LCO bulk is strongly affected by the Co O Co angle ( ), in agreement with recent band calculations which predict that ferromagnetic long-range order can only take place above a critical value, C. Consistent with recent thin film estimations, we find C D 162:8. For > C, we observe power-law behavior in the structural parameters. decreases with T until the critical temperature, To 37 K; below To the rate of change becomes very small. For T < To, FM order appears to be confined to regions close to the surfaces, likely due to the lattice strain keeping the local Co O Co angle above C.« less
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2008-01-01
The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.
Chan, Eric J; Neumann, Marcus A
2018-04-10
We have performed a comparison of the experimental thermal diffuse scattering (TDS) from crystalline Aspirin (form I) to that calculated from molecular dynamics (MD) simulations based on a variety of general force fields and a tailor-made force field (TMFF). A comparison is also made with Monte Carlo (MC) simulations which use a "harmonic network" approach to describe the intermolecular interactions. These comparisons were based on the hypothesis that TDS could be a useful experimental data in validation of such simulation parameter sets, especially when calculations of dynamical properties (e.g., thermodynamic free energies) from molecular crystals are concerned. Currently such a validation of force field parameters against experimental data is often limited to calculation of specific physical properties, e.g., absolute lattice energies usually at 0 K or heat capacity measurements. TDS harvested from in-house or synchrotron experiments comprises highly detailed structural information representative of the dynamical motions of the crystal lattice. Thus, TDS is a well-suited experimental data-driven means of cross validating theoretical approaches targeted at understanding dynamical properties of crystals. We found from the results of our investigation that the TMFF and COMPASS (from the commercial software "Materials Studio") parameter sets gave the best agreement with experiment. From our homologous MC simulation analysis we are able to show that force constants associated with the molecular torsion angles are likely to be a strong contributing factor for the apparent reason why these aforementioned force fields performed better.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Wolf, Walter; Wimmer, Erich
2013-01-09
The lattice parameter of cubic chemical vapor deposited (CVD) ZnS with measured oxygen concentrations < 0.6 at.% and hydrogen impurities of < 0.015 at.% have been measured and found to vary between -0.10% and +0.09% relative to the reference lattice parameter (5.4093 Å) of oxygen-free cubic ZnS as reported in the literature. Defects other than substitutional O must be invoked to explain these observed volume changes. The structure and thermodynamic stability of a wide range of native and impurity induced defects in ZnS have been determined by Ab initio calculations. Lattice contraction is caused by S-vacancies, substitutional O on Smore » sites, Zn vacancies, H in S vacancies, peroxy defects, and dissociated water in S-vacancies. The lattice is expanded by interstitial H, H in Zn vacancies, dihydroxy defects, interstitial oxygen, Zn and [ZnHn] complexes (n=1,…,4), interstitial Zn, and S2 dumbbells. Oxygen, though present, likely forms substitutional defects for sulfur resulting in lattice contraction rather than as interstitial oxygen resulting in lattice expansion. It is concluded based on measurement and calculations that excess zinc atoms either at anti-sites (i.e. Zn atoms on S-sites) or possibly as interstitial Zn are responsible for the relative increase of the lattice parameter of commercially produced CVD ZnS.« less
NASA Astrophysics Data System (ADS)
Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael
2013-12-01
In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.
Downscaling Smooth Tomographic Models: Separating Intrinsic and Apparent Anisotropy
NASA Astrophysics Data System (ADS)
Bodin, Thomas; Capdeville, Yann; Romanowicz, Barbara
2016-04-01
In recent years, a number of tomographic models based on full waveform inversion have been published. Due to computational constraints, the fitted waveforms are low pass filtered, which results in an inability to map features smaller than half the shortest wavelength. However, these tomographic images are not a simple spatial average of the true model, but rather an effective, apparent, or equivalent model that provides a similar 'long-wave' data fit. For example, it can be shown that a series of horizontal isotropic layers will be seen by a 'long wave' as a smooth anisotropic medium. In this way, the observed anisotropy in tomographic models is a combination of intrinsic anisotropy produced by lattice-preferred orientation (LPO) of minerals, and apparent anisotropy resulting from the incapacity of mapping discontinuities. Interpretations of observed anisotropy (e.g. in terms of mantle flow) requires therefore the separation of its intrinsic and apparent components. The "up-scaling" relations that link elastic properties of a rapidly varying medium to elastic properties of the effective medium as seen by long waves are strongly non-linear and their inverse highly non-unique. That is, a smooth homogenized effective model is equivalent to a large number of models with discontinuities. In the 1D case, Capdeville et al (GJI, 2013) recently showed that a tomographic model which results from the inversion of low pass filtered waveforms is an homogenized model, i.e. the same as the model computed by upscaling the true model. Here we propose a stochastic method to sample the ensemble of layered models equivalent to a given tomographic profile. We use a transdimensional formulation where the number of layers is variable. Furthermore, each layer may be either isotropic (1 parameter) or intrinsically anisotropic (2 parameters). The parsimonious character of the Bayesian inversion gives preference to models with the least number of parameters (i.e. least number of layers, and maximum number of isotropic layers). The non-uniqueness of the problem can be addressed by adding high frequency data such as receiver functions, able to map first order discontinuities. We show with synthetic tests that this method enables us to distinguish between intrinsic and apparent anisotropy in tomographic models, as layers with intrinsic anisotropy are only present when required by the data. A real data example is presented based on the latest global model produced at Berkeley.
Bending and breaking of stripes in a charge ordered manganite.
Savitzky, Benjamin H; El Baggari, Ismail; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2017-12-01
In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal-insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi 0.35 Sr 0.18 Ca 0.47 MnO 3 using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.
LATTICE/hor ellipsis/a beam transport program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staples, J.
1987-06-01
LATTICE is a computer program that calculates the first order characteristics of synchrotrons and beam transport systems. The program uses matrix algebra to calculate the propagation of the betatron (Twiss) parameters along a beam line. The program draws on ideas from several older programs, notably Transport and Synch, adds many new ones and incorporates them into an interactive, user-friendly program. LATTICE will calculate the matched functions of a synchrotron lattice and display them in a number of ways, including a high resolution Tektronix graphics display. An optimizer is included to adjust selected element parameters so the beam meets a setmore » of constraints. LATTICE is a first order program, but the effect of sextupoles on the chromaticity of a synchrotron lattice is included, and the optimizer will set the sextupole strengths for zero chromaticity. The program will also calculate the characteristics of beam transport systems. In this mode, the beam parameters, defined at the start of the transport line, are propagated through to the end. LATTICE has two distinct modes: the lattice mode which finds the matched functions of a synchrotron, and the transport mode which propagates a predefined beam through a beam line. However, each mode can be used for either type of problem: the transport mode may be used to calculate an insertion for a synchrotron lattice, and the lattice mode may be used to calculate the characteristics of a long periodic beam transport system.« less
McKee, Rodney A.; Walker, Frederick J.
1996-01-01
A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.
NASA Astrophysics Data System (ADS)
Chaloupka, Jiří; Khaliullin, Giniyat
2015-07-01
We have explored the hidden symmetries of a generic four-parameter nearest-neighbor spin model, allowed in honeycomb-lattice compounds under trigonal compression. Our method utilizes a systematic algorithm to identify all dual transformations of the model that map the Hamiltonian on itself, changing the parameters and providing exact links between different points in its parameter space. We have found the complete set of points of hidden SU(2) symmetry at which a seemingly highly anisotropic model can be mapped back on the Heisenberg model and inherits therefore its properties such as the presence of gapless Goldstone modes. The procedure used to search for the hidden symmetries is quite general and may be extended to other bond-anisotropic spin models and other lattices, such as the triangular, kagome, hyperhoneycomb, or harmonic-honeycomb lattices. We apply our findings to the honeycomb-lattice iridates Na2IrO3 and Li2IrO3 , and illustrate how they help to identify plausible values of the model parameters that are compatible with the available experimental data.
Magnetism in nanoparticle LaCoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, A. M.; Belanger, D. P.; Booth, C. H.
2014-06-24
Neutron scattering and magnetometry measurements have been used to study phase transitions in LaCoO3 (LCO). For H <= 100 Oe, evidence for a ferromagnetic (FM) transition is observed at T-c approximate to 87 K. For 1 kOe <= H <= 60 kOe, no transition is apparent. For all H, Curie-Weiss analysis shows predominantly antiferromagnetic (AFM) interactions for T > T-c, but the lack of long-range AFM order indicates magnetic frustration. We argue that the weak ferromagnetism in bulk LCO is induced by lattice strain, as is the case with thin films and nanoparticles. The lattice strain is present at themore » bulk surfaces and at the interfaces between the LCO and a trace cobalt oxide phase. The ferromagnetic ordering in the LCO bulk is strongly affected by the Co-O-Co angle (gamma), in agreement with recent band calculations which predict that ferromagnetic long-range order can only take place above a critical value, gamma C. Consistent with recent thin film estimations, we find gamma C = 162.8 degrees. For gamma > gamma C, we observe power-law behavior in the structural parameters. gamma decreases with T until the critical temperature, T-o approximate to 37 K; below T-o the rate of change becomes very small. For T < T-o, FM order appears to be confined to regions close to the surfaces, likely due to the lattice strain keeping the local Co-O-Co angle above gamma C.« less
NASA Astrophysics Data System (ADS)
Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.
2016-04-01
This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.
Update on ɛK with lattice QCD inputs
NASA Astrophysics Data System (ADS)
Jang, Yong-Chull; Lee, Weonjong; Lee, Sunkyu; Leem, Jaehoon
2018-03-01
We report updated results for ɛK, the indirect CP violation parameter in neutral kaons, which is evaluated directly from the standard model with lattice QCD inputs. We use lattice QCD inputs to fix B\\hatk,|Vcb|,ξ0,ξ2,|Vus|, and mc(mc). Since Lattice 2016, the UTfit group has updated the Wolfenstein parameters in the angle-only-fit method, and the HFLAV group has also updated |Vcb|. Our results show that the evaluation of ɛK with exclusive |Vcb| (lattice QCD inputs) has 4.0σ tension with the experimental value, while that with inclusive |Vcb| (heavy quark expansion based on OPE and QCD sum rules) shows no tension.
Gate-tunable gigantic lattice deformation in VO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuyama, D., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp; Hatano, T.; Nakano, M., E-mail: okuyama@riken.jp, E-mail: nakano@imr.tohoku.ac.jp, E-mail: iwasa@ap.t.u-tokyo.ac.jp
2014-01-13
We examined the impact of electric field on crystal lattice of vanadium dioxide (VO{sub 2}) in a field-effect transistor geometry by in-situ synchrotron x-ray diffraction measurements. Whereas the c-axis lattice parameter of VO{sub 2} decreases through the thermally induced insulator-to-metal phase transition, the gate-induced metallization was found to result in a significant increase of the c-axis length by almost 1% from that of the thermally stabilized insulating state. We also found that this gate-induced gigantic lattice deformation occurs even at the thermally stabilized metallic state, enabling dynamic control of c-axis lattice parameter by more than 1% at room temperature.
Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.
Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick
2018-01-01
In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.
Nanoparticle Superlattice Engineering with DNA
NASA Astrophysics Data System (ADS)
Mirkin, Chad
2012-02-01
Recent developments in strategies for assembling nanomaterials have allowed us to draw a direct analogy between the assembly of solid state atomic lattices and the construction of nanoparticle superlattices. Herein, we present a set of six design rules for using DNA as a programmable linker to deliberately stabilize nine distinct colloidal crystal structures, with lattice parameters that are tailorable over the 25-150 nm size regime. These rules are analogous to those put forth by Pauling decades ago to explain the relative stability of lattices composed of atoms and small molecules. It is ideal to use DNA as a nanoscale bond to connect nanoparticles to achieve colloidal superlattice structures in this system, since its programmable nature allows for facile control over nanoparticle bond length and strength, and nanoparticle bond selectivity. This assembly method affords simultaneous and independent control over nanoparticle structure, crystallographic symmetry, and lattice parameters with nanometer scale precision. Further, we have developed a phase diagram that predicts the design parameters necessary to achieve a lattice with a given symmetry and lattice parameters a priori. The rules developed in this work present a major advance towards true materials by design, as they effectively separate the identity of a particle core (and thereby its physical properties) from the variables that control its assembly.
Yeager, John D.; Luscher, Darby J.; Vogel, Sven C.; ...
2016-02-02
Triaminotrinitrobenzene (TATB) is a highly anisotropic molecular crystal used in several plastic-bonded explosive (PBX) formulations. TATB-based explosives exhibit irreversible volume expansion (“ratchet growth”) when thermally cycled. A theoretical understanding of the relationship between anisotropy of the crystal, crystal orientation distribution (texture) of polycrystalline aggregates, and the intergranular interactions leading to this irreversible growth is necessary to accurately develop physics-based predictive models for TATB-based PBXs under various thermal environments. In this work, TATB lattice parameters were measured using neutron diffraction during thermal cycling of loose powder and a pressed pellet. The measured lattice parameters help clarify conflicting reports in the literaturemore » as these new results are more consistent with one set of previous results than another. The lattice parameters of pressed TATB were also measured as a function of temperature, showing some differences from the powder. This data is used along with anisotropic single-crystal stiffness moduli reported in the literature to model the nominal stresses associated with intergranular constraints during thermal expansion. The texture of both specimens were characterized and the pressed pellet exhibits preferential orientation of (001) poles along the pressing direction, whereas no preferred orientation was found for the loose powder. Lastly, thermal strains for single-crystal TATB computed from lattice parameter data for the powder is input to a self-consistent micromechanical model, which predicts the lattice parameters of the constrained TATB crystals within the pellet. The agreement of these model results with the diffraction data obtained from the pellet is discussed along with future directions of research.« less
Lattice mismatch modeling of aluminum alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwon; Roy, Shibayan; Watkins, Thomas R.
We present a theoretical framework to accurately predict the lattice mismatch between the fcc matrix and precipitates in the multi-component aluminum alloys as a function of temperature and composition. We use a computational thermodynamic approach to model the lattice parameters of the multi-component fcc solid solution and θ'-Al2Cu precipitate phase. Better agreement between the predicted lattice parameters of fcc aluminum in five commercial alloys (206, 319, 356, A356, and A356 + 0.5Cu) and experimental data from the synchrotron X-ray diffraction (SXD) has been obtained when simulating supersaturated rather than equilibrium solid solutions. We use the thermal expansion coefficient of thermodynamicallymore » stable θ-Al2Cu to describe temperature-dependent lattice parameters of meta-stable θ' and to show good agreement with the SXD data. Both coherent and semi-coherent interface mismatches between the fcc aluminum matrix and θ' in Al-Cu alloys are presented as a function of temperature. Our calculation results show that the concentration of solute atoms, particularly Cu, in the matrix greatly affects the lattice mismatch« less
Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films
NASA Astrophysics Data System (ADS)
Gräfe, Joachim; Schütz, Gisela; Goering, Eberhard J.
2016-12-01
Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.
2006-01-15
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less
Random Blume-Emery-Griffiths model on the Bethe lattice
NASA Astrophysics Data System (ADS)
Albayrak, Erhan
2015-12-01
The random phase transitions of the Blume-Emery-Griffiths (BEG) model for the spin-1 system are investigated on the Bethe lattice and the phase diagrams of the model are obtained. The biquadratic exchange interaction (K) is turned on, i.e. the BEG model, with probability p either attractively (K > 0) or repulsively (K < 0) and turned off, which leads to the BC model, with the probability (1 - p) throughout the Bethe lattice. By taking the bilinear exchange interaction parameter J as a scaling parameter, the effects of the competitions between the reduced crystal fields (D / J), reduced biquadratic exchange interaction parameter (K / J) and the reduced temperature (kT / J) for given values of the probability when the coordination number is q=4, i.e. on a square lattice, are studied in detail.
Potential for a Near Term Very Low Energy Antiproton Source at Brookhaven National Laboratory.
1989-04-01
9 Table III-1: Cost Summary . . . . * . . .. . * 10 IV. Lattice and Stretcher Properties . . . . . . .............. 11 Fig. IV-1 Cell... lattice functions . . . . . . . . . . 12 Fig. IV-2 Insertion region lattice . . . . . . . . . 12 Fig. IV-3 Superperiod lattice functions . . . . . . 12...8217 * . . . 13 Table IV-Ib Parameters after lattice matching . . . . 13 Table IV-lc Components specification. . . 13 Table IV-2 Random multipoles. .. . . .. 15
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.
2012-05-15
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less
Machine learning action parameters in lattice quantum chromodynamics
NASA Astrophysics Data System (ADS)
Shanahan, Phiala E.; Trewartha, Daniel; Detmold, William
2018-05-01
Numerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, E.T.; deSaussure, G.; Weisbin, C.R.
1977-03-01
The main purpose of the study is the determination of the sensitivity of TRX-2 thermal lattice performance parameters to nuclear cross section data, particularly the epithermal resonance capture cross section of /sup 238/U. An energy-dependent sensitivity profile was generated for each of the performance parameters, to the most important cross sections of the various isotopes in the lattice. Uncertainties in the calculated values of the performance parameters due to estimated uncertainties in the basic nuclear data, deduced in this study, were shown to be small compared to the uncertainties in the measured values of the performance parameter and compared tomore » differences among calculations based upon the same data but with different methodologies.« less
NASA Astrophysics Data System (ADS)
Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.
2016-05-01
One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.
Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
Bedini, Andrea; Owczarek, Aleksander L; Prellberg, Thomas
2012-07-01
Trails (bond-avoiding walks) provide an alternative lattice model of polymers to self-avoiding walks, and adding self-interaction at multiply visited sites gives a model of polymer collapse. Recently a two-dimensional model (triangular lattice) where doubly and triply visited sites are given different weights was shown to display a rich phase diagram with first- and second-order collapse separated by a multicritical point. A kinetic growth process of trails (KGTs) was conjectured to map precisely to this multicritical point. Two types of low-temperature phases, a globule phase and a maximally dense phase, were encountered. Here we investigate the collapse properties of a similar extended model of interacting lattice trails on the simple cubic lattice with separate weights for doubly and triply visited sites. Again we find first- and second-order collapse transitions dependent on the relative sizes of the doubly and triply visited energies. However, we find no evidence of a low-temperature maximally dense phase with only the globular phase in existence. Intriguingly, when the ratio of the energies is precisely that which separates the first-order from the second-order regions anomalous finite-size scaling appears. At the finite-size location of the rounded transition clear evidence exists for a first-order transition that persists in the thermodynamic limit. This location moves as the length increases, with its limit apparently at the point that maps to a KGT. However, if one fixes the temperature to sit at exactly this KGT point, then only a critical point can be deduced from the data. The resolution of this apparent contradiction lies in the breaking of crossover scaling and the difference in the shift and transition width (crossover) exponents.
Immersed boundary lattice Boltzmann model based on multiple relaxation times
NASA Astrophysics Data System (ADS)
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
Ultracold Nonreactive Molecules in an Optical Lattice: Connecting Chemistry to Many-Body Physics.
Doçaj, Andris; Wall, Michael L; Mukherjee, Rick; Hazzard, Kaden R A
2016-04-01
We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter U is replaced by a multichannel interaction, whose properties we elucidate. Because this arises from complex short-range collisional physics, it requires no dipolar interactions and thus occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which, consequently, measure molecular collision dynamics with a vastly sharper energy resolution than experiments in a free-space ultracold gas.
Machine learning action parameters in lattice quantum chromodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanahan, Phiala; Trewartha, Daneil; Detmold, William
Numerical lattice quantum chromodynamics studies of the strong interaction underpin theoretical understanding of many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. Finally, the high information contentmore » and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.« less
Machine learning action parameters in lattice quantum chromodynamics
Shanahan, Phiala; Trewartha, Daneil; Detmold, William
2018-05-16
Numerical lattice quantum chromodynamics studies of the strong interaction underpin theoretical understanding of many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. Finally, the high information contentmore » and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.« less
High temperature XRD of Cu2.1Zn0.9SnSe4
NASA Astrophysics Data System (ADS)
Chetty, Raju; Mallik, Ramesh Chandra
2014-04-01
Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)
2011-10-01
slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti
Enhanced Born Charge and Proximity to Ferroelectricity in Thallium Halides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Mao-Hua; Singh, David J
2010-01-01
Electronic structure and lattice dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tl-p and halogen-p states. The large Born charges cause giant splitting between longitudinal and transverse optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show spontaneous lattice polarization upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can bemore » very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.« less
Imaging geometry, velocity, and anisotropy of the "African Anomaly"
NASA Astrophysics Data System (ADS)
Wang, Yi
The "African Anomaly" is a prominent low velocity province in the lower mantle beneath Africa. I have determined the geometry and geographic distribution of a very low velocity province (VLVP) at the base of the "African Anomaly" near the core mantle boundary (CMB). The VLVP exhibits an "L-shaped" form stretching from the South Atlantic Ocean to the Indian Ocean, occupying an area of about 1.8 x 107 km2 at the CMB. Waveform modeling analyses with the SH hybrid method suggest that the VLVP has rapidly varying geometries and sharp borders as well as a linear gradient of shear velocity reduction from -2% (top) to -9% - -12% (bottom) relative to the Preliminary Reference Earth Model. These seismic characteristics unambiguously indicate that the VLVP is compositionally distinct, and can best be explained by partial melt driven by a compositional change, possibly produced early in the Earth's history. I have imaged the geometry and P- and S-velocity structures for the "African Anomaly" along the great arc from the East Pacific Rise to the Japan Sea. The "African Anomaly" exhibits a "cusplike" shape with both flanks tilting toward the apex beneath southern Africa, and it continuously extends about 1300 km upward into the mid-lower mantle. The average Vs reductions are about -5% in the base above the CMB and about -2% - -3% in the mid-lower portion above the base. A uniform Vs to Vp perturbation ratio of 3:1 can best explain the P wave data. The geometry and seismic features indicate that the mid-lower mantle portion of the "African Anomaly" is an integrated component of the VLVP at the base, and might also be compositionally distinct and geologically stable. After the geometry and seismic structure were imaged for the "African Anomaly", I have studied the anisotropy associated with the VLVP at the base of the "African Anomaly". I measure the apparent splitting parameters (the fast polarization direction and the delay time) for high-quality SKS and SKKS waveforms of deep earthquakes. The medium in the interior of the VLVP may be isotropic or vertically transverse isotropic due to the good station correlation of apparent splitting parameters and the consistency of apparent splitting parameters for SKS and SKKS waves of the same earthquake when seismic data sample in the interior of the VLVP. However, the medium near the borders of the VLVP has to be anisotropic in order to account for the lack of station correlation of apparent splitting parameters and the inconsistency of apparent splitting parameters for SKS and SKKS waves of the same earthquake when seismic data sample near the borders of the VLVP. The anisotropy near the borders of the VLVP can be generated by the lattice-preferred orientation of anisotropic aggregates, revealing a complex mantle flow in the surrounding areas.
Antiferromagnetic spinor condensates in a bichromatic superlattice
NASA Astrophysics Data System (ADS)
Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei
2017-04-01
A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
ERIC Educational Resources Information Center
Loehlin, James H.; Norton, Alexandra P.
1988-01-01
Describes a crystallography experiment using both diffraction-angle and diffraction-intensity information to determine the lattice constant and a lattice independent molecular parameter, while still employing standard X-ray powder diffraction techniques. Details the method, experimental details, and analysis for this activity. (CW)
The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium
Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.
2013-01-01
A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tangkui, E-mail: zhutangkui@sohu.com; Li, Miaoquan, E-mail: honeymli@nwpu.edu.cn
Effect of hydrogen content on the lattice parameter of Ti-6Al-4V alloy has been investigated by X-ray diffraction. The experimental results show that the solution of hydrogen in the Ti-6Al-4V alloy affects significantly on the lattice parameters of {alpha}, {beta} and {delta} phases, especially the {beta} phase. Furthermore, the critical hydrogen content of {delta} hydride formation for Ti-6Al-4V alloy is 0.385 wt.%. When the hydrogen content is lower than the critical hydrogen content, the {delta} hydride cannot precipitate and the lattice parameter ({alpha}) of {beta} phase linearly increases with the increasing of hydrogen content. When the hydrogen content is higher thanmore » the critical hydrogen content, the {delta} hydride precipitates and the lattice parameter ({alpha}) of {beta} phase varies inconspicuously with hydrogen content. In addition, the effects of lattice variations and {delta} hydride formation on microstructure are discussed. The {alpha}/{beta} interfaces of lamellar transformed {beta} phase become fuzzy with the increasing of hydrogen content because of the lattice expansion of {beta} phase. Compared with that of the Ti-6Al-4V alloy at low hydrogen content ({<=} 0.385 wt.%), the contrasts of primary {alpha} phase and transformed {beta} phase of Ti-6Al-4V alloy at high hydrogen content ({>=} 0.385 wt.%) were completely reversed due to the formation of {delta} hydride. - Research Highlights: {yields} A novel method for determining {delta} hydride in Ti-6Al-4V alloy is presented. {yields} The critical hydrogen content of {delta} hydride formation is 0.385 wt.%. {yields} The lattice parameter of {beta} phase can be expressed as follows: a=0.323(1+9.9x10{sup -2}C{sub H}) . {yields} Precipitation of {delta} hydride has a significant influence on the microstructure. {yields} The {alpha}/{beta} interfaces of transformed {beta} phase became fuzzy in the hydrogenated alloy.« less
Ordering process in the diffusively coupled logistic lattice
NASA Astrophysics Data System (ADS)
Conrado, Claudine V.; Bohr, Tomas
1991-08-01
We study the ordering process in a lattice of diffusively coupled logistic maps for increasing lattice size. Within a window of parameters, the system goes into a weakly chaotic state with long range "antiferromagnetic" order. This happens for arbitrary lattice size L and the ordering time behaves as t ~ L2 as we would expect from a picture of diffusing defects.
High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in
2014-04-24
Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Mitra, Aditi
2012-12-28
A renormalization group approach is used to show that a one-dimensional system of bosons subject to a lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the time evolution of the boson interaction parameter and the order parameter for the dynamical transition as well as for more general quenches.
NASA Astrophysics Data System (ADS)
Mieszczynski, C.; Kuri, G.; Degueldre, C.; Martin, M.; Bertsch, J.; Borca, C. N.; Grolimund, D.; Delafoy, Ch.; Simoni, E.
2014-01-01
Microstructural changes in a set of commercial grade UO2 fuel samples have been investigated using synchrotron based micro-focused X-ray fluorescence (μ-XRF) and X-ray diffraction (μ-XRD) techniques. The results are associated with conventional UO2 materials and relatively larger grain chromia-doped UO2 fuels, irradiated in a commercial light water reactor plant (average burn-up: 40 MW d kg-1). The lattice parameters of UO2 in fresh and irradiated specimens have been measured and compared with theoretical predictions. In the pristine state, the doped fuel has a somewhat smaller lattice parameter than the standard UO2 as a result of chromia doping. Increase in micro-strain and lattice parameter in irradiated materials is highlighted. All irradiated samples behave in a similar manner with UO2 lattice expansion occurring upon irradiation, where any Cr induced effect seems insignificant and accumulated lattice defects prevail. Elastic strain energy densities in the irradiated fuels are also evaluated based on the UO2 crystal lattice strain and non-uniform strain. The μ-XRD patterns further allow the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated UO2 pellets.
Additive-manufactured sandwich lattice structures: A numerical and experimental investigation
NASA Astrophysics Data System (ADS)
Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut
2017-10-01
The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-01-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-05-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao
2010-12-01
To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications
NASA Astrophysics Data System (ADS)
Adachi, Sadao
1985-08-01
The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.
Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing
2015-04-01
Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, R. H.; Gao, J.; Wang, G.
2016-02-01
The crystal structure of the CoMnSi compound during zero-field cooling and field cooling from room temperature down to 200 K was studied using the synchrotron radiation X-ray diffraction technique. The results show that the lattice parameters and thermal expansion behavior of the sample are changed by the applied magnetic fields. The lattice contracts along the a axis, but expands along the b and c axes. Due to enlarged and anisotropic changes under a magnetic field of 6 T, the lattice shows an invar-like behavior along all three axes. Critical interatomic distances and bond angles also show large changes under themore » influence of such a high magnetic field. These magnetic field-induced changes of the lattice are discussed with respect to their contributions to the large magnetocaloric effect of the CoMnSi compound.« less
NASA Astrophysics Data System (ADS)
Gremaud, R.; Baldi, A.; Gonzalez-Silveira, M.; Dam, B.; Griessen, R.
2008-04-01
A multisite lattice gas approach is used to model pressure-optical-transmission isotherms (PTIs) recorded by hydrogenography on MgyTi1-yHx sputtered thin films. The model reproduces the measured PTIs well and allows us to determine the chemical short-range order parameter s . The s values are in good agreement with those determined from extended x-ray absorption fine structure measurements. Additionally, the PTI multisite modeling yields a parameter L that accounts for the local lattice deformations with respect to the average MgyTi1-y lattice given by Vegard’s law. It is thus possible to extract two essential characteristics of a metastable alloy from hydrogenographic data.
Ab initio calculations of the lattice dynamics of silver halides
NASA Astrophysics Data System (ADS)
Gordienko, A. B.; Kravchenko, N. G.; Sedelnikov, A. N.
2010-12-01
Based on ab initio pseudopotential calculations, the results of investigations of the lattice dynamics of silver halides AgHal (Hal = Cl, Br, I) are presented. Equilibrium lattice parameters, phonon spectra, frequency densities and effective atomic-charge values are obtained for all types of crystals under study.
Dark Solitons in FPU Lattice Chain
NASA Astrophysics Data System (ADS)
Wang, Deng-Long; Yang, Ru-Shu; Yang, You-Tian
2007-11-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited
NASA Astrophysics Data System (ADS)
Rams, Marek M.; Sierant, Piotr; Dutta, Omyoti; Horodecki, Paweł; Zakrzewski, Jakub
2018-04-01
We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N-1 (Heisenberg scaling) in terms of the number of elementary subsystems used N . The second approach compares the overlap between the ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an elementary estimator represented by a single-site magnetization already outperforms the Heisenberg behavior providing the N-1.5 scaling. In this case, Fisher information sets the ultimate scaling as N-1.75, which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal scaling predictions of the estimation precision offered by such observables, both at zero and finite temperatures, and support them with numerical simulations in the model. We provide an experimental proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for preparation of quantum states involved is taken into account.
Characteristics of YBa2Cu3O7 high-Tc superconductor with KCl
NASA Astrophysics Data System (ADS)
Yoon, Ki Hyun; Chang, Sung Sik
1990-03-01
The lattice parameters, microstructural change, transition temperature, and electrical properties of the YBa2-xKxCu3O7 high-Tc superconductor in the range from x=0 to x=0.25 have been investigated. The high-Tc orthorhombic phase increases with increasing KCl up to x=0.20, above which it decreases. The lattice parameters decrease with increasing KCl up to x=0.10, and then become nearly uniform. The grain size increases with increasing KCl up to x=0.20 due to its role as sintering agent. The specimens with x=0.2 have transition temperatures of 96 K and high magnetic susceptibility due to the contraction of lattice parameters a and b and the increase of orthorhombic distortion.
Chaos-Assisted Quantum Tunneling and Delocalization Caused by Resonance or Near-Resonance
NASA Astrophysics Data System (ADS)
Liang, Danfu; Zhang, Jiawei; Zhang, Xili
2018-05-01
We investigate the quantum transport of a single particle trapped in a tilted optical lattice modulated with periodical delta kicks, and attempt to figure out the relationship between chaos and delocalization or quantum tunneling. We illustrate some resonant parameter lines existing in both chaotic and regular parameter regions, and discover the velocity of delocalization of particle tends to faster in the resonant line as well as the lines in which the lattice tilt is an integral multiple n of tilt driving frequency in chaotic region. While the degree of localization is linked to the distance between parameter points and resonant lines. Those useful results can be experimentally applied to control chaos-assisted transport of single particle held in optical lattices.
Xu, Jianqiang; Yang, Yaoqi; Wan, Rong; Zhang, Weibin
2014-01-01
The ultralong strontium- (Sr-) substituted hydroxyapatite (SrHAp) whiskers were successfully prepared using acetamide as homogeneous precipitation reagent. The effect of the Sr substitution amount on the lattice constants and proliferation of human osteoblast cells (MG-63) was further investigated. The results showed that the SrHAp whiskers with diameter of 0.2–12 μm and ultralong length up to 200 μm were obtained and the Sr substitution level could be facilely tailored by regulating the initial molar ratio of Sr/(Sr + Ca) in raw materials. The Sr2+ replaced part of Ca2+ and the lattice constants increased apparently with the increase of the Sr substitution amount. Compared with the pure HAp whiskers, the Sr substitution apparently stimulated the proliferation of MG-63 at certain extracted concentrations. Our study suggested that the obtained SrHAp whiskers might be used as bioactive and mechanical reinforcement materials for hard tissue regeneration applications. PMID:24592192
Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method
Wang, Junjian; Kang, Qinjun; Wang, Yuzhu; ...
2017-06-01
One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less
Simulation of gas flow in micro-porous media with the regularized lattice Boltzmann method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Junjian; Kang, Qinjun; Wang, Yuzhu
One primary challenge for prediction of gas flow in the unconventional gas reservoir at the pore-scale such as shale and tight gas reservoirs is the geometric complexity of the micro-porous media. In this paper, a regularized multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is applied to analyze gas flow in 2-dimensional micro-porous medium reconstructed by quartet structure generation set (QSGS) on pore-scale. In this paper, the velocity distribution inside the porous structure is presented and analyzed, and the effects of the porosity and specific surface area on the rarefied gas flow and apparent permeability are examined and investigated. The simulation resultsmore » indicate that the gas exhibits different flow behaviours at various pressure conditions and the gas permeability is strongly related to the pressure. Finally, the increased porosity or the decreased specific surface area leads to the increase of the gas apparent permeability, and the gas flow is more sensitive to the pore morphological properties at low-pressure conditions.« less
In-plane elastic properties of auxetic multilattices
NASA Astrophysics Data System (ADS)
Berinskii, Igor E.
2018-07-01
Numerous studies proposed the possible use of auxetic periodic structures in engineering applications. The regular cellular structures with several nodes in a unit cell of the lattice are referred to as multilattices. In this work, a homogenization procedure was applied to three types of plane multilattices: conventional and re-entrant honeycombs (REH), double arrowheads, and semi REH constructed from elastic ribs. It was shown, that for all considered lattices the components of effective tensors of elasticity can be obtained in an explicit way in the frames of the same approach taking stretching, bending and shear of the ribs into account. As a result, equivalent elastic in-plane properties were found analytically as the functions of geometrical parameters of the lattices and the elastic parameters of the ribs. The estimation of the limits for the elastic properties was also performed. It was investigated how the condition of constant density changes the dependence of the elastic constants on the angles between the nodes. Also, different lattices were investigated at the same reference density taken equal to the density of the honeycomb lattice. The most typical cases from the practical point of view were considered and the corresponding elastic parameters were calculated for them.
Wave Propagation Measurements on Two-Dimensional Lattice.
1985-09-15
of boundaries, lattice member connectivities, and structural defects on these parameters. Perhaps, statistical energy analysis or pattern recognition techniques would also be of benefit in such efforts.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.
2002-01-01
The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.
Worm Algorithm simulations of the hole dynamics in the t-J model
NASA Astrophysics Data System (ADS)
Prokof'ev, Nikolai; Ruebenacker, Oliver
2001-03-01
In the limit of small J << t, relevant for HTSC materials and Mott-Hubbard systems, computer simulations have to be performed for large systems and at low temperatures. Despite convincing evidence against spin-charge separation obtained by various methods for J > 0.4t there is an ongoing argument that at smaller J spin-charge separation is still possible. Worm algorithm Monte Carlo simulations of the hole Green function for 0.1 < J/t < 0.4 were performed on lattices with up to 32x32 sites, and at temperature J/T = 40 (for the largest size). Spectral analysis reveals a single, delta-function sharp quasiparticle peak at the lowest edge of the spectrum and two distinct peaks above it at all studied J. We rule out the possibility of spin-charge separation in this parameter range, and present, apparently, the hole spectral function in the thermodynamic limit.
Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model
Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen
2016-01-01
To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results. PMID:27587293
Negative frequencies in wave propagation: A microscopic model
NASA Astrophysics Data System (ADS)
Horsley, S. A. R.; Bugler-Lamb, S.
2016-06-01
A change in the sign of the frequency of a wave between two inertial reference frames corresponds to a reversal of the phase velocity. Yet from the point of view of the relation E =ℏ ω , a positive quantum of energy apparently becomes a negative-energy one. This is physically distinct from a change in the sign of the wave vector and can be associated with various effects such as Cherenkov radiation, quantum friction, and the Hawking effect. In this work we provide a more detailed understanding of these negative-frequency modes based on a simple microscopic model of a dielectric medium as a lattice of scatterers. We calculate the classical and quantum mechanical radiation damping of an oscillator moving through such a lattice and find that the modes where the frequency has changed sign contribute negatively. In terms of the lattice of scatterers we find that this negative radiation damping arises due to the phase of the periodic force experienced by the oscillator due to the relative motion of the lattice.
Spatiotemporal chaos of fractional order logistic equation in nonlinear coupled lattices
NASA Astrophysics Data System (ADS)
Zhang, Ying-Qian; Wang, Xing-Yuan; Liu, Li-Yan; He, Yi; Liu, Jia
2017-11-01
We investigate a new spatiotemporal dynamics with fractional order differential logistic map and spatial nonlinear coupling. The spatial nonlinear coupling features such as the higher percentage of lattices in chaotic behaviors for most of parameters and none periodic windows in bifurcation diagrams are held, which are more suitable for encryptions than the former adjacent coupled map lattices. Besides, the proposed model has new features such as the wider parameter range and wider range of state amplitude for ergodicity, which contributes a wider range of key space when applied in encryptions. The simulations and theoretical analyses are developed in this paper.
NASA Astrophysics Data System (ADS)
Feng, Qiang; She, Jia; Xiang, Yong; Wu, Xianyun; Wang, Chengxi; Jiang, Chuanhai
The depth profiles of residual stresses and lattice parameters in the surface layers of shot peened duplex stainless steel at elevated temperature were investigated utilizing X-ray diffraction analysis. At each deformation depth, residual stress distributions in both ferrite and austenite were studied by X-ray diffraction stress analysis which is performed on the basis of the sin2ψ method and the lattice parameters were explored by Rietveld method. The results reveal that difference changes of depth residual compressive stress profiles between ferrite and austenite under the same annealing condition are resulted from the diverse coefficient of thermal expansion, dislocation density, etc. for different phases in duplex stainless steel. The relaxations of depth residual stresses in austenite are more obvious than those in ferrite. The lattice parameters decrease in the surface layer with the extending of annealing time, however, they increase along the depth after annealing for 16min. The change of the depth lattice parameters can be ascribed to both thermal expansion and the relaxation of residual stress. The different changes of microstructure at elevated temperature between ferrite and austenite are discussed.
Lattice field theory applications in high energy physics
NASA Astrophysics Data System (ADS)
Gottlieb, Steven
2016-10-01
Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Mamta, E-mail: mamta-physics@yahoo.co.in; Gupta, Dinesh C., E-mail: sosfizix@gmail.com
2016-05-06
The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti{sub 1-x}Zr{sub x}C, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti{sub 1-x}Zr{sub x}C has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.
Ion beam sputtering of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-05-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria stabilized zirconia and SrTiO3 substrates by ion-beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 83.5 K without post-deposition anneals. Both the deposition rate and the c-lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c-dimensions and low Tc. Higher-power sputtering produced a continuous decrease in the c-lattice parameter and increase in critical temperature. Films having the smaller c-lattice parameters were Cu rich. The Cu content of films deposited at beam voltages of 800 V and above increased with increasing beam power.
B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, M.; Panagopoulos, H.; Skouroupathis, A.
2011-01-01
We present an unquenched N{sub f}=2 lattice computation of the B{sub K} parameter which controls K{sup 0}-K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the nonperturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sub K}{sup RGI}=0.729{+-}0.030, a number well inmore » line with the existing quenched and unquenched determinations.« less
Role of fluctuations in random compressible systems at marginal dimensionality
NASA Astrophysics Data System (ADS)
Meissner, G.; Sasvári, L.; Tadić, B.
1986-07-01
In a unified treatment we have studied the role of fluctuations in uniaxial random systems at marginal dimensionality d*=4 with the n=1 component order parameter being coupled to elastic degrees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder Δ0 and of elastic fluctuations v~0, a first- or second-order phase transition is found to occur, separated by a tricritical point. A complete account of critical properties and of macroscopic as well as of microscopic elastic stability is given for temperatures T>Tc. Universal singularities of thermodynamic functions are determined for t=(T-Tc)/Tc-->0 including the tricritical point: for v~0/Δ0>-2, they are the same as in a rigid random system; for v~0/Δ0=-2, they are different due to lattice compressibility being related, however, to the former by Fisher renormalization. Fluctuation corrections in one-loop approximation have been evaluated in a nonuniversal critical temperature range, tx<
Ising antiferromagnet on the Archimedean lattices.
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Ising antiferromagnet on the Archimedean lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.
Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2014-06-01
Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Farhan, Alan; Petersen, Charlotte F; Dhuey, Scott; Anghinolfi, Luca; Qin, Qi Hang; Saccone, Michael; Velten, Sven; Wuth, Clemens; Gliga, Sebastian; Mellado, Paula; Alava, Mikko J; Scholl, Andreas; van Dijken, Sebastiaan
2017-10-17
Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.Artificial magnetic nanostructures enable the study of competing frustrated interactions with more control over the system parameters than is possible in magnetic materials. Farhan et al. present a two-dimensional lattice geometry where the frustration can be controlled by tuning the unit cell parameters.
Chimera states in Gaussian coupled map lattices
NASA Astrophysics Data System (ADS)
Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian
2018-04-01
We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.
NASA Astrophysics Data System (ADS)
Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.
2018-03-01
We report a detailed theoretical study of the electronic structure, spectral properties, and lattice parameters of bulk FeSe under pressure using a fully charge self-consistent implementation of the density functional theory plus dynamical mean-field theory method (DFT+DMFT). In particular, we perform a structural optimization and compute the evolution of the lattice parameters (volume, c /a ratio, and the internal z position of Se) and the electronic structure of the tetragonal (space group P 4 /n m m ) unit cell of paramagnetic FeSe. Our results for the lattice parameters obtained by structural optimization using DFT+DMFT are in good quantitative agreement with experiment, implying a crucial importance of electron correlations in determining the correct lattice properties of FeSe. Most importantly, upon compression to 10 GPa our results reveal a topological change in the Fermi surface (Lifshitz transition) which is accompanied by a two- to three-dimensional crossover and a small reduction of the quasiparticle mass renormalization compared to ambient pressure. The behavior of the momentum-resolved magnetic susceptibility χ (q ) shows no topological changes of magnetic correlations under pressure but demonstrates a reduction of the degree of the in-plane (π ,π ) stripe-type nesting. Our results for the electronic structure and lattice parameters of FeSe are in good qualitative agreement with recent experiments on its isoelectronic counterpart FeSe1 -xSx .
NASA Astrophysics Data System (ADS)
Hajabdollahi, Farzaneh; Premnath, Kannan N.
2018-05-01
Lattice Boltzmann (LB) models used for the computation of fluid flows represented by the Navier-Stokes (NS) equations on standard lattices can lead to non-Galilean-invariant (GI) viscous stress involving cubic velocity errors. This arises from the dependence of their third-order diagonal moments on the first-order moments for standard lattices, and strategies have recently been introduced to restore Galilean invariance without such errors using a modified collision operator involving corrections to either the relaxation times or the moment equilibria. Convergence acceleration in the simulation of steady flows can be achieved by solving the preconditioned NS equations, which contain a preconditioning parameter that can be used to tune the effective sound speed, and thereby alleviating the numerical stiffness. In the present paper, we present a GI formulation of the preconditioned cascaded central-moment LB method used to solve the preconditioned NS equations, which is free of cubic velocity errors on a standard lattice, for steady flows. A Chapman-Enskog analysis reveals the structure of the spurious non-GI defect terms and it is demonstrated that the anisotropy of the resulting viscous stress is dependent on the preconditioning parameter, in addition to the fluid velocity. It is shown that partial correction to eliminate the cubic velocity defects is achieved by scaling the cubic velocity terms in the off-diagonal third-order moment equilibria with the square of the preconditioning parameter. Furthermore, we develop additional corrections based on the extended moment equilibria involving gradient terms with coefficients dependent locally on the fluid velocity and the preconditioning parameter. Such parameter dependent corrections eliminate the remaining truncation errors arising from the degeneracy of the diagonal third-order moments and fully restore Galilean invariance without cubic defects for the preconditioned LB scheme on a standard lattice. Several conclusions are drawn from the analysis of the structure of the non-GI errors and the associated corrections, with particular emphasis on their dependence on the preconditioning parameter. The GI preconditioned central-moment LB method is validated for a number of complex flow benchmark problems and its effectiveness to achieve convergence acceleration and improvement in accuracy is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinthaka Silva, G.W., E-mail: chinthaka.silva@gmail.com; Kercher, Andrew A., E-mail: rokparent@comcast.net; Hunn, John D., E-mail: hunnjd@ornl.gov
2012-10-15
Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electronmore » density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Yu. N., E-mail: ovc@itp.ac.ru; Sigal, I. M.
2016-07-15
The “soft” transverse mode of gapless excitations related to the deformation of a triangular Abrikosov lattice with a single flux quantum per unit cell at an arbitrary value of the Ginzburg–Landau parameter κ is investigated. An Abrikosov lattice with the angle φ = π/3 between the unit cell vectors is shown to be unstable in a narrow range of values, 1 < κ < 1.000634. The excitation spectrum of the mode under consideration at low values of the momentum k (in the k{sup 2} approximation) is isotropic at k lying in a plane perpendicular to the magnetic field.
Computer simulation of fibrillation threshold measurements and electrophysiologic testing procedures
NASA Technical Reports Server (NTRS)
Grumbach, M. P.; Saxberg, B. E.; Cohen, R. J.
1987-01-01
A finite element model of cardiac conduction was used to simulate two experimental protocols: 1) fibrillation threshold measurements and 2) clinical electrophysiologic (EP) testing procedures. The model consisted of a cylindrical lattice whose properties were determined by four parameters: element length, conduction velocity, mean refractory period, and standard deviation of refractory periods. Different stimulation patterns were applied to the lattice under a given set of lattice parameter values and the response of the model was observed through a simulated electrocardiogram. The studies confirm that the model can account for observations made in experimental fibrillation threshold measurements and in clinical EP testing protocols.
NASA Astrophysics Data System (ADS)
Roy, Bappaditya; Santra, S. B.
2018-05-01
A random growth lattice filling model of percolation with a touch and stop growth rule is developed and studied numerically on a two dimensional square lattice. Nucleation centers are continuously added one at a time to the empty lattice sites and clusters are grown from these nucleation centers with a growth probability g. For a given g (), the system passes through a critical point during the growth process where the transition from a disconnected to a connected phase occurs. The model is found to exhibit second order continuous percolation transitions as ordinary percolation for whereas for it exhibits weak first order discontinuous percolation transitions. The continuous transitions are characterized by estimating the values of the critical exponents associated with the order parameter fluctuation and the fractal dimension of the spanning cluster over the whole range of g. The discontinuous transitions, however, are characterized by a compact spanning cluster, lattice size independent fluctuation of the order parameter per lattice, departure from power law scaling in the cluster size distribution and weak bimodal distribution of the order parameter. The nature of transitions are further confirmed by studying the Binder cumulant. Instead of a sharp tricritical point, a tricritical region is found to occur for 0.5 < g < 0.8 within which the values of the critical exponents change continuously until the crossover from continuous to discontinuous transition is completed.
How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family.
Bellarosa, Luca; Gutiérrez-Sevillano, Juan J; Calero, Sofía; López, Núria
2013-10-28
Metal-Organic Frameworks are considered to be the next generation of sorbents both because of their synthetic versatility and high selectivity potential. In the first generation (IRMOF), the main drawback for commercial implementation is the lack of hydrothermal stability. Even if several studies have been conducted to elucidate the reasons behind their structural weakness in humid environments, how apparently small changes in the stoichiometry of the building units affect the stability of the lattice is still poorly understood. Using density functional theory and ab initio molecular dynamics we investigated the reason behind the different behaviour of several substituted IRMOF-1 structures. We show that hydrophilic variations in the organic linkers work as new basins of attraction for the incoming water molecules, thus depleting the water content at the metal center. To confirm this, we performed Monte Carlo simulations to provide insights into the adsorption energies and check the effectiveness of the adsorption sites in the substituted structures for a variety of polar and non-polar molecules. The results show that linker modification affects molecular adsorption and can improve the overall stability of the lattice redirecting water to the new sites in the case of hydrophilic units. Three key parameters have been singled out to rationalize this behaviour, and used to predict the favoured adsorption sites in the case of gas mixtures.
NASA Astrophysics Data System (ADS)
Riva'i, Imam; Oktavia Wulandari, Ika; Sulistyarti, Hermin; Sabarudin, Akhmad
2018-01-01
In this study, the synthesis of Fe3O4 nanoparticles was done with surface modification using PVA with coprecipitation-ultrasonication method. Time variations and PVA concentrations were added to determine the effect on crystallite size and lattice parameters on the synthesis of Fe3O4-PVA nanoparticles. Fe3O4 characterization was done using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) instruments. FTIR was employed to determine PVA coating on the surface of Fe3O4 nanoparticles. The crystallite size and lattice parameters were analyzed using XRD. From the FTIR data, it is known that the interaction between PVA and Fe3O4 nanoparticles is characterized by Fe-O-C group at 1100 cm-1 region which is characteristic of Fe3O4-PVA nanoparticles, C-H groups of PVA in the range of 2950 cm-1 wave number, C-C of PVA regions of wave number 1405 cm-1, Fe3O4 and Fe3O4-PVA samples are in the range of 565 cm-1. In addition, the variation of ultrasonication time and the addition of PVA concentration have an effect on the crystallite size change and the lattice parameter observed from the XRD data. The use of ultrasonication time will affect the size of the crystallite become smaller and the grating lattice parameters obtained are wider. The effect of addition of PVA showed that higher concentration of PVA resulted in smaller crystallite size and larger lattice parameters. These results indicated that ultrasonication time and addition of PVA concentration greatly affect the characteristics of nanoparticles.
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Shenoy, R. N.; Unnam, J.
1987-01-01
Standards were prepared for calibrating microanalyses of dissolved oxygen in unalloyed alpha-Ti and Ti-6Al-2Sn-4Zr-2Mo. Foils of both of these materials were homogenized for 120 hours in vacuum at 871 C following short exposures to the ambient atmosphere at 854 C that had partially oxidized the foils. The variation of Knoop microhardness with oxygen content was calibrated for both materials using 15-g and 5-g indentor loads. The unit-cell lattice parameters were calibrated for the unalloyed alpha-Ti. Example analyses demonstrate the usefulness of these calibrations and support an explanation of an anomaly in the lattice parameter variation. The results of the calibrations have been tabulated and summarized using predictive equations.
Preparation and benchmarking of ANSL-V cross sections for advanced neutron source reactor studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arwood, J.W.; Ford, W.E. III; Greene, N.M.
1987-01-01
Validity of selected data from the fine-group neutron library was satisfactorily tested in performance parameter calculations for the BAPL-1, TRX-1, and ZEEP-1 thermal lattice benchmarks. BAPL-2 is an H/sub 2/O moderated, uranium oxide lattice; TRX-1 is an H/sub 2/O moderated, 1.31 weight percent enriched uranium metal lattice; ZEEP-1 is a D/sub 2/O-moderated, natural uranium lattice. 26 refs., 1 tab.
Effect of Fourier transform on the streaming in quantum lattice gas algorithms
NASA Astrophysics Data System (ADS)
Oganesov, Armen; Vahala, George; Vahala, Linda; Soe, Min
2018-04-01
All our previous quantum lattice gas algorithms for nonlinear physics have approximated the kinetic energy operator by streaming sequences to neighboring lattice sites. Here, the kinetic energy can be treated to all orders by Fourier transforming the kinetic energy operator with interlaced Dirac-based unitary collision operators. Benchmarking against exact solutions for the 1D nonlinear Schrodinger equation shows an extended range of parameters (soliton speeds and amplitudes) over the Dirac-based near-lattice-site streaming quantum algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.
In this study, we compute changes in the lattice parameters and elastic stiffness coefficients C ij of body-centered tetragonal (bct) Fe due to Al, B, C, Cu, Mn, Si, and N solutes. Solute strain misfit tensors determine changes in the lattice parameters as well as strain contributions to the changes in the C ij. We also compute chemical contributions to the changes in the C ij, and show that the sum of the strain and chemical contributions agree with more computationally expensive direct calculations that simultaneously incorporate both contributions. Octahedral interstitial solutes, with C being the most important addition inmore » steels, must be present to stabilize the bct phase over the body-centered cubic phase. We therefore compute the effects of interactions between interstitial C solutes and substitutional solutes on the bct lattice parameters and C ij for all possible solute configurations in the dilute limit, and thermally average the results to obtain effective changes in properties due to each solute. Finally, the computed data can be used to estimate solute-induced changes in mechanical properties such as strength and ductility, and can be directly incorporated into mesoscale simulations of multiphase steels to model solute effects on the bct martensite phase.« less
Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice
NASA Astrophysics Data System (ADS)
Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.
2018-06-01
We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, T.; Remmele, T.; Korytov, M.
2014-01-21
Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets.more » Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.« less
Design of 3 GeV booster ring lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etisken, O., E-mail: ozgur.etisken@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch
2016-03-25
The aim of this study is to design of a 3 GeV booster ring for the 3 GeV storage ring. Electrons are needed to be accelerated to 3.0 GeV from 0.15 GeV energy. In this frame, we studied on two options for booster ring; a compact booster and the booster that shares the same tunnel with the storage ring. The lattice type has been chosen FODO for both options, lattice parameters are calculated, sextupole magnets are used to decrease dynamic aperture problem and dynamic aperture calculations are also made with considering of the necessary conditions. After designing and calculating ofmore » the parameters, these designs have been compared with each other. In addition to this comparison, these booster design parameters have been compared with some world centers design parameters and the reliability of the booster design is seen. Beam optics, OPA and Elegant simulation programs have been used in the study calculations.« less
Enhanced Born charge and proximity to ferroelectricity in thallium halides
NASA Astrophysics Data System (ADS)
Du, Mao-Hua; Singh, David J.
2010-04-01
Electronic-structure and lattice-dynamics calculations on thallium halides show that the Born effective charges in these compounds are more than twice larger than the nominal ionic charges. This is a result of cross-band-gap hybridization between Tlp and halogen- p states. The large Born charges cause giant splitting between longitudinal and transverse-optic phonon modes, bringing the lattice close to ferroelectric instability. Our calculations indeed show that cubic TlBr develops ferroelectric instabilities upon lattice expansion starting at 2%. It is remarkable that the apparently ionic thallium halides with a simple cubic CsCl structure and large differences in electronegativity between cations and anions can be very close to ferroelectricity. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and may therefore contribute to the relatively good carrier transport properties in TlBr radiation detectors.
Theoretical investigations on structural, elastic and electronic properties of thallium halides
NASA Astrophysics Data System (ADS)
Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham
2011-04-01
Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.
X-Ray diffraction on large single crystals using a powder diffractometer
Jesche, A.; Fix, M.; Kreyssig, A.; ...
2016-06-16
Information on the lattice parameter of single crystals with known crystallographic structure allows for estimations of sample quality and composition. In many cases it is sufficient to determine one lattice parameter or the lattice spacing along a certain, high- symmetry direction, e.g. in order to determine the composition in a substitution series by taking advantage of Vegard’s rule. Here we present a guide to accurate measurements of single crystals with dimensions ranging from 200 μm up to several millimeter using a standard powder diffractometer in Bragg-Brentano geometry. The correction of the error introduced by the sample height and the optimizationmore » of the alignment are discussed in detail. Finally, in particular for single crystals with a plate-like habit, the described procedure allows for measurement of the lattice spacings normal to the plates with high accuracy on a timescale of minutes.« less
Monte Carlo analysis of TRX lattices with ENDF/B version 3 data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J. Jr.
1975-03-01
Four TRX water-moderated lattices of slightly enriched uranium rods have been reanalyzed with consistent ENDF/B Version 3 data by means of the full-range Monte Carlo program RECAP. The following measured lattice parameters were studied: ratio of epithermal-to-thermal $sup 238$U capture, ratio of epithermal- to-thermal $sup 235$U fissions, ration of $sup 238$U captures to $sup 235$U fissions, ratio of $sup 238$U fissions to $sup 235$U fissions, and multiplication factor. In addition to the base calculations, some studies were done to find sensitivity of the TRX lattice parameters to selected variations of cross section data. Finally, additional experimental evidence is afforded bymore » effective $sup 238$U capture integrals for isolated rods. Shielded capture integrals were calculated for $sup 238$U metal and oxide rods. These are compared with other measurements. (auth)« less
How the initial level of visibility and limited resource affect the evolution of cooperation
NASA Astrophysics Data System (ADS)
Han, Dun; Li, Dandan; Sun, Mei
2016-06-01
This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players’ strategies under different network structure. We perform the prisoner’s dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals’ payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure.
S parameter and pseudo Nambu-Goldstone boson mass from lattice QCD.
Shintani, E; Aoki, S; Fukaya, H; Hashimoto, S; Kaneko, T; Matsufuru, H; Onogi, T; Yamada, N
2008-12-12
We present a lattice calculation of L10, one of the low-energy constants in chiral perturbation theory, and the charged-neutral pion squared-mass splitting, using dynamical overlap fermion. The exact chiral symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor models, these two quantities are read as the S parameter and the pseudo Nambu-Goldstone boson mass, respectively, and play an important role in discriminating the models from others. This calculation can serve as a feasibility study of the lattice techniques for more general technicolor gauge theories.
Matoz-Fernandez, D A; Linares, D H; Ramirez-Pastor, A J
2012-09-04
The statistical thermodynamics of straight rigid rods of length k on triangular lattices was developed on a generalization in the spirit of the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In this scheme, the Helmholtz free energy and its derivatives were written in terms of the order parameter, δ, which characterizes the nematic phase occurring in the system at intermediate densities. Then, using the principle of minimum free energy with δ as a parameter, the main adsorption properties were calculated. Comparisons with Monte Carlo simulations and experimental data were performed in order to evaluate the outcome and limitations of the theoretical model.
Time-dependent perpendicular fluctuations in the driven lattice Lorentz gas
NASA Astrophysics Data System (ADS)
Leitmann, Sebastian; Schwab, Thomas; Franosch, Thomas
2018-02-01
We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex time-dependent behavior is analyzed in terms of the diffusion coefficient, local exponent, and the non-Skellam parameter, which quantifies deviations from the dynamics on the lattice in the absence of obstacles. The non-Skellam parameter along the force is analyzed in terms of an asymptotic model and reveals a power-law growth for intermediate times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, B.Z.; Zhou, S.L.; Wang, H.
2014-01-15
A series of compound with the nominal composition of Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6+δ} (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) were synthesized by the sol–gel method. Constituent phases and crystal structure of samples were analyzed by X-ray diffraction. It can be found that the Ca-doped Bi-2201 system was composed of Bi-2201 phase containing Ca and a small quantity of Bi{sub 16}(Sr,Ca){sub 14}O{sub 38}. For Bi-2201 unit cell containing Ca, chemical component and site preference of Ca atoms were characterized systematically by transmission electron microscopy. With the introduction of Ca atoms, Sr-sites have been occupiedmore » partially by Ca{sup 2+} in Bi-2201 unit cell, which leads to a decrease in the lattice parameters c and b of the Bi-2201 phase when the Ca-content x is below 0.6. Two types of new orthorhombic lattices are formed in the substitution. One is a lattice with space group Pma2 as the two nearest neighbor Sr-sites in the same Sr–O layer are occupied by Ca{sup 2+}. Its lattice parameters can be characterized as a = 5.402 Å, b = 5.313 Å and c = 24.272 Å, respectively. When two nearest Sr ions of the second neighboring Sr–O layers are replaced by Ca{sup 2+} ions, the lattice with the space group Pmn2{sub 1} can be formed. Its lattice parameters are close to that of the previous. The modulation vector is lying in the a*–c* plane in the two new orthorhombic lattices (Pma2 and Pmn2{sub 1}). Bi/Ca-2201 lattice (with Ca) and Bi-2201 lattice (without Ca) coexist in the same Bi{sub 2}Sr{sub 2−x}Ca{sub x}CuO{sub 6}+{sub δ} grain, which can be described as an intergrowth structure.« less
NASA Technical Reports Server (NTRS)
Demarest, H. H., Jr.
1972-01-01
The elastic constants and the entire frequency spectrum were calculated up to high pressure for the alkali halides in the NaCl lattice, based on an assumed functional form of the inter-atomic potential. The quasiharmonic approximation is used to calculate the vibrational contribution to the pressure and the elastic constants at arbitrary temperature. By explicitly accounting for the effect of thermal and zero point motion, the adjustable parameters in the potential are determined to a high degree of accuracy from the elastic constants and their pressure derivatives measured at zero pressure. The calculated Gruneisen parameter, the elastic constants and their pressure derivatives are in good agreement with experimental results up to about 600 K. The model predicts that for some alkali halides the Grunesen parameter may decrease monotonically with pressure, while for others it may increase with pressure, after an initial decrease.
Bandgaps and directional properties of two-dimensional square beam-like zigzag lattices
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose four kinds of two-dimensional square beam-like zigzag lattice structures and study their bandgaps and directional propagation of elastic waves. The band structures are calculated by using the finite element method. Both the in-plane and out-of-plane waves are investigated simultaneously via the three-dimensional Euler beam elements. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. The effects of the geometry parameters of the xy- and z-zigzag lattices on the bandgaps are investigated and discussed. Multiple complete bandgaps are found owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the periodic systems. The deformed displacement fields of the harmonic responses of a finite lattice structure subjected to harmonic loads at different positions are illustrated to show the directional wave propagation. An extension of the proposed concept to the hexagonal lattices is also presented. The research work in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD
Beane, S. R.; Chang, E.; Detmold, W.; ...
2012-02-16
The π +π + s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of m π ≈ 390 MeV with an anisotropic n f = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of b s ≈ 0.123 fm in the spatial direction and b t b s/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π +π + systems with both zero and non-zero total momentum in the latticemore » volume using Luscher's method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: m π 2 a r = 3+O(m π 2/Λ χ 2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less
Aoki, S; Aoki, Y; Bečirević, D; Bernard, C; Blum, T; Colangelo, G; Della Morte, M; Dimopoulos, P; Dürr, S; Fukaya, H; Golterman, M; Gottlieb, Steven; Hashimoto, S; Heller, U M; Horsley, R; Jüttner, A; Kaneko, T; Lellouch, L; Leutwyler, H; Lin, C-J D; Lubicz, V; Lunghi, E; Mawhinney, R; Onogi, T; Pena, C; Sachrajda, C T; Sharpe, S R; Simula, S; Sommer, R; Vladikas, A; Wenger, U; Wittig, H
2017-01-01
We review lattice results related to pion, kaon, D - and B -meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor [Formula: see text], arising in the semileptonic [Formula: see text] transition at zero momentum transfer, as well as the decay constant ratio [Formula: see text] and its consequences for the CKM matrix elements [Formula: see text] and [Formula: see text]. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of [Formula: see text] and [Formula: see text] Chiral Perturbation Theory. We review the determination of the [Formula: see text] parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for [Formula: see text] and [Formula: see text] (also new compared to the previous review), as well as those for D - and B -meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant [Formula: see text].
Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata
2014-05-19
A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2018-05-01
The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called " Tsallis-temperature". It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann-Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.
O (a) improvement of 2D N = (2 , 2) lattice SYM theory
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Kadoh, Daisuke; Matsuura, So; Sugino, Fumihiko
2018-04-01
We perform a tree-level O (a) improvement of two-dimensional N = (2 , 2) supersymmetric Yang-Mills theory on the lattice, motivated by the fast convergence in numerical simulations. The improvement respects an exact supersymmetry Q which is needed for obtaining the correct continuum limit without a parameter fine tuning. The improved lattice action is given within a milder locality condition in which the interactions are decaying as the exponential of the distance on the lattice. We also prove that the path-integral measure is invariant under the improved Q-transformation.
Rural-Urban Migration in D-Dimensional Lattices
NASA Astrophysics Data System (ADS)
Espíndola, Aquino L.; Penna, T. J. P.; Silveira, Jaylson J.
The rural-urban migration phenomenon is analyzed by using an agent-based computational model. Agents are placed on lattices which dimensions varying from d =2 up to d =7. The localization of the agents in the lattice defines that their social neighborhood (rural or urban) is not related to their spatial distribution. The effect of the dimension of lattice is studied by analyzing the variation of the main parameters that characterizes the migratory process. The dynamics displays strong effects even for around one million of sites, in higher dimensions (d =6, 7).
Standard Reference Material (SRM 1990) for Single Crystal Diffractometer Alignment
Wong-Ng, W.; Siegrist, T.; DeTitta, G.T.; Finger, L.W.; Evans, H.T.; Gabe, E.J.; Enright, G.D.; Armstrong, J.T.; Levenson, M.; Cook, L.P.; Hubbard, C.R.
2001-01-01
An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material?? for single crystal diffractometer alignment. This SRM is a set of ???3500 units of Cr-doped Al2O3, or ruby spheres [(0 420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals' the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 A?? ?? 0.0062 A??, and c=12.9979 A?? ?? 0.020 A?? (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Ha??gg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies_ are rhombohedral, with space group R3c. The certified mean unit cell parameters are a=4.76080 ?? 0.00029 A??, and c=12 99568 A?? ?? 0.00087 A?? (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Ha??gg transmission measurements on five samples of powdered rubies (a=4.7610 A?? ?? 0.0013 A??, and c=12.9954 A?? ?? 0.0034 A??) agreed well with the values obtained from the single crystal spheres.
Standard Reference Material (SRM 1990) For Single Crystal Diffractometer Alignment
Wong-Ng, W.; Siegrist, T.; DeTitta, G. T.; Finger, L. W.; Evans, H. T.; Gabe, E. J.; Enright, G. D.; Armstrong, J. T.; Levenson, M.; Cook, L. P.; Hubbard, C. R.
2001-01-01
An international project was successfully completed which involved two major undertakings: (1) a round-robin to demonstrate the viability of the selected standard and (2) the certification of the lattice parameters of the SRM 1990, a Standard Reference Material® for single crystal diffractometer alignment. This SRM is a set of ≈3500 units of Cr-doped Al2O3, or ruby spheres [(0.420.011 mole fraction % Cr (expanded uncertainty)]. The round-robin consisted of determination of lattice parameters of a pair of crystals: the ruby sphere as a standard, and a zeolite reference to serve as an unknown. Fifty pairs of crystals were dispatched from Hauptman-Woodward Medical Research Institute to volunteers in x-ray laboratories world-wide. A total of 45 sets of data was received from 32 laboratories. The mean unit cell parameters of the ruby spheres was found to be a=4.7608 ű0.0062 Å, and c=12.9979 ű0.020 Å (95 % intervals of the laboratory means). The source of errors of outlier data was identified. The SRM project involved the certification of lattice parameters using four well-aligned single crystal diffractometers at (Bell Laboratories) Lucent Technologies and at NRC of Canada (39 ruby spheres), the quantification of the Cr content using a combined microprobe and SEM/EDS technique, and the evaluation of the mosaicity of the ruby spheres using a double-crystal spectrometry method. A confirmation of the lattice parameters was also conducted using a Guinier-Hägg camera. Systematic corrections of thermal expansion and refraction corrections were applied. These rubies– are rhombohedral, with space group R3¯c. The certified mean unit cell parameters are a=4.76080±0.00029 Å, and c=12.99568 ű0.00087 Å (expanded uncertainty). These certified lattice parameters fall well within the results of those obtained from the international round-robin study. The Guinier-Hägg transmission measurements on five samples of powdered rubies (a=4.7610 ű0.0013 Å, and c = 12.9954 ű0.0034 Å) agreed well with the values obtained from the single crystal spheres. PMID:27500067
Local lattice distortion in high-entropy alloys
NASA Astrophysics Data System (ADS)
Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian
2017-07-01
The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.
Role of dimensionality in Axelrod's model for the dissemination of culture
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San
2003-09-01
We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.
NASA Astrophysics Data System (ADS)
Straka, L.; Drahokoupil, J.; Pacherová, O.; Fabiánová, K.; Kopecký, V.; Seiner, H.; Hänninen, H.; Heczko, O.
2016-02-01
In search of the origins of the extraordinary low twinning stress of Ni-Mn-Ga 10M martensite, we studied the temperature induced changes in lattice parameters of Ni50Mn25+x Ga25-x (x = 2.7-3.9) single crystal samples and compared them with twinning stress dependences. The alloys exhibited transformation to five-layered (10M) martensite structure (cubic to monoclinic) between 297 to 328 K and exhibited the magnetic shape memory effect in martensite. The structural changes were monitored using x-ray diffraction in the temperature range 200-343 K. The 10M structure was approximated by monoclinic lattice, a = b > c, γ > 90° with the coordinates derived from the cubic unit cell of the parent L21 phase. The lattice parameters γ and c/a correlate well with the universal linear increase of twinning stress of type 1 twins with decreasing temperature. On the contrary, the twinning stress is not affected by differences between a and b and thus a/b twins seem to play no role in a - c twin boundary motion resulting in magnetically induced reorientation.
Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction
NASA Astrophysics Data System (ADS)
Chatterji, Tapan; Iles, Gail N.; Ouladdiaf, Bachir; Hansen, Thomas C.
2010-08-01
We have investigated the magnetoelastic effects in MF2 (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature TN by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μB, 4.05 ± 0.05 μB and 1.99 ± 0.05 μB per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF2 (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.
Magnetoelastic effect in MF2 (M = Mn, Fe, Ni) investigated by neutron powder diffraction.
Chatterji, Tapan; Iles, Gail N; Ouladdiaf, Bachir; Hansen, Thomas C
2010-08-11
We have investigated the magnetoelastic effects in MF(2) (M = Mn, Fe, Ni) associated with the antiferromagnetic phase transition temperature T(N) by neutron powder diffraction. The temperature variation of the lattice parameters and the unit cell volume has been determined accurately with small temperature steps. From the temperature variation of the lattice parameters a, c and V the lattice strains Δa, Δc and ΔV associated with the antiferromagnetic phase transition have been extracted. Rietveld refinement of the crystal and magnetic structures from the diffraction data at low temperature gave a magnetic moment of 5.12 ± 0.09 μ(B), 4.05 ± 0.05 μ(B) and 1.99 ± 0.05 μ(B) per Mn, Fe and Ni ions, respectively. The lattice strains Δa, Δc and ΔV couple linearly with the intensity of the 100 magnetic reflection, which is proportional to square of the order parameter of the antiferromagnetic phase transition. The volume strains in MF(2) (M = Mn, Fe, Co, Ni) due to the magnetostriction vary smoothly along the transition metal series and seem to be correlated with the strength of the exchange interaction and the moments of the magnetic ions.
The optical potential on the lattice
Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; ...
2016-06-08
The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.
Dietschreit, Johannes C B; Diestler, Dennis J; Knapp, Ernst W
2016-05-10
To speed up the generation of an ensemble of poly(ethylene oxide) (PEO) polymer chains in solution, a tetrahedral lattice model possessing the appropriate bond angles is used. The distance between noncovalently bonded atoms is maintained at realistic values by generating chains with an enhanced degree of self-avoidance by a very efficient Monte Carlo (MC) algorithm. Potential energy parameters characterizing this lattice model are adjusted so as to mimic realistic PEO polymer chains in water simulated by molecular dynamics (MD), which serves as a benchmark. The MD data show that PEO chains have a fractal dimension of about two, in contrast to self-avoiding walk lattice models, which exhibit the fractal dimension of 1.7. The potential energy accounts for a mild hydrophobic effect (HYEF) of PEO and for a proper setting of the distribution between trans and gauche conformers. The potential energy parameters are determined by matching the Flory radius, the radius of gyration, and the fraction of trans torsion angles in the chain. A gratifying result is the excellent agreement of the pair distribution function and the angular correlation for the lattice model with the benchmark distribution. The lattice model allows for the precise computation of the torsional entropy of the chain. The generation of polymer conformations of the adjusted lattice model is at least 2 orders of magnitude more efficient than MD simulations of the PEO chain in explicit water. This method of generating chain conformations on a tetrahedral lattice can also be applied to other types of polymers with appropriate adjustment of the potential energy function. The efficient MC algorithm for generating chain conformations on a tetrahedral lattice is available for download at https://github.com/Roulattice/Roulattice .
New Possible Structure of Silicide Mg2Si under Pressure
NASA Astrophysics Data System (ADS)
Luniakov, Yu. V.
2018-05-01
As a result of an evolutionary search based on the density functional theory, a new low-symmetry structure of silicide Mg2Si under pressure was discovered. This structure can exist along with the known structures of the symmetry Pnma and P63/mmc and is stable at a pressure of about 20 GPa. The lattice parameters of the discovered structure are in better agreement with the experimental values than the lattice parameters of the known structures.
Fellinger, Michael R.; Hector, Louis G.; Trinkle, Dallas R.
2016-10-28
Here, we present an efficient methodology for computing solute-induced changes in lattice parameters and elastic stiffness coefficients Cij of single crystals using density functional theory. We also introduce a solute strain misfit tensor that quantifies how solutes change lattice parameters due to the stress they induce in the host crystal. Solutes modify the elastic stiffness coefficients through volumetric changes and by altering chemical bonds. We compute each of these contributions to the elastic stiffness coefficients separately, and verify that their sum agrees with changes in the elastic stiffness coefficients computed directly using fully optimized supercells containing solutes. Computing the twomore » elastic stiffness contributions separately is more computationally efficient and provides more information on solute effects than the direct calculations. We compute the solute dependence of polycrystalline averaged shear and Young's moduli from the solute dependence of the single-crystal Cij. We then apply this methodology to substitutional Al, B, Cu, Mn, Si solutes and octahedral interstitial C and N solutes in bcc Fe. Comparison with experimental data indicates that our approach accurately predicts solute-induced changes in the lattice parameter and elastic coefficients. The computed data can be used to quantify solute-induced changes in mechanical properties such as strength and ductility, and can be incorporated into mesoscale models to improve their predictive capabilities.« less
High-resolution imaging of (100) kyanite surfaces using friction force microscopy in water
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Gnecco, Enrico; Pina, Carlos M.
2015-05-01
In this paper, we present high-resolution friction force microscopy (FFM) images of the (100) face of kyanite (Al2SiO5) immersed in water. These images show an almost rectangular lattice presumably defined by the protruding oxygen of AlO6 polyhedra. Surface lattice parameters measured on two-dimensional fast Fourier transform (2D-FFT) plots of recorded high-resolution friction maps are in good agreement with lattice parameters calculated from the bulk mineral structure. Friction measurements performed along the [001] and [010] directions on the kyanite (100) face provide similar friction coefficients μ ≈ 0.10, even if the sequences of AlO6 polyhedra are different along the two crystallographic directions.
Electron-lattice coupling after high-energy deposition in aluminum
NASA Astrophysics Data System (ADS)
Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.
2015-07-01
This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.
Klein tunneling in the α -T3 model
NASA Astrophysics Data System (ADS)
Illes, E.; Nicol, E. J.
2017-06-01
We investigate Klein tunneling for the α -T3 model, which interpolates between graphene and the dice lattice via parameter α . We study transmission across two types of electrostatic interfaces: sharp potential steps and sharp potential barriers. We find both interfaces to be perfectly transparent for normal incidence for the full range of the parameter α for both interfaces. For other angles of incidence, we find that transmission is enhanced with increasing α . For the dice lattice, we find perfect, all-angle transmission across a potential step for incoming electrons with energy equal to half of the height of the potential step. This is analogous to the "super", all-angle transmission reported for the dice lattice for Klein tunneling across a potential barrier.
An analytical study of double bend achromat lattice.
Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D
2015-03-01
In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.
Lattice corrections to the quark quasidistribution at one loop
Carlson, Carl E.; Freid, Michael
2017-05-12
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Chiral effective theory methods and their application to the structure of hadrons from lattice QCD
NASA Astrophysics Data System (ADS)
Shanahan, P. E.
2016-12-01
For many years chiral effective theory (ChEFT) has enabled and supported lattice QCD calculations of hadron observables by allowing systematic effects from unphysical lattice parameters to be controlled. In the modern era of precision lattice simulations approaching the physical point, ChEFT techniques remain valuable tools. In this review we discuss the modern uses of ChEFT applied to lattice studies of hadron structure in the context of recent determinations of important and topical quantities. We consider muon g-2, strangeness in the nucleon, the proton radius, nucleon polarizabilities, and sigma terms relevant to the prediction of dark-matter-hadron interaction cross-sections, among others.
Relativistic energy-dispersion relations of 2D rectangular lattices
NASA Astrophysics Data System (ADS)
Ata, Engin; Demirhan, Doğan; Büyükkılıç, Fevzi
2017-04-01
An exactly solvable relativistic approach based on inseparable periodic well potentials is developed to obtain energy-dispersion relations of spin states of a single-electron in two-dimensional (2D) rectangular lattices. Commutation of axes transfer matrices is exploited to find energy dependencies of the wave vector components. From the trace of the lattice transfer matrix, energy-dispersion relations of conductance and valence states are obtained in transcendental form. Graphical solutions of relativistic and nonrelativistic transcendental energy-dispersion relations are plotted to compare how lattice parameters V0, core and interstitial size of the rectangular lattice affects to the energy-band structures in a situation core and interstitial diagonals are of equal slope.
Lattice corrections to the quark quasidistribution at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Freid, Michael
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Remarkable features in lattice-parameter ratios of crystals. II. Monoclinic and triclinic crystals.
de Gelder, R; Janner, A
2005-06-01
The frequency distributions of monoclinic crystals as a function of the lattice-parameter ratios resemble the corresponding ones of orthorhombic crystals: an exponential component, with more or less pronounced sharp peaks, with in general the most important peak at the ratio value 1. In addition, the distribution as a function of the monoclinic angle beta has a sharp peak at 90 degrees and decreases sensibly at larger angles. Similar behavior is observed for the three triclinic angular parameters alpha, beta and gamma, with characteristic differences between the organic and metal-organic, bio-macromolecular and inorganic crystals, respectively. The general behavior observed for the hexagonal, tetragonal, orthorhombic, monoclinic and triclinic crystals {in the first part of this series [de Gelder & Janner (2005). Acta Cryst. B61, 287-295] and in the present case} is summarized and commented. The data involved represent 366 800 crystals, with lattice parameters taken from the Cambridge Structural Database, CSD (294 400 entries), the Protein Data Bank, PDB (18 800 entries), and the Inorganic Crystal Structure Database, ICSD (53 600 entries). A new general structural principle is suggested.
Magnetism and Solid Solution Effects in NiAI (40% AI) Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chain T; Fu, Chong Long; Chisholm, Matthew F
2007-01-01
The solid solution effects of ternary additions of transition elements in intermetallic Ni-40% Al were investigated by both experimental studies and theoretical calculations. Co solute atoms when sitting at Ni sublattice sites do not affect the lattice parameter and hardening behavior of Ni-40Al. On the other hand, Fe, Mn, and Cr solutes, which are mainly on Al sublattice sites, substantially expand the lattice parameter and produce an unusual solid solution softening effect. First-principles calculations predict that these solute atoms with large unfilled d-band electrons develop large magnetic moments and effectively expand the lattice parameter when occupying Al sublattice sites. Themore » theoretical predictions were verified by both electron loss-energy spectroscopy (EELS) analyses and magnetic susceptibility measurements. The observed softening behavior can be explained quantitatively by the replacement of Ni anti-site defects (potent hardeners) by Fe, Mn, and Cr anti-site defects with smaller atom size mismatch between solute and Al atoms. This study has led to the identification of magnetic interaction as an important physical parameter affecting the solid solution hardening in intermetallic alloys containing transition elements.« less
2002-09-30
CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces Alan W. Decho Department...TITLE AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering the Apparent Optical Properties of Sediments, Seagrasses and Surfaces 5a. CONTRACT...structures produced by bacteria. Their growth appears to depend on biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired
2003-09-30
CoBOP: MICROBIAL BIOFILMS: A PARAMETER ALTERING THE APPARENT OPTICAL PROPERTIES OF SEDIMENTS, SEAGRASSES AND SURFACES. Alan W. Decho Department...AND SUBTITLE CoBOP: Microbial Biofilms: A Parameter Altering The Apparent Optical Properties Of Sediments, Seagrasses And Surfaces 5a. CONTRACT...biofilm processes and light distributions ( photosynthesis ). Therefore, the data acquired from this project will be closely paired with results of
Effects of neutron irradiation on carbon doped MgB2 wire segments
NASA Astrophysics Data System (ADS)
Wilke, R. H. T.; Bud'ko, S. L.; Canfield, P. C.; Finnemore, D. K.; Suplinskas, Raymond J.; Farmer, J.; Hannahs, S. T.
2006-06-01
We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B0.962C0.038)2 wire segments as a function of post-exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2(T = 0), approximately scales with Tc, starting with an undamaged Tc near 37 K and Hc2(T = 0) near 32 T. Up to an annealing temperature of 400 °C the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 °C a decrease in ordering along the c-direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc and Hc2. To a first order approximation, it appears that carbon doping and neutron damage affect the superconducting properties of MgB2 independently.
Ab initio study of the structural, vibrational and thermal properties of Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Odhiambo, Henry; Othieno, Herick
2015-05-01
The structural, vibrational and thermal properties of hexagonal as well as cubic Ge2Sb2Te5 (GST) have been calculated from first principles. The relative stability of the possible stacking sequences of hexagonal GST has been confirmed to depend on the choice for the exchange-correlation (XC) energy functional. It is apparent that without the inclusion of the Te 4d orbitals in the valence states, the lattice parameters can be underestimated by as much as 3.9% compared to experiment and all-electron calculations. From phonon dispersion curves, it has been confirmed that the hexagonal phase is, indeed, stable whereas the cubic phase is metastable. In particular, calculations based on the quasi-harmonic approximation (QHA) reveal an extra heat capacity beyond the Dulong-Petit limit at high temperatures for both hexagonal and cubic GST. Moreover, cubic GST exhibits a residual entropy at 0 K, in agreement with experimental studies which attribute this phenomenon to substitutional disorder on the Sb/Ge/v sublattice.
The effect of gyrolite additive on the hydration properties of Portland cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisinas, A., E-mail: anatolijus.eisinas@ktu.lt; Baltakys, K.; Siauciunas, R.
2012-01-15
The influence of gyrolite additive on the hydration properties of ordinary Portland cement was examined. It was found that the additive of synthetic gyrolite accelerates the early stage of hydration of OPC. This compound binds alkaline ions and serves as a nucleation site for the formation of hydration products (stage I). Later on, the crystal lattice of gyrolite becomes unstable and turns into C-S-H, with higher basicity (C/S {approx} 0.8). This recrystallization process is associated with the consumption of energy (the heat of reaction) and with a decrease in the rate of heat evolution of the second exothermic reaction (stagemore » II). The experimental data and theoretical hypothesis were also confirmed by thermodynamic and the apparent kinetic parameters of the reaction rate of C{sub 3}S hydration calculations. The changes occur in the early stage of hydration of OPC samples and do not have a significant effect on the properties of cement stone.« less
Structure, properties, and possible mechanisms of formation of diamond-like phases
NASA Astrophysics Data System (ADS)
Belenkov, E. A.; Greshnyakov, V. A.
2016-10-01
An analysis was performed for relations between the structural parameters and the properties of 36 carbon diamond-like phases consisting of atoms occupying crystallographically equivalent positions. It was found that the crystal lattices of these phases were in stressed states with respect to the cubic diamond lattice. The density of diamond-like phases, their sublimation energies, bulk moduli, hardnesses, and band gaps depend on the deformation parameters Def and Str. The most stable phases must be phases with minimal parameters Def and Str and also with ring parameter Rng that is most close to the corresponding parameter of cubic diamond. The structures and energy characteristics of fullerites, nanotube bundles, and graphene layers of which diamond-like phases can be obtained as a result of polymerization at high pressures have been calculated.
Design of a nano-layered tunable optical filter
NASA Astrophysics Data System (ADS)
Banerjee, A.; Awasthi, S. K.; Malaviya, U.; Ojha, S. P.
2006-12-01
A novel theory to design tunable band pass filters using one-dimensional nano-photonic structures is proposed. Periodic structures consisting of different dielectrics and semiconductor materials are considered. A detailed mathematical analysis is presented to predict allowed and forbidden bands of wavelengths with variation of angle of incidence and lattice parameters. It is possible to get desired ranges of the electromagnetic spectrum filtered with this structure by changing the incidence angle of light and/or changing the value of the lattice parameters.
Fellinger, Michael R.; Hector, Jr., Louis G.; Trinkle, Dallas R.
2016-11-29
Here, we present computed datasets on changes in the lattice parameter and elastic stiffness coefficients of BCC Fe due to substitutional Al, B, Cu, Mn, and Si solutes, and octahedral interstitial C and N solutes. The data is calculated using the methodology based on density functional theory (DFT). All the DFT calculations were performed using the Vienna Ab initio Simulations Package (VASP). The data is stored in the NIST dSpace repository.
Hierarchical Freezing in a Lattice Model
NASA Astrophysics Data System (ADS)
Byington, Travis W.; Socolar, Joshua E. S.
2012-01-01
A certain two-dimensional lattice model with nearest and next-nearest neighbor interactions is known to have a limit-periodic ground state. We show that during a slow quench from the high temperature, disordered phase, the ground state emerges through an infinite sequence of phase transitions. We define appropriate order parameters and show that the transitions are related by renormalizations of the temperature scale. As the temperature is decreased, sublattices with increasingly large lattice constants become ordered. A rapid quench results in a glasslike state due to kinetic barriers created by simultaneous freezing on sublattices with different lattice constants.
Yb-doped mixed-sesquioxide films grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Prentice, Jake J.; Grant-Jacob, James A.; Shepherd, David P.; Eason, Robert W.; Mackenzie, Jacob I.
2018-06-01
Growth and characterization of compositionally tuned, ytterbium-doped mixed lutetium-scandium oxide, and pure lutetia and scandia crystalline films are presented. Pulsed laser deposition was employed to grow these sesquioxide films, of thicknesses up to 20 μm, on (0 0 0 1)-sapphire substrates. By varying the atomic ratio of lutetium to scandium in the target, the lattice parameter of the resulting films could be tuned to match that of the single-crystal c-cut sapphire substrate and thereby achieve a lattice mismatch of <0.1%. Optimization of growth parameters led to a reduction of undesirable particulates and scattering points within the film. X-ray diffraction measurements show (2 2 2)-orientated epitaxial growth with crystallinity comparable to bulk crystals. Through pole figure and electron-backscatter imaging measurements, it was found that two inverted cubic lattice orientations grow with micron-scaled domains. Growth of these lattice-matched mixed sesquioxides paves the way for fabrication of high-quality waveguides suitable for generation of ultrashort laser pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielewski, Euan; Boyce, Donald E.; Park, Jun-Sang
Determining reliable single crystal material parameters for complex polycrystalline materials is a significant challenge for the materials community. In this work, a novel methodology for determining those parameters is outlined and successfully applied to the titanium alloy, Ti-6Al-4V. Utilizing the results from a lattice strain pole figure experiment conducted at the Cornell High Energy Synchrotron Source, an iterative approach is used to optimize the single crystal elastic moduli by comparing experimental and simulated lattice strain pole figures at discrete load steps during a uniaxial tensile test. Due to the large number of unique measurements taken during the experiments, comparisons weremore » made by using the discrete spherical harmonic modes of both the experimental and simulated lattice strain pole figures, allowing the complete pole figures to be used to determine the single crystal elastic moduli. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Conformational rigidity in a lattice model of proteins.
Collet, Olivier
2003-06-01
It is shown in this paper that some simulations of protein folding in lattice models, which use an incorrect implementation of the Monte Carlo algorithm, do not converge towards thermal equilibrium. I developed a rigorous treatment for protein folding simulation on a lattice model relying on the introduction of a parameter standing for the rigidity of the conformations. Its properties are discussed and its role during the folding process is elucidated. The calculation of thermal properties of small chains living on a two-dimensional lattice is performed and a Bortz-Kalos-Lebowitz scheme is implemented in the presented method in order to study kinetics of chains at very low temperature. The coefficients of the Arrhenius law obtained with this algorithm are found to be in excellent agreement with the value of the main potential barrier of the system. Finally, a scenario of the mechanisms, including the rigidity parameters, that guide a protein towards its native structure, at medium temperature, is given.
NASA Astrophysics Data System (ADS)
Boninelli, S.; Milazzo, R.; Carles, R.; Houdellier, F.; Duffy, R.; Huet, K.; La Magna, A.; Napolitani, E.; Cristiano, F.
2018-05-01
Laser Thermal Annealing (LTA) at various energy densities was used to recrystallize and activate amorphized germanium doped with phosphorous by ion implantation. The structural modifications induced during the recrystallization and the related dopant diffusion were first investigated. After LTA at low energy densities, the P electrical activation was poor while the dopant distribution was mainly localized in the polycrystalline Ge resulting from the anneal. Conversely, full dopant activation (up to 1 × 1020 cm-3) in a perfectly recrystallized material was observed after annealing at higher energy densities. Measurements of lattice parameters performed on the fully activated structures show that P doping results in a lattice expansion, with a perpendicular lattice strain per atom βPs = +0.7 ± 0.1 Å3. This clearly indicates that, despite the small atomic radius of P compared to Ge, the "electronic contribution" to the lattice parameter modification (due to the increased hydrostatic deformation potential in the conduction band of P doped Ge) is larger than the "size mismatch contribution" associated with the atomic radii. Such behavior, predicted by theory, is observed experimentally for the first time, thanks to the high sensitivity of the measurement techniques used in this work.
Exact results for the star lattice chiral spin liquid
NASA Astrophysics Data System (ADS)
Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.
2010-03-01
We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.
NASA Astrophysics Data System (ADS)
Kundin, Julia; Ajmal Choudhary, Muhammad
2017-07-01
In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toporkov, M.; Avrutin, V.; Morkoç, H.
2016-03-07
Be{sub x}Mg{sub y}Zn{sub 1−x−y}O semiconductor solid solutions are attractive for UV optoelectronics and electronic devices owing to their wide bandgap and capability of lattice-matching to ZnO. In this work, a combined experimental and theoretical study of lattice parameters, bandgaps, and underlying electronic properties, such as changes in band edge wavefunctions in Be{sub x}Mg{sub y}Zn{sub 1−x−y}O thin films, is carried out. Theoretical ab initio calculations predicting structural and electronic properties for the whole compositional range of materials are compared with experimental measurements from samples grown by plasma assisted molecular beam epitaxy on (0001) sapphire substrates. The measured a and c latticemore » parameters for the quaternary alloys Be{sub x}Mg{sub y}Zn{sub 1−x} with x = 0−0.19 and y = 0–0.52 are within 1%–2% of those calculated using generalized gradient approximation to the density functional theory. Additionally, composition independent ternary BeZnO and MgZnO bowing parameters were determined for a and c lattice parameters and the bandgap. The electronic properties were calculated using exchange tuned Heyd-Scuseria-Ernzerhof hybrid functional. The measured optical bandgaps of the quaternary alloys are in good agreement with those predicted by the theory. Strong localization of band edge wavefunctions near oxygen atoms for BeMgZnO alloy in comparison to the bulk ZnO is consistent with large Be-related bandgap bowing of BeZnO and BeMgZnO (6.94 eV). The results in aggregate show that precise control over lattice parameters by tuning the quaternary composition would allow strain control in Be{sub x}Mg{sub y}Zn{sub 1−x−y}O/ZnO heterostructures with possibility to achieve both compressive and tensile strain, where the latter supports formation of two-dimensional electron gas at the interface.« less
Interaction-induced effects on Bose-Hubbard parameters
NASA Astrophysics Data System (ADS)
Kremer, Mark; Sachdeva, Rashi; Benseny, Albert; Busch, Thomas
2017-12-01
We study the effects of repulsive on-site interactions on the broadening of the localized Wannier functions used for calculating the parameters to describe ultracold atoms in optical lattices. For this, we replace the common single-particle Wannier functions, which do not contain any information about the interactions, by two-particle Wannier functions obtained from an exact solution which takes the interactions into account. We then use these interaction-dependent basis functions to calculate the Bose-Hubbard model parameters, showing that they are substantially different both at low and high lattice depths from the ones calculated using single-particle Wannier functions. Our results suggest that density effects are not negligible for many parameter ranges and need to be taken into account in metrology experiments.
Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice
NASA Astrophysics Data System (ADS)
Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan
2018-01-01
We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.
Anomalous anisotropic compression behavior of superconducting CrAs under high pressure
Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang
2015-01-01
CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230
Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.
Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J
2011-10-21
High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.
Mean field study of a propagation-turnover lattice model for the dynamics of histone marking
NASA Astrophysics Data System (ADS)
Yao, Fan; Li, FangTing; Li, TieJun
2017-02-01
We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.
NASA Astrophysics Data System (ADS)
Lin, J. Q.; Liu, X.; Blackburn, E.; Wakimoto, S.; Ding, H.; Islam, Z.; Sinha, S. K.
2018-05-01
The nanometer scale lattice deformation brought about by the dopants in the high temperature superconducting cuprate La2 -xSrx CuO4 (x =0.08 ) was investigated by measuring the associated x-ray diffuse scattering around multiple Bragg peaks. A characteristic diffuse scattering pattern was observed, which can be well described by continuum elastic theory. With the fitted dipole force parameters, the acoustic-type lattice deformation pattern was reconstructed and found to be of similar size to lattice thermal vibration at 7 K. Our results address the long-term concern of dopant introduced local lattice inhomogeneity, and show that the associated nanometer scale lattice deformation is marginal and cannot, alone, be responsible for the patched variation in the spectral gaps observed with scanning tunneling microscopy in the cuprates.
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...
2016-08-25
We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less
Hamiltonian Effective Field Theory Study of the N^{*}(1535) Resonance in Lattice QCD.
Liu, Zhan-Wei; Kamleh, Waseem; Leinweber, Derek B; Stokes, Finn M; Thomas, Anthony W; Wu, Jia-Jun
2016-02-26
Drawing on experimental data for baryon resonances, Hamiltonian effective field theory (HEFT) is used to predict the positions of the finite-volume energy levels to be observed in lattice QCD simulations of the lowest-lying J^{P}=1/2^{-} nucleon excitation. In the initial analysis, the phenomenological parameters of the Hamiltonian model are constrained by experiment and the finite-volume eigenstate energies are a prediction of the model. The agreement between HEFT predictions and lattice QCD results obtained on volumes with spatial lengths of 2 and 3 fm is excellent. These lattice results also admit a more conventional analysis where the low-energy coefficients are constrained by lattice QCD results, enabling a determination of resonance properties from lattice QCD itself. Finally, the role and importance of various components of the Hamiltonian model are examined.
Determination of the Unstable States of the Solid State Plasma in Semiconductor Devices
1988-05-01
of the carrier moving through the lattice potentials, which alter the carrier’s response to an external electromag- netic field. so If the average...see quantum mechanical affects from the lattice potentials and a spread in carrier momentums due to the Heisenburg Uncertainty Principle. We can...us to account for the quantum mechanical source of the plasma. That source is the lattice . At values of the quantum compression parameter near unity
On certain families of rational functions arising in dynamics
NASA Technical Reports Server (NTRS)
Byrnes, C. I.
1979-01-01
It is noted that linear systems, depending on parameters, can occur in diverse situations including families of rational solutions to the Korteweg-de Vries equation or to the finite Toda lattice. The inverse scattering method used by Moser (1975) to obtain canonical coordinates for the finite homogeneous Toda lattice can be used for the synthesis of RC networks. It is concluded that the multivariable RC setting is ideal for the analysis of the periodic Toda lattice.
NASA Astrophysics Data System (ADS)
Tallarita, Gianni; Peterson, Adam
2018-04-01
We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.
Stability of half-metallic behavior with lattice variation for Fe2-xCoxMnAl Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-04-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2-xCoxMnAl Heusler alloys have been studied. Total magnetic moments predicted by the Slater Pauling rule is maintained over a wide range of lattice variation for the series. Half metallic ferromagnetic nature with 100% spin polarization is observed for a lattice range from 5.40-5.70 Å, 5.35-5.55 Å, 5.30-5.60 Å and 5.25-5.55 Å respectively for x = 0.5, 1.0 1.5, 2.0. Due to the stability of half metallic character for a wide range of lattice parameters, these alloys are promising, robust materials suitable for spintronics device applications.
Phase separation and large deviations of lattice active matter
NASA Astrophysics Data System (ADS)
Whitelam, Stephen; Klymko, Katherine; Mandal, Dibyendu
2018-04-01
Off-lattice active Brownian particles form clusters and undergo phase separation even in the absence of attractions or velocity-alignment mechanisms. Arguments that explain this phenomenon appeal only to the ability of particles to move persistently in a direction that fluctuates, but existing lattice models of hard particles that account for this behavior do not exhibit phase separation. Here we present a lattice model of active matter that exhibits motility-induced phase separation in the absence of velocity alignment. Using direct and rare-event sampling of dynamical trajectories, we show that clustering and phase separation are accompanied by pronounced fluctuations of static and dynamic order parameters. This model provides a complement to off-lattice models for the study of motility-induced phase separation.
NASA Astrophysics Data System (ADS)
Mitran, T. L.; Melchert, O.; Hartmann, A. K.
2013-12-01
The main characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here the disorder allows for negative edge weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter ρ that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. The random walks are “greedy” in the sense that the local optimal choice of the walker is to preferentially traverse edges with a negative weight (associated with a net gain of “energy” for the walker). Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of ρ for different bias strengths B is put under scrutiny. Upon tuning ρ, the probability to find such a feasible lattice walk increases from zero to 1. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point ρc, resulting from numerically exact and “static” simulations in terms of the NWP model, can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
Validity of Vegard’s rule for Al1-xInxN (0.08 < x < 0.28) thin films grown on GaN templates
NASA Astrophysics Data System (ADS)
Magalhães, S.; Franco, N.; Watson, I. M.; Martin, R. W.; O'Donnell, K. P.; Schenk, H. P. D.; Tang, F.; Sadler, T. C.; Kappers, M. J.; Oliver, R. A.; Monteiro, T.; Martin, T. L.; Bagot, P. A. J.; Moody, M. P.; Alves, E.; Lorenz, K.
2017-05-01
In this work, comparative x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) measurements allow a comprehensive characterization of Al1-xInxN thin films grown on GaN. Within the limits of experimental accuracy, and in the compositional range 0.08 < x < 0.28, the lattice parameters of the alloys generally obey Vegard’s rule, varying linearly with the InN fraction. Results are also consistent with the small deviation from linear behaviour suggested by Darakchieva et al (2008 Appl. Phys. Lett. 93 261908). However, unintentional incorporation of Ga, revealed by atom probe tomography (APT) at levels below the detection limit for RBS, may also affect the lattice parameters. Furthermore, in certain samples the compositions determined by XRD and RBS differ significantly. This fact, which was interpreted in earlier publications as an indication of a deviation from Vegard’s rule, may rather be ascribed to the influence of defects or impurities on the lattice parameters of the alloy. The wide-ranging set of Al1-xInxN films studied allowed furthermore a detailed investigation of the composition leading to lattice-matching of Al1-xInxN/GaN bilayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Ludmila L., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Gudimova, Ekaterina Yu., E-mail: llm@ispms.tsc.ru, E-mail: egu@ispms.tsc.ru; Ostapenko, Marina G., E-mail: artifact@ispms.tsc.ru
2014-11-14
Structural conditions of the B2 phase of the Ti{sub 49.5}Ni{sub 50.5} alloy surface layers before and after electron-beam treatments (pulse duration τ = 150 μs, number of pulses n = 5, beam energy density E ≤ 20 J/cm{sup 2}) were studied by X-ray diffraction analysis. Analysis of the X-ray patterns demonstrates that surface layers modified by electron beam treatment contain phase with B2{sup surf} structure. It is revealed that the lattice parameter of the B2{sup surf} phase in the surface (modified) layer is also higher than the lattice parameter of the B2 phase in the underlying layer (a{sub B2} = 3.0159±0.0005). Themore » values of lattice parameter of phase B2{sup surf} amounted a{sub B2}{sup surf} = 3.0316±0.0005 Å and a{sub B2}{sup surf} = 3.0252±0.0005 Å, for the specimens after electron-beam treatment at E{sub 1} = 15 J/cm{sup 2} and E{sub 2} = 20 J/cm{sup 2}, respectively. Inflated lattice parameters a{sub B2}{sup surf} are associated with changes in the chemical composition and the presence of residual stresses in the surface region of the samples after electron-beam treatments.« less
Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures
NASA Astrophysics Data System (ADS)
Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.
2017-10-01
We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.
Progress in lattice gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creutz, M.
1983-01-01
These lectures first provide an overview of the current status of lattice gauge theory calculations. They then review some technical points on group integration, gauge fixing, and order parameters. Various Monte Carlo algorithms are discussed. Finally, alternatives to the Wilson action are considered in the context of universality for the continuum limit. 41 references.
A Firefly-Inspired Method for Protein Structure Prediction in Lattice Models
Maher, Brian; Albrecht, Andreas A.; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen
2014-01-01
We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models. PMID:24970205
A firefly-inspired method for protein structure prediction in lattice models.
Maher, Brian; Albrecht, Andreas A; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen
2014-01-07
We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa-Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models.
Deterministic composite nanophotonic lattices in large area for broadband applications
NASA Astrophysics Data System (ADS)
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-12-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.
Deterministic composite nanophotonic lattices in large area for broadband applications
Xavier, Jolly; Probst, Jürgen; Becker, Christiane
2016-01-01
Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates. PMID:27941869
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Chandrima; Ghosh, Arup; Haldar, Manas Kamal, E-mail: manashaldar@cgcri.res.in
The present work intends to study the development of magnesium aluminate spinel aggregates from Indian magnesite in a single firing stage. The raw magnesite has been evaluated in terms of chemical analysis, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. The experimental batch containing Indian magnesite and calcined alumina has been sintered in the temperature range of 1550 °C–1700 °C. The sintered material has been characterized in terms of physico-chemical properties like bulk density, apparent porosity, true density, relative density and thermo-mechanical/mechanical properties like hot modulus of rupture, thermal shock resistance, cold modulus of rupture and structural propertiesmore » by X-ray diffraction in terms of phase identification and evaluation of crystal structure parameters of corresponding phases by Rietveld analysis. The microstructures developed at different temperatures have been analyzed by field emission scanning electron microscope study and compositional analysis of the developed phase has been carried out by energy dispersive X-ray study. - Highlights: • The studies have been done to characterize the developed magnesium aluminate spinel. • The studies reveal correlation between refractory behavior of spinel and developed microstructures. • The studies show the values of lattice parameters of developed phases.« less
Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.
2012-01-01
Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.
Effects of ultraviolet radiation on lattice imperfections in pyrolytic boron nitride.
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Cooley, J. A.
1971-01-01
Pyrolitic boron nitride was exposed to 310 equivalent sun hours of ultraviolet radiation in a space environment simulator with the objective to evaluate its applicability as a pigment for a thermal control coating and to identify radiation damage using X-ray diffraction techniques. Lattice parameter comparisons show a definite increase in lattice imperfections in the crystal structure resulting from the ultraviolet irradiation. This sensitivity to radiation damage makes pyrolitic boron nitride unsuitable as a pigment for thermal control coating.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals
NASA Technical Reports Server (NTRS)
MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.
2013-01-01
Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.
Lattice quantum gravity and asymptotic safety
NASA Astrophysics Data System (ADS)
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy
NASA Astrophysics Data System (ADS)
Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh
2018-05-01
The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.
Lattice Boltzmann simulation of antiplane shear loading of a stationary crack
NASA Astrophysics Data System (ADS)
Schlüter, Alexander; Kuhn, Charlotte; Müller, Ralf
2018-01-01
In this work, the lattice Boltzmann method is applied to study the dynamic behaviour of linear elastic solids under antiplane shear deformation. In this case, the governing set of partial differential equations reduces to a scalar wave equation for the out of plane displacement in a two dimensional domain. The lattice Boltzmann approach developed by Guangwu (J Comput Phys 161(1):61-69, 2000) in 2006 is used to solve the problem numerically. Some aspects of the scheme are highlighted, including the treatment of the boundary conditions. Subsequently, the performance of the lattice Boltzmann scheme is tested for a stationary crack problem for which an analytic solution exists. The treatment of cracks is new compared to the examples that are discussed in Guangwu's work. Furthermore, the lattice Boltzmann simulations are compared to finite element computations. Finally, the influence of the lattice Boltzmann relaxation parameter on the stability of the scheme is illustrated.
Z/sub n/ Baxter model: symmetries and the Belavin parametrization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richey, M.P.; Tracy, C.A.
1986-02-01
The Z/sub n/ Baxter model is an exactly solvable lattice model in the special case of the Belavin parametrization. For this parametrization the authors calculate the partition function in an antiferromagnetic region and the order parameter in a ferromagnetic region. They find that the order parameter is expressible in terms of a modular function of level n which for n=2 is the Onsager-Yang-Baxter result. In addition they determine the symmetry group of the finite lattice partition function for the general Z/sub n/ Baxter model.
Dark soliton dynamics and interactions in continuous-wave-induced lattices.
Tsopelas, Ilias; Kominis, Yannis; Hizanidis, Kyriakos
2007-10-01
The dynamics of dark spatial soliton beams and their interaction under the presence of a continuous wave (CW), which dynamically induces a photonic lattice, are investigated. It is shown that appropriate selection of the characteristic parameters of the CW result in controllable steering of a single soliton as well as controllable interaction between two solitons. Depending on the CW parameters, the soliton angle of propagation can be changed drastically, while two-soliton interaction can be either enhanced or reduced, suggesting a reconfigurable soliton control mechanism. Our analytical approach, based on the variational perturbation method, provides a dynamical system for the dark soliton evolution parameters. Analytical results are shown in good agreement with direct numerical simulations.
Nanoparticle Superlattice Engineering with DNA
NASA Astrophysics Data System (ADS)
Macfarlane, Robert J.; Lee, Byeongdu; Jones, Matthew R.; Harris, Nadine; Schatz, George C.; Mirkin, Chad A.
2011-10-01
A current limitation in nanoparticle superlattice engineering is that the identities of the particles being assembled often determine the structures that can be synthesized. Therefore, specific crystallographic symmetries or lattice parameters can only be achieved using specific nanoparticles as building blocks (and vice versa). We present six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale. These design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (5 to 60 nanometers), periodicity, and interparticle distance. As such, this work represents an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.
Remote Detection of the Hydronium Ion
1975-03-01
and all three arrangements have been observed. Apparently, the overall attainment of minimum energy in the crystal lattice is influential in...commercially available Jarre11-Ash 1-meter double monochromator. This unit has excellent stray light rejection and high linear dispersion . The detector is...and that these measurements are directly related to quantification of acid content in the atmosphere. Efforts in the area of Raman Spectroscopy
A lattice model for influenza spreading.
Liccardo, Antonella; Fierro, Annalisa
2013-01-01
We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1) during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.
NASA Astrophysics Data System (ADS)
Zhou, Yu; Cheng, Yan; Chen, Xiang-Rong; Hu, Cui-E.; Chen, Qi-Feng
2018-07-01
Topological insulators are always a hot topic owing to their various peculiar physical effects, which are useful in spintronics and quantum information processing. Herein, we systematically investigate the elastic, thermodynamic and lattice thermal conductivity of a new typical topological insulator LaAs by combining the first-principles approach and an iterative solution of the Boltzmann transport equation. The obtained elastic constants and other lattice structural parameters of LaAs are well consistent with the experimental and other theoretical results. For the first time, the lattice thermal conductivity (5.46 W/(m•K)) and mean free path (14.4 nm) of LaAs are obtained, which manifests that the LaAs is more likely to be a desirable thermoelectric material. It is noted that the obtained mode-averaged Grüneisen parameters by different ab initio simulation packages are very similar, suggesting that our results are rather responsible. From the phonon scattering rates of LaAs, we speculate that the reduction of acoustic-optical gap and the larger phonon scattering may jointly result in reduction of thermal conductivity for LaAs. Meanwhile, the temperature dependence curves of the lattice thermal conductivity, heat capacity and phonon mean free path are also presented. We expect our work can provide more information for further experimental studies.
Lattice QCD and the unitarity triangle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreas S Kronfeld
2001-12-03
Theoretical and computational advances in lattice calculations are reviewed, with focus on examples relevant to the unitarity triangle of the CKM matrix. Recent progress in semi-leptonic form factors for B {yields} {pi}/v and B {yields} D*lv, as well as the parameter {zeta} in B{sup 0}-{bar B}{sup 0} mixing, are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ji-Hwan; Lu, Ping; Hoffman, Jason
2016-12-19
We construct the elemental distribution and lattice strain maps from the measured atomic column positions in a (LaNiO3)(4)/(LaMnO3)(2) superlattice over a large field of view. The correlation between the distribution of B-cations and the lattice parameter in the form of Vegard's law is validated using atomic resolution energy dispersive x-ray spectroscopy (EDS). The maps show negligible Mn intermixing in the LaNiO3 layer, while Ni intermixing in the LaMnO3 layer improves away from the substrate interface to 9.5 atomic% from the 8th period onwards, indicating that the superlattice interfacial sharpness is established as the distance from the substrate increases. The mapsmore » allow an observation of the compositional defects of the B-sites, which is not possible by Z-contrast alone. Thus, this study demonstrates a promising approach for atomic scale correlative study of lattice strain and composition, and a method for the calibration of atomic resolution EDS maps.« less
Spectroscopic properties of Cr3+ ions at the defect sites in cubic fluoroperovskite crystals
NASA Astrophysics Data System (ADS)
Wan-Lun, Yu; Xin-Min, Zhang; La-Xun, Yang; Bao-Qing, Zen
1994-09-01
The spin-Hamiltonian (SH) parameters for the 4A2(F) state of 3d3/3d7 ions for tetragonal and trigonal symmetries are studied as a function of the crystal-field (CF) parameters based on simultaneous diagonalization of the electrostatic, CF, and the spin-orbit-coupling Hamiltonians. The results obtained are compared to those in earlier works. The CF and SH parameters of Cr3+ ions at the A and M vacancies and at codoped Li+ sites in the cubic fluoroperovskites AMF3 are investigated by taking into account the contributions of the defects and the defect-induced lattice distortion. Suitable models are proposed for the lattice distortion, and the distortion parameters are obtained by adjusting them to fit to the observed data for the SH parameters and the energy of the first excited state.
Kaya, Hüseyin; Liu, Zhirong; Chan, Hue Sun
2005-01-01
It has been demonstrated that a “near-Levinthal” cooperative mechanism, whereby the common Gō interaction scheme is augmented by an extra favorability for the native state as a whole, can lead to apparent two-state folding/unfolding kinetics over a broad range of native stabilities in lattice models of proteins. Here such a mechanism is shown to be generalizable to a simplified continuum (off-lattice) Langevin dynamics model with a Cα protein chain representation, with the resulting chevron plots exhibiting an extended quasilinear regime reminiscent of that of apparent two-state real proteins. Similarly high degrees of cooperativity are possible in Gō-like continuum models with rudimentary pairwise desolvation barriers as well. In these models, cooperativity increases with increasing desolvation barrier height, suggesting strongly that two-state-like folding/unfolding kinetics would be achievable when the pairwise desolvation barrier becomes sufficiently high. Besides cooperativity, another generic folding property of interest that has emerged from published experiments on several apparent two-state proteins is that their folding relaxation under constant native stability (isostability) conditions is essentially Arrhenius, entailing high intrinsic enthalpic folding barriers of ∼17–30 kcal/mol. Based on a new analysis of published data on barnase, here we propose that a similar property should also apply to a certain class of non-two-state proteins that fold with chevron rollovers. However, several continuum Gō-like constructs considered here fail to predict any significant intrinsic enthalpic folding barrier under isostability conditions; thus the physical origin of such barriers in real proteins remains to be elucidated. PMID:15863486
NASA Astrophysics Data System (ADS)
Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.
2017-07-01
We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Zhu; Wang, Fan; Lin, Jung-Fu
In this study, we performed synchrotron X-ray diffraction (XRD) and Mössbauer spectroscopy (SMS) measurements on two single-crystal bridgmanite samples [ Embedded Image and Embedded Image ] to investigate the combined effect of Fe and Al on the hyperfine parameters, lattice parameters, and equation of state (EoS) of bridgmanite up to 130 GPa. Our SMS results show that Fe2+ and Fe3+ in Bm6 and Al-Bm11 are predominantly located in the large pseudo-dodecahedral sites (A-site) at lower-mantle pressures. The observed drastic increase in the hyperfine quadrupole splitting (QS) between 13 and 32 GPa can be associated with an enhanced local distortion ofmore » the A-site Fe2+ in Bm6. In contrast to Bm6, the enhanced lattice distortion and the presence of extremely high QS values of Fe2+ are not observed in Al-Bm11 at high pressures. Our results here support the notion that the occurrence of the extremely high QS component of approximately 4 mm/s in bridgmanite is due to the lattice distortion in the high-spin (HS) A-site Fe2+, instead of the occurrence of the intermediate-spin state. Both A-site Fe2+ and Fe3+ in Bm6 and Al-Bm11 remain in the HS state at lower-mantle pressures. Together with XRD results, we present the first experimental evidence that the enhanced lattice distortion of A-site Fe2+ does not cause any detectable variation in the EoS parameters, but is associated with anomalous variations in the bond length, tilting angle, and shear strain in the octahedra of Bm6. Analysis of the obtained EoS parameters of bridgmanite at lower-mantle pressures indicates that the substitution of Fe in bridgmanite will cause an enhanced density and a reduced bulk sound velocity (VΦ), whereas the Al and Fe substitution has a reduced effect on density and a negligible effect on VΦ. These experimental results provide new insight into the correlation between lattice, hyperfine, and EoS parameters of bridgmanite in the Earth’s lower mantle.« less
HQE parameters from unquenched lattice data on pseudoscalar and vector heavy-light meson masses
NASA Astrophysics Data System (ADS)
Gambino, Paolo; Melis, Aurora; Simula, Silvano
2018-03-01
We present a new lattice determination of some of the parameters appearing both in the Operator Product Expansion (OPE) analysis of the inclusive semileptonic B-meson decays and in the Heavy Quark Expansion (HQE) of the pseudoscalar (PS) and vector (V) heavy-light meson masses. We perform a lattice QCD (LQCD) computation of PS and V heavy-light meson masses for heavy-quark masses mh in the range from mcphys to ≃ 4mbphys. We employed the Nf = 2 + 1 + 1 gauge configurations of the European Twisted Mass Collaboration (ETMC) at three values of the lattice spacing a ≃ (0.062,0.082,0.089) fm with pion masses in the range Mπ ≃ (210 - 450) MeV. The heavy-quark mass is simulated directly on the lattice up to ≃ 3mcphys. The interpolation to the physical mbphys is performed using the ETMC ratio method and adopting the kinetic mass scheme. We obtain mbkin (1 GeV) = 4.61(20) GeV (m̅b(m̅b) = 4.26(18) GeV in the MS scheme). The lattice data are analyzed in terms of the HQE and the matrix elements of dimension-4 and dimension-5 operators are extracted with good precision, namely: Λ¯ = 0.552(26) GeV, μπ2 = 0.321(32) GeV2 and μG2(mb) = 0.253(25)GeV2. The data also allow for an estimate of the dimension-6 operator matrix elements.
Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain
NASA Astrophysics Data System (ADS)
Fuchs, D.; Arac, E.; Pinta, C.; Schuppler, S.; Schneider, R.; v. Löhneysen, H.
2008-01-01
Ferromagnetic order can be induced in LaCoO3 (LCO) thin films by epitaxial strain. Here, we show that the magnetic properties can be “tuned” by epitaxial strain imposed on LCO thin films by the epitaxial growth on various substrate materials, i.e., (001) oriented SrLaAlO4 , LaAlO3 , SrLaGaO4 , (LaAlO3)0.3(Sr2AlTaO6)0.7 , and SrTiO3 . The lattice mismatch at room temperature of the in-plane lattice parameters between the substrate, as , and bulk LCO, ab , ranges from -1.31% to +2.63% . Single-phase, ⟨001⟩ oriented LCO thin films were grown by pulsed laser deposition on all these substrates. Due to the difference of the thermal-expansion coefficients between LCO and the substrates, the films experience an additional tensile strain of about +0.3% during the cooling process after the deposition at Ts=650°C . The film lattice parameters display an elastic behavior, i.e., an increase of the in-plane film lattice parameter with increasing as . From the ratio between the out-of-plane and in-plane strain, we obtain a Poisson ratio of ν≈1/3 . All films show a ferromagnetic transition as determined from magnetization measurements. The magnetization increases strongly with increasing tensile strain, whereas the transition temperature TC after a rapid initial rise appears to saturate at TC≈85K above a=3.86Å . The effective magnetic moment μeff in the paramagnetic state increases almost linearly as a function of the mean lattice parameter ⟨a⟩ , indicating an enhanced population of higher spin states, i.e., intermediate- or high-spin states. The experimental results are discussed in terms of a decrease of the octahedral-site rotation with increasing tensile strain.
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2017-09-01
The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.
Electrostatic swelling of bicontinuous cubic lipid phases.
Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J
2015-04-28
Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.
The Kaon B-parameter in mixed action chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, C.; /Columbia U.; Laiho, Jack
2006-09-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}).more » This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less
Kaon B-parameter in mixed action chiral perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubin, C.; Laiho, Jack; Water, Ruth S. van de
2007-02-01
We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed-action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At 1-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an O(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of O(a{sup 2}). Thismore » term, however, is not strictly due to taste breaking, and is therefore also present in the expression for B{sub K} for pure Ginsparg-Wilson lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.« less
Stoffel, Ralf P; Deringer, Volker L; Simon, Ronnie E; Hermann, Raphaël P; Dronskowski, Richard
2015-03-04
We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated-including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.
Lattice parameter functions of (AmyU1-y)O2-x based on XRD and XANES measurements
NASA Astrophysics Data System (ADS)
Nishi, Tsuyoshi; Nakada, Masami; Hirata, Masaru
2017-12-01
The lattice parameters of (Am0.50U0.50)O2.0, (Am0.37U0.63)O2.0, and (Am0.50U0.50)O2-x were determined by powder X-ray diffraction with Cu Kα radiation. In addition, the lattice parameter functions of (AmyU1-y)O2-x (0.00
Opening the closed box: lattice diffusion in zircon?
NASA Astrophysics Data System (ADS)
Wheeler, J.; MacDonald, J.; Goodenough, K. M.; Crowley, Q.; Harley, S.; Mariani, E.
2015-12-01
In principle, any radiogenic parent or daughter element can diffuse through any crystalline lattice. Given improved analytic techniques and mathematical models, geochronology is beginning to take such diffusion into account in a quantitative fashion. Whilst lattice diffusion compromises simple interpretation of radiometric data, it can, when combined with spatially resolved data, provide more detailed insight into thermal histories. In regions that have experienced particularly high temperatures diffusion may become significant in minerals normally thought to be reliably closed. We have modelled Pb diffusion in zircon, building on earlier work on Ar diffusion in micas - the mathematics being basically the same. We are motivated by some challenging isotope data from zircon in the Lewisian Complex of NW Scotland (a TTG region with a long Archaean and Proterozoic history). For example we have grains with old rims and younger cores. Whilst other explanations are possible, we show how lattice diffusion of Pb is plausible, using experimental diffusion data together with estimates of ultra-high temperatures from the region. We have modified a previous model for Ar diffusion ("Diffarg") to include variations in parent isotope concentration, so we can understand the consequences of U zonation within zircon grains during prolonged thermal histories. This is also relevant to asking why Pb has apparently not diffused in zircon from other UHT regions - or has it?
NASA Astrophysics Data System (ADS)
Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki
2018-06-01
A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.
Study of. lambda. parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shigemitsu, J; Kogut, J B
1981-01-01
The spin system analogues of recent studies of the string tension and ..lambda.. parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the ..lambda.. parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the ..lambda.. parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are donemore » for all N and the constants of proportionality between the gap and the ..lambda.. parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N ..-->.. infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models.« less
Simulations to study the static polarization limit for RHIC lattice
NASA Astrophysics Data System (ADS)
Duan, Zhe; Qin, Qing
2016-01-01
A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)
Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations
NASA Astrophysics Data System (ADS)
Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng
2018-04-01
The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.
Lattice Boltzmann Simulation of Electroosmotic Micromixing by Heterogeneous Surface Charge
NASA Astrophysics Data System (ADS)
Tang, G. H.; Wang, F. F.; Tao, W. Q.
Microelectroosmotic flow is usually restricted to low Reynolds number regime, and mixing in these microfluidic systems becomes problematic due to the negligible inertial effects. To gain an improved understanding of mixing enhancement in microchannels patterned with heterogeneous surface charge, the lattice Boltzmann method has been employed to obtain the electric potential distribution in the electrolyte, the flow field, and the species concentration distribution, respectively. The simulation results show that heterogeneous surfaces can significantly disturb the streamlines leading to apparently substantial improvements in mixing. However, the introduction of such a feature can reduce the mass flow rate in the channel. The reduction in flow rate effectively prolongs the available mixing time when the flow passes through the channel and the observed mixing enhancement by heterogeneous surfaces partly results from longer mixing time.
Kinetics of oxygen interstitial injection and lattice exchange in rutile TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Hollister, Alice G.; Pangan-Okimoto, Kristine
2014-05-12
The existence of a facile surface pathway for generation of O interstitials (O{sub i}) in rutile that can facilitate annihilation of O undesirable vacancies has been demonstrated recently. Through isotopic self-diffusion experiments, the present work determines a value of approximately 1.8 eV for the activation energy of O{sub i} injection from TiO{sub 2} (110). The mean path length for O{sub i} diffusion decreases by nearly an order of magnitude upon adsorption of 0.1 monolayer of sulfur. Sulfur apparently inhibits the surface annihilation rate of Ti interstitials, lowering their bulk concentration and the corresponding catalytic effect they seem to exert upon O{submore » i} exchange with the lattice.« less
Thermoluminescence and lattice defects in LiF
NASA Technical Reports Server (NTRS)
Stoebe, T. G.; Watanabe, S.
1975-01-01
The principal effect of thermal and optical treatments in an ionic solid is to alter the lattice defect equilibrium, including the concentration and arrangement of ion vacancies, impurities, impurity-vacancy associates, and assorted electrons and holes which may be associated with such defects. This paper examines the relationship between these defects and thermoluminescence in the case of lithium fluoride at and above room temperature. The discussion focuses on lattice defect equilibrium, thermoluminescent trapping centers, the relationship between recombination and luminescence, the supralinearity and sensitization of the dosimetry grade of LiF and activation energy parameters.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
Lee, W. S.; Kung, Y. F.; Moritz, B.; ...
2017-03-13
Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Effects of radiation damage on the silicon lattice
NASA Technical Reports Server (NTRS)
Dumas, Katherine A.; Lowry, Lynn; Russo, O. Louis
1987-01-01
Silicon was irradiated with both proton and electron particle beams in order to investigate changes in the structural and optical properties of the lattice as a result of the radiation damage. Lattice expansions occurred when large strain fields (+0.34 percent) developed after 1- and 3-MeV proton bombardment. The strain was a factor of three less after 1-MeV electron irradiation. Average increases of approximately 22 meV in the 3.46-eV interband energy gap and 14 meV in the Lorentz broadening parameter were measured after the electron irradiation.
Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Y.; Dawson, C.; Brookhaven National Laboratory, Upton, New York 11973
2008-09-01
We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.
Realization of non-linear coherent states by photonic lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn
2015-06-15
In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
Here, we investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4, using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Two-Nucleon Systems in a Finite Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul
2014-11-01
I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extentsmore » L satisfying fm <~ L <~ 14 fm.« less
Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.
Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R
2017-10-25
In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c = [Formula: see text], supporting previous theoretical predictions.
Spin foam models for quantum gravity from lattice path integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonzom, Valentin
2009-09-15
Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case,more » the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.« less
Effective Hubbard model for Helium atoms adsorbed on a graphite
NASA Astrophysics Data System (ADS)
Motoyama, Yuichi; Masaki-Kato, Akiko; Kawashima, Naoki
Helium atoms adsorbed on a graphite is a two-dimensional strongly correlated quantum system and it has been an attractive subject of research for a long time. A helium atom feels Lennard-Jones like potential (Aziz potential) from another one and corrugated potential from the graphite. Therefore, this system may be described by a hardcore Bose Hubbard model with the nearest neighbor repulsion on the triangular lattice, which is the dual lattice of the honeycomb lattice formed by carbons. A Hubbard model is easier to simulate than the original problem in continuous space, but we need to know the model parameters of the effective model, hopping constant t and interaction V. In this presentation, we will present an estimation of the model parameters from ab initio quantum Monte Carlo calculation in continuous space in addition to results of quantum Monte Carlo simulation for an obtained discrete model.
Yoshida, Hiroaki; Kobayashi, Takayuki; Hayashi, Hidemitsu; Kinjo, Tomoyuki; Washizu, Hitoshi; Fukuzawa, Kenji
2014-07-01
A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which correctly realizes the internal boundary condition at the interface between two phases with different transport properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis, which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the analytical solutions of the problems numerically validates the proposed scheme.
Atomistic Modeling of RuAl and (RuNi) Al Alloys
NASA Technical Reports Server (NTRS)
Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.
Ion beam deposition of in situ superconducting Y-Ba-Cu-O films
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.; Clauson, S. L.
1990-01-01
Oriented superconducting YBa2Cu3O7 thin films were deposited on yttria-stabilized zirconia substrates by ion beam sputtering of a nonstoichiometric oxide target. The films exhibited zero-resistance critical temperatures as high as 80.5 K without post-deposition anneals. Both the deposition rate and the c lattice parameter data displayed two distinct regimes of dependence on the beam power of the ion source. Low-power sputtering yielded films with large c dimensions and low Tc's. Higher power sputtering produced a continuous decrease in the c lattice parameter and an increase in critical temperatures.
Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.
2003-01-01
Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.
1986-09-01
for each mode and heat treament condition are plotted versus the average peak strain, £_) ea ^. in Figures 4.10, 4.11, and 4.12. For Mode 1 resonance...specimen reversed its relative position to the other heat treament conditions (i.e., it showed the lowest damping levels in Modes 2 and 3). However, as...LATTICE PARAMETERS FOR EACH HEAT TREATMENT CONDITION OF INCRAMUTE Heat Treament Lattice Parameter (Angstrons) AQ 3.7484 1 Hour Age 3.737864 2 Hour Age
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jena, Puru; Kandalam, Anil K.; Christian, Theresa M.
Gallium phosphide bismide (GaP1-xBix) epilayers with bismuth fractions from 0.9% to 3.2%, as calculated from lattice parameter measurements, were studied with Rutherford backscattering spectrometry (RBS) to directly measure bismuth incorporation. The total bismuth fractions found by RBS were higher than expected from the lattice parameter calculations. Furthermore, in one analyzed sample grown by molecular beam epitaxy at 300 degrees C, 55% of incorporated bismuth was found to occupy interstitial sites. We discuss implications of this high interstitial incorporation fraction and its possible relationship to x-ray diffraction and photoluminescence measurements of GaP0.99Bi0.01.
Elliptic Painlevé equations from next-nearest-neighbor translations on the E_8^{(1)} lattice
NASA Astrophysics Data System (ADS)
Joshi, Nalini; Nakazono, Nobutaka
2017-07-01
The well known elliptic discrete Painlevé equation of Sakai is constructed by a standard translation on the E_8(1) lattice, given by nearest neighbor vectors. In this paper, we give a new elliptic discrete Painlevé equation obtained by translations along next-nearest-neighbor vectors. This equation is a generic (8-parameter) version of a 2-parameter elliptic difference equation found by reduction from Adler’s partial difference equation, the so-called Q4 equation. We also provide a projective reduction of the well known equation of Sakai.
Melting of genomic DNA: Predictive modeling by nonlinear lattice dynamics
NASA Astrophysics Data System (ADS)
Theodorakopoulos, Nikos
2010-08-01
The melting behavior of long, heterogeneous DNA chains is examined within the framework of the nonlinear lattice dynamics based Peyrard-Bishop-Dauxois (PBD) model. Data for the pBR322 plasmid and the complete T7 phage have been used to obtain model fits and determine parameter dependence on salt content. Melting curves predicted for the complete fd phage and the Y1 and Y2 fragments of the ϕX174 phage without any adjustable parameters are in good agreement with experiment. The calculated probabilities for single base-pair opening are consistent with values obtained from imino proton exchange experiments.
Ising lattices with +/-J second-nearest-neighbor interactions
NASA Astrophysics Data System (ADS)
Ramírez-Pastor, A. J.; Nieto, F.; Vogel, E. E.
1997-06-01
Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interactions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:energy per bond ɛg, site correlation parameter pg, maximal magnetization μg, and fraction of unfrustrated bonds hg. A set of 500 samples is considered for each size N (number of spins) and array (way of distributing the N spins). The properties of the original lattices with only nearest-neighbor interactions are already known, which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the distinction between coordination number and dimensionality. Comparison with results for triangular and honeycomb lattices is done at specific points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianqiang, Zhang; Linru, Nie, E-mail: lrnie@163.com; Chongyang, Chen
2016-07-15
Thermal conduction of the Frenkel-Kontorova (FK) lattices with interfacial coupling is investigated numerically. The results indicate that: (i) For appropriate lattice periods, as the system is symmetric, a bidirectional negative differential thermal resistance (NDTR) phenomenon will appear. If the system is asymmetric, the bidirectional NDTR is gradually converted into an unidirectional NDTR. (ii) The bidirectional NDTR phenomenon effect also depends on the period of the FK lattice as the other parameters remains unchanged. With the increment of the lattice period, the bidirectional NDTR will gradually disappear. (iii) From a stochastic dynamics point of view, thermal transport properties of the systemmore » are determined by the competition between the two types of thermal conduction: one comes from the collusion between atoms, the other is due to the elastic coupling between atoms. For the smaller lattice periods, the former type of thermal conduction occupies the dominating position and the NDTR effect will appear.« less
NASA Astrophysics Data System (ADS)
Chen, Xueqian; Feng, Wei; Liu, Honglai; Hu, Ying
2016-09-01
In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.
High magnetic field magnetization of a new triangular lattice antiferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, H. D.; Stritzinger, Laurel Elaine Winter; Harrison, Neil
2017-03-23
In CsV(MoO 4) 2, the magnetic V 3+ ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO 4) 2 by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Willmore » it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V 3+ (3d 2) ions. Apparently we need higher field to reach 1/3 value or full moment.« less
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou; Marston, Brad
2002-03-01
We study the Sp(N) generalization of the physical Sp(1) \\cong SU(2) Heisenberg antiferromagnet on the anisotropic triangular lattice( C. H. Chung, J. B. Marston and R. H. McKenzie, Journal of Physics: Condensed Matter 13), 5159 (2001). in a magnetic field. The model is relevant for describing recent experiments on the magnetic phases of the quasi-2D system Cs_2CuCl4 in a magnetic field(R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86), 1335 (2001).. We solve the model in the large-N limit and study the effect of a magnetic field on the incommensurate magnetic order. Below a critical field the spins form a ``cone'' of polarization, in apparent agreement with neutron scattering experiments when the magnetic field is oriented perpendicular to the lattice. The incommensuration increases with increasing field strength. Above the critical field the spins are fully polarized. We have difficulty treating Dzyaloshinskii-Moriya interactions which are believed to be important for in-plane fields.
NASA Astrophysics Data System (ADS)
Wang, Fengwen
2018-05-01
This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.
NASA Astrophysics Data System (ADS)
Bayramov, Ayaz; Aliyeva, Yegana; Eyyubov, Gurban; Mammadov, Eldar; Jahangirli, Zakir; Lincot, Daniel; Mamedov, Nazim
2017-11-01
Submicron MoSe2 layers were prepared by thermal treatment of thick Mo layers on glass substrate in saturated selenium vapor. Spectroscopic ellipsometry was then applied to the obtained MoSe2/Mo/Glass structures and MoSe2 target sample at room temperature. Dielectric function for both the MoSe2 layer and MoSe2 target was retrieved in the spectral range 190-1700 nm by using the Kramers-Kronig consistent B-spline dispersion model. The obtained data were similar in both cases. Despite apparent red shift of the dielectric function spectra of the layer in high energy region the peculiarity at around 1 eV is manifested at the same energy for both, layer and target. Comparison of the ellipsometry-based dielectric function of the target and the one, obtained within calculated band structure of MoSe2 for room temperature lattice parameters, has shown that the former is a broadened counterpart of the latter. Above-mentioned peculiar feature is not reproduced in the calculated dielectric function and is assumed to have excitonic nature.
NASA Astrophysics Data System (ADS)
Liu, Yawei; Zhang, Xianren
2016-12-01
In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.
Modelling the thermal conductivity of (U xTh 1-x)O 2 and (U xPu 1-x)O 2
Cooper, M. W. D.; Middleburgh, S. C.; Grimes, R. W.
2015-07-15
The degradation of thermal conductivity due to the non-uniform cation lattice of (U xTh 1-x)O 2 and (U xPu 1-x)O 2 solid solutions has been investigated by molecular dynamics, using the non-equilibrium method, from 300 to 2000 K. Degradation of thermal conductivity is predicted in (U xTh 1-x)O 2 and (U xPu 1-x)O 2 as compositions deviate from the pure end members: UO 2, PuO 2 and ThO 2. The reduction in thermal conductivity is most apparent at low temperatures where phonon-defect scattering dominates over phonon-phonon interactions. The effect is greater for (U xTh 1-x)O 2 than U xPu 1-x)Omore » 2 due to the greater mismatch in cation size. Parameters for an analytical expressions have been developed that describe the predicted thermal conductivities over the full temperature and compositional ranges. Finally, these expressions may be used in higher level fuel performance codes.« less
NASA Astrophysics Data System (ADS)
Yamaki, K.; Bamba, Y.; Mochiku, T.; Funahashi, S.; Matsushita, Y.; Irie, A.
2018-05-01
In this study, cubic single crystals of the magnetic superconductor Ru1-xSr2-yGd1+yCu2+xO8-δ (RuGd-1212) with typical dimensions of 100-150 μm in length were grown by the partial melting technique. Multiple 00l reflections were first observed by XRD measurements of the bulk RuGd-1212 single crystals. The resistivity of the obtained crystals was roughly estimated to be ∼24-80 mΩ cm and no superconducting transition was observed down to 4.2 K. From the XRD measurements and refinement of the crystal structure, it was apparent that the Ru and Sr sites of the single-crystal RuGd-1212 were partially substituted by Cu and Gd, respectively. Oxygen defects were found to be minor (δ ≈ 0.1). The lattice parameters a and c of the single crystals were found to be larger and smaller, respectively, than those of a polycrystalline sample.
NASA Astrophysics Data System (ADS)
Rousselot, Steeve; Guay, Daniel; Roué, Lionel
Mg-Ti-H alloys were synthesized by high energy ball milling from equimolar mixtures of MgH 2 + TiH 2, MgH 2 + Ti and Mg + TiH 2 in the presence of 10 wt.% Pd. X-ray diffraction analyses combined with Rietveld refinement revealed that after 60 h of milling, all as-milled Mg-Ti-H alloys are made of two face-centered-cubic (fcc) phases, with lattice parameters ∼4.47 and ∼4.25 Å, in different proportions depending on the composition of the initial mixture. The Mg-Ti-H alloys displayed a similar electrochemical behavior, i.e. their hydrogen discharge capacity was highest during the first cycle and then decreased rapidly with cycling. The maximum discharge capacities of the 60 h-milled MgH 2 + TiH 2, MgH 2 + Ti and Mg + TiH 2 materials were 300, 443 and 454 mAh g -1, respectively. No apparent correlation could be established between the maximum discharge capacity of the Mg-Ti-H materials and the two fcc phase proportion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claudio, Tania; Stein, Niklas; Petermann, Nils
2015-10-26
The lattice dynamics and thermoelectric properties of sintered phosphorus-doped nanostructured silicon–germanium alloys obtained by gas-phase synthesis were studied. Measurements of the density of phonon states by inelastic neutron scattering were combined with measurements of the elastic constants and the low-temperature heat capacity. A strong influence of nanostructuring and alloying on the lattice dynamics was observed. The thermoelectric transport properties of samples with different doping as well as samples sintered at different temperature were characterized between room temperature and 1000°C. A peak figure of merit zT=0.88 at 900°C is observed and is comparatively insensitive to the aforementioned parameter variations.
NASA Astrophysics Data System (ADS)
Sakakida, Keishiro; Shimahara, Hiroshi
2017-12-01
Motivated by recently discovered organic antiferromagnets, we examine an extended triangular lattice that consists of two types of triangles of bonds with exchange coupling constants Jℓ and J'ℓ (ℓ= 1, 2, and 3), respectively. The simplified system with Jℓ = J'ℓ > 0 is the spatially completely anisotropic triangular lattice (SCATL) antiferromagnet examined previously. The extended system, which we call an extended SCATL (ESCATL), has two different spatial anisotropy parameters J3/J2 and J'3/J'2 when J1 = J'1 is assumed. We derive classical phase diagrams and spin structures. It is found that the ESCATL antiferromagnet exhibits two up-up-down-down (uudd) phases when the imbalance of the anisotropy parameters is significant, in addition to the three Néel phases that occur in the SCATL. When the model parameters vary, these collinear phases are continuously connected by the spiral-spin phase. Using the available model parameters for the organic compounds λ-(BETS)2XCl4 (X = Fe and Ga), we examine the stabilities of the spin structures of the independent π-electron system, which is considered to primarily sustain the magnetic order, where BETS represents bis(ethylenedithio)tetraselenafulvalene. It is found that one of the uudd phases has an energy close to the ground-state energy for λ-(BETS)2FeCl4. We discuss the relevance of the magnetic anion FeCl4 and the quantum fluctuation to the magnetism of these compounds. When J'3 = 0, the system is reduced to a trellis lattice antiferromagnet. The system exhibits a stripe spiral-spin phase, which comprises one-dimensional spiral-spin states stacked alternately.
Kaon BSM B -parameters using improved staggered fermions from N f = 2 + 1 unquenched QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Benjamin J.
2016-01-28
In this paper, we present results for the matrix elements of the additional ΔS = 2 operators that appear in models of physics beyond the Standard Model (BSM), expressed in terms of four BSM B -parameters. Combined with experimental results for ΔM K and ε K, these constrain the parameters of BSM models. We use improved staggered fermions, with valence hypercubic blocking transfromation (HYP)-smeared quarks and N f = 2 + 1 flavors of “asqtad” sea quarks. The configurations have been generated by the MILC Collaboration. The matching between lattice and continuum four-fermion operators and bilinears is done perturbatively at one-loop order. We use three lattice spacings for the continuum extrapolation: a ≈ 0.09 , 0.06 and 0.045 fm. Valence light-quark masses range down to ≈ mmore » $$phys\\atop{s}$$ /13 while the light sea-quark masses range down to ≈ m$$phys\\atop{s}$$ / 20 . Compared to our previous published work, we have added four additional lattice ensembles, leading to better controlled extrapolations in the lattice spacing and sea-quark masses. We report final results for two renormalization scales, μ = 2 and 3 GeV, and compare them to those obtained by other collaborations. Agreement is found for two of the four BSM B-parameters (B 2 and B$$SUSY\\atop{3}$$ ). The other two (B 4 and B 5) differ significantly from those obtained using regularization independent momentum subtraction (RI-MOM) renormalization as an intermediate scheme, but are in agreement with recent preliminary results obtained by the RBC-UKQCD Collaboration using regularization independent symmetric momentum subtraction (RI-SMOM) intermediate schemes.« less
Yang, Yi; Cai, Canying; Lin, Jianguo; Gong, Lunjun; Yang, Qibin
2017-05-01
In this paper, we used Niggli reduced cell theory to determine lattice constants of a micro/nano crystal by using electron diffraction patterns. The Niggli reduced cell method enhanced the accuracy of lattice constant measurement obviously, because the lengths and the angles of lattice vectors of a primitive cell can be measured directly on the electron micrographs instead of a double tilt holder. With the aid of digitized algorithm and least square optimization by using three digitized micrographs, a valid reciprocal Niggli reduced cell number can be obtained. Thus a reciprocal and real Bravais lattices are acquired. The results of three examples, i.e., Mg 4 Zn 7 , an unknown phase (Precipitate phase in nickel-base superalloy) and Ba 4 Ti 13 O 30 showed that the maximum errors are 1.6% for lengths and are 0.3% for angles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lattice distortions in GaN on sapphire using the CBED-HOLZ technique.
Sridhara Rao, D V; McLaughlin, K; Kappers, M J; Humphreys, C J
2009-09-01
The convergent beam electron diffraction (CBED) methodology was developed to investigate the lattice distortions in wurtzite gallium nitride (GaN) from a single zone-axis pattern. The methodology enabled quantitative measurements of lattice distortions (alpha, beta, gamma and c) in transmission electron microscope (TEM) specimens of a GaN film grown on (0,0,0,1) sapphire by metal-organic vapour-phase epitaxy. The CBED patterns were obtained at different distances from the GaN/sapphire interface. The results show that GaN is triclinic above the interface with an increased lattice parameter c. At 0.85 microm from the interface, alpha=90 degrees , beta=8905 degrees and gamma=11966 degrees . The GaN lattice relaxes steadily back to hexagonal further away from the sapphire substrate. The GaN distortions are mainly confined to the initial stages of growth involving the growth and the coalescence of 3D GaN islands.
Convergence of the chiral expansion in two-flavor lattice QCD.
Noaki, J; Aoki, S; Chiu, T W; Fukaya, H; Hashimoto, S; Hsieh, T H; Kaneko, T; Matsufuru, H; Onogi, T; Shintani, E; Yamada, N
2008-11-14
We test the convergence property of the chiral perturbation theory using a lattice QCD calculation of pion mass and decay constant with two dynamical quark flavors. The lattice calculation is performed using the overlap fermion formulation, which realizes exact chiral symmetry at finite lattice spacing. By comparing various expansion prescriptions, we find that the chiral expansion is well saturated at the next-to-leading order for pions lighter than approximately 450 MeV. Better convergence behavior is found, in particular, for a resummed expansion parameter xi, with which the lattice data in the pion mass region 290-750 MeV can be fitted well with the next-to-next-to-leading order formulas. We obtain the results in two-flavor QCD for the low energy constants l[over ]_{3} and l[over ]_{4} as well as the pion decay constant, the chiral condensate, and the average up and down quark mass.
NASA Astrophysics Data System (ADS)
Berkeley, George; Igonin, Sergei
2016-07-01
Miura-type transformations (MTs) are an essential tool in the theory of integrable nonlinear partial differential and difference equations. We present a geometric method to construct MTs for differential-difference (lattice) equations from Darboux-Lax representations (DLRs) of such equations. The method is applicable to parameter-dependent DLRs satisfying certain conditions. We construct MTs and modified lattice equations from invariants of some Lie group actions on manifolds associated with such DLRs. Using this construction, from a given suitable DLR one can obtain many MTs of different orders. The main idea behind this method is closely related to the results of Drinfeld and Sokolov on MTs for the partial differential KdV equation. Considered examples include the Volterra, Narita-Itoh-Bogoyavlensky, Toda, and Adler-Postnikov lattices. Some of the constructed MTs and modified lattice equations seem to be new.
Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice
Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub
2015-01-01
Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635
Large local lattice expansion in graphene adlayers grown on copper
NASA Astrophysics Data System (ADS)
Chen, Chaoyu; Avila, José; Arezki, Hakim; Nguyen, Van Luan; Shen, Jiahong; Mucha-Kruczyński, Marcin; Yao, Fei; Boutchich, Mohamed; Chen, Yue; Lee, Young Hee; Asensio, Maria C.
2018-05-01
Variations of the lattice parameter can significantly change the properties of a material, and, in particular, its electronic behaviour. In the case of graphene, however, variations of the lattice constant with respect to graphite have been limited to less than 2.5% due to its well-established high in-plane stiffness. Here, through systematic electronic and lattice structure studies, we report regions where the lattice constant of graphene monolayers grown on copper by chemical vapour deposition increases up to 7.5% of its relaxed value. Density functional theory calculations confirm that this expanded phase is energetically metastable and driven by the enhanced interaction between the substrate and the graphene adlayer. We also prove that this phase possesses distinctive chemical and electronic properties. The inherent phase complexity of graphene grown on copper foils revealed in this study may inspire the investigation of possible metastable phases in other seemingly simple heterostructure systems.
The 2-D lattice theory of Flower Constellations
NASA Astrophysics Data System (ADS)
Avendaño, Martín E.; Davis, Jeremy J.; Mortari, Daniele
2013-08-01
The 2-D lattice theory of Flower Constellations, generalizing Harmonic Flower Constellations (the symmetric subset of Flower Constellations) as well as the Walker/ Mozhaev constellations, is presented here. This theory is a new general framework to design symmetric constellations using a 2× 2 lattice matrix of integers or by its minimal representation, the Hermite normal form. From a geometrical point of view, the phasing of satellites is represented by a regular pattern (lattice) on a two-Dimensional torus. The 2-D lattice theory of Flower Constellations does not require any compatibility condition and uses a minimum set of integer parameters whose meaning are explored throughout the paper. This general minimum-parametrization framework allows us to obtain all symmetric distribution of satellites. Due to the J_2 effect this design framework is meant for circular orbits and for elliptical orbits at critical inclination, or to design elliptical constellations for the unperturbed Keplerian case.
NASA Astrophysics Data System (ADS)
Joughehdoust, Sedigheh; Manafi, Sahebali
2011-12-01
Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is chemically similar to the mineral component of bones and hard tissues. HA can support bone ingrowth and osseointegration when used in orthopaedic, dental and maxillofacial applications. In this research, HA nanostructure was synthesized by mechanical alloying method. Phase development, particle size and morphology of HA were investigated by X-ray diffraction (XRD) pattern, zetasizer instrument, scanning electron microscopy (SEM), respectively. XRD pattern has been used to determination of the microstructural parameters (crystallite size, lattice parameters and crystallinity percent) by Williamson-Hall equation, Nelson-Riley method and calculating the areas under the peaks, respectively. The crystallite size and particle size of HA powders were in nanometric scales. SEM images showed that some parts of HA particles have agglomerates. The ratio of lattice parameters of synthetic hydroxyapatite (c/a = 0.73) was determined in this study is the same as natural hydroxyapatite structure.
Review of lattice results concerning low-energy particle physics
Aoki, S.; Aoki, Y.; Bernard, C.; ...
2014-09-01
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory and review the determination ofmore » the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant alpha_s.« less
Non-local order in Mott insulators, duality and Wilson loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rath, Steffen Patrick, E-mail: steffen.rath@ph.tum.de; Simeth, Wolfgang; Endres, Manuel
2013-07-15
It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I.more » Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.« less
Topological Fulde-Ferrell and Larkin-Ovchinnikov states in spin-orbit-coupled lattice system
NASA Astrophysics Data System (ADS)
Guo, Yao-Wu; Chen, Yan
2018-04-01
The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde-Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin-Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number ( C = -1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C = -1 (tBCS1) far from half filling and C = 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.
Symplectic maps and chromatic optics in particle accelerators
Cai, Yunhai
2015-07-06
Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles andmore » derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.« less
Raman scattering from superhard rhenium diboride under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Miao; Winkler, Björn; Mao, Zhu
2014-01-06
Lattice vibrational properties of superhard rhenium diboride (ReB{sub 2}) were examined up to 8 GPa in a diamond anvil cell using Raman spectroscopy techniques. Linear pressure coefficients and mode Grüneisen parameters are obtained. Good agreement is found between the experimental and theoretical calculated Grüneisen parameters. Examination of the calculated mode Grüneisen parameters reveals that both B-B and Re-B covalent bonds play a dominant role in supporting the applied load under pressure. A comparison of vibrations parallel and perpendicular to the c-axis indicates that bonds along the c-axis tend to take greater loads. Our results agree with observations of elastic lattice anisotropymore » obtained from both in situ X-ray diffraction measurements and ultrasonic resonance spectra.« less
NASA Astrophysics Data System (ADS)
Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes
2014-05-01
Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA measurements. To evaluate the obtained diffusion profiles we adapted the isolated grain boundary model, first proposed by Fisher (1951) to match several observations: (i) Anisotropic diffusion in forsterite, (ii) fast diffusion along the grain boundary, (iii) fast diffusion on the surface of the sample. The latter process is needed to explain an additional flux of material from the surface into the grain boundary. Surface and grain boundary diffusion coefficients are on the order of 10000 times faster than diffusion in the lattice. Another observation was that in some regions the diffusion profiles in the lattice were greatly extended. TEM observations suggest here that surface defects (nano-cracks, ect.) have been present, which apparently enhanced the diffusion through the bulk lattice. Dohmen, R., & Milke, R. (2010). Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data. Reviews in Mineralogy and Geochemistry, 72(1), 921-970. Fisher, J. C. (1951). Calculations of Diffusion Penetration Curves for Surface and Grain Boundary Diffusion. Journal of Applied Physics, 22(1), 74-77. Le Claire, A. D. (1951). Grain boundary diffusion in metals. Philosophical Magazine A, 42(328), 468-474.
Kondo length in bosonic lattices
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
NΩ interaction from two approaches in lattice QCD
NASA Astrophysics Data System (ADS)
Etminan, Faisal; Firoozabadi, Mohammad Mehdi
2014-10-01
We compare the standard finite volume method by Lüscher with the potential method by HAL QCD collaboration, by calculating the ground state energy of N(nucleon)-Ω(Omega) system in 5 S2 channel. We employ 2+1 flavor full QCD configurations on a (1.9 fm)3×3.8 fm lattice at the lattice spacing a≃0.12 fm, whose ud(s) quark mass corresponds to mπ = 875(1) (mK = 916(1)) MeV. We have found that both methods give reasonably consistent results that there is one NΩ bound state at this parameter.
Numerical Inverse Scattering for the Toda Lattice
NASA Astrophysics Data System (ADS)
Bilman, Deniz; Trogdon, Thomas
2017-06-01
We present a method to compute the inverse scattering transform (IST) for the famed Toda lattice by solving the associated Riemann-Hilbert (RH) problem numerically. Deformations for the RH problem are incorporated so that the IST can be evaluated in O(1) operations for arbitrary points in the ( n, t)-domain, including short- and long-time regimes. No time-stepping is required to compute the solution because ( n, t) appear as parameters in the associated RH problem. The solution of the Toda lattice is computed in long-time asymptotic regions where the asymptotics are not known rigorously.
NASA Astrophysics Data System (ADS)
Trueba, A.; García-Lastra, J. M.; Barriuso, M. T.; Aramburu, J. A.; Moreno, M.
2008-08-01
Although in LiBaF3:Mn2+ the impurity replaces Li+ thus forming octahedral MnF64- units the experimental hyperfine and anisotropic superhyperfine constants and the energies of d-d optical transitions do not fit into the pattern observed for Mn2+ -doped normal perovskite lattices. Seeking to look into this relevant issue first-principles calculations in the framework of the density-functional theory have been carried out for MnF64- complexes embedded in both KMgF3 and LiBaF3 host lattices which display normal and inverted perovskite structures respectively. The present calculations lead to a value of the equilibrium Mn2+-F- distance, RI , which is the same for both host lattices within 0.015Å . Despite this fact and in agreement with experimental data the calculated values of both the anisotropic superhyperfine constant, Ap , and the cubic-field splitting parameter, 10Dq, for LiBaF3:Mn2+ are found to be higher than those for KMgF3:Mn2+ while Racah parameters are a bit higher for the latter case. All these results, and also the 3% reduction undergone by the hyperfine constant on passing from KMgF3:Mn2+ to LiBaF3:Mn2+ are shown to be connected with a parallel increase in the covalency. These surprising results, which cannot be ascribed to a different RI value, are shown to arise from the internal electric field, ER , due to all lattice ions lying outside the MnF64- complex. Although, according to symmetry, ER is null at Mn2+ site this is shown to be not true in the neighborhood of ligands for the LiBaF3 host lattice. The quite different shape of ER in normal and inverted perovskite lattices is shown to be already understood considering only the first two shells surrounding the MnF64- complex. The present results demonstrate that the traditional ligand field theory fails to understand the changes undergone by optical and magnetic parameters of a complex when a host lattice is replaced by another one which is not isomorphous. The relevance of present conclusions for understanding the color of Cr3+ -based gemstones is also underlined.
Does chaos assist localization or delocalization?
Tan, Jintao; Lu, Gengbiao; Luo, Yunrong; Hai, Wenhua
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
Tunable Holstein model with cold polar molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Felipe; Krems, Roman V.
2011-11-15
We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer canmore » be modified by tuning experimental parameters.« less
Thermodynamic properties of PbTe, PbSe, and PbS: a first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Ke, Xuezhi; Chen, Changfeng
2009-01-01
The recent discovery of novel lead chalcogenide-based thermoelectric materials has attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, S) using first-principles density functional theory calculations and a direct force-constant method. We calculate the struc- tural parameters, elastic moduli, electronic band structures, dielectric constants, and Born effective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the resultsmore » of these calculations, we further employ quasihar- monic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruneisen parameters. The mode Gruneisen parameters are calculated to explain the anharmonicity in these materials. The effect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS.« less
Green functions of graphene: An analytic approach
NASA Astrophysics Data System (ADS)
Lawlor, James A.; Ferreira, Mauro S.
2015-04-01
In this article we derive the lattice Green Functions (GFs) of graphene using a Tight Binding Hamiltonian incorporating both first and second nearest neighbour hoppings and allowing for a non-orthogonal electron wavefunction overlap. It is shown how the resulting GFs can be simplified from a double to a single integral form to aid computation, and that when considering off-diagonal GFs in the high symmetry directions of the lattice this single integral can be approximated very accurately by an algebraic expression. By comparing our results to the conventional first nearest neighbour model commonly found in the literature, it is apparent that the extended model leads to a sizeable change in the electronic structure away from the linear regime. As such, this article serves as a blueprint for researchers who wish to examine quantities where these considerations are important.
Equivalence classes of Fibonacci lattices and their similarity properties
NASA Astrophysics Data System (ADS)
Lo Gullo, N.; Vittadello, L.; Bazzan, M.; Dell'Anna, L.
2016-08-01
We investigate, theoretically and experimentally, the properties of Fibonacci lattices with arbitrary spacings. Different from periodic structures, the reciprocal lattice and the dynamical properties of Fibonacci lattices depend strongly on the lengths of their lattice parameters, even if the sequence of long and short segment, the Fibonacci string, is the same. In this work we show that by exploiting a self-similarity property of Fibonacci strings under a suitable composition rule, it is possible to define equivalence classes of Fibonacci lattices. We show that the diffraction patterns generated by Fibonacci lattices belonging to the same equivalence class can be rescaled to a common pattern of strong diffraction peaks thus giving to this classification a precise meaning. Furthermore we show that, through the gap labeling theorem, gaps in the energy spectra of Fibonacci crystals belonging to the same class can be labeled by the same momenta (up to a proper rescaling) and that the larger gaps correspond to the strong peaks of the diffraction spectra. This observation makes the definition of equivalence classes meaningful also for the spectral and therefore dynamical and thermodynamical properties of quasicrystals. Our results apply to the more general class of quasiperiodic lattices for which similarity under a suitable deflation rule is in order.
Array of nanoparticles coupling with quantum-dot: Lattice plasmon quantum features
NASA Astrophysics Data System (ADS)
Salmanogli, Ahmad; Gecim, H. Selcuk
2018-06-01
In this study, we analyze the interaction of lattice plasmon with quantum-dot in order to mainly examine the quantum features of the lattice plasmon containing the photonic/plasmonic properties. Despite optical properties of the localized plasmon, the lattice plasmon severely depends on the array geometry, which may influence its quantum features such as uncertainty and the second-order correlation function. To investigate this interaction, we consider a closed system containing an array of the plasmonic nanoparticles and quantum-dot. We analyze this system with full quantum theory by which the array electric far field is quantized and the strength coupling of the quantum-dot array is analytically calculated. Moreover, the system's dynamics are evaluated and studied via the Heisenberg-Langevin equations to attain the system optical modes. We also analytically examine the Purcell factor, which shows the effect of the lattice plasmon on the quantum-dot spontaneous emission. Finally, the lattice plasmon uncertainty and its time evolution of the second-order correlation function at different spatial points are examined. These parameters are dramatically affected by the retarded field effect of the array nanoparticles. We found a severe quantum fluctuation at points where the lattice plasmon occurs, suggesting that the lattice plasmon photons are correlated.
Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.
2010-01-01
Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.
Legless locomotion in lattices
NASA Astrophysics Data System (ADS)
Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.
2015-03-01
By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
NASA Astrophysics Data System (ADS)
Johns, Steve; Shin, Wontak; Kane, Joshua J.; Windes, William E.; Ubic, Rick; Karthik, Chinnathambi
2018-07-01
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. To ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ∼60 μm. Discs 3 mm in diameter were then oxidized at temperatures between 575 °C and 625 °C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575 °C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, Steve; Shin, Wontak; Kane, Joshua J.
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less
A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite
Johns, Steve; Shin, Wontak; Kane, Joshua J.; ...
2018-04-03
Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less
Quantum search algorithms on a regular lattice
NASA Astrophysics Data System (ADS)
Hein, Birgit; Tanner, Gregor
2010-07-01
Quantum algorithms for searching for one or more marked items on a d-dimensional lattice provide an extension of Grover’s search algorithm including a spatial component. We demonstrate that these lattice search algorithms can be viewed in terms of the level dynamics near an avoided crossing of a one-parameter family of quantum random walks. We give approximations for both the level splitting at the avoided crossing and the effectively two-dimensional subspace of the full Hilbert space spanning the level crossing. This makes it possible to give the leading order behavior for the search time and the localization probability in the limit of large lattice size including the leading order coefficients. For d=2 and d=3, these coefficients are calculated explicitly. Closed form expressions are given for higher dimensions.
Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures
NASA Astrophysics Data System (ADS)
Zhang, Wen; Li, Yao-Sheng; Du, Peng; Xu, Chen
2013-10-01
We study the cooperative behavior of a dissatisfied adaptive prisoner's dilemma via a pair updating rule. We compare two kinds of relationship among the competing agents, one is the well-mixed population and the other is the two-dimensional square lattice. It is found that the cooperation emerges in both the cases and the frequency of cooperation is enhanced in the square lattice. Though it is impossible for the cooperators to have a higher average payoff than that of the defectors in the well-mixed case, the cooperators in the spatial square lattice could have higher average payoffs in certain regions of the game parameters. We theoretically analyze the well-mixed case exactly and the square lattice by pair approximation. The theoretic results are in agreement with the simulation data.
A comparative structural study of wet and dried ettringite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaudin, G.; CNRS, UMR 6002, LMI, F-63177 Aubiere; Filinchuk, Y.
2010-03-15
Two different techniques were used to compare structural characteristics of 'wet' ettringite (stored in the synthesis mother liquid) and 'dried' ettringite (dried to 35% relative humidity over saturated CaCl{sub 2} solution). Lattice parameters and the water content in the channel region of the structure (site occupancy factor of the water molecule not bonded to cations) as well as microstructure parameters (size and strain) were determined from a Rietveld refinement on synchrotron powder diffraction data. Local environment of sulphate anions and of the hydrogen bonding network was characterized by Raman spectroscopy. Both techniques led to the same conclusion: the 'wet' ettringitemore » sample immersed in the mother solution from the synthesis presents similar structural features as ettringite dried to 35% relative humidity. An increase of the a lattice parameter combined with a decrease of the c lattice parameter occurs on drying. The amount of structural water, the point symmetry of sulphate and the hydrogen bond network are unchanged when passing from the wet to the dried ettringite powder. Ettringite does not form a high-hydrate polymorph in equilibrium with alkaline solution, in contrast to the AFm phases that lose water molecules on drying. According to these results we conclude that ettringite precipitated in aqueous solution at the early hydration stages is of the same chemical composition as ettringite present in the hardening concrete.« less
Techniques for transparent lattice measurement and correction
NASA Astrophysics Data System (ADS)
Cheng, Weixing; Li, Yongjun; Ha, Kiman
2017-07-01
A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.
Chaotic Fluid Mixing in Crystalline Sphere Arrays
NASA Astrophysics Data System (ADS)
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2017-12-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherouel, D.; Yumak, A.; Znaidi, M.
Highlights: • Cu{sub x}Ag{sub 1−x}InS{sub 2} with a minimal lattice mismatch between absorbers and buffers. • The lattice compatibility for understanding silver–copper kinetics. • Controlled and enhanced spray pyrolisis method as a low-cost synthesis protocol. - Abstract: This work deals with some structural and optical investigations about Cu{sub x}Ag{sub 1−x}InS{sub 2} alloys sprayed films and the beneficial effect of copper incorporation in AgInS{sub 2} ternary matrices. The main purpose of this work is to obtain the band gap energy E{sub g} as well as different lattice parameters. The studied properties led to reaching minimum of lattice mismatch between absorber andmore » buffer layers within solar cell devices. As a principal and original finding, the lattice compatibility between both silver and copper indium disulfide structures has been proposed as a guide for understanding kinetics of these materials crystallization.« less
Characterizing a four-qubit planar lattice for arbitrary error detection
NASA Astrophysics Data System (ADS)
Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias
2015-05-01
Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].
NASA Astrophysics Data System (ADS)
Song, Weiqiang; Niu, Kaihui; Wu, Longchao
2016-05-01
A commercial composite anticorrosive pigment based on aluminum dihydrogen tripolyphosphate was studied after exposure to gamma irradiation (Co60, 0, 20, 50, 100 and 150 kGy) using FTIR, XRD, TGA and acid-base titration technologies. Although the FTIR spectra showed that the effect of the irradiation on functional groups in the pigments was not obvious, the decrease in the crystal lattice parameters of the irradiated pigments was observed in the XRD spectra compared to the non-irradiated sample. But the extent of the lattice parameter decrease monotonically with the increase of absorbed dose from 20 to 150 kGy, which was attributed to the decomposition of water and the simultaneous occurrence of lattice damage when the pigments were exposed to gamma rays. Of particular significance was the displayed basicity of the aqueous solutions of the irradiated pigments compared to the acidity of the solution of the non-irradiated pigment, which was attributed to the decomposition of P-OH groups (combined water).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xing; Lin, Guang; Zou, Jianfeng
To model red blood cell (RBC) deformation in flow, the recently developed LBM-DLM/FD method ([Shi and Lim, 2007)29], derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain methodthe fictitious domain method, is extended to employ the mesoscopic network model for simulations of red blood cell deformation. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling red blood cell deformation and the fluid-RBC interaction is enforced by the Lagrange multiplier. To validate parameters of the RBC network model, sThe stretching numerical tests on both coarse andmore » fine meshes are performed and compared with the corresponding experimental data to validate the parameters of the RBC network model. In addition, RBC deformation in pipe flow and in shear flow is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows.« less
Tricriticality of the Blume-Emery-Griffiths model in thin films of stacked triangular lattices
NASA Astrophysics Data System (ADS)
El Hog, Sahbi; Diep, H. T.
2016-03-01
We study in this paper the Blume-Emery-Griffiths model in a thin film of stacked triangular lattices. The model is described by three parameters: bilinear exchange interaction between spins J, quadratic exchange interaction K and single-ion anisotropy D. The spin Si at the lattice site i takes three values (-1, 0, +1). This model can describe the mixing phase of He-4 (Si = +1,-1) and He-3 (Si = 0) at low temperatures. Using Monte Carlo simulations, we show that there exists a critical value of D below (above) which the transition is of second-(first-)order. In general, the temperature dependence of the concentrations of He-3 is different from layer by layer. At a finite temperature in the superfluid phase, the film surface shows a deficit of He-4 with respect to interior layers. However, effects of surface interaction parameters can reverse this situation. Effects of the film thickness on physical properties will be also shown as functions of temperature.
Crystallography of ordered colloids using optical microscopy. 2. Divergent-beam technique.
Rogers, Richard B; Lagerlöf, K Peter D
2008-04-10
A technique has been developed to extract quantitative crystallographic data from randomly oriented colloidal crystals using a divergent-beam approach. This technique was tested on a series of diverse experimental images of colloidal crystals formed from monodisperse suspensions of sterically stabilized poly-(methyl methacrylate) spheres suspended in organic index-matching solvents. Complete sets of reciprocal lattice basis vectors were extracted in all but one case. When data extraction was successful, results appeared to be accurate to about 1% for lattice parameters and to within approximately 2 degrees for orientation. This approach is easier to implement than a previously developed parallel-beam approach with the drawback that the divergent-beam approach is not as robust in certain situations with random hexagonal close-packed crystals. The two techniques are therefore complimentary to each other, and between them it should be possible to extract quantitative crystallographic data with a conventional optical microscope from any closely index-matched colloidal crystal whose lattice parameters are compatible with visible wavelengths.
Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures
NASA Astrophysics Data System (ADS)
Wang, Yan-Feng; Wang, Yue-Sheng; Zhang, Chuanzeng
2014-12-01
In this paper we propose various types of two-dimensional (2D) square zigzag lattice structures, and we study their bandgaps and directional propagation of elastic waves. The band structures and the transmission spectra of the systems are calculated by using the finite element method. The effects of the geometry parameters of the 2D-zigzag lattices on the bandgaps are investigated and discussed. The mechanism of the bandgap generation is analyzed by studying the vibration modes at the bandgap edges. Multiple wide complete bandgaps are found in a wide porosity range owing to the separation of the degeneracy by introducing bending arms. The bandgaps are sensitive to the geometry parameters of the systems. The deformed displacement fields of the transient response of finite structures subjected to time-harmonic loads are presented to show the directional wave propagation. The research in this paper is relevant to the practical design of cellular structures with enhanced vibro-acoustics performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senabulya, Nancy; Feldberg, Nathaniel; Makin, Robert. A.
Here, we report on the crystal structure of epitaxial ZnSnN 2 films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO 2) substrates. X-ray diffraction measurements performed on ZnSnN 2 films deposited on LiGaO 2 substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2 1a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2 1a symmetry is imposed on the ZnSnN 2 films by the LiGaO 2 substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phasemore » in films grown at high substrate temperatures ~550°C and low values of nitrogen flux ~10 –5 Torr is observed in ZnSnN 2 films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.« less
Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect
Wang, Junjian; Kang, Qinjun; Chen, Li; ...
2016-11-21
Some recent studies have shown that adsorbed gas and its surface diffusion have profound influence on micro-gaseous flow through organic pores in shale gas reservoirs. Here, a multiple-relaxation-time (MRT) LB model is adopted to estimate the apparent permeability of organic shale and a new boundary condition, which combines Langmuir adsorption theory with Maxwellian diffusive reflection boundary condition, is proposed to capture gas slip and surface diffusion of adsorbed gas. The simulation results match well with previous studies carried out using Molecular Dynamics (MD) and show that Maxwell slip boundary condition fails to characterize gas transport in the near wall regionmore » under the influence of the adsorbed gas. The total molar flux can be either enhanced or reduced depending on variations in adsorbed gas coverage and surface diffusion velocity. The effects of pore width, pressure as well as Langmuir properties on apparent permeability of methane transport in organic pores are further studied. It is found that the surface transport plays a significant role in determining the apparent permeability, and the variation of apparent permeability with pore size and pressure is affected by the adsorption and surface diffusion.« less
NASA Astrophysics Data System (ADS)
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Emergent Topological order from Spin-Orbit Density wave
NASA Astrophysics Data System (ADS)
Gupta, Gaurav; Das, Tanmoy
We study the emergence of a Z2 -type topological order because of Landau type symmetry breaking order parameter. When two Rashba type SOC bands of different chirality become nested by a magic wavevector [(0, ∖pi) or (∖pi,0)], it introduces the inversion of chirality between different lattice sites. Such a density wave state is known as spin-orbit density wave. The resulting quantum order is associated with the topological order which is classified by a Z2 invariant. So, this system can simultaneously be classified by both a symmetry breaking order parameter and the associated Z2 topological invariant. This order parameter can be realized or engineered in two- or quasi-two-dimensional fermionic lattices, quantum wires, with tunable RSOC and correlation strength. The work is facilitated by the computer cluster facility at Department of Physics, Indian Institute of Science.
Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect
NASA Astrophysics Data System (ADS)
Chen, Li; Fang, Wenzhen; Kang, Qinjun; De'Haven Hyman, Jeffrey; Viswanathan, Hari S.; Tao, Wen-Quan
2015-03-01
Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al. [Phys. Rev. E 65, 046308 (2002), 10.1103/PhysRevE.65.046308]. The second-order Beskok and Karniadakis-Civan's correlation [A. Beskok and G. Karniadakis, Microscale Thermophys. Eng. 3, 43 (1999), 10.1080/108939599199864 and F. Civan, Transp. Porous Med. 82, 375 (2010), 10.1007/s11242-009-9432-z] is adopted to calculate the apparent permeability based on intrinsic permeability and the Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate the model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicate that Klinkenberg's effect plays a significant role on fluid flow in low-permeability porous media, and it is more pronounced as the Knudsen number increases. Fluid flow in a shale matrix with and without fractures is also studied, and it is found that the fractures greatly enhance the fluid flow and Klinkenberg's effect leads to higher global permeability of the shale matrix.
Single-trabecula building block for large-scale finite element models of cancellous bone.
Dagan, D; Be'ery, M; Gefen, A
2004-07-01
Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.
Atomic Bose-Hubbard Systems with Single-Particle Control
NASA Astrophysics Data System (ADS)
Preiss, Philipp Moritz
Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
Properties of Cu 1–xK xInSe 2 alloys
Muzzillo, Christopher P.; Mansfield, Lorelle M.; Ramanathan, Kannan; ...
2016-04-21
Adding potassium to Cu(In,Ga)Se 2 absorbers has been shown to enhance photovoltaic power conversion efficiency. To illuminate possible mechanisms for this enhancement and limits to beneficial K incorporation, the properties of Cu 1-xK xInSe 2 (CKIS) thin-film alloys have been studied. Films with K/(K + Cu), or x, from 0 to 1 were grown by co-evaporation, and probed by XRF, EPMA, SEM, XRD, UV-Visible spectroscopy, current-voltage, and TRPL measurements. Composition from in situ quartz crystal and EIES monitoring was well correlated with final film composition. Crystal lattice parameters showed linear dependence on x, indicating complete K incorporation and coherent structuralmore » character at all compositions in the <100> and <010> lattice directions, despite the different symmetries of CuInSe 2 and KInSe 2. The band gap energy showed pronounced bowing with x composition, in excellent agreement with experimental reports and semiconductor theory. Films of Mo/CKIS/Ni were non-ohmic, and increasing x from 0 to 0.58 decreased the apparent CKIS resistivity. Further evidence of decreased CKIS resistivity was observed with photoluminescence response, which increased by about half a decade for x > 0, and indicates increased majority carrier concentration. Minority carrier lifetimes increased by about an order of magnitude for films grown at x = 0.07 and 0.14, relative to CuInSe 2 and x ≥ 0.30. As a result, this is the first report of a Cu-K-In-Se film with >1 at.% K, and the observed property changes at increased x (wider band gap; lower resistivity; increased lifetime) comprise valuable photovoltaic performance-enhancement strategies, suggesting that CKIS alloys have a role to play in future engineering advances.« less
Enhancement of the in-field Jc of MgB2 via SiCl4 doping
NASA Astrophysics Data System (ADS)
Wang, Xiao-Lin; Dou, S. X.; Hossain, M. S. A.; Cheng, Z. X.; Liao, X. Z.; Ghorbani, S. R.; Yao, Q. W.; Kim, J. H.; Silver, T.
2010-06-01
We present the following results. (1) We introduce a doping source for MgB2 , liquid SiCl4 , which is free of C, to significantly enhance the irreversibility field (Hirr) , the upper critical field (Hc2) , and the critical current density (Jc) with a little reduction in the critical temperature (Tc) . (2) Although Si can not be incorporated into the crystal lattice, a significant reduction in the a -axis lattice parameter was found, to the same extent as for carbon doping. (3) Based on the first-principles calculation, it is found that it is reliable to estimate the C concentration just from the reduction in the a -lattice parameter for C-doped MgB2 polycrystalline samples that are prepared at high sintering temperatures, but not for those prepared at low sintering temperatures. Strain effects and magnesium deficiency might be reasons for the a -lattice reduction in non-C or some of the C-added MgB2 samples. (4) The SiCl4 -doped MgB2 shows much higher Jc with superior field dependence above 20 K compared to undoped MgB2 and MgB2 doped with various carbon sources. (5) We introduce a parameter, RHH (Hc2/Hirr) , which can clearly reflect the degree of flux-pinning enhancement, providing us with guidance for further enhancing Jc . (6) It was found that spatial variation in the charge-carrier mean free path is responsible for the flux-pinning mechanism in the SiCl4 treated MgB2 with large in-field Jc .
Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction
Liu, Haodong; An, Ke; Venkatachalam, Subramanian; ...
2016-04-06
Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Li x/3Ni (3/8-3x/8)Co (1/4-x/4)Mn (3/8+7x/24)O 2 (x = 0.6, HLR) and low Li-rich Li(Li x/3Ni (1/3-x/3)Co (1/3-x/3)Mn(1/3+x/3)O 2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the endmore » of charge. Density functional theory calculations show the presence of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.« less
Lattice thermal expansion of the solid solutions (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongdan; Lei, Xinrong; Zhang, Jinhua, E-mail: jhzhang1212@126.com
2014-09-15
Highlights: • Sm-doped La{sub 2}Ce{sub 2}O{sub 7} was prepared by the coprecipitation–calcination method. • In situ HT-XRD measurements revealed that is much stable than 8YSZ. • Its thermal expansion is better than 8YSZ. - Abstract: A series of solid solutions with the general formula (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) were prepared by the coprecipitation–calcination method. The products obtained were characterized by powder X-ray diffraction for phase purity. It was observed that La{sup 3+} and Sm{sup 3+} can form complete solid solution in (La,Sm){sub 2}Ce{sub 2}O{sub 7} with defect-fluorite-type phase. The unit cell parameters ofmore » these solutions were calculated by a least squares method and the lattice parameters decreased linearly as x increased. The lattice thermal expansion behavior of (La{sub 1−x}Sm{sub x}){sub 2}Ce{sub 2}O{sub 7} (0.0 ≤ x ≤ 1.0) was investigated by high-temperature X-ray diffraction in the temperature range 298–1623 K. The lattice parameters a{sub T} of all the solutions at different temperature can be expressed as a{sub T} = a + bT + cT{sup 2}. As x < 1, the thermal expansion has a sudden decrease at ca. 473 K. The coefficients of lattice thermal expansion of Sm{sub 2}Ce{sub 2}O{sub 7} were 10.2–13.6 × 10{sup −6} K{sup −1} from 298 to 1623 K, and without the thermal contraction at low temperature. The materials show positive or negative thermal expansion due to the asymmetric anharmonic vibration.« less
Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; Götze, O.; Richter, J.
2016-06-01
The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
Analysis of Ward identities in supersymmetric Yang-Mills theory
NASA Astrophysics Data System (ADS)
Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-05-01
In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.
Wave-function-renormalization effects in resonantly enhanced tunneling
NASA Astrophysics Data System (ADS)
Lörch, N.; Pepe, F. V.; Lignier, H.; Ciampini, D.; Mannella, R.; Morsch, O.; Arimondo, E.; Facchi, P.; Florio, G.; Pascazio, S.; Wimberger, S.
2012-05-01
We study the time evolution of ultracold atoms in an accelerated optical lattice. For a Bose-Einstein condensate with a narrow quasimomentum distribution in a shallow optical lattice the decay of the survival probability in the ground band has a steplike structure. In this regime we establish a connection between the wave-function-renormalization parameter Z introduced by P. Facchi, H. Nakazato, and S. Pascazio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.86.2699 86, 2699 (2001)] to characterize nonexponential decay and the phenomenon of resonantly enhanced tunneling, where the decay rate is peaked for particular values of the lattice depth and the accelerating force.
Dynamical properties of dissipative XYZ Heisenberg lattices
NASA Astrophysics Data System (ADS)
Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.
2018-04-01
We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.
Equilibrium polymerization on the equivalent-neighbor lattice
NASA Technical Reports Server (NTRS)
Kaufman, Miron
1989-01-01
The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The Flory-Huggins (Flory, 1986) entropy of mixing is exact for this lattice. The discrete version of the n-vector model is verified when n approaches 0 is equivalent to the equal reactivity polymerization process in the whole parameter space, including the polymerized phase. The polymerization processes for polymers satisfying the Schulz (1939) distribution exhibit nonuniversal critical behavior. A close analogy is found between the polymerization problem of index the Schulz r and the Bose-Einstein ideal gas in d = -2r dimensions, with the critical polymerization corresponding to the Bose-Einstein condensation.
Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography
NASA Astrophysics Data System (ADS)
Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.
2014-04-01
We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.
Lattice QCD Studies of Transverse Momentum-Dependent Parton Distribution Functions
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.
2015-09-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped gauge link. Such a definition opens the possibility of evaluating TMDs within lattice QCD. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Results for selected TMD observables are presented, including a particular focus on their dependence on a Collins-Soper-type evolution parameter, which quantifies proximity of the staple-shaped gauge links to the light cone.
Transverse Momentum-Dependent Parton Distributions from Lattice QCD
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Negele, J.; Schäfer, A.
Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.
Transverse Momentum-Dependent Parton Distributions From Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Engelhardt, Bernhard Musch, Philipp Haegler, Andreas Schaefer
Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.
NASA Astrophysics Data System (ADS)
Carlomagno, J. P.
2018-05-01
We study the features of a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model that includes wave-function renormalization. Model parameters are determined from vacuum phenomenology considering lattice-QCD-inspired nonlocal form factors. Within this framework, we analyze the properties of light scalar and pseudoscalar mesons at finite temperature and chemical potential determining characteristics of deconfinement and chiral restoration transitions.
Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3
Gao, Ran; Dong, Yongqi; Xu, Han; ...
2016-05-24
We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less
Predicting lattice thermal conductivity with help from ab initio methods
NASA Astrophysics Data System (ADS)
Broido, David
2015-03-01
The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.
Investigations of possible states for coexistence of superconductivity and ferromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, T.E.
1984-01-01
Ginzburg-Landau theory is used to investigate states in which both superconductivity and ferromagnetism exist simultaneously in certain rare-earth ternary compounds. The spontaneous vortex state of Kuper, Revzen and Ron is reexamined and extended to include magnetic oscillations within each vortex cell and the existence of antiferromagnetically aligned vortices. The linearly polarized state of Greenside, Blount and Varma is reinvestigated in what appears to be a more physically acceptable range of parameters that are used in the Ginzburg-Landau free energy functional. The square antiferromagnetic vortex lattice state proposed by Hu and Ham is investigated here for the first time, energetically comparedmore » to the states proposed by Kuper, et al. and Greenside, et al., and used to model the observed coexistence state observed in ErRh/sub 4/B/sub 4/. The results show that this square antiferromagnetic vortex lattice state is energetically favored over the linearly polarized state in large parameter and temperature range. Such a lattice also appears to be a good model to explain many of the experimental observations made on ErRh/sub 4/B/sub 4/. Thus, it is felt that this vortex lattice is the best model, yet examined, to explain the coexistence state in ErRh/sub 4/B/sub 4/.« less
Hu, Jinniu; Toki, Hiroshi; Shen, Hong
2016-01-01
We study the properties of nuclear matter with lattice nucleon-nucleon (NN) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice NN potential. Three mesons, pion, σ meson, and ω meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around −3 and −5 MeV at saturation density, while it becomes −8 and −12 MeV in relativistic framework with 1S0, 3S1, and 3D1 channels using our two parameter sets. For the pure neutron matter, the equations of state in non-relativistic and relativistic cases are very similar due to only consideration 1S0 channel with isospin T = 1 case. PMID:27752124
Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos
2003-07-01
To verify the Higuchi law and study the drug release from cylindrical and spherical matrices by means of Monte Carlo computer simulation. A one-dimensional matrix, based on the theoretical assumptions of the derivation of the Higuchi law, was simulated and its time evolution was monitored. Cylindrical and spherical three-dimensional lattices were simulated with sites at the boundary of the lattice having been denoted as leak sites. Particles were allowed to move inside it using the random walk model. Excluded volume interactions between the particles was assumed. We have monitored the system time evolution for different lattice sizes and different initial particle concentrations. The Higuchi law was verified using the Monte Carlo technique in a one-dimensional lattice. It was found that Fickian drug release from cylindrical matrices can be approximated nicely with the Weibull function. A simple linear relation between the Weibull function parameters and the specific surface of the system was found. Drug release from a matrix, as a result of a diffusion process assuming excluded volume interactions between the drug molecules, can be described using a Weibull function. This model, although approximate and semiempirical, has the benefit of providing a simple physical connection between the model parameters and the system geometry, which was something missing from other semiempirical models.
Hu, Jinniu; Toki, Hiroshi; Shen, Hong
2016-10-18
We study the properties of nuclear matter with lattice nucleon-nucleon (NN) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice NN potential. Three mesons, pion, σ meson, and ω meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around -3 and -5 MeV at saturation density, while it becomes -8 and -12 MeV in relativistic framework with 1 S 0 , 3 S 1 , and 3 D 1 channels using our two parameter sets. For the pure neutron matter, the equations of state in non-relativistic and relativistic cases are very similar due to only consideration 1 S 0 channel with isospin T = 1 case.
Determination of parameters of a new method for predicting alloy properties
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1992-01-01
Recently, a semiempirical method for alloys based on equivalent crystal theory was introduced. The method successfully predicts the concentration dependence of the heat of formation and lattice parameter of binary alloys. A study of the parameters of the method is presented, along with new results for (gamma)Fe-Pd and (gamma)Fe-Ni alloys.
Crucial role of decoherence for electronic transport in molecular wires: Polyaniline as a case study
NASA Astrophysics Data System (ADS)
Cattena, Carlos J.; Bustos-Marún, Raúl A.; Pastawski, Horacio M.
2010-10-01
In this work we attempt to elucidate the nature of conductivity in polymers by taking the acid-base doped polyaniline (PAni) polymer. We evaluate the PAni conductance by using realistic ab initio parameters and including decoherent processes within the minimal parametrization model of D’Amato-Pastawski. In contrast to general wisdom, which associates the conducting state with coherent propagation in a periodic polaronic lattice, we show that decoherence can account for high conductance in the strongly disordered bipolaronic lattice. Hence, according to our results, there is no need of considering a mix model of “conducting” polaronic lattice islands separated by “insulating” bipolaronic lattice strands as is usually assumed for PAni. We find that without dephasing events, even very short strands of bipolaronic lattices are not able to sustain electronic transport. We also include a discussion of specific mechanisms that should be involved in decoherence rates of PAni and relate them with Marcus-Hush theory of electron transfer.
One-loop calculations in Supersymmetric Lattice QCD
NASA Astrophysics Data System (ADS)
Costa, M.; Panagopoulos, H.
2017-03-01
We study the self energies of all particles which appear in a lattice regularization of supersymmetric QCD (N = 1). We compute, perturbatively to one-loop, the relevant two-point Green's functions using both the dimensional and the lattice regularizations. Our lattice formulation employs the Wilson fermion acrion for the gluino and quark fields. The gauge group that we consider is SU(Nc) while the number of colors, Nc and the number of flavors, Nf , are kept as generic parameters. We have also searched for relations among the propagators which are computed from our one-loop results. We have obtained analytic expressions for the renormalization functions of the quark field (Zψ), gluon field (Zu), gluino field (Zλ) and squark field (ZA±). We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
NASA Astrophysics Data System (ADS)
Sánchez, A.; Guerra, K. Y.; Porta, A. V.; Orozco, S.
2018-02-01
The opto-fluidics systems can be used for label free refractometric and biosensensing applications. In this work transmission properties of one-dimensional polycarbonate-liquid photonic arrays are studied, where methanol and ethanol were proposed as liquid components. The band structure and the transmission spectrum were calculated using the transference matrix method, in which we consider the dispersion relation for the refractive index n(w) of each material in the visible range. Using lattice parameters of 1 µm, 10 µm, and 4 µm, we obtained forbidden bandgaps in the visible region. When lattice parameters of 1000 µm were considered, we obtained several narrow bandgaps in the visible range.
Chaussain Miller, C; Septier, D; Bonnefoix, M; Lecolle, S; Lebreton-Decoster, C; Coulomb, B; Pellat, B; Godeau, G
2002-03-01
Free-floating collagen lattice is considered a useful tool for assessing wound healing in vitro. This work compared extracellular matrix remodeling in collagen lattices populated by gingival or dermal fibroblasts. For 21 days we followed gel contraction and changes in cell number of collagen lattices seeded with l.5 x 10(5) fibroblasts of each tissue. We also used indirect immunodetection to study extracellular matrix components, metalloproteinases (MMPs), and their tissues inhibitors (TIMPs). In addition, the presence of MMPs and TIMPs in the culture media was analyzed by zymography and western blotting. No significant difference was found concerning gel contraction and changes in cell number. We observed the early expression of fibrillin I and collagen type III, apparently codistributed and at the end of the gel contraction their disappearance. Concomitantly we demonstrated the expression of MMPs and TIMPs, initially localized in cellular cytoplasm, then spreading in the extracellular compartment, and even found in the culture medium. This remodeling was more rapid and intense with gingival fibroblasts than dermal fibroblasts. In conclusion, gingival fibroblasts seem more efficient at remodeling the connective tissue than dermal fibroblasts and could lead to the better wound healing observed in vivo.
Polaronic Charge Carrier-Lattice Interactions in Lead Halide Perovskites.
Wolf, Christoph; Cho, Himchan; Kim, Young-Hoon; Lee, Tae-Woo
2017-10-09
Almost ten years after the renaissance of the popular perovskite-type semiconductors based on lead salts with the general formula AMX 3 (A=organic or inorganic cation; M=divalent metal; X=halide), many facets of photophysics continue to puzzle researchers. In this Minireview, light is shed on the low mobilities of charge carriers in lead halide perovskites with special focus on the lattice properties at non-zero temperature. The polar and soft lattice leads to pronounced electron-phonon coupling, limiting carrier mobility and retarding recombination. We propose that the proper picture of excited charge carriers at temperature ranges that are relevant for device operations is that of a polaron, with Fröhlich coupling constants between 1<α<3. Under the aspect of light-emitting diode application, APbX 3 perovskite show moderate second order (bimolecular) recombination rates and high third-order (Auger) rate constants. It has become apparent that this is a direct consequence of the anisotropic polar A-site cation in organic-inorganic hybrid perovskites and might be alleviated by replacing the organic moiety with an isotropic cation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai
2005-12-01
This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio
2016-09-08
The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g ~ 12 between monoclinic lattice distortions and the spin-nematic order parameter with B 2g symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g ~ 12 is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the reversed puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenidesmore » are presented. Here, we conclude that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe.« less
Generalized ruin problems and asynchronous random walks
NASA Astrophysics Data System (ADS)
Abad, E.
2005-07-01
We consider a gambling game with two different kinds of trials and compute the duration of the game (averaged over all possible initial capitals of the players) by a mapping of the problem to a 1D lattice walk of two particles reacting upon encounter. The relative frequency of the trials is governed by the synchronicity parameter p of the random walk. The duration of the game is given by the mean time to reaction, which turns out to display a different behavior for even and odd lattices, i.e. this quantity is monotonic in p for odd lattices and non-monotonic for even lattices. In the game picture, this implies that the players minimize the duration of the game by restricting themselves to one type of trial if their joint capital is odd, otherwise a non-symmetric mixture of both trials is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fei; Maier, T. A.; Scarola, V. W.
The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less
Illusory spirals and loops in crystal growth
Shtukenberg, Alexander G.; Zhu, Zina; Bhandari, Misha; Song, Pengcheng; Kahr, Bart; Ward, Michael D.
2013-01-01
The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological l-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory. PMID:24101507
Conserved linear dynamics of single-molecule Brownian motion.
Serag, Maged F; Habuchi, Satoshi
2017-06-06
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
Conserved linear dynamics of single-molecule Brownian motion
Serag, Maged F.; Habuchi, Satoshi
2017-01-01
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance. PMID:28585925
Conserved linear dynamics of single-molecule Brownian motion
NASA Astrophysics Data System (ADS)
Serag, Maged F.; Habuchi, Satoshi
2017-06-01
Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.
The Blume-Capel model on hierarchical lattices: Exact local properties
NASA Astrophysics Data System (ADS)
Rocha-Neto, Mário J. G.; Camelo-Neto, G.; Nogueira, E., Jr.; Coutinho, S.
2018-03-01
The local properties of the spin one ferromagnetic Blume-Capel model defined on hierarchical lattices with dimension two and three are obtained by a numerical recursion procedure and studied as functions of the temperature and the reduced crystal-field parameter. The magnetization and the density of sites in the configuration S = 0 state are carefully investigated at low temperature in the region of the phase diagram that presents the phenomenon of phase reentrance. Both order parameters undergo transitions from the ferromagnetic to the ordered paramagnetic phase with abrupt discontinuities that decrease along the phase boundary at low temperatures. The distribution of magnetization in a typical profile was determined on the transition line presenting a broad multifractal spectrum that narrows towards the fractal limit (single point) as the discontinuities of the order parameters grow towards a maximum. The amplitude of the order-parameter discontinuities and the narrowing of the multifractal spectra were used to delimit the low temperature interval for the possible locus of the tricritical point.
High-temperature annealing of proton irradiated beryllium – A dilatometry-based study
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-04-07
S—200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10 20 cm –2 peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objectivemore » was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. Here, the study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.« less
Guo, D G; Hao, Y Z; Li, H Y; Fang, C Q; Sun, L J; Zhu, H; Wang, J; Huang, X F; Ni, P F; Xu, K W
2013-10-01
Stoichiometric strontium-incorporated hydroxyapatite (Sr-HA) with different Sr concentrations [Sr/(Sr+Ca)] were synthesized using a wet chemical approach and characterized by X-ray diffraction, Fourier-transformed infrared absorption, X-ray photoelectron spectroscopy, and Rietveld Structure Refinement. The crystal lattice parameter, Sr distribution, chemical state of Sr, and also the relationships between their variations and the Sr concentrations have been intensively studied. The results show that both the crystal lattice parameters and crystal plane space of Sr-HA remarkably increase with the Sr concentration increasing. Whether Sr preferably occupies the Ca(I) site or Ca(II) site after incorporated into apatite lattice depends on the Sr number incorporated into apatite. All the Sr ions completely occupy the Ca(II) sites when the Sr concentration is below 5%. With the exception of partial Sr ions occupying the Ca(II) sites, the other Sr ions start to occupy the Ca(I) sites when the Sr concentration doped in HA is beyond 10%. The ratio of Sr ions occupying the Ca(I) sites increases with the further raising Sr concentration up to 20%. The Sr ions inherit the chemical state and environment of the original Ca(I) or Ca(II) site after incorporated into apatite. Copyright © 2013 Wiley Periodicals, Inc.
Crystallographic evolution of MAX phases in proton irradiating environments
NASA Astrophysics Data System (ADS)
Ward, Joseph; Middleburgh, Simon; Topping, Matthew; Garner, Alistair; Stewart, David; Barsoum, Michel W.; Preuss, Michael; Frankel, Philipp
2018-04-01
This work represents the first use of proton irradiation to simulate in-core radiation damage in Ti3SiC2 and Ti3AlC2 MAX phases. Irradiation experiments were performed to 0.1 dpa at 350 °C, with a damage rate of 4.57 × 10-6 dpa s-1. The MAX phases displayed significant dimensional instabilities at the crystal level during irradiation leading to large anisotropic changes in lattice parameter, even at low damage levels. The instabilities were accompanied by a decomposition of the Ti-based MAX phases to their binary constituents, TiC. Experimentally observed changes in lattice parameter have been correlated with density functional theory modelling. The most energetically favourable and/or most difficult to recombine defects considered were an M-A antisite ({MA:AM}), and carbon Frenkel ({VC:Ci}). It is proposed that antisite defects, {MA:AM}, are the main contributor to the observed changes in lattice parameter. The proposed mechanism reported in this work potentially enables to design MAX phase compositions, which do not favour antisite defect accumulation. In addition, comparison between the experimental results and theoretical calculations shows that a greater amount of residual damage remains in Ti3AlC2 when compared to Ti3SiC2 after the same irradiation treatment.
Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.
Sarkar, Biswajit; Alexandridis, Paschalis
2012-11-13
The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Däubler, J., E-mail: juergen.daeubler@iaf.fraunhofer.de; Passow, T.; Aidam, R.
Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown onmore » metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.« less
Bandyopadhyay, Rebanta; Selbo, Jon; Amidon, Gregory E; Hawley, Michael
2005-11-01
This study investigates the effects of crystal lattice deformation on the powder X-ray diffraction (PXRD) patterns of compressed polycrystalline specimen (compacts/tablets) made from molecular, crystalline powders. The displacement of molecules and the corresponding adjustment of interplanar distances (d-spacings) between diffracting planes of PNU-288034 and PNU-177553, which have crystal habits with a high aspect ratio favoring preferred orientation during tableting, are demonstrated by shifts in the diffracted peak positions. The direction of shift in diffracted peak positions suggests a reduction of interplanar d-spacing in the crystals of PNU-288034 and PNU-177553 following compaction. There is also a general reduction of peak intensities following compression at the different compressive loads. The lattice strain representing the reduction in d-spacing is proportional to the original d-spacing of the uncompressed sample suggesting that, as with systems that obey a simple Hooke's law relationship, the further apart the planes of atoms/molecules within the lattice are, the easier it is for them to approach each other under compressive stresses. For a third model compound comprising more equant-shaped crystals of PNU-141659, the shift in diffracted peak positions are consistent with an expansion of lattice spacing after compression. This apparent anomaly is supported by the PXRD studies of the bulk powder consisting of fractured crystals where also, the shift in peak position suggests expansion of the lattice planes. Thus the crystals of PNU-141659 may be fracturing under the compressive loads used to produce the compacts. Additional studies are underway to relate the PXRD observations with the bulk tableting properties of these model compounds.
Generalized Grueneisen tensor from solid nonlinearity parameters
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.
1980-01-01
Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Philipp; Houben, Andreas; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.de
Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ∼100 K after which it rises again. The same trend—albeit more pronounced—is observed for the c lattice parameter at ∼35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) statemore » to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.« less
Preparation and X-Ray diffraction studies of curium hydrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.K.; Maire, R.G.
Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a/sub 0/ = 0.3769(8) nm and c/sub 0/ = 0.6732(12) nm. These products are considere to be CmH/sub 3//sup -//sub 8/ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a/sub 0/ = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH /SUB 2-x/more » (B.M. Bansal and D. Damien. Inorg. Nucl. Chem. Lett. 6 603, 1970). The present results established a continuation of typical heavy trivalent lanthanidelike behavior of the transuranium actinide-hydrogen systems through curium.« less
Preparation and X-ray diffraction studies of curium hydrides
NASA Astrophysics Data System (ADS)
Gibson, J. K.; Haire, R. G.
1985-10-01
Curium hydrides were prepared by reaction of curium-248 metal with hydrogen and characterized by X-ray powder diffraction. Several of the syntheses resulted in a hexagonal compound with average lattice parameters of a0 = 0.3769(8) nm and c0 = 0.6732(12) nm. These products are considered to be CmH 3-δ by analogy with the behavior of lanthanide-hydrogen and lighter actinide-hydrogen systems. Face-centered cubic products with an average lattice parameter of a0 = 0.5322(4) nm were obtained from other curium hydride preparations. This parameter is slightly smaller than that reported previously for cubic curium dihydride, CmH 2+ x (B. M. Bansal and D. Damien, Inorg. Nucl. Chem. Lett., 6, 603, 1970). The present results established a continuation of typical heavy trivalent lanthanide-like behavior of the transuranium actinide-hydrogen systems through curium.
Basic electronic properties of iron selenide under variation of structural parameters
NASA Astrophysics Data System (ADS)
Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser
2017-09-01
Since the discovery of high-temperature superconductivity in the thin-film FeSe /SrTiO3 system, iron selenide and its derivates have been intensively scrutinized. Using ab initio density functional theory calculations we review the electronic structures that could be realized in iron selenide if the structural parameters could be tuned at liberty. We calculate the momentum dependence of the susceptibility and investigate the symmetry of electron pairing within the random phase approximation. Both the susceptibility and the symmetry of electron pairing depend on the structural parameters in a nontrivial way. These results are consistent with the known experimental behavior of binary iron chalcogenides and, at the same time, reveal two promising ways of tuning superconducting transition temperatures in these materials: on one hand by expanding the iron lattice of FeSe at constant iron-selenium distance and, on the other hand, by increasing the iron-selenium distance with unchanged iron lattice.
Linear flavor-wave theory for fully antisymmetric SU(N ) irreducible representations
NASA Astrophysics Data System (ADS)
Kim, Francisco H.; Penc, Karlo; Nataf, Pierre; Mila, Frédéric
2017-11-01
The extension of the linear flavor-wave theory to fully antisymmetric irreducible representations (irreps) of SU (N ) is presented in order to investigate the color order of SU (N ) antiferromagnetic Heisenberg models in several two-dimensional geometries. The square, triangular, and honeycomb lattices are considered with m fermionic particles per site. We present two different methods: the first method is the generalization of the multiboson spin-wave approach to SU (N ) which consists of associating a Schwinger boson to each state on a site. The second method adopts the Read and Sachdev bosons which are an extension of the Schwinger bosons that introduces one boson for each color and each line of the Young tableau. The two methods yield the same dispersing modes, a good indication that they properly capture the semiclassical fluctuations, but the first one leads to spurious flat modes of finite frequency not present in the second one. Both methods lead to the same physical conclusions otherwise: long-range Néel-type order is likely for the square lattice for SU(4) with two particles per site, but quantum fluctuations probably destroy order for more than two particles per site, with N =2 m . By contrast, quantum fluctuations always lead to corrections larger than the classical order parameter for the tripartite triangular lattice (with N =3 m ) or the bipartite honeycomb lattice (with N =2 m ) for more than one particle per site, m >1 , making the presence of color very unlikely except maybe for m =2 on the honeycomb lattice, for which the correction is only marginally larger than the classical order parameter.
1993-04-01
the clusters appear to form monoatomic layers on the (i x 1) substrate. This assertion, derived from the apparent z-corrugation in the STH images, is...top-layer lattice and thereby displacing one of the nearest-neighbor atoms. A related , although more concerted, atomic motion can also provide a viable...microscopic rate-limiting step(s) for this process are not necessarily related straightforwardly to the free- energy difference for the overall macroscopic
VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)
NASA Astrophysics Data System (ADS)
Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.
2016-06-01
Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).
Light propagation through black-hole lattices
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa; Korzyński, Mikołaj; Hinder, Ian; Gerlicher, Daniel
2017-03-01
The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift z and the luminosity distance DL of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the DL(z) relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations, equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole-lattice cosmologies and compare it to the well-known Friedmann-Lema{ȋtre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to account for this agreement. We also find that a Friedmann-Lema{ȋtre-Robertson-Walker model can reproduce this observable exactly, as long as a time-dependent cosmological constant is included in the fit. Finally, the dependence of these results on the lattice mass-to-spacing ratio μ is discussed: we discover that, unlike the expansion rate, the DL(z) relation in a black-hole lattice does not tend to that measured in the corresponding continuum spacetime as 0μ → .
Light propagation through black-hole lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentivegna, Eloisa; Korzyński, Mikołaj; Hinder, Ian
The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift z and the luminosity distance D {sub L} of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the D {sub L}( z ) relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations,more » equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole-lattice cosmologies and compare it to the well-known Friedmann-Lema(ȋtre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to account for this agreement. We also find that a Friedmann-Lema(ȋtre-Robertson-Walker model can reproduce this observable exactly, as long as a time-dependent cosmological constant is included in the fit. Finally, the dependence of these results on the lattice mass-to-spacing ratio μ is discussed: we discover that, unlike the expansion rate, the D {sub L}( z ) relation in a black-hole lattice does not tend to that measured in the corresponding continuum spacetime as 0μ → .« less
Dynamic facilitation explains 'democratic' particle motion of metabasin transitions
NASA Astrophysics Data System (ADS)
Hedges, Lester O.; Garrahan, Juan P.
2008-08-01
Transitions between metabasins in supercooled liquids seem to occur through rapid collective particle rearrangements. These events have been called 'democratic' as they appear homogeneous over a significant number of particles. This could suggest that 'democratic' rearrangements are fundamentally distinct to those leading to dynamic heterogeneity. Here we show, however, that this apparent homogeneous particle motion can be explained solely in terms of dynamic facilitation, and is therefore intriniscally heterogeneous. We do so by studying metabasin transitions in facilitated spin models and constrained lattice gases. We find that metabasin transitions occur through a sequence of locally facilitated events taking place over a relatively short time frame. When observed on small enough spatial windows these events appear sudden and homogeneous. Our results indicate that metabasin transitions, while apparently homogeneous and 'democratic', are yet another manifestation of dynamical heterogeneity in glass formers.
Discretization effects in the topological susceptibility in lattice QCD
NASA Astrophysics Data System (ADS)
Hart, A.
2004-04-01
We study the topological susceptibility χ in QCD with two quark flavors using lattice field configurations that have been produced with an O(a)-improved clover quark action. We find clear evidence for the expected suppression at a small quark mass mq and examine the variation of χ with this mass and the lattice spacing a. A joint continuum and chiral extrapolation yields good agreement with theoretical expectations as a,mq→0. A moderate increase in autocorrelation is observed on the more chiral ensembles, but within large statistical errors. Finite volume effects are negligible for the Leutwyler-Smilga parameter xLS≳10, and no evidence for a nearby phase transition is observed.
Beaucamp, Sylvain; Mathieu, Didier; Agafonov, Viatcheslav
2005-09-01
A method to estimate the lattice energies E(latt) of nitrate salts is put forward. First, E(latt) is approximated by its electrostatic component E(elec). Then, E(elec) is correlated with Mulliken atomic charges calculated on the species that make up the crystal, using a simple equation involving two empirical parameters. The latter are fitted against point charge estimates of E(elec) computed on available X-ray structures of nitrate crystals. The correlation thus obtained yields lattice energies within 0.5 kJ/g from point charge values. A further assessment of the method against experimental data suggests that the main source of error arises from the point charge approximation.
NASA Astrophysics Data System (ADS)
Nakamura, Yoshimasa; Sekido, Hiroto
2018-04-01
The finite or the semi-infinite discrete-time Toda lattice has many applications to various areas in applied mathematics. The purpose of this paper is to review how the Toda lattice appears in the Lanczos algorithm through the quotient-difference algorithm and its progressive form (pqd). Then a multistep progressive algorithm (MPA) for solving linear systems is presented. The extended Lanczos parameters can be given not by computing inner products of the extended Lanczos vectors but by using the pqd algorithm with highly relative accuracy in a lower cost. The asymptotic behavior of the pqd algorithm brings us some applications of MPA related to eigenvectors.
Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.
2013-02-15
Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed.« less
Toward, Martin G R; Griffin, Michael J
2010-01-01
Models of the vertical apparent mass of the human body are mostly restricted to a sitting posture unsupported by a backrest and ignore the variations in apparent mass associated with changes in posture and changes in the magnitude of vibration. Using findings from experimental research, this study fitted a single degree-of-freedom lumped parameter model to the measured vertical apparent mass of the body measured with a range of sitting postures and vibration magnitudes. The resulting model reflects the effects of reclining a rigid backrest or reclining a foam backrest (from 0 to 30 degrees), the effects of moving the hands from the lap to a steering wheel, the effects of moving the horizontal position of the feet, and the effects of vibration magnitude (from 0.125 to 1.6 ms(-2) r.m.s.). The error between the modelled and the measured apparent mass was minimised, for both the apparent masses of individual subjects and the median apparent masses of groups of 12 subjects, for each sitting posture and each vibration magnitude. Trends in model parameters, the damping ratios, and the damped natural frequencies were identified as a function of the model variables and show the effects of posture and vibration magnitude on body dynamics. For example, contact with a rigid backrest increased the derived damped natural frequency of the principal resonance as a result of reduced moving mass and increased stiffness. When the rigid backrest was reclined from 0 to 30º, the damping decreased and the resonance frequency increased as a result of reduced moving mass. It is concluded that, by appropriate variations in model parameters, a single degree-of-freedom model can provide a useful fit to the vertical apparent mass of the human body over a wide range of postures and vibration magnitudes. When measuring or modelling seat transmissibility, it may be difficult to justify an apparent mass model with more than a single degree-of-freedom if it does not reflect the large influences of vibration magnitude, body posture, and individual variability.
Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium
Söderlind, Per
2017-04-25
Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less
Decay constants $$f_B$$ and $$f_{B_s}$$ and quark masses $$m_b$$ and $$m_c$$ from HISQ simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komijani, J.; et al.
2016-11-22
We present a progress report on our calculation of the decay constantsmore » $$f_B$$ and $$f_{B_s}$$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-mass ensemble at all but the smallest lattice spacing, 0.03 fm. This range of parameters provides excellent control of the continuum extrapolation to zero lattice spacing and of heavy-quark discretization errors. Finally, using the heavy-quark effective theory expansion we present a method of extracting from the same correlation functions the charm- and bottom-quark masses as well as some low-energy constants appearing in the heavy-quark expansion.« less
Disordered Supersolids in the Extended Bose-Hubbard Model
Lin, Fei; Maier, T. A.; Scarola, V. W.
2017-10-06
The extended Bose-Hubbard model captures the essential properties of a wide variety of physical systems including ultracold atoms and molecules in optical lattices, Josephson junction arrays, and certain narrow band superconductors. It exhibits a rich phase diagram including a supersolid phase where a lattice solid coexists with a superfluid. We use quantum Monte Carlo to study the supersolid part of the phase diagram of the extended Bose-Hubbard model on the simple cubic lattice. We add disorder to the extended Bose-Hubbard model and find that the maximum critical temperature for the supersolid phase tends to be suppressed by disorder. But wemore » also find a narrow parameter window in which the supersolid critical temperature is enhanced by disorder. Our results show that supersolids survive a moderate amount of spatial disorder and thermal fluctuations in the simple cubic lattice.« less
Twisted complex superfluids in optical lattices
Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören
2015-01-01
We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chahine, G. A.; Schülli, T. U.; Zoellner, M. H.
2015-02-16
This paper presents a study of the spatial distribution of strain and lattice orientation in CMOS-fabricated strained Ge microstripes using high resolution x-ray micro-diffraction. The recently developed model-free characterization tool, based on a quick scanning x-ray diffraction microscopy technique can image strain down to levels of 10{sup −5} (Δa/a) with a spatial resolution of ∼0.5 μm. Strain and lattice tilt are extracted using the strain and orientation calculation software package X-SOCS. The obtained results are compared with the biaxial strain distribution obtained by lattice parameter-sensitive μ-Raman and μ-photoluminescence measurements. The experimental data are interpreted with the help of finite element modelingmore » of the strain relaxation dynamics in the investigated structures.« less
Quantum phases of two-component bosons with spin-orbit coupling in optical lattices
NASA Astrophysics Data System (ADS)
Yamamoto, Daisuke; Spielman, I. B.; Sá de Melo, C. A. R.
2017-12-01
Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to exhibit strong correlations. Here we push the frontier of our understanding of interacting bosons in optical lattices by adding synthetic spin-orbit coupling, and show that new kinds of density and chiral orders develop. The competition between the optical lattice period and the spin-orbit coupling length—which can be made comparable in experiments—along with the spin hybridization induced by a transverse field (i.e., Rabi coupling) and interparticle interactions create a rich variety of quantum phases including uniform, nonuniform, and phase-separated superfluids, as well as Mott insulators. The spontaneous symmetry-breaking phenomena at the transitions between them are explained by a two-order-parameter Ginzburg-Landau model with multiparticle umklapp processes. Finally, in order to characterize each phase, we calculated their experimentally measurable crystal momentum distributions.
Effect of plasma absorption on dust lattice waves in hexagonal dust crystals
NASA Astrophysics Data System (ADS)
Kerong, HE; Hui, CHEN; Sanqiu, LIU
2018-04-01
In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived. It is found that the temperature effect (electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect (dimensionless Debye shielding parameter \\tilde{κ }) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of \\tilde{κ } when τ > 3.5. However, the system will be unstable when τ = 1 and \\tilde{κ }> 4.1.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Simulations of water nano-confined between corrugated planes
NASA Astrophysics Data System (ADS)
Zubeltzu, Jon; Artacho, Emilio
2017-11-01
Water confined to nanoscale widths in two dimensions between ideal planar walls has been the subject of ample study, aiming at understanding the intrinsic response of water to confinement, avoiding the consideration of the chemistry of actual confining materials. In this work, we study the response of such nanoconfined water to the imposition of a periodicity in the confinement by means of computer simulations, both using empirical potentials and from first-principles. For that we propose a periodic confining potential emulating the atomistic oscillation of the confining walls, which allows varying the lattice parameter and amplitude of the oscillation. We do it for a triangular lattice, with several values of the lattice parameter: one which is ideal for commensuration with layers of Ih ice and other values that would correspond to more realistic substrates. For the former, the phase diagram shows an overall rise of the melting temperature. The liquid maintains a bi-layer triangular structure, however, despite the fact that it is not favoured by the external periodicity. The first-principles liquid is significantly affected by the modulation in its layering and stacking even at relatively small amplitudes of the confinement modulation. Beyond some critical modulation amplitude, the hexatic phase present in flat confinement is replaced by a trilayer crystalline phase unlike any of the phases encountered for flat confinement. For more realistic lattice parameters, the liquid does not display higher tendency to freeze, but it clearly shows inhomogeneous behaviour as the strength of the rugosity increases. In spite of this expected inhomogeneity, the structural and dynamical response of the liquid is surprisingly insensitive to the external modulation. Although the first-principles calculations give a more triangular liquid than the one observed with empirical potentials (TIP4P/2005), both agree remarkably well for the main conclusions of the study.
Formation, stability and crystal structure of mullite-type Al{sub 6−x}B{sub x}O{sub 9}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K., E-mail: Kristin.Hoffmann@uni-bremen.de; Institut für Anorganische Chemie und Kristallographie, FB02, Leobener Straße/NW2, Universität Bremen, D-28359 Bremen; Hooper, T.J.N.
2016-11-15
Mullite-type Al{sub 6−x}B{sub x}O{sub 9} compounds were studied by means of powder diffraction and spectroscopic methods. The backbones of this structure are chains of edge-connected AlO{sub 6} octahedra crosslinked by AlO- and BO-polyhedra. Rietveld refinements show that the a and b lattice parameters can be well resolved, thus representing an orthorhombic metric. A continuous decrease of the lattice parameters most pronounced in c-direction indicates a solid solution for Al{sub 6−x}B{sub x}O{sub 9} with 1.09≤x≤2. A preference of boron in 3-fold coordination is confirmed by {sup 11}B MAS NMR spectroscopy and Fourier calculations based on neutron diffraction data collected at 4more » K. Distance Least Squares modeling was performed to simulate a local geometry avoiding long B-O distances linking two octahedral chains by planar BO{sub 3} groups yielding split positions for the oxygen atoms and a strong distortion in the octahedral chains. The lattice thermal expansion was calculated using the Grüneisen first-order equation of state Debye-Einstein-Anharmonicity model. - Graphical abstract: Local distortion induced by boron linking the octahedral chains. - Highlights: • Decreasing lattice parameters indicate a solid solution for Al{sub 6−x}B{sub x}O{sub 9} (1.09≤x≤2). • B-atoms induce a local distortion of neighboring AlO{sub 6} octahedra. • A preference of boron in BO{sub 3} coordination is confirmed by {sup 11}B MAS NMR spectroscopy. • An optimized structural model for Al{sub 6−x}B{sub x}O{sub 9} is presented.« less
Ojha, Deepak Kumar; Viju, Daniel; Vinu, R
2017-10-01
In this study, the apparent kinetics of fast pyrolysis of alkali lignin was evaluated by obtaining isothermal mass loss data in the timescale of 2-30s at 400-700°C in an analytical pyrolyzer. The data were analyzed using different reaction models to determine the rate constants and apparent rate parameters. First order and one dimensional diffusion models resulted in good fits with experimental data with apparent activation energy of 23kJmol -1 . Kinetic compensation effect was established using a large number of kinetic parameters reported in the literature for pyrolysis of different lignins. The time evolution of the major functional groups in the pyrolysate was analyzed using in situ Fourier transform infrared spectroscopy. Maximum production of the volatiles occurred around 10-12s. A clear transformation of guaiacols to phenol, catechol and their derivatives, and aromatic hydrocarbons was observed with increasing temperature. The plausible reaction steps involved in various transformations are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wenlong; Kevrekidis, P. G.
We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a “crystalline” configuration to that of a disordered state that can be characterized as a soliton “gas.” As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partialmore » differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. In addition, we define an “empirical” order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the “thermally” (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.« less
Transitions from order to disorder in multiple dark and multiple dark-bright soliton atomic clouds.
Wang, Wenlong; Kevrekidis, P G
2015-03-01
We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas." As our illustrative examples, we use both one-component, as well as two-component, one-dimensional atomic gases very close to zero temperature, where in the presence of repulsive interatomic interactions and of a parabolic trap, a cloud of dark (dark-bright) solitons can form in the one- (two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system, and Monte Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.
Coupled matter-wave solitons in optical lattices
NASA Astrophysics Data System (ADS)
Golam Ali, Sk; Talukdar, B.
2009-06-01
We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution they exhibit decay and revival.
Pressure dependence of the Peierls transition in the quasi two-dimensional purple bronze KMo 6O 17
NASA Astrophysics Data System (ADS)
Rötger, A.; Beille, J.; Laurant, J. M.; Schlenker, C.
1993-09-01
The electrical resistivity and the lattice parameters have been studied as a function of pressure on the quasi-twodimensional purple bronze KMo 6O 17 which shows a Peierls transition towards a commensurate charge density wave state. The Peierls temperature is found to be first slightly decreased for pressures smaller than 6 kbar, then strongly increased above. This increase is associated to an anomalous contraction of the lattice parameters in the plane of the layers. The corresponding large increase of the compressibility above 16 kbar at 300 K is associated to the pretransitional regime of the Peierls transition as a function of pressure. These results are attributed mainly to an improved nesting of the Fermi surface under pressure.
Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice
NASA Astrophysics Data System (ADS)
Hou, Jing-Min
2013-09-01
We study a two-dimensional fermionic square lattice, which supports the existence of a two-dimensional Weyl semimetal, quantum anomalous Hall effect, and 2π-flux topological semimetal in different parameter ranges. We show that the band degenerate points of the two-dimensional Weyl semimetal and 2π-flux topological semimetal are protected by two distinct novel hidden symmetries, which both correspond to antiunitary composite operations. When these hidden symmetries are broken, a gap opens between the conduction and valence bands, turning the system into a insulator. With appropriate parameters, a quantum anomalous Hall effect emerges. The degenerate point at the boundary between the quantum anomalous Hall insulator and trivial band insulator is also protected by the hidden symmetry.
Hidden magnetism in periodically modulated one dimensional dipolar fermions
NASA Astrophysics Data System (ADS)
Fazzini, S.; Montorsi, A.; Roncaglia, M.; Barbiero, L.
2017-12-01
The experimental realization of time-dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one-dimensional two-components lattice dipolar Fermi gas the competition between long range repulsion and correlated hopping induced by periodically modulated on-site interaction allows for the formation of hidden magnetic phases, with degenerate protected edge modes. The magnetism, characterized solely by string-like nonlocal order parameters, manifests in the charge and/or in the spin degrees of freedom. Such behavior is enlighten by employing Luttinger liquid theory and numerical methods. The range of parameters for which hidden magnetism is present can be reached by means of the currently available experimental setups and probes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, J. Jr.
1977-12-01
Four H/sub 2/O-moderated, slightly-enriched-uranium critical experiments were analyzed by Monte Carlo methods with ENDF/B-IV data. These were simple metal-rod lattices comprising Cross Section Evaluation Working Group thermal reactor benchmarks TRX-1 through TRX-4. Generally good agreement with experiment was obtained for calculated integral parameters: the epi-thermal/thermal ratio of U238 capture (rho/sup 28/) and of U235 fission (delta/sup 25/), the ratio of U238 capture to U235 fission (CR*), and the ratio of U238 fission to U235 fission (delta/sup 28/). Full-core Monte Carlo calculations for two lattices showed good agreement with cell Monte Carlo-plus-multigroup P/sub l/ leakage corrections. Newly measured parameters for themore » low energy resonances of U238 significantly improved rho/sup 28/. In comparison with other CSEWG analyses, the strong correlation between K/sub eff/ and rho/sup 28/ suggests that U238 resonance capture is the major problem encountered in analyzing these lattices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vailionis, A.; Boschker, H.; Max Planck Institute for Solid State Research, 70569 Stuttgart
2014-09-29
Distinct MnO{sub 6} octahedral distortions near and away from the La{sub 0.67}Sr{sub 0.33}MnO{sub 3}/SrTiO{sub 3}(001) (LSMO/STO) interface are quantified using synchrotron x-ray diffraction and dynamical x-ray diffraction simulations. Three structural regions of stress accommodation throughout the film thickness were resolved: near the LSMO/STO interface, intermediate region farther from the interface, and the main layer away from the interface. The results show that within the first two unit cells stress is accommodated by the suppression of octahedral rotations in the film, leading to the expansion of the c-axis lattice parameter. Farther from the interface film structure acquires octahedral tilts similar tomore » thicker perovskite films under tensile stress, leading to a reduced c-axis parameter. We demonstrate that these regions are related to two different strain coupling mechanisms: symmetry mismatch at the interface and lattice mismatch in the rest of the film. The findings suggest new routes for strain engineering in correlated perovskite heterostructures.« less
Stabilization of orthorhombic phase in single-crystal ZnSnN 2 films
Senabulya, Nancy; Feldberg, Nathaniel; Makin, Robert. A.; ...
2016-09-22
Here, we report on the crystal structure of epitaxial ZnSnN 2 films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO 2) substrates. X-ray diffraction measurements performed on ZnSnN 2 films deposited on LiGaO 2 substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2 1a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2 1a symmetry is imposed on the ZnSnN 2 films by the LiGaO 2 substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phasemore » in films grown at high substrate temperatures ~550°C and low values of nitrogen flux ~10 –5 Torr is observed in ZnSnN 2 films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.« less
Rocking curve imaging of high quality sapphire crystals in backscattering geometry
Jafari, A.; European Synchrotron Radiation Facility; Univ. of Liege,; ...
2017-01-23
Here, we report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ~10 -4 in lattice parameter variations, deltad/d. But, investigations using backscattering rocking curve imaging with lattice spacing resolution of deltad/d ~ 5.10 -8 shows very diverse quality maps for all crystals. Our results highlight nearly ideal areas with edge length of 0.2-0.5 mm in most crystals, but a comparison of the back re ection peak positions shows that even neighboring ideal areasmore » exhibit a relative difference in the lattice parameters on the order of deltad/d = 10-20.10 -8; this is several times larger than the rocking curve width. Furthermore, the stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ~100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.« less
NASA Astrophysics Data System (ADS)
Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro
2018-01-01
Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senabulya, Nancy; Jones, Christina M.; Mathis, James
We report on the crystal structure of epitaxial ZnSnN{sub 2} films synthesized via plasma-assisted vapor deposition on (111) yttria stabilized zirconia (YSZ) and (001) lithium gallate (LiGaO{sub 2}) substrates. X-ray diffraction measurements performed on ZnSnN{sub 2} films deposited on LiGaO{sub 2} substrates show evidence of single-crystal, phase-pure orthorhombic structure in the Pn2{sub 1}a symmetry [space group (33)], with lattice parameters in good agreement with theoretically predicted values. This Pn2{sub 1}a symmetry is imposed on the ZnSnN{sub 2} films by the LiGaO{sub 2} substrate, which also has orthorhombic symmetry. A structural change from the wurtzite phase to the orthorhombic phase inmore » films grown at high substrate temperatures ∼550°C and low values of nitrogen flux ∼10{sup −5} Torr is observed in ZnSnN{sub 2} films deposited on YSZ characterized by lattice contraction in the basal plane and a 5.7% expansion of the out-of-plane lattice parameter.« less
Hou, Jing-Min; Chen, Wei
2016-01-01
We propose to realize Weyl semimetals in a cubic optical lattice. We find that there exist three distinct Weyl semimetal phases in the cubic optical lattice for different parameter ranges. One of them has two pairs of Weyl points and the other two have one pair of Weyl points in the Brillouin zone. For a slab geometry with (010) surfaces, the Fermi arcs connecting the projections of Weyl points with opposite topological charges on the surface Brillouin zone is presented. By adjusting the parameters, the Weyl points can move in the Brillouin zone. Interestingly, for two pairs of Weyl points, as one pair of them meet and annihilate, the originial two Fermi arcs coneect into one. As the remaining Weyl points annihilate further, the Fermi arc vanishes and a gap is opened. Furthermore, we find that there always exists a hidden symmetry at Weyl points, regardless of anywhere they located in the Brillouin zone. The hidden symmetry has an antiunitary operator with its square being −1. PMID:27644114
Lattice distortion in hcp rare gas solids
NASA Astrophysics Data System (ADS)
Grechnev, A.; Tretyak, S. M.; Freiman, Yu. A.
2010-04-01
The lattice distortion parameter δ ≡c/a-√8/3 has been calculated as a function of molar volume for the hcp phases of He, Ar, Kr, and Xe. Results from both semi-empirical potentials and density functional theory are presented. Our study shows that δ is negative for helium in the entire pressure range. For Ar, Kr, and Xe δ changes sign from negative to positive as the pressure increases, growing rapidly in magnitude at higher pressures.
ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations
NASA Astrophysics Data System (ADS)
Bijnens, Johan
2018-03-01
I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.
Toric Networks, Geometric R-Matrices and Generalized Discrete Toda Lattices
NASA Astrophysics Data System (ADS)
Inoue, Rei; Lam, Thomas; Pylyavskyy, Pavlo
2016-11-01
We use the combinatorics of toric networks and the double affine geometric R-matrix to define a three-parameter family of generalizations of the discrete Toda lattice. We construct the integrals of motion and a spectral map for this system. The family of commuting time evolutions arising from the action of the R-matrix is explicitly linearized on the Jacobian of the spectral curve. The solution to the initial value problem is constructed using Riemann theta functions.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Theory of freezing in simple systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Bagchi, B.
The transition parameters for the freezing of two one-component liquids into crystalline solids are evaluated by two theoretical approaches. The first system considered is liquid sodium which crystallizes into a body-centered-cubic (bcc) lattice; the second system is the freezing of adhesive hard spheres into a face-centered-cubic (fcc) lattice. Two related theoretical techniques are used in this evaluation: One is based upon a recently developed bifurcation analysis; the other is based upon the theory of freezing developed by Ramakrishnan and Yussouff. For liquid sodium, where experimental information is available, the predictions of the two theories agree well with experiment and eachmore » other. The adhesive-hard-sphere system, which displays a triple point and can be used to fit some liquids accurately, shows a temperature dependence of the freezing parameters which is similar to Lennard-Jones systems. At very low temperature, the fractional density change on freezing shows a dramatic increase as a function of temperature indicating the importance of all the contributions due to the triplet direction correlation function. Also, we consider the freezing of a one-component liquid into a simple-cubic (sc) lattice by bifurcation analysis and show that this transition is highly unfavorable, independent of interatomic potential choice. The bifurcation diagrams for the three lattices considered are compared and found to be strikingly different. Finally, a new stability analysis of the bifurcation diagrams is presented.« less
2D lattice model of a lipid bilayer: Microscopic derivation and thermodynamic exploration
NASA Astrophysics Data System (ADS)
Hakobyan, Davit; Heuer, Andreas
2017-02-01
Based on all-atom Molecular Dynamics (MD) simulations of a lipid bilayer we present a systematic mapping on a 2D lattice model. Keeping the lipid type and the chain order parameter as key variables we derive a free energy functional, containing the enthalpic interaction of adjacent lipids as well as the tail entropy. The functional form of both functions is explicitly determined for saturated and polyunsaturated lipids. By studying the lattice model via Monte Carlo simulations it is possible to reproduce the temperature dependence of the distribution of order parameters of the pure lipids, including the prediction of the gel transition. Furthermore, application to a mixture of saturated and polyunsaturated lipids yields the correct phase separation behavior at lower temperatures with a simulation time reduced by approximately 7 orders of magnitude as compared to the corresponding MD simulations. Even the time-dependence of the de-mixing is reproduced on a semi-quantitative level. Due to the generality of the approach we envisage a large number of further applications, ranging from modeling larger sets of lipids, sterols, and solvent proteins to predicting nucleation barriers for the melting of lipids. Particularly, from the properties of the 2D lattice model one can directly read off the enthalpy and entropy change of the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel-to-liquid transition in excellent agreement with experimental and MD results.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature
NASA Astrophysics Data System (ADS)
Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.
2015-11-01
The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.
Symmetry-guaranteed nodal-line semimetals in an fcc lattice
NASA Astrophysics Data System (ADS)
Kawakami, Takuto; Hu, Xiao
2017-12-01
We demonstrate theoretically that nodal-line semimetals (NLSs) can be realized in an fcc lattice with orbitals belonging to the same irreducible representation, such as {px,py,pz} or {dx y,dy z,dz x} orbitals on every lattice site. The three orbitals are divided into two subgroups in terms of the parity with respect to the mirror reflections on high-symmetry planes of the fcc lattice, which, with rotation symmetry, endows symmetry-guaranteed NL passing through W points in the Brillouin zone. Depending on the parameters, there also appears an accidental NL around the Γ point. We notice that the symmetry-guaranteed NL addressed in the present work can be found in band structures of elemental solids taking the fcc structure, such as Cu, Ag, Au, In, Ga, etc., as well as opal, which is an fcc photonic crystal of SiO2 spheres. Furthermore, we clarify that the fcc lattice of Si spheres exhibits a NL in a frequency band where no other photonic band exists, which provides a unique platform to realize topological NLSs under intensive search, and can be explored for achieving slow light.
Searching for new physics at the frontiers with lattice quantum chromodynamics.
Van de Water, Ruth S
2012-07-01
Numerical lattice-quantum chromodynamics (QCD) simulations, when combined with experimental measurements, allow the determination of fundamental parameters of the particle-physics Standard Model and enable searches for physics beyond-the-Standard Model. We present the current status of lattice-QCD weak matrix element calculations needed to obtain the elements and phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and to test the Standard Model in the quark-flavor sector. We then discuss evidence that may hint at the presence of new physics beyond the Standard Model CKM framework. Finally, we discuss two opportunities where we expect lattice QCD to play a pivotal role in searching for, and possibly discovery of, new physics at upcoming high-intensity experiments: rare decays and the muon anomalous magnetic moment. The next several years may witness the discovery of new elementary particles at the Large Hadron Collider (LHC). The interplay between lattice QCD, high-energy experiments at the LHC, and high-intensity experiments will be needed to determine the underlying structure of whatever physics beyond-the-Standard Model is realized in nature. © 2012 New York Academy of Sciences.
Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Christopher B.; Herbrych, Jacek W.; Dagotto, Elbio R.
2017-07-15
Here, iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and (π/2,–π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range bicollinear order coupled to monoclinic lattice distortions at a T S higher than the temperature T N where long-range bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride is studied with an additional coupling ˜λ 12 between the monoclinic lattice strain and an orbital-nematic order parameter with Bmore » 2g symmetry. Monte Carlo simulations show that with increasing ˜λ 12 the first-order transition characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance. A discussion of possible realizations of this exotic state is provided.« less
NASA Astrophysics Data System (ADS)
Barry, J. H.; Muttalib, K. A.; Tanaka, T.
2008-01-01
We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.
Strain doping: Reversible single-axis control of a complex oxide lattice via helium implantation
Guo, Hangwen; Dong, Shuai; Rack, Philip D.; ...
2015-06-25
We report on the use of helium ion implantation to independently control the out-of-plane lattice constant in epitaxial La 0.7Sr 0.3MnO 3 thin films without changing the in-plane lattice constants. The process is reversible by a vacuum anneal. Resistance and magnetization measurements show that even a small increase in the out-of-plane lattice constant of less than 1% can shift the metal-insulator transition and Curie temperatures by more than 100 °C. Unlike conventional epitaxy-based strain tuning methods which are constrained not only by the Poisson effect but by the limited set of available substrates, the present study shows that strain canmore » be independently and continuously controlled along a single axis. This permits novel control over orbital populations through Jahn-Teller effects, as shown by Monte Carlo simulations on a double-exchange model. As a result, the ability to reversibly control a single lattice parameter substantially broadens the phase space for experimental exploration of predictive models and leads to new possibilities for control over materials’ functional properties.« less
Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting
Mun, Jiwon; Ju, Jaehyung; Thurman, James
2016-01-01
One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495
Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.
Mun, Jiwon; Ju, Jaehyung; Thurman, James
2016-05-14
One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.
Computationally designed lattices with tuned properties for tissue engineering using 3D printing
Gonella, Veronica C.; Engensperger, Max; Ferguson, Stephen J.; Shea, Kristina
2017-01-01
Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth. PMID:28797066
Computationally designed lattices with tuned properties for tissue engineering using 3D printing.
Egan, Paul F; Gonella, Veronica C; Engensperger, Max; Ferguson, Stephen J; Shea, Kristina
2017-01-01
Tissue scaffolds provide structural support while facilitating tissue growth, but are challenging to design due to diverse property trade-offs. Here, a computational approach was developed for modeling scaffolds with lattice structures of eight different topologies and assessing properties relevant to bone tissue engineering applications. Evaluated properties include porosity, pore size, surface-volume ratio, elastic modulus, shear modulus, and permeability. Lattice topologies were generated by patterning beam-based unit cells, with design parameters for beam diameter and unit cell length. Finite element simulations were conducted for each topology and quantified how elastic modulus and shear modulus scale with porosity, and how permeability scales with porosity cubed over surface-volume ratio squared. Lattices were compared with controlled properties related to porosity and pore size. Relative comparisons suggest that lattice topology leads to specializations in achievable properties. For instance, Cube topologies tend to have high elastic and low shear moduli while Octet topologies have high shear moduli and surface-volume ratios but low permeability. The developed method was utilized to analyze property trade-offs as beam diameter was altered for a given topology, and used to prototype a 3D printed lattice embedded in an interbody cage for spinal fusion treatments. Findings provide a basis for modeling and understanding relative differences among beam-based lattices designed to facilitate bone tissue growth.
Zhang, Na; Zhai, Dong; Chen, Lei; Zou, Zhaoyong; Lin, Kaili; Chang, Jiang
2014-04-01
In the absence of any organic surfactants and solvents, the silicon (Si) and strontium (Sr) co-substituted hydroxyapatite [Ca10(PO4)6(OH)2, Si/Sr-HAp] nanowires were synthesized via hydrothermal treatment of the Sr-containing calcium silicate (Sr-CS) powders as the precursors in trisodium phosphate (Na3PO4) aqueous solution. The morphology, phase, chemical compositions, lattice constants and the degradability of the products were characterized. The Si/Sr-HAp nanowires with diameter of about 60nm and up to 2μm in length were obtained after hydrothermal treatment of the Sr-CS precursors. The Sr and Si substitution amount of the HAp nanowires could be well regulated by facile tailoring the Sr substitution level of the precursors and the reaction ratio of the precursor/solution, respectively. The SiO4 tetrahedra and Sr(2+) ions occupied the crystal sites of the HAp, and the lattice constants increased apparently with the increase of the substitution amount. EDS mapping also suggested the uniform distribution of Si and Sr in the synthetic nanowires. Moreover, the Si/Sr-substitution apparently improved the degradability of the HAp materials. Our study suggested that the precursor transformation method provided a facile approach to synthesize the Si/Sr co-substituted HAp nanowires with controllable substitution amount, and the synthetic Si/Sr-HAp nanowires might be used as bioactive materials for hard tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Alkaline decomposition of synthetic jarosite with arsenic
2013-01-01
The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, Martha; Panagopoulos, Haralambos; Skouroupathis, Apostolos
2011-04-01
In this work we calculate the corrections to the amputated Green's functions of four-fermion operators, in 1-loop lattice perturbation theory. One of the novel aspects of our calculations is that they are carried out to second order in the lattice spacing, O(a{sup 2}). We employ the Wilson/clover action for massless fermions (also applicable for the twisted mass action in the chiral limit) and a family of Symanzik improved actions for gluons. Our calculations have been carried out in a general covariant gauge. Results have been obtained for several popular choices of values for the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki,more » TILW and DBW2 action). While our Green's function calculations regard any pointlike four-fermion operators which do not mix with lower dimension ones, we pay particular attention to {Delta}F=2 operators, both parity conserving and parity violating (F stands for flavor: S, C, B). By appropriately projecting those bare Green's functions we compute the perturbative renormalization constants for a complete basis of four-fermion operators and we study their mixing pattern. For some of the actions considered here, even O(a{sup 0}) results did not exist in the literature to date. The correction terms which we calculate (along with our previous O(a{sup 2}) calculation of Z{sub {Psi}}[M. Constantinou, V. Lubicz, H. Panagopoulos, and F. Stylianou, J. High Energy Phys. 10 (2009) 064.][M. Constantinou, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, H. Panagopoulos, G. C. Rossi, S. Simula, F. Stylianou, and A. Vladikas, J. High Energy Phys. 08 (2010) 068.][C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou (unpublished).]) are essential ingredients for minimizing the lattice artifacts which are present in nonperturbative evaluations of renormalization constants with the RI{sup '}-MOM method. Our perturbative results, for the matrix elements of {Delta}F=2 operators and for the corresponding renormalization matrices, depend on a large number of parameters: coupling constant, number of colors, lattice spacing, external momentum, clover parameter, Symanzik coefficients, gauge parameter. To make these results most easily accessible to the reader, we have included them in the distribution package of this paper, as an ASCII file named: 4-fermi.m; the file is best perused as Mathematica input. The main results of this work have been applied to improve nonperturbative estimates of the B{sub K}-parameter in N{sub F}=2 twisted mass lattice QCD [M. Constantinou, P. Dimopoulos, R. Frezzotti, K. Jansen, V. Gimenez, V. Lubicz, F. Mescia, H. Panagopoulos, M. Papinutto, G. C. Rossi, S. Simula, A. Skouroupathis, F. Stylianou, and A. Vladikas, arXiv:1009.5606.].« less
Universality class of the two-dimensional polymer collapse transition
NASA Astrophysics Data System (ADS)
Nahum, Adam
2016-05-01
The nature of the θ point for a polymer in two dimensions has long been debated, with a variety of candidates put forward for the critical exponents. This includes those derived by Duplantier and Saleur for an exactly solvable model. We use a representation of the problem via the CPN -1σ model in the limit N →1 to determine the stability of this critical point. First we prove that the Duplantier-Saleur (DS) critical exponents are robust, so long as the polymer does not cross itself: They can arise in a generic lattice model and do not require fine-tuning. This resolves a longstanding theoretical question. We also address an apparent paradox: Two different lattice models, apparently both in the DS universality class, show different numbers of relevant perturbations, apparently leading to contradictory conclusions about the stability of the DS exponents. We explain this in terms of subtle differences between the two models, one of which is fine-tuned (and not strictly in the DS universality class). Next we allow the polymer to cross itself, as appropriate, e.g., to the quasi-two-dimensional case. This introduces an additional independent relevant perturbation, so we do not expect the DS exponents to apply. The exponents in the case with crossings will be those of the generic tricritical O (n ) model at n =0 and different from the case without crossings. We also discuss interesting features of the operator content of the CPN -1 model. Simple geometrical arguments show that two operators in this field theory, with very different symmetry properties, have the same scaling dimension for any value of N (or, equivalently, any value of the loop fugacity). Also we argue that for any value of N the CPN -1 model has a marginal odd-parity operator that is related to the winding angle.
NASA Astrophysics Data System (ADS)
Xu, Lei; Robson, Joseph D.; Wang, Li; Prangnell, Philip B.
2018-02-01
The thickness of the intermetallic compound (IMC) layer that forms when aluminum is welded to steel is critical in determining the properties of the dissimilar joints. The IMC reaction layer typically consists of two phases ( η and θ) and many attempts have been made to determine the apparent activation energy for its growth, an essential parameter in developing any predictive model for layer thickness. However, even with alloys of similar composition, there is no agreement of the correct value of this activation energy. In the present work, the IMC layer growth has been characterized in detail for AA6111 aluminum to DC04 steel couples under isothermal annealing conditions. The samples were initially lightly ultrasonically welded to produce a metallic bond, and the structure and thickness of the layer were then characterized in detail, including tracking the evolution of composition and grain size in the IMC phases. A model developed previously for Al-Mg dissimilar welds was adapted to predict the coupled growth of the two phases in the layer, whilst accounting explicitly for grain boundary and lattice diffusion, and considering the influence of grain growth. It has been shown that the intermetallic layer has a submicron grain size, and grain boundary diffusion as well as grain growth plays a critical role in determining the thickening rate for both phases. The model was used to demonstrate how this explains the wide scatter in the apparent activation energies previously reported. From this, process maps were developed that show the relative importance of each diffusion path to layer growth as a function of temperature and time.
Robustness of a cellular automata model for the HIV infection
NASA Astrophysics Data System (ADS)
Figueirêdo, P. H.; Coutinho, S.; Zorzenon dos Santos, R. M.
2008-11-01
An investigation was conducted to study the robustness of the results obtained from the cellular automata model which describes the spread of the HIV infection within lymphoid tissues [R.M. Zorzenon dos Santos, S. Coutinho, Phys. Rev. Lett. 87 (2001) 168102]. The analysis focused on the dynamic behavior of the model when defined in lattices with different symmetries and dimensionalities. The results illustrated that the three-phase dynamics of the planar models suffered minor changes in relation to lattice symmetry variations and, while differences were observed regarding dimensionality changes, qualitative behavior was preserved. A further investigation was conducted into primary infection and sensitiveness of the latency period to variations of the model’s stochastic parameters over wide ranging values. The variables characterizing primary infection and the latency period exhibited power-law behavior when the stochastic parameters varied over a few orders of magnitude. The power-law exponents were approximately the same when lattice symmetry varied, but there was a significant variation when dimensionality changed from two to three. The dynamics of the three-dimensional model was also shown to be insensitive to variations of the deterministic parameters related to cell resistance to the infection, and the necessary time lag to mount the specific immune response to HIV variants. The robustness of the model demonstrated in this work reinforce that its basic hypothesis are consistent with the three-stage dynamic of the HIV infection observed in patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Andrei; Kirianov, Eugene; Zlenko, Albina
The effect of substrates on the magnetic and transport properties of Ni{sub 2}Mn{sub 1.5}In{sub 0.5} ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude thatmore » the energy difference between the FM austenite and FiM martensite states in Ni{sub 2}Mn{sub 1.5}In{sub 0.5} films grown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni{sub 2}Mn{sub 1.5}In{sub 0.5} film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.« less
Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.
Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E
2014-06-01
Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.
Thermal stability of hexagonal OsB2
NASA Astrophysics Data System (ADS)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.
2014-11-01
The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.
Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions
NASA Astrophysics Data System (ADS)
Keleş, Ahmet; Zhao, Erhai
2018-05-01
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
NASA Astrophysics Data System (ADS)
Iota, V.; Weinstein, B. A.
1998-03-01
Deep defect states are often assumed to be insensitive to pressure because of their localized atomic-like character. In apparent conflict with this, experiments on widegap II-VI materials find that the pressure shifts of many 'midgap' photoluminescence (PL) bands associated with large-lattice-relaxation defects are more rapid than the shift of the bandgap(B. Weinstein, T. Ritter, et. al., Phys. Stat. Sol. (b) 198), 167 (1996). To study this, we measured the effects of pressure on the PL and PL-excitation (PLE) bands arising from the Zn-vacancy (V_Zn) and the P_Se deep acceptor centers in ZnSe. Using the observed pressure variation of the Stokes shifts and the established 1 atm. configuration coordinate (CC) models( D.Y. Jeon, H.P Gislason, G.D. Watkins, Phys. Rev. B 48), 7872 (1993), we were able to infer quantitative CC-diagrams at any pressure. Our results show that the pressure dependence of the lattice relaxation contributes a substantial fraction (several meV/kbar) to the overall shift of the PL-bands, and, hence, must be included. For the case of the V_Zn, simple calculations of the Jahn-Teller splitting using dangling-bond orbitals support this conclusion. figures
Nonlinear electrostrictive lattice response of EuTiO3
NASA Astrophysics Data System (ADS)
Pappas, P.; Calamiotou, M.; Köhler, J.; Bussmann-Holder, A.; Liarokapis, E.
2017-07-01
An epitaxial EuTiO3 (ETO) film grown on the SrTiO3 substrate was studied at room temperature with synchrotron XRD and in situ application of an electric field (nominally up to 7.8 kV/cm) in near grazing incidence geometry, in order to monitor the response of the lattice to the field. 2D diffraction images show that apparently misoriented coherently diffracting domains are present close to the surface whereas the film diffracts more as a single crystal towards the interface. Diffraction intensity profiles recorded from the near surface region of the EuTiO3 film showed systematic modifications upon the application of the electric field, indicating that at a critical electric field (nominally above 3.1 kV/cm), there is a clear change in the lattice response to the field, which was much stronger when the field was almost parallel to the diffraction vector. The data suggest that the ETO film, nominally paraelectric at room temperature, transforms under the application of a critical electric field to piezoelectric in agreement with a theoretical analysis based on a double-well potential. In order to exclude effects arising from the substrate, this has been investigated separately and shown not to be affected by the field.
NASA Astrophysics Data System (ADS)
Reis, T.; Phillips, T. N.
2008-12-01
In this reply to the comment by Lallemand and Luo, we defend our assertion that the alternative approach for the solution of the dispersion relation for a generalized lattice Boltzmann dispersion equation [T. Reis and T. N. Phillips, Phys. Rev. E 77, 026702 (2008)] is mathematically transparent, elegant, and easily justified. Furthermore, the rigorous perturbation analysis used by Reis and Phillips does not require the reciprocals of the relaxation parameters to be small.
2015-05-14
calculated by dividing photo-‐‑ generated current by the optical power spectrum of the lamp . A UV ...the optimized parameters for growth. Efforts led to significant increases in solar?blind detector responsivity (up to 0.1 A/W) with sub- nanoamp...Aug-2014 Approved for Public Release; Distribution Unlimited Final Report: Deep- UV Emitters and Detectors Based on Lattice- Matched Cubic Oxide
Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices
Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios; ...
2017-07-31
The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. Furthermore, the reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.
Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios
2017-07-01
The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.
2016-05-01
limited to X-ray diffraction ( XRD ) and scanning electron microscopy (SEM). The alloy was reported to contain two bcc phases with similar lattice...it appears that the interface between the two phases is fairly coherent. Interestingly, the XRD study described in [8] suggested that there were two...line-scan shown in (h). 3 Distribution A. Approved for public reledifference in lattice parameter measurements realized in bulk samples ( XRD ) vs
Topological lattice using multi-frequency radiation
NASA Astrophysics Data System (ADS)
Andrijauskas, Tomas; Spielman, I. B.; Juzeliūnas, Gediminas
2018-05-01
We describe a novel technique for creating an artificial magnetic field for ultracold atoms using a periodically pulsed pair of counter propagating Raman lasers that drive transitions between a pair of internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. For a wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau levels, as quantified by their Chern numbers.
Spectroscopy of infrared-active phonons in high-temperature superconductors
NASA Technical Reports Server (NTRS)
Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.
1995-01-01
For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.
The Boer-Mulders Transverse Momentum Distribution in the Pion and its Evolution in Lattice QCD
NASA Astrophysics Data System (ADS)
Engelhardt, M.; Musch, B.; Hägler, P.; Schäfer, A.; Negele, J.
2015-02-01
Starting from a definition of transverse momentum-dependent parton distributions (TMDs) in terms of hadronic matrix elements of a quark bilocal operator containing a staple-shaped gauge link, selected TMD observables can be evaluated within Lattice QCD. A TMD ratio describing the Boer-Mulders effect in the pion is investigated, with a particular emphasis on its evolution as a function of a Collins-Soper-type parameter which quantifies the proximity of the staple-shaped gauge links to the light cone.
Simple optimized Brenner potential for thermodynamic properties of diamond
NASA Astrophysics Data System (ADS)
Liu, F.; Tang, Q. H.; Shang, B. S.; Wang, T. C.
2012-02-01
We have examined the commonly used Brenner potentials in the context of the thermodynamic properties of diamond. A simple optimized Brenner potential is proposed that provides very good predictions of the thermodynamic properties of diamond. It is shown that, compared to the experimental data, the lattice wave theory of molecular dynamics (LWT) with this optimized Brenner potential can accurately predict the temperature dependence of specific heat, lattice constant, Grüneisen parameters and coefficient of thermal expansion (CTE) of diamond.
Multicomponent lattice Boltzmann model from continuum kinetic theory.
Shan, Xiaowen
2010-04-01
We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan equation at the ideal-gas limit.
Fermion bag approach to Hamiltonian lattice field theories in continuous time
NASA Astrophysics Data System (ADS)
Huffman, Emilie; Chandrasekharan, Shailesh
2017-12-01
We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.
Entropy favours open colloidal lattices
NASA Astrophysics Data System (ADS)
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites
NASA Astrophysics Data System (ADS)
Tovar, M.; Ramos, C. A.; Fainstein, C.
1983-10-01
We have calculated the lattice distortions around trivalent rare-earth dilute impurities, occupying substitutionally metal sites in fluorites. Explicit results are given for the equilibrium positions of the nearest fluorine ligands, R, the induced electric dipole moments, and the local hydrostatic strains for MF2 (M=Cd, Ca, Sr, Pb, and Ba). These results are used to study the impurity-ligand distance dependence of the fourth-order cubic-crystal-field parameter, b4, for Gd3+ and the isoelectronic ion Eu2+. Comparison is made with the change of b4 with hydrostatic stress using the calculated local compressibility of the lattice. A consistent description of the experimental data is obtained assuming b4~R-m with m~10.
Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY
NASA Astrophysics Data System (ADS)
Nergiz, Z.; Aksoy, A.
2015-06-01
The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Confronting effective models for deconfinement in dense quark matter with lattice data
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Brauner, Tomáš; Naylor, William R.
2015-12-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data requires the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an analogous term in the lattice Wilson action.
NASA Astrophysics Data System (ADS)
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures
NASA Astrophysics Data System (ADS)
Santara, Batakrushna; Giri, P. K.; Imakita, Kenji; Fujii, Minoru
2014-05-01
We have investigated the microscopic origin of lattice expansion and contraction in undoped rutile TiO2 nanostructures by employing several structural and optical spectroscopic tools. Rutile TiO2 nanostructures with morphologies such as nanorods, nanopillars and nanoflowers, depending upon the growth conditions, are synthesized by an acid-hydrothermal process. Depending on the growth conditions and post-growth annealing, lattice contraction and expansion are observed in the nanostructures and it is found to correlate with the nature and density of intrinsic defects in rutile TiO2. The change in lattice volume correlates well with the optical bandgap energy. Irrespective of growth conditions, theTiO2 nanostructures exhibit strong near infrared (NIR) photoluminescence (PL) at 1.43 eV and a weak visible PL, which are attributed to the Ti interstitials and O vacancies, respectively, in rutile TiO2 nanostructures. Further, ESR study reveals the presence of singly ionized oxygen vacancy defects. It is observed that lattice distortion depends systematically on the relative concentration and type of defects such as oxygen vacancies and Ti interstitials. XPS analyses revealed a downshift in energy for both Ti 2p and O 1s core level spectra for various growth conditions, which is believed to arise from the lattice distortions. It is proposed that the Ti4+ interstitial and F+ oxygen vacancy defects are primarily responsible for lattice expansion, whereas the electrostatic attraction between Ti4+ interstitial and O2- interstitial defects causes the lattice contraction in the undoped TiO2 nanostructures. The control of lattice parameters through the intrinsic defects may provide new routes to achieving novel functionalities in advanced materials that can be tailored for future technological applications.
The field theory of specific heat
NASA Astrophysics Data System (ADS)
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
Homogenization limit for a multiband effective mass model in heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morandi, O., E-mail: morandi@ipcms.unistra.fr
We study the homogenization limit of a multiband model that describes the quantum mechanical motion of an electron in a quasi-periodic crystal. In this approach, the distance among the atoms that constitute the material (lattice parameter) is considered a small quantity. Our model include the description of materials with variable chemical composition, intergrowth compounds, and heterostructures. We derive the effective multiband evolution system in the framework of the kp approach. We study the well posedness of the mathematical problem. We compare the effective mass model with the standard kp models for uniform and non-uniforms crystals. We show that in themore » limit of vanishing lattice parameter, the particle density obtained by the effective mass model, converges to the exact probability density of the particle.« less
Equivalent crystal theory of alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1991-01-01
Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.
Self-Trapping Self-Repelling Random Walks
NASA Astrophysics Data System (ADS)
Grassberger, Peter
2017-10-01
Although the title seems self-contradictory, it does not contain a misprint. The model we study is a seemingly minor modification of the "true self-avoiding walk" model of Amit, Parisi, and Peliti in two dimensions. The walks in it are self-repelling up to a characteristic time T* (which depends on various parameters), but spontaneously (i.e., without changing any control parameter) become self-trapping after that. For free walks, T* is astronomically large, but on finite lattices the transition is easily observable. In the self-trapped regime, walks are subdiffusive and intermittent, spending longer and longer times in small areas until they escape and move rapidly to a new area. In spite of this, these walks are extremely efficient in covering finite lattices, as measured by average cover times.
Stephens, P; Genever, P G; Wood, E J; Raxworthy, M J
1997-01-01
Actin cables have been reported to act in vivo as contractile 'purse strings' capable of closing embryonic wounds through generation of circumferential tension. Furthermore, their involvement in wounds within in vitro model systems suggests that actin cable contraction may be an important mechanism involved in the process of wound closure. The aim of this study therefore, was to investigate the appearance of actin cables in a contracting fibroblast populated collagen lattice, an in vitro model of events associated with wound contraction. Utilising this in vitro model, the time-course of actin cable production was investigated and the involvement of integrin receptors analysed using immunofluorescent labelling techniques. Over a period of hours distinct cellular cable-like structures developed at the edges of collagen lattices coinciding with the onset of contraction. Cellular organisation within the cable was evident as was polymerisation of actin microfilaments into elongated stress fibres forming a continuous cell-cell 'actin cable' around the circumference of the lattice. Immunolocalisation demonstrated that integrin receptor subunits beta 1 and alpha 2 but not alpha 5 were involved in apparent intimate cell-cell contact between juxtaposed fibroblasts within this actin cable. This study demonstrates the involvement of integrin receptors in actin cable formation within collagen lattice systems undergoing reorganisation. Such integrin involvement may enable participating cells to respond to the tensional status of their surrounding environment and via cell-cell communication, to permit a co-ordinated contraction of the cable. It is concluded that integrin receptor involvement in active actin cable contraction may be involved in the process of wound contraction.
Michael Sukop,; Cunningham, Kevin J.
2014-01-01
Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.
NASA Astrophysics Data System (ADS)
Sukop, Michael C.; Cunningham, Kevin J.
2014-11-01
Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s-1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.
Prediction of apparent extinction for optical transmission through rain
NASA Astrophysics Data System (ADS)
Vasseur, H.; Gibbins, C. J.
1996-12-01
At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.
NASA Astrophysics Data System (ADS)
Babjuck, T. I.; Buntar, A. G.; Shevtchuk, L. S.
2001-06-01
Hetero-transitions on a base of InAs and AnSb compounds permitted to obtain cheap light diodes and detectors with the atmosphere maximal transparency region sensibility. There is assumed simultaneously, that the phon radiation in InAs-InAs1-xSbx is not large, which positively effects on receiver parameters. Changing the composition of InAs-InAs1- xSbx solution, one may obtain the structure with the width of forbidden zone of the want of 0.35 to 0,1 eV. There is developed the heterostructures crystalline lattice parameters determining method (for substrate and film) with the DRON-3M x-ray diffractometer. There was found the nonlinear dependence of the heterostructures lattice parameter on the composition. Investigations of interatomic interaction in dependence on composition and also on the forbidden zone width Eg(x) have show, that solid solutions InAs-InAs1- xSbx may be used for the obtaining of infra-red receiver.
Analysis of the Defect Structure of B2 Feal Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Amador, Carlos
1995-01-01
The Bozzolo, Ferrante and Smith (BFS) method for alloys is applied to the study of the defect structure of B2 FeAI alloys. First-principles Linear Muffin Tin Orbital calculations are used to determine the input parameters to the BFS method used in this work. The calculations successfully determine the phase field of the B2 structure, as well as the dependence with composition of the lattice parameter. Finally, the method is used to perform 'static' simulations where instead of determining the ground state configuration of the alloy with a certain concentration of vacancies, a large number of candidate ordered structures are studied and compared, in order to determine not only the lowest energy configurations but other possible metastable states as well. The results provide a description of the defect structure consistent with available experimental data. The simplicity of the BFS method also allows for a simple explanation of some of the essential features found in the concentration dependence of the heat of formation, lattice parameter and the defect structure.
Evaluation of four inch diameter VGF-Ge substrates used for manufacturing multi-junction solar cell
NASA Astrophysics Data System (ADS)
Kewei, Cao; Tong, Liu; Jingming, Liu; Hui, Xie; Dongyan, Tao; Youwen, Zhao; Zhiyuan, Dong; Feng, Hui
2016-06-01
Low dislocation density Ge wafers grown by a vertical gradient freeze (VGF) method used for the fabrication of multi-junction photovoltaic cells (MJC) have been studied by a whole wafer scale measurement of the lattice parameter, X-ray rocking curves, etch pit density (EPD), impurities concentration, minority carrier lifetime and residual stress. Impurity content in the VGF-Ge wafers, including that of B, is quite low although B2O3 encapsulation is used in the growth process. An obvious difference exists across the whole wafer regarding the distribution of etch pit density, lattice parameter, full width at half maximum (FWHM) of the X-ray rocking curve and residual stress measured by Raman spectra. These are in contrast to a reference Ge substrate wafer grown by the Cz method. The influence of the VGF-Ge substrate on the performance of the MJC is analyzed and evaluated by a comparison of the statistical results of cell parameters. Project supported by the National Natural Science Foundation of China (No. 61474104).
Leading isospin-breaking corrections to meson masses on the lattice
NASA Astrophysics Data System (ADS)
Giusti, Davide; Lubicz, Vittorio; Martinelli, Guido; Sanfilippo, Francesco; Simula, Silvano; Tantalo, Nazario; Tarantino, Cecilia
2018-03-01
We present a study of the isospin-breaking (IB) corrections to pseudoscalar (PS) meson masses using the gauge configurations produced by the ETM Collaboration with Nf = 2+1+1 dynamical quarks at three lattice spacings varying from 0.089 to 0.062 fm. Our method is based on a combined expansion of the path integral in powers of the small parameters (m⌢d-m⌢u)/ΛQCD and αem, where m⌢f is the renormalized quark mass and αem the renormalized fine structure constant. We obtain results for the pion, kaon and Dmeson mass splitting; for the Dashen's theorem violation parameters εγ(MM, 2 GeV), επ0 εK0(MS, 2 GeV) for the light quark masses (m⌢d-m⌢u)(MS¯,2 GeV),(m⌢u/m⌢d)(MS¯,2 GeV); for the flavour symmetry breaking parameters R(MS, 2 GeV) and Q(MS, 2 GeV) and for the strong IB effects on the kaon decay constants.
Bi, Qiu; Xiao, Zhibo; Lv, Fajin; Liu, Yao; Zou, Chunxia; Shen, Yiqing
2018-02-05
The objective of this study was to find clinical parameters and qualitative and quantitative magnetic resonance imaging (MRI) features for differentiating uterine sarcoma from atypical leiomyoma (ALM) preoperatively and to calculate predictive values for uterine sarcoma. Data from 60 patients with uterine sarcoma and 88 patients with ALM confirmed by surgery and pathology were collected. Clinical parameters, qualitative MRI features, diffusion-weighted imaging with apparent diffusion coefficient values, and quantitative parameters of dynamic contrast-enhanced MRI of these two tumor types were compared. Predictive values for uterine sarcoma were calculated using multivariable logistic regression. Patient clinical manifestations, tumor locations, margins, T2-weighted imaging signals, mean apparent diffusion coefficient values, minimum apparent diffusion coefficient values, and time-signal intensity curves of solid tumor components were obvious significant parameters for distinguishing between uterine sarcoma and ALM (all P <.001). Abnormal vaginal bleeding, tumors located mainly in the uterine cavity, ill-defined tumor margins, and mean apparent diffusion coefficient values of <1.272 × 10 -3 mm 2 /s were significant preoperative predictors of uterine sarcoma. When the overall scores of these four predictors were greater than or equal to 7 points, the sensitivity, the specificity, the accuracy, and the positive and negative predictive values were 88.9%, 99.9%, 95.7%, 97.0%, and 95.1%, respectively. The use of clinical parameters and multiparametric MRI as predictive factors was beneficial for diagnosing uterine sarcoma preoperatively. These findings could be helpful for guiding treatment decisions. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latychevskaia, Tatiana; Fink, Hans-Werner
Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less
Iodine Intercalation of Bundles of Single Wall Carbon Nanotubes (SWNT)
NASA Astrophysics Data System (ADS)
Grigorian, L.; Fang, S. L.; Williams, K. A.; Sumanasekera, G. U.; Dickey, E. C.; Eklund, P. C.; Pennycock, S.; Rinzler, A. G.; Smalley, R. E.
1998-03-01
We have been able to intercalate iodine into the interstitial channels within the rope lattice by direct contact of SWNT mats with molten iodine. These continuously filled channels were observed by Z-contrast STEM imaging. The intercalated iodine atoms provide a ``chemical wedge'' which expands the rope lattice as found from x-ray powder diffraction. At low doping level, Raman-active modes and photoluminescence were used to identify the intercalated species as (I_3)^-I2 linear polyiodide chains. The observed upshift of the high-frequency tangential Raman mode, as well as decreased values of four-probe electrical resistance and thermopower are all consistent with electron transfer from SWNT to iodine. At higher doping level, another iodine-SWNT compound was formed as evidenced by a different x-ray diffraction pattern and Raman spectrum. This new compound exhibits a number of new Raman lines, apparently unrelated to the intercalated iodine, in addition to the usual SWNT Raman modes. We discuss possible mechanisms responsible for activating new Raman modes in SWNT.
Sanjeevi, Sathish K P; Zarghami, Ahad; Padding, Johan T
2018-04-01
Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.
NASA Astrophysics Data System (ADS)
Sanjeevi, Sathish K. P.; Zarghami, Ahad; Padding, Johan T.
2018-04-01
Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.
Properties of Structurally Excellent N-doped TiO2 Rutile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, Scott A.; Cheung, Sau H.; Shutthanandan, V.
2007-10-15
We have used plasma-assisted molecular beam epitaxy to synthesize structurally near-perfect crystalline films of TiO2-xNx rutile for the first time. These materials allow the properties of TiO2-xNx to be elucidated without the interfering effects of oxygen vacancy defects. In the absence of such defects, the extent of N incorporation in the lattice is limited to 2 ± 1 at. % of the anions. Substitutional N (NO) exhibits a -3 formal charge due to charge transfer from shallow-donor interstitial Ti(III), which forms during epitaxial growth. Hybridization between NO and adjacent lattice Ti ions occurs, resulting in new states off the topmore » of the rutile valence band and an apparent band gap reduction of ~ 0.5 eV. It is not yet known if these new states result in mobile electron-hole pair creation upon irradiation, but experiments are planned to answer this important question.« less
NASA Astrophysics Data System (ADS)
Sali, S. K.; Kulkarni, N. K.; Krishnan, K.; Achary, S. N.; Tyagi, A. K.
2008-08-01
In this communication, we report the oxidation and reduction behavior of fluorite type solid solutions in U-Zr-O. The maximum solubility of ZrO 2 in UO 2 lattice could be achieved with a mild oxidizing followed by reducing conditions. The role of valency state of U is more dominating in controlling the unit cell parameters than the incorporated interstitial oxygen in the fluorite lattice. The controlled oxidation studies on U-Zr-O solid solutions led to the delineation of a new distorted fluorite lattice at the U:Zr=2:1 composition. The detailed crystal structure analysis of this ordered composition Zr 0.33U 0.67O 2.33 (ZrU 2O 7) has been carried from the powder XRD data. This phase crystallizes in an orthorhombically distorted fluorite type lattice with unit cell parameters: a=5.1678(2), b=5.4848(2), c=5.5557(2) Å and V=157.47(1) Å 3 (Space group: Cmcm, No. 63). The metal ions have distorted cubical polyhedra with anion similar to the fluorite structure. The excess anions are occupied in the interstitial (empty cubes) of the fluorite unit cell. The crystal structure and chemical analyses suggest approximately equal fractions of U 4+ and U 6+ in this compound. The details of the thermal stability as well as kinetics of formation and oxidation of ZrU 2O 7 are also studied using thermogravimetry.
Lattice model for water-solute mixtures.
Furlan, A P; Almarza, N G; Barbosa, M C
2016-10-14
A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.
Direct detection of metal-insulator phase transitions using the modified Backus-Gilbert method
NASA Astrophysics Data System (ADS)
Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas
2018-03-01
The detection of the (semi)metal-insulator phase transition can be extremely difficult if the local order parameter which characterizes the ordered phase is unknown. In some cases, it is even impossible to define a local order parameter: the most prominent example of such system is the spin liquid state. This state was proposed to exist in the Hubbard model on the hexagonal lattice in a region between the semimetal phase and the antiferromagnetic insulator phase. The existence of this phase has been the subject of a long debate. In order to detect these exotic phases we must use alternative methods to those used for more familiar examples of spontaneous symmetry breaking. We have modified the Backus-Gilbert method of analytic continuation which was previously used in the calculation of the pion quasiparticle mass in lattice QCD. The modification of the method consists of the introduction of the Tikhonov regularization scheme which was used to treat the ill-conditioned kernel. This modified Backus-Gilbert method is applied to the Euclidean propagators in momentum space calculated using the hybrid Monte Carlo algorithm. In this way, it is possible to reconstruct the full dispersion relation and to estimate the mass gap, which is a direct signal of the transition to the insulating state. We demonstrate the utility of this method in our calculations for the Hubbard model on the hexagonal lattice. We also apply the method to the metal-insulator phase transition in the Hubbard-Coulomb model on the square lattice.
Optimal preconditioning of lattice Boltzmann methods
NASA Astrophysics Data System (ADS)
Izquierdo, Salvador; Fueyo, Norberto
2009-09-01
A preconditioning technique to accelerate the simulation of steady-state problems using the single-relaxation-time (SRT) lattice Boltzmann (LB) method was first proposed by Guo et al. [Z. Guo, T. Zhao, Y. Shi, Preconditioned lattice-Boltzmann method for steady flows, Phys. Rev. E 70 (2004) 066706-1]. The key idea in this preconditioner is to modify the equilibrium distribution function in such a way that, by means of a Chapman-Enskog expansion, a time-derivative preconditioner of the Navier-Stokes (NS) equations is obtained. In the present contribution, the optimal values for the free parameter γ of this preconditioner are searched both numerically and theoretically; the later with the aid of linear-stability analysis and with the condition number of the system of NS equations. The influence of the collision operator, single- versus multiple-relaxation-times (MRT), is also studied. Three steady-state laminar test cases are used for validation, namely: the two-dimensional lid-driven cavity, a two-dimensional microchannel and the three-dimensional backward-facing step. Finally, guidelines are suggested for an a priori definition of optimal preconditioning parameters as a function of the Reynolds and Mach numbers. The new optimally preconditioned MRT method derived is shown to improve, simultaneously, the rate of convergence, the stability and the accuracy of the lattice Boltzmann simulations, when compared to the non-preconditioned methods and to the optimally preconditioned SRT one. Additionally, direct time-derivative preconditioning of the LB equation is also studied.
Lattice QCD inputs to the CKM unitarity triangle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laiho, Jack; Department of Physics and Astronomy, University of Glasgow, Glasgow, G128 QQ; Lunghi, E.
2010-02-01
We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner:more » whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex{sub K}, |V{sub cb}|, and |V{sub ub}|/|V{sub cb}|. We find a (2-3){sigma} tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V{sub cb}|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.« less
kmos: A lattice kinetic Monte Carlo framework
NASA Astrophysics Data System (ADS)
Hoffmann, Max J.; Matera, Sebastian; Reuter, Karsten
2014-07-01
Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.
Lattice QCD Inputs to the CKM Unitarity Triangle Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Water, R.; Lunghi, E; Laiho, J
2010-02-02
We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner:more » whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B{sub K}, |V{sub cb}|, and |V{sub ub}|/|Vcb|. We find a (2-3){sigma} tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V{sub cb}|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.« less
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less
NASA Astrophysics Data System (ADS)
Yousuf, Saleem; Gupta, Dinesh C.
2017-09-01
Investigation of band structure and thermo-physical response of new quaternary CoVTiAl Heusler alloy within the frame work of density functional theory has been analyzed. 100% spin polarization with ferromagnetic stable ground state at the optimized lattice parameter of 6.01 Å is predicted for the compound. Slater-Pauling rule for the total magnetic moment of 3 μB and an indirect semiconducting behavior is also seen for the compound. In order to perfectly analyze the thermo-physical response, the lattice thermal conductivity and thermodynamic properties have been calculated. Thermal effects on some macroscopic properties of CoVTiAl are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the lattice constant, volume expansion coefficient, heat capacities, and Debye temperature with pressure and temperature in the ranges of 0 GPa to 15 GPa and 0 K to 800 K have been obtained.
Constrained multi-objective optimization of storage ring lattices
NASA Astrophysics Data System (ADS)
Husain, Riyasat; Ghodke, A. D.
2018-03-01
The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.
Heat conduction in one-dimensional lattices with on-site potential.
Savin, A V; Gendelman, O V
2003-04-01
The process of heat conduction in one-dimensional lattices with on-site potential is studied by means of numerical simulation. Using the discrete Frenkel-Kontorova, phi(4), and sinh-Gordon models we demonstrate that contrary to previously expressed opinions the sole anharmonicity of the on-site potential is insufficient to ensure the normal heat conductivity in these systems. The character of the heat conduction is determined by the spectrum of nonlinear excitations peculiar for every given model and therefore depends on the concrete potential shape and the temperature of the lattice. The reason is that the peculiarities of the nonlinear excitations and their interactions prescribe the energy scattering mechanism in each model. For sine-Gordon and phi(4) models, phonons are scattered at a dynamical lattice of topological solitons; for sinh-Gordon and for phi(4) in a different parameter regime the phonons are scattered at localized high-frequency breathers (in the case of phi(4) the scattering mechanism switches with the growth of the temperature).
Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors
NASA Astrophysics Data System (ADS)
Dan, Yuichiro; Ikeda, Ryusuke
2015-10-01
Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba type under a magnetic field parallel to the symmetry plane are examined by assuming the s -wave pairing case and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of states detectable in STM experiments are also presented.
Quantum magnetic phase transition in square-octagon lattice.
Bao, An; Tao, Hong-Shuai; Liu, Hai-Di; Zhang, XiaoZhong; Liu, Wu-Ming
2014-11-05
Quantum magnetic phase transition in square-octagon lattice was investigated by cellular dynamical mean field theory combining with continuous time quantum Monte Carlo algorithm. Based on the systematic calculation on the density of states, the double occupancy and the Fermi surface evolution of square-octagon lattice, we presented the phase diagrams of this splendid many particle system. The competition between the temperature and the on-site repulsive interaction in the isotropic square-octagon lattice has shown that both antiferromagnetic and paramagnetic order can be found not only in the metal phase, but also in the insulating phase. Antiferromagnetic metal phase disappeared in the phase diagram that consists of the anisotropic parameter λ and the on-site repulsive interaction U while the other phases still can be detected at T = 0.17. The results found in this work may contribute to understand well the properties of some consuming systems that have square-octagon structure, quasi square-octagon structure, such as ZnO.
Graphene-Mesoporous Si Nanocomposite as a Compliant Substrate for Heteroepitaxy.
Boucherif, Abderrahim Rahim; Boucherif, Abderraouf; Kolhatkar, Gitanjali; Ruediger, Andreas; Arès, Richard
2017-05-01
The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene-porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect-free new epitaxial semiconductor alloys and devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Elcoro, Luis; Etxebarria, Jesús
2011-01-01
The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.
Montero-Chacón, Francisco; Cifuentes, Héctor; Medina, Fernando
2017-02-21
This work presents a lattice-particle model for the analysis of steel fiber-reinforced concrete (SFRC). In this approach, fibers are explicitly modeled and connected to the concrete matrix lattice via interface elements. The interface behavior was calibrated by means of pullout tests and a range for the bond properties is proposed. The model was validated with analytical and experimental results under uniaxial tension and compression, demonstrating the ability of the model to correctly describe the effect of fiber volume fraction and distribution on fracture properties of SFRC. The lattice-particle model was integrated into a hierarchical homogenization-based scheme in which macroscopic material parameters are obtained from mesoscale simulations. Moreover, a representative volume element (RVE) analysis was carried out and the results shows that such an RVE does exist in the post-peak regime and until localization takes place. Finally, the multiscale upscaling strategy was successfully validated with three-point bending tests.
Dynamics of the Spin Liquid Phase of Cs2CuCl4
NASA Astrophysics Data System (ADS)
Ma, Ookie; Vachon, Marc-Andre; Mitrovi{Ć}, Vesna F.; Marston, Brad
2008-03-01
The dynamics of a spin-liquid phase of an antiferromagnet on the anisotropic triangular lattice and in a magnetic field are studied with a combination of Gutzwiller-projected wavefunctions and mean-field theory. Candidate ground states that support fermionic gapless spinon excitations include four different U(1) spin liquidsootnotetextY. Zhou, X. G. Wen, cond-mat/0210662 (2003).. The lattice and the states interpolate between limiting cases of 1D decoupled chains (J/J^' = 0) and the isotropic 2D square lattice (J/J^'= ∞). Parameters of the mean field theory are chosen to minimize the ground state energy of the corresponding Gutzwiller-projected wavefunction. The spin-lattice relaxation rate 1/T1, calculated within the mean-field approximation, is compared to NMR measurementsootnotetextM. A. Vachon, O. Ma, J. B. Marston, V. F. Mitrovi'c, unpublished (2007). in the spin liquid phase of Cs2CuCl4ootnotetextY. Tokiwa, T. Radu, R. Coldea, H. Wilhelm, Z. Tylczynski, F. Steglich, PRB 73, 134414 (2006)..
An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media
NASA Astrophysics Data System (ADS)
Zhu, Jiujiang; Ma, Jingsheng
2013-06-01
A lattice Boltzmann (LB) model is proposed for simulating fluid flow in porous media by allowing the aggregates of finer-scale pores and solids to be treated as 'equivalent media'. This model employs a partially bouncing-back scheme to mimic the resistance of each aggregate, represented as a gray node in the model, to the fluid flow. Like several other lattice Boltzmann models that take the same approach, which are collectively referred to as gray lattice Boltzmann (GLB) models in this paper, it introduces an extra model parameter, ns, which represents a volume fraction of fluid particles to be bounced back by the solid phase rather than the volume fraction of the solid phase at each gray node. The proposed model is shown to conserve the mass even for heterogeneous media, while this model and that model of Walsh et al. (2009) [1], referred to the WBS model thereafter, are shown analytically to recover Darcy-Brinkman's equations for homogenous and isotropic porous media where the effective viscosity and the permeability are related to ns and the relaxation parameter of LB model. The key differences between these two models along with others are analyzed while their implications are highlighted. An attempt is made to rectify the misconception about the model parameter ns being the volume fraction of the solid phase. Both models are then numerically verified against the analytical solutions for a set of homogenous porous models and compared each other for another two sets of heterogeneous porous models of practical importance. It is shown that the proposed model allows true no-slip boundary conditions to be incorporated with a significant effect on reducing errors that would otherwise heavily skew flow fields near solid walls. The proposed model is shown to be numerically more stable than the WBS model at solid walls and interfaces between two porous media. The causes to the instability in the latter case are examined. The link between these two GLB models and a generalized Navier-Stokes model [2] for heterogeneous but isotropic porous media are explored qualitatively. A procedure for estimating model parameter ns is proposed.
Alkaline earth metal and samarium co-doped ceria as efficient electrolytes
NASA Astrophysics Data System (ADS)
Ali, Amjad; Raza, Rizwan; Kaleem Ullah, M.; Rafique, Asia; Wang, Baoyuan; Zhu, Bin
2018-01-01
Co-doped ceramic electrolytes M0.1Sm0.1Ce0.8O2-δ (M = Ba, Ca, Mg, and Sr) were synthesized via co-precipitation. The focus of this study was to highlight the effects of alkaline earth metals in doped ceria on the microstructure, densification, conductivity, and performance. The ionic conductivity comparisons of prepared electrolytes in the air atmosphere were studied. It has been observed that Ca0.1Sm0.1Ce0.8O2-δ shows the highest conductivity of 0.124 Scm-1 at 650 °C and a lower activation energy of 0.48 eV. The cell shows a maximum power density of 630 mW cm-2 at 650 °C using hydrogen fuel. The enhancement in conductivity and performance was due to increasing the oxygen vacancies in the ceria lattice with the increasing dopant concentration. The bandgap was calculated from UV-Vis data, which shows a red shift when compared with pure ceria. The average crystallite size is in the range of 37-49 nm. DFT was used to analyze the co-doping structure, and the calculated lattice parameter was compared with the experimental lattice parameter.
Lattice thermal expansion and solubility limits of neodymium-doped ceria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinhua, E-mail: jhzhang1212@126.com; State Key laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074; Ke, Changming
2016-11-15
Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders were prepared by reverse coprecipitation-calcination method and characterized by XRD. The crystal structure of product powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value. An empirical equation simulating the lattice parameter of neodymium doped ceria was established based on the experimental data. The lattice parameters of the fluorite structure solid solutions increased with extensive adoption of Nd{sup 3+}, and the heating temperature going up. The average thermal expansion coefficients of neodymium doped ceria with fluorite structure are highermore » than 13.5×10{sup −6} °C{sup −1} from room temperature to 1200 °C. - Graphical abstract: The crystal structure of Nd{sub x}Ce{sub 1−x}O{sub 2−0.5x} (x=0–1.0) powders transformed from single fluorite structure to the complex of fluorite and C-type cubic structure, and finally to trigonal structure with the increase of x-value.« less
Xiang, Kai; Xing, Wenting; Ravnsbaek, Dorthe B.; ...
2017-02-21
Virtually all intercalation compounds used as battery electrodes exhibit significant changes in unit cell volume during use. Na xFePO 4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high strain systems as it exhibits one of the largest discontinuous volume changes (~17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, <10 nm scale nanocrystalline phase forms to buffer the large lattice mismatch betweenmore » primary phases. The new phase has a and b lattice parameters matching one crystalline endmember phase and c lattice parameter matching the other, and is not detectable by powder diffraction alone. Finally, we suggest that this strain-accommodation mechanism may apply to systems with large transformation strains but in which true “amorphization” does not occur.« less
Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; ...
2016-05-23
The alloy Cu 25 Au 30 Zn 45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. We discovered this alloy by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructuresmore » are those predicted by the cofactor conditions. In order to verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.« less
Computational study of Ca, Sr and Ba under pressure
NASA Astrophysics Data System (ADS)
Jona, F.; Marcus, P. M.
2006-05-01
A first-principles procedure for the calculation of equilibrium properties of crystals under hydrostatic pressure is applied to Ca, Sr and Ba. The procedure is based on minimizing the Gibbs free energy G (at zero temperature) with respect to the structure at a given pressure p, and hence does not require the equation of state to fix the pressure. The calculated lattice constants of Ca, Sr and Ba are shown to be generally closer to measured values than previous calculations using other procedures. In particular for Ba, where careful and extensive pressure data are available, the calculated lattice parameters fit measurements to about 1% in three different phases, both cubic and hexagonal. Rigid-lattice transition pressures between phases which come directly from the crossing of G(p) curves are not close to measured transition pressures. One reason is the need to include zero-point energy (ZPE) of vibration in G. The ZPE of cubic phases is calculated with a generalized Debye approximation and applied to Ca and Sr, where it produces significant shifts in transition pressures. An extensive tabulation is given of structural parameters and elastic constants from the literature, including both theoretical and experimental results.
Huang, Xianwei; Deng, Zhixiang; Shi, Xiaohui; Bai, Yanfeng; Fu, Xiquan
2018-02-19
Based on the extended Huygens-Fresnel principle, we have derived the analytical expression of the average intensity of optical coherence lattices (OCLs) in oceanic turbulence with anisotropy, and then the beam quality parameters including the Strehl ratio (SR) and the power-in-the-bucket (PIB) are obtained. One can find that the OCLs will eventually evolve into Gaussian shape with the periodicity reciprocity gradually breaking down when propagating through the anisotropic ocean water, and that the trend of evolving into Gaussian can be accelerated for increasing the ratio of temperature and salinity contributions to the refractive index spectrum ω, the lattice constant a and the rate of dissipation of mean square temperature χT or decreasing the anisotropic factor ξ and the rate of dissipation of turbulent kinetic energy per unit mass of fluid ε. Further, the SR and PIB in the target plane under the effects of oceanic parameters are discussed in detail, and the SR and PIB can be increased for the larger ξ and ε or the smaller χT and ω, namely, the beam quality becomes better. Our results can find potential application in the future optical communication system in an oceanic environment.
Finite-size scaling of clique percolation on two-dimensional Moore lattices
NASA Astrophysics Data System (ADS)
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Bose-Einstein condensation in diamond hierarchical lattices.
Lyra, M L; de Moura, F A B F; de Oliveira, I N; Serva, M
2014-05-01
The Bose-Einstein condensation of noninteracting particles restricted to move on the sites of hierarchical diamond lattices is investigated. Using a tight-binding single-particle Hamiltonian with properly rescaled hopping amplitudes, we are able to employ an orthogonal basis transformation to exactly map it on a set of decoupled linear chains with sizes and degeneracies written in terms of the network branching parameter q and generation number n. The integrated density of states is shown to have a fractal structure of gaps and degeneracies with a power-law decay at the band bottom. The spectral dimension d(s) coincides with the network topological dimension d(f) = ln(2q)/ln(2). We perform a finite-size scaling analysis of the fraction of condensed particles and specific heat to characterize the critical behavior of the BEC transition that occurs for q > 2 (d(s) > 2). The critical exponents are shown to follow those for lattices with a pure power-law spectral density, with non-mean-field values for q < 8 (d(s) < 4). The transition temperature is shown to grow monotonically with the branching parameter, obeying the relation 1/T(c) = a + b/(q - 2).
Effects of strain on the half-metallicity and spin gapless feature of Ti2YSi (Y = Fe, Co) alloys
NASA Astrophysics Data System (ADS)
Fan, Xiaoguang; Li, Jincheng; Jin, Yingjiu
2018-05-01
Half-metals and spin gapless semiconductors (SGSs), which exhibit 100% spin polarization at the Fermi level, are considered important candidates for spintronics. Using first-principles calculations, we have investigated the effects of uniform strain and tetragonal distortion on the half-metallicity and spin gapless feature of inverse Heusler Ti2YSi (Y = Fe and Co) alloys. Results show that for uniform strains, the half-metallicity occurs in the ranges of lattice parameters from 5.938 Å to 6.535 Å for Ti2FeSi and from 5.924 Å to 6.840 Å for Ti2CoSi. Tetragonal distortions over the ranges of ‑2.0% to +2.5% and ‑2.6% to +4.1% could destroy the half-metallicity for Ti2FeSi and Ti2CoSi, respectively. On the other hand, Ti2CoSi is an SGS at lattice constants of 5.968-6.023 Å. An interesting finding is that Ti2CoSi reproduces the SGS character with increasing the lattice parameters to 6.784-6.840 Å. Small tetragonal distortions with ±0.2% will destroy the SGS character of Ti2CoSi.