Sample records for apparent maize tolerance

  1. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance.

    PubMed

    Killi, Dilek; Bussotti, Filippo; Raschi, Antonio; Haworth, Matthew

    2017-02-01

    Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (P N ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on P N was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (G s ), we observed no change or a reduction in G s with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on P N was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions. © 2016 Scandinavian Plant Physiology Society.

  2. Elucidating the apparent maize tolerance to weed competition in long-term organically managed systems

    USDA-ARS?s Scientific Manuscript database

    In a long-term cropping systems trial comparing organically and conventionally managed systems, organic maize production sustained crop yields equal to conventional methods despite higher weed levels. In 2005 and 2006, an experiment nested within the trial was conducted to analyze the mechanisms und...

  3. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.

    PubMed

    Soderlund, S; Owens, F N; Fagan, C

    2014-07-01

    Drought-tolerant maize hybrids currently are being marketed by several seed suppliers. Such hybrids were developed by phenotypic and marker-assisted selection or through genetic modification and tested by exposing these hybrids to various degrees of water restriction. As drought intensifies, crop yields and survival progressively decline. Water need differs among plants due to differences in root structure, evaporative loss, capacity to store water or enter temporary dormancy, and plant genetics. Availability of water differs widely not only with rainfall and irrigation but also with numerous soil and agronomic factors (e.g., soil type, slope, seeding rates, tillage practices). Reduced weed competition, enhanced pollen shed and silk production, and deep, robust root growth help to reduce the negative impacts of drought. Selected drought-tolerant maize hybrids have consistently yielded more grain even when drought conditions are not apparent either due to reduced use of soil water reserves before water restriction or due to greater tolerance of intermittent water shortages. In DuPont Pioneer trials, whole plant NDF digestibility of maize increased with water restriction, perhaps due to an increased leaf to stem ratio. Efficiency of water use, measured as dry matter or potential milk yield from silage per unit of available water, responded quadratically to water restriction, first increasing slightly but then decreasing as water restriction increased. For grain production, water restriction has its greatest negative impact during or after silking through reducing the number of kernels and reducing kernel filling. For silage production, water restriction during the vegetative growth stage negatively impacts plant height and biomass yield. Earlier planting and shorter season maize hybrids help to avoid midsummer heat stress during pollination and can reduce the number of irrigation events needed. Although drought tolerance of maize hybrids has been improved due to genetic selection or biotech approaches, selecting locally adapted hybrids or crops, adjusting seeding rates, and modifying tillage and irrigation practices are important factors that can improve efficiency of use of available water by grain and forage crops.

  4. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines.

    PubMed

    Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł

    2014-06-01

    Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.

  5. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    PubMed

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  6. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth

    PubMed Central

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications. PMID:29117218

  7. Physiological and molecular analysis of selected Kenyan maize lines for aluminum tolerance

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity is an important limitation to maize production in many tropical and sub-tropical acid soil areas. The aim of this study was to survey the variation in Al tolerance in a panel of maize lines adapted for Kenya and look for novel sources of Al tolerance. 112 Kenyan maize accessio...

  8. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.

    PubMed

    Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran

    2017-08-15

    Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.

  9. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings

    PubMed Central

    Mao, Hude; Wang, Hongwei; Liu, Shengxue; Li, Zhigang; Yang, Xiaohong; Yan, Jianbing; Li, Jiansheng; Tran, Lam-Son Phan; Qin, Feng

    2015-01-01

    Drought represents a major constraint on maize production worldwide. Understanding the genetic basis for natural variation in drought tolerance of maize may facilitate efforts to improve this trait in cultivated germplasm. Here, using a genome-wide association study, we show that a miniature inverted-repeat transposable element (MITE) inserted in the promoter of a NAC gene (ZmNAC111) is significantly associated with natural variation in maize drought tolerance. The 82-bp MITE represses ZmNAC111 expression via RNA-directed DNA methylation and H3K9 dimethylation when heterologously expressed in Arabidopsis. Increasing ZmNAC111 expression in transgenic maize enhances drought tolerance at the seedling stage, improves water-use efficiency and induces upregulation of drought-responsive genes under water stress. The MITE insertion in the ZmNAC111 promoter appears to have occurred after maize domestication and spread among temperate germplasm. The identification of this MITE insertion provides insight into the genetic basis for natural variation in maize drought tolerance. PMID:26387805

  10. Genome-Wide Analysis of ZmDREB Genes and Their Association with Natural Variation in Drought Tolerance at Seedling Stage of Zea mays L

    PubMed Central

    Wang, Hongwei; Xin, Haibo; Yang, Xiaohong; Yan, Jianbing; Li, Jiansheng; Tran, Lam-Son Phan; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko; Qin, Feng

    2013-01-01

    The worldwide production of maize (Zea mays L.) is frequently impacted by water scarcity and as a result, increased drought tolerance is a priority target in maize breeding programs. While DREB transcription factors have been demonstrated to play a central role in desiccation tolerance, whether or not natural sequence variations in these genes are associated with the phenotypic variability of this trait is largely unknown. In the present study, eighteen ZmDREB genes present in the maize B73 genome were cloned and systematically analyzed to determine their phylogenetic relationship, synteny with rice, maize and sorghum genomes; pattern of drought-responsive gene expression, and protein transactivation activity. Importantly, the association between the nucleic acid variation of each ZmDREB gene with drought tolerance was evaluated using a diverse population of maize consisting of 368 varieties from tropical and temperate regions. A significant association between the genetic variation of ZmDREB2.7 and drought tolerance at seedling stage was identified. Further analysis found that the DNA polymorphisms in the promoter region of ZmDREB2.7, but not the protein coding region itself, was associated with different levels of drought tolerance among maize varieties, likely due to distinct patterns of gene expression in response to drought stress. In vitro, protein-DNA binding assay demonstrated that ZmDREB2.7 protein could specifically interact with the target DNA sequences. The transgenic Arabidopsis overexpressing ZmDREB2.7 displayed enhanced tolerance to drought stress. Moreover, a favorable allele of ZmDREB2.7, identified in the drought-tolerant maize varieties, was effective in imparting plant tolerance to drought stress. Based upon these findings, we conclude that natural variation in the promoter of ZmDREB2.7 contributes to maize drought tolerance, and that the gene and its favorable allele may be an important genetic resource for the genetic improvement of drought tolerance in maize. PMID:24086146

  11. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance

    PubMed Central

    Zhang, Xiaojing; Liu, Xuyang; Zhang, Dengfeng; Tang, Huaijun; Sun, Baocheng; Li, Chunhui; Hao, Luyang; Liu, Cheng; Li, Yongxiang; Shi, Yunsu; Xie, Xiaoqing; Song, Yanchun; Wang, Tianyu; Li, Yu

    2017-01-01

    Drought is a major threat to maize growth and production. Understanding the molecular regulation network of drought tolerance in maize is of great importance. In this study, two maize inbred lines with contrasting drought tolerance were tested in the field under natural soil drought and well-watered conditions. In addition, the transcriptomes of their leaves was analyzed by RNA-Seq. In total, 555 and 2,558 genes were detected to specifically respond to drought in the tolerant and the sensitive line, respectively, with a more positive regulation tendency in the tolerant genotype. Furthermore, 4,700, 4,748, 4,403 and 4,288 genes showed differential expression between the two lines under moderate drought, severe drought and their well-watered controls, respectively. Transcription factors were enriched in both genotypic differentially expressed genes and specifically responsive genes of the tolerant line. It was speculated that the genotype-specific response of 20 transcription factors in the tolerance line and the sustained genotypically differential expression of 22 transcription factors might enhance tolerance to drought in maize. Our results provide new insight into maize drought tolerance-related regulation systems and provide gene resources for subsequent studies and drought tolerance improvement. PMID:28700592

  12. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays).

    PubMed

    Mano, Y; Omori, F

    2013-10-01

    Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines.

  13. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Qayyum, Muhammad Farooq; Ok, Yong Sik; Zia-Ur-Rehman, Muhammad; Abbas, Zaheer; Hannan, Fakhir

    2017-04-01

    Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.

  14. Effect on Soil Properties of BcWRKY1 Transgenic Maize with Enhanced Salinity Tolerance

    PubMed Central

    Zeng, Xing; Zhou, Yu; Zhu, Zhongjia; Zu, Hongyue

    2016-01-01

    Maize (Zea mays L.) is the most important cereal crop in the world. However, soil salinity has become a major problem affecting plant productivity due to arable field degradation. Thus, transgenic maize transformed with a salinity tolerance gene has been developed to further evaluate its salt tolerance and effects on agronomic traits. It is necessary to analyze the potential environmental risk of transgenic maize before further commercialization. Enzyme activities, physicochemical properties, and microbial populations were evaluated in saline and nonsaline rhizosphere soils from a transgenic maize line (WL-73) overexpressing BcWRKY1 and from wild-type (WT) maize LH1037. Measurements were taken at four growth stages (V3, V9, R1, and R6) and repeated in three consecutive years (2012–2014). There was no change in the rhizosphere soils of either WL-73 or WT plants in the four soil enzyme activities, seven soil physicochemical properties, and the populations of three soil organisms. The results of this study suggested that salinity tolerant transgenic maize had no adverse impact on soil properties in soil rhizosphere during three consecutive years at two different locations and provided a theoretical basis for environmental impact monitoring of salinity tolerant transgenic maize. PMID:27990421

  15. Flooding tolerance in interspecific introgression lines containing chromosome segments from teosinte (Zea nicaraguensis) in maize (Zea mays subsp. mays)

    PubMed Central

    Mano, Y.; Omori, F.

    2013-01-01

    Background and Aims Nicaraguan teosinte (Zea nicaraguensis), a species found in frequently flooded areas, provides useful germplasm for breeding flooding-tolerant maize (Z. mays subsp. mays). The objective of this study was to select flooding-tolerant lines using a library of introgression lines (ILs), each containing a chromosome segment from Z. nicaraguensis in the maize inbred line Mi29. Methods To produce the ILs, a single F1 plant derived from a cross between maize Mi29 and Z. nicaraguensis was backcrossed to Mi29 three times, self-pollinated four times and genotyped using simple sequence repeat markers. Flooding tolerance was evaluated at the seedling stage under reducing soil conditions. Key Results By backcrossing and selfing, a series of 45 ILs were developed covering nearly the entire maize genome. Five flooding-tolerant lines were identified from among the ILs by evaluating leaf injury. Among these, line IL#18, containing a Z. nicaraguensis chromosome segment on the long arm of chromosome 4, showed the greatest tolerance to flooding, suggesting the presence of a major quantitative trait locus (QTL) in that region. The presence of the QTL was verified by examining flooding tolerance in a population segregating for the candidate region of chromosome 4. There was no significant relationship between the capacity to form constitutive aerenchyma and flooding tolerance in the ILs, indicating the presence of other factors related to flooding tolerance under reducing soil conditions. Conclusions A flooding-tolerant genotype, IL#18, was identified; this genotype should be useful for maize breeding. In addition, because the chromosome segments of Z. nicaraguensis in the ILs cover nearly the entire genome and Z. nicaraguensis possesses several unique traits related to flooding tolerance, the ILs should be valuable material for additional QTL detection and the development of flooding-tolerant maize lines. PMID:23877074

  16. Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance

    PubMed Central

    Yang, Liming; Fountain, Jake C.; Wang, Hui; Ni, Xinzhi; Ji, Pingsheng; Lee, Robert D.; Kemerait, Robert C.; Scully, Brian T.; Guo, Baozhu

    2015-01-01

    Drought stress decreases crop growth, yield, and can further exacerbate pre-harvest aflatoxin contamination. Tolerance and adaptation to drought stress is an important trait of agricultural crops like maize. However, maize genotypes with contrasting drought tolerances have been shown to possess both common and genotype-specific adaptations to cope with drought stress. In this research, the physiological and metabolic response patterns in the leaves of maize seedlings subjected to drought stress were investigated using six maize genotypes including: A638, B73, Grace-E5, Lo964, Lo1016, and Va35. During drought treatments, drought-sensitive maize seedlings displayed more severe symptoms such as chlorosis and wilting, exhibited significant decreases in photosynthetic parameters, and accumulated significantly more reactive oxygen species (ROS) and reactive nitrogen species (RNS) than tolerant genotypes. Sensitive genotypes also showed rapid increases in enzyme activities involved in ROS and RNS metabolism. However, the measured antioxidant enzyme activities were higher in the tolerant genotypes than in the sensitive genotypes in which increased rapidly following drought stress. The results suggest that drought stress causes differential responses to oxidative and nitrosative stress in maize genotypes with tolerant genotypes with slower reaction and less ROS and RNS production than sensitive ones. These differential patterns may be utilized as potential biological markers for use in marker assisted breeding. PMID:26492235

  17. Molecular breeding for developing drought tolerant and disease resistant maize in sub Saharan Africa

    USDA-ARS?s Scientific Manuscript database

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with public and private partners, is working on developing and disseminating drought tolerant maize for sub Saharan Africa (SSA) using pedigree selection and molecular breeding. In this paper, we provide an overview of ...

  18. Maize acetylcholinesterase is a positive regulator of heat tolerance in plants.

    PubMed

    Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S

    2011-11-01

    We previously reported that native tropical zone plants showed high acetylcholinesterase (AChE) activity during heat stress, and that AChE activity in endodermal cells of maize seedlings was increased by heat treatment. However, the physiological role of AChE in heat stressed plants is still unclear. Here we report (1) tissue-specific expression and subcellular localization of maize AChE, (2) elevation of AChE activity and possible post-translational modifications of this enzyme under heat stress, and (3) involvement of AChE in plant heat stress tolerance. Maize AChE was mainly expressed in coleoptile nodes and seeds. Maize AChE fused with green fluorescent protein (GFP) was localized in extracellular spaces of transgenic rice plants. Therefore, in maize coleoptile nodes and seeds AChE mainly functions in the cell wall matrix. After heat treatment, enhanced maize AChE activity was observed by in vitro activity measurement and by in situ cytochemical staining; transcript and protein levels, however, were not changed. Protein gel blot analysis revealed two AChE isoforms (upper and lower); the upper-form gradually disappeared after heat treatment. Thus, maize AChE activity might be enhanced through a post-translational modification response to heat stress. Finally, we found that overexpression of maize AChE in transgenic tobacco plants enhanced heat tolerance relative to that of non-transgenic plants, suggesting AChE plays a positive role in maize heat tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance.

    PubMed

    Casaretto, José A; El-Kereamy, Ashraf; Zeng, Bin; Stiegelmeyer, Suzy M; Chen, Xi; Bi, Yong-Mei; Rothstein, Steven J

    2016-04-29

    Plant response mechanisms to heat and drought stresses have been considered in strategies for generating stress tolerant genotypes, but with limited success. Here, we analyzed the transcriptome and improved tolerance to heat stress and drought of maize plants over-expressing the OsMYB55 gene. Over-expression of OsMYB55 in maize decreased the negative effects of high temperature and drought resulting in improved plant growth and performance under these conditions. This was evidenced by the higher plant biomass and reduced leaf damage exhibited by the transgenic lines compared to wild type when plants were subjected to individual or combined stresses and during or after recovery from stress. A global transcriptomic analysis using RNA sequencing revealed that several genes induced by heat stress in wild type plants are constitutively up-regulated in OsMYB55 transgenic maize. In addition, a significant number of genes up-regulated in OsMYB55 transgenic maize under control or heat treatments have been associated with responses to abiotic stresses including high temperature, dehydration and oxidative stress. The latter is a common and major consequence of imposed heat and drought conditions, suggesting that this altered gene expression may be associated with the improved stress tolerance in these transgenic lines. Functional annotation and enrichment analysis of the transcriptome also pinpoint the relevance of specific biological processes for stress responses. Our results show that expression of OsMYB55 can improve tolerance to heat stress and drought in maize plants. Enhanced expression of stress-associated genes may be involved in OsMYB55-mediated stress tolerance. Possible implications for the improved tolerance to heat stress and drought of OsMYB55 transgenic maize are discussed.

  20. Soil water extraction, water use, and grain yield by drought tolerant maize on the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Anticipated water shortages pose a challenge to the sustainability of maize (Zea mays L.) production on the Texas High Plains. Adoption of drought tolerant (DT) hybrids is a critical management strategy for maize production under water limited conditions. However, limited information is available co...

  1. Development of Protoporphyrinogen Oxidase as an Efficient Selection Marker for Agrobacterium tumefaciens-Mediated Transformation of Maize

    PubMed Central

    Li, Xianggan; Volrath, Sandy L.; Nicholl, David B.G.; Chilcott, Charles E.; Johnson, Marie A.; Ward, Eric R.; Law, Marcus D.

    2003-01-01

    In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil. PMID:12972658

  2. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings.

    PubMed

    Li, Zhong-Guang; Xie, Lin-Run; Li, Xiao-Juan

    2015-04-01

    Salicylic acid (SA), 2-hydroxy benzoic acid, is a small phenolic compound with multifunction that is involved in plant growth, development, and the acquisition of stress tolerance. In recent years, hydrogen sulfide (H2S) has been found to have similar functions, but cross talk between SA and H2S in the acquisition of heat tolerance is not clear. In this study, pretreatment of maize seedlings with SA improved the survival percentage of seedlings under heat stress, indicating that SA pretreatment could improve the heat tolerance of maize seedlings. In addition, treatment with SA enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, which in turn induced accumulation of endogenous H2S. Interestingly, SA-induced heat tolerance was enhanced by addition of NaHS, a H2S donor, but weakened by specific inhibitors of H2S biosynthesis DL-propargylglycine (PAG) and its scavenger hydroxylamine (HT). Furthermore, pretreatment with paclobutrazol (PAC) and 2-aminoindan-2-phosphonic acid (AIP), inhibitors of SA biosynthesis, had no significant effect on NaHS-induced heat tolerance of maize seedlings. Similarly, significant change in the activities of phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H), the key enzymes in SA biosynthesis, and the content of endogenous SA, was not observed in maize seedlings by NaHS treatment. All of the above-mentioned results suggest that SA pretreatment could improve the heat tolerance of maize seedlings, and H2S might be a novel downstream signal molecule in SA-induced heat tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Aluminum tolerance in maize is associated with higher MATE1 gene copy number

    PubMed Central

    Maron, Lyza G.; Guimarães, Claudia T.; Kirst, Matias; Albert, Patrice S.; Birchler, James A.; Bradbury, Peter J.; Buckler, Edward S.; Coluccio, Alison E.; Danilova, Tatiana V.; Kudrna, David; Magalhaes, Jurandir V.; Piñeros, Miguel A.; Schatz, Michael C.; Wing, Rod A.; Kochian, Leon V.

    2013-01-01

    Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments. PMID:23479633

  4. Analysis of Gene Expression and Physiological Responses in Three Mexican Maize Landraces under Drought Stress and Recovery Irrigation

    PubMed Central

    Hayano-Kanashiro, Corina; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Simpson, June

    2009-01-01

    Background Drought is one of the major constraints for plant productivity worldwide. Different mechanisms of drought-tolerance have been reported for several plant species including maize. However, the differences in global gene expression between drought-tolerant and susceptible genotypes and their relationship to physiological adaptations to drought are largely unknown. The study of the differences in global gene expression between tolerant and susceptible genotypes could provide important information to design more efficient breeding programs to produce maize varieties better adapted to water limiting conditions. Methodology/Principal Findings Changes in physiological responses and gene expression patterns were studied under drought stress and recovery in three Mexican maize landraces which included two drought tolerant (Cajete criollo and Michoacán 21) and one susceptible (85-2) genotypes. Photosynthesis, stomatal conductance, soil and leaf water potentials were monitored throughout the experiment and microarray analysis was carried out on transcripts obtained at 10 and 17 days following application of stress and after recovery irrigation. The two tolerant genotypes show more drastic changes in global gene expression which correlate with different physiological mechanisms of adaptation to drought. Differences in the kinetics and number of up- and down-regulated genes were observed between the tolerant and susceptible maize genotypes, as well as differences between the two tolerant genotypes. Interestingly, the most dramatic differences between the tolerant and susceptible genotypes were observed during recovery irrigation, suggesting that the tolerant genotypes activate mechanisms that allow more efficient recovery after a severe drought. Conclusions/Significance A correlation between levels of photosynthesis and transcription under stress was observed and differences in the number, type and expression levels of transcription factor families were also identified under drought and recovery between the three maize landraces. Gene expression analysis suggests that the drought tolerant landraces have a greater capacity to rapidly modulate more genes under drought and recovery in comparison to the susceptible landrace. Modulation of a greater number of differentially expressed genes of different TF gene families is an important characteristic of the tolerant genotypes. Finally, important differences were also noted between the tolerant landraces that underlie different mechanisms of achieving tolerance. PMID:19888455

  5. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    PubMed

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  6. Modeling Preference and Willingness to Pay for Drought Tolerance (DT) in Maize in Rural Zimbabwe.

    PubMed

    Kassie, Girma T; Abdulai, Awudu; Greene, William H; Shiferaw, Bekele; Abate, Tsedeke; Tarekegne, Amsal; Sutcliffe, Chloe

    2017-06-01

    Maize plays a leading role in the food security of millions in southern Africa, yet it is highly vulnerable to the moisture stress brought about by the erratic rainfall patterns that characterize weather systems in the area. Developing and making drought-tolerant maize varieties available to farmers in the region has thus long been a key goal on the regional development agenda. Farm-level adoption of these varieties, however, depends on local perceptions of the value they add, along with willingness to pay (WTP) for it. Focusing on Zimbabwe, this research aimed at estimating the implicit prices farmers are willing to pay for drought tolerance in maize compared to other preferred traits. Using a choice experiment framework, we generated 12,600 observations from a random sample of 1,400 households in communal areas within 14 districts of Zimbabwe. Taste parameters and heterogeneities were estimated using the generalized multinomial logit model (G-MNL). The results reveal drought tolerance, grain yield, covered cob tip, cob size, and semi-flint texture to be the most preferred traits by farm households in Zimbabwe. The WTP estimates show that farmers are willing to pay a premium for drought tolerance equal to 2.56, 7, 3.2, and 5 times higher than for an additional ton of yield per acre, bigger cob size, larger grain size, and covered cob tip, respectively. We suggest designing and implementing innovative ways of promoting DT maize along with awareness-raising activities to enhance contextual understandings of drought and drought risk to speed adoption of new DT maize varieties by risk-prone farming communities. Given the high level of rural literacy and the high rate of adoption of improved maize, trait-based promotion and marketing of varieties constitutes the right strategy.

  7. MaizeGDB: Global support for maize research through open access information [abstract

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the open-access global repository for maize genetic and genomic information – from single genes that determine nutritional quality to whole genome-scale data for complex traits including yield and drought tolerance. The data and tools at MaizeGDB enable researchers from Ethiopia to Ghan...

  8. Diverse chromosomal locations of quantitative trait loci for tolerance to maize chlorotic mottle in five maize populations

    USDA-ARS?s Scientific Manuscript database

    The recent rapid emergence of maize lethal necrosis (MLN), caused by coinfection of maize with maize chlorotic mottle virus (MCMV) and a second virus usually from the family Potyviridae, is causing extensive losses for farmers in East Africa, Southeast Asia and South America. Although the genetic ba...

  9. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    PubMed

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  10. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize

    PubMed Central

    Li, Zhao; Hu, Guanghui; Liu, Xiangfeng; Zhou, Yao; Li, Yu; Zhang, Xu; Yuan, Xiaohui; Zhang, Qian; Yang, Deguang; Wang, Tianyu; Zhang, Zhiwu

    2016-01-01

    Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels—highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential. PMID:27774095

  11. Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray

    USDA-ARS?s Scientific Manuscript database

    Preharvest A. flavus infection is usually exacerbated when maize plants suffer drought stress in the late grain-fill stage. However, the field observation suggests that drought-tolerant maize lines displayed less aflatoxin contamination under the stress in comparison with the drought-sensitive maize...

  12. Radiation use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Drought tolerant (DT) maize (Zea mays L.) hybrids have potential to increase yield under drought conditions. However, little information is known about the physiological determinations of yield in DT hybrids. Our objective was to assess radiation use efficiency (RUE), biomass production, and yield ...

  13. Aluminum tolerance is associated with higher MATE1 gene copy-number in maize

    USDA-ARS?s Scientific Manuscript database

    Genome structure variation, including copy-number (CNV) and presence/absence variation (PAV), comprise a large extent of maize genetic diversity but their effect on phenotypes remains largely unexplored. Here we describe how copy-number variation in a major aluminum (Al) tolerance locus contributes ...

  14. Assessment of the potential for gene flow from transgenic maize (Zea mays L.) to eastern gamagrass (Tripsacum dactyloides L.).

    PubMed

    Lee, Moon-Sub; Anderson, Eric K; Stojšin, Duška; McPherson, Marc A; Baltazar, Baltazar; Horak, Michael J; de la Fuente, Juan Manuel; Wu, Kunsheng; Crowley, James H; Rayburn, A Lane; Lee, D K

    2017-08-01

    Eastern gamagrass (Tripsacum dactyloides L.) belongs to the same tribe of the Poaceae family as maize (Zea mays L.) and grows naturally in the same region where maize is commercially produced in the USA. Although no evidence exists of gene flow from maize to eastern gamagrass in nature, experimental crosses between the two species were produced using specific techniques. As part of environmental risk assessment, the possibility of transgene flow from maize to eastern gamagrass populations in nature was evaluated with the objectives: (1) to assess the seeds of eastern gamagrass populations naturally growing near commercial maize fields for the presence of a transgenic glyphosate-tolerance gene (cp4 epsps) that would indicate cross-pollination between the two species, and (2) to evaluate the possibility of interspecific hybridization between transgenic maize used as male parent and eastern gamagrass used as female parent. A total of 46,643 seeds from 54 eastern gamagrass populations collected in proximity of maize fields in Illinois, USA were planted in a field in 2014 and 2015. Emerged seedlings were treated with glyphosate herbicide and assessed for survival. An additional 48,000 seeds from the same 54 eastern gamagrass populations were tested for the presence of the cp4 epsps transgene markers using TaqMan ® PCR method. The results from these trials showed that no seedlings survived the herbicide treatment and no seed indicated presence of the herbicide tolerant cp4 epsps transgene, even though these eastern gamagrass populations were exposed to glyphosate-tolerant maize pollen for years. Furthermore, no interspecific hybrid seeds were produced from 135 hand-pollination attempts involving 1529 eastern gamagrass spikelets exposed to maize pollen. Together, these results indicate that there is no evidence of gene flow from maize to eastern gamagrass in natural habitats. The outcome of this study should be taken in consideration when assessing for environmental risks regarding the consequence of gene flow from transgenic maize to its wild relatives.

  15. Transcription Factors Responding to Pb Stress in Maize

    PubMed Central

    Zhang, Yanling; Ge, Fei; Hou, Fengxia; Sun, Wenting; Zheng, Qi; Zhang, Xiaoxiang; Ma, Langlang; Fu, Jun; He, Xiujing; Peng, Huanwei; Pan, Guangtang; Shen, Yaou

    2017-01-01

    Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress. PMID:28927013

  16. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  17. TTT and PIKK Complex Genes Reverted to Single Copy Following Polyploidization and Retain Function Despite Massive Retrotransposition in Maize.

    PubMed

    Garcia, Nelson; Messing, Joachim

    2017-01-01

    The TEL2, TTI1, and TTI2 proteins are co-chaperones for heat shock protein 90 (HSP90) to regulate the protein folding and maturation of phosphatidylinositol 3-kinase-related kinases (PIKKs). Referred to as the TTT complex, the genes that encode them are highly conserved from man to maize. TTT complex and PIKK genes exist mostly as single copy genes in organisms where they have been characterized. Members of this interacting protein network in maize were identified and synteny analyses were performed to study their evolution. Similar to other species, there is only one copy of each of these genes in maize which was due to a loss of the duplicated copy created by ancient allotetraploidy. Moreover, the retained copies of the TTT complex and the PIKK genes tolerated extensive retrotransposon insertion in their introns that resulted in increased gene lengths and gene body methylation, without apparent effect in normal gene expression and function. The results raise an interesting question on whether the reversion to single copy was due to selection against deleterious unbalanced gene duplications between members of the complex as predicted by the gene balance hypothesis, or due to neutral loss of extra copies. Uneven alteration of dosage either by adding extra copies or modulating gene expression of complex members is being proposed as a means to investigate whether the data supports the gene balance hypothesis or not.

  18. Change in desiccation tolerance of maize embryos during development and germination at different water potential PEG-6000 in relation to oxidative process.

    PubMed

    Huang, Hui; Song, Songquan

    2013-07-01

    Desiccation tolerance is one of the most important traits determining seed survival during storage and under stress conditions. However, the mechanism of seed desiccation tolerance is still unclear in detail. In the present study, we used a combined model system, desiccation-tolerant and -sensitive maize embryos with identical genetic background, to investigate the changes in desiccation tolerance, malonyldialdehyde (MDA) level, hydrogen peroxide (H₂O₂) content and antioxidant enzyme activity during seed development and germination in 0, -0.6 and -1.2 MPa polyethylene glycol (PEG)-6000 solutions. Our results indicated that maize embryos gradually acquired and lost desiccation tolerance during development and germination, respectively. The acquirement and loss of desiccation tolerance of embryos during development and germination were related to the ability of antioxidant enzymes including superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) to scavenge reactive oxygen species (ROS) and to control MDA content. Compared with treatment in water, PEG-6000 treatment could markedly delay the loss of desiccation tolerance of germinating embryos by delaying water uptake and time course of germination, increasing GR activity and decreasing MDA content. Our data showed the combination of antioxidant enzyme activity and MDA content is a good parameter for assessing the desiccation tolerance of maize embryos. In addition, H₂O₂ accumulated in mature embryos and PEG-treated embryos after drying, which was at least partially related to a longer embryo/seedling length in rehydration and the physiological mechanisms of priming. Copyright © 2013. Published by Elsevier Masson SAS.

  19. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    PubMed

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  20. Reduced Root Cortical Cell File Number Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    We tested the hypothesis that reduced root cortical cell file number (CCFN) would improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration. Maize genotypes with contrasting CCFN were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCFN ranged from six to 19 among maize genotypes. In mesocosms, reduced CCFN was correlated with 57% reduction of root respiration per unit of root length. Under water stress in the mesocosms, genotypes with reduced CCFN had between 15% and 60% deeper rooting, 78% greater stomatal conductance, 36% greater leaf CO2 assimilation, and between 52% to 139% greater shoot biomass than genotypes with many cell files. Under water stress in the field, genotypes with reduced CCFN had between 33% and 40% deeper rooting, 28% lighter stem water oxygen isotope enrichment (δ18O) signature signifying deeper water capture, between 10% and 35% greater leaf relative water content, between 35% and 70% greater shoot biomass at flowering, and between 33% and 114% greater yield than genotypes with many cell files. These results support the hypothesis that reduced CCFN improves drought tolerance by reducing the metabolic costs of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. The large genetic variation for CCFN in maize germplasm suggests that CCFN merits attention as a breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25355868

  1. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  2. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  3. Ear leaf photosynthesis and related parameters of transgenic and non-GMO maize hybrids

    USDA-ARS?s Scientific Manuscript database

    Hybrid maize (Zea mays L.) has undergone transformation by using transgenic technology to include d-endotoxins for insect control and tolerance for the herbicides glyphosate and glufosinate . Maize hybrids are being grown with multiple transgenic traits into their genotype (stacked-gene). Limited...

  4. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).

    PubMed

    Abiko, Tomomi; Kotula, Lukasz; Shiono, Katsuhiro; Malik, Al Imran; Colmer, Timothy David; Nakazono, Mikio

    2012-09-01

    Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging-tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis. © 2012 Blackwell Publishing Ltd.

  5. Two functionally distinct members of the MATE (multidrug and toxic compound extrusion) family of transporters potentially underlie two major Al tolerance QTL in maize

    USDA-ARS?s Scientific Manuscript database

    Crop yields are significantly reduced by aluminum (Al) toxicity on acidic soils, which comprise up to 50% of the world’s arable land. Al-activated release of ligands (such as organic acids) from the roots is a major plant Al tolerance mechanism. In maize, Al-activated root citrate exudation plays an...

  6. Structural, functional and evolutionary characterization of major drought transcription factors families in maize

    NASA Astrophysics Data System (ADS)

    Mittal, Shikha; Banduni, Pooja; Mallikarjuna, Mallana G.; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2018-05-01

    Drought is one of the major threats to maize production. In order to improve the production and to breed tolerant hybrids, understanding the genes and regulatory mechanisms during drought stress is important. Transcription factors (TFs) play a major role in gene regulation and many TFs have been identified in response to drought stress. In our experiment, a set of 15 major TF families comprising 1436 genes was structurally and functionally characterized using in-silico tools and a gene expression assay. All 1436 genes were mapped on 10 chromosome of maize. The functional annotation indicated the involvement of these genes in ABA signaling, ROS scavenging, photosynthesis, stomatal regulation, and sucrose metabolism. Duplication was identified as the primary force in divergence and expansion of TF families. Phylogenetic relationship was developed individually for each TF family as well as combined TF families. Phylogenetic analysis grouped the TF family of genes into TF-specific and mixed groups. Phylogenetic analysis of genes belonging to various TF families suggested that the origin of TFs occurred in the lineage of maize evolution. Gene structure analysis revealed that more number of genes were intron-rich as compared to intronless genes. Drought-responsive CRE’s such as ABREA, ABREB, DRE1 and DRECRTCOREAT have been identified. Expression and interaction analyses identified leaf-specific bZIP TF, GRMZM2G140355, as a potential contributor toward drought tolerance in maize. We also analyzed protein-protein interaction network of 269 drought-responsive genes belonging to different drought-related TFs. The information generated on structural and functional characteristics, expression and interaction of the drought-related TF families will be useful to decipher the drought tolerance mechanisms and to derive drought-tolerant genotypes in maize.

  7. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  8. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.

    PubMed

    Thirunavukkarasu, Nepolean; Hossain, Firoz; Arora, Kanika; Sharma, Rinku; Shiriga, Kaliyugam; Mittal, Swati; Mohan, Sweta; Namratha, Pottekatt Mohanlal; Dogga, Sreelatha; Rani, Tikka Shobha; Katragadda, Sumalini; Rathore, Abhishek; Shah, Trushar; Mohapatra, Trilochan; Gupta, Hari Shankar

    2014-12-24

    Earlier studies were focused on the genetics of temperate and tropical maize under drought. We identified genetic loci and their association with functional mechanisms in 240 accessions of subtropical maize using a high-density marker set under water stress. Out of 61 significant SNPs (11 were false-discovery-rate-corrected associations), identified across agronomic traits, models, and locations by subjecting the accessions to water stress at flowering stage, 48% were associated with drought-tolerant genes. Maize gene models revealed that SNPs mapped for agronomic traits were in fact associated with number of functional traits as follows: stomatal closure, 28; flowering, 15; root development, 5; detoxification, 4; and reduced water potential, 2. Interactions of these SNPS through the functional traits could lead to drought tolerance. The SNPs associated with ABA-dependent signalling pathways played a major role in the plant's response to stress by regulating a series of functions including flowering, root development, auxin metabolism, guard cell functions, and scavenging reactive oxygen species (ROS). ABA signalling genes regulate flowering through epigenetic changes in stress-responsive genes. ROS generated by ABA signalling are reduced by the interplay between ethylene, ABA, and detoxification signalling transductions. Integration of ABA-signalling genes with auxin-inducible genes regulates root development which in turn, maintains the water balance by regulating electrochemical gradient in plant. Several genes are directly or indirectly involved in the functioning of agronomic traits related to water stress. Genes involved in these crucial biological functions interacted significantly in order to maintain the primary as well as exclusive functions related to coping with water stress. SNPs associated with drought-tolerant genes involved in strategic biological functions will be useful to understand the mechanisms of drought tolerance in subtropical maize.

  10. The role of photosynthesis in improving maize tolerance to ozone pollution

    USDA-ARS?s Scientific Manuscript database

    Ground-level ozone pollution has more than doubled since pre-industrial times, and is currently estimated to cause up to 10% reductions in U.S. maize yields annually. Maize productivity is reduced by exposure to ozone as it diffuses through stomatal pores and reacts to form damaging reactive oxygen ...

  11. Genetic relationships and structure among open pollinated maize varieties adapted to eastern and southern Africa using microsatellite markers

    USDA-ARS?s Scientific Manuscript database

    The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the national agricultural systems (NARS) in sub-Saharan Africa (SSA), have developed various stress-tolerant and more nutritious open-pollinated varieties (OPVs) of maize that are suitable for smallholder farmers’ g...

  12. Induction of glutathione synthesis and glutathione reductase activity by abiotic stresses in maize and wheat.

    PubMed

    Kocsy, Gábor; Szalai, Gabriella; Galiba, Gábor

    2002-06-21

    The effect of different abiotic stresses (extreme temperatures and osmotic stress) on the synthesis of glutathione and hydroxymethylglutathione, on the ratio of the reduced to oxidised forms of these thiols (GSH/GSSG, hmGSH/hmGSSG), and on the glutathione reductase (GR) activity was studied in maize and wheat genotypes having different sensitivity to low temperature stress. Cold treatment induced a greater increase in total glutathione (TG) content and in GR activity in tolerant genotypes of both species than in sensitive ones. The GSH/GSSG and hmGSH/hmGSSG ratios were increased by this treatment only in the frost-tolerant wheat variety. High-temperature stress increased the TG content and the GSH/GSSG ratio only in the chilling-sensitive maize genotype, but GR activity was greater after this treatment in both maize genotypes. Osmotic stress resulted in a great increase in the TG content in wheat and the GR activity in maize. The amount of total hydroxymethylglutathione increased following all stress treatments. These results indicate the involvement of these antioxidants in the stress responses of wheat and maize.

  13. Arthropods dataset from different genetically modified maize events and associated controls

    NASA Astrophysics Data System (ADS)

    Pálinkás, Zoltán; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; Kiss, József; North, Samuel; Woodward, Guy; Balog, Adalbert

    2018-02-01

    Arthropods from four genetically modified (GM) maize hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant+herbicide tolerant and coleopteran resistant and herbicide tolerant) and non-GM varieties were sampled during a two-year field assessment. A total number of 363 555 arthropod individuals were collected. This represents the most comprehensive arthropod dataset from GM maize, and together with weed data, is reasonable to determine functional groups of arthropods and interactions between species. Trophic groups identified from both phytophagous and predatory arthropods were previously considered non-target organisms on which possible detrimental effects of Bacillus thuringiensis (Bt) toxins may have been directly (phytophagous species) or indirectly (predators) detected. The high number of individuals and species and their dynamics through the maize growing season can predict that interactions are highly correlational, and can thus be considered a useful tool to assess potential deleterious effects of Bt toxins on non-target organisms, serving to develop biosafety risk hypotheses for invertebrates exposed to GM maize plants.

  14. Proline accumulation and its implication in cold tolerance of regenerable maize callus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.R.; Widholm, J.M.

    1987-03-01

    Embryogenic callus of maize (Zea mays L.) inbreds B37wx, H99, H99/sup 3/H95, Mo17, and Pa91 accumulated proline to levels 2.1 to 2.5 times that of control callus when subjected to mannitol-induced water stress, cool temperatures (19/sup 0/C) and abscisic acid (ABA). A combination of 0.53 molar mannitol plus 0.1 millimolar ABA induced a proline accumulation to about 4.5 times that of control callus, equivalent to approximately 0.18 millimoles proline per gram fresh weight of callus. Proline accumulation was directly related to the level of mannitol in the medium. Levels of ABA greater than 1.0 micromolar were required in the mediummore » to induce proline accumulation comparable to that induced by mannitol. Mannitol and ABA levels that induced maximum accumulation of proline also inhibited callus growth and increased tolerance to cold. Proline (12 millimolar) added to culture media also increased the tolerance of callus to 4/sup 0/C. The increased cold tolerance induced by the combination of mannitol and ABA has permitted the storage of the maize inbreds A632, A634Ht, B37wx, C103DTrf, Fr27rhm, H99, Pa91, Va35, and W117Ht at 4/sup 0/C for 90 days which is more than double the typical survival time of callus. These studies show that proline accumulation increase the cold tolerance of regenerable maize callus.« less

  15. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  16. Real-time quantitative polymerase chain reaction methods for four genetically modified maize varieties and maize DNA content in food.

    PubMed

    Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre

    2002-01-01

    Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.

  17. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

    PubMed

    Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

    2016-04-01

    Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-03

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants.

  19. Potential Accumulative Effect of the Herbicide Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities over a Three-Year Cultivation Period

    PubMed Central

    Barriuso, Jorge; Marín, Silvia; Mellado, Rafael P.

    2011-01-01

    Background Glyphosate is a herbicide that is liable to be used in the extensive cultivation of glyphosate-tolerant cultivars. The potential accumulation of the relative effect of glyphosate on the rhizobacterial communities of glyphosate-tolerant maize has been monitored over a period of three years. Methodology/Principal Findings The composition of rhizobacterial communities is known to vary with soil texture, hence, the analyses have been performed in two agricultural fields with a different soil texture. The accumulative effects of glyphosate have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The relative composition of the rhizobacterial communities does vary in each field over the three-year period. The overall distribution of the bacterial phyla seems to change from one year to the next similarly in the untreated and glyphosate-treated soils in both fields. The two methods used to estimate bacterial diversity offered consistent results and are equally suitable for diversity assessment. Conclusions/Significance The glyphosate treatment during the three-year period of seasonal cultivation in two different fields did not seem to significantly change the maize rhizobacterial communities when compared to those of the untreated soil. This may be particularly relevant with respect to a potential authorisation to cultivate glyphosate-tolerant maize in the European Union. PMID:22096595

  20. Dry Priming of Maize Seeds Reduces Aluminum Stress

    PubMed Central

    Alcântara, Berenice Kussumoto; Machemer-Noonan, Katja; Silva Júnior, Francides Gomes; Azevedo, Ricardo Antunes

    2015-01-01

    Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming. PMID:26714286

  1. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize1[OPEN

    PubMed Central

    Zhan, Ai; Schneider, Hannah

    2015-01-01

    An emerging paradigm is that root traits that reduce the metabolic costs of soil exploration improve the acquisition of limiting soil resources. Here, we test the hypothesis that reduced lateral root branching density will improve drought tolerance in maize (Zea mays) by reducing the metabolic costs of soil exploration, permitting greater axial root elongation, greater rooting depth, and thereby greater water acquisition from drying soil. Maize recombinant inbred lines with contrasting lateral root number and length (few but long [FL] and many but short [MS]) were grown under water stress in greenhouse mesocosms, in field rainout shelters, and in a second field environment with natural drought. Under water stress in mesocosms, lines with the FL phenotype had substantially less lateral root respiration per unit of axial root length, deeper rooting, greater leaf relative water content, greater stomatal conductance, and 50% greater shoot biomass than lines with the MS phenotype. Under water stress in the two field sites, lines with the FL phenotype had deeper rooting, much lighter stem water isotopic signature, signifying deeper water capture, 51% to 67% greater shoot biomass at flowering, and 144% greater yield than lines with the MS phenotype. These results entirely support the hypothesis that reduced lateral root branching density improves drought tolerance. The FL lateral root phenotype merits consideration as a selection target to improve the drought tolerance of maize and possibly other cereal crops. PMID:26077764

  2. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging

    PubMed Central

    Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong

    2018-01-01

    The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique. PMID:29686693

  3. Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging.

    PubMed

    Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong

    2018-01-01

    The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique.

  4. Responses of Nitrogen Utilization and Apparent Nitrogen Loss to Different Control Measures in the Wheat and Maize Rotation System

    PubMed Central

    Peng, Zhengping; Liu, Yanan; Li, Yingchun; Abawi, Yahya; Wang, Yanqun; Men, Mingxin; An-Vo, Duc-Anh

    2017-01-01

    Nitrogen (N) is an essential macronutrient for plant growth and excessive application rates can decrease crop yield and increase N loss into the environment. Field experiments were carried out to understand the effects of N fertilizers on N utilization, crop yield and net income in wheat and maize rotation system of the North China Plain (NCP). Compared to farmers’ N rate (FN), the yield of wheat and maize in reduction N rate by 21–24% based on FN (RN) was improved by 451 kg ha-1, N uptakes improved by 17 kg ha-1 and net income increased by 1671 CNY ha-1, while apparent N loss was reduced by 156 kg ha-1. The controlled-release fertilizer with a 20% reduction of RN (CRF80%), a 20% reduction of RN together with dicyandiamide (RN80%+DCD) and a 20% reduction of RN added with nano-carbon (RN80%+NC) all resulted in an improvement in crop yield and decreased the apparent N losses compared to RN. Contrasted with RN80%+NC, the total crop yield in RN80%+DCD improved by 1185 kg ha-1, N uptake enhanced by 9 kg ha-1 and net income increased by 3929 CNY ha-1, while apparent N loss was similar. Therefore, a 37–39% overall decrease in N rate compared to farmers plus the nitrification inhibitor, DCD, was effective N control measure that increased crop yields, enhanced N efficiencies, and improved economic benefits, while mitigating apparent N loss. There is considerable scope for improved N use effieincy in the intensive wheat -maize rotation of the NCP. PMID:28228772

  5. Effects of exogenous xylanase on performance, nutrient digestibility, volatile fatty acid production and digestive tract thermal profiles of broilers fed on wheat- or maize-based diet.

    PubMed

    Masey-O'Neill, H V; Singh, M; Cowieson, A J

    2014-01-01

    1. A previous experiment reported that caecal temperature was negatively correlated with d 49 feed conversion ratio (FCR). This increased temperature in the caeca may indicate a prebiotic effect. An experiment was designed to investigate whether caecal temperature was affected in diets based on maize and whether other portions of the tract were affected. 2. A total of 25 Ross 308-d-old male broilers were allocated to each of 8 replicate pens per treatment. Treatments followed a 2 × 3 factorial design: two diets based on wheat or maize and three levels of enzyme addition, 0, 16 000 or 32 000 BXU/kg. Growth performance was assessed between d 1 and 49. Digestibility measurements were taken at d 28 and 49. On d 49, the excised small and large intestine of each bird was thermally imaged, weighed and volatile fatty acids (VFA) measured. 3. On d 28 and d 49, birds on the maize diets had higher feed intake and weight gain than those offered wheat diets. Additionally, on d 28, birds that received the maize diet had lower FCR than those offered the wheat diet. Enzyme improved FCR at d 49, independently of cereal. On d 28, enzyme improved the coefficient of apparent ileal DM digestibility and the coefficient of apparent ileal nitrogen digestibility. Enzyme only improved apparent ileal digestible energy in wheat-based diets (interactive term). On d 49, all digestibility parameters were improved by enzyme. Enzyme increased gizzard weight in maize-fed birds and the caeca of those fed wheat were heavier. The higher enzyme dose decreased duodenal temperature. In summary of VFA data, wheat-based diets produced more total VFAs and the total amount also increased with enzyme. 4. It appears from this study that there is equal potential in both wheat and maize diets for xylanase to improve performance of broilers probably through different mechanisms.

  6. Impact of cadmium stress on two maize hybrids.

    PubMed

    Vatehová, Zuzana; Malovíková, Anna; Kollárová, Karin; Kučerová, Danica; Lišková, Desana

    2016-11-01

    Some physiological parameters and composition of the root cell walls of two maize hybrids (monocots), the sensitive Novania and the tolerant Almansa were studied after treatment with cadmium cations. After 10 days of Cd 2+ treatment (1 × 10 -5  M and 5 × 10 -5  M), plant growth inhibition, in the sensitive hybrid in particular, as well as a certain alteration in root structure and pigment content were observed. The Cd 2+ accumulation was ten times higher in the roots than in the shoots. Chemical analyses and atomic absorption spectroscopy proved that Cd 2+ modified the composition of the root cell walls by a significant increase in the content of alkali-soluble polysaccharide fractions, particularly in the tolerant hybrid. An increase in the content of phenolic compounds, mainly in the tolerant hybrid, and a decrease in protein content were observed in the presence of Cd 2+ in the alkali fractions. The results indicate that the changes in the cell wall polysaccharide fractions and their proportion to lignin and cellulose are obviously involved in the tolerance and/or defence against Cd 2+ of the maize hybrids studied. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres.

    PubMed

    Nelson, Donald E; Repetti, Peter P; Adams, Tom R; Creelman, Robert A; Wu, Jingrui; Warner, David C; Anstrom, Don C; Bensen, Robert J; Castiglioni, Paolo P; Donnarummo, Meghan G; Hinchey, Brendan S; Kumimoto, Roderick W; Maszle, Don R; Canales, Roger D; Krolikowski, Katherine A; Dotson, Stanton B; Gutterson, Neal; Ratcliffe, Oliver J; Heard, Jacqueline E

    2007-10-16

    Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought.

  8. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres

    PubMed Central

    Nelson, Donald E.; Repetti, Peter P.; Adams, Tom R.; Creelman, Robert A.; Wu, Jingrui; Warner, David C.; Anstrom, Don C.; Bensen, Robert J.; Castiglioni, Paolo P.; Donnarummo, Meghan G.; Hinchey, Brendan S.; Kumimoto, Roderick W.; Maszle, Don R.; Canales, Roger D.; Krolikowski, Katherine A.; Dotson, Stanton B.; Gutterson, Neal; Ratcliffe, Oliver J.; Heard, Jacqueline E.

    2007-01-01

    Commercially improved crop performance under drought conditions has been challenging because of the complexity of the trait and the multitude of factors that influence yield. Here we report the results of a functional genomics approach that identified a transcription factor from the nuclear factor Y (NF-Y) family, AtNF-YB1, which acts through a previously undescribed mechanism to confer improved performance in Arabidopsis under drought conditions. An orthologous maize transcription factor, ZmNF-YB2, is shown to have an equivalent activity. Under water-limited conditions, transgenic maize plants with increased ZmNF-YB2 expression show tolerance to drought based on the responses of a number of stress-related parameters, including chlorophyll content, stomatal conductance, leaf temperature, reduced wilting, and maintenance of photosynthesis. These stress adaptations contribute to a grain yield advantage to maize under water-limited environments. The application of this technology has the potential to significantly impact maize production systems that experience drought. PMID:17923671

  9. Strategies to reduce exposure of fumonisins from complementary foods in rural Tanzania.

    PubMed

    Kimanya, Martin E; De Meulenaer, Bruno; Van Camp, John; Baert, Katleen; Kolsteren, Patrick

    2012-10-01

    Feeding infants with maize can expose them to fumonisin mycotoxins. We assessed fumonisin exposure from complementary foods in rural Tanzania and determined strategies to reduce the exposure. We conducted a cross-sectional study in four villages of Tarakea division, Northern Tanzania. We used a repeat 24-hour dietary recall to collect data of maize consumption as complementary food for 254 infants aged 6-8 months. Fumonisin concentrations in the maize were also estimated. Fumonisin exposure was assessed using @risk analysis software. With the software, several maximum fumonisin contamination and maize consumption patterns were combined in order to determine effective strategies for minimizing fumonisin exposure. Of the infants, 89% consumed maize at amounts up to 158g/person/day (mean; 43g/person/day±28). The maize was contaminated with fumonisins at levels up to 3201µgkg(-1) . Risk of fumonisin intake above the provisional maximum tolerable daily limit of 2µgkg(-1) body weight was 15% (95% confidence interval; 10-19). The risk was minimized when the maximum contamination was set at 150µgkg(-1) . The risk was also minimized when the maximum consumption was set at 20g/child/day while keeping the maximum contamination at the European Union (EU) maximum tolerated limit (MTL) of 1000µgkg(-1) . Considering the economical and technological limitations of adopting good agricultural practices in rural Tanzania, it is practically difficult to reduce contamination in maize to 150µgkg(-1) . We suggest adoption of the EU MTL of 1000µgkg(-1) for fumonisins in maize and reduction, by replacement with another cereal, of the maize component in complementary foods to a maximum intake of 20g/child/day. © 2011 Blackwell Publishing Ltd.

  10. Differential metabolome analysis of field-grown maize kernels in response to drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought stress constrains maize kernel development and can exacerbate aflatoxin contamination. In order to identify drought responsive metabolites and explore pathways involved in kernel responses, a metabolomics analysis was conducted on kernels from a drought tolerant line, Lo964, and a sensitive ...

  11. Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.

    PubMed

    He, Lilong; Ma, Xiaoling; Li, Zhenzhen; Jiao, Zhengli; Li, Yongqing; Ow, David W

    2016-07-01

    Previously the Arabidopsis (Arabidopsis thaliana) zinc finger protein OXIDATIVE STRESS2 (AtOXS2) and four OXS2-like (AtO2L) family members were described to play a role in stress tolerance and stress escape. For stress escape, SOC1 was a target of AtOXS2. However, for stress tolerance, the downstream targets were not identified. We cloned two OXS2 homolog genes from sweet corn, ZmOXS2b and ZmO2L1 Both genes are transiently inducible by Cd treatment. When expressed in Arabidopsis, each enhances tolerance against cadmium. Further analysis showed that ZmOXS2b and ZmO2L1 proteins enhance Cd tolerance in Arabidopsis by activating at least one target gene, that encoding a putative S-adenosyl-l-Met-dependent methyltransferase superfamily protein (AT5G37990), which we named CIMT1 This activation involves the in vivo interaction with a segment of the CIMT1 promoter that contains a BOXS2 motif previously identified as the binding element for AtOXS2. More importantly, CIMT1 is induced by Cd treatment, and overexpression of this gene alone was sufficient to enhance Cd tolerance in Arabidopsis. The connection of ZmOXS2b and ZmO2L1 to Arabidopsis CIMT1 suggests a similar network may exist in maize (Zea mays) and may provide a clue to possibly using a CIMT1 maize homolog to engineer stress tolerance in a major crop. © 2016 American Society of Plant Biologists. All Rights Reserved.

  12. Are apparent negative effects of feeding GM MON810 maize to Atlantic salmon, Salmo salar, caused by confounding factors?

    PubMed

    Sissener, Nini H; Hemre, Gro-Ingunn; Lall, Santosh P; Sagstad, Anita; Petersen, Kjell; Williams, Jason; Rohloff, Jens; Sanden, Monica

    2011-07-01

    The present study was conducted to follow up on apparent differences in growth, relative organ sizes, cellular stress and immune function in Atlantic salmon fed feed containing GM Bacillus thuringiensis maize compared with feed containing the non-modified parental maize line. Gene expression profiling on the distal intestinal segment and liver was performed by microarray, and selected genes were followed up by quantitative PCR (qPCR). In the liver, qPCR revealed some differentially regulated genes, including up-regulation of gelsolin precursor, down-regulation of ferritin heavy subunit and a tendency towards down-regulation of metallothionein (MT)-B. This, combined with the up-regulation of anti-apoptotic protein NR13 and similar tendencies for ferritin heavy chain and MT-A and -B in the distal intestine, suggests changes in cellular stress/antioxidant status. This corresponds well with and strengthens previous findings in these fish. To exclude possible confounding factors, the maize ingredients were analysed for mycotoxins and metabolites. The GM maize contained 90 μg/kg of deoxynivalenol (DON), while the non-GM maize was below the detection limit. Differences were also observed in the metabolite profiles of the two maize varieties, some of which seemed connected to the mycotoxin level. The effects on salmon observed in the present and previous studies correspond relatively well with the effects of DON as reported in the literature for other production animals, but knowledge regarding effects and harmful dose levels in fish is scarce. Thus, it is difficult to conclude whether the observed effects are caused by the DON level or by some other aspect of the GM maize ingredient.

  13. 77 FR 41353 - GENECTIVE SA; Availability of Petition for Determination of Nonregulated Status of Maize...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Engineered for Herbicide Tolerance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... VCO-[Oslash]1981-5, which has been genetically engineered for tolerance to the herbicide glyphosate...- [Oslash]1981-5, which has been genetically engineered for tolerance to the herbicide glyphosate, stating...

  14. The maize CorA/MRS2/MGT-type Mg transporter, ZmMGT10, responses to magnesium deficiency and confers low magnesium tolerance in transgenic Arabidopsis.

    PubMed

    Li, Hongyou; Wang, Ning; Ding, Jianzhou; Liu, Chan; Du, Hanmei; Huang, Kaifeng; Cao, Moju; Lu, Yanli; Gao, Shibin; Zhang, Suzhi

    2017-10-01

    ZmMGT10 was specifically expressed in maize roots and induced by a deficiency of magnesium. Overexpression of ZmMGT10 restored growth deficiency of the Salmonella typhimurium MM281 strain and enhanced the tolerance in Arabidopsis to stress induced by low magnesium levels by increasing uptake of Mg 2+ via roots. CorA/MRS2/MGT-type Mg 2+ transporters play a significant role in maintaining magnesium (Mg) homeostasis in plants. Although the maize CorA/MRS2/MGT family comprises of 12 members, currently no member has been functionally characterized. Here, we report the isolation and functional characterization of ZmMGT10 from the maize MRS2/MGT gene family. ZmMGT10 has a typical structure feature which includes two conserved TMs near the C-terminal end and an altered AMN tripeptide motif. The high sequence similarity and close phylogenetic relationship indicates that ZmMGT10 is probably the counterpart of Arabidopsis AtMGT6. The complementation of the Salmonella typhimurium mutated MM281 strain indicates that ZmMGT10 possesses the ability to transport Mg 2+ . ZmMGT10 was specifically expressed in the plant roots and it can be stimulated by a deficiency of Mg. Transgenic Arabidopsis plants which overexpressed ZmMGT10 grew more vigorously than wild-type plants under low Mg conditions, exhibited by longer root length, higher plant fresh weight and chlorophyll content, suggesting ZmMGT10 was essential for plant growth and development under low Mg conditions. Further investigations found that high accumulation of Mg 2+ occurred in transgenic plants attributed to improved Mg 2+ uptake and thereby enhanced tolerance to Mg deficiency. Results from this investigation illustrate that ZmMGT10 is a Mg transporter of maize which can enhance the tolerance to Mg deficient conditions by improving Mg 2+ uptake in the transgenic plants of Arabidopsis.

  15. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions

    PubMed Central

    Ganie, Arshid Hussain; Ahmad, Altaf; Pandey, Renu; Aref, Ibrahim M.; Yousuf, Peerzada Yasir; Ahmad, Sayeed; Iqbal, Muhammad

    2015-01-01

    Background Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. Methodology/Principal Findings A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. Conclusion The new insights generated on the maize metabolome in resposne to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize. PMID:26090681

  16. Evidence for the Critical Role of Sucrose Synthase for Anoxic Tolerance of Maize Roots using a Double Mutant

    PubMed Central

    Ricard, Bérénice; Toai, Tara Van; Chourey, Prem; Saglio, Pierre

    1998-01-01

    The induction of the sucrose synthase (SuSy) gene (SuSy) by low O2, low temperature, and limiting carbohydrate supply suggested a role in carbohydrate metabolism under stress conditions. The isolation of a maize (Zea mays L.) line mutant for the two known SuSy genes but functionally normal showed that SuSy activity might not be required for aerobic growth and allowed the possibility of investigating its importance during anaerobic stress. As assessed by root elongation after return to air, hypoxic pretreatment improved anoxic tolerance, in correlation with the number of SuSy genes and the level of SuSy expression. Furthermore, root death in double-mutant seedlings during anoxic incubation could be attributed to the impaired utilization of sucrose (Suc). Collectively, these data provide unequivocal evidence that Suc is the principal C source and that SuSy is the main enzyme active in Suc breakdown in roots of maize seedlings deprived of O2. In this situation, SuSy plays a critical role in anoxic tolerance. PMID:9536049

  17. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    PubMed

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  18. “Omics” of Maize Stress Response for Sustainable Food Production: Opportunities and Challenges

    PubMed Central

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli

    2014-01-01

    Abstract Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study. PMID:25401749

  19. Transgenic maize event TC1507: Global status of food, feed, and environmental safety

    PubMed Central

    Baktavachalam, Gajendra B; Delaney, Bryan; Fisher, Tracey L; Ladics, Gregory S; Layton, Raymond J; Locke, Mary EH; Schmidt, Jean; Anderson, Jennifer A; Weber, Natalie N; Herman, Rod A; Evans, Steven L

    2015-01-01

    Maize (Zea mays) is a widely cultivated cereal that has been safely consumed by humans and animals for centuries. Transgenic or genetically engineered insect-resistant and herbicide-tolerant maize, are commercially grown on a broad scale. Event TC1507 (OECD unique identifier: DAS-Ø15Ø7–1) or the Herculex®# I trait, an insect-resistant and herbicide-tolerant maize expressing Cry1F and PAT proteins, has been registered for commercial cultivation in the US since 2001. A science-based safety assessment was conducted on TC1507 prior to commercialization. The safety assessment addressed allergenicity; acute oral toxicity; subchronic toxicity; substantial equivalence with conventional comparators, as well as environmental impact. Results from biochemical, physicochemical, and in silico investigations supported the conclusion that Cry1F and PAT proteins are unlikely to be either allergenic or toxic to humans. Also, findings from toxicological and animal feeding studies supported that maize with TC1507 is as safe and nutritious as conventional maize. Maize with TC1507 is not expected to behave differently than conventional maize in terms of its potential for invasiveness, gene flow to wild and weedy relatives, or impact on non-target organisms. These safety conclusions regarding TC1507 were acknowledged by over 20 regulatory agencies including United States Environment Protection Agency (US EPA), US Department of Agriculture (USDA), Canadian Food Inspection Agency (CFIA), and European Food Safety Authority (EFSA) before authorizing cultivation and/or food and feed uses. A comprehensive review of the safety studies on TC1507, as well as some benefits, are presented here to serve as a reference for regulatory agencies and decision makers in other countries where authorization of TC1507 is or will be pursued. PMID:26018138

  20. Transgenic maize event TC1507: Global status of food, feed, and environmental safety.

    PubMed

    Baktavachalam, Gajendra B; Delaney, Bryan; Fisher, Tracey L; Ladics, Gregory S; Layton, Raymond J; Locke, Mary Eh; Schmidt, Jean; Anderson, Jennifer A; Weber, Natalie N; Herman, Rod A; Evans, Steven L

    2015-01-01

    Maize (Zea mays) is a widely cultivated cereal that has been safely consumed by humans and animals for centuries. Transgenic or genetically engineered insect-resistant and herbicide-tolerant maize, are commercially grown on a broad scale. Event TC1507 (OECD unique identifier: DAS-Ø15Ø7-1) or the Herculex®(#) I trait, an insect-resistant and herbicide-tolerant maize expressing Cry1F and PAT proteins, has been registered for commercial cultivation in the US since 2001. A science-based safety assessment was conducted on TC1507 prior to commercialization. The safety assessment addressed allergenicity; acute oral toxicity; subchronic toxicity; substantial equivalence with conventional comparators, as well as environmental impact. Results from biochemical, physicochemical, and in silico investigations supported the conclusion that Cry1F and PAT proteins are unlikely to be either allergenic or toxic to humans. Also, findings from toxicological and animal feeding studies supported that maize with TC1507 is as safe and nutritious as conventional maize. Maize with TC1507 is not expected to behave differently than conventional maize in terms of its potential for invasiveness, gene flow to wild and weedy relatives, or impact on non-target organisms. These safety conclusions regarding TC1507 were acknowledged by over 20 regulatory agencies including United States Environment Protection Agency (US EPA), US Department of Agriculture (USDA), Canadian Food Inspection Agency (CFIA), and European Food Safety Authority (EFSA) before authorizing cultivation and/or food and feed uses. A comprehensive review of the safety studies on TC1507, as well as some benefits, are presented here to serve as a reference for regulatory agencies and decision makers in other countries where authorization of TC1507 is or will be pursued.

  1. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects.

    PubMed

    Wang, Jun-ling; Li, Tao; Liu, Gao-yuan; Smith, Joshua M; Zhao, Zhi-wei

    2016-02-25

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg(-1)). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  2. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis.

    PubMed

    Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin

    2018-01-01

    Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.

  3. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ling; Li, Tao; Liu, Gao-Yuan; Smith, Joshua M.; Zhao, Zhi-Wei

    2016-02-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg-1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  4. Constraints on water use efficiency of drought tolerant maize grown in a semi-arid environment

    USDA-ARS?s Scientific Manuscript database

    Identifying the constraints on crop water use efficiency (WUE) will help develop strategies to mitigate these limitations. The objectives of this research were to 1) develop a boundary function for maize using data (n=260) from research projects conducted at Bushland, TX, and 2) compare the yields o...

  5. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming.

    PubMed

    Zhang, Yi; Zhao, Yanxia

    2017-01-01

    The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010-2039 relative to 1976-2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific.

  6. Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming

    PubMed Central

    Zhang, Yi

    2017-01-01

    The use of modern crop varieties is a dominant method of obtaining high yields in crop production. Efforts to identify suitable varieties, with characteristics that would increase crop yield under future climate conditions, remain essential to developing sustainable agriculture and food security. This work aims to evaluate potential genotypic adaptations (i.e., using varieties with increased ability to produce desirable grain numbers under high temperatures and with enhanced thermal time requirements during the grain-filling period) to cope with the negative impacts of climate change on maize yield. The contributions of different options were investigated at six sites in the North China Plain using the APSIM model and the outputs of 8 GCMs under RCP4.5 scenarios. It was found that without considering adaptation options, mean maize yield would decrease by 7~18% during 2010–2039 relative to 1976–2005. A large decrease in grain number relative to stabilized grain weight decreased maize yield under future climate scenarios. Using heat-tolerant varieties, maize yield could increase on average by 6% to 10%. Using later maturing varieties, e.g., enhanced thermal time requirements during the grain-filling period, maize yield could increase by 7% to 10%. The optimal adaptation options were site specific. PMID:28459880

  7. Comparison of broiler performance and carcass yields when fed transgenic maize grain containing event DP-O9814O-6 and processed fractions from transgenic soybeans containing event DP-356O43-5.

    PubMed

    McNaughton, J; Roberts, M; Rice, D; Smith, B; Hinds, M; Delaney, B; Iiams, C; Sauber, T

    2011-08-01

    The performance of broilers fed diets containing maize grain from event DP-Ø9814Ø-6 (98140; gat4621 and zm-hra genes) and processed fractions (meal, hulls, and oil) from soybeans containing event DP-356Ø43-5 (356043; gat4601 and gm-hra genes) was evaluated in a 42-d feeding study. Diets were produced with nontransgenic maize grain and soybean fractions from controls with comparable genetic backgrounds to 98140 and 356043 (control), 98140 maize and 356043 soybean (98140 + 356043), or 3 commercially available nontransgenic maize and soybean combinations. Ross 708 broilers (n = 120/group; 50% male, 50% female) were fed diets in 3 phases: starter (d 0 to 21), grower (d 22 to 35), and finisher (d 36 to 42). Starter diets contained (on average) 63% maize and 28% soybean meal, grower diets 66% maize and 26% soybean meal, and finisher diets 72% maize and 21% soybean meal; soybean hulls and oils were held constant at 1.0 and 0.5%, respectively, across all diets in all phases. Weight gain, feed intake, and mortality-adjusted feed efficiency were calculated for d 0 to 42. Standard organ and carcass yield data were collected on d 42. Data were analyzed using a mixed model ANOVA with differences between control and 98140 + 356043 group means considered significant at P < 0.05. Reference group data were used only to estimate experimental variability and to generate tolerance intervals. No significant differences were observed in weight gain, mortality, mortality-adjusted feed efficiency, organ yields, or carcass yields between broilers consuming diets produced with 98140 + 356043 and those consuming diets produced with control maize and soybean fractions. All values of response variables evaluated in the control and 98140 + 356043 groups fell within calculated tolerance intervals. Based on these results, it was concluded that the combination of genetically modified 98140 maize and 356043 soybean fractions was nutritionally equivalent to nontransgenic maize and soybean controls with comparable genetic backgrounds.

  8. Post-Domestication Selection in the Maize Starch Pathway

    PubMed Central

    Fan, Longjiang; Bao, Jiandong; Wang, Yu; Yao, Jianqiang; Gui, Yijie; Hu, Weiming; Zhu, Jinqing; Zeng, Mengqian; Li, Yu; Xu, Yunbi

    2009-01-01

    Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway. PMID:19859548

  9. Plant characterization of genetically modified maize hybrids MON-89Ø34-3 × MON-88Ø17-3, MON-89Ø34-3 × MON-ØØ6Ø3-6, and MON-ØØ6Ø3-6: alternatives for maize production in Mexico.

    PubMed

    Heredia Díaz, Oscar; Aldaba Meza, José Luis; Baltazar, Baltazar M; Bojórquez Bojórquez, Germán; Castro Espinoza, Luciano; Corrales Madrid, José Luis; de la Fuente Martínez, Juan Manuel; Durán Pompa, Héctor Abel; Alonso Escobedo, José; Espinoza Banda, Armando; Garzón Tiznado, José Antonio; González García, Juvencio; Guzmán Rodríguez, José Luis; Madueño Martínez, Jesús Ignacio; Martínez Carrillo, José Luis; Meng, Chen; Quiñones Pando, Francisco Javier; Rosales Robles, Enrique; Ruiz Hernández, Ignacio; Treviño Ramírez, José Elías; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2017-02-01

    Environmental risk assessment (ERA) of genetically modified (GM) crops is a process to evaluate whether the biotechnology trait(s) in a GM crop may result in increased pest potential or harm to the environment. In this analysis, two GM insect-resistant (IR) herbicide-tolerant maize hybrids (MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6) and one herbicide-tolerant GM hybrid (MON-ØØ6Ø3-6) were compared with conventional maize hybrids of similar genetic backgrounds. Two sets of studies, Experimental Phase and Pilot Phase, were conducted across five ecological regions (ecoregions) in Mexico during 2009-2013, and data were subject to meta-analysis. Results from the Experimental Phase studies, which were used for ERA, indicated that the three GM hybrids were not different from conventional maize for early stand count, days-to-silking, days-to-anthesis, root lodging, stalk lodging, or final stand count. Statistically significant differences were observed for seedling vigor, ear height, plant height, grain moisture, and grain yield, particularly in the IR hybrids; however, none of these phenotypic differences are expected to contribute to a biological or ecological change that would result in an increased pest potential or ecological risk when cultivating these GM hybrids. Overall, results from the Experimental Phase studies are consistent with those from other world regions, confirming that there are no additional risks compared to conventional maize. Results from Pilot Phase studies indicated that, compared to conventional maize hybrids, no differences were detected for the agronomic and phenotypic characteristics measured on the three GM maize hybrids, with the exception of grain moisture and grain yield in the IR hybrids. Since MON-89Ø34-3 × MON-88Ø17-3 and MON-89Ø34-3 × MON-ØØ6Ø3-6 confer resistance to target insect pests, they are an alternative for farmers in Mexico to protect the crop from insect damage. Additionally, the herbicide tolerance conferred by all three GM hybrids enables more cost-effective weed management.

  10. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes.

    PubMed

    Wang, Xu-Jing; Zhang, Xin; Yang, Jiang-Tao; Wang, Zhi-Xing

    2018-03-01

    Gene stacking is a developing trend in agricultural biotechnology. Unintended effects in stacked transgenic plants are safety issues considered by the public and researchers. Omics techniques provide useful tools to assess unintended effects. In this paper, stacked transgenic maize 12-5×IE034 that contained insecticidal cry and glyphosate tolerance G10-epsps genes was obtained by crossing of transgenic maize varieties 12-5 and IE034. Transcriptome and metabolome analyses were performed for different maize varieties, including 12-5×IE034, 12-5, IE034, and conventional varieties collected from different provinces in China. The transcriptome results were as follows. The nine maize varieties had obvious differences in gene expression. There were 3561-5538 differentially expressed genes between 12-5×IE034 and its parents and transgenic receptor, which were far fewer than the number of differentially expressed genes in different traditional maize varieties. Cluster analysis indicated that there were close relationships between 12-5×IE034 and its parents. The metabolome results were as follows. For the nine detected maize varieties, the number of different metabolites ranged from 0 to 240. Compared with its parents, 12-5 and IE034, the hybrid variety 12-5×IE034 had 15 and 112 different metabolites, respectively. Hierarchical cluster analysis with Pearson's correlation analysis showed that the differences between 12-5×IE034 and its parents were fewer than those between other maize varieties. Shikimate pathway-related genes and metabolites analysis results showed that the effects of hybrid stacking are less than those from transformation and differing genotypes. Thus, the differences due to breeding stack were fewer than those due to natural variation among maize varieties. This paper provides scientific data for assessing unintended effects in stacked transgenic plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  11. Large Root Cortical Cell Size Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes, ranging from 101 to 533 µm2. In mesocosms, large CCS reduced respiration per unit of root length by 59%. Under water stress in mesocosms, lines with large CCS had between 21% and 27% deeper rooting (depth above which 95% of total root length is located in the soil profile), 50% greater stomatal conductance, 59% greater leaf CO2 assimilation, and between 34% and 44% greater shoot biomass than lines with small CCS. Under water stress in the field, lines with large CCS had between 32% and 41% deeper rooting (depth above which 95% of total root length is located in the soil profile), 32% lighter stem water isotopic ratio of 18O to 16O signature, signifying deeper water capture, between 22% and 30% greater leaf relative water content, between 51% and 100% greater shoot biomass at flowering, and between 99% and 145% greater yield than lines with small cells. Our results are consistent with the hypothesis that large CCS improves drought tolerance by reducing the metabolic cost of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. These results, coupled with the substantial genetic variation for CCS in diverse maize germplasm, suggest that CCS merits attention as a potential breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25293960

  12. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.

    PubMed

    Messina, Carlos D; Podlich, Dean; Dong, Zhanshan; Samples, Mitch; Cooper, Mark

    2011-01-01

    The effectiveness of breeding strategies to increase drought resistance in crops could be increased further if some of the complexities in gene-to-phenotype (G → P) relations associated with epistasis, pleiotropy, and genotype-by-environment interactions could be captured in realistic G → P models, and represented in a quantitative manner useful for selection. This paper outlines a promising methodology. First, the concept of landscapes was extended from the study of fitness landscapes used in evolutionary genetics to the characterization of yield-trait-performance landscapes for agricultural environments and applications in plant breeding. Second, the E(NK) model of trait genetic architecture was extended to incorporate biophysical, physiological, and statistical components. Third, a graphical representation is proposed to visualize the yield-trait performance landscape concept for use in selection decisions. The methodology was demonstrated at a particular stage of a maize breeding programme with the objective of improving the drought tolerance of maize hybrids for the US Western Corn-Belt. The application of the framework to the genetic improvement of drought tolerance in maize supported selection of Doubled Haploid (DH) lines with improved levels of drought tolerance based on physiological genetic knowledge, prediction of test-cross yield within the target population of environments, and their predicted potential to sustain further genetic progress with additional cycles of selection. The existence of rugged yield-performance landscapes with multiple peaks and intervening valleys of lower performance, as shown in this study, supports the proposition that phenotyping strategies, and the directions emphasized in genomic selection can be improved by creating knowledge of the topology of yield-trait performance landscapes.

  13. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.

    PubMed

    Javed, M Tariq; Akram, M Sohail; Tanwir, Kashif; Javed Chaudhary, Hassan; Ali, Qasim; Stoltz, Eva; Lindberg, Sylvia

    2017-07-01

    Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Matrix recrystallization for MALDI-MS imaging of maize lipids at high-spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Furthermore, using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  15. Matrix recrystallization for MALDI-MS imaging of maize lipids at high-spatial resolution

    DOE PAGES

    Duenas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-06-27

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Furthermore, using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  16. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution.

  17. Matrix Recrystallization for MALDI-MS Imaging of Maize Lipids at High-Spatial Resolution.

    PubMed

    Dueñas, Maria Emilia; Carlucci, Laura; Lee, Young Jin

    2016-09-01

    Matrix recrystallization is optimized and applied to improve lipid ion signals in maize embryos and leaves. A systematic study was performed varying solvent and incubation time. During this study, unexpected side reactions were found when methanol was used as a recrystallization solvent, resulting in the formation of a methyl ester of phosphatidic acid. Using an optimum recrystallization condition with isopropanol, there is no apparent delocalization demonstrated with a transmission electron microscopy (TEM) pattern and maize leaf images obtained at 10 μm spatial resolution. Graphical Abstract ᅟ.

  18. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials.

    PubMed

    Dias, Kaio Olímpio Das Graças; Gezan, Salvador Alejandro; Guimarães, Claudia Teixeira; Nazarian, Alireza; da Costa E Silva, Luciano; Parentoni, Sidney Netto; de Oliveira Guimarães, Paulo Evaristo; de Oliveira Anoni, Carina; Pádua, José Maria Villela; de Oliveira Pinto, Marcos; Noda, Roberto Willians; Ribeiro, Carlos Alexandre Gomes; de Magalhães, Jurandir Vieira; Garcia, Antonio Augusto Franco; de Souza, João Cândido; Guimarães, Lauro José Moreira; Pastina, Maria Marta

    2018-07-01

    Breeding for drought tolerance is a challenging task that requires costly, extensive, and precise phenotyping. Genomic selection (GS) can be used to maximize selection efficiency and the genetic gains in maize (Zea mays L.) breeding programs for drought tolerance. Here, we evaluated the accuracy of genomic selection (GS) using additive (A) and additive + dominance (AD) models to predict the performance of untested maize single-cross hybrids for drought tolerance in multi-environment trials. Phenotypic data of five drought tolerance traits were measured in 308 hybrids along eight trials under water-stressed (WS) and well-watered (WW) conditions over two years and two locations in Brazil. Hybrids' genotypes were inferred based on their parents' genotypes (inbred lines) using single-nucleotide polymorphism markers obtained via genotyping-by-sequencing. GS analyses were performed using genomic best linear unbiased prediction by fitting a factor analytic (FA) multiplicative mixed model. Two cross-validation (CV) schemes were tested: CV1 and CV2. The FA framework allowed for investigating the stability of additive and dominance effects across environments, as well as the additive-by-environment and the dominance-by-environment interactions, with interesting applications for parental and hybrid selection. Results showed differences in the predictive accuracy between A and AD models, using both CV1 and CV2, for the five traits in both water conditions. For grain yield (GY) under WS and using CV1, the AD model doubled the predictive accuracy in comparison to the A model. Through CV2, GS models benefit from borrowing information of correlated trials, resulting in an increase of 40% and 9% in the predictive accuracy of GY under WS for A and AD models, respectively. These results highlight the importance of multi-environment trial analyses using GS models that incorporate additive and dominance effects for genomic predictions of GY under drought in maize single-cross hybrids.

  19. QTL Mapping of Agronomic Waterlogging Tolerance Using Recombinant Inbred Lines Derived from Tropical Maize (Zea mays L) Germplasm

    PubMed Central

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs. PMID:25884393

  20. QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm.

    PubMed

    Zaidi, Pervez Haider; Rashid, Zerka; Vinayan, Madhumal Thayil; Almeida, Gustavo Dias; Phagna, Ramesh Kumar; Babu, Raman

    2015-01-01

    Waterlogging is an important abiotic stress constraint that causes significant yield losses in maize grown throughout south and south-east Asia due to erratic rainfall patterns. The most economic option to offset the damage caused by waterlogging is to genetically incorporate tolerance in cultivars that are grown widely in the target agro-ecologies. We assessed the genetic variation in a population of recombinant inbred lines (RILs) derived from crossing a waterlogging tolerant line (CAWL-46-3-1) to an elite but sensitive line (CML311-2-1-3) and observed significant range of variation for grain yield (GY) under waterlogging stress along with a number of other secondary traits such as brace roots (BR), chlorophyll content (SPAD), % stem and root lodging (S&RL) among the RILs. Significant positive correlation of GY with BR and SPAD and negative correlation with S&RL indicated the potential use of these secondary traits in selection indices under waterlogged conditions. RILs were genotyped with 331 polymorphic single nucleotide polymorphism (SNP) markers using KASP (Kompetitive Allele Specific PCR) Platform. QTL mapping revealed five QTL on chromosomes 1, 3, 5, 7 and 10, which together explained approximately 30% of phenotypic variance for GY based on evaluation of RIL families under waterlogged conditions, with effects ranging from 520 to 640 kg/ha for individual genomic regions. 13 QTL were identified for various secondary traits associated with waterlogging tolerance, each individually explaining from 3 to 14% of phenotypic variance. Of the 22 candidate genes with known functional domains identified within the physical intervals delimited by the flanking markers of the QTL influencing GY and other secondary traits, six have previously been demonstrated to be associated with anaerobic responses in either maize or other model species. A pair of flanking SNP markers has been identified for each of the QTL and high throughput marker assays were developed to facilitate rapid introgression of waterlogging tolerance in tropical maize breeding programs.

  1. High Antioxidant Activity Facilitates Maintenance of Cell Division in Leaves of Drought Tolerant Maize Hybrids

    PubMed Central

    Avramova, Viktoriya; AbdElgawad, Hamada; Vasileva, Ivanina; Petrova, Alexandra S.; Holek, Anna; Mariën, Joachim; Asard, Han; Beemster, Gerrit T. S.

    2017-01-01

    We studied the impact of drought on growth regulation in leaves of 13 maize varieties with different drought sensitivity and geographic origins (Western Europe, Egypt, South Africa) and the inbred line B73. Combining kinematic analysis of the maize leaf growth zone with biochemical measurements at a high spatial resolution allowed us to examine the correlation between the regulation of the cellular processes cell division and elongation, and the molecular redox-regulation in response to drought. Moreover, we demonstrated differences in the response of the maize lines to mild and severe levels of water deficit. Kinematic analysis indicated that drought tolerant lines experienced less impact on leaf elongation rate due to a smaller reduction of cell production, which, in turn, was due to a smaller decrease of meristem size and number of cells in the leaf meristem. Clear differences in growth responses between the groups of lines with different geographic origin were observed in response to drought. The difference in drought tolerance between the Egyptian hybrids was significantly larger than between the European and South-African hybrids. Through biochemical analyses, we investigated whether antioxidant activity in the growth zone, contributes to the drought sensitivity differences. We used a hierarchical clustering to visualize the patterns of lipid peroxidation, H2O2 and antioxidant concentrations, and enzyme activities throughout the growth zone, in response to stress. The results showed that the lines with different geographic region used different molecular strategies to cope with the stress, with the Egyptian hybrids responding more at the metabolite level and African and the European hybrids at the enzyme level. However, drought tolerance correlated with both, higher antioxidant levels throughout the growth zone and higher activities of the redox-regulating enzymes CAT, POX, APX, and GR specifically in leaf meristems. These findings provide evidence for a link between antioxidant regulation in the leaf meristem, cell division, and drought tolerance. PMID:28210264

  2. Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development.

    PubMed

    Wijewardana, Chathurika; Henry, W Brien; Gao, Wei; Reddy, K Raja

    2016-07-01

    Crop growth and development are highly responsive to global climate change components such as elevated carbon dioxide (CO2), drought, and ultraviolet-B (UV-B) radiation. Plant tolerance to these environmental stresses comprises its genetic potential, physiological changes, metabolism, and signaling pathways. An inclusive understanding of morphological, physiological, and biochemical responses to these abiotic stresses is imperative for the development of stress tolerant varieties for future environments. The objectives of this study were to characterize the changes in vegetative and physiological traits in maize hybrids in their response to multiple environmental factors of (CO2) [400 and 750μmolmol(-1) (+(CO2)], irrigation treatments based evapotranspiration (ET) [100 and 50% (-ET)], and UV-B radiation [0 and 10kJm(-2)d(-1) (+UV-B)] and to identify the multiple stress tolerant hybrids aid in mitigating projected climate change for shaping future agriculture. Six maize hybrids (P1498, DKC 65-81, N75H-GTA, P1319, DKC 66-97, and N77P-3111) with known drought tolerance variability were grown in eight sunlit, controlled environment chambers in which control treatment consisted of 400μmolmol(-1) [CO2], 100% ET-based irrigation, and 0kJ UV-B. Plants grown at +UV-B alone or combination with 50% ET produced shorter plants and smaller leaf area while elevated CO2 treatments ameliorated the damaging effects of drought and higher UV-B levels on maize hybrids. Plant height, leaf area, total dry matter chlorophyll, carotenoids, and net photosynthesis measured were increased in response to CO2 enrichment. Total stress response index (TSRI) for each hybrid, developed from the cumulative sum of response indices of vegetative and physiological parameters, varied among the maize hybrids. The hybrids were classified as tolerant (P1498), intermediate (DKC 65-81, N75H-GTA, N77P-3111) and sensitive (P1319 and DKC 66-97) to multiple environmental stresses. The positive correlation between TSRI and vegetative and physiological index developed in this study demonstrates that a combination of vegetative and physiological traits is an effective screening tool to identify germplasm best suited to cope with future changing climates. Furthermore, the tolerant hybrids identified in this study indicate that the possibility of cultivar selection for enhanced agronomic performance and stability in a water limited environment with higher UV-B, anticipated to occur in future climates. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield.

    PubMed

    Guo, Mei; Rupe, Mary A; Wei, Jun; Winkler, Chris; Goncalves-Butruille, Marymar; Weers, Ben P; Cerwick, Sharon F; Dieter, Jo Ann; Duncan, Keith E; Howard, Richard J; Hou, Zhenglin; Löffler, Carlos M; Cooper, Mark; Simmons, Carl R

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.

  4. The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge.

    PubMed

    Shahzad, Asim; Saddiqui, Samina; Bano, Asghari

    2016-01-01

    The objective of this study was to evaluate the role of PGPR consortium and fertilizer alone and in combination on the physiology of maize grown under oily sludge stress environment as well on the soil nutrient status. Consortium was prepared from Bacillus cereus (Acc KR232400), Bacillus altitudinis (Acc KF859970), Comamonas (Delftia) belonging to family Comamonadacea (Acc KF859971) and Stenotrophomonasmaltophilia (Acc KF859973). The experiment was conducted in pots with complete randomized design with four replicates and kept in field. Oily sludge was mixed in ml and Ammonium nitrate and Diammonium phosphate (DAP) were added at 70 ug/g and 7 ug/g at sowing. The plant was harvested at 21 d for estimation of protein, proline and antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). To study the degradation, total petroleum hydrocarbon was extracted by soxhelt extraction and extract was analyzed by GC-FID at different period after incubation. Combined application of consortium and fertilizer enhanced the germination %, protein and, proline content by 90,130 and 99% higher than untreated maize plants. Bioavailability of macro and micro nutrient was also enhanced with consortium and fertilizer in oily sludge. The consortium and fertilizer in combined treatment decreased the superoxide dismutase (SOD), peroxidase dismutase (POD) of the maize leaves grown in oily sludge. Degradation of total petroleum hydrocarbon (TPHs) was 59% higher in combined application of consortium and fertilizer than untreated maize at 3 d. The bacterial consortium can enhanced the maize tolerance to oily sludge and enhanced degradation of total petroleum hydrocarbon (TPHs). The maize can be considered as tolerant plant species to remediate oily sludge contaminated soils.

  5. Dissection of Heat Tolerance Mechanisms in Maize

    USDA-ARS?s Scientific Manuscript database

    Heat stress severely limits plant productivity and causes extensive economic loss to US agriculture. Understanding heat adaptation mechanisms in crop plants is crucial to the success of developing heat tolerant varieties. Heat waves (heat stress) often occur sporadically during the growing season o...

  6. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.

    PubMed

    Chen, Lin; Liu, Yunpeng; Wu, Gengwei; Veronican Njeri, Kimani; Shen, Qirong; Zhang, Nan; Zhang, Ruifu

    2016-09-01

    Salt stress reduces plant growth and is now becoming one of the most important factors restricting agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear. In this study, hydroponic experiments indicated that the PGPR strain Bacillus amyloliquefaciens SQR9 could help maize plants tolerate salt stress. After exposure to salt stress for 20 days, SQR9 significantly promoted the growth of maize seedlings and enhanced the chlorophyll content compared with the control. Additional analysis showed that the involved mechanisms could be the enhanced total soluble sugar content for decreasing cell destruction, improved peroxidase/catalase activity and glutathione content for scavenging reactive oxygen species, and reduced Na(+) levels in the plant to decrease Na(+) toxicity. These physiological appearances were further confirmed by the upregulation of RBCS, RBCL, H(+) -PPase, HKT1, NHX1, NHX2 and NHX3, as well as downregulation of NCED expression, as determined by quantitative reverse transcription-polymerase chain reaction. However, SQR9 counteracted the increase of abscisic acid in response to salt stress. In summary, these results show that SQR9 confers plant salt tolerance by protecting the plant cells and managing Na(+) homeostasis. Hence, it can be used in salt stress prone areas, thereby promoting agricultural production. © 2016 Scandinavian Plant Physiology Society.

  7. Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids.

    PubMed

    Sun, Lanlan; Wu, Renhai; Su, Wangcang; Gao, Zenggui; Lu, Chuantao

    2017-01-01

    Isoxadifen-ethyl can effectively alleviate nicosulfuron injury in the maize. However, the effects of safener isoxadifen-ethyl on detoxifying enzymes in maize is unknown. The individual and combined effects of the sulfonylurea herbicide nicosulfuron and the safener isoxadifen-ethyl on the growth and selected physiological processes of maize were evaluated. Bioassays showed that the EC50 values of nicosulfuron and nicosulfuron plus isoxadifen-ethyl for maize cultivar Zhengdan958 were 18.87 and 249.28 mg kg-1, respectively, and were 24.8 and 275.51 mg kg-1, respectively, for Zhenghuangnuo No. 2 cultivar. Evaluations of the target enzyme of acetolactate synthase showed that the I50 values of nicosulfuron and nicosulfuron plus isoxadifen-ethyl for the ALS of Zhengdan958 were 15.46 and 28.56 μmol L-1, respectively, and were 0.57 and 2.17 μmol L-1, respectively, for the acetolactate synthase of Zhenghuangnuo No. 2. The safener isoxadifen-ethyl significantly enhanced tolerance of maize to nicosulfuron. The enhanced tolerance of maize to nicosulfuron in the presence of the safener, coupled with the enhanced injury observed in the presence of piperonyl butoxide, 1-aminobenzotriazole, and malathion, suggested cytochrome P450 monooxygenases may be involved in metabolism of nicosulfuron. We proposed that isoxadifen-ethyl increases plant metabolism of nicosulfuron through non-P450-catalyzed routes or through P450 monooxygenases not inhibited by piperonyl butoxide, 1-aminobenzotriazole, and malathion. Isoxadifen-ethyl, at a rate of 33 mg kg-1, completely reversed the effects of all doses (37.5-300 mg kg-1) of nicosulfuron on both of the maize cultivars. When the two compounds were given simultaneously, isoxadifen-ethyl enhanced activity of glutathione S-transferases (GSTs) and acetolactate synthase activity in maize. The free acid 4,5-dihydro-5,5-diphenyl-1,2-oxazole-3-carboxylic was equally effective at inducing GSTs as the parent ester and appeared to be the active safener. GST induction in the maize Zhenghuangnuo No. 2 was faster than in Zhengdan 958.

  8. Physiological basis for isoxadifen-ethyl induction of nicosulfuron detoxification in maize hybrids

    PubMed Central

    Sun, Lanlan; Wu, Renhai; Su, Wangcang; Gao, Zenggui; Lu, Chuantao

    2017-01-01

    Isoxadifen-ethyl can effectively alleviate nicosulfuron injury in the maize. However, the effects of safener isoxadifen-ethyl on detoxifying enzymes in maize is unknown. The individual and combined effects of the sulfonylurea herbicide nicosulfuron and the safener isoxadifen-ethyl on the growth and selected physiological processes of maize were evaluated. Bioassays showed that the EC50 values of nicosulfuron and nicosulfuron plus isoxadifen-ethyl for maize cultivar Zhengdan958 were 18.87 and 249.28 mg kg-1, respectively, and were 24.8 and 275.51 mg kg-1, respectively, for Zhenghuangnuo No. 2 cultivar. Evaluations of the target enzyme of acetolactate synthase showed that the I50 values of nicosulfuron and nicosulfuron plus isoxadifen-ethyl for the ALS of Zhengdan958 were 15.46 and 28.56 μmol L-1, respectively, and were 0.57 and 2.17 μmol L-1, respectively, for the acetolactate synthase of Zhenghuangnuo No. 2. The safener isoxadifen-ethyl significantly enhanced tolerance of maize to nicosulfuron. The enhanced tolerance of maize to nicosulfuron in the presence of the safener, coupled with the enhanced injury observed in the presence of piperonyl butoxide, 1-aminobenzotriazole, and malathion, suggested cytochrome P450 monooxygenases may be involved in metabolism of nicosulfuron. We proposed that isoxadifen-ethyl increases plant metabolism of nicosulfuron through non-P450-catalyzed routes or through P450 monooxygenases not inhibited by piperonyl butoxide, 1-aminobenzotriazole, and malathion. Isoxadifen-ethyl, at a rate of 33 mg kg-1, completely reversed the effects of all doses (37.5–300 mg kg-1) of nicosulfuron on both of the maize cultivars. When the two compounds were given simultaneously, isoxadifen-ethyl enhanced activity of glutathione S-transferases (GSTs) and acetolactate synthase activity in maize. The free acid 4,5-dihydro-5,5-diphenyl-1,2-oxazole-3-carboxylic was equally effective at inducing GSTs as the parent ester and appeared to be the active safener. GST induction in the maize Zhenghuangnuo No. 2 was faster than in Zhengdan 958. PMID:28267798

  9. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

    PubMed Central

    Ren, Wen; Yang, Fengling; He, Hang; Zhao, Jiuran

    2015-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize. PMID:26599013

  10. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Maize Lethal Necrosis (MLN), an Emerging Threat to Maize-Based Food Security in Sub-Saharan Africa.

    PubMed

    Mahuku, George; Lockhart, Benham E; Wanjala, Bramwel; Jones, Mark W; Kimunye, Janet Njeri; Stewart, Lucy R; Cassone, Bryan J; Sevgan, Subramanian; Nyasani, Johnson O; Kusia, Elizabeth; Kumar, P Lava; Niblett, C L; Kiggundu, Andrew; Asea, Godfrey; Pappu, Hanu R; Wangai, Anne; Prasanna, Boddupalli M; Redinbaugh, Margaret G

    2015-07-01

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on maize in Kenya. The disease has since been confirmed in Rwanda and the Democratic Republic of Congo, and similar symptoms have been reported in Tanzania, Uganda, South Sudan, and Ethiopia. In 2012, yield losses of up to 90% resulted in an estimated grain loss of 126,000 metric tons valued at $52 million in Kenya alone. In eastern Africa, MLN was found to result from coinfection of maize with Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV), although MCMV alone appears to cause significant crop losses. We summarize here the results of collaborative research undertaken to understand the biology and epidemiology of MLN in East Africa and to develop disease management strategies, including identification of MLN-tolerant maize germplasm. We discuss recent progress, identify major issues requiring further research, and discuss the possible next steps for effective management of MLN.

  12. Cloning and function analysis of a drought-inducible gene associated with resistance to Curvularia leaf spot in maize.

    PubMed

    Zhu, Jiewei; Huang, Xiuli; Liu, Tong; Gao, Shigang; Chen, Jie

    2012-08-01

    ZmDIP was cloned and its function against Curvularia lunata was analyzed, according to a previous finding on a drought-inducible protein in resistant maize identified through MALDI-TOF-MS/MS. The ZmDIP expression varied in roots, leaf sheaths, and young, as well as old, leaves of different maize inbred lines. The ZmDIP transcript level changed in leaves over the course of time after inoculation with C. lunata. A prokaryotic expression analysis demonstrated that the gene can regulate the salt stress tolerance of Escherichia coli. The ZmDIP transient expression in the maize leaf showed that the gene was also linked to leaf resistance against the C. lunata infection. ZmDIP-mediated ROS and ABA signaling pathways were inferred to be closely associated with maize leaf resistance to the pathogen infection.

  13. The role of biotechnology for agricultural sustainability in Africa.

    PubMed

    Thomson, Jennifer A

    2008-02-27

    Sub-Saharan Africa could have a shortfall of nearly 90Mt of cereals by the year 2025 if current agricultural practices are maintained. Biotechnology is one of the ways to improve agricultural production. Insect-resistant varieties of maize and cotton suitable for the subcontinent have been identified as already having a significant impact. Virus-resistant crops are under development. These include maize resistant to the African endemic maize streak virus and cassava resistant to African cassava mosaic virus. Parasitic weeds such as Striga attack the roots of crops such as maize, millet, sorghum and upland rice. Field trials in Kenya using a variety of maize resistant to a herbicide have proven very successful. Drought-tolerant crops are also under development as are improved varieties of local African crops such as bananas, cassava, sorghum and sweet potatoes.

  14. The allelochemical trans-cinnamic acid stimulates salicylic acid production and galactose pathway in maize leaves: A potential mechanism of stress tolerance.

    PubMed

    Araniti, Fabrizio; Lupini, Antonio; Mauceri, Antonio; Zumbo, Antonino; Sunseri, Francesco; Abenavoli, Maria Rosa

    2018-05-05

    In this study, the effects (5 days) of the secondary metabolite trans-cinnamic acid on maize leaves (Zea mays L.), through a physiological and an untargeted metabolomic approach, were evaluated. A reduction in leaf growth and development accompanied by a decrease in protein content was observed in treated seedlings. Besides, trans-cinnamic acid stimulated the photosynthetic machinery with a significant increment in pigment content (chlorophyll a, b and carotenoids), a stimulation of the light adapted PSII efficiency (ɸ II ) as well as the chlorophyll a fluorescence (Y NO ), the apparent electron transport rate, and the regulated dissipation of the energy (Y NPQ ). By contrast, the dark adapted PSII parameter (Fv/Fm) was not affected suggesting that no physical damages to the antenna complex were caused by trans-cinnamic acid. These results suggested that maize seedlings were experiencing a stress but, at the same time, were able to cope with it. This hypothesis was confirmed by both the increment in benzoic and salicylic acids, important molecules involved in stress response, and the metabolomic results, which pointed out that the seedlings are directing their metabolism towards galactose production modulating its pathway, which is pivotal for the production of the antioxidant compound ascorbic acid (ASA). Indeed, in treated plants, a significant increment in total ASA content (28%) was observed. The results suggested that the main strategy adopted by plants to cope with trans-cinnamic-induced stress consisted in the modulation of their metabolism in order to increase the total ASA and carotenoids concentration, radical scavenging species. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Comparative analysis of CDPK family in maize, Arabidopsis, rice and sorghum revealed potential targets for drought tolerance improvement

    NASA Astrophysics Data System (ADS)

    Mittal, Shikha; Mallikarjuna, Mallana Gowdra; Rao, Atmakuri R.; Jain, Prashant A.; Dash, Prasanta K.; Thirunavukkarasu, Nepolean

    2017-12-01

    Calcium dependent protein kinases (CDPKs) play major role in regulation of plant growth and development in response to various stresses including drought. A set of 32 CDPK genes identified in maize were further used for searching of orthologs in the model plant Arabidopsis (72) and major food crops such as rice (78) and sorghum (91). We comprehensively investigated the phylogenetic relationship, annotations, gene duplications, gene structure, divergence time, 3-D protein structures and tissue-specific drought induced expression of CDPK genes in all four species. Variation in intron frequency among these species likely contributed to the functional diversity of CDPK genes to various stress responses. Protein kinase and protein kinase C phosphorylation site domains were the most conserved motifs identified in all species. Four groups were identified from the sequence-based phylogenetic analysis, in which maize CDPKs were clustered in group III. The time of divergence (Ka/Ks) analysis revealed that the CDPKs were evolved through stabilizing selection. Expression data showed that the CDPK genes were highly expressed in leaf of maize, rice, and sorghum whereas in Arabidopsis the maximum expression was observed in root. 3-D protein structure were predicted for the nine genes (Arabidopsis: 2, maize: 2, rice: 3 and sorghum: 2) showing differential expression in at least three species. The predicted 3-D structures were further evaluated and validated by Ramachandran plot, ANOLEA, ProSA and Verify-3D. The superimposed 3-D structure of drought-related orthologous proteins retained similar folding pattern owing to their conserved nature. Functional annotation revealed the involvement of CDPK genes in various pathways such as osmotic homeostasis, cell protection and root growth. The interactions of CDPK genes in various pathways play crucial role in imparting drought tolerance through different ABA and MAPK signalling cascades. Our studies suggest that these selected candidate genes could be targeted in development of drought tolerant cultivars in maize, rice and sorghum through appropriate breeding approaches. Our comparative experiments of CDPK genes could also be extended in the drought stress breeding programmes of the related species.

  16. Evaluation of the Morpho-physiology characteristics of maize inbred lines introduced from CIMMYT to identify the best candidates for planting in acidic soil in Jasinga, Indonesia

    NASA Astrophysics Data System (ADS)

    Lubis, K.; Sutjahjo, S. H.; Syukur, M.; Trikoesoemaningtyas

    2016-08-01

    Technological developments and climate change have affected crop planting strategies. For example, maize production has expanded to sub-optimal lands, including acidic soil common in areas like Indonesia. Breeding programs have created inbred lines of maize introduced from CIMMYT; they were tested locally in acidic soils to determine their adaptability and tolerance mechanisms. Breeds CLA 46 and NEI 9008 were found to be excellent candidates for acidic soil due to their ASI, high number of grains per year, and suitable dry seed weight.

  17. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    PubMed

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  18. Crop response of drought tolerant and conventional maize hybrids in a semi-arid environment

    USDA-ARS?s Scientific Manuscript database

    In the Central and Southern High Plains Regions, corn (Zea mays L.) is an important commodity for livestock feed. However, limited water resources and drought conditions can hinder corn production. Drought tolerant (DT) corn hybrids could help stabilize yields under water-limited conditions, though ...

  19. Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield

    PubMed Central

    Guo, Mei

    2014-01-01

    Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays ARGOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer’s modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer’s female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance. PMID:24218327

  20. Identification, Characterization, and Functional Validation of Drought-responsive MicroRNAs in Subtropical Maize Inbreds

    PubMed Central

    Aravind, Jayaraman; Rinku, Sharma; Pooja, Banduni; Shikha, Mittal; Kaliyugam, Shiriga; Mallikarjuna, Mallana Gowdra; Kumar, Arun; Rao, Atmakuri Ramakrishna; Nepolean, Thirunavukkarasu

    2017-01-01

    MicroRNA-mediated gene regulation plays a crucial role in controlling drought tolerance. In the present investigation, 13 drought-associated miRNA families consisting of 65 members and regulating 42 unique target mRNAs were identified from drought-associated microarray expression data in maize and were subjected to structural and functional characterization. The largest number of members (14) was found in the zma-miR166 and zma-miR395 families, with several targets. However, zma-miR160, zma-miR390, zma-miR393, and zma-miR2275 each showed a single target. Twenty-three major drought-responsive cis-regulatory elements were found in the upstream regions of miRNAs. Many drought-related transcription factors, such as GAMYB, HD-Zip III, and NAC, were associated with the target mRNAs. Furthermore, two contrasting subtropical maize genotypes (tolerant: HKI-1532 and sensitive: V-372) were used to understand the miRNA-assisted regulation of target mRNA under drought stress. Approximately 35 and 31% of miRNAs were up-regulated in HKI-1532 and V-372, respectively. The up-regulation of target mRNAs was as high as 14.2% in HKI-1532 but was only 2.38% in V-372. The expression patterns of miRNA-target mRNA pairs were classified into four different types: Type I- up-regulation, Type II- down-regulation, Type III- neutral regulation, and Type IV- opposite regulation. HKI-1532 displayed 46 Type I, 13 Type II, and 23 Type III patterns, whereas V-372 had mostly Type IV interactions (151). A low level of negative regulations of miRNA associated with a higher level of mRNA activity in the tolerant genotype helped to maintain crucial biological functions such as ABA signaling, the auxin response pathway, the light-responsive pathway and endosperm expression under stress conditions, thereby leading to drought tolerance. Our study identified candidate miRNAs and mRNAs operating in important pathways under drought stress conditions, and these candidates will be useful in the development of drought-tolerant maize hybrids. PMID:28626466

  1. Exogenous application of plant growth regulators (PGRs) induces chilling tolerance in short-duration hybrid maize.

    PubMed

    Waqas, Muhammad Ahmed; Khan, Imran; Akhter, Muhammad Javaid; Noor, Mehmood Ali; Ashraf, Umair

    2017-04-01

    Chilling stress hampers the optimal performance of maize under field conditions precipitously by inducing oxidative stress. To confer the damaging effects of chilling stress, the present study aimed to investigate the effects of some natural and synthetic plant growth regulators, i.e., salicylic acid (SA), thiourea (TU), sorghum water extract (SWE), and moringa leaf extract (MLE) on chilling stress tolerance in autumn maize hybrid. Foliar application of growth regulators at low concentrations was carried out at six leaf (V6) and tasseling stages. An increase in crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), plant height (PH), grain yield (GY), and total dry matter accumulation (TDM) was observed in exogenously applied plants as compared to control. In addition, improved physio-biochemical, phenological, and grain nutritional quality attributes were noticed in foliar-treated maize plots as compared to non-treated ones. SA-treated plants reduced 20% electrolyte leakage in cell membrane against control. MLE and SA were proved best in improving total phenolic, relative water (19-23%), and chlorophyll contents among other applications. A similar trend was found for photosynthetic and transpiration rates, whereas MLE and SWE were found better in improving CGR, LAI, LAD, TDM, PH, GY, grains per cob, 1000 grain weight, and biological yield among all treatments including control. TU and MLE have significantly reduced the duration in phenological events of crop at the reproductive stage. MLE, TU, and SA also improved the grain protein, oil, and starch contents as compared to control. Enhanced crop water productivity was also observed in MLE-treated plants. Economic analysis suggested that MLE and SA applications were more economical in inducing chilling stress tolerance under field conditions. Although eliciting behavior of all growth regulators improved morpho-physiological attributes against suboptimal temperature stress conditions, MLE and SA acted as leading agents which proved to be better stress alleviators by improving plant physio-biochemical attributes and maize growth.

  2. Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China.

    PubMed

    Yan, Li; Zhang, Zhi-Dan; Zhang, Jin-Jing; Gao, Qiang; Feng, Guo-Zhong; Abelrahman, A M; Chen, Yuan

    2016-03-01

    Traditional fertilization led to higher apparent N surplus, and optimized fertilization can reduce residual nitrogen in soils with keeping high yield. But in continuous spring maize cropping zone in Mollisol in Northeast China, the effect of the optimized N management on N balance and comprehensive environment was not clear. The primary objective of this study was to compare the differences of two fertilizations (traditional farmer N management (FNM) with single basal fertilizer and improvement N management (INM) by soil testing with top-dressing) in gain yield, N uptake and N efficiency, soil N balance, reactive N losses, and environment assessment. The results showed that INM treatment has no remarkable effect on grain yield and N uptake; N partial factor productivity (PFPN) of INM treatment was 19.8 % significantly higher than the FNM treatment. Nmin in soils of INM treatment reached to 111.0 kg ha(-1), which was 27.1 % lower than the FNM treatment after 6 years of continuous maize cropping; the apparent N Losses (ANL) and apparent N surplus (ANS) of INM were only half of FNM by soil N balance analysis. In reactive N losses, comparing with FNM treatment, INM treatment reduced NH3 volatilization, N2O emission, N leaching, and N runoff by 17.8, 35.6, 45, and 38.3 %, respectively, during planting period, and in integrated environment assessment by life cycle assessment (LCA) method, producing 1 t maize grain, energy depletion, acidification, eutrophication, and climate change impacts of INM treatment decreased 26.19, 30.16, 32.61, and 22.75 %, respectively. Therefore, INM treatment is a better N management strategy in comprehensive analysis.

  3. Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids

    PubMed Central

    Anjum, Shakeel A.; Ashraf, Umair; Tanveer, Mohsin; Khan, Imran; Hussain, Saddam; Shahzad, Babar; Zohaib, Ali; Abbas, Farhat; Saleem, Muhammad F.; Ali, Iftikhar; Wang, Long C.

    2017-01-01

    Consequences of drought stress in crop production systems are perhaps more deleterious than other abiotic stresses under changing climatic scenarios. Regulations of physio-biochemical responses of plants under drought stress can be used as markers for drought stress tolerance in selection and breeding. The present study was conducted to appraise the performance of three different maize hybrids (Dong Dan 80, Wan Dan 13, and Run Nong 35) under well-watered, low, moderate and SD conditions maintained at 100, 80, 60, and 40% of field capacity, respectively. Compared with well-watered conditions, drought stress caused oxidative stress by excessive production of reactive oxygen species (ROS) which led to reduced growth and yield formation in all maize hybrids; nevertheless, negative effects of drought stress were more prominent in Run Nong 35. Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80. Overall performance of all maize hybrids under drought stress was recorded as: Dong Dan 80 > Wan Dan 13 > Run Nong 35 with 6.39, 7.35, and 16.55% yield reductions. Consequently, these biochemical traits and differential physiological responses might be helpful to develop drought tolerance genotypes that can withstand water-deficit conditions with minimum yield losses. PMID:28220130

  4. In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress.

    PubMed

    García, Julia E; Maroniche, Guillermo; Creus, Cecilia; Suárez-Rodríguez, Ramón; Ramirez-Trujillo, José Augusto; Groppa, María D

    2017-09-01

    Osmotic variations in the soil can affect bacterial growth diminishing the number of inoculated bacteria. In a scenario of water deficit having tolerant bacteria would be beneficial to achieve a better response of the plant to stress. Thus, selection of more resistant bacteria could be useful to design new inoculants to be used in arid zones. In this sense, a group of Azospirillum isolates deposited in INTA collection was characterized in order to select strains tolerant to osmotic stress. The results obtained demonstrated that Az19 strain has similar in vitro PGPR characteristics to Az39, the most used strain in Argentina for inoculants industries, with the advantage of a better tolerance to osmotic and salt stress. Inoculation of maize plants with this strain resulted in a better response against water deficit compared to Az39 strain, encouraging us to further study the behavior of this strain in greenhouse and field trials in view of developing new inoculants suitable for areas with water deficit. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance.

    PubMed

    Merlos, Miguel A; Zitka, Ondrej; Vojtech, Adam; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2016-12-01

    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg -1 soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain.

    PubMed

    García-Carneros, A B; Girón, I; Molinero-Ruiz, L

    2012-01-01

    Late wilt of maize, caused by the vascular and soilborne pathogen Cephalosporium maydis, was identified in the Iberian Peninsula in 2008. During the last years the incidence and economical impact of the disease has importantly increased both in Portugal and Spain. Varieties of maize displaying tolerance to the pathogen are available, but the effectiveness can be dependent on the virulence of the fungus (i.e. ability to cause disease on a specific genotype). On the other hand, strains of crop pathogens from different geographic origins can differ with regard to the degree of disease caused on a specific genotype (i.e. aggressiveness). Our working hypothesis was that isolates of C. maydis from different maize growing areas may differ in aggressiveness towards maize plants. Seven fungal strains were isolated in 2009 from diseased plants collected in the most important maize growing regions of Spain and used to inoculate two susceptible maize varieties grown in shadehouse from March to July 2010. The experimental unit consisted of two 4-day-old seedlings planted in an 8-liter pot filled with sand/silt previously infested with 200 g of wheat grains colonized by the fungi. Non colonized wheat grains were used for the control treatments. Six replications (pots) were established for each variety/isolate combination according to a complete randomized 2 x 8 factorial design. The percentage of necrotic and dry aboveground tissues was recorded 14 weeks after inoculation and thereafter weekly until physiological senescence of the control plants. At the end of the experiment, weights of roots and aboveground parts of the plants were recorded. Initial occurrence of symptoms in the plants was significantly dependent on the isolate of C. maydis and on the maize variety. However, final severity of aboveground symptoms (leaf necroses and drying up) was only dependent on the fungal isolate. All the isolates significantly reduced the root weight of both varieties of maize. The highest root weight reductions were also associated to a significant low weight of above-ground parts. Considering all the symptoms analysed and their progression in the maize plants, our results reveal that a diversity of aggressiveness exists among isolates of C. maydis. The need for a characterization of maize genotypes by their reaction against highly aggressive isolates of the fungus in the Iberian Peninsula is suggested. This study is a first step towards a recommendation of crop varieties that are tolerant to C. maydis in different areas of the Iberian Peninsula. Future research aims at studying the relationship between aggressiveness levels, molecular characteristics and geographical origin whithin C. maydis.

  7. Aflatoxin Regulations in a Network of Global Maize Trade

    PubMed Central

    Wu, Felicia; Guclu, Hasan

    2012-01-01

    Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000–2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B1, B2, G1, and G2) differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards. PMID:23049773

  8. In vitro and in vivo assessment of the effect of initial moisture content and drying temperature on the feeding value of maize grain.

    PubMed

    Huart, F; Malumba, P; Odjo, S; Al-Izzi, W; Béra, F; Beckers, Y

    2018-06-11

    1. This study assessed the impact of drying temperature (54, 90, and 130°C) and maize grain moisture content at harvest (36% and 29%) on in vitro digestibility, the growth performance and ileal digestibility of broiler chickens. 2. In contrast to the results from the in vitro digestibility, apparent ileal digestibility of starch and energy decreased when the drying temperature was raised from 54 to 130°C, and this effect was more pronounced in maize grain harvested at high initial moisture content (36%). Ileal protein digestibility of maize grain decreased significantly when dried at the intermediate temperature (90°C) and with a high harvest moisture content (36%). Drying temperature and initial moisture content did not significantly affect AMEn. 3. When maize was dried at 130°C, the particle sizes of flour recovered after standard milling procedures decreased significantly, which would influence animal growth performance and in vivo digestibility through animal feed selection.

  9. Genetically engineered crops and pesticide use in U.S. maize and soybeans

    PubMed Central

    Perry, Edward D.; Ciliberto, Federico; Hennessy, David A.; Moschini, GianCarlo

    2016-01-01

    The widespread adoption of genetically engineered (GE) crops has clearly led to changes in pesticide use, but the nature and extent of these impacts remain open questions. We study this issue with a unique, large, and representative sample of plot-level choices made by U.S. maize and soybean farmers from 1998 to 2011. On average, adopters of GE glyphosate-tolerant (GT) soybeans used 28% (0.30 kg/ha) more herbicide than nonadopters, adopters of GT maize used 1.2% (0.03 kg/ha) less herbicide than nonadopters, and adopters of GE insect-resistant (IR) maize used 11.2% (0.013 kg/ha) less insecticide than nonadopters. When pesticides are weighted by the environmental impact quotient, however, we find that (relative to nonadopters) GE adopters used about the same amount of soybean herbicides, 9.8% less of maize herbicides, and 10.4% less of maize insecticides. In addition, the results indicate that the difference in pesticide use between GE and non-GE adopters has changed significantly over time. For both soybean and maize, GT adopters used increasingly more herbicides relative to nonadopters, whereas adopters of IR maize used increasingly less insecticides. The estimated pattern of change in herbicide use over time is consistent with the emergence of glyphosate weed resistance. PMID:27652335

  10. Nitrogen-Deficiency Stress Induces Protein Expression Differentially in Low-N Tolerant and Low-N Sensitive Maize Genotypes

    PubMed Central

    Nazir, Muslima; Pandey, Renu; Siddiqi, Tariq O.; Ibrahim, Mohamed M.; Qureshi, Mohammad I.; Abraham, Gerard; Vengavasi, Krishnapriya; Ahmad, Altaf

    2016-01-01

    Nitrogen (N) is essential for proper plant growth and its application has proven to be critical for agricultural produce. However, for unavoidable economic and environmental problems associated with excessive use of N-fertilizers, it is an urgent demand to manage application of fertilizers. Improving the N-use efficiency (NUE) of crop plants to sustain productivity even at low N levels is the possible solution. In the present investigation, contrasting low-N sensitive (HM-4) and low-N tolerant (PEHM-2) genotypes were identified and used for comparative proteome-profiling of leaves under optimum and low N as well as restoration of low N on 3rd (NR3) and 5th (NR5) days after re-supplying N. The analysis of differential expression pattern of proteins was performed by 2-D gel electrophoresis. Significant variations in the expression of proteins were observed under low N, which were genotype specific. In the leaf proteome, 25 spots were influenced by N treatment and four spots were different between the two genotypes. Most of the proteins that were differentially accumulated in response to N level and were involved in photosynthesis and metabolism, affirming the relationship between N and carbon metabolism. In addition to this, greater intensity of some defense proteins in the low N tolerant genotype was found that may have a possible role in imparting it tolerance under N starvation conditions. The new insights generated on maize proteome in response to N-starvation and restoration would be useful toward improvement of NUE in maize. PMID:27047497

  11. Genomics-Enabled Next-Generation Breeding Approaches for Developing System-Specific Drought Tolerant Hybrids in Maize

    PubMed Central

    Nepolean, Thirunavukkarsau; Kaul, Jyoti; Mukri, Ganapati; Mittal, Shikha

    2018-01-01

    Breeding science has immensely contributed to the global food security. Several varieties and hybrids in different food crops including maize have been released through conventional breeding. The ever growing population, decreasing agricultural land, lowering water table, changing climate, and other variables pose tremendous challenge to the researchers to improve the production and productivity of food crops. Drought is one of the major problems to sustain and improve the productivity of food crops including maize in tropical and subtropical production systems. With advent of novel genomics and breeding tools, the way of doing breeding has been tremendously changed in the last two decades. Drought tolerance is a combination of several component traits with a quantitative mode of inheritance. Rapid DNA and RNA sequencing tools and high-throughput SNP genotyping techniques, trait mapping, functional characterization, genomic selection, rapid generation advancement, and other tools are now available to understand the genetics of drought tolerance and to accelerate the breeding cycle. Informatics play complementary role by managing the big-data generated from the large-scale genomics and breeding experiments. Genome editing is the latest technique to alter specific genes to improve the trait expression. Integration of novel genomics, next-generation breeding, and informatics tools will accelerate the stress breeding process and increase the genetic gain under different production systems. PMID:29696027

  12. Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan

    USDA-ARS?s Scientific Manuscript database

    Aluminum (Al) toxicity is an important limitation to food security in the tropical and subtropical regions. High Al saturation in acid soils limits root development and its ability to uptake water and nutrients. In this study, we present a genome scan for Al tolerance loci with over 50,000 GBS-based...

  13. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    PubMed

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-06-17

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.

  14. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton.

    PubMed

    Wang, Chunling; Lu, Guoqing; Hao, Yuqiong; Guo, Huiming; Guo, Yan; Zhao, Jun; Cheng, Hongmei

    2017-09-01

    ABP9 , encoding a bZIP transcription factor from maize, enhances tolerance to multiple stresses and may participate in the ABA signaling pathway in transgenic cotton by altering physiological and biochemical processes and stress-related gene expression. Abiotic stresses, such as soil salinity and drought, negatively affect growth, development, and yield in cotton. Gene ABP9, which encodes a bZIP transcription factor, binds to the abscisic acid (ABA)-responsive-element (ABRE2) motif of the maize catalase1 gene. Its expression significantly improves tolerance in Arabidopsis to multiple abiotic stresses, but little is known about its role in cotton. In the present study, the ABP9 gene was introduced into upland cotton (Gossypium hirsutum L.) cultivar R15 by Agrobacterium tumefaciens-mediated transformation, and 12 independent transgenic cotton lines were obtained. Cotton plants over-expressing ABP9 have enhanced tolerance to salt and osmotic stress. Under stress, they developed better root systems in a greenhouse and higher germination, reduced stomatal aperture, and stomatal density in a growth chamber. Under drought conditions, survival rate and relative water content (RWC) of transgenic cotton were higher than those of R15 plants. Under salt and osmotic stresses, chlorophyll, proline, and soluble sugar contents significantly increased in transgenic cotton leaves and the malondialdehyde (MDA) content was lower than in R15. Overexpression of ABP9 also enhanced oxidative stress tolerance, reduced cellular levels of reactive oxygen species (ROS) through increased activities of antioxidative enzymes, and alleviated oxidative damage to cell. Interestingly, ABP9 over-expressing cotton was more sensitive to exogenous ABA than R15 at seed germination, root growth, stomatal aperture, and stomatal density. Moreover, ABP9 overexpression upregulated significantly the transcription levels of stress-related genes such as GhDBP2, GhNCED2, GhZFP1, GhERF1, GhHB1, and GhSAP1 under salt treatment. Conjointly, these results showed that overexpression of ABP9 conferred enhanced tolerance to multiple abiotic stresses in cotton. The stress-tolerant transgenic lines provide valuable resources for cotton breeding.

  15. Phenotyping maize for adaptation to drought

    PubMed Central

    Araus, Jose L.; Serret, María D.; Edmeades, Gregory O.

    2012-01-01

    The need of a better adaptation of crops to drought is an issue of increasing urgency. However, enhancing the tolerance of maize has, therefore, proved to be somewhat elusive in terms of plant breeding. In that context, proper phenotyping remains as one of the main factors limiting breeding advance. Topics covered by this review include the conceptual framework for identifying secondary traits associated with yield response to drought and how to measure these secondary traits in practice. PMID:22934056

  16. Effects of Moringa oleifera silage on milk yield, nutrient digestibility and serum biochemical indexes of lactating dairy cows.

    PubMed

    Zeng, B; Sun, J J; Chen, T; Sun, B L; He, Q; Chen, X Y; Zhang, Y L; Xi, Q Y

    2018-02-01

    This study investigated the effects of Moringa oleifera (MO) as a partial substitute of alfalfa hay on milk yield, nutrient apparent digestibility and serum biochemical indexes of dairy cows. MO was harvested at 120 days post-seeding. Fresh MO was cut, mixed with chopped oat hay (425:575 on a DM basis), ensiled and stored for 60 days. Sixty healthy Holstein dairy cows were allocated to one of three groups: NM (no MO or control), LM (low MO; 25% alfalfa hay and 50% maize silage were replaced by MO silage) or HM (high MO; 50% alfalfa hay and 100% maize silage were replaced by MO silage). The feeding trial lasted 35 days. The LM and HM diets did not affect dry matter (DM) intake, milk yield or milk composition (lactose, milk fat, milk protein and somatic cell count). The apparent digestibility of DM and NDF was lower for HM group than NM group. Additionally, there were no significant differences in serum biochemical indexes between the LM and NM groups. The HM group had lower serum concentrations of total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and higher serum concentrations of urea than the NM group. The partial replacement of alfalfa hay (≤50%) and maize silage with MO silage had no negative effects on milk yield, in vivo nutrient apparent digestibility or serum biochemical indexes of lactating cows. © 2017 Blackwell Verlag GmbH.

  17. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance.

    PubMed

    Bocchini, Marika; D'Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C; Palmerini, Carlo A; Beone, Gian M; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize ( Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance.

  18. Growth and Production of Some Variety Corn (Zea mays L.). Planted under the Canopy of Palm Oil 12 Years Old in Swamp Land

    NASA Astrophysics Data System (ADS)

    Syafrullah; Marlina, N.; Rahim, S. E.; Aminah, R. I. S.; Midranisiah; Rosmiah; Sakalena, F.

    2017-06-01

    This research was conducted in wetlands Semambu Village, District of North Indralaya, Ogan Ilir, South Sumatra Province, Indonesia, which lasted from July 2015 to February 2016. The observation of a microclimate indicate that the average intensity of light outside the auspices of the plot 1968.9 m2s mol1, under waranet 1502.40 mol1 m2s, below paranet 721.99 mol1 m2s-1 and under waranet 439.25 μmol m2s-1 - equivalent to the light interception 1 or 100%, 76%, 37% and 22%. Results of soil chemical analysis that the soil has a low fertility study (H2O pH of 3.32, organic C 4.47%, total N 0.35%, Bray P 13.30 ppm, K-ea 0.26 me / 100g, CEC 19.6 rne / 100g and Al-ea 3.28 me / 100g). Tests on 22 genotypes of maize grown with light interception 100%, 76%. 37% and 22%, by calculating tolerance index based on the weight of dry seed cob-1 was found four genotypes of maize tend to be tolerant to low-intensity light that were genotype B 41, Pioneer 27, Sukmaraga and Sugihan. The test results of corn planted in beds shade with light interception 100%, 76%, 37% and 22% for groups of maize tolerant and sensitive, followed by application of urea 0 kg ha1, 100 kg ha-1 200 kg ha-1, 300 kg ha-1 and 400 kg ha-1 indicate that maize and 41 and Pioneer 27 by Urea 300 kg ha-1 gives better results than other varieties at different intensities of light oil palm age of 12 years with applications Urea fertilizer 300 kg ha-1, indicating that the B 41 and Pioneer 27 tends to give better results compared with other varieties. The application of a polyculture system palm-maize can produce 1000 kg of dry grain of corn in a 1 ha of oil palm cultivation.

  19. Soil Selenium (Se) Biofortification Changes the Physiological, Biochemical and Epigenetic Responses to Water Stress in Zea mays L. by Inducing a Higher Drought Tolerance

    PubMed Central

    Bocchini, Marika; D’Amato, Roberto; Ciancaleoni, Simona; Fontanella, Maria C.; Palmerini, Carlo A.; Beone, Gian M.; Onofri, Andrea; Negri, Valeria; Marconi, Gianpiero; Albertini, Emidio; Businelli, Daniela

    2018-01-01

    Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance. PMID:29636765

  20. Metabolizable energy, nitrogen balance, and ileal digestibility of amino acids in quality protein maize for pigs

    PubMed Central

    2014-01-01

    Background To compare the nutritional value and digestibility of five quality protein maize (QPM) hybrids to that of white and yellow maize, two experiments were carried out in growing pigs. In experiment 1, the energy metabolizability and the nitrogen balance of growing pigs fed one of five QPM hybrid diets were compared against those of pigs fed white or yellow maize. In experiment 2, the apparent and standardized ileal digestibility (AID and SID, respectively) of proteins and amino acids from the five QPM hybrids were compared against those obtained from pigs fed white and yellow maize. In both experiments, the comparisons were conducted using contrasts. Results The dry matter and nitrogen intakes were higher in the pigs fed the QPM hybrids (P < 0.05) than in the pigs fed white or yellow maize. Energy digestibility (P < 0.001) and metabolizability (P < 0.01) were higher in the pigs fed the white and yellow maize diets than in those fed the QPM diets. The AID of lysine was higher (P < 0.01) in the QPM diets than in the white and yellow maize. The AIDs of leucine, isoleucine, valine, phenylalanine, and methionine were lower in the QPM diets than those of maize (white and yellow) (all P < 0.05). Maize (white and yellow) had greater SIDs of leucine, isoleucine, valine, phenylalanine, glutamic acid, serine, alanine, tyrosine, and proline (P < 0.05). Conclusions Based on these results, it was concluded that QPM had a lower metabolizable energy content and a higher amount of digestible lysine than normal maize. PMID:25045520

  1. γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Meng, Yao; Xie, Tenglong; Li, Lijie; Li, Jing; Wei, Shi

    2017-01-01

    γ-Aminobutyric acid (GABA) has high physiological activity in plant stress physiology. This study showed that the application of exogenous GABA by root drenching to moderately (MS, 150 mM salt concentration) and severely salt-stressed (SS, 300 mM salt concentration) plants significantly increased endogenous GABA concentration and improved maize seedling growth but decreased glutamate decarboxylase (GAD) activity compared with non-treated ones. Exogenous GABA alleviated damage to membranes, increased in proline and soluble sugar content in leaves, and reduced water loss. After the application of GABA, maize seedling leaves suffered less oxidative damage in terms of superoxide anion (O2·−) and malondialdehyde (MDA) content. GABA-treated MS and SS maize seedlings showed increased enzymatic antioxidant activity compared with that of untreated controls, and GABA-treated MS maize seedlings had a greater increase in enzymatic antioxidant activity than SS maize seedlings. Salt stress severely damaged cell function and inhibited photosynthesis, especially in SS maize seedlings. Exogenous GABA application could reduce the accumulation of harmful substances, help maintain cell morphology, and improve the function of cells during salt stress. These effects could reduce the damage to the photosynthetic system from salt stress and improve photosynthesis and chlorophyll fluorescence parameters. GABA enhanced the salt tolerance of maize seedlings. PMID:28272438

  2. A multivariate regression model for detection of fumonisins content in maize from near infrared spectra.

    PubMed

    Giacomo, Della Riccia; Stefania, Del Zotto

    2013-12-15

    Fumonisins are mycotoxins produced by Fusarium species that commonly live in maize. Whereas fungi damage plants, fumonisins cause disease both to cattle breedings and human beings. Law limits set fumonisins tolerable daily intake with respect to several maize based feed and food. Chemical techniques assure the most reliable and accurate measurements, but they are expensive and time consuming. A method based on Near Infrared spectroscopy and multivariate statistical regression is described as a simpler, cheaper and faster alternative. We apply Partial Least Squares with full cross validation. Two models are described, having high correlation of calibration (0.995, 0.998) and of validation (0.908, 0.909), respectively. Description of observed phenomenon is accurate and overfitting is avoided. Screening of contaminated maize with respect to European legal limit of 4 mg kg(-1) should be assured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Impacts of Priming with Silicon on the Growth and Tolerance of Maize Plants to Alkaline Stress.

    PubMed

    Abdel Latef, Arafat A; Tran, Lam-Son P

    2016-01-01

    Silicon (Si) has been known to augment plant defense against biotic and abiotic pressures. Maize (Zea maize L.) is classified as a Si accumulator and is relatively susceptible to alkaline stress. In this study, seeds of maize were grown in pots and exposed to various concentrations of Na2CO3 (0, 25, 50, and 75 mM) with or without 1.5 mM Si in the form of sodium metasilicate Na2O3Si.5H2O for 25 days. Alkaline-stressed plants showed a decrease in growth parameters, leaf relative water content (LRWC), and the contents of photosynthetic pigments, soluble sugars, total phenols and potassium ion (K(+)), as well as potassium/sodium ion (K(+)/Na(+)) ratio. By contrast, alkaline stress increased the contents of soluble proteins, total free amino acids, proline, Na(+) and malondialdehyde (MDA), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in stressed plants. On the other hand, application of Si by seed-priming improved growth of stressed plants, which was accompanied by the enhancement in LRWC, and levels of photosynthetic pigments, soluble sugars, soluble proteins, total free amino acids and K(+), as well as activities of SOD, CAT, and POD enzymes. Furthermore, Si supplement resulted in a decrease in the contents of proline, MDA and Na(+), which together with enhanced K(+) level led to a favorable adjustment of K(+)/Na(+) ratio, in stressed plants relative to plants treated with alkaline stress alone. Taken together, these results indicate that Si plays a pivotal role in alleviating the negative effects of alkaline stress on maize growth by improving water status, enhancing photosynthetic pigments, accumulating osmoprotectants rather than proline, activating the antioxidant machinery, and maintaining the balance of K(+)/Na(+) ratio. Thus, our findings demonstrate that seed-priming with Si is an efficient strategy that can be used to boost tolerance of maize plants to alkaline stress.

  4. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar

    PubMed Central

    Quiroga, Gabriela; Erice, Gorka; Aroca, Ricardo; Chaumont, François; Ruiz-Lozano, Juan M.

    2017-01-01

    The arbuscular mycorrhizal (AM) symbiosis has been shown to improve maize tolerance to different drought stress scenarios by regulating a wide range of host plants aquaporins. The objective of this study was to highlight the differences in aquaporin regulation by comparing the effects of the AM symbiosis on root aquaporin gene expression and plant physiology in two maize cultivars with contrasting drought sensitivity. This information would help to identify key aquaporin genes involved in the enhanced drought tolerance by the AM symbiosis. Results showed that when plants were subjected to drought stress the AM symbiosis induced a higher improvement of physiological parameters in drought-sensitive plants than in drought-tolerant plants. These include efficiency of photosystem II, membrane stability, accumulation of soluble sugars and plant biomass production. Thus, drought-sensitive plants obtained higher physiological benefit from the AM symbiosis. In addition, the genes ZmPIP1;1, ZmPIP1;3, ZmPIP1;4, ZmPIP1;6, ZmPIP2;2, ZmPIP2;4, ZmTIP1;1, and ZmTIP2;3 were down-regulated by the AM symbiosis in the drought-sensitive cultivar and only ZmTIP4;1 was up-regulated. In contrast, in the drought-tolerant cultivar only three of the studied aquaporin genes (ZmPIP1;6, ZmPIP2;2, and ZmTIP4;1) were regulated by the AM symbiosis, resulting induced. Results in the drought-sensitive cultivar are in line with the hypothesis that down-regulation of aquaporins under water deprivation could be a way to minimize water loss, and the AM symbiosis could be helping the plant in this regulation. Indeed, during drought stress episodes, water conservation is critical for plant survival and productivity, and is achieved by an efficient uptake and stringently regulated water loss, in which aquaporins participate. Moreover, the broader and contrasting regulation of these aquaporins by the AM symbiosis in the drought-sensitive than the drought-tolerant cultivar suggests a role of these aquaporins in water homeostasis or in the transport of other solutes of physiological importance in both cultivars under drought stress conditions, which may be important for the AM-induced tolerance to drought stress. PMID:28674550

  5. Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance.

    PubMed

    Chalivendra, Subbaiah C; DeRobertis, Catherine; Chang, Perng-Kuang; Damann, Kenneth E

    2017-05-01

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AFs). Besides AFs, A. flavus makes many more secondary metabolites (SMs) whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hosts by A. flavus remains to be investigated. Cyclopiazonic acid (CPA), a neurotoxic SM made by A. flavus, is a nanomolar inhibitor of endoplasmic reticulum calcium ATPases (ECAs) and a potent inducer of cell death in plants. We hypothesized that CPA, by virtue of its cytotoxicity, may serve as a key pathogenicity factor that kills plant cells and supports the saprophytic life style of the fungus while compromising the host defense response. This proposal was tested by two complementary approaches. A comparison of CPA levels among A. flavus isolates indicated that CPA may be a determinant of niche adaptation, i.e., isolates that colonize maize make more CPA than those restricted only to the soil. Further, mutants in the CPA biosynthetic pathway are less virulent in causing ear rot than their wild-type parent in field inoculation assays. Additionally, genes encoding ECAs are expressed in developing maize seeds and are induced by A. flavus infection. Building on these results, we developed a seedling assay in which maize roots were exposed to CPA, and cell death was measured as Evans Blue uptake. Among >40 maize inbreds screened for CPA tolerance, inbreds with proven susceptibility to ear rot were also highly CPA sensitive. The publicly available data on resistance to silk colonization or AF contamination for many of the lines was also broadly correlated with their CPA sensitivity. In summary, our studies show that i) CPA serves as a key pathogenicity factor that enables the saprophytic life style of A. flavus and ii) maize inbreds are diverse in their tolerance to CPA. Taking advantage of this natural variation, we are currently pursuing both genome-wide and candidate gene approaches to identify novel components of maize resistance to Aspergillus ear rot.

  6. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage.

    PubMed

    Chugh, Vishal; Kaur, Narinder; Grewal, M S; Gupta, Anil K

    2013-04-01

    The role of oxidative stress management was evaluated in two maize (Zea mays L.) genotypes - Parkash (drought-resistant) and Paras (drought-sensitive), subjected to drought stress during reproductive stage. Alterations in their antioxidant pools - glutathione (GSH) and ascorbic acid (AsA) combined with activities of enzymes glutathione reductase (GR), ascorbate peroxidase (APX), peroxidase (POX) and catalase (CAT) involved in defense against oxidative stress and stress parameters, namely chlorophyll (Chl), hydrogen peroxide (H2O2) and malondialdehyde (MDA) were investigated in flag leaves from silk emergence till maturity. The drought caused transient increase in GR, APX, POX and CAT activities in drought-tolerant genotype (Parkash) which decreased at later stages with the extended period of drought stress. However, in Paras, drought stress caused decrease in activities of GR and CAT from initial period of stress till the end of experiment, except for POX which showed slight increase in activity. A significant increase in GSH content was observed in Parkash till 35 days after silking (DAS), whereas in Paras, GSH content remained lower than irrigated till maturity. Parkash which had higher AsA and Chl contents, also showed lower H2O2 and MDA levels than Paras under drought stress conditions. However, at the later stages, decline in antioxidant enzyme activities in Parkash due to severe drought stress led to enhanced membrane damage, as revealed by the accumulation of MDA. Our data indicated that significant activation of antioxidant system in Parkash might be responsible for its drought-tolerant behavior under drought stress and helped it to cope with the stress up to a definite period. Thus, the results indicate that antioxidant status and lipid peroxidation in flag leaves can be used as indices of drought tolerance in maize plants and also as potential biochemical targets for the crop improvement programmes to develop drought-tolerant cultivars.

  7. Safety evaluation of genetically modified DAS-40278-9 maize in a subchronic rodent feeding study.

    PubMed

    Zou, Shiying; Lang, Tianqi; Liu, Xu; Huang, Kunlun; He, Xiaoyun

    2018-07-01

    Genetically modified (GM) maize, DAS-40278-9, expresses the aryloxyalkanoate dioxygenase-1 (AAD-1) protein, which confers tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and aryloxyphenoxypropionate (AOPP) herbicides. The aad-1 gene, which expresses the AAD-1 protein, was derived from Gram-negative soil bacterium, Sphingobium herbicidovorans. A 90-day sub-chronic toxicity study was conducted on rats as a component of the safety evaluation of DAS-40278-9 maize. Rats were given formulated diets containing maize grain from DAS-40278-9 or a non-GM near isogenic control comparator at an incorporation rate of 12.5%, 25%, or 50% (w/w), respectively for 90 days. In addition, another group of rats was fed a basic rodent diet. Animals were evaluated by cage-side and hand-held detailed clinical observations, ophthalmic examinations, body weights/body weight gains, feed consumption, hematology, serum chemistry, selected organ weights, and gross and histopathological examinations. Under the condition of this study, DAS-40278-9 maize did not cause any treatment-related effects in rats compared with rats fed diets containing non-GM maize. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize

    PubMed Central

    Wang, Jiemin; Pei, Laming; Jin, Zhe; Zhang, Kewei; Zhang, Juren

    2017-01-01

    Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize. PMID:28448624

  9. Heat shock increases oxidative stress to modulate growth and physico-chemical attributes in diverse maize cultivars

    NASA Astrophysics Data System (ADS)

    Hussain, Iqbal; Ashraf, Muhammad Arslan; Rasheed, Rizwan; Iqbal, Muhammad; Ibrahim, Muhammad; Ashraf, Shamila

    2016-10-01

    The present investigation was conducted to appraise the physiochemical adjustments in contrasting maize cultivars, namely, PakAfgoi (tolerant) and EV-5098 (sensitive) subjected to heat shock. Seven-day-old seedlings were exposed to heat shock for different time intervals (1, 3, 6, 24, 48 and 72 h) and data for various physiochemical attributes determined to appraise time course changes in maize. After 72 h of heat shock, the plants were grown under normal conditions for 5 d and data for different growth attributes and photosynthetic pigments recorded. Exposure to heat shock reduced growth and photosynthetic pigments in maize cultivars. The plants exposed to heat shock for up to 3 h recovered growth and photosynthetic pigments when stress was relieved. A time course rise in the relative membrane permeability, hydrogen peroxide (H2O2) and malondialdehyde contents was recorded particularly in the EV-5098 indicating that heat shock-induced oxidative stress. Activities of different enzymatic antioxidants greatly altered due to heat shock. For instance, an increase in superoxide dismutase activity was recorded in both maize cultivars. The activity of ascorbate peroxidase was greater in Pak-Afgoi. However, the peroxidase and catalase activities were higher in plants of EV-5098. Heat shock caused a significant rise in the proline and decline in the total free amino acids. Overall, the performance of Pak-Afgoi was better in terms of having lesser oxidative damage and greater cellular levels of proline. The results suggested that oxidative stress indicators (relative membrane permeability, H2O2 and malondialdehyde) and proline can be used as markers for heat shock tolerant plants.

  10. Genetic diversity of improved salt tolerant calli of maize (Zea mays L.) using RAPD

    NASA Astrophysics Data System (ADS)

    Saputro, Triono Bagus; Dianawati, Siti; Sholihah, Nur Fadlillatus; Ermavitalini, Dini

    2017-06-01

    Maize is one of important cultivated plants in the world, in terms of production rates, utilization rates and demands. Unfortunately, the increment of demands were not followed by the increase of production rates since the cultivation area were significantly decrease. Coastal area is the marginal land that have a good potential to extend the cultivation area. The main challenge of this area is the high content of salt. The aims of this research were try to induce a new varian of local maize through in vitro culture and observe its genetic variation using RAPD. Bluto variety from Madura island was used as an explant in callus induction. Induction of callus were conducted using MS basal medium supplemented with 3 mg/L of 2,4 D under dark condition. While the selection stage was conducted using MS basal medium supplemented with 3 mg/L of 2,4 D with the addition of various concentration of NaCl (0 mg/L; 2500 mg/L; 5000 mg/L; and 7500 mg/L). The research were arranged in a completely randomized design with three replications. The exposion of NaCl were significantly decrease the mass of maize callus. The highest addition of callus weight was 210 mgs in control treatment, while the lowest is in 7500 mg/L with 3 mgs. The RAPD technique was utilized to characterize the genotype of maize callus. Out of five primers, only three primers can produce polymorphic bands named OPA10, OPB07 and OPC02. Taken together, the surviving callus of Bluto varians can be further developed as potential somaclone that has high tolerance to salt stress.

  11. Effect of Genetics, Environment, and Phenotype on the Metabolome of Maize Hybrids Using GC/MS and LC/MS.

    PubMed

    Tang, Weijuan; Hazebroek, Jan; Zhong, Cathy; Harp, Teresa; Vlahakis, Chris; Baumhover, Brian; Asiago, Vincent

    2017-06-28

    We evaluated the variability of metabolites in various maize hybrids due to the effect of environment, genotype, phenotype as well as the interaction of the first two factors. We analyzed 480 forage and the same number of grain samples from 21 genetically diverse non-GM Pioneer brand maize hybrids, including some with drought tolerance and viral resistance phenotypes, grown at eight North American locations. As complementary platforms, both GC/MS and LC/MS were utilized to detect a wide diversity of metabolites. GC/MS revealed 166 and 137 metabolites in forage and grain samples, respectively, while LC/MS captured 1341 and 635 metabolites in forage and grain samples, respectively. Univariate and multivariate analyses were utilized to investigate the response of the maize metabolome to the environment, genotype, phenotype, and their interaction. Based on combined percentages from GC/MS and LC/MS datasets, the environment affected 36% to 84% of forage metabolites, while less than 7% were affected by genotype. The environment affected 12% to 90% of grain metabolites, whereas less than 27% were affected by genotype. Less than 10% and 11% of the metabolites were affected by phenotype in forage and grain, respectively. Unsupervised PCA and HCA analyses revealed similar trends, i.e., environmental effect was much stronger than genotype or phenotype effects. On the basis of comparisons of disease tolerant and disease susceptible hybrids, neither forage nor grain samples originating from different locations showed obvious phenotype effects. Our findings demonstrate that the combination of GC/MS and LC/MS based metabolite profiling followed by broad statistical analysis is an effective approach to identify the relative impact of environmental, genetic and phenotypic effects on the forage and grain composition of maize hybrids.

  12. Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F, and CP4 EPSPS proteins on arthropod complex food webs.

    PubMed

    Pálinkás, Zoltán; Kiss, József; Zalai, Mihály; Szénási, Ágnes; Dorner, Zita; North, Samuel; Woodward, Guy; Balog, Adalbert

    2017-04-01

    Four genetically modified (GM) maize ( Zea mays L.) hybrids (coleopteran resistant, coleopteran and lepidopteran resistant, lepidopteran resistant and herbicide tolerant, coleopteran and herbicide tolerant) and its non-GM control maize stands were tested to compare the functional diversity of arthropods and to determine whether genetic modifications alter the structure of arthropods food webs. A total number of 399,239 arthropod individuals were used for analyses. The trophic groups' number and the links between them indicated that neither the higher magnitude of Bt toxins (included resistance against insect, and against both insects and glyphosate) nor the extra glyphosate treatment changed the structure of food webs. However, differences in the average trophic links/trophic groups were detected between GM and non-GM food webs for herbivore groups and plants. Also, differences in characteristic path lengths between GM and non-GM food webs for herbivores were observed. Food webs parameterized based on 2-year in-field assessments, and their properties can be considered a useful and simple tool to evaluate the effects of Bt toxins on non-target organisms.

  13. Accumulation and phytotoxicity of technical hexabromocyclododecane in maize.

    PubMed

    Wu, Tong; Huang, Honglin; Zhang, Shuzhen

    2016-04-01

    To investigate the accumulation and phytotoxicity of technical hexabromocyclododecane (HBCD) in maize, young seedlings were exposed to solutions of technical HBCD at different concentrations. The uptake kinetics showed that the HBCD concentration reached an apparent equilibrium within 96hr, and the accumulation was much higher in roots than in shoots. HBCD accumulation in maize had a positive linear correlation with the exposure concentration. The accumulation of different diastereoisomers followed the order γ-HBCD>β-HBCD>α-HBCD. Compared with their proportions in the technical HBCD exposure solution, the diastereoisomer contribution increased for β-HBCD and decreased for γ-HBCD in both maize roots and shoots with exposure time, whereas the contribution of α-HBCD increased in roots and decreased in shoots throughout the experimental period. These results suggest the diastereomer-specific accumulation and translocation of HBCD in maize. Inhibitory effects of HBCD on the early development of maize followed the order of germination rate>root biomass≥root elongation>shoot biomass≥shoot elongation. Hydroxyl radical (OH) and histone H2AX phosphorylation (γ-H2AX) were induced in maize by HBCD exposure, indicative of the generation of oxidative stress and DNA double-strand breaks in maize. An OH scavenger inhibited the expression of γ-H2AX foci in both maize roots and shoots, which suggests the involvement of OH generation in the HBCD-induced DNA damage. The results of this study will offer useful information for a more comprehensive assessment of the environmental behavior and toxicity of technical HBCD. Copyright © 2015. Published by Elsevier B.V.

  14. The genetic basis of natural variation for iron homeostasis in the maize IBM population

    PubMed Central

    2014-01-01

    Background Iron (Fe) deficiency symptoms in maize (Zea mays subsp. mays) express as leaf chlorosis, growth retardation, as well as yield reduction and are typically observed when plants grow in calcareous soils at alkaline pH. To improve our understanding of genotypical variability in the tolerance to Fe deficiency-induced chlorosis, the objectives of this study were to (i) determine the natural genetic variation of traits related to Fe homeostasis in the maize intermated B73 × Mo17 (IBM) population, (ii) to identify quantitative trait loci (QTLs) for these traits, and (iii) to analyze expression levels of genes known to be involved in Fe homeostasis as well as of candidate genes obtained from the QTL analysis. Results In hydroponically-grown maize, a total of 47 and 39 QTLs were detected for the traits recorded under limited and adequate supply of Fe, respectively. Conclusions From the QTL results, we were able to identify new putative candidate genes involved in Fe homeostasis under a deficient or adequate Fe nutritional status, like Ferredoxin class gene, putative ferredoxin PETF, metal tolerance protein MTP4, and MTP8. Furthermore, our expression analysis of candidate genes suggested the importance of trans-acting regulation for 2’-deoxymugineic acid synthase 1 (DMAS1), nicotianamine synthase (NAS3, NAS1), formate dehydrogenase 1 (FDH1), methylthioribose-1-phosphate isomerase (IDI2), aspartate/tyrosine/aromatic aminotransferase (IDI4), and methylthioribose kinase (MTK). PMID:24400634

  15. Drought tolerance and proteomics studies of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene.

    PubMed

    Qin, Na; Xu, Weigang; Hu, Lin; Li, Yan; Wang, Huiwei; Qi, Xueli; Fang, Yuhui; Hua, Xia

    2016-11-01

    Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.

  16. The Physiology and Proteomics of Drought Tolerance in Maize: Early Stomatal Closure as a Cause of Lower Tolerance to Short-Term Dehydration?

    PubMed Central

    Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L.; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena

    2012-01-01

    Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance. PMID:22719860

  17. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration?

    PubMed

    Benešová, Monika; Holá, Dana; Fischer, Lukáš; Jedelský, Petr L; Hnilička, František; Wilhelmová, Naďa; Rothová, Olga; Kočová, Marie; Procházková, Dagmar; Honnerová, Jana; Fridrichová, Lenka; Hniličková, Helena

    2012-01-01

    Understanding the response of a crop to drought is the first step in the breeding of tolerant genotypes. In our study, two maize (Zea mays L.) genotypes with contrasting sensitivity to dehydration were subjected to moderate drought conditions. The subsequent analysis of their physiological parameters revealed a decreased stomatal conductance accompanied by a slighter decrease in the relative water content in the sensitive genotype. In contrast, the tolerant genotype maintained open stomata and active photosynthesis, even under dehydration conditions. Drought-induced changes in the leaf proteome were analyzed by two independent approaches, 2D gel electrophoresis and iTRAQ analysis, which provided compatible but only partially overlapping results. Drought caused the up-regulation of protective and stress-related proteins (mainly chaperones and dehydrins) in both genotypes. The differences in the levels of various detoxification proteins corresponded well with the observed changes in the activities of antioxidant enzymes. The number and levels of up-regulated protective proteins were generally lower in the sensitive genotype, implying a reduced level of proteosynthesis, which was also indicated by specific changes in the components of the translation machinery. Based on these results, we propose that the hypersensitive early stomatal closure in the sensitive genotype leads to the inhibition of photosynthesis and, subsequently, to a less efficient synthesis of the protective/detoxification proteins that are associated with drought tolerance.

  18. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress

    PubMed Central

    York, Larry M.; Galindo-Castañeda, Tania; Schussler, Jeffrey R.; Lynch, Jonathan P.

    2015-01-01

    Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains. PMID:25795737

  19. Maize arabinoxylan gels as protein delivery matrices.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa

    2009-04-08

    The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  20. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize

    PubMed Central

    Sousa, Fernanda F.; Mendes, Simone M.; Santos-Amaya, Oscar F.; Araújo, Octávio G.; Oliveira, Eugenio E.

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50–70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of S. frugiperda in Bt crops are discussed. PMID:27243977

  1. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    PubMed

    Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of S. frugiperda in Bt crops are discussed.

  2. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    PubMed

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  3. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    PubMed Central

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers. PMID:25628626

  4. A 6900-year history of landscape modification by humans in lowland Amazonia

    NASA Astrophysics Data System (ADS)

    Bush, M. B.; Correa-Metrio, A.; McMichael, C. H.; Sully, S.; Shadik, C. R.; Valencia, B. G.; Guilderson, T.; Steinitz-Kannan, M.; Overpeck, J. T.

    2016-06-01

    A sedimentary record from the Peruvian Amazon provided evidence of climate and vegetation change for the last 6900 years. Piston cores collected from the center of Lake Sauce, a 20 m deep lake at 600 m elevation, were 19.7 m in length. The fossil pollen record showed a continuously forested catchment within the period of the record, although substantial changes in forest composition were apparent. Fossil charcoal, found throughout the record, was probably associated with humans setting fires. Two fires, at c. 6700 cal BP and 4270 cal BP, appear to have been stand-replacing events possibly associated with megadroughts. The fire event at 4270 cal BP followed a drought that caused lowered lake levels for several centuries. The successional trajectories of forest recovery following these large fires were prolonged by smaller fire events. Fossil pollen of Zea mays (cultivated maize) provided evidence of agricultural activity at the site since c. 6320 cal BP. About 5150 years ago, the lake deepened and started to deposit laminated sediments. Maize agriculture reached a peak of intensity between c. 3380 and 700 cal BP. Fossil diatom data provided a proxy for lake nutrient status and productivity, both of which peaked during the period of maize cultivation. A marked change in land use was evident after c. 700 cal BP when maize agriculture was apparently abandoned at this site. Iriartea, a hyperdominant of riparian settings in western Amazonia, increased in abundance within the last 1100 years, but declined markedly at c. 1070 cal BP and again between c. 80 and -10 cal BP.

  5. Structural Characterization of Lignin from Maize ( Zea mays L.) Fibers: Evidence for Diferuloylputrescine Incorporated into the Lignin Polymer in Maize Kernels.

    PubMed

    Del Río, José C; Rencoret, Jorge; Gutiérrez, Ana; Kim, Hoon; Ralph, John

    2018-05-02

    The structure of the phenolic polymer in maize grain fibers, with 5.5% Klason lignin content, has been studied. For this, the milled wood lignin (MWL) and dioxane lignin (DL) preparations were isolated and analyzed. The data indicated that the lignin in maize fibers was syringyl rich, mostly involved in β-aryl ether, resinol, and phenylcoumaran substructures. 2D NMR and derivatization followed by reductive cleavage (DFRC) also revealed the occurrence of associated ferulates together with trace amounts of p-coumarates acylating the γ-OH of lignin side chains, predominantly on S-lignin units. More interesting was the occurrence of diferuloylputrescine, a ferulic acid amide, which was identified by 2D NMR and comparison with a synthesized standard, that was apparently incorporated into this lignin. A phenylcoumaran structure involving a diferuloylputrescine coupled through 8-5' linkages to another diferuloylputrescine (or to a ferulate or a guaiacyl lignin unit) was found, providing compelling evidence for its participation in radical coupling reactions. The occurrence of diferuloylputrescine in cell walls of maize kernels and other cereal grains appears to have been missed in previous works, perhaps due to the alkaline hydrolysis commonly used for composition studies.

  6. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress.

    PubMed

    York, Larry M; Galindo-Castañeda, Tania; Schussler, Jeffrey R; Lynch, Jonathan P

    2015-04-01

    Increasing the nitrogen use efficiency of maize is an important goal for food security and agricultural sustainability. In the past 100 years, maize breeding has focused on yield and above-ground phenes. Over this period, maize cultivation has changed from low fertilizer inputs and low population densities to intensive fertilization and dense populations. The authors hypothesized that through indirect selection the maize root system has evolved phenotypes suited to more intense competition for nitrogen. Sixteen maize varieties representing commercially successful lines over the past century were planted at two nitrogen levels and three planting densities. Root systems of the most recent material were 7 º more shallow, had one less nodal root per whorl, had double the distance from nodal root emergence to lateral branching, and had 14% more metaxylem vessels, but total mextaxylem vessel area remained unchanged because individual metaxylem vessels had 12% less area. Plasticity was also observed in cortical phenes such as aerenchyma, which increased at greater population densities. Simulation modelling with SimRoot demonstrated that even these relatively small changes in root architecture and anatomy could increase maize shoot growth by 16% in a high density and high nitrogen environment. The authors concluded that evolution of maize root phenotypes over the past century is consistent with increasing nitrogen use efficiency. Introgression of more contrasting root phene states into the germplasm of elite maize and determination of the functional utility of these phene states in multiple agronomic conditions could contribute to future yield gains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Safety and Quality Assessment of Smallholder Farmers' Maize in the Western Highlands of Guatemala.

    PubMed

    Mendoza, José Rodrigo; Rodas, Ana; Oliva, Ana; Sabillón, Luis; Colmenares, Ana; Clarke, Jennifer; Hallen-Adams, Heather E; Campabadal, Carlos; Bianchini, Andréia

    2018-05-01

    Maize ( Zea mays) is a staple in many developing countries but is known to be prone to pest (insects, birds, and rodents) and fungal infestation. In Guatemala, mycotoxin contamination of cultivated products may occur owing to such factors as environmental conditions and the use of traditional agriculture operations. To assess the current maize conditions in Guatemala, a small-scale study was performed. Mold and insect counts and mycotoxin (aflatoxin and fumonisin) concentrations were determined on 25 farms in two townships (Chiantla and Todos Santos) of the Huehuetenango Department. Total fungal counts were 3.6 to 6.83 log CFU/g with no significant differences ( P > 0.05) across farms at different altitudes. Farms where maize was not produced but was purchased were at higher risk of fumonisin contamination, whereas local producers were mostly affected by aflatoxins. Aflatoxin was present in maize from 100% of farms at 1.0 to 85.3 ppb, and fumonisin was detected on 52% of farms at 0.4 to 31.0 ppm. Average mycotoxin consumption amounts were above the recommended maximum intake for aflatoxin in both produced and purchased maize and above the provisional maximum tolerable daily intake for fumonisin in purchased maize. Estimated daily intake was 0.01 to 0.85 μg/kg of body weight per day for aflatoxin and 2.9 to 310.0 μg/kg of body weight per day for fumonisin. An entomological analysis revealed overall 32% prevalence of Ephestia kuehniella (flour moth), 16% prevalence of Sitophilus zeamais (maize weevil), and 8% prevalence of Tribolium sp. (flour beetle) on the analyzed farms. This study highlighted poor agricultural practices used in the highlands of Guatemala. Current practices should be revised for the production of maize that is safe for consumption by the population in this region.

  8. Sequence of Changes in Maize Responding to Soil Water Deficit and Related Critical Thresholds

    PubMed Central

    Ma, Xueyan; He, Qijin; Zhou, Guangsheng

    2018-01-01

    The sequence of changes in crop responding to soil water deficit and related critical thresholds are essential for better drought damage classification and drought monitoring indicators. This study was aimed to investigate the critical thresholds of maize growth and physiological characteristics responding to changing soil water and to reveal the sequence of changes in maize responding to soil water deficit both in seedling and jointing stages based on 2-year’s maize field experiment responding to six initial soil water statuses conducted in 2013 and 2014. Normal distribution tolerance limits were newly adopted to identify critical thresholds of maize growth and physiological characteristics to a wide range of soil water status. The results showed that in both stages maize growth characteristics related to plant water status [stem moisture content (SMC) and leaf moisture content (LMC)], leaf gas exchange [net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs)], and leaf area were sensitive to soil water deficit, while biomass-related characteristics were less sensitive. Under the concurrent weather conditions and agronomic managements, the critical soil water thresholds in terms of relative soil moisture of 0–30 cm depth (RSM) of maize SMC, LMC, net Pn, Tr, Gs, and leaf area were 72, 65, 62, 60, 58, and 46%, respectively, in seedling stage, and 64, 64, 51, 53, 48, and 46%, respectively, in jointing stage. It indicated that there is a sequence of changes in maize responding to soil water deficit, i.e., their response sequences as soil water deficit intensified: SMC ≥ LMC > leaf gas exchange > leaf area in both stages. This sequence of changes in maize responding to soil water deficit and related critical thresholds may be better indicators of damage classification and drought monitoring. PMID:29765381

  9. Exogenous application of urea and a urease inhibitor improves drought stress tolerance in maize (Zea mays L.).

    PubMed

    Gou, Wei; Zheng, Pufan; Tian, Li; Gao, Mei; Zhang, Lixin; Akram, Nudrat Aisha; Ashraf, Muhammad

    2017-05-01

    Drought is believed to cause many metabolic changes which affect plant growth and development. However, it might be mitigated by various inorganic substances, such as nitrogen. Thus, the study was carried out to investigate the effect of foliar-applied urea with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) on a maize cultivar under drought stress simulated by 15% (w/v) polyethylene glycol 6000. Foliar-applied urea resulted in a significant increase in plant dry weight, relative water content, and photosynthetic pigments under water stress condition. Furthermore, the activities of superoxide dismutase (SOD), peroxidase (POD), and hydrogen peroxidase (CAT), were enhanced with all spraying treatments under drought stress, which led to decreases in accumulation of hydrogen peroxide (H 2 O 2 ), superoxide anion ([Formula: see text]) and malondialdehyde (MDA). The contents of soluble protein and soluble sugar accumulated remarkably with urea-applied under drought stress condition. Moreover, a further enhancement in above metabolites was observed by spraying a mixture of urea and urease inhibitor as compared to urea sprayed only. Taken together, our findings show that foliar application of urea and a urease inhibitor could significantly enhance drought tolerance of maize through protecting photosynthetic apparatus, activating antioxidant defense system and improving osmoregulation.

  10. QTL Mapping of Low-Temperature Germination Ability in the Maize IBM Syn4 RIL Population

    PubMed Central

    Hu, Shuaidong; Lübberstedt, Thomas; Zhao, Guangwu; Lee, Michael

    2016-01-01

    Low temperature is the primary factor to affect maize sowing in early spring. It is, therefore, vital for maize breeding programs to improve tolerance to low temperatures at seed germination stage. However, little is known about maize QTL involved in low-temperature germination ability. 243 lines of the intermated B73×Mo17 (IBM) Syn4 recombinant inbred line (RIL) population was used for QTL analysis of low-temperature germination ability. There were significant differences in germination-related traits under both conditions of low temperature (12°C/16h, 18°C/8h) and optimum temperature (28°C/24h) between the parental lines. Only three QTL were identified for controlling optimum-temperature germination rate. Six QTL controlling low-temperature germination rate were detected on chromosome 4, 5, 6, 7 and 9, and contribution rate of single QTL explained between 3.39%~11.29%. In addition, six QTL controlling low-temperature primary root length were detected in chromosome 4, 5, 6, and 9, and the contribution rate of single QTL explained between 3.96%~8.41%. Four pairs of QTL were located at the same chromosome position and together controlled germination rate and primary root length under low temperature condition. The nearest markers apart from the corresponding QTL (only 0.01 cM) were umc1303 (265.1 cM) on chromosome 4, umc1 (246.4 cM) on chromosome 5, umc62 (459.1 cM) on chromosome 6, bnl14.28a (477.4 cM) on chromosome 9, respectively. A total of 3155 candidate genes were extracted from nine separate intervals based on the Maize Genetics and Genomics Database (http://www.maizegdb.org). Five candidate genes were selected for analysis as candidates putatively affecting seed germination and seedling growth at low temperature. The results provided a basis for further fine mapping, molecular marker assisted breeding and functional study of cold-tolerance at the stage of seed germination in maize. PMID:27031623

  11. Nutritional equivalency evaluation of transgenic maize grain from event DP-O9814O-6 and transgenic soybeans containing event DP-356O43-5: laying hen performance and egg quality measures.

    PubMed

    McNaughton, J; Roberts, M; Rice, D; Smith, B; Hinds, M; Delaney, B; Iiams, C; Sauber, T

    2011-02-01

    The objective of this study was to compare the nutritional performance of laying hens fed maize grain from event DP-Ø9814Ø-6 (98140; gat4621 and zm-hra genes) and processed soybean meal from soybeans containing event DP-356Ø43-5 (356043; gat4601 and gm-hra genes), individually or in combination, with the performance of hens fed diets containing nontransgenic maize and soybean meal. Healthy pullets (n = 216) placed in cages (3 hens/cage) were randomly assigned to 9 dietary treatments (8 cages/treatment): nontransgenic controls 1, 2, and 3 (comparable genetic background controls for 98140, 356043, and 98140 + 356043, respectively); reference 1, reference 2, and reference 3 (commercially available nontransgenic maize-soybean meal sources); and 98140 (test 1), 356043 (test 2), and 98140 + 356043 (test 3). The experiment was divided into three 4-wk phases (24 to 28 wk, 28 to 32 wk, and 32 to 36 wk of age), during which time hens were fed mash diets. Performance (BW, feed intake, and egg production) and egg quality data were collected. Data were analyzed using a mixed model ANOVA; differences between the control and respective test group means were considered significant at P < 0.05. Data generated from the reference groups were used only in the estimation of experimental variability and in generating the tolerance interval. Body weight and BW gain, egg production, and production efficiency for hens fed the test diets were similar to the respective values for hens fed the corresponding control diets. Haugh unit measures and egg component weights were similar between the respective test and control groups, and no differences were observed in quality grades or crack measures. All observed values of the control and test groups were within the calculated tolerance intervals. This research indicates that the performance and egg quality of hens fed diets containing 98140 maize grain, 356043 soybean meal, or a combination of the 2 was comparable with that of hens fed diets formulated with nontransgenic maize grain or soybean meal control diets with comparable genetic backgrounds.

  12. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    PubMed

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  13. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.).

    PubMed

    Wang, Yijun; Xu, Jing; Deng, Dexiang; Ding, Haidong; Bian, Yunlong; Yin, Zhitong; Wu, Yarong; Zhou, Bo; Zhao, Ye

    2016-02-01

    The meta-QTL and candidate genes will facilitate the elucidation of molecular bases underlying agriculturally important traits and open new avenues for functional markers development and elite alleles introgression in maize breeding program. A large number of QTLs attributed to grain productivity and other agriculturally important traits have been identified and deposited in public repositories. The integration of fruitful QTL becomes a major issue in current plant genomics. To this end, we first collected QTL for six agriculturally important traits in maize, including yield, plant height, ear height, leaf angle, stay-green, and maize rough dwarf disease resistance. The meta-analysis method was then employed to retrieve 113 meta-QTL. Additionally, we also isolated candidate genes for target traits by the bioinformatic technique. Several candidates, including some well-characterized genes, GA3ox2 for plant height, lg1 and lg4 for leaf angle, zfl1 and zfl2 for flowering time, were co-localized with established meta-QTL intervals. Intriguingly, in a relatively narrow meta-QTL region, the maize ortholog of rice yield-related gene GW8/OsSPL16 was believed to be a candidate for yield. Leveraging results presented in this study will provide further insights into the genetic architecture of maize agronomic traits. Moreover, the meta-QTL and candidate genes reported here could be harnessed for the enhancement of stress tolerance and yield performance in maize and translation to other crops.

  14. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    PubMed

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses. © 2014 Institute of Botany, Chinese Academy of Sciences.

  15. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain

    PubMed Central

    Li, Qianqian; Cui, Xiaoqing; Liu, Xuejun; Roelcke, Marco; Pasda, Gregor; Zerulla, Wolfram; Wissemeier, Alexander H.; Chen, Xinping; Goulding, Keith; Zhang, Fusuo

    2017-01-01

    Overuse of urea, low nitrogen (N) utilization, and large N losses are common in maize production in North China Plain (NCP). To solve these problems, we conducted two field experiments at Shangzhuang and Quzhou in NCP to test the ability of a newly developed urease inhibitor product Limus® to decrease NH3 volatilization from urea applied to maize. Grain yield, apparent N recovery efficiency (REN) and N balance when using urea applied with or without Limus were also measured over two maize growing seasons. Cumulative NH3 loss in the two weeks following urea application without Limus ranged from 9–108 kg N ha−1, while Limus addition significantly decreased NH3 loss by a mean of 84%. Urea with Limus did not significantly increase maize yields (P < 0.05) compared with urea alone. However, a significant 11–17% improvement in REN with Limus was observed at QZ. The use of urea-N plus Limus would permit a reduction in N applications of 55–60% compared to farmers’ practice and/or further 20% N saving compared with optimized urea-N rate (150 kg N ha−1, based on N requirement by target yield of 7.5 t ha−1), and would achieve the same maize yields but with significantly decreased NH3 loss and increased N utilization. PMID:28272451

  16. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan

    2016-05-01

    As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.

  17. A new urease-inhibiting formulation decreases ammonia volatilization and improves maize nitrogen utilization in North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Qianqian; Cui, Xiaoqing; Liu, Xuejun; Roelcke, Marco; Pasda, Gregor; Zerulla, Wolfram; Wissemeier, Alexander H.; Chen, Xinping; Goulding, Keith; Zhang, Fusuo

    2017-03-01

    Overuse of urea, low nitrogen (N) utilization, and large N losses are common in maize production in North China Plain (NCP). To solve these problems, we conducted two field experiments at Shangzhuang and Quzhou in NCP to test the ability of a newly developed urease inhibitor product Limus® to decrease NH3 volatilization from urea applied to maize. Grain yield, apparent N recovery efficiency (REN) and N balance when using urea applied with or without Limus were also measured over two maize growing seasons. Cumulative NH3 loss in the two weeks following urea application without Limus ranged from 9-108 kg N ha-1, while Limus addition significantly decreased NH3 loss by a mean of 84%. Urea with Limus did not significantly increase maize yields (P < 0.05) compared with urea alone. However, a significant 11-17% improvement in REN with Limus was observed at QZ. The use of urea-N plus Limus would permit a reduction in N applications of 55-60% compared to farmers’ practice and/or further 20% N saving compared with optimized urea-N rate (150 kg N ha-1, based on N requirement by target yield of 7.5 t ha-1), and would achieve the same maize yields but with significantly decreased NH3 loss and increased N utilization.

  18. Effects of microbial phytase, produced by solid-state fermentation, on the performance and nutrient utilisation of broilers fed maize- and wheat-based diets.

    PubMed

    Wu, Y B; Ravindran, V; Hendriks, W H

    2003-12-01

    1. The influence of a microbial phytase on the performance, toe ash contents and nutrient utilisation of male broilers fed diets based on maize and wheat was investigated. The experiment was conducted as 2 x 2 x 2 factorial arrangement of treatments. Within the factorial, two diet types (maize-soy or wheat-soy) containing two levels of non-phytate phosphorus (3.0 or 4.5 g/kg) were evaluated and each level of non-phytate phosphorus was supplemented with 0 or 500 PU phytase/kg diet. Each of the 8 dietary treatments were fed to 6 pens of 8 birds from d 1 to 21 post-hatching. 2. Main effects of diet type and phytase were observed for all parameters. Main effect of non-phytate phosphorus was significant only for feed/gain and toe ash contents. Phytase addition improved weight gains irrespective of diet type or non-phytate phosphorus level, but the magnitude of improvement in the phosphorus-deficient wheat-soy diet was greater, resulting in a diet type x non-phytate phosphorus interaction. Responses in toe ash contents were noted only in phosphorus-deficient diets, as indicated by a non-phytate phosphorus x phytase interaction. 3. Phytase addition improved apparent metabolisable energy values of wheat-based diets, but had little effect on the apparent metabolisable energy of maize-based diets as shown by a diet type x phytase interaction. The apparent metabolisable energy was not influenced by dietary non-phytate P. 4. Phytase improved ileal nitrogen digestibility in both diet types, but the responses to added phytase tended to be higher in wheat-based diets, as shown by a diet type x phytase interaction. 5. Increasing the dietary non-phytate phosphorus level reduced phosphorus digestibility and increased excreta phosphorus content. Addition of phytase improved phosphorus digestibility, but the increments were higher in low phosphorus diets resulting in a non-phytate phosphorus x phytase interaction. Phytase addition tended to lower the excreta phosphorus content, but the effects were greater in birds fed low phosphorus diets, as shown by a non-phytate phosphorus x phytase interaction.

  19. Current situation of pests targeted by Bt crops in Latin America.

    PubMed

    Blanco, C A; Chiaravalle, W; Dalla-Rizza, M; Farias, J R; García-Degano, M F; Gastaminza, G; Mota-Sánchez, D; Murúa, M G; Omoto, C; Pieralisi, B K; Rodríguez, J; Rodríguez-Maciel, J C; Terán-Santofimio, H; Terán-Vargas, A P; Valencia, S J; Willink, E

    2016-06-01

    Transgenic crops producing Bacillus thuringiensis- (Bt) insecticidal proteins (Bt crops) have provided useful pest management tools to growers for the past 20 years. Planting Bt crops has reduced the use of synthetic insecticides on cotton, maize and soybean fields in 11 countries throughout Latin America. One of the threats that could jeopardize the sustainability of Bt crops is the development of resistance by targeted pests. Governments of many countries require vigilance in measuring changes in Bt-susceptibility in order to proactively implement corrective measures before Bt-resistance is widespread, thus prolonging the usefulness of Bt crops. A pragmatic approach to obtain information on the effectiveness of Bt-crops is directly asking growers, crop consultants and academics about Bt-resistance problems in agricultural fields, first-hand information that not necessarily relies on susceptibility screens performed in laboratories. This type of information is presented in this report. Problematic pests of cotton and soybeans in five Latin American countries currently are effectively controlled by Bt crops. Growers that plant conventional (non-Bt) cotton or soybeans have to spray synthetic insecticides against multiple pests that otherwise are controlled by these Bt crops. A similar situation has been observed in six Latin American countries where Bt maize is planted. No synthetic insecticide applications are used to control corn pests because they are controlled by Bt maize, with the exception of Spodoptera frugiperda. While this insect in some countries is still effectively controlled by Bt maize, in others resistance has evolved and necessitates supplemental insecticide applications and/or the use of Bt maize cultivars that express multiple Bt proteins. Partial control of S. frugiperda in certain countries is due to its natural tolerance to the Bt bacterium. Of the 31 pests targeted and controlled by Bt crops in Latin America, only S. frugiperda has shown tolerance to certain Bt proteins in growers' fields, the most reliable indication of the status of Bt-susceptibility in most of the American continent. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Why do gelatinized starch granules not dissolve completely? Roles for amylose, protein, and lipid in granule "ghost" integrity.

    PubMed

    Debet, Martine R; Gidley, Michael J

    2007-06-13

    After gelatinization in water, starch granules persist in swollen hydrated forms known as ghosts. Three potential mechanisms for ghost formation are tested. Proteins and lipids on the granule surface are found to be a determinant of ghost robustness, but not ghost formation. Proteins inside pre-made maize or wheat starch ghosts are degraded extensively by proteases without any apparent change in ghost properties, making an internal protein cross-linking mechanism unlikely. Waxy maize mutants with a range of amylose contents have ghost integrities that correlate with (low) apparent amylose levels. It is hypothesized that ghost formation is due to cross-linking of polysaccharide chains within swollen granules, most likely involving double helices formed from polymer chains that become free to move following heat-induced granule swelling. The size and robustness of granule ghosts is proposed to be determined by the relative rates of swelling and cross-linking, modulated by surface non-polysaccharide components.

  1. Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes

    NASA Technical Reports Server (NTRS)

    Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.

  2. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress1[OPEN

    PubMed Central

    Augustine, Robert C.; Rytz, Thérèse C.

    2016-01-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252

  3. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.

    PubMed

    Anzuay, María Soledad; Ciancio, María Gabriela Ruiz; Ludueña, Liliana Mercedes; Angelini, Jorge Guillermo; Barros, Germán; Pastor, Nicolás; Taurian, Tania

    2017-06-01

    The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO 4 and AlPO 4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO 4 and AlPO 4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Water deficit-induced changes in transcription factor expression in maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TFs) directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse tran...

  5. Multicollinearity in canonical correlation analysis in maize.

    PubMed

    Alves, B M; Cargnelutti Filho, A; Burin, C

    2017-03-30

    The objective of this study was to evaluate the effects of multicollinearity under two methods of canonical correlation analysis (with and without elimination of variables) in maize (Zea mays L.) crop. Seventy-six maize genotypes were evaluated in three experiments, conducted in a randomized block design with three replications, during the 2009/2010 crop season. Eleven agronomic variables (number of days from sowing until female flowering, number of days from sowing until male flowering, plant height, ear insertion height, ear placement, number of plants, number of ears, ear index, ear weight, grain yield, and one thousand grain weight), 12 protein-nutritional variables (crude protein, lysine, methionine, cysteine, threonine, tryptophan, valine, isoleucine, leucine, phenylalanine, histidine, and arginine), and 6 energetic-nutritional variables (apparent metabolizable energy, apparent metabolizable energy corrected for nitrogen, ether extract, crude fiber, starch, and amylose) were measured. A phenotypic correlation matrix was first generated among the 29 variables for each of the experiments. A multicollinearity diagnosis was later performed within each group of variables using methodologies such as variance inflation factor and condition number. Canonical correlation analysis was then performed, with and without the elimination of variables, among groups of agronomic and protein-nutritional, and agronomic and energetic-nutritional variables. The canonical correlation analysis in the presence of multicollinearity (without elimination of variables) overestimates the variability of canonical coefficients. The elimination of variables is an efficient method to circumvent multicollinearity in canonical correlation analysis.

  6. Improved recovery of active recombinant laccase from maize seed.

    PubMed

    Bailey, M R; Woodard, S L; Callaway, E; Beifuss, K; Magallanes-Lundback, M; Lane, J R; Horn, M E; Mallubhotla, H; Delaney, D D; Ward, M; Van Gastel, F; Howard, J A; Hood, E E

    2004-01-01

    Lignolytic enzymes such as laccase have been difficult to over-express in an active form. This paper describes the expression, characterization, and application of a fungal laccase in maize seed. The transgenic seed contains immobilized and extractable laccase. Fifty ppm dry weight of aqueously extractable laccase was obtained, and the remaining solids contained a significant amount of immobilized laccase that was active. Although a portion of the extractable laccase was produced as inactive apoenzyme, laccase activity was recovered by treatment with copper and chloride. In addition to allowing the apoenzyme to regain activity, treatment with copper also provided a partial purification step by precipitating other endogenous corn proteins while leaving >90% of the laccase in solution. The data also demonstrate the application of maize-produced laccase as a polymerization agent. The apparent concentration of laccase in ground, defatted corn germ is approximately 0.20% of dry weight.

  7. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants.

    PubMed

    Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu

    2017-12-01

    We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.

  8. Deciphering drought-induced metabolic responses and regulation in developing maize kernels.

    PubMed

    Yang, Liming; Fountain, Jake C; Ji, Pingsheng; Ni, Xinzhi; Chen, Sixue; Lee, Robert D; Kemerait, Robert C; Guo, Baozhu

    2018-02-12

    Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought-sensitive line, B73, and a drought-tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions.

    PubMed

    Kumar, Krishna; Manigundan, K; Amaresan, Natarajan

    2017-02-01

    In the present study, a total of 70 Trichoderma spp. were isolated from the rhizosphere soils of vegetable and spice crops that were grown in Andaman and Nicobar Islands, India. Initial screening of Trichoderma spp. for salt tolerant properties showed 32 isolates were able to tolerate 10% NaCl. Furthermore, these isolates were screened for their potential plant growth-promoting characteristics such as IAA production, phosphate solubilization, and siderophore production. Among 32 isolates, nine isolates were able to produce IAA, siderophore, and solubilize phosphate. Jar trial was carried out on maize under axenic conditions at 1.67, 6.25, 11.25, 17.2, and 22.9 dS m -1 salt stress using the best nine isolates. Three isolates (TRC3, NRT2, and THB3) were effective in improving germination percentage, reducing reduction percentage of germination (RPG) and also in increasing the shoot and root length under axenic conditions. These three isolates were further tested under pot trial at 52 (sea water), 27, 15, 7, and 1.67 dS m -1 . TRC3 was found to be the most effective isolate compared to the other isolates and significantly increased the physiological parameters like shoot, root length, leaf area, total biomass, and stem and leaf fresh weight at all stress levels. Similarly, total chlorophyll content also increased by TRC3 over control. All three isolates, NRT2, TRC3, and THB3 showed lower accumulation of malondialdehyde (MDA) content whereas, proline and phenol content were higher than the uninoculated control plants under both normal and saline conditions. The results suggest that these isolates could be utilized for the alleviation of salinity stress in maize. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis

    PubMed Central

    Osman, Gamal H.; Assem, Shireen K.; Alreedy, Rasha M.; El-Ghareeb, Doaa K.; Basry, Mahmoud A.; Rastogi, Anshu; Kalaji, Hazem M.

    2015-01-01

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica. PMID:26658494

  11. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.).

    PubMed

    Bilska-Kos, Anna; Panek, Piotr; Szulc-Głaz, Anna; Ochodzki, Piotr; Cisło, Aneta; Zebrowski, Jacek

    2018-06-08

    Miscanthus × giganteus and Zea mays, closely-related C 4 grasses, originated from warm climates react differently to low temperature. To investigate the response to cold (12-14 °C) in these species, the photosynthetic and anatomical parameters as well as biochemical properties of the cell wall were studied. The research was performed using M. giganteus (MG) and two Z. mays lines differentiated for chilling-sensitivity: chilling-tolerant (Zm-T) and chilling-sensitive (Zm-S). The chilled plants of Zm-S line demonstrated strong inhibition of net CO 2 assimilation and a clear decrease in F' v /F' m , F v /F m and ɸ PSII, while in MG and Zm-T plants these parameters were almost unchanged. The anatomical studies revealed that MG plants had thinner leaves, epidermis and mesophyll cell layer as well as thicker cell walls in the comparison to both maize lines. Cold led to an increase in leaf thickness and mesophyll cell layer thickness in the Zm-T maize line, while the opposite response was observed in Zm-S. In turn, in chilled plants of MG and Zm-T lines, some anatomical parameters associated with bundle sheath cells were higher. In addition, Zm-S line showed the strong increase in the cell wall thickness at cold for mesophyll and bundle sheath cells. Chilling-treatment induced the changes in the cell wall biochemistry of tested species, mainly in the content of glucuronoarabinoxylan, uronic acid, β-glucan and phenolic compounds. This work presents a new approach in searching of mechanism(s) of tolerance/sensitivity to low temperature in two thermophilic plants: Miscanthus and maize. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  13. Efficacy and fumigation characteristics of ozone in stored maize.

    PubMed

    Kells, S A.; Mason, L J.; Maier, D E.; Woloshuk, C P.

    2001-10-01

    This study evaluated the efficacy of ozone as a fumigant to disinfest stored maize. Treatment of 8.9tonnes (350bu) of maize with 50ppm ozone for 3d resulted in 92-100% mortality of adult red flour beetle, Tribolium castaneum (Herbst), adult maize weevil, Sitophilus zeamais (Motsch.), and larval Indian meal moth, Plodia interpunctella (Hübner) and reduced by 63% the contamination level of the fungus Aspergillus parasiticus Speare on the kernel surface. Ozone fumigation of maize had two distinct phases. Phase 1 was characterized by rapid degradation of the ozone and slow movement through the grain. In Phase 2, the ozone flowed freely through the grain with little degradation and occurred once the molecular sites responsible for ozone degradation became saturated. The rate of saturation depended on the velocity of the ozone/air stream. The optimum apparent velocity for deep penetration of ozone into the grain mass was 0.03m/s, a velocity that is achievable in typical storage structures with current fans and motors. At this velocity 85% of the ozone penetrated 2.7m into the column of grain in 0.8d during Phase 1 and within 5d a stable degradation rate of 1ppm/0.3m was achieved. Optimum velocity for Phase 2 was 0.02m/s. At this velocity, 90% of the ozone dose penetrated 2.7m in less than 0.5d. These data demonstrate the potential usefulness of using ozone in managing stored maize and possibly other grains.

  14. Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis.

    PubMed

    Selvakumar, Gopal; Shagol, Charlotte C; Kim, Kiyoon; Han, Seunggab; Sa, Tongmin

    2018-06-05

    The interaction between arbuscular mycorrhizal fungi (AMF) and AMF spore associated bacteria (SAB) were previously found to improve mycorrhizal symbiotic efficiency under saline stress, however, the information about the molecular basis of this interaction remain unknown. Therefore, the present study aimed to investigate the response of maize plants to co-inoculation of AMF and SAB under salinity stress. The co-inoculation of AMF and SAB significantly improved plant dry weight, nutrient content of shoot and root tissues under 25 or 50 mM NaCl. Importantly, co-inoculation significantly reduced the accumulation of proline in shoots and Na + in roots. Co-inoculated maize plants also exhibited high K + /Na + ratios in roots at 25 mM NaCl concentration. Mycorrhizal colonization significantly positively altered the expression of ZmAKT2, ZmSOS1, and ZmSKOR genes, to maintain K + and Na + ion homeostasis. Confocal laser scanning microscope (CLSM) view showed that SAB were able to move and localize into inter- and intracellular spaces of maize roots and were closely associated with the spore outer hyaline layer. These new findings indicate that co-inoculation of AMF and SAB effectively alleviates the detrimental effects of salinity through regulation of SOS pathway gene expression and K + /Na + homeostasis to improve maize plant growth.

  15. Quantitative Trait Loci for Mercury Accumulation in Maize (Zea mays L.) Identified Using a RIL Population

    PubMed Central

    Zhang, Qinbin; Wang, Long; Zhang, Xiaoxiang; Song, Guiliang; Fu, Zhiyuan; Ding, Dong; Liu, Zonghua; Tang, Jihua

    2014-01-01

    To investigate the genetic mechanism of mercury accumulation in maize (Zea mays L.), a population of 194 recombinant inbred lines derived from an elite hybrid Yuyu 22, was used to identify quantitative trait loci (QTLs) for mercury accumulation at two locations. The results showed that the average Hg concentration in the different tissues of maize followed the order: leaves > bracts > stems > axis > kernels. Twenty-three QTLs for mercury accumulation in five tissues were detected on chromosomes 1, 4, 7, 8, 9 and 10, which explained 6.44% to 26.60% of the phenotype variance. The QTLs included five QTLs for Hg concentration in kernels, three QTLs for Hg concentration in the axis, six QTLs for Hg concentration in stems, four QTLs for Hg concentration in bracts and five QTLs for Hg concentration in leaves. Interestingly, three QTLs, qKHC9a, qKHC9b, and qBHC9 were in linkage with two QTLs for drought tolerance. In addition, qLHC1 was in linkage with two QTLs for arsenic accumulation. The study demonstrated the concentration of Hg in Hg-contaminated paddy soil could be reduced, and maize production maintained simultaneously by selecting and breeding maize Hg pollution-safe cultivars (PSCs). PMID:25210737

  16. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings.

    PubMed Central

    Anderson, M. D.; Prasad, T. K.; Stewart, C. R.

    1995-01-01

    The response of antioxidants to acclimation and chilling in various tissues of dark-grown maize (Zea mays L.) seedlings was examined in relation to chilling tolerance and protection from chilling-induced oxidative stress. Chilling caused an accumulation of H2O2 in both the coleoptile + leaf and the mesocotyl (but not roots), and acclimation prevented this accumulation. None of the antioxidant enzymes were significantly affected by acclimation or chilling in the coleoptile + leaf or root. However, elevated levels of glutathione in acclimated seedlings may contribute to an enhanced ability to scavenge H2O2 in the coleoptile + leaf. In the mesocotyl (visibly most susceptible to chilling), catalase3 was elevated in acclimated seedlings and may represent the first line of defense from mitochondria-generated H2O2. Nine of the most prominent peroxidase isozymes were induced by acclimation, two of which were located in the cell wall, suggesting a role in lignification. Lignin content was elevated in mesocotyls of acclimated seedlings, likely improving the mechanical strength of the mesocotyl. One cytosolic glutathione reductase isozyme was greatly decreased in acclimated seedlings, whereas two others were elevated, possibly resulting in improved effectiveness of the enzyme at low temperature. When taken together, these responses to acclimation illustrate the potential ways in which chilling tolerance may be improved in preemergent maize seedlings. PMID:12228666

  17. Understanding resistant germplasm-induced virulence variation through analysis of proteomics and suppression subtractive hybridization in a maize pathogen Curvularia lunata.

    PubMed

    Gao, Shigang; Liu, Tong; Li, Yingying; Wu, Qiong; Fu, Kehe; Chen, Jie

    2012-12-01

    Curvularia lunata is an important pathogen causing Curvularia leaf spot in maize. Significant pathogenic variation has been found in C. lunata. To better understand the mechanism of this phenomenon, we consecutively put the selective pressures of resistant maize population on C. lunata strain WS18 (low virulence) artificially. As a result, the virulence of this strain was significantly enhanced. Using 2DE, 12 up-regulated and four down-regulated proteins were identified in virulence-increased strain compared to WS18. Our analysis revealed that melanin synthesis-related proteins (Brn1, Brn2, and scytalone dehydratase) and stress tolerance-related proteins (HSP 70) directly involved in the potential virulence growth as crucial markers or factors in C. lunata. To validate 2DE results and screen differential genes at mRNA level, we constructed a subtracted cDNA library (tester: virulence-increased strain; driver: WS18). A total of 188 unigenes were obtained this way, of which 14 were indicators for the evolution of pathogen virulence. Brn1 and hsp genes exhibited similar expression patterns corresponding to proteins detected by 2DE. Overall, our results indicated that differential proteins or genes, being involved with melanin synthesis or tolerance response to stress, could be considered as hallmarks of virulence increase in C. lunata. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses

    PubMed Central

    Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre

    2017-01-01

    Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses. PMID:28245233

  19. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats.

    PubMed

    Bhaswant, Maharshi; Shafie, Siti Raihanah; Mathai, Michael L; Mouatt, Peter; Brown, Lindsay

    2017-09-01

    Increased consumption of fruits and vegetables as functional foods leads to the reduction of signs of metabolic syndrome. The aim of this study was to measure and compare cardiovascular, liver, and metabolic parameters following chronic administration of the same dose of anthocyanins either from chokeberry (CB) or purple maize (PM) in rats with diet-induced metabolic syndrome. Male Wistar rats were fed a maize starch (C) or high-carbohydrate, high-fat diet (H) and divided into six groups for 16 wk. The rats were fed C, C with CB or PM for the last 8 wk (CCB or CPM), H, H with CB or PM for the last 8 wk (HCB or HPM); CB and PM rats received ∼8 mg anthocyanins/kg daily. The rats were monitored for changes in blood pressure, cardiovascular and hepatic structure and function, glucose tolerance, and adipose tissue mass. HCB and HPM rats showed reduced visceral adiposity index, total body fat mass, and systolic blood pressure; improved glucose tolerance, liver, and cardiovascular structure and function; decreased plasma triacylglycerols and total cholesterol compared with H rats. Inflammatory cell infiltration was reduced in heart and liver. CB and PM interventions gave similar responses, suggesting that anthocyanins are the bioactive molecules in the attenuation or reversal of metabolic syndrome by prevention of inflammation-induced damage. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Bt-maize (MON810) and Non-GM Soybean Meal in Diets for Atlantic Salmon (Salmo salar L.) Juveniles – Impact on Survival, Growth Performance, Development, Digestive Function, and Transcriptional Expression of Intestinal Immune and Stress Responses

    PubMed Central

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C.; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health. PMID:24923786

  1. Bt-maize (MON810) and non-GM soybean meal in diets for Atlantic salmon (Salmo salar L.) juveniles--impact on survival, growth performance, development, digestive function, and transcriptional expression of intestinal immune and stress responses.

    PubMed

    Gu, Jinni; Bakke, Anne Marie; Valen, Elin C; Lein, Ingrid; Krogdahl, Åshild

    2014-01-01

    Responses in Atlantic salmon (Salmo salar L.) juveniles (fry) fed diets containing genetically modified maize (Bt-maize, MON810) expressing Cry1Ab protein from first-feeding were investigated during a 99-day feeding trial. Four experimental diets were made; each diet contained ∼20% maize, either Bt-maize or its near-isogenic maternal line (non-GM maize). One pair was fishmeal-based while the other pair included standard (extracted) soybean meal (SBM; 16.7% inclusion level), with the intention of investigating responses to the maize varieties in healthy fish as well as in immunologically challenged fish with SBM-induced distal intestinal inflammation, respectively. Three replicate tanks of fry (0.17±0.01 g; initial mean weight ± SEM) were fed one of the four diets and samples were taken on days 15, 36, 48 and 99. Survival, growth performance, whole body composition, digestive function, morphology of intestine, liver and skeleton, and mRNA expression of some immune and stress response parameters in the distal intestine were evaluated. After 99 days of feeding, survival was enhanced and the intended SBM-induced inflammatory response in the distal intestine of the two groups of SBM-fed fish was absent, indicating that the juvenile salmon were tolerant to SBM. Mortality, growth performance and body composition were similar in fish fed the two maize varieties. The Bt-maize fed fish, however, displayed minor but significantly decreased digestive enzyme activities of leucine aminopeptidase and maltase, as well as decreased concentration of gut bile salts, but significantly increased amylase activity at some sampling points. Histomorphological, radiographic and mRNA expression evaluations did not reveal any biologically relevant effects of Bt-maize in the gastrointestinal tract, liver or skeleton. The results suggest that the Cry1Ab protein or other compositional differences in GM Bt-maize may cause minor alterations in intestinal responses in juvenile salmon, but without affecting overall survival, growth performance, development or health.

  2. Functional Characterization of Endophytic Fungal Community Associated with Oryza sativa L. and Zea mays L.

    PubMed Central

    Potshangbam, Momota; Devi, S. Indira; Sahoo, Dinabandhu; Strobel, Gary A.

    2017-01-01

    In a natural ecosystem, the plant is in a symbiotic relationship with beneficial endophytes contributing huge impact on its host plant. Therefore, exploring beneficial endophytes and understanding its interaction is a prospective area of research. The present work aims to characterize the fungal endophytic communities associated with healthy maize and rice plants and to study the deterministic factors influencing plant growth and biocontrol properties against phytopathogens, viz, Pythium ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia oryzae. A total of 123 endophytic fungi was isolated using the culture-dependent approach from different tissue parts of the plant. Most dominating fungal endophyte associated with both the crops belong to genus Fusarium, Sarocladium, Aspergillus, and Penicillium and their occurrence was not tissue specific. The isolates were screened for in vitro plant growth promotion, stress tolerance, disease suppressive mechanisms and based on the results, each culture from both the cereal crops was selected for further study. Acremonium sp. (ENF 31) and Penicillium simplicisssum (ENF22), isolated from maize and rice respectively could potentially inhibit the growth of all the tested pathogens with 46.47 ± 0.16 mm to 60.09 ± 0.04 mm range zone of inhibition for ENF31 and 35.48 ± 0.14 to 62.29 ± 0.15 mm for ENF22. Both significantly produce the defensive enzymes, ENF31 could tolerate a wide range of pH from 2 to 12, very important criteria, for studying plant growth in different soil types, especially acidic as it is widely prevalent here, making more land unsuitable for cultivation. ENF22 grows in pH range 3–12, with 10% salt tolerating ability, another factor of consideration. Study of root colonization during 7th to 30th days of growth phase reveals that ENF31 could colonize pleasantly in rice, though a maize origin, ranging from 1.02 to 1.21 log10 CFU/g root and in maize, it steadily colonizes ranging from 0.95 to 1.18 log10 CFU, while ENF22 could colonize from 0.98 to 1.24 Log10CFU/g root in rice and 1.01 to 1.24Log10CFU/g root in maize, just the reverse observed in Acremonium sp. Therefore, both the organism has the potency of a promising Bio-resource agent, that we must definitely explore to fill the gap in the agriculture industry. PMID:28303127

  3. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms

    USDA-ARS?s Scientific Manuscript database

    Upon attack by leaf-herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated this aspect in maize seedlings infested by the specialist root herbivore Diabrotica virgifera. By using...

  4. Aluminum tolerance in sorghum and maize

    USDA-ARS?s Scientific Manuscript database

    The soils of the tropics and subtropics are highly weathered, leading to poor soil fertility and low soil pH. Root growth and function on these acid soils is impaired by aluminium (Al) toxicity, leading to yield instability that jeopardizes food security worldwide. A wealth of physiological evidence...

  5. Morphological and Biological alteration of maize root architectures on drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  6. Morphological and biological alteration of maize root architectures on drought stress

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...

  7. A Hydraulic Model Is Compatible with Rapid Changes in Leaf Elongation under Fluctuating Evaporative Demand and Soil Water Status1[C][W][OPEN

    PubMed Central

    Caldeira, Cecilio F.; Bosio, Mickael; Parent, Boris; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Plants are constantly facing rapid changes in evaporative demand and soil water content, which affect their water status and growth. In apparent contradiction to a hydraulic hypothesis, leaf elongation rate (LER) declined in the morning and recovered upon soil rehydration considerably quicker than transpiration rate and leaf water potential (typical half-times of 30 min versus 1–2 h). The morning decline of LER began at very low light and transpiration and closely followed the stomatal opening of leaves receiving direct light, which represent a small fraction of leaf area. A simulation model in maize (Zea mays) suggests that these findings are still compatible with a hydraulic hypothesis. The small water flux linked to stomatal aperture would be sufficient to decrease water potentials of the xylem and growing tissues, thereby causing a rapid decline of simulated LER, while the simulated water potential of mature tissues declines more slowly due to a high hydraulic capacitance. The model also captured growth patterns in the evening or upon soil rehydration. Changes in plant hydraulic conductance partly counteracted those of transpiration. Root hydraulic conductivity increased continuously in the morning, consistent with the transcript abundance of Zea maize Plasma Membrane Intrinsic Protein aquaporins. Transgenic lines underproducing abscisic acid, with lower hydraulic conductivity and higher stomatal conductance, had a LER declining more rapidly than wild-type plants. Whole-genome transcriptome and phosphoproteome analyses suggested that the hydraulic processes proposed here might be associated with other rapidly occurring mechanisms. Overall, the mechanisms and model presented here may be an essential component of drought tolerance in naturally fluctuating evaporative demand and soil moisture. PMID:24420931

  8. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of (/sup 3/)gibberellin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rood, S.B.; Kaufman, P.B.; Abe, H.

    1987-03-01

    (/sup 3/H)Gibberellin A/sub 20/(GA/sub 20/) of high specific radioactivity was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the (/sup 3/H)GA/sub 1//sup -/ and (/sup 3/H)GA/sub 29/-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of (/sup 3/H)GA/sub 1/(/sup 3/H)GA/sub 29/, and (/sup 3/H)GA/sub 8/. The tentative identification of these putative (/sup 3/H)GA glucosyl conjugates was further supported by the release of the free (/sup 3/H)GA moietymore » after cleavage with cellulase. Within 12 hours of the (/sup 3/H)GA/sub 20/ feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheaf pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of (/sup 3/H)GA/sub 20/, especially (/sup 3/H) GA/sub 1/, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the Tanginbozu dwarf rice microdroassay. Lower halves contained higher total levels of GA-like activity.« less

  9. Effect of Bt-176 maize pollen on first instar larvae of the Peacock butterfly (Inachis io) (Lepidoptera; Nymphalidae).

    PubMed

    Felke, Martin; Langenbruch, Gustav-Adolf; Feiertag, Simon; Kassa, Adane

    2010-01-01

    More than 10 years after registration of the first Bt maize cultivar in Europe, there still exists a remarkable lack of data on effects on Lepidoptera which would be necessary for a complete and comprehensive environmental risk assessment. So far only very few European butterfly species have been tested in this aspect. In our study the effect of transgenic Bacillus thuringiensis (Bt) maize pollen (event Bt-176) on the development and survival of neonate larvae of the Peacock butterfly, Inachis io (L.) was for the first time shown. The results of our study suggest that the Peacock butterfly may serve as a model organism for assessing potential side effects of new developed transgenic Bt crops on non-target butterflies in a GMO environmental risk assessment. The study was done under laboratory conditions by exposing larvae of the Peacock butterfly to various pollen doses of transgenic maize event Bt-176 (cv. PACTOL CB) or the conventional isogenic maize (cv. PACTOL) using a no-choice test. Larvae feeding for 48 h on nettle plants (Urtica dioica) that were contaminated with higher pollen concentrations from Bt-176 maize (205 and 388 applied pollen.cm⁻²) suffered a significantly higher mortality rate (68 and 85% respectively) compared to larvae feeding on leaves with no pollen (11%), or feeding on leaves with pollen from conventional maize (6 to 25%). At lower Bt maize pollen doses (23-104 applied pollen.cm⁻²),mortality ranged from 11-25% and there were no apparent differences among treatments. The corresponding LC₅₀-and LC₉₀-values for neonate larvae of the Peacock butterfly were 187 and 448 applied pollen grains.cm⁻² of Bt-176, respectively.Weight of larvae surviving consumption of Bt-176 maize pollen declined between 10 and 81% with increased pollen doses (r = -0.95). The highest weight reduction (81%) corresponded to the highest pollen concentration (388 pollen grains applied.cm⁻²). Ingestion of pollen from the conventional maize hybrid did not have negative effects on larval weight gain or survival rate.

  10. [Spectral Characteristics of Spring Maize Varieties with Different Heat Tolerance to High Temperature].

    PubMed

    Tao, Zhi-qiang; Chen, Yuan-quan; Zou, Juan-xiu; Li, Chao; Yuan, Shu-fen; Yan, Peng; Shi, Jiang-tao; Sui, Peng

    2016-02-01

    This paper discussed the response of spectral characteristics on high temperature at grain filling stage of different spring maize varieties by adopting two spectrometer (SPAD-502 Chlorophyll Meter and Sunscan Plant Canopy Analyzer), and analyzed the impact of high temperature on the photosynthetic properties of spring maize in North China Plain. The test was conductedfrom the year 2011 to 2012 in Wuqiao County, Hebei Province. This test chose three different varieties, i. e. Tianyu 198 (TY198), Xingyu 998 (XY998) and Tianrun 606 (TR606), then two sowing date (April 15th and April 25th) was set. We analyzed chlorophyll relative content (SPAD), leaf area index (LAI) and photosynthetically active radiation (PAR) at grain filling stage. The results showed that the days of daily maximum temperature above 33 °C and the mean day temperature at grain filling stage in spring maize sowing on April 15th increased 3.5 d and 0.8 °C, respectively, compared to that sowing on April 25th, moreover the sunshine hours, rainfall, diurnal temperature and length of growing period were similar. Compared with XY998 and TR606, TY198's stress tolerance indices (STI) increased by 2.9% and 11.0%, respectively. According to STI from high to low order, TY198, XY998 and TR606 respectively as heat resistant type, moderate heat resistant type and thermo-labile type variety. TY198, compared with XY998 and TR606 sowing on April 15th, yield increased by 4.1% and 13.7%, SPAD increased by 12.5% and 19.6%, LAI increased by 5.3% and 5.6%, PAR increased by 4.0% and 14.0%. Sowing on April 15th, yield increased by 1.3% and 2.8%, SPAD increased by 3.5% and 6.0%, LAI increased by 1.7% and 4.1%, PAR increased by -4.4% and 0.9%. Three varieties had significant yield differences in the environment of high temperature stress, heat resistant type have significant (p < 0.05) advantage in the aspect of yield, SPAD and LAI. The production of TY198, XY998 and TR606 sowing on April 15th compared to that sowing on April 25th decreased by 3.2%, 5.9% and 12.6%, and SPAD decreased by 8.6%, 12.4% and 15.7%, LAI decreased by 11.7%, 17.6% and 19.8%, PAR decreased by 3.4%, 11.3% and 14.5%; STI had a significant negatively correlated with SPAD fall range (r = -0.883, p < 0.05) and LAI fall range (r = -0.853, P < 0.05), and highly significantly negatively correlated with PAR fall range (r = -0.923, p < 0.01); while SPAD fall range and PAR fall range showed a significant positive correlation (r = 0.872, p < 0.05); LAI fall range and PAR fall range were significantly positive correlation (r = 0.943, p < 0.05). In conclusion, heat tolerant type varieties of spring maize under high temperature stress at gain filling stage could maintain a relatively high content of chlorophyll at the individual level, a relatively high leaf area at the group level, and then keep a higher luminous energy interception and utilization, and weakened inhibition magnitude of high temperature on photosynthetic capacity, reduced the yield fall range, then achieved high and stable yield. The heat tolerance in varieties could be one of the main indicators for identification and evaluation the response to high temperature by spectral characteristics (SPAD, LAI and PAR). Thus it provides a basis by using spectral characteristics to study heat tolerance on maize.

  11. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    PubMed

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  12. Dynamic precision phenotyping reveals mechanism of crop tolerance to root herbivory

    USDA-ARS?s Scientific Manuscript database

    The western corn rootworm, Diabrotica virgifera virgifera (LeConte) is a major pest of maize, Zea mays L. Over the years, this pest has repeatedly shown its resilience and adaptability not only to traditional crop management strategies including chemical pesticides and crop rotation, but also to de...

  13. Functional Potential of Soil Microbial Communities in the Maize Rhizosphere

    PubMed Central

    Xiong, Jingbo; Li, Jiabao; He, Zhili; Zhou, Jizhong; Yannarell, Anthony C.; Mackie, Roderick I.

    2014-01-01

    Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds. PMID:25383887

  14. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity.

    PubMed

    Chao, Qing; Liu, Xiao-Yu; Mei, Ying-Chang; Gao, Zhi-Fang; Chen, Yi-Bo; Qian, Chun-Rong; Hao, Yu-Bo; Wang, Bai-Chen

    2014-05-01

    Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.

  15. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches.

    PubMed

    Shrestha, Ashok K; Blazek, Jaroslav; Flanagan, Bernadine M; Dhital, Sushil; Larroque, Oscar; Morell, Matthew K; Gilbert, Elliot P; Gidley, Michael J

    2015-03-15

    Extrusion processing of cereal starch granules with high (>50%) amylose content is a promising approach to create nutritionally desirable resistant starch, i.e. starch that escapes digestion in the small intestine. Whilst high amylose content seems to be required, the structural features responsible for the slow digestion of extrudates are not fully understood. We report the effects of partial enzyme digestion of extruded maize starches on amylopectin branch length profiles, double and single helix contents, crystallinity and lamellar periodicity. Comparing results for three extruded maize starches (27, 57, and 84% apparent amylose) that differ in amylase-sensitivity allows conclusions to be drawn concerning the rate-determining features operating under the digestion conditions used. Enzyme resistance is shown to originate from a combination of molecular and mesoscopic factors, including both recrystallization and an increase in very short branches during the digestion process. This is in contrast to the behaviour of the same starches in the granular form (Shrestha et al., 2012) where molecular and mesoscopic factors are secondary to microscopic structures in determining enzyme susceptibility. Based on the structure of residual material after long-time digestion (>8h), a model for resistant starch from processed high amylose maize starches is proposed based on a fringed micelle structure with lateral aggregation and enzyme susceptibility both limited by attached clusters of branch points. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    PubMed

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The role of Kenya in the trans-African spread of maize streak virus strain A.

    PubMed

    Pande, Daniel; Madzokere, Eugene; Hartnady, Penelope; Kraberger, Simona; Hadfield, James; Rosario, Karyna; Jäschke, Anja; Monjane, Adérito L; Owor, Betty E; Dida, Mathews M; Shepherd, Dionne N; Martin, Darren P; Varsani, Arvind; Harkins, Gordon W

    2017-03-15

    Maize streak virus (MSV), the causal agent of maize streak disease (MSD), is the most important viral pathogen of Africa's staple food crop, maize. Previous phylogeographic analyses have revealed that the most widely-distributed and common MSV variant, MSV-A 1 , has been repeatedly traversing Africa over the past fifty years with long-range movements departing from either the Lake Victoria region of East Africa, or the region around the convergence of Zimbabwe, South Africa and Mozambique in southern Africa. Despite Kenya being the second most important maize producing country in East Africa, little is known about the Kenyan MSV population and its contribution to the ongoing diversification and trans-continental dissemination of MSV-A 1 . We therefore undertook a sampling survey in this country between 2008 and 2011, collecting MSD prevalence data in 119 farmers' fields, symptom severity data for 170 maize plants and complete MSV genome sequence data for 159 MSV isolates. We then used phylogenetic and phylogeographic analyses to show that whereas the Kenyan MSV population is likely primarily derived from the MSV population in neighbouring Uganda, it displays considerably more geographical structure than the Ugandan population. Further, this geographical structure likely confounds apparent associations between virus genotypes and both symptom severity and MSD prevalence in Kenya. Finally, we find that Kenya is probably a sink rather than a source of MSV diversification and movement, and therefore, unlike Uganda, Kenya probably does not play a major role in the trans-continental dissemination of MSV-A 1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of variety and storage duration on the nutrient digestibility and the digestible and metabolisable energy content of maize fed to growing pigs.

    PubMed

    Zhang, Lei; Liu, Ling; Li, Defa; Li, Quanfeng; Piao, Xiangshu; Thacker, Philip A; Brown, Michael A; Lai, Changhua

    2017-02-01

    The objective of this research was to determine the effects of variety and storage duration on the nutrient digestibility and the digestible (DE) and metabolisable (ME) energy content in maize when fed to growing pigs. Four maize varieties (LS1, LS2, LS3 and LS4) were hand-harvested from the same growing area in China in early October of 2012. The samples were sun dried to about 14% moisture content and then stored in the warehouse of the Fengning Pig Experiment Base at China Agricultural University for 0, 3 or 10 months. Twenty-four barrows of about 33 kg body weight were used and allotted to a completely randomised block design with four diets and six replicate pigs per diet. Pigs were individually housed in metabolic crates. The four experimental diets were formulated by mixing 96.8% of each variety of maize with 3.2% vitamins and minerals. A 5-day collection period followed a 7-day diet acclimation period. The results indicated that the DE and ME contents of maize and the apparent total tract digestibility (ATTD) of organic matter (OM), dry matter, gross energy (GE), neutral detergent fibre, acid detergent fibre (ADF), crude protein (CP) and ether extract (EE) were significantly (p < 0.05) influenced by maize variety and storage duration. With an extension of storage duration from 0 to 10 months, the DE and ME of maize and the ATTD of OM, GE, ADF, CP and EE changed in a quadratic manner (p < 0.05), and 3 months of storage exceeded 0 months of storage by 1.84%, 1.43%, 0.31%, 0.32%, 15.37%, 2.11% and 5.02%, respectively. The DE, ME of maize and the ATTD of OM, GE, ADF, CP and EE decreased by 3.67%, 6.00%, 0.97%, 1.40%, 30.54%, 3.92% and 20.93%, respectively, at 10 months of storage compared to 3 months of storage. No interaction was observed between maize variety and storage duration in DE and ME contents in maize. In conclusion, under the conditions of this study, most of the nutrient digestibility and the DE and ME contents of maize increased from 0 to 3 months and decreased from 3 to 10 months.

  19. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment.

    PubMed

    Retamal-Salgado, Jorge; Hirzel, Juan; Walter, Ingrid; Matus, Iván

    2017-11-16

    There is a worldwide increase of heavy metal or potentially toxic element (PTE), contamination in agricultural soils caused mainly by human and industrial action, which leads to food contamination in crops such as in maize. Cadmium (Cd) is a PTE often found in soils and it is ingested through food. It is necessary to determine the bioabsorption, distribution, and accumulation levels in maize to reduce or prevent food chain contamination. Cadmium absorption and accumulation in three maize cultivars were evaluated in three agricultural environments in Chile by increasing CdCl₂ rates (0, 1, and 2 mg·kg -1 ). Evaluation included Cd accumulation and distribution in different plant tissues, bioaccumulation factor (BAF), bioconcentration factor (BCF), translocation factor (TF), and tolerance index (TI). Cadmium whole-plant uptake was only affected by the CdCl₂ rate; the highest uptake was obtained with 2 mg·kg -1 CdCl₂ (34.4 g·ha -1 ) ( p < 0.05). Cadmium distribution in the maize plant usually exhibited the highest accumulation in the straw ( p < 0.05), independently of the environment, Cd rate, and evaluated cultivar. Given the results for TF (TF > 2) and BAF (BAF > 1), the Los Tilos and Chillán environments were classified as having a high capacity to contaminate the food chain for all evaluated cultivars.

  20. The maize lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response.

    PubMed

    Castorina, Giulia; Persico, Martina; Zilio, Massimo; Sangiorgio, Stefano; Carabelli, Laura; Consonni, Gabriella

    2018-05-16

    Brassinosteroids (BRs) are plant hormones involved in many developmental processes as well as in plant-environment interactions. Their role was investigated in this study through the analysis of lilliputian1-1 (lil1-1), a dwarf mutant impaired in BR biosynthesis in maize (Zea mays). We isolated lil1-1 through transposon tagging in maize. The action of lil1 was investigated through morphological and genetic analysis. Moreover, by comparing lil1-1 mutant and wild-type individuals grown under drought stress, the effect of BR reduction on the response to drought stress was examined. lil1-1 is a novel allele of the brassinosteroid-deficient dwarf1 (brd1) gene, encoding a brassinosteroid C-6 oxidase. We show in this study that lil1 is epistatic to nana plant1 (na1), a BR gene involved in earlier steps of the pathway. The lill-1 mutation causes alteration in the root gravitropic response, leaf epidermal cell density, epicuticular wax deposition and seedling adaptation to water scarcity conditions. Lack of active BR molecules in maize causes a pleiotropic effect on plant development and improves seedling tolerance of drought. BR-deficient maize mutants can thus be instrumental in unravelling novel mechanisms on which plant adaptations to abiotic stress are based.

  1. Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner.

    PubMed

    Yendrek, Craig R; Erice, Gorka; Montes, Christopher M; Tomaz, Tiago; Sorgini, Crystal A; Brown, Patrick J; McIntyre, Lauren M; Leakey, Andrew D B; Ainsworth, Elizabeth A

    2017-12-01

    Exposure to elevated tropospheric ozone concentration ([O 3 ]) accelerates leaf senescence in many C 3 crops. However, the effects of elevated [O 3 ] on C 4 crops including maize (Zea mays L.) are poorly understood in terms of physiological mechanism and genetic variation in sensitivity. Using free air gas concentration enrichment, we investigated the photosynthetic response of 18 diverse maize inbred and hybrid lines to season-long exposure to elevated [O 3 ] (~100 nl L -1 ) in the field. Gas exchange was measured on the leaf subtending the ear throughout the grain filling period. On average over the lifetime of the leaf, elevated [O 3 ] led to reductions in photosynthetic CO 2 assimilation of both inbred (-22%) and hybrid (-33%) genotypes. There was significant variation among both inbred and hybrid lines in the sensitivity of photosynthesis to elevated [O 3 ], with some lines showing no change in photosynthesis at elevated [O 3 ]. Based on analysis of inbred line B73, the reduced CO 2 assimilation at elevated [O 3 ] was associated with accelerated senescence decreasing photosynthetic capacity and not altered stomatal limitation. These findings across diverse maize genotypes could advance the development of more O 3 tolerant maize and provide experimental data for parameterization and validation of studies modeling how O 3 impacts crop performance. © 2017 John Wiley & Sons Ltd.

  2. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling.

    PubMed

    Weckwerth, Philipp; Ehlert, Britta; Romeis, Tina

    2015-03-01

    Calcium-dependent protein kinases (CDPKs) have been shown to play important roles in plant environmental stress signal transduction. We report on the identification of ZmCPK1 as a member of the maize (Zea mays) CDPK gene family involved in the regulation of the maize cold stress response. Based upon in silico analysis of the Z. mays cv. B73 genome, we identified that the maize CDPK gene family consists of 39 members. Two CDPK members were selected whose gene expression was either increased (Zmcpk1) or decreased (Zmcpk25) in response to cold exposure. Biochemical analysis demonstrated that ZmCPK1 displays calcium-independent protein kinase activity. The C-terminal calcium-binding domain of ZmCPK1 was sufficient to mediate calcium independency of a previously calcium-dependent enzyme in chimeric ZmCPK25-CPK1 proteins. Furthermore, co-transfection of maize mesophyll protoplasts with active full-length ZmCPK1 suppressed the expression of a cold-induced marker gene, Zmerf3 (ZmCOI6.21). In accordance, heterologous overexpression of ZmCPK1 in Arabidopsis thaliana yielded plants with altered acclimation-induced frost tolerance. Our results identify ZmCPK1 as a negative regulator of cold stress signalling in maize. © 2014 John Wiley & Sons Ltd.

  3. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert.

    PubMed

    Huanca-Mamani, Wilson; Arias-Carrasco, Raúl; Cárdenas-Ninasivincha, Steffany; Rojas-Herrera, Marcelo; Sepúlveda-Hermosilla, Gonzalo; Caris-Maldonado, José Carlos; Bastías, Elizabeth; Maracaja-Coutinho, Vinicius

    2018-03-20

    Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress-response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts ( trans -NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed environment.

  4. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert

    PubMed Central

    Huanca-Mamani, Wilson; Arias-Carrasco, Raúl; Cárdenas-Ninasivincha, Steffany; Rojas-Herrera, Marcelo; Sepúlveda-Hermosilla, Gonzalo; Caris-Maldonado, José Carlos; Bastías, Elizabeth; Maracaja-Coutinho, Vinicius

    2018-01-01

    Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress–response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts (trans-NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed environment. PMID:29558449

  5. Double mutation in eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides

    PubMed

    Anthony; Hussey

    1999-06-01

    The repeated use of dinitroaniline herbicides on the cotton and soybean fields of the southern United States has resulted in the appearance of resistant biotypes of one of the world's worst weeds, Eleusine indica. Two biotypes have been characterized, a highly resistant (R) biotype and an intermediate resistant (I) biotype. In both cases the resistance has been attributed to a mutation in alpha-tubulin, a component of the alpha/beta tubulin dimer that is the major constituent of microtubules. We show here that the I-biotype mutation, like the R-biotype mutation shown in earlier work, can confer dinitroaniline resistance on transgenic maize calli. The level of resistance obtained is the same as that for E. indica I- or R-biotype seedlings. The combined I- and R-biotype mutations increase the herbicide tolerance of transgenic maize calli by a value close to the summation of the maximum herbicide tolerances of calli harbouring the single mutations. These data, taken together with the position of the two different mutations within the atomic structure of the alpha/beta tubulin dimer, imply that each mutation is likely to exert its effect by a different mechanism. These mechanisms may involve increasing the stability of microtubules against the depolymerizing effects of the herbicide or changing the conformation of the alpha/beta dimer so that herbicide binding is less effective, or a combination of both possibilities.

  6. [Comparative research on Cd removal from water by different kinds of seedlings].

    PubMed

    Wang, Yan-yan; Xu, Jing-bo; Sheng, Lian-xi

    2007-05-01

    Ecological effects of Cd removal from water and the changes of physiological and biochemical indexes of seedlings of maize, sunflower and castor-oil plant were investigated. The results showed that (1) with the trial time lasting, Cd content in solution decreased, and the processes of Cd removal by seedlings of each concentration were almost completed in 48 hours. The removal effects of sunflower and castor-oil plant were better than those of maize at 1 mg x L(-1) and 2 mg x L(-1) Cd, whereas the best removal effects at 5 mg x L(-1) and 10 mg x L(-) Cd were those of castor-oil plant, followed by maize and sunflower. (2) Root absorbed the most proportion of Cd by all these three kinds of seedlings at every treatment. The ability of Cd accumulation by the three kinds of seedlings could be drawn as follow sunflower> castor-oil plant > maize. (3) The physiological and biochemical indexes of seedlings exposed to Cd for 72 hours had changed to different degree compared with control. The root activity and the proline content of sunflower both have significant relations with Cd accumulation, and the plasma membrane permeability and the proline content of castor-oil plant both have significant positive relations with Cd accumulation. Maize, sunflower and castor-oil plant could endure certain concentration of Cd, and the tolerance of sunflower and castor-oil plant are both greater than that of maize through general analysis of Cd accumulation and the changes of physiological and biochemical indexes.

  7. Molecular Phylogenetic and Expression Analysis of the Complete WRKY Transcription Factor Family in Maize

    PubMed Central

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-01-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance. PMID:22279089

  8. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    PubMed

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of <15%. The remaining 29 transcripts produced by 25 WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  9. Detection of cyclopiazonic acid (CPA) in maize by immunoassay.

    PubMed

    Maragos, C M; Sieve, K K; Bobell, J

    2017-05-01

    Cyclopiazonic acid (α-CPA) is a tremorgenic mycotoxin that is commonly produced by certain species of the aspergilli, in particular Aspergillus flavus, which is more widely known for production of the aflatoxins. Despite the fact that α-CPA may co-occur with aflatoxins, immunoassay-based methods for monitoring for CPA have not been widely developed. We report the development and evaluation of several monoclonal antibodies (mAbs) for α-CPA. Two mAbs in particular were very sensitive, with IC 50 s of 1.1 and 1 ng/mL (clones 1418 and 1231, respectively). Tolerances to aqueous methanol or acetonitrile were good, which permitted the development of an antigen-immobilized competitive enzyme-linked immunosorbent assay (CI-ELISA) for detection of CPA in maize. Spiked or naturally contaminated maize, extracted with aqueous methanol, was diluted with buffer for analysis. The working range for the assay (IC 20 to IC 80 ) was from 5 to 28 μg/kg. Recoveries from maize spiked over the range from 2 to 50 μg/kg averaged 88.6 ± 12.6%. Twenty-eight samples of maize were tested by both the CI-ELISA and a liquid chromatography-fluorescence (LC-FLD) method. For the five samples above the limits of quantitation of both methods, CI-ELISA tended to overestimate CPA content, a difference that we speculate may be due to related metabolites or perhaps "masked" derivatives of CPA. The antibodies developed and the resulting CI-ELISA will be useful tools for further evaluation of the prevalence of this mycotoxin in maize.

  10. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize

    PubMed Central

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants. PMID:26630288

  11. Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets.

    PubMed

    Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V

    2010-10-01

    1. The influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets was examined up to 21 d of age. The experimental design was a 2 × 3 factorial arrangement of treatments evaluating two grain types (maize and wheat) and three conditioning temperatures (60°C, 75°C and 90°C). Broiler starter diets, each based on one grain (maize or wheat), were formulated and pelleted at the three temperatures. 2. Increasing conditioning temperature decreased the body-weight gain and feed intake in wheat-based diets, but birds fed on maize-based diets conditioned at 60°C and 90°C had higher body-weight gain and feed intake than those fed on the diet conditioned at 75°C. Increasing conditioning temperature increased feed per body-weight gain in both grain-type diets but improved pellet durability index (PDI) only in wheat-based diets; PDI was unaffected in maize-based diets. 3. In wheat-based diets, increasing conditioning temperature decreased the ileal digestibility of nitrogen and starch. Ileal nitrogen digestibility of maize-based diets conditioned at 60°C and 90°C was higher than at 75°C. Starch digestibility was unaffected by conditioning temperature in maize-based diets. No effect of conditioning temperature was found for apparent metabolisable energy (AME). Increasing conditioning temperature decreased digestible protein and AME intakes in wheat-based diets but, in maize-based diets, birds fed on the diet conditioned at 75°C had lower digestible protein and AME intakes compared to those fed on diets conditioned at 60°C and 90°C. 4. Small intestine was longer in birds fed on diets conditioned at 75°C and 90°C compared with those fed on diets conditioned at 60°C. 5. Overall, the data suggest that while the effects of conditioning temperature on body-weight gain and feed intake of broilers to 21 d of age differed depending on the grain type, feed per body-weight gain was adversely affected by higher conditioning temperatures.

  12. Exploring the role of trehalose-6-phosphate synthase in oxidation and desiccation stress tolerance of Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of the disaccharide trehalose. Trehalose-6-phosphate synthase, coded for by the TPS1 gene, catalyzes the first of two ste...

  13. Drought-responsive protein profiles reveal diverse defense pathways in corn kernels under field drought atress

    USDA-ARS?s Scientific Manuscript database

    Drought stress is a major factor which contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two lines (B73 and Lo964) with contrasting drought sensitivity were...

  14. Water Transport Properties of Roots and Root Cortical Cells in Proton- and Al-Stressed Maize Varieties.

    PubMed Central

    Gunse, B.; Poschenrieder, C.; Barcelo, J.

    1997-01-01

    Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques. PMID:12223628

  15. Single-kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers.

    PubMed

    Mogensen, J M; Sørensen, S M; Sulyok, M; van der Westhuizen, L; Shephard, G S; Frisvad, J C; Thrane, U; Krska, R; Nielsen, K F

    2011-12-01

    Fumonisins are important Fusarium mycotoxins mainly found in maize and derived products. This study analysed maize from five subsistence farmers in the former Transkei region of South Africa. Farmers had sorted kernels into good and mouldy quality. A total of 400 kernels from 10 batches were analysed; of these 100 were visually characterised as uninfected and 300 as infected. Of the 400 kernels, 15% were contaminated with 1.84-1428 mg kg(-1) fumonisins, and 4% (n=15) had a fumonisin content above 100 mg kg(-1). None of the visually uninfected maize had detectable amounts of fumonisins. The total fumonisin concentration was 0.28-1.1 mg kg(-1) for good-quality batches and 0.03-6.2 mg kg(-1) for mouldy-quality batches. The high fumonisin content in the batches was apparently caused by a small number (4%) of highly contaminated kernels, and removal of these reduced the average fumonisin content by 71%. Of the 400 kernels, 80 were screened for 186 microbial metabolites by liquid chromatography-tandem mass spectrometry, detecting 17 other fungal metabolites, including fusaric acid, equisetin, fusaproliferin, beauvericin, cyclosporins, agroclavine, chanoclavine, rugulosin and emodin. Fusaric acid in samples without fumonisins indicated the possibility of using non-toxinogenic Fusaria as biocontrol agents to reduce fumonisin exposure, as done for Aspergillus flavus. This is the first report of mycotoxin profiling in single naturally infected maize kernels. © 2011 Taylor & Francis

  16. Effect of high moisture storage of pearl millet (Pennisetum typhoides) with or without feed enzymes on growth and nutrient utilization in broiler chickens.

    PubMed

    Manwar, Satish Jagannath; Mandal, Asit Baran

    2009-08-01

    Effect of reconstitution of pearl millet with or without enzymes on its utilization in broiler chickens was studied. The pearl millet grains were reconstituted by adding water to raise the moisture level to 30%, followed by storage in sealed plastic buckets with or without feed enzymes (0.5 g/kg) for 21 days at room temperature (25 degrees C). Subsequently, the grains were sun-dried to reduce the moisture content up to 10% to avoid mould growth. Nine dietary treatments were formulated incorporating pearl millet either raw with or without enzymes or reconstituted with or without enzymes in maize-soya based control diet replacing maize at 50 and 75% levels. The birds fed on diets containing enzyme reconstituted pearl millet accrued higher body weight than maize based control diet. Addition of enzymes to raw pearl-millet based diet improved the body weight gain significantly. The reconstitution of pearl millet with or without enzymes increased (P < 0.01) the dietary nitrogen corrected apparent metabolizable energy (AMEn) values and the highest improvement (6.11%) was recorded in diets containing pearl millet reconstituted with enzymes at 75% level of maize replacement. The percent nitrogen retention in pearl millet based diets was comparable to maize based control diet. It may be concluded that the supplementation of the feed enzymes or reconstitution of pearl millet may improve the utilization of pearl millet in broiler chickens.

  17. Genome-Wide Analysis of bZIP-Encoding Genes in Maize

    PubMed Central

    Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin

    2012-01-01

    In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471

  18. Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons.

    PubMed

    Wolfgruber, Thomas K; Sharma, Anupma; Schneider, Kevin L; Albert, Patrice S; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A; Jiang, Jiming; Dawe, R Kelly; Presting, Gernot G

    2009-11-01

    We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3.

  19. Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons

    PubMed Central

    Albert, Patrice S.; Koo, Dal-Hoe; Shi, Jinghua; Gao, Zhi; Han, Fangpu; Lee, Hyeran; Xu, Ronghui; Allison, Jamie; Birchler, James A.; Jiang, Jiming; Dawe, R. Kelly; Presting, Gernot G.

    2009-01-01

    We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3. Using novel markers derived from centromere repeats, we have mapped all ten centromeres onto the physical and genetic maps of maize. We were able to completely traverse centromeres 2 and 5, confirm physical maps by fluorescence in situ hybridization (FISH), and delineate their functional regions by chromatin immunoprecipitation (ChIP) with anti-CENH3 antibody followed by pyrosequencing. These two centromeres differ substantially in size, apparent CENH3 density, and arrangement of centromeric repeats; and they are larger than the rice centromeres characterized to date. Furthermore, centromere 5 consists of two distinct CENH3 domains that are separated by several megabases. Succession of centromere repeat classes is evidenced by the fact that elements belonging to the recently active recombinant subgroups of CRM1 colonize the present day centromeres, while elements of the ancestral subgroups are also found in the flanking regions. Using abundant CRM and non-CRM retrotransposons that inserted in and near these two centromeres to create a historical record of centromere location, we show that maize centromeres are fluid genomic regions whose borders are heavily influenced by the interplay of retrotransposons and epigenetic marks. Furthermore, we propose that CRMs may be involved in removal of centromeric DNA (specifically CentC), invasion of centromeres by non-CRM retrotransposons, and local repositioning of the CENH3. PMID:19956743

  20. Very high expander processing of maize on animal performance, digestibility and product quality of finishing pigs and broilers.

    PubMed

    Puntigam, R; Schedle, K; Schwarz, C; Wanzenböck, E; Eipper, J; Lechner, E-M; Yin, L; Gierus, M

    2018-07-01

    The present study investigated the effect of hydrothermic maize processing and supplementation of amino acids (AA) in two experiments. In total, 60 barrows and 384 broilers were fed four diets including either unprocessed (T1), or hydrothermically processed maize, that is short- (T2), or long-term conditioned (LC) (T3), and subsequently expanded maize of the same batch. Assuming a higher metabolizable energy (ME) content after processing, the fourth diet (T4) contains maize processed as treatment T3, but AA were supplemented to maintain the ideal protein value. Performance, digestibility and product quality in both species were assessed. Results show that in pigs receiving T4 the average daily feed intake was lower compared with the other treatments, whereas no difference was observed in broilers. The T3 improved the feed conversion rate compared with T1 (P<0.10) for both species. In contrast, average daily gain (ADG) (1277 g/day for T2 and 1267 g/day for T3 v. 971 g/day for T1) was only altered in pigs. The hydrothermic maize processing increased the apparent total tract digestibility (ATTD) of dry matter, starch and ether extract after acid hydrolysis. This may be a consequence of higher ATTD of gross energy in the finishing phase for both animal species, suggesting a higher ME content in diets with processed maize. The higher ME content of diets with processed maize is supported also by measurements of product quality. Supplementation of AA in T4 enhanced the loin depth in pigs as well as the amount of breast meat in broilers. Further effects of processing maize on meat quality were the reduced yellowness and antioxidative capacity (P<0.10) for broilers, likely due to the heat damage of xanthophylls and tocopherols. Processing also increased springiness and chewiness (P<0.10) of the broilers breast meat, whereas the loin meat of pigs showed a decreased lightness and yellowness (P<0.10) in meat when hydrothermic processed maize was used (for T2, T3 and T4). LC processed maize (T3) showed the lowest springiness in pork, however the supplementation of AA in T4 did not show differences between the treatments. Shown results demonstrated positive effects of hydrothermic processing of maize on animal performance and digestibility in both species. However, effects on carcass characteristics and product quality differed. The negative effects on product quality could be partly compensated with the AA supplementation, whereas a change in meat colour and reduced antioxidative capacity was observed in all groups fed hydrothermic maize processing.

  1. Response of maize hybrids with and without rootworm-and drought-tolerance to rootworm infestation under well-watered and drought conditions

    USDA-ARS?s Scientific Manuscript database

    Anecdotal data have suggested that the effect of the western corn rootworm, Diabrotica virgifera virgifera LeConte, is greater under drought and the effect of drought is greater under rootworm infestations, but few experiments have controlled both moisture and rootworm levels. Field studies were con...

  2. Potassium fertilization mitigates the adverse effects of drought on selected Zea mays cultivars

    USDA-ARS?s Scientific Manuscript database

    In the present study, the role of potassium (K) in mitigating the adverse effects of drought stress (DS) on 2 maize (Zea mays L.) cultivars, ‘Shaandan 9’ (S9; drought-tolerant) and ‘Shaandan 911’ (S911; drought-sensitive), was assessed. K application increased dry matter (DM) across all growth stage...

  3. Large scale q-PCR reveals maize transcription factors that are regulated under water deficit in a tissue-specific manner

    USDA-ARS?s Scientific Manuscript database

    Water deficit stress is a major component of agricultural drought events and contributes greatly to yield loss in all crops. Genetic modification to improve water deficit tolerance is an obvious strategy to mitigate this problem and an understanding of the mechanism of adaptation to water deficit is...

  4. A comparison of water use and water-use-efficiency of maize and biomass sorghum in the rain-fed, Midwestern, US.

    NASA Astrophysics Data System (ADS)

    Roby, M.; Salas Fernandez, M.; VanLoocke, A. D.

    2014-12-01

    There is growing consensus among model projections that climate change may increase the frequency and intensity of drought in the rain-fed, maize-dominated, Midwestern US. Uncertainty in the availability of water, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biomass applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are limited for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum. Data were collected by micrometeorological stations located in the center of each plot and used to calculate cumulative evapotranspiration throughout the 2014 growing season using the residual energy balance method. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. At mid-point of the growing season, preliminary data analysis revealed similar water use for sorghum and maize. Data collection will continue for the remainder of the growing season, at which point a stronger conclusion can be drawn. This research will provide important insight on the potential hydrologic effects of expanding biomass sorghum production in the Midwestern, US.

  5. Applicability of the quantification of genetically modified organisms to foods processed from maize and soy.

    PubMed

    Yoshimura, Tomoaki; Kuribara, Hideo; Matsuoka, Takeshi; Kodama, Takashi; Iida, Mayu; Watanabe, Takahiro; Akiyama, Hiroshi; Maitani, Tamio; Furui, Satoshi; Hino, Akihiro

    2005-03-23

    The applicability of quantifying genetically modified (GM) maize and soy to processed foods was investigated using heat treatment processing models. The detection methods were based on real-time quantitative polymerase chain reaction (PCR) analysis. Ground seeds of insect resistant GM maize (MON810) and glyphosate tolerant Roundup Ready (RR) soy were dissolved in water and were heat treated by autoclaving for various time intervals. The calculated copy numbers of the recombinant and taxon specific deoxyribonucleic acid (DNA) sequences in the extracted DNA solution were found to decrease with time. This decrease was influenced by the PCR-amplified size. The conversion factor (Cf), which is the ratio of the recombinant DNA sequence to the taxon specific DNA sequence and is used as a constant number for calculating GM% at each event, tended to be stable when the sizes of PCR products of two DNA sequences were nearly equal. The results suggested that the size of the PCR product plays a key role in the quantification of GM organisms in processed foods. It is believed that the Cf of the endosperm (3n) is influenced by whether the GM originated from a paternal or maternal source. The embryos and endosperms were separated from the F1 generation seeds of five GM maize events, and their Cf values were measured. Both paternal and maternal GM events were identified. In these, the endosperm Cf was lower than that of the embryo, and the embryo Cf was lower than that of the endosperm. These results demonstrate the difficulties encountered in the determination of GM% in maize grains (F2 generation) and in processed foods from maize and soy.

  6. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    NASA Astrophysics Data System (ADS)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely offset temperature-related yield losses in irrigated maize.

  7. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize (Zea mays L.) under Various Abiotic Stresses

    PubMed Central

    Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625

  8. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection.

    PubMed

    Chen, Hui; Cao, Yanyong; Li, Yiqing; Xia, Zihao; Xie, Jipeng; Carr, John P; Wu, Boming; Fan, Zaifeng; Zhou, Tao

    2017-08-01

    Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity

    PubMed Central

    Yang, Liming; Jiang, Tingbo; Fountain, Jake C.; Scully, Brian T.; Lee, Robert D.; Kemerait, Robert C.; Chen, Sixue; Guo, Baozhu

    2014-01-01

    Drought stress is a major factor that contributes to disease susceptibility and yield loss in agricultural crops. To identify drought responsive proteins and explore metabolic pathways involved in maize tolerance to drought stress, two maize lines (B73 and Lo964) with contrasting drought sensitivity were examined. The treatments of drought and well water were applied at 14 days after pollination (DAP), and protein profiles were investigated in developing kernels (35 DAP) using iTRAQ (isobaric tags for relative and absolute quantitation). Proteomic analysis showed that 70 and 36 proteins were significantly altered in their expression under drought treatments in B73 and Lo964, respectively. The numbers and levels of differentially expressed proteins were generally higher in the sensitive genotype, B73, implying an increased sensitivity to drought given the function of the observed differentially expressed proteins, such as redox homeostasis, cell rescue/defense, hormone regulation and protein biosynthesis and degradation. Lo964 possessed a more stable status with fewer differentially expressed proteins. However, B73 seems to rapidly initiate signaling pathways in response to drought through adjusting diverse defense pathways. These changes in protein expression allow for the production of a drought stress-responsive network in maize kernels. PMID:25334062

  10. Nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology: lysine maize as a case study.

    PubMed

    Glenn, Kevin C

    2007-01-01

    During the last decade, the area of biotech crops modified for agronomic input traits (e.g., herbicide tolerance and insect protection) has increased to 90 million halyear, grown by over 8 million farmers in a total of 17 countries. As adoption of these improved agronomic trait biotech crops has grown, so has interest in biotech crops that have improved nutritional characteristics for use as feed and food. A previous publication by the International Life Sciences Institute (ILSI) reported on the principles and concepts proposed for the nutritional and safety assessments of foods and feeds nutritionally improved through biotechnology. In this paper, the guidelines and principles recommended in the earlier publication are discussed relative to a specific case study, Lysine maize. Lysine maize is a feed ingredient with enhanced nutritional characteristics for poultry and swine and provides an alternative to the need for addition of supplemental lysine to some diets for these animals. The 2004 Task Force of the ILSI has also applied the concepts from that report to 4 other case studies: sweet potato enriched in provitamin A (2 examples, one using biotechnology and one using conventional breeding); Golden Rice 2; double-embryo maize; and ASP-1 enhanced protein sweet potato.

  11. Global Risk Assessment of Aflatoxins in Maize and Peanuts: Are Regulatory Standards Adequately Protective?

    PubMed Central

    Wu, Felicia

    2013-01-01

    The aflatoxins are a group of fungal metabolites that contaminate a variety of staple crops, including maize and peanuts, and cause an array of acute and chronic human health effects. Aflatoxin B1 in particular is a potent liver carcinogen, and hepatocellular carcinoma (HCC) risk is multiplicatively higher for individuals exposed to both aflatoxin and chronic infection with hepatitis B virus (HBV). In this work, we sought to answer the question: do current aflatoxin regulatory standards around the world adequately protect human health? Depending upon the level of protection desired, the answer to this question varies. Currently, most nations have a maximum tolerable level of total aflatoxins in maize and peanuts ranging from 4 to 20ng/g. If the level of protection desired is that aflatoxin exposures would not increase lifetime HCC risk by more than 1 in 100,000 cases in the population, then most current regulatory standards are not adequately protective even if enforced, especially in low-income countries where large amounts of maize and peanuts are consumed and HBV prevalence is high. At the protection level of 1 in 10,000 lifetime HCC cases in the population, however, almost all aflatoxin regulations worldwide are adequately protective, with the exception of several nations in Africa and Latin America. PMID:23761295

  12. Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity.

    PubMed

    Ullah, Sami; Bano, Asghari

    2015-04-01

    The present investigation was aimed to scrutinize the salt tolerance potential of plant-growth-promoting rhizobacteria (PGPR) isolated from rhizospheric soil of selected halophytes (Atriplex leucoclada, Haloxylon salicornicum, Lespedeza bicolor, Suaeda fruticosa, and Salicornica virginica) collected from high-saline fields (electrical conductivity 4.3-5.5) of District Mardan, Pakistan. Five PGPR strains were identified using 16S rRNA amplification and sequence analysis. Bacillus sp., isolated from rhizospheric soil of Atriplex leucoclada, and Arthrobacter pascens, isolated from rhizospheric soil of Suaeda fruticosa, are active phosphate solubilizers and bacteriocin and siderophore producers; hence, their inoculation and co-inoculation on maize ('Rakaposhi') under induced salinity stress enhanced shoot and root length and shoot and root fresh and dry mass. The accumulation of osmolytes, including sugar and proline, and the elevation of antioxidant enzymes activity, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, were enhanced in the maize variety when inoculated and co-inoculated with Bacillus sp. and Arthrobacter pascens. The PGPR (Bacillus sp. and A. pascens) isolated from the rhizosphere of the mentioned halophytes species showed reliability in growth promotion of maize crop in all the physiological parameters; hence, they can be used as bio-inoculants for the plants growing under salt stress.

  13. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize [Phosphorylation of a NAC Transcription Factor by ZmCCaMK Regulates Abscisic Acid-Induced Antioxidant Defense in Maize

    DOE PAGES

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan; ...

    2016-05-10

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize, which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 display a partially overlapping expression pattern with ZmCCaMK after ABA treatment and H 2O 2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates S113 of ZmNAC84 inmore » vitro, and S113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco can improve drought tolerance, and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H 2O 2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK, and subsequently the activated ZmCCaMK phosphorylates ZmNAC84 at S113, thereby inducing antioxidant defense by activating downstream genes.« less

  14. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize [Phosphorylation of a NAC Transcription Factor by ZmCCaMK Regulates Abscisic Acid-Induced Antioxidant Defense in Maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize, which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 display a partially overlapping expression pattern with ZmCCaMK after ABA treatment and H 2O 2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates S113 of ZmNAC84 inmore » vitro, and S113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco can improve drought tolerance, and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H 2O 2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK, and subsequently the activated ZmCCaMK phosphorylates ZmNAC84 at S113, thereby inducing antioxidant defense by activating downstream genes.« less

  15. The influence of feeding crimped kernel maize silage on broiler production, nutrient digestibility and meat quality.

    PubMed

    Ranjitkar, S; Karlsson, A H; Petersen, M A; Bredie, W L P; Petersen, J S; Engberg, R M

    2016-01-01

    Two experiments were carried out in parallel with male Ross 308 broilers over 37 d. An experiment with a total of 736 broilers was performed to study the effect of dietary inclusion of crimped kernel maize silage (CKMS) on broiler production and meat quality. Another study with 32 broilers was carried out from 21 to 25 d to investigate the inclusion of CKMS on nutrient digestibility. In both trials, 4 dietary treatments were used: wheat-based feed (WBF), maize-based feed (MBF), maize-based feed supplemented with 15% CKMS (CKMS-15) and maize-based feed supplemented with 30% CKMS (CKMS-30). Compared with MBF, the dry matter (DM) intakes of broilers receiving CKMS-15 and CKMS-30, respectively, were numerically 7.5 and 6.2% higher and feed conversion ratio 6 and 12% poorer (significant for 30% CKMS), although there were no significant differences in AME content between the three diets. At 37 d, the body weight of birds receiving 15% CKMS was similar to birds fed with MBF. However, the inclusion of 30% CKMS decreased broiler growth. Dietary supplementation with CKMS significantly reduced the apparent digestibility of phosphorus. The fat digestibility was significantly lower for CKMS-30 than for the other three diets. Broiler mortality decreased significantly when CKMS was added to the diet. The consumption of drinking water was significantly lower in all maize-based diets as compared to WBF and was lowest in broilers fed with CKMS-30. An improved litter quality in terms of DM content and a lower frequency of foot pad lesions was observed with broilers supplemented with both dietary levels of CKMS. The addition of CKMS to maize-based diets increased juiciness, tenderness and crumbliness of the meat. In conclusion, the dietary supplementation of 15% CKMS had no negative effect on broiler growth and positively influenced bird welfare in terms of mortality and foot pad health. Therefore, the addition of 15% CKMS to maize-based diets is considered an advantageous feeding strategy in broiler production.

  16. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change.

    PubMed

    Chen, Xiaochao; Chen, Fanjun; Chen, Yanling; Gao, Qiang; Yang, Xiaoli; Yuan, Lixing; Zhang, Fusuo; Mi, Guohua

    2013-03-01

    The impact of global changes on food security is of serious concern. Breeding novel crop cultivars adaptable to climate change is one potential solution, but this approach requires an understanding of complex adaptive traits for climate-change conditions. In this study, plant growth, nitrogen (N) uptake, and yield in relation to climatic resource use efficiency of nine representative maize cultivars released between 1973 and 2000 in China were investigated in a 2-year field experiment under three N applications. The Hybrid-Maize model was used to simulate maize yield potential in the period from 1973 to 2011. During the past four decades, the total thermal time (growing degree days) increased whereas the total precipitation and sunshine hours decreased. This climate change led to a reduction of maize potential yield by an average of 12.9% across different hybrids. However, the potential yield of individual hybrids increased by 118.5 kg ha(-1)  yr(-1) with increasing year of release. From 1973 to 2000, the use efficiency of sunshine hours, thermal time, and precipitation resources increased by 37%, 40%, and 41%, respectively. The late developed hybrids showed less reduction in yield potential in current climate conditions than old cultivars, indicating some adaptation to new conditions. Since the mid-1990s, however, the yield impact of climate change exhibited little change, and even a slight worsening for new cultivars. Modern breeding increased ear fertility and grain-filling rate, and delayed leaf senescence without modification in net photosynthetic rate. The trade-off associated with delayed leaf senescence was decreased grain N concentration rather than increased plant N uptake, therefore N agronomic efficiency increased simultaneously. It is concluded that modern maize hybrids tolerate the climatic changes mainly by constitutively optimizing plant productivity. Maize breeding programs in the future should pay more attention to cope with the limiting climate factors specifically. © 2012 Blackwell Publishing Ltd.

  17. Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves.

    PubMed

    Yan, Jingwei; Guan, Li; Sun, Yue; Zhu, Yuan; Liu, Lei; Lu, Rui; Jiang, Mingyi; Tan, Mingpu; Zhang, Aying

    2015-05-01

    Brassinosteroids (BRs) have been shown to enhance stress tolerance by inducing antioxidant defense systems. However, the mechanisms of BR-induced antioxidant defense in plants remain to be determined. In this study, the role of calcium (Ca(2+)) and maize calcium/calmodulin-dependent protein kinase (CCaMK), ZmCCaMK, in BR-induced antioxidant defense, and the relationship between ZmCCaMK and Ca(2+) in BR signaling were investigated. BR treatment led to a significant increase in cytosolic Ca(2+) concentration in protoplasts from maize mesophyll, and Ca(2+) was shown to be required for BR-induced antioxidant defense. Treatment with BR induced increases in gene expression and enzyme activity of ZmCCaMK in maize leaves. Transient overexpression and silencing of ZmCCaMK in maize protoplasts demonstrated that ZmCCaMK was required for BR-induced antioxidant defense. The requirement for CCaMK was further investigated using a loss-of-function mutant of OsCCaMK, the orthologous gene of ZmCCaMK in rice. Consistent with the findings in maize, BR treatment could not induce antioxidant defense in the rice OsCCAMK mutant. Furthermore, Ca(2+) was required for BR-induced gene expression and activation of ZmCCaMK, while ZmCCaMK was shown to enhance the BR-induced increase in cytosolic Ca(2+) concentration. Moreover, our results also showed that ZmCCaMK and H2O2 influenced each other. These results indicate that Ca(2+) works together with ZmCCaMK in BR-induced antioxidant defense, and there are two positive feedback loops between Ca(2+) or H2O2 and ZmCCaMK in BR signaling in maize. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Republished study: long-term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize.

    PubMed

    Séralini, Gilles-Eric; Clair, Emilie; Mesnage, Robin; Gress, Steeve; Defarge, Nicolas; Malatesta, Manuela; Hennequin, Didier; de Vendômois, Joël Spiroux

    2014-01-01

    The health effects of a Roundup-tolerant NK603 genetically modified (GM) maize (from 11% in the diet), cultivated with or without Roundup application and Roundup alone (from 0.1 ppb of the full pesticide containing glyphosate and adjuvants) in drinking water, were evaluated for 2 years in rats. This study constitutes a follow-up investigation of a 90-day feeding study conducted by Monsanto in order to obtain commercial release of this GMO, employing the same rat strain and analyzing biochemical parameters on the same number of animals per group as our investigation. Our research represents the first chronic study on these substances, in which all observations including tumors are reported chronologically. Thus, it was not designed as a carcinogenicity study. We report the major findings with 34 organs observed and 56 parameters analyzed at 11 time points for most organs. Biochemical analyses confirmed very significant chronic kidney deficiencies, for all treatments and both sexes; 76% of the altered parameters were kidney-related. In treated males, liver congestions and necrosis were 2.5 to 5.5 times higher. Marked and severe nephropathies were also generally 1.3 to 2.3 times greater. In females, all treatment groups showed a two- to threefold increase in mortality, and deaths were earlier. This difference was also evident in three male groups fed with GM maize. All results were hormone- and sex-dependent, and the pathological profiles were comparable. Females developed large mammary tumors more frequently and before controls; the pituitary was the second most disabled organ; the sex hormonal balance was modified by consumption of GM maize and Roundup treatments. Males presented up to four times more large palpable tumors starting 600 days earlier than in the control group, in which only one tumor was noted. These results may be explained by not only the non-linear endocrine-disrupting effects of Roundup but also by the overexpression of the EPSPS transgene or other mutational effects in the GM maize and their metabolic consequences. Our findings imply that long-term (2 year) feeding trials need to be conducted to thoroughly evaluate the safety of GM foods and pesticides in their full commercial formulations.

  19. Modulation Role of Abscisic Acid (ABA) on Growth, Water Relations and Glycinebetaine Metabolism in Two Maize (Zea mays L.) Cultivars under Drought Stress

    PubMed Central

    Zhang, Lixin; Gao, Mei; Hu, Jingjiang; Zhang, Xifeng; Wang, Kai; Ashraf, Muhammad

    2012-01-01

    The role of plant hormone abscisic acid (ABA) in plants under drought stress (DS) is crucial in modulating physiological responses that eventually lead to adaptation to an unfavorable environment; however, the role of this hormone in modulation of glycinebetaine (GB) metabolism in maize particularly at the seedling stage is still poorly understood. Some hydroponic experiments were conducted to investigate the modulation role of ABA on plant growth, water relations and GB metabolism in the leaves of two maize cultivars, Zhengdan 958 (ZD958; drought tolerant), and Jundan 20 (JD20; drought sensitive), subjected to integrated root-zone drought stress (IR-DS) simulated by the addition of polyethylene glycol (PEG, 12% w/v, MW 6000). The IR-DS substantially resulted in increased betaine aldehyde dehydrogenase (BADH) activity and choline content which act as the key enzyme and initial substrate, respectively, in GB biosynthesis. Drought stress also induced accumulation of GB, whereas it caused reduction in leaf relative water content (RWC) and dry matter (DM) in both cultivars. The contents of ABA and GB increased in drought-stressed maize seedlings, but ABA accumulated prior to GB accumulation under the drought treatment. These responses were more predominant in ZD958 than those in JD20. Addition of exogenous ABA and fluridone (Flu) (ABA synthesis inhibitor) applied separately increased and decreased BADH activity, respectively. Abscisic acid application enhanced GB accumulation, leaf RWC and shoot DM production in both cultivars. However, of both maize cultivars, the drought sensitive maize cultivar (JD20) performed relatively better than the other maize cultivar ZD958 under both ABA and Flu application in view of all parameters appraised. It is, therefore, concluded that increase in both BADH activity and choline content possibly resulted in enhancement of GB accumulation under DS. The endogenous ABA was probably involved in the regulation of GB metabolism by regulating BADH activity, and resulting in modulation of water relations and plant growth under drought, especially in the drought sensitive maize cultivar JD20. PMID:22489148

  20. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    PubMed

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  1. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil

    PubMed Central

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P.; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies. PMID:26473961

  2. Cross-Resistance between Cry1 Proteins in Fall Armyworm (Spodoptera frugiperda) May Affect the Durability of Current Pyramided Bt Maize Hybrids in Brazil.

    PubMed

    Bernardi, Daniel; Salmeron, Eloisa; Horikoshi, Renato Jun; Bernardi, Oderlei; Dourado, Patrick Marques; Carvalho, Renato Assis; Martinelli, Samuel; Head, Graham P; Omoto, Celso

    2015-01-01

    Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.

  3. Drought stress and aflatoxin contamination: Transcriptional responses of Aspergillus flavus to oxidative stress are related to stress tolerance and aflatoxin production capability

    USDA-ARS?s Scientific Manuscript database

    Oilseed crops such as maize and peanut are staple food crops which are vital for global food security. The contamination of these crops with carcinogenic aflatoxins during infection by Aspergillus flavus under drought stress conditions is a serious threat to the safety of these commodities. In order...

  4. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks-old maize the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. For the five weeks-old maize, water was mainly taken up by the crown roots and their associated laterals. The ability of crown roots to uptake water from the distal segments can help maize to extract water from deep soil layers and better tolerate drought. Reference Ahmed MA, Zarebanadkouki M, Kaestner A, Carminati A (2015) Measurements of water uptake of maize roots: the key function of lateral roots. Plant and Soil 1-19. doi: 10.1007/s11104-015-2639-6

  5. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    PubMed

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  6. Effect of Terminalia catappa Fruit Meal Fermented by Aspergillus niger as Replacement of Maize on Growth Performance, Nutrient Digestibility, and Serum Biochemical Profile of Broiler Chickens

    PubMed Central

    Apata, David Friday

    2011-01-01

    A feeding experiment was conducted to investigate the effect of fermented Terminalia catappa fruit meal (FTCM) with Aspergillus niger as replacement for maize on broiler growth performance, nutrient digestibility, and serum biochemical constituents. Dietary maize was replaced by FTCM at 0, 20, 40, 60, or 80%. One hundred and eighty one-day-old Shaver broiler chicks were randomly allocated to the five dietary treatments, three replicate groups of twelve chicks each for a 42-day period. There was no significant difference (P > .05) in the feed intake, weight gain, and feed; gain ratio between the broilers fed on 40% FTCM diet and the control group. The apparent digestibilities of nitrogen, crude fibre, and fat decreased significantly in broilers fed higher levels (>40%) of FTCM replacement diets compared with the control or lower FTCM diets. Serum concentrations of total protein, albumin, and globulin were decreased (P < .05) on 80% FTCM fed broilers. Serum cholesterol, creatinine, and glucose were not significantly (P > .05) altered among treatments. The activities of aspartate and alanine aminotransferases and alkaline phosphatase were significantly (P < .05) increased with higher FTCM replacement. The results indicate that FTCM could replace up to 40% of dietary maize in the diets of broiler chickens without adverse effect on growth performance or serum constituents. PMID:21350670

  7. Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.).

    PubMed Central

    Tenaillon, Maud I; Sawkins, Mark C; Anderson, Lorinda K; Stack, Stephen M; Doebley, John; Gaut, Brandon S

    2002-01-01

    We investigate the interplay between genetic diversity and recombination in maize (Zea mays ssp. mays). Genetic diversity was measured in three types of markers: single-nucleotide polymorphisms, indels, and microsatellites. All three were examined in a sample of previously published DNA sequences from 21 loci on maize chromosome 1. Small indels (1-5 bp) were numerous and far more common than large indels. Furthermore, large indels (>100 bp) were infrequent in the population sample, suggesting they are slightly deleterious. The 21 loci also contained 47 microsatellites, of which 33 were polymorphic. Diversity in SNPs, indels, and microsatellites was compared to two measures of recombination: C (=4Nc) estimated from DNA sequence data and R based on a quantitative recombination nodule map of maize synaptonemal complex 1. SNP diversity was correlated with C (r = 0.65; P = 0.007) but not with R (r = -0.10; P = 0.69). Given the lack of correlation between R and SNP diversity, the correlation between SNP diversity and C may be driven by demography. In contrast to SNP diversity, microsatellite diversity was correlated with R (r = 0.45; P = 0.004) but not C (r = -0.025; P = 0.55). The correlation could arise if recombination is mutagenic for microsatellites, or it may be consistent with background selection that is apparent only in this class of rapidly evolving markers. PMID:12454083

  8. Effect of Terminalia catappa Fruit Meal Fermented by Aspergillus niger as Replacement of Maize on Growth Performance, Nutrient Digestibility, and Serum Biochemical Profile of Broiler Chickens.

    PubMed

    Apata, David Friday

    2011-01-01

    A feeding experiment was conducted to investigate the effect of fermented Terminalia catappa fruit meal (FTCM) with Aspergillus niger as replacement for maize on broiler growth performance, nutrient digestibility, and serum biochemical constituents. Dietary maize was replaced by FTCM at 0, 20, 40, 60, or 80%. One hundred and eighty one-day-old Shaver broiler chicks were randomly allocated to the five dietary treatments, three replicate groups of twelve chicks each for a 42-day period. There was no significant difference (P > .05) in the feed intake, weight gain, and feed; gain ratio between the broilers fed on 40% FTCM diet and the control group. The apparent digestibilities of nitrogen, crude fibre, and fat decreased significantly in broilers fed higher levels (>40%) of FTCM replacement diets compared with the control or lower FTCM diets. Serum concentrations of total protein, albumin, and globulin were decreased (P < .05) on 80% FTCM fed broilers. Serum cholesterol, creatinine, and glucose were not significantly (P > .05) altered among treatments. The activities of aspartate and alanine aminotransferases and alkaline phosphatase were significantly (P < .05) increased with higher FTCM replacement. The results indicate that FTCM could replace up to 40% of dietary maize in the diets of broiler chickens without adverse effect on growth performance or serum constituents.

  9. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses

    PubMed Central

    Yue, Runqing; Lu, Caixia; Sun, Tao; Peng, Tingting; Han, Xiaohua; Qi, Jianshuang; Yan, Shufeng; Tie, Shuanggui

    2015-01-01

    The calmodulin-binding transcription activators (CAMTA) play critical roles in plant growth and responses to environmental stimuli. However, how CAMTAs function in responses to abiotic and biotic stresses in maize (Zea mays L.) is largely unknown. In this study, we first identified all the CAMTA homologous genes in the whole genome of maize. The results showed that nine ZmCAMTA genes showed highly diversified gene structures and tissue-specific expression patterns. Many ZmCAMTA genes displayed high expression levels in the roots. We then surveyed the distribution of stress-related cis-regulatory elements in the −1.5 kb promoter regions of ZmCAMTA genes. Notably, a large number of stress-related elements present in the promoter regions of some ZmCAMTA genes, indicating a genetic basis of stress expression regulation of these genes. Quantitative real-time PCR was used to test the expression of ZmCAMTA genes under several abiotic stresses (drought, salt, and cold), various stress-related hormones [abscisic acid, auxin, salicylic acid (SA), and jasmonic acid] and biotic stress [rice black-streaked dwarf virus (RBSDV) infection]. Furthermore, the expression pattern of ZmCAMTA genes under RBSDV infection was analyzed to investigate their potential roles in responses of different maize cultivated varieties to RBSDV. The expression of most ZmCAMTA genes responded to both abiotic and biotic stresses. The data will help us to understand the roles of CAMTA-mediated Ca2+ signaling in maize tolerance to environmental stresses. PMID:26284092

  10. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation.

    PubMed

    Wang, Aiyun; Wang, Minyan; Liao, Qi; He, Xiquan

    2016-03-01

    Maize (Zea mays) has low Cd accumulation in grains and a high biomass compared to other crops. The capacities for Cd accumulation in different maize cultivars are, however, not fully understood. To reduce human health risk from maize grown in Cd-contaminated soil and to provide promising maize cultivars for the phytoremediation of Cd-polluted soil, a field experiment was conducted to screen low-Cd- and high-Cd-accumulation maize cultivars by evaluating the yield, Cd uptake, translocation, and accumulation differences among 19 maize cultivars. There were differences in straw dry weight (DW), root DW, and yield among the 19 cultivars. The cultivars Yudan19, Zhengda999, and Xianyu508 had a higher production compared to that of the other cultivars. The Cd concentrations in the roots were much higher than those in the straws and grains in all cultivars. The Cd accumulation factors (AFS) decreased in the order of accumulation factors in root (AFrs) > accumulation factors in straw (AFss) > accumulation factors in grain (AFgs). The Cd translocation factors (TFs) from root to straw (TFrs) were significantly (p < 0.05) larger than those from straw to grain (TFsg) among all of the cultivars. The TFs for all of the cultivars was less than 1, and the lowest TFsg (0.23) was found in cultivar Xiangyongdan3. The correlation analysis indicated that Cd concentrations in straws showed a significant (p < 0.01) as well as positive correlation with TFrs while a negative correlation with TFsg (p < 0.01). Moreover, Cd accumulation in different tissues decreased in the order straw > grain > root. Among the 19 maize cultivars, Jixiang2118 and Kangnong18 accumulated the highest Cd amount in the aboveground tissues, and the corresponding values were 7,206.51 and 6,598.68 mg hm(-2), respectively. A hierarchical cluster analysis based on the Cd concentrations in grains and straws classified the 19 maize cultivars into four and two groups for a 0.4 minimum distance between clusters, respectively. Yudan19, Zhengda999, and Xianyu508 can be classified into one group in which low Cd in grains meeting the Cd tolerance limit in foods set by China National Standard, suggesting that those cultivars are safety for food and human health. However, Jixiang2118 and Kangnong18 can be classified as another group with potential application for phytoremediation in slightly or moderately Cd-polluted soil because of the high Cd accumulation in the aboveground tissues.

  11. Preliminary investigation of mineral content of pollen collected from different Serbian maize hybrids - is there any potential nutritional value?

    PubMed

    Kostić, Aleksandar Ž; Kaluđerović, Lazar M; Dojčinović, Biljana P; Barać, Miroljub B; Babić, Vojka B; Mačukanović-Jocić, Marina P

    2017-07-01

    Bee pollen has already proved to be a good supplement rich in iron and zinc. Studies on the application of flower pollen in the food industry and medicine have begun. Bearing in mind the prevalence of maize as a crop culture, its pollen will be easily available. The mineral composition of pollen of seven Serbian maize hybrids was analyzed in order to establish its nutritional value and the benefits of its implementation in the human diet using the inductively coupled plasma method. The presence of twenty four different macro- (nine) and micronutrients (fifteen) was detected. The most common minerals were phosphorus and potassium, while arsenic, cobalt, lead, nickel and molybdenum were found in some samples. Comparing the results obtained with recommended or tolerable dietary intake references for adults, it was found that maize pollen can be used as a very good source of zinc, iron, chromium and manganese for humans. With regard to selenium content, pollen samples proved to be moderately good source of this important micronutrient. Contents of some elements (Fe, Zn, Mn, Cr, Se, Al and V) showed significant differences depending on hybrid type. In some samples increased concentrations of aluminum and vanadium were recorded, which may pose a potential problem due to their toxicity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency.

    PubMed

    Li, Pengcheng; Zhuang, Zhongjuan; Cai, Hongguang; Cheng, Shuai; Soomro, Ayaz Ali; Liu, Zhigang; Gu, Riliang; Mi, Guohua; Yuan, Lixing; Chen, Fanjun

    2016-03-01

    Maize (Zea mays L.) root morphology exhibits a high degree of phenotypic plasticity to nitrogen (N) deficiency, but the underlying genetic architecture remains to be investigated. Using an advanced BC4 F3 population, we investigated the root growth plasticity under two contrasted N levels and identified the quantitative trait loci (QTLs) with QTL-environment (Q × E) interaction effects. Principal components analysis (PCA) on changes of root traits to N deficiency (ΔLN-HN) showed that root length and biomass contributed for 45.8% in the same magnitude and direction on the first PC, while root traits scattered highly on PC2 and PC3. Hierarchical cluster analysis on traits for ΔLN-HN further assigned the BC4 F3 lines into six groups, in which the special phenotypic responses to N deficiency was presented. These results revealed the complicated root plasticity of maize in response to N deficiency that can be caused by genotype-environment (G × E) interactions. Furthermore, QTL mapping using a multi-environment analysis identified 35 QTLs for root traits. Nine of these QTLs exhibited significant Q × E interaction effects. Taken together, our findings contribute to understanding the phenotypic and genotypic pattern of root plasticity to N deficiency, which will be useful for developing maize tolerance cultivars to N deficiency. © 2015 Institute of Botany, Chinese Academy of Sciences.

  13. Sensitivity of the Colorado Plateau to change: Climate, ecosystems, and society

    USGS Publications Warehouse

    Schwinning, S.; Belnap, J.; Bowling, David R.; Ehleringer, J.R.

    2008-01-01

    The Colorado Plateau is located in the interior, dry end of two moisture trajectories coming from opposite directions, which have made this region a target for unusual climate fluctuations. A multidecadal drought event some 850 years ago may have eliminated maize cultivation by the first human settlers of the Colorado Plateau, the Fremont and Anasazi people, and contributed to the abandonment of their settlements. Even today, ranching and farming are vulnerable to drought and struggle to persist. The recent use of the Colorado Plateau primarily as rangeland has made this region less tolerant to drought due to unprecedented levels of surface disturbances that destroy biological crusts, reduce soil carbon and nitrogen stocks, and increase rates of soil erosion. The most recent drought of 2002 demonstrated the vulnerability of the Colorado Plateau in its currently depleted state and the associated costs to the local economies. New climate predictions for the southwestern United States include the possibility of a long-term shift to warmer, more arid conditions, punctuated by megadroughts not seen since medieval times. It remains to be seen whether the present-day extractive industries, aided by external subsidies, can persist in a climate regime that apparently exceeded the adaptive capacities of the Colorado Plateau's prehistoric agriculturalists.

  14. Influence of composted poultry manure and irrigation regimes on some morpho-physiology parameters of maize under semiarid environments.

    PubMed

    Farhad, Wajid; Cheema, Mumtaz Akhtar; Hammad, Hafiz Mohkum; Saleem, Muhammad Farrukh; Fahad, Shah; Abbas, Farhat; Khosa, Ikramullah; Bakhat, Hafiz Faiq

    2018-05-08

    Poultry manure (PM), a rich source for crop nutrients, is produced in ample quantities worldwide. It provides necessary nutrient to soil and has a potential to improve plant water holding availability under semiarid environment. The effect of composted poultry manure (CPM) and irrigation regimes on morpho-physiology of selective maize (Zea mays L.) hybrids (H 1 = drought tolerant, H 2 = drought sensitive) was investigated in this study. Two field experiments were conducted during 2010 and 2011 under randomized complete block design with split split-plot arrangements and three replications of each treatment. Irrigation regimes (I 1  = 300, I 2  = 450, I 3  = 600 mm) were kept in main plots; the two maize hybrids (H 1 and H 2 ) in sub-plots and nutrient levels (L 1 = recommended rate of NPK (control), L 2  = 8 t ha -1 CPM, L 3  = 10 t ha -1 CPM, and L 4  = 12 t ha -1 CPM) were arranged in sub sub-plots. The drought tolerant hybrid showed best growth under all treatments. Results revealed that maximum leaf area index (LAI) was recorded with the application of the recommended dose of NPK. Low irrigation regimes (I 1 and I 2 ) highly significantly (P < 0.01) reduced the photosynthesis and transpiration rate in both hybrids while application of 12 t ha -1 CPM was able to partially alleviate the effect of water stress on these parameters. Resultantly, the application of 12 t ha -1 CPM enhanced the plant growth and increased grain yield (21%; 4.17 vs 5.27) under limited water availability (I 2 L 4 ) as compared to the recommended dose of NPK (I 2 L 1 ). However, the nutrient application under control treatment had maximum grain yield. Therefore, shortage of water for maize production might be partially alleviated by the application of 12 t ha -1 CPM.

  15. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    PubMed

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D; Hussein, Hany M; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  16. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic

    PubMed Central

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D.; Hussein, Hany M.; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009–2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05). Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  17. Detection of Transgenes in Local Maize Varieties of Small-Scale Farmers in Eastern Cape, South Africa

    PubMed Central

    Iversen, Marianne; Grønsberg, Idun M.; van den Berg, Johnnie; Fischer, Klara; Aheto, Denis Worlanyo; Bøhn, Thomas

    2014-01-01

    Small-scale subsistence farmers in South Africa have been introduced to genetically modified (GM) crops for more than a decade. Little is known about i) the extent of transgene introgression into locally recycled seed, ii) what short and long-term ecological and socioeconomic impacts such mixing of seeds might have, iii) how the farmers perceive GM crops, and iv) to what degree approval conditions are followed and controlled. This study conducted in the Eastern Cape, South Africa, aims primarily at addressing the first of these issues. We analysed for transgenes in 796 individual maize plants (leaves) and 20 seed batches collected in a village where GM insect resistant maize was previously promoted and grown as part of an governmental agricultural development program over a seven year period (2001–2008). Additionally, we surveyed the varieties of maize grown and the farmers’ practices of recycling and sharing of seed in the same community (26 farmers were interviewed). Recycling and sharing of seeds were common in the community and may contribute to spread and persistence of transgenes in maize on a local or regional level. By analysing DNA we found that the commonly used transgene promoter p35s occurred in one of the 796 leaf samples (0.0013%) and in five of the 20 seed samples (25%). Three of the 20 seed samples (15%) included herbicide tolerant maize (NK603) intentionally grown by the farmers from seed bought from local seed retailers or acquired through a currently running agricultural development program. The two remaining positive seed samples (10%) included genes for insect resistance (from MON810). In both cases the farmers were unaware of the transgenes present. In conclusion, we demonstrate that transgenes are mixed into seed storages of small-scale farming communities where recycling and sharing of seeds are common, i.e. spread beyond the control of the formal seed system. PMID:25551616

  18. Future Warming Increases Global Maize Yield Variability with Implications for Food Markets

    NASA Astrophysics Data System (ADS)

    Tigchelaar, M.; Battisti, D. S.; Naylor, R. L.; Ray, D. K.

    2017-12-01

    If current trends in population growth and dietary shifts continue, the world will need to produce about 70% more food by 2050, while earth's climate is rapidly changing. Rising temperatures in particular are projected to negatively impact agricultural production, as the world's staple crops perform poorly in extreme heat. Theoretical models suggest that as temperatures rise above plants' optimal temperature for performance, not only will mean yields decline rapidly, but the variability of yields will increase, even as interannual variations in climate remain unchanged. Here we use global datasets of maize production and climate variability combined with CMIP5 temperature projections to quantify how yield variability will change in major maize producing countries under 2°C and 4°C of global warming. Maize is the world's most produced crop, and is linked to other staple crops through substitution in consumption and production. We find that in warmer climates - absent any breeding gains in heat tolerance - the Coefficient of Variation (CV) of maize yields increases almost everywhere, to values much larger than present-day. This increase in CV is due both to an increase in the standard deviation of yields, and a decrease in mean yields. In locations where crop failures become the norm under high (4°C) warming (mostly in tropical, low-yield environments), the standard deviation of yields ultimately decreases. The probability that in any given year the most productive areas in the top three maize producing countries (United States, China, Brazil) have simultaneous production losses greater than 10% is virtually zero under present-day climate conditions, but increases to 12% under 2°C warming, and 89% under 4°C warming. This has major implications for global food markets and staple crop prices, affecting especially the 2.5 billion people that comprise the world's poor, who already spend the majority of their disposable income on food and are particularly vulnerable to agricultural price spikes.

  19. Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize

    PubMed Central

    Wu, Xiaolin; Gong, Fangping; Yang, Le; Hu, Xiuli; Tai, Fuju; Wang, Wei

    2014-01-01

    ABA is a major plant hormone that plays important roles during many phases of plant life cycle, including seed development, maturity and dormancy, and especially the acquisition of desiccation tolerance. Understanding of the molecular basis of ABA-mediated plant response to stress is of interest not only in basic research on plant adaptation but also in applied research on plant productivity. Maize mutant viviparous-5 (vp5), deficient in ABA biosynthesis in seeds, is a useful material for studying ABA-mediated response in maize. Due to carotenoid deficiency, vp5 endosperm is white, compared to yellow Vp5 endosperm. However, the background difference at proteome level between vp5 and Vp5 seeds is unclear. This study aimed to characterize proteome alterations of maize vp5 seeds and to identify ABA-dependent proteins during seed maturation. We compared the embryo and endosperm proteomes of vp5 and Vp5 seeds by gel-based proteomics. Up to 46 protein spots, most in embryos, were found to be differentially accumulated between vp5 and Vp5. The identified proteins included small heat shock proteins (sHSPs), late embryogenesis abundant (LEA) proteins, stress proteins, storage proteins and enzymes among others. However, EMB564, the most abundant LEA protein in maize embryo, accumulated in comparable levels between vp5 and Vp5 embryos, which contrasted to previously characterized, greatly lowered expression of emb564 mRNA in vp5 embryos. Moreover, LEA proteins and sHSPs displayed differential accumulations in vp5 embryos: six out of eight identified LEA proteins decreased while nine sHSPs increased in abundance. Finally, we discussed the possible causes of global proteome alterations, especially the observed differential accumulation of identified LEA proteins and sHSPs in vp5 embryos. The data derived from this study provides new insight into ABA-dependent proteins and ABA-mediated response during maize seed maturation. PMID:25653661

  20. Striga Biocontrol on a Toothpick: A Readily Deployable and Inexpensive Method for Smallholder Farmers.

    PubMed

    Nzioki, Henry S; Oyosi, Florence; Morris, Cindy E; Kaya, Eylul; Pilgeram, Alice L; Baker, Claire S; Sands, David C

    2016-01-01

    Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize. This overall strategy resulted in an average of >50% increased maize yield in the March to June rains season and >40% in the September to December rains season. Integration of this enhanced plant pathogen to Striga management in maize can significantly increase the maize yield of smallholder farmers in Kenya.

  1. Striga Biocontrol on a Toothpick: A Readily Deployable and Inexpensive Method for Smallholder Farmers

    PubMed Central

    Nzioki, Henry S.; Oyosi, Florence; Morris, Cindy E.; Kaya, Eylul; Pilgeram, Alice L.; Baker, Claire S.; Sands, David C.

    2016-01-01

    Striga hermonthica (witchweed) is a parasitic weed that attacks and significantly reduces the yields of maize, sorghum, millet, and sugarcane throughout sub-Saharan Africa. Low cost management methods such as hand weeding, short crop rotations, trap cropping, or conventional biocontrol have not been effective. Likewise, Striga-tolerant or herbicide-resistant maize cultivars are higher yielding, but are often beyond the economic means of sustenance farmers. The fungal pathogen, Fusarium oxysporum f.sp. strigae, has been the object of numerous studies to develop Striga biocontrol. Under experimental conditions this pathogen can reduce the incidence of Striga infestation but field use is not extensive, perhaps because it has not been sufficiently effective in restoring crop yield and reducing the soil Striga seed bank. Here we brought together Kenyan and US crop scientists with smallholder farmers to develop and validate an effective biocontrol strategy for management of Striga on smallholder farms. Key components of this research project were the following: (1) Development of a two-step method of fungal delivery, including laboratory coating of primary inoculum on toothpicks, followed by on-farm production of secondary field inoculum in boiled rice enabling delivery of vigorous, fresh inoculum directly to the seedbed; (2) Training of smallholder farmers (85% women), to produce the biocontrol agent and incorporate it into their maize plantings in Striga-infested soils and collect agronomic data. The field tests expanded from 30 smallholder farmers to a two-season, 500-farmer plot trial including paired plus and minus biocontrol plots with fertilizer and hybrid seed in both plots and; (3) Concerted selection of variants of the pathogen identified for enhanced virulence, as has been demonstrated in other host parasite systems were employed here on Striga via pathogen excretion of the amino acids L-leucine and L-tyrosine that are toxic to Striga but innocuous to maize. This overall strategy resulted in an average of >50% increased maize yield in the March to June rains season and >40% in the September to December rains season. Integration of this enhanced plant pathogen to Striga management in maize can significantly increase the maize yield of smallholder farmers in Kenya. PMID:27551284

  2. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin differences between maize and sorghum were the least pronounced due to the poorer performance of maize under these site conditions. Furthermore, the comparatively lower land-lease rates in these regions allowed for positive equity capital formation also in sorghum crops.

  3. Toward linking maize chemistry to archaeological agricultural sites in the North American Southwest

    USGS Publications Warehouse

    Cordell, L.S.; Durand, S.R.; Antweiler, Ronald C.; Taylor, Howard E.

    2001-01-01

    Maize (Zea mays L.) was the staple domestic food crop for Ancestral Pueblo people throughout the northern American Southwest. It is thought to have been the basic food of the inhabitants of Chaco Canyon. New Mexico, a location that was a major centre of Ancestral Pueblo building and population during the 11th and early 12th centuries AD. Modern heirloom varieties of Native American corn have been difficult to grow in experimental fields in Chaco Canyon. Given an abundance of apparent storage structures in Chacoan buildings, it is possible that some corn recovered from archaeological contexts, was imported from surrounding areas. The ultimate goal of this research is to determine whether the corn in Chaco Canyon was grown locally or imported. This paper establishes the feasibility of a method to accomplish this goal. This study reports the results of using inductively coupled plasma-mass spectrometric (ICP-MS) instrumentation to determine chemical constituents of experimental fields and modern heirloom varieties of Native American corn. Analysis of 19 elements is adequate to differentiate soil and corn from three field areas. These results are promising: however, a number of problems, including post-depositional alterations in maize, remain to be solved. ?? 2001 Academic Press.

  4. Apparent motion perception in lower limb amputees with phantom sensations: "obstacle shunning" and "obstacle tolerance".

    PubMed

    Saetta, Gianluca; Grond, Ilva; Brugger, Peter; Lenggenhager, Bigna; Tsay, Anthony J; Giummarra, Melita J

    2018-03-21

    Phantom limbs are the phenomenal persistence of postural and sensorimotor features of an amputated limb. Although immaterial, their characteristics can be modulated by the presence of physical matter. For instance, the phantom may disappear when its phenomenal space is invaded by objects ("obstacle shunning"). Alternatively, "obstacle tolerance" occurs when the phantom is not limited by the law of impenetrability and co-exists with physical objects. Here we examined the link between this under-investigated aspect of phantom limbs and apparent motion perception. The illusion of apparent motion of human limbs involves the perception that a limb moves through or around an object, depending on the stimulus onset asynchrony (SOA) for the two images. Participants included 12 unilateral lower limb amputees matched for obstacle shunning (n = 6) and obstacle tolerance (n = 6) experiences, and 14 non-amputees. Using multilevel linear models, we replicated robust biases for short perceived trajectories for short SOA (moving through the object), and long trajectories (circumventing the object) for long SOAs in both groups. Importantly, however, amputees with obstacle shunning perceived leg stimuli to predominantly move through the object, whereas amputees with obstacle tolerance perceived leg stimuli to predominantly move around the object. That is, in people who experience obstacle shunning, apparent motion perception of lower limbs was not constrained to the laws of impenetrability (as the phantom disappears when invaded by objects), and legs can therefore move through physical objects. Amputees who experience obstacle tolerance, however, had stronger solidity constraints for lower limb apparent motion, perhaps because they must avoid co-location of the phantom with physical objects. Phantom limb experience does, therefore, appear to be modulated by intuitive physics, but not in the same way for everyone. This may have important implications for limb experience post-amputation (e.g., improving prosthesis embodiment when limb representation is constrained by the same limits as an intact limb). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be efficient in extracting water from the subsoil and better tolerate periods of water shortage. However, in this case the xylem axial resistance could be the limiting factor for the uptake of water.

  6. Risk of DDT residue in maize consumed by infants as complementary diet in southwest Ethiopia.

    PubMed

    Mekonen, Seblework; Lachat, Carl; Ambelu, Argaw; Steurbaut, Walter; Kolsteren, Patrick; Jacxsens, Liesbeth; Wondafrash, Mekitie; Houbraken, Michael; Spanoghe, Pieter

    2015-04-01

    Infants in Ethiopia are consuming food items such as maize as a complementary diet. However, this may expose infants to toxic contaminants like DDT. Maize samples were collected from the households visited during a consumption survey and from markets in Jimma zone, southwestern Ethiopia. The residues of total DDT and its metabolites were analyzed using the Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method combined with dispersive solid phase extraction cleanup (d-SPE). Deterministic and probabilistic methods of analysis were applied to determine the consumer exposure of infants to total DDT. The results from the exposure assessment were compared with the health based guidance value in this case the provisional tolerable daily intake (PTDI). All maize samples (n=127) were contaminated by DDT, with a mean concentration of 1.770 mg/kg, which was far above the maximum residue limit (MRL). The mean and 97.5 percentile (P 97.5) estimated daily intake of total DDT for consumers were respectively 0.011 and 0.309 mg/kg bw/day for deterministic and 0.011 and 0.083 mg/kg bw/day for probabilistic exposure assessment. For total infant population (consumers and non-consumers), the 97.5 percentile estimated daily intake were 0.265 and 0.032 mg/kg bw/day from the deterministic and probabilistic exposure assessments, respectively. Health risk estimation revealed that, the mean and 97.5 percentile for consumers, and 97.5 percentile estimated daily intake of total DDT for total population were above the PTDI. Therefore, in Ethiopia, the use of maize as complementary food for infants may pose a health risk due to DDT residue. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Small kernel2 Encodes a Glutaminase in Vitamin B6 Biosynthesis Essential for Maize Seed Development.

    PubMed

    Yang, Yan-Zhuo; Ding, Shuo; Wang, Yong; Li, Cui-Ling; Shen, Yun; Meeley, Robert; McCarty, Donald R; Tan, Bao-Cai

    2017-06-01

    Vitamin B 6 , an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B 6 deficiency causes embryo lethality in Arabidopsis ( Arabidopsis thaliana ), but the specific role of vitamin B 6 biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a small kernel2 ( smk2 ) mutant in maize, we reveal that vitamin B 6 has differential effects on embryogenesis and endosperm development in maize. The B 6 vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the smk2 embryo and the endosperm. However, whereas embryogenesis of the smk2 mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that Smk2 encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B 6 biosynthesis de novo. Smk2 partially complements the Arabidopsis vitamin B 6 -deficient mutant pdx2.1 and Saccharomyces cerevisiae pyridoxine auxotrophic mutant MML21. Smk2 is constitutively expressed in the maize plant, including developing embryos. Analysis of B 6 vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B 6 is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B 6 required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B 6 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats.

    PubMed

    Fandohan, P; Gnonlonfin, B; Laleye, A; Gbenou, J D; Darboux, R; Moudachirou, M

    2008-07-01

    Oils of Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum are widely used for their medicinal properties, and as food flavours and perfumes. Recently in a study in West Africa, these oils have been recommended to combat Fusarium verticillioides and subsequent fumonisin contamination in stored maize, but their toxicological profile was not investigated. The current study was undertaken to provide data on acute and subacute toxicity as well as on gastric tolerance of these oils in rat. For this purpose, the oils were given by gavage to Wistar rats for 14 consecutive days. The animals were observed daily for their general behaviour and survival, and their visceral organs such as stomach and liver were taken after sacrifice for histological analyses. A dose-dependent effect of the tested oils was observed during the study. Applied at doses generally higher than 1500 mg/kg body weight, the oils caused significant functional damages to stomach and liver of rat. Unlike the other oils, administration of O. gratissimum oil did not result in adverse effects in rat liver at the tested doses. The no observed adverse effect level (NOAEL) of the tested oils has been established. The three tested oils can be considered as safe to human when applied on stored maize at recommended concentrations.

  9. Reconstructing the History of Maize Streak Virus Strain A Dispersal To Reveal Diversification Hot Spots and Its Origin in Southern Africa ▿ †

    PubMed Central

    Monjane, Adérito L.; Harkins, Gordon W.; Martin, Darren P.; Lemey, Philippe; Lefeuvre, Pierre; Shepherd, Dionne N.; Oluwafemi, Sunday; Simuyandi, Michelo; Zinga, Innocent; Komba, Ephrem K.; Lakoutene, Didier P.; Mandakombo, Noella; Mboukoulida, Joseph; Semballa, Silla; Tagne, Appolinaire; Tiendrébéogo, Fidèle; Erdmann, Julia B.; van Antwerpen, Tania; Owor, Betty E.; Flett, Bradley; Ramusi, Moses; Windram, Oliver P.; Syed, Rizwan; Lett, Jean-Michel; Briddon, Rob W.; Markham, Peter G.; Rybicki, Edward P.; Varsani, Arvind

    2011-01-01

    Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa. PMID:21715477

  10. CO2 leakage-induced vegetation decline is primarily driven by decreased soil O2.

    PubMed

    Zhang, Xueyan; Ma, Xin; Zhao, Zhi; Wu, Yang; Li, Yue

    2016-04-15

    To assess the potential risks of carbon capture and storage (CCS), studies have focused on vegetation decline caused by leaking CO2. Excess soil CO2 caused by leakage can affect soil O2 concentrations and soil pH, but how these two factors affect plant development remains poorly understood. This hinders the selection of appropriate species to mitigate potential negative consequences of CCS. Through pot experiments, we simulated CO2 leakage to examine its effects on soil pH and soil O2 concentrations. We subsequently assessed how maize growth responded to these changes in soil pH and O2. Decreased soil O2 concentrations significantly reduced maize biomass, and explained 69% of the biomass variation under CO2 leakage conditions. In contrast, although leaked CO2 changed soil pH significantly (from 7.32 to 6.75), it remained within the optimum soil pH range for maize growth. This suggests that soil O2 concentration, not soil pH, influences plant growth in these conditions. Therefore, in case of potential CO2 leakage risks, hypoxia-tolerant species should be chosen to improve plant survival, growth, and yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  12. Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction.

    PubMed

    Bashmakov, Dmitry I; Lukatkin, Alexander S; Anjum, Naser A; Ahmad, Iqbal; Pereira, Eduarda

    2015-10-01

    This work investigated the accumulation, allocation, and impact of zinc (Zn; 1.0 μM-10 mM) in maize (Zea mays L.) seedlings under simulated laboratory conditions. Z. mays exhibited no significant change in its habitus (the physical characteristics of plants) up to 10-1000 μM of Zn (vs 5-10 mM Zn). Zn tolerance evaluation, based on the root test, indicated a high tolerance of Z. mays to both low and intermediate (or relatively high) concentrations of Zn, whereas this plant failed to tolerate 10 mM Zn and exhibited a 5-fold decrease in its Zn tolerance. Contingent to Zn treatment levels, Zn hampered the growth of axial organs and brought decreases in the leaf area, water regime, and biomass accumulation. Nevertheless, at elevated levels of Zn (10 mM), Zn(2+) was stored in the root cytoplasm and inhibited both axial organ growth and water regime. However, accumulation and allocation of Zn in Z. mays roots, studied herein employing X-ray fluorimeter and histochemical methods, were close to Zn accumulator plants. Overall, the study outcomes revealed Zn tolerance of Z. mays, and also implicate its potential role in Zn phytoextraction.

  13. Effect of two microbial phytases on mineral availability and retention and bone mineral density in low-phosphorus diets for broilers.

    PubMed

    Chung, T K; Rutherfurd, S M; Thomas, D V; Moughan, P J

    2013-06-01

    1. The efficacy of supplementation of a low-phosphorus (low-P) maize-soyabean meal diet for broiler chickens with two different microbial (fungal and bacterial) phytases was examined. 2. Broiler chickens received a low-P maize-soyabean meal diet containing either no phytase or one of the two phytases included at one and two times the manufacturer's recommended inclusion level for 21 d. 3. Titanium dioxide was included in the diets as an indigestible marker. Excreta were collected quantitatively from d 18 to 21, and at the end of the study the birds were killed and ileal digesta and leg bone samples collected. 4. No differences were observed for body weight gain and feed intake or apparent metabolisable energy (AME) among all dietary treatment groups. 5. Dietary phytase supplementation improved the apparent retention of Ca, Na and Cu and ileal phytate P absorption from 32% to 44% across inclusion levels. 6. Bone mineral density (BMD) was improved for both phytases across inclusion levels by, on average, 9% for the tibia and 13% for the femur. 7. Dietary phytase supplementation of the low-P diet improved apparent ileal digestibility of serine, glycine, valine, isoleucine, tyrosine, histidine, lysine and arginine. 8. When the results from the present study were combined with the results from other similar published studies and analysed statistically, factors such as dietary P and Ca concentration, as well as bird breed and age, rather than the type or activity of microbial phytase, had the greatest impact on the extent to which dietary supplementation improved P and Ca retention. 9. More work is required to explain the interrelationships between the multiple factors influencing the efficacy of phytase on the availability of dietary minerals.

  14. The barley MATE gene, HvAACT1, increases citrate efflux and Al(3+) tolerance when expressed in wheat and barley.

    PubMed

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R

    2013-08-01

    Aluminium is toxic in acid soils because the soluble Al(3+) inhibits root growth. A mechanism of Al(3+) tolerance discovered in many plant species involves the release of organic anions from root apices. The Al(3+)-activated release of citrate from the root apices of Al(3+)-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al(3+) tolerance of these important cereal species. HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al(3+) tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al(3+) tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al(3+) tolerance of important crop plants.

  15. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome.

    PubMed

    Kavamura, Vanessa Nessner; Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-02-02

    The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought. Copyright © 2017 Kavamura et al.

  16. Draft Genome Sequence of Plant Growth-Promoting Drought-Tolerant Bacillus sp. Strain CMAA 1363 Isolated from the Brazilian Caatinga Biome

    PubMed Central

    Santos, Suikinai Nobre; Taketani, Rodrigo Gouvêa; Vasconcellos, Rafael Leandro Figueiredo; Melo, Itamar Soares

    2017-01-01

    ABSTRACT The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought. PMID:28153893

  17. Gibberellins and Gravitropism in Maize Shoots 1

    PubMed Central

    Rood, Stewart B.; Kaufman, Peter B.; Abe, Hiroshi; Pharis, Richard P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1− and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the `Tanginbozu' dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response. Images Fig. 1 PMID:11539033

  18. Spatial Variation of Soil Respiration in a Cropland under Winter Wheat and Summer Maize Rotation in the North China Plain.

    PubMed

    Huang, Ni; Wang, Li; Hu, Yongsen; Tian, Haifeng; Niu, Zheng

    2016-01-01

    Spatial variation of soil respiration (Rs) in cropland ecosystems must be assessed to evaluate the global terrestrial carbon budget. This study aims to explore the spatial characteristics and controlling factors of Rs in a cropland under winter wheat and summer maize rotation in the North China Plain. We collected Rs data from 23 sample plots in the cropland. At the late jointing stage, the daily mean Rs of summer maize (4.74 μmol CO2 m-2 s-1) was significantly higher than that of winter wheat (3.77μmol CO2 m-2 s-1). However, the spatial variation of Rs in summer maize (coefficient of variation, CV = 12.2%) was lower than that in winter wheat (CV = 18.5%). A similar trend in CV was also observed for environmental factors but not for biotic factors, such as leaf area index, aboveground biomass, and canopy chlorophyll content. Pearson's correlation analyses based on the sampling data revealed that the spatial variation of Rs was poorly explained by the spatial variations of biotic factors, environmental factors, or soil properties alone for winter wheat and summer maize. The similarly non-significant relationship was observed between Rs and the enhanced vegetation index (EVI), which was used as surrogate for plant photosynthesis. EVI was better correlated with field-measured leaf area index than the normalized difference vegetation index and red edge chlorophyll index. All the data from the 23 sample plots were categorized into three clusters based on the cluster analysis of soil carbon/nitrogen and soil organic carbon content. An apparent improvement was observed in the relationship between Rs and EVI in each cluster for both winter wheat and summer maize. The spatial variation of Rs in the cropland under winter wheat and summer maize rotation could be attributed to the differences in spatial variations of soil properties and biotic factors. The results indicate that applying cluster analysis to minimize differences in soil properties among different clusters can improve the role of remote sensing data as a proxy of plant photosynthesis in semi-empirical Rs models and benefit the acquisition of Rs in cropland ecosystems at large scales.

  19. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20

    NASA Technical Reports Server (NTRS)

    Rood, S. B.; Kaufman, P. B.; Abe, H.; Pharis, R. P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1- and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the "Tanginbozu" dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response.

  20. Bedding additives reduce ammonia emission and improve crop N uptake after soil application of solid cattle manure.

    PubMed

    Shah, Ghulam Abbas; Shah, Ghulam Mustafa; Rashid, Muhammad Imtiaz; Groot, Jeroen C J; Traore, Bouba; Lantinga, Egbert A

    2018-03-01

    This study examined the influences of three potential additives, i.e., lava meal, sandy soil top-layer and zeolite (used in animal bedding) amended solid cattle manures on (i) ammonia (NH 3 ), dinitrous oxide (N 2 O), carbon dioxide (CO 2 ) and methane (CH 4 ) emissions and (ii) maize crop or grassland apparent N recovery (ANR). Diffusion samplers were installed at 20 cm height on grassland surface to measure the concentrations of NH 3 from the manures. A photoacoustic gas monitor was used to quantitate the fluxes of N 2 O, CH 4 and CO 2 after manures' incorporation into the maize-field. Herbage ANR was calculated from dry matter yield and N uptake of three successive harvests, while maize crop ANR was determined at cusp of juvenile stage, outset of grain filling as well as physiological maturity stages. Use of additives decreased the NH 3 emission rates by about two-third from the manures applied on grassland surface than control untreated-manure. Total herbage ANR was more than doubled in treated manures and was 25% from manure amended with farm soil, 26% and 28% from zeolite and lava meal, respectively compared to 11% from control manure. In maize experiment, mean N 2 O and CO 2 emission rates were the highest from the latter treatment but these rates were not differed from zero control in case of manures amended with farm soil or zeolite. However, mean CH 4 emissions was not differed among all treatments during the whole measuring period. The highest maize crop ANR was obtained at the beginning of grain filling stage (11-40%), however ample lower crop recoveries (8-14%) were achieved at the final physiological maturity stage. This phenomenon was occurred due to leaf senescence N losses from maize crop during the period of grains filling. The lowest losses were observed from control manure at this stage. Hence, all additives decreased the N losses from animal manure and enhanced crop N uptake thus improved the agro-environmental worth of animal manure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells

    NASA Technical Reports Server (NTRS)

    Long, Joanne C.; Zhao, Wei; Rashotte, Aaron M.; Muday, Gloria K.; Huber, Steven C.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Maize (Zea mays) stem gravitropism involves differential elongation of cells within a highly specialized region, the stem internodal pulvinus. In the present study, we investigated factors that control gravitropic responses in this system. In the graviresponding pulvinus, hexose sugars (D-Glc and D-Fru) accumulated asymmetrically across the pulvinus. This correlated well with an asymmetric increase in acid invertase activity across the pulvinus. Northern analyses revealed asymmetric induction of one maize acid invertase gene, Ivr2, consistent with transcriptional regulation by gravistimulation. Several lines of evidence indicated that auxin redistribution, as a result of polar auxin transport, is necessary for gravity-stimulated Ivr2 transcript accumulation and differential cell elongation across the maize pulvinus. First, the auxin transport inhibitor, N-1-naphthylphthalamic acid, inhibited gravistimulated curvature and Ivr2 transcript accumulation. Second, a transient gradient of free indole-3-acetic acid (IAA) across the pulvinus was apparent shortly after initiation of gravistimulation. This temporarily free IAA gradient appears to be important for differential cell elongation and Ivr2 transcript accumulation. This is based on the observation that N-1-naphthylphthalamic acid will not inhibit gravitropic responses when applied to pulvinus tissue after the free IAA gradient peak has occurred. Third, IAA alone can stimulate Ivr2 transcript accumulation in non-gravistimulated pulvini. The gravity- and IAA-stimulated increase in Ivr2 transcripts was sensitive to the protein synthesis inhibitor, cycloheximide. Based on these results, a two-phase model describing possible relationships between gravitropic curvature, IAA redistribution, and Ivr2 expression is presented.

  2. Total centromere size and genome size are strongly correlated in ten grass species.

    PubMed

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  3. Simulating changes in cropping practises in conventional and glyphosate-tolerant maize. I. Effects on weeds.

    PubMed

    Colbach, Nathalie; Fernier, Alice; Le Corre, Valérie; Messéan, Antoine; Darmency, Henri

    2017-04-01

    Herbicide-tolerant (HT) crops such as those tolerant to glyphosate simplify weed management and make it more efficient, at least at short-term. Overreliance on the same herbicide though leads to the spread of resistant weeds. Here, the objective was to evaluate, with simulations, the impact on the advent of glyphosate resistance in weeds of modifications in agricultural practises resulting from introducing HT maize into cropping systems. First, we included a single-gene herbicide resistance submodel in the existing multispecific FLORSYS model. Then, we (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, (2) compared these systems in terms of glyphosate resistance, (3) identified pertinent cultural practises influencing glyphosate resistance, and (4) investigated correlations between cultural practises and species traits, using RLQ analyses. The simulation study showed that, during the analysed 28 years, (1) glyphosate spraying only results in glyphosate resistance in weeds when combined with other cultural factors favouring weed infestation, particularly no till; (2) pre-sowing glyphosate applications select more for herbicide resistance than post-sowing applications on HT crops; and (3) glyphosate spraying selects more for species traits avoiding exposure to the herbicide (e.g. delayed early growth, small leaf area) or compensating for fitness costs (e.g. high harvest index) than for actual resistance to glyphosate, (4) actual resistance is most frequent in species that do not avoid glyphosate, either via plant size or timing, and/or in less competitive species, (5) in case of efficient weed control measures, actual resistance proliferates best in outcrossing species. An advice table was built, with the quantitative, synthetic ranking of the crop management effects in terms of glyphosate-resistance management, identifying the optimal choices for each management technique.

  4. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.

    PubMed

    Fukami, Josiane; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2017-12-01

    Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on seeds or by leaf spray, as well as of leaf spraying of Azospirillum metabolites, are strongly correlated with the synthesis of phytohormones and by eliciting genes related to plant-stress tolerance and defense against pathogens.

  5. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination

    PubMed Central

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S.; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H2O2 priming notably increased the endogenous H2O2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2, and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H2O2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2, and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2. The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H2O2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights:Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H2O2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and energy supply, hormones metabolism and regulation. PMID:28725229

  6. Exogenously applied zinc and copper mitigate salinity effect in maize (Zea mays L.) by improving key physiological and biochemical attributes.

    PubMed

    Iqbal, Muhammad Naveed; Rasheed, Rizwan; Ashraf, Muhammad Yasin; Ashraf, Muhammad Arslan; Hussain, Iqbal

    2018-06-07

    Zinc or copper deficiency and salinity are known soil problems and often occur simultaneously in agriculture soils. Plants undergo various changes in physiological and biochemical processes to respond to high salt in the growing medium. There is lack of information on the relation of exogenous application of Zn and Cu with important salinity tolerance mechanisms in plants. Therefore, the present study was conducted to determine the effect of foliar Zn and Cu on two maize cultivars (salt-tolerant cv. Yousafwala Hybrid and salt-sensitive cv. Hybrid 1898). Salinity caused a significant reduction in water and turgor potentials, stomatal conductance, and transpiration and photosynthetic rate, while increase in glycine betaine, proline, total soluble sugars, and total free amino acids was evident in plants under saline regimes. Furthermore, there was significant decline in P, N, Ca, K, Mn, Fe, Zn, and Cu and increase in Na and Cl contents in plants fed with NaCl salinity. Nitrate reductase activity was lower in salt-stressed plants. However, foliar application of Zn and Cu circumvented salinity effect on water relations, photosynthesis, and nutrition and this was attributed to the better antioxidant system and enhanced accumulation of glycine betaine, proline, total free amino acids, and sugars. The results of the present study suggested that Zn application was superior to Cu for mediating plant defense responses under salinity.

  7. Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize.

    PubMed

    Séralini, Gilles-Eric; Clair, Emilie; Mesnage, Robin; Gress, Steeve; Defarge, Nicolas; Malatesta, Manuela; Hennequin, Didier; de Vendômois, Joël Spiroux

    2012-11-01

    The health effects of a Roundup-tolerant genetically modified maize (from 11% in the diet), cultivated with or without Roundup, and Roundup alone (from 0.1 ppb in water), were studied 2 years in rats. In females, all treated groups died 2-3 times more than controls, and more rapidly. This difference was visible in 3 male groups fed GMOs. All results were hormone and sex dependent, and the pathological profiles were comparable. Females developed large mammary tumors almost always more often than and before controls, the pituitary was the second most disabled organ; the sex hormonal balance was modified by GMO and Roundup treatments. In treated males, liver congestions and necrosis were 2.5-5.5 times higher. This pathology was confirmed by optic and transmission electron microscopy. Marked and severe kidney nephropathies were also generally 1.3-2.3 greater. Males presented 4 times more large palpable tumors than controls which occurred up to 600 days earlier. Biochemistry data confirmed very significant kidney chronic deficiencies; for all treatments and both sexes, 76% of the altered parameters were kidney related. These results can be explained by the non linear endocrine-disrupting effects of Roundup, but also by the overexpression of the transgene in the GMO and its metabolic consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize (Zea mays L.)

    PubMed Central

    Akram, Muhammad S.; Shahid, Muhammad; Tariq, Mohsin; Azeem, Muhammad; Javed, Muhammad T.; Saleem, Seemab; Riaz, Saba

    2016-01-01

    Soil salinity severely affects plant nutrient use efficiency and is a worldwide constraint for sustainable crop production. Plant growth-promoting rhizobacteria, with inherent salinity tolerance, are able to enhance plant growth and productivity by inducing modulations in various metabolic pathways. In the present study, we reported the isolation and characterization of a salt-tolerant rhizobacterium from Kallar grass [Leptochloa fusca (L.) Kunth]. Sequencing of the 16S rRNA gene revealed its lineage to Staphylococcus sciuri and it was named as SAT-17. The strain exhibited substantial potential of phosphate solubilization as well as indole-3-acetic acid production (up to 2 M NaCl) and 1-aminocyclopropane-1-carboxylic acid deaminase activity (up to 1.5 M NaCl). Inoculation of a rifampicin-resistant derivative of the SAT-17 with maize, in the absence of salt stress, induced a significant increase in plant biomass together with decreased reactive oxygen species and increased activity of cellular antioxidant enzymes. The derivative strain also significantly accumulated nutrients in roots and shoots, and enhanced chlorophyll and protein contents in comparison with non-inoculated plants. Similar positive effects were observed in the presence of salt stress, although the effect was more prominent at 75 mM in comparison to higher NaCl level (150 mM). The strain survived in the rhizosphere up to 30 days at an optimal population density (ca. 1 × 106 CFU mL-1). It was concluded that S. sciuri strain SAT-17 alleviated maize plants from salt-induced cellular oxidative damage and enhanced growth. Further field experiments should be conducted, considering SAT-17 as a potential bio-fertilizer, to draw parallels between PGPR inoculation, elemental mobility patterns, crop growth and productivity in salt-stressed semi-arid and arid regions. PMID:27375588

  9. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  10. Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops

    PubMed Central

    Gibbons, David W; Bohan, David A; Rothery, Peter; Stuart, Rick C; Haughton, Alison J; Scott, Rod J; Wilson, Jeremy D; Perry, Joe N; Clark, Suzanne J; Dawson, Robert J.G; Firbank, Les G

    2006-01-01

    The UK Farm Scale Evaluations (FSEs) have shown that the use of broad spectrum herbicides on genetically modified herbicide-tolerant (GMHT) crops can have dramatic effects on weed seed production compared to management of conventional varieties. Here, we use FSE data and information on bird diets to determine how GMHT cropping might change the food resources available to farmland birds. More than 60 fields of each of four crops, spring- and winter-sown oilseed rape, beet and maize, were split, one half being sown with a conventional variety, the other with a GMHT variety. Seed rain from weeds known to be important in the diets of 17 granivorous farmland bird species was measured under the two treatments. In beet and spring oilseed rape, rain of weed seeds important in the diets of 16 bird species was significantly reduced in GMHT compared to conventional halves; for no species did it increase. In winter oilseed rape, rain of weed seeds important in the diets of 10 species was significantly reduced in GMHT halves; for only one species did it increase significantly. By contrast, in maize, rain of weed seeds important in the diets of seven species was significantly greater in GMHT halves; for no species was it reduced. Treatment effects for the total weed seed energy available to each bird species were very similar to those for seed rain alone. Measuring the effects on individual bird species was outside the scope of this study. Despite this, these results suggest that should beet, spring and winter rape crops in the UK be largely replaced by GMHT varieties and managed as in the FSEs, this would markedly reduce important food resources for farmland birds, many of which declined during the last quarter of the twentieth century. By contrast, GMHT maize would be beneficial to farmland birds. PMID:16822753

  11. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.

    PubMed

    Elsgaard, L; Børgesen, C D; Olesen, J E; Siebert, S; Ewert, F; Peltonen-Sainio, P; Rötter, R P; Skjelvåg, A O

    2012-01-01

    Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.

  12. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    PubMed

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  13. Effects of simulated acid rain on the morphology, phenology and dry biomass of a local variety of maize (Suwan-1) in Southwestern Nigeria.

    PubMed

    Macaulay, Babajide Milton; Enahoro, Gloria Ebarunosen

    2015-10-01

    Effects of acid rain on the morphology, phenology and dry biomass of maize (Suwan-1 variety) were investigated. The maize seedlings were subjected to different pH treatments (1.0, 2.0, 3.0, 4.0, 5.0 and 6.0) of simulated acid rain (SAR) with pH 7.0 as the control for a period of 90 days. The common morphological defects due to SAR application were necrosis and chlorosis. It was observed that necrosis increased in severity as the acidity increased whilst chlorosis was dominant as the acidity decreased. SAR encouraged rapid floral and cob growth but with the consequence of poor floral and cob development in pH 1.0 to 3.0 treatments. The result for the dry biomass indicates that pH treatments 2.0 to 7.0 for total plant biomass were not significantly different (P > 0.05) from one another, but were all significantly higher (P < 0.05) than pH 1.0. Therefore, it may be deduced that Suwan-1 has the potential to withstand acid rain but with pronounced morphological and phenological defects which, however, have the capacity to reduce drastically the market value of the crop. Therefore, it may be concluded that Suwan-1 tolerated acid rain in terms of the parameters studied at pH 4.0 to 7.0 which makes it a suitable crop in acid rain-stricken climes. This research could also serve as a good reference for further SAR studies on maize or other important cereals.

  14. The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley

    PubMed Central

    Zhou, Gaofeng; Delhaize, Emmanuel; Zhou, Meixue; Ryan, Peter R.

    2013-01-01

    Background and Aims Aluminium is toxic in acid soils because the soluble Al3+ inhibits root growth. A mechanism of Al3+ tolerance discovered in many plant species involves the release of organic anions from root apices. The Al3+-activated release of citrate from the root apices of Al3+-tolerant genotypes of barley is controlled by a MATE gene named HvAACT1 that encodes a citrate transport protein located on the plasma membrane. The aim of this study was to investigate whether expressing HvAACT1 with a constitutive promoter in barley and wheat can increase citrate efflux and Al3+ tolerance of these important cereal species. Methods HvAACT1 was over-expressed in wheat (Triticum aestivum) and barley (Hordeum vulgare) using the maize ubiquitin promoter. Root apices of transgenic and control lines were analysed for HvAACT1 expression and organic acid efflux. The Al3+ tolerance of transgenic and control lines was assessed in both hydroponic solution and acid soil. Key Results and Conclusions Increased HvAACT1 expression in both cereal species was associated with increased citrate efflux from root apices and enhanced Al3+ tolerance, thus demonstrating that biotechnology can complement traditional breeding practices to increase the Al3+ tolerance of important crop plants. PMID:23798600

  15. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.

    PubMed

    Lynch, Jonathan P

    2013-07-01

    A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. • THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.

  16. Divisions S-4 - soil fertility and plant nutrition: residual value of lime and leaching of calcium in a kaolinitic ultisol in the high rainfall tropics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, D.K.; Juo, A.S.R.; Miller, M.H.

    1982-01-01

    A long-term experiment was conducted on a highly acidic (pH 4.6), coarse-textured Ultisol in the high rainfall region of southeastern Nigeria in order to evaluate the requirement for and residual value of lime (Ca(OH)/sub 2/) to a continuous crop rotation, and to determine the fate of applied Ca in the soil profile. The initial lime rates used were 0, 0.5, 1, 2, and 4 t of Ca(OH)/sub 2/ per hectare. Maize (Zea mays) was planted in the first season and cowpea (Vigna unguiculata) in the second season under a no-tillage, stubble conservation system. Relatively low rates of lime are adequatemore » to sustain yields in a continuous maize-cowpea rotation system. Liming at a rate of 0.5 t/ha maintained maize yield near maximum for 2 years after application. Sustained maize yields for 5 years or more were possible with a lime rate of 2 t/ha. Cowpeas performed well and showed strong tolerance to soil acidity when planted as a late second-season crop after maize without additional fertilizer application. The critical level of exchangeable Al ranged from 25 to 55% depending upon rate of chemical fertilizer as well as cowpea variety used. Leaching losses of Ca from the surface soil during the first 3 years were <0.5 t/ha of Ca(OH)/sub 2/-equivalents in the 0- to 2-t/ha treatments. Exchangeable-Al saturation in all subsoil layers of all treatments 3 years after liming exceeded 40% and soil pH (H/sub 2/O) was <4.3 indicating that lime was leached as neutral Ca salts and had little effect in ameliorating subsoil acidity. 17 references, 5 figures, 5 tables.« less

  17. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.

    PubMed Central

    Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico

    2016-01-01

    ABSTRACT The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe2+ ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis. PMID:26645909

  18. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.

    PubMed

    Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico

    2016-01-01

    The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.

  19. Maize streak virus: an old and complex 'emerging' pathogen.

    PubMed

    Shepherd, Dionne N; Martin, Darren P; Van Der Walt, Eric; Dent, Kyle; Varsani, Arvind; Rybicki, Edward P

    2010-01-01

    Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 x 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. http://www.mcb.uct.ac.za/MSV/mastrevirus.htm; http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm.

  20. Plurality of opinion, scientific discourse and pseudoscience: an in depth analysis of the Séralini et al. study claiming that Roundup™ Ready corn or the herbicide Roundup™ cause cancer in rats.

    PubMed

    Arjó, Gemma; Portero, Manuel; Piñol, Carme; Viñas, Juan; Matias-Guiu, Xavier; Capell, Teresa; Bartholomaeus, Andrew; Parrott, Wayne; Christou, Paul

    2013-04-01

    A recent paper published in the journal Food and Chemical Toxicology presents the results of a long-term toxicity study related to a widely-used commercial herbicide (Roundup™) and a Roundup-tolerant genetically modified variety of maize, concluding that both the herbicide and the maize varieties are toxic. Here we discuss the many errors and inaccuracies in the published article resulting in highly misleading conclusions, whose publication in the scientific literature and in the wider media has caused damage to the credibility of science and researchers in the field. We and many others have criticized the study, and in particular the manner in which the experiments were planned, implemented, analyzed, interpreted and communicated. The study appeared to sweep aside all known benchmarks of scientific good practice and, more importantly, to ignore the minimal standards of scientific and ethical conduct in particular concerning the humane treatment of experimental animals.

  1. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil.

    PubMed

    Huang, Yi; Tao, Shu; Chen, You-jian

    2005-01-01

    To understand the roles of mycorrhiza in metal speciation in the rhizosphere and the impact on increasing host plant tolerance against excessive heavy metals in soil, maize (Zea mays L.) inoculated with arbuscular mycorrhizal fungus (Glomus mosseae) was cultivated in heavy metal contaminated soil. Speciations of copper, zinc and lead in the soil were analyzed with the technique of sequential extraction. The results showed that, in comparison to the bolked soil, the exchangeable copper increased from 26% to 43% in non-infected and AM-infected rhizoshpere respectively; while other speciation (organic, carbonate and Fe-Mn oxide copper) remained constant and the organic bound zinc and lead also increased but the exchangeable zinc and lead were undetectable. The organic bound copper, zinc and lead were higher by 15%, 40% and 20%, respectively, in the rhizosphere of arbuscular mycorrhiza infected maize in comparison to the non-infected maize. The results might indicate that mycorrhiza could protect its host plants from the phytotoxicity of excessive copper, zinc and lead by changing the speciation from bio-available to the non-bio-available form. The fact that copper and zinc accumulation in the roots and shoots of mycorrhia infected plants were significantly lower than those in the non-infected plants might also suggest that mycorrhiza efficiently restricted excessive copper and zinc absorptions into the host plants. Compared to the non-infected seedlings, the lead content of infected seedlings was 60% higher in shoots. This might illustrate that mycorrhiza have a different mechanism for protecting its host from excessive lead phytotoxicity by chelating lead in the shoots.

  2. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.

    PubMed

    Tuberosa, Roberto; Sanguineti, Maria Corinna; Landi, Pierangelo; Giuliani, Marcella Michela; Salvi, Silvio; Conti, Sergio

    2002-01-01

    We investigated the overlap among quantitative trait loci (QTLs) in maize for seminal root traits measured in hydroponics with QTLs for grain yield under well-watered (GY-WW) and water-stressed (GY-WS) field conditions as well as for a drought tolerance index (DTI) computed as GY-WS/GY-WW. In hydroponics, 11, 7, 9, and 10 QTLs were identified for primary root length (R1L), primary root diameter (R1D), primary root weight (R1W), and for the weight of the adventitious seminal roots (R2W), respectively. In the field, 7, 8, and 9 QTLs were identified for GY-WW, GY-WS, and DTI, respectively. Despite the weak correlation of root traits in hydroponics with GY-WW, GY-WS, and DTI, a noticeable overlap between the corresponding QTLs was observed. QTLs for R2W most frequently and consistently overlapped with QTLs for GY-WW, GY-WS, and/or DTI. At four QTL regions, an increase in R2W was positively associated with GY-WW, GY-WS, and/or DTI. A 10 cM interval on chromosome 1 between PGAMCTA205 and php20644 showed the strongest effect on R1L, R1D, R2W, GY-WW, GY-WS, and DTI. These results indicate the feasibility of using hydroponics in maize to identify QTL regions controlling root traits at an early growth stage and also influencing GY in the field. A comparative analysis of the QTL regions herein identified with those described in previous studies investigating root traits in different maize populations revealed a number of QTLs in common.

  3. Comparative studies of the quantification of genetically modified organisms in foods processed from maize and soy using trial producing.

    PubMed

    Yoshimura, Tomoaki; Kuribara, Hideo; Kodama, Takashi; Yamata, Seiko; Futo, Satoshi; Watanabe, Satoshi; Aoki, Nobutaro; Iizuka, Tayoshi; Akiyama, Hiroshi; Maitani, Tamio; Naito, Shigehiro; Hino, Akihiro

    2005-03-23

    Seven types of processed foods, namely, cornstarch, cornmeal, corn puffs, corn chips, tofu, soy milk, and boiled beans, were trial produced from 1 and 5% (w/w) genetically modified (GM) mixed raw materials. In this report, insect resistant maize (MON810) and herbicide tolerant soy (Roundup Ready soy, 40-3-2) were used as representatives of GM maize and soy, respectively. Deoxyribonucleic acid (DNA) was extracted from the raw materials and the trial-produced processed food using two types of methods, i.e., the silica membrane method and the anion exchange method. The GM% values of these samples were quantified, and the significant differences between the raw materials and the trial-produced processed foods were statistically confirmed. There were some significant differences in the comparisons of all processed foods. However, our quantitative methods could be applied as a screening assay to tofu and soy milk because the differences in GM% between the trial-produced processed foods and their raw materials were lower than 13 and 23%, respectively. In addition, when quantitating with two primer pairs (SSIIb 3, 114 bp; SSIIb 4, 83 bp for maize and Le1n02, 118 bp; Le1n03, 89 bp for soy), which were targeted within the same taxon specific DNA sequence with different amplicon sizes, the ratios of the copy numbers of the two primer pairs (SSIIb 3/4 and Le1n02/03) decreased with time in a heat-treated processing model using an autoclave. In this report, we suggest that the degradation level of DNA in processed foods could be estimated from these ratios, and the probability of GM quantification could be experimentally predicted from the results of the trial producing.

  4. Identification and gene expression of anaerobically induced enolase in Echinochloa phyllopogon and Echinochloa crus-pavonis.

    PubMed Central

    Fox, T C; Mujer, C V; Andrews, D L; Williams, A S; Cobb, B G; Kennedy, R A; Rumpho, M E

    1995-01-01

    Enolase (2-phospho-D-glycerate hydrolase, EC 4.2.1.11) has been identified as an anaerobic stress protein in Echinochloa oryzoides based on the homology of its internal amino acid sequence with those of enolases from other organisms, by immunological reactivity, and induction of catalytic activity during anaerobic stress. Enolase activity was induced 5-fold in anoxically treated seedlings of three flood-tolerant species (E. oryzoides, Echinochloa phyllopogon, and rice [Oryza sativa L.]) but not in the flood-intolerant species (Echinochloa crus-pavonis). A 540-bp fragment of the enolase gene was amplified by polymerase chain reaction from cDNAs of E. phyllopogon and maize (Zea mays L.) and used to estimate the number of enolase genes and to study the expression of enolase transcripts in E. phyllopogon, E. crus-pavonis, and maize. Southern blot analysis indicated that only one enolase gene is present in either E. phyllopogon or E. crus-pavonis. Three patterns of enolase gene expression were observed in the three species studied. In E. phyllopogon, enolase induction at both the mRNA and enzyme activity levels was sustained at all times with a further induction after 48 h of anoxia. In contrast, enolase was induced in hypoxically treated maize root tips only at the mRNA level. In E. crus-pavonis, enolase mRNA and enzyme activity were induced during hypoxia, but activity was only transiently elevated. These results suggest that enolase expression in maize and E. crus-pavonis during anoxia are similarly regulated at the transcriptional level but differ in posttranslational regulation, whereas enolase is fully induced in E. phyllopogon during anaerobiosis. PMID:7480340

  5. Expression of catalase, alcohol dehydrogenase, and malate dehydrogenase in rot grains upon fungicide use on maize hybrids grown at different spacings.

    PubMed

    Kluge, E R; Mendes, M C; Faria, M V; Santos, H O; Santos, L A; Sandini, I E

    2017-04-20

    In this study, we evaluated the fungicide effect on the incidence of rot grains and expression of catalase (CAT), alcohol dehydrogenase (ADH), and malate dehydrogenase (MDH) enzymes in commercial maize hybrids grown with conventional and reduced spacing in Guarapuava, PR, Brazil. The experiment was designed in random blocks with a 3 × 8-factorial scheme, totaling 24 treatments. The first factor constituted three levels, the first with foliar fungicide application [150.0 g/L trifloxystrobin (15.0%, w/v) + 175.0 g/L prothioconazole (17.5%, w/v)] at a dose of 0.4 L/ha at V8-stage eight expanded leaves and the second with an application of 0.5 L/ha at VT-tasseling and check (no fungicide application) stage. The second factor comprised eight maize hybrids that were divided into two groups, complex (AG 9045PRO, AG 8041PRO, DKB245PRO2, and 2B707PW) and susceptible (P 32R48H, DKB390PRO, P 30F53H, and P 30R50H), according to their reaction to the causative fungus, totaling 72 plots at each site in the crop of 2013/2014. The percentage of rot grains and the expression of CAT, ADH, and MDH were evaluated for each hybrid. The percentage of rot grains was influenced by the hybrid and fungicide used. The (trifloxystrobin + prothioconazole) reduced the incidence of rot grains, with relatively higher reduction in the hybrids considered susceptible. The higher expression of CAT enzyme was related to the higher incidence of rot grains because of grain deterioration, depending on the hybrids evaluated. A higher expression of ADH and MDH enzymes was observed in the maize hybrids belonging to the group considered tolerant.

  6. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation.

    PubMed

    Anjum, Shakeel Ahmad; Tanveer, Mohsin; Hussain, Saddam; Bao, Mingchen; Wang, Longchang; Khan, Imran; Ullah, Ehsan; Tung, Shahbaz Atta; Samad, Rana Abdul; Shahzad, Babar

    2015-11-01

    Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 μM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 μM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.

  7. Uptake, translocation, and toxicity of gold nanorods in maize

    NASA Astrophysics Data System (ADS)

    Moradi Shahmansouri, Nastaran

    Nanomaterials are widely used in many different products, such as electronics, cosmetics, industrial goods, biomedical uses, and other material applications. The heavy emission of nanomaterials into the environment has motived increasing concern regarding the effects on ecosystems, food chains, and, human health. Plants can tolerate a certain amount of natural nanomaterials, but large amounts of ENMs released from a variety of industries could be toxic to plants and possibly threaten the ecosystem. Employing phytoremediation as a contamination treatment method may show promise. However a pre-requisite to successful treatment is a better understanding of the behavior and effects of nanomaterials within plant systems. This study is designed to investigate the uptake, translocation, bioavailability, and toxicity of gold nanorods in maize plants. Maize is an important food and feed crop that can be used to understand the potential hazardous effects of nanoparticle uptake and distribution in the food chain. The findings could be an important contribution to the fields of phytoremediation, agri-nanotechnology, and nanoparticle toxicity on plants. In the first experiment, hydroponically grown maize seedlings were exposed to similar doses of commercial non-coated gold nanorods in three sizes, 10x34 nm, 20x75 nm, and 40x96 nm. The three nanorod species were suspended in solutions at concentrations of 350 mg/l, 5.8 mg/l, and 14 mg/l, respectively. Maize plants were exposed to all three solutions resulting in considerably lower transpiration and wet biomass than control plants. Likewise, dry biomass was reduced, but the effect is less pronounced than that of transpiration and wet biomass. The reduced transpiration and water content, which eventually proved fatal to exposed plants, were most likely a result of toxic effect of gold nanorod, which appeared to physically hinder the root system. TEM images proved that maize plants can uptake gold particles and accumulate them in root and leaf cells. However, the translocation factor of gold nanorods from root to leaf was very low in this experiment. In the second experiment, maize seedlings were exposed to different (lower) concentrations of gold nanorods measured at 4.5x10-3 mg/l, 0.45 mg/l, and 2.25 mg/l for 10 days. Transpiration and biomass measurements demonstrated that the higher concentration of gold nanorods caused lower water uptake and growth, but lower concentrations did not show a significant toxic effect. According to ICP-MS results, root systems of the exposed plants were surrounded by high concentrations of sorbed nanorods, which physically interfered with uptake pathways and, thus, inhibited plant growth and nutritional uptake.

  8. Estimating the effects of Cry1F Bt-maize pollen on non-target Lepidoptera using a mathematical model of exposure

    PubMed Central

    Perry, Joe N; Devos, Yann; Arpaia, Salvatore; Bartsch, Detlef; Ehlert, Christina; Gathmann, Achim; Hails, Rosemary S; Hendriksen, Niels B; Kiss, Jozsef; Messéan, Antoine; Mestdagh, Sylvie; Neemann, Gerd; Nuti, Marco; Sweet, Jeremy B; Tebbe, Christoph C

    2012-01-01

    In farmland biodiversity, a potential risk to the larvae of non-target Lepidoptera from genetically modified (GM) Bt-maize expressing insecticidal Cry1 proteins is the ingestion of harmful amounts of pollen deposited on their host plants. A previous mathematical model of exposure quantified this risk for Cry1Ab protein. We extend this model to quantify the risk for sensitive species exposed to pollen containing Cry1F protein from maize event 1507 and to provide recommendations for management to mitigate this risk. A 14-parameter mathematical model integrating small- and large-scale exposure was used to estimate the larval mortality of hypothetical species with a range of sensitivities, and under a range of simulated mitigation measures consisting of non-Bt maize strips of different widths placed around the field edge. The greatest source of variability in estimated mortality was species sensitivity. Before allowance for effects of large-scale exposure, with moderate within-crop host-plant density and with no mitigation, estimated mortality locally was <10% for species of average sensitivity. For the worst-case extreme sensitivity considered, estimated mortality locally was 99·6% with no mitigation, although this estimate was reduced to below 40% with mitigation of 24-m-wide strips of non-Bt maize. For highly sensitive species, a 12-m-wide strip reduced estimated local mortality under 1·5%, when within-crop host-plant density was zero. Allowance for large-scale exposure effects would reduce these estimates of local mortality by a highly variable amount, but typically of the order of 50-fold. Mitigation efficacy depended critically on assumed within-crop host-plant density; if this could be assumed negligible, then the estimated effect of mitigation would reduce local mortality below 1% even for very highly sensitive species. Synthesis and applications. Mitigation measures of risks of Bt-maize to sensitive larvae of non-target lepidopteran species can be effective, but depend on host-plant densities which are in turn affected by weed-management regimes. We discuss the relevance for management of maize events where cry1F is combined (stacked) with a herbicide-tolerance trait. This exemplifies how interactions between biota may occur when different traits are stacked irrespective of interactions between the proteins themselves and highlights the importance of accounting for crop management in the assessment of the ecological impact of GM plants. PMID:22496596

  9. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    PubMed

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual-site comparisons (94.6 %) of NTA pest damage to the crop. In each case where a significant difference was observed in arthropod abundance or damage, the mean value for MON 87411 was within the reference range and/or the difference was not consistently observed across collection methods and/or sites. Thus, the differences were not representative of an adverse effect unfamiliar to maize and/or were not indicative of a consistent plant response associated with the GM traits. Results from this study support a conclusion of no adverse environmental impact of MON 87411 on NTAs compared to conventional maize and demonstrate the utility of relevant transportable data across regions for the ERA of GM crops.

  10. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil.

    PubMed

    Babu, A Giridhar; Shim, Jaehong; Bang, Keuk-Soo; Shea, Patrick J; Oh, Byung-Taek

    2014-01-01

    A heavy metal-tolerant fungus, Trichoderma virens PDR-28, was isolated from rhizosphere soil and evaluated for use in remediating mine tailing soil and for plant biomass production. PDR-28 exhibited plant growth-promoting traits, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, acid phosphatase and phytase activity, siderophore production, and P solubilization. HMs were more available in mine tailing soil inoculated soil with PDR-28 than in uninoculated soil; the order of HM bioleaching was Cd > As > Zn > Pb > Cu. PDR-28 effectively removed HMs in the order of Pb > Cd > As > Zn > Cu from liquid media containing 100 mg HM L(-1). Inoculating HM-contaminated mine tailing soil with the fungus significantly increased the dry biomass of maize roots (64%) and shoots (56%). Chlorophyll, total soluble sugars (reducible and nonreducible), starch, and protein contents increased by 46%, 28%, 30%, and 29%, respectively, compared to plants grown in uninoculated soil. Inoculation increased heavy metal concentrations in maize roots by 25% (Cu) to 62% (Cd) and in shoots by 35% (Cu) to 64% (Pb) compared to uninoculated plants. Results suggest that PDR-28 would be beneficial for phytostabilization and plant biomass production as a potential source of biofuel in the quest for renewable energy. Copyright © 2013. Published by Elsevier Ltd.

  12. Metabolism and Residues of 2,4-Dichlorophenoxyacetic Acid in DAS-40278-9 Maize (Zea mays) Transformed with Aryloxyalkanoate Dioxygenase-1 Gene.

    PubMed

    Zhou, Xiao; Rotondaro, Sandra L; Ma, Mingming; Rosser, Steve W; Olberding, Ed L; Wendelburg, Brian M; Adelfinskaya, Yelena A; Balcer, Jesse L; Blewett, T Craig; Clements, Bruce

    2016-10-12

    DAS-40278-9 maize, which is developed by Dow AgroSciences, has been genetically modified to express the aryloxyalkanoate dioxygenase-1 (AAD-1) protein and is tolerant to phenoxy auxin herbicides, such as 2,4-dichlorophenoxyacetic acid (2,4-D). To understand the metabolic route and residue distribution of 2,4-D in DAS-40278-9 maize, a metabolism study was conducted with 14 C-radiolabeled 2,4-D applied at the maximum seasonal rate. Plants were grown in boxes outdoors. Forage and mature grain, cobs, and stover were collected for analysis. The metabolism study showed that 2,4-D was metabolized to 2,4-dichlorophenol (2,4-DCP), which was then rapidly conjugated with glucose. Field-scale residue studies with 2,4-D applied at the maximum seasonal rate were conducted at 25 sites in the U.S. and Canada to measure the residues of 2,4-D and free and conjugated 2,4-DCP in mature forage, grain, and stover. Residues of 2,4-D were not detectable in the majority of the grain samples and averaged <1.0 and <1.5 μg/g in forage and stover, respectively. Free plus conjugated 2,4-DCP was not observed in grain and averaged <1.0 μg/g in forage and stover.

  13. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    PubMed

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Biotrophy-specific downregulation of siderophore biosynthesis in C olletotrichum graminicola is required for modulation of immune responses of maize

    PubMed Central

    Albarouki, Emad; Schafferer, Lukas; Ye, Fanghua; von Wirén, Nicolaus; Haas, Hubertus; Deising, Holger B

    2014-01-01

    The hemibiotrophic maize pathogen C olletotrichum graminicola synthesizes one intracellular and three secreted siderophores. eGFP fusions with the key siderophore biosynthesis gene, SID1, encoding l-ornithine-N 5-monooxygenase, suggested that siderophore biosynthesis is rigorously downregulated specifically during biotrophic development. In order to investigate the role of siderophores during vegetative development and pathogenesis, SID1, which is required for synthesis of all siderophores, and the non-ribosomal peptide synthetase gene NPS6, synthesizing secreted siderophores, were deleted. Mutant analyses revealed that siderophores are required for vegetative growth under iron-limiting conditions, conidiation, ROS tolerance, and cell wall integrity. Δsid1 and Δnps6 mutants were hampered in formation of melanized appressoria and impaired in virulence. In agreement with biotrophy-specific downregulation of siderophore biosynthesis, Δsid1 and Δnps6 strains were not affected in biotrophic development, but spread of necrotrophic hyphae was reduced. To address the question why siderophore biosynthesis is specifically downregulated in biotrophic hyphae, maize leaves were infiltrated with siderophores. Siderophore infiltration alone did not induce defence responses, but formation of biotrophic hyphae in siderophore-infiltrated leaves caused dramatically increased ROS formation and transcriptional activation of genes encoding defence-related peroxidases and PR proteins. These data suggest that fungal siderophores modulate the plant immune system. PMID:24674132

  15. Occurrence of itraconazole-tolerant micromycetes in the soil and food products.

    PubMed

    Piecková, E; Jesenská, Z

    1999-01-01

    Unexpected pathogens from the environment represent considerable risk for humans with impaired health. We examined the occurrence of itraconazole tolerant micromycetes in soil and in maize products. Five concentrations of itraconazole (2.5-12.5 micrograms/mL) selected according to known treatment schedules for human patients were incorporated into Sabouraud agar with chloramphenicol and Rose Bengal and diluted samples were inoculated onto the agar surface. After 7-d growth at 22 degrees C colonies of Alternaria sp., Aspergillus clavatus, A. glaucus group, A. flavus, A. fumigatus, A. niger group, A. ochraceus group, A. ochraceus, Chaetomium sp., Cladosporium cladosporioides, Cylindrocarpon sp., Doratomyces sp., Fusarium sp., F. moniliforme, F. oxysporum, F. solani, F. subglutinans, Marianaea elegans, Mortierella sp., Mucor sp., Myrothecium sp., Penicillium sp., Rhizopus sp., Scopulariopsis brevicaulis, Sepedonium sp., Stachybotrys chartarum, Stemphylium sp., Torula humicola and Trichoderma viride were isolated.

  16. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that the different chitinase isoforms in maize might have different functions in the plant, since they show differential expression patterns under different conditions. PMID:7972490

  17. A photoperiod-responsive protein compendium and conceptual proteome roadmap outline in maize grown in growth chambers with controlled conditions

    PubMed Central

    Li, You-Zhi; Fan, Xian-Wei; Chen, Qiang; Zhong, Hao

    2017-01-01

    Maize (Zea mays L.) is one of the major staple food crops of the world. However, high photoperiod sensitivity, especially for tropical germplasms, impedes attempts to improve maize agronomical traits by integration of tropical and temperate maize germplasms. Physiological and phenotypic responses of maize to photoperiod have widely been investigated based on multi-site field observations; however, proteome-based responsive mechanisms under controlled photoperiod regimes, nutrient and moisture soils are not yet well understood. In the present study, we sequenced and analyzed six proteomes of tropically-adapted and photoperiod-sensitive M9 inbred line at the vegetative 3 stage and proteomes from tropically-adapted and photoperiod-sensitive Shuang M9 (SM9) inbred line at the vegetative-tasseling stage. All plants were grown in growth chambers with controlled soil and temperature and three photoperiod regimes, a short photoperiod (SP) of 10 h light/14 h dark, a control neutral photoperiod (NP) of 12 h light/12 h dark, and a long photoperiod (LP) of 16 h light/8 h dark for a daily cycle. We identified 4,395 proteins of which 401 and 425 differentially-expressed proteins (DPs) were found in abundance in M9 leaves and in SM9 leaves as per SP/LP vs. NP, respectively. Some DPs showed responses to both SP and LP while some only responded to either SP or LP, depending on M9 or SM9. Our study showed that the photoperiodic response pathway, circadian clock rhythm, and high light density/intensity crosstalk with each other, but apparently differ from dark signaling routes. Photoperiod response involves light-responsive or dark-responsive proteins or both. The DPs positioned on the signaling routes from photoperiod changes to RNA/DNA responses involve the mago nashi homolog and glycine-rich RNA-binding proteins. Moreover, the cell-to-cell movement of ZCN14 through plasmodesmata is likely blocked under a 16-h-light LP. Here, we propose a photoperiodic model based on our findings and those from previous studies. PMID:28399169

  18. Improved short-term drought response of transgenic rice over-expressing maize C4 phosphoenolpyruvate carboxylase via calcium signal cascade.

    PubMed

    Liu, Xiaolong; Li, Xia; Dai, Chuanchao; Zhou, Jiayu; Yan, Ting; Zhang, Jinfei

    2017-11-01

    To understand the link between long-term drought tolerance and short-term drought responses in plants, transgenic rice (Oryza sativa L.) plants over-expressing the maize C 4- pepc gene encoding phosphoenolpyruvate carboxylase (PC) and wild-type (WT) rice plants were subjected to PEG 6000 treatments to simulate drought stress. Compared with WT, PC had the higher survival rate and net photosynthetic rate after 16days of drought treatment, and had higher relative water content in leaves after 2h of drought treatment as well, conferring drought tolerance. WT accumulated higher amounts of malondialdehyde, superoxide radicals, and H 2 O 2 than PC under the 2-h PEG 6000 treatment, indicating greater damages in WT. Results from pretreatments with a Ca 2+ chelator and/or antagonist showed that the regulation of the early drought response in PC was Ca 2+ -dependent. The NO and H 2 O 2 levels in PC lines were also up-regulated via Ca 2+ signals, indicating that Ca 2+ in PC lines also reacted upstream of NO and H 2 O 2 . 2-h drought treatment increased the transcripts of CPK9 and CPK4 in PC via positive up-regulation of Ca 2+ . The transcripts of NAC6 [NACs (NAM, ATAF1, ATAF2, and CUC2)] and bZIP60 (basic leucine zipper, bZIP) were up-regulated, but those of DREB2B (dehydration-responsive element-binding protein, DREB) were down-regulated, both via Ca 2+ signals in PC. PEPC activity, expressions of C 4 -pepc, and the antioxidant enzyme activities in PC lines were up-regulated via Ca 2+ . These results indicated that Ca 2+ signals in PC lines can up-regulate the NAC6 and bZIP60 and the downstream targets for early drought responses, conferring drought tolerance for the long term. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    PubMed

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Relationship between Salt Tolerance and Resistance to Polyethylene Glycol-Induced Water Stress in Cultured Citrus Cells 1

    PubMed Central

    Ben-Hayyim, Gozal

    1987-01-01

    Salt-tolerant selected cells of Shamouti orange (Citrus sinensis) and Sour orange (Citrus aurantium) grew considerably better than nonselected cells at any NaCl concentration tested up to 200 millimolar. Also, the growth response of each treatment was identical in the two species. However, the performance of cells of the two species under osmotic stress induced by polyethylene glycol (PEG), which is presumably a nonabsorbed osmoticum, was significantly different. The nonselected Shamouti cell lines were significantly more sensitive to osmotic stress than the selected cells. The salt adapted Shamouti cells were apparently also adapted to osmotic stress induced by PEG. In Sour orange, however, the selected lines had no advantage over the nonselected line in response to osmotic stress induced by PEG. This response was also similar quantitatively to the response of the selected salt-tolerant Shamouti cell line. It seems that the tolerance to salt in Shamouti, a partial salt excluder, involves an osmotic adaptation, whereas in Sour orange, a salt accumulator, such an adaptation apparently does not occur. PEG-induced osmotic stress causes an increase in the percent dry weight of salt-sensitive and salt-tolerant cells of both species. No such increase was found under salt stress. The size of control and stressed cells is not significantly different. PMID:16665715

  1. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  2. Plant responses to environmental stresses-from gene to biotechnology.

    PubMed

    Ahanger, Mohammad Abass; Akram, Nudrat Aisha; Ashraf, Muhammad; Alyemeni, Mohammed Nasser; Wijaya, Leonard; Ahmad, Parvaiz

    2017-07-01

    Increasing global population, urbanization and industrialization are increasing the rate of conversion of arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that agriculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver. Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental extremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean. The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and challenges in developing stress-tolerant crop cultivars are discussed.

  3. Exogenously applied spermidine alleviates photosynthetic inhibition under drought stress in maize (Zea mays L.) seedlings associated with changes in endogenous polyamines and phytohormones.

    PubMed

    Li, Lijie; Gu, Wanrong; Li, Jing; Li, Congfeng; Xie, Tenglong; Qu, Danyang; Meng, Yao; Li, Caifeng; Wei, Shi

    2018-05-15

    Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments. Exogenous Spd alleviated the stress-induced reduction in growth, photosynthetic pigment content, photosynthesis rate (P n ) and photochemical quenching (q P ) parameters, including the maximum photochemistry efficiency of photosystem II (PSII) (F v /F m ), PSII operating efficiency (ФPSII), and qP coefficient. Exogenous Spd further enhanced stress-induced elevation in non-photochemical quenching (NPQ) and the de-epoxidation state of the xanthophyll cycle (DEPS). Microscopic analysis revealed that seedlings displayed a more ordered arrangement of chloroplast ultrastructure upon Spd application during DS. Exogenous Spd increased the endogenous PA concentrations in the stressed plants. Additionally, exogenous Spd increased indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin A 3 (GA 3 ) and decreased salicylic acid (SA) and jasmonate (JA) concentrations under DS. These results indicate that exogenous Spd can alleviate the growth inhibition and damage to the structure and function of the photosynthetic apparatus caused by DS and that this alleviation may be associated with changes in endogenous PAs and phytohormones. This study contributes to advances in the knowledge of Spd-induced drought tolerance. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.).

    PubMed

    Gahlaut, Vijay; Jaiswal, Vandana; Kumar, Anuj; Gupta, Pushpendra Kumar

    2016-11-01

    TFs involved in drought tolerance in plants may be utilized in future for developing drought tolerant cultivars of wheat and some other crops. Plants have developed a fairly complex stress response system to deal with drought and other abiotic stresses. These response systems often make use of transcription factors (TFs); a gene encoding a specific TF together with -its target genes constitute a regulon, and take part in signal transduction to activate/silence genes involved in response to drought. Since, five specific families of TFs (out of >80 known families of TFs) have gained widespread attention on account of their significant role in drought tolerance in plants, TFs and regulons belonging to these five multi-gene families (AP2/EREBP, bZIP, MYB/MYC, NAC and WRKY) have been described and their role in improving drought tolerance discussed in this brief review. These TFs often undergo reversible phosphorylation to perform their function, and are also involved in complex networks. Therefore, some details about reversible phosphorylation of TFs by different protein kinases/phosphatases and the co-regulatory networks, which involve either only TFs or TFs with miRNAs, have also been discussed. Literature on transgenics involving genes encoding TFs and that on QTLs and markers associated with TF genes involved in drought tolerance has also been reviewed. Throughout the review, there is a major emphasis on wheat as an important crop, although examples from the model cereal rice (sometimes maize also), and the model plant Arabidopsis have also been used. This knowledge base may eventually allow the use of TF genes for development of drought tolerant cultivars, particularly in wheat.

  5. Bioaccumulation and distribution of heavy metals in Maize, Oat and Sorghum Plants, grown in industrially polluted region

    NASA Astrophysics Data System (ADS)

    Angelova, Violina; Ivanova, Radka; Ivanov, Krasimir

    2010-05-01

    The uptake of heavy metals (Cd, Pb and Zn) by maize, oat and sorghum plants cultivated, under field conditions, in industrially polluted soils was studied. The experimental plots were situated at different distances (0.1, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness the crops were gathered and the contents of heavy metals in their different parts - roots, stems, leaves and grains, were determined after dry ashing. The quantitative measurements were carried out with ICP. A clearly distinguished species peculiarity existed in the accumulation of heavy metals in the vegetative and reproductive organs of the studied crops. Sorghum plants accumulated larger heavy metal quantities compared to maize and oat plants, as the major part of heavy metals was retained by roots and a very small part was translocated to epigeous parts. The studied crops may be considered as metal-tolerant crops and may be cultivated on soils which are low, medium or highly contaminated with lead, zinc and cadmium, as they do not show a tendency of accumulating these elements in epigeous parts and grains above the maximum permissible concentrations. The possible use of aboveground mass and grains for animal food guarantees the economic expedience upon the selection of these crops. Acknowledgment: This work is supported by the Bulgarian Ministry of Education, Project DO-02-87/08.

  6. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays . These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize.

  7. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of Zea mays ssp. mexicana L.

    PubMed Central

    Lu, Xiang; Zhou, Xuan; Cao, Yu; Zhou, Meixue; McNeil, David; Liang, Shan; Yang, Chengwei

    2017-01-01

    The annual Zea mays ssp. mexicana L. is a member of teosinte, a wild relative of the Zea mays spp. mays L. This subspecies has strong growth and regeneration ability, high tiller numbers, high protein and lysine content as well as resistance to many fungal diseases, and it can be effectively used in maize improvement. In this study, we reported a Zea mays ssp. mexicana L. transcriptome by merging data from untreated control (CK), cold (4°C) and drought (PEG2000, 20%) treated plant samples. A total of 251,145 transcripts (N50 = 1,269 bp) and 184,280 unigenes (N50 = 923 bp) were predicted, which code for homologs of near 47% of the published maize proteome. Under cold conditions, 2,232 and 817 genes were up-regulated and down-regulated, respectively, while fewer genes were up-regulated (532) and down-regulated (82) under drought stress, indicating that Zea mays ssp. mexicana L. is more sensitive to the applied cold rather than to the applied drought stresses. Functional enrichment analyses identified many common or specific biological processes and gene sets in response to drought and cold stresses. The ABA dependent pathway, trehalose synthetic pathway and the ICE1-CBF pathway were up-regulated by both stresses. GA associated genes have been shown to differentially regulate the responses to cold in close subspecies in Zea mays. These findings and the identified functional genes can provide useful clues for improving abiotic stress tolerance of maize. PMID:28223998

  8. Fumonisins B₁ and B₂ in maize harvested in Hebei province, China, during 2011-2013.

    PubMed

    Li, Renjie; Guo, Congcong; Zhang, Quanguo; Pang, Minhao; Liu, Yingchao; Dong, Jingao

    2015-01-01

    A total of 125 maize kernel samples were collected from Hebei province in China during 2011-2013 and were analysed for incidence and contamination levels of fumonisins (FB₁ + FB₂) by HPLC with fluorescence detection. The incidence of FBs for all samples was 46.4%. The mean contamination level of FBs for the samples collected in 2013 was 706 μg kg⁻¹, which was higher than the levels in 2012 (429 μg kg⁻¹) and 2011 (250 μg kg⁻¹). All samples, except five, exhibited total FB levels below 4000 μg kg⁻¹, which is the maximum limit as set by the European Commission. The probable daily intakes of FBs (0.04 in 2011; 0.07 in 2012; 0.12 in 2013, expressed as μg kg⁻¹ body weight/day) were all within the provisional maximum tolerable daily intake of 2.0 μg kg⁻¹ of body weight/day as set by the Joint FAO/WHO Expert Committee on Food Additives. Nevertheless, monitoring is needed to prevent and control the potential risk of FB exposure to the consumers.

  9. Studying Prokaryotic Communities in Iron Depositing Hot Springs (IDHS): Implication for Early Mars Habitability

    NASA Technical Reports Server (NTRS)

    Sarkisova, S. A.; Tringe, S. G.; Thomas-Keprta, K. L.; Allen, C. c.; Garrison, D. H.; McKay, David S.; Brown, I. I.

    2010-01-01

    We speculate that both external and intracellular iron precipitate in iron-tolerant CB might be involved in oxidative stress suppression shown by [9]. Significant differences are apparent between a set of proteins involved in the maintenance of Fe homeostasis and oxidative stress protection in iron-tolerant and fresh-water and marine CB. Correspondingly, these properties may help to make iron-tolerant CB as dominant organisms in IDHS and probably on early Earth and Mars. Further comparative analyses of hot springs metagenomes and the genomes of iron-tolerant microbes versus fresh-water/marine ones may point out to different habitable zones on early Mars.

  10. Laboratory toxicity studies demonstrate no adverse effects of Cry1Ab and Cry3Bb1 to larvae of Adalia bipunctata (Coleoptera: Coccinellidae): the importance of study design.

    PubMed

    Alvarez-Alfageme, Fernando; Bigler, Franz; Romeis, Jörg

    2011-06-01

    Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221-228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221-228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant.

  11. Early growth tolerances of grasses, shrubs, and trees to boron in tunnel spoil

    Treesearch

    Parker F. Pratt; Eamor C. Nord; Francis L. Bair

    1971-01-01

    The effects of boron and salts in spoil material on survival and growth of 44 grass, shrub, and tree species were tested under greenhouse conditions. The spoil used was from the Angeles Tunnel of the California Aqueduct's West Branch now being built. Several species within each plant group apparently can tolerate boron, but field tests will be needed before most...

  12. Alleviation of the effects of saline-alkaline stress on maize seedlings by regulation of active oxygen metabolism by Trichoderma asperellum.

    PubMed

    Fu, Jian; Liu, Zhihua; Li, Zuotong; Wang, Yufeng; Yang, Kejun

    2017-01-01

    This study investigated the influence of Trichoderma asperellum on active oxygen production in maize seedlings under saline-alkaline stress conditions. Two maize cultivars were tested: 'Jiangyu 417' ('JY417'), which can tolerate saline-alkaline stress; and, 'Xianyu 335' ('XY335'), which is sensitive to saline-alkaline stress. The seedlings were grown on natural saline-alkaline soil (pH 9.30) in plastic pots. To each liter of saline-alkaline soil, 200 mL of T. asperellum spore suspension was applied; three fungal suspensions were used, namely, 1 × 103, 1 × 106, and 1 × 109 spores/L. A control with only the vehicle applied was also established, along with a second control in which untreated meadow soil (pH 8.23) was used. Root and leaf samples were collected when the seedlings had three heart-shaped leaves and the fourth was in the developmental phase. Physical and biochemical parameters related to oxidation resistance were assessed. The results indicated that the 'JY417' and 'XY335' seedlings showed different degrees of oxidative damage and differences in their antioxidant defense systems under saline-alkaline stress. As the spore density of the fungal suspension increased, the K+ and Ca2+ contents in the seedlings increased, but Na+ content decreased. Moreover, fungal treatment promoted the synthesis or accumulation of osmolytes, which enhanced the water absorbing capacity of the cells, increased antioxidant enzyme activities, enhanced the content of non-enzyme antioxidants, and reduced the accumulation of reactive oxygen species. Fungal treatment alleviated oxidative damage caused by the saline-alkaline stress in roots and leaves of the seedlings. The application of T. asperellum overcame the inhibitory effect of saline-alkaline soil stress on the growth of maize seedlings. In the present experiment, application with 1 × 109 spores/L gave the optimal results.

  13. Synchrotron X-Ray Visualisation of Ice Formation in Insects during Lethal and Non-Lethal Freezing

    PubMed Central

    Sinclair, Brent J.; Gibbs, Allen G.; Lee, Wah-Keat; Rajamohan, Arun; Roberts, Stephen P.; Socha, John J.

    2009-01-01

    Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above −14°C, and non-diapausing 3rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects. PMID:20011523

  14. Childhood Origins of Tolerance for Dissent

    ERIC Educational Resources Information Center

    Zellman, Gail L.; Sears, David O.

    1971-01-01

    Reports questionnaire data from 1384 children in grades five through nine. Reveals that political socialization of attitudes toward free speech apparently does occur during late childhood and early adolescence. (JM)

  15. Effect of three mycotoxin adsorbents on growth performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed.

    PubMed

    Liu, Y L; Meng, G Q; Wang, H R; Zhu, H L; Hou, Y Q; Wang, W J; Ding, B Y

    2011-04-01

    1. A study was conducted to investigate the effects of an esterified glucomannan (EGM), a hydrated sodium calcium aluminosilicate (HSCAS) and a compound mycotoxin adsorbent (CMA) on performance, nutrient retention and meat quality in broilers fed on mould-contaminated feed. Mould-contaminated diets were prepared by replacing half of the non-contaminated maize in the basal diets with mould-contaminated maize, which contained 450·6 µg/kg of aflatoxin B1, 68·4 µg/kg of ochratoxin A and 320·5 µg/kg of T-2 toxin. 2. The mould-contaminated diet significantly decreased body weight gain (BWG) between 10 and 21 d, feed intake (FI) between 35 and 42 d, the apparent retention of crude lipid and phosphorus, and the lightness (L*) value of breast and thigh muscle. It also significantly increased the redness (a*) and yellowness (b*) value in breast muscle and the b* value in thigh muscle. 3. The addition of 0·2% HSCAS significantly increased FI between 35 and 42 d and the apparent retention of phosphorus. Supplementation with 0·1% CMA in the contaminated diet significantly improved BWG from 10 to 21 d, and increased FI from 35 to 42 d and from 10 to 42 d. CMA also significantly increased the apparent retention of crude lipid, crude protein, ash and phosphorus. All three mycotoxin-adsorbent treatments significantly improved the L* values of breast and thigh muscle when compared with the mould-contaminated group. Supplementation with 0·1% CMA in the contaminated diet significantly decreased b* value and improved tenderness in thigh muscle. 0·05% EGM significantly decreased b* value of thigh muscle compared to mould-contaminated group. 4. The results indicated that mycotoxins in contaminated feed retard growth, nutrient retention and meat quality, whereas the addition of 0·05% EGM, 0·2% HSCAS or 0·1% CMA prevents the adverse effects of mycotoxins to varying extents, with 0·1% CMA being the most effective adsorbent treatment.

  16. In situ study of the relevance of bacterial adherence to feed particles for the contamination and accuracy of rumen degradability estimates for feeds of vegetable origin.

    PubMed

    Rodríguez, C A; González, J

    2006-08-01

    An in situ study was conducted on four rumen-cannulated wethers to determine (using (15)N infusion techniques) the microbial contamination (mg bacterial DM or crude protein (CP)/100 mg DM or CP) and the associated error on the effective degradability of fourteen feeds: barley and maize grains, soyabean and sunflower meals, full-fat soyabean, maize gluten feed, soyabean hulls, brewers dried grains, sugarbeet pulp, wheat bran, lucerne and vetch-oat hays, and barley and lentil straws. The DM or CP contamination in residues (M) fitted to single exponential or sigmoid curves. A general model (M=m (1-e(-ft) ) (j)) was proposed to match this fit. Asymptotic values (m) varied from 2.84% to 13.3% and from 2.85% to 80.9% for DM and CP, respectively. Uncorrected results underestimated the effective degradability of both DM (P<0.05) and CP (P<0.01). For CP, this underestimation varied from 0.59 % to 13.1%, with a higher but unascertainable error for barley straw. Excluding maize grain, the microbial contamination of both DM and CP, and the associated underestimation of the effective degradability of CP, were positively related to the cellulose content of the feed. The error in the effective degradability of CP was also negatively related to the CP content and its apparent effective degradability (R(2) 0.867). This equation allows easier and more accurate estimates of effective degradability, needed to improve protein-rationing systems.

  17. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu: segregation pattern, expression and effects of the transgene.

    PubMed

    Fu, Jianming; Ristic, Zoran

    2010-06-01

    We previously reported that transgenic wheat (Triticum aestivum L.) carrying a maize (Zea mays L.) gene (Zmeftu1) for chloroplast protein synthesis elongation factor, EF-Tu, displays reduced thermal aggregation of leaf proteins, reduced injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation following exposure to heat stress (18 h at 45 degrees C) [Fu et al. in Plant Mol Biol 68:277-288, 2008]. In the current study, we investigated the segregation pattern and expression of the transgene Zmeftu1 and determined the grain yield of transgenic plants after exposure to a brief heat stress (18 h at 45 degrees C). We also assessed thermal aggregation of soluble leaf proteins in transgenic plants, testing the hypothesis that increased levels of EF-Tu will lead to a non-specific protection of leaf proteins against thermal aggregation. The transgenic wheat displayed a single-gene pattern of segregation of Zmeftu1. Zmeftu1 was expressed, and the transgenic plants synthesized and accumulated three anti-EF-Tu cross-reacting polypeptides of similar molecular mass but different pI, suggesting the possibility of posttranslational modification of this protein. The transgenic plants also showed better grain yield after exposure to heat stress compared with their non-transgenic counterparts. Soluble leaf proteins of various molecular masses displayed lower thermal aggregation in transgenic than in non-transgenic wheat. The results suggest that overexpression of chloroplast EF-Tu can be beneficial to wheat tolerance to heat stress. Moreover, the results also support the hypothesis that EF-Tu contributes to heat tolerance by acting as a molecular chaperone and protecting heat-labile proteins from thermal aggregation in a non-specific manner.

  18. Prebiotic Potential of a Maize-Based Soluble Fibre and Impact of Dose on the Human Gut Microbiota.

    PubMed

    Costabile, Adele; Deaville, Eddie R; Morales, Agustin Martin; Gibson, Glenn R

    2016-01-01

    Dietary management of the human gut microbiota towards a more beneficial composition is one approach that may improve host health. To date, a large number of human intervention studies have demonstrated that dietary consumption of certain food products can result in significant changes in the composition of the gut microbiota i.e. the prebiotic concept. Thus the prebiotic effect is now established as a dietary approach to increase beneficial gut bacteria and it has been associated with modulation of health biomarkers and modulation of the immune system. Promitor™ Soluble Corn Fibre (SCF) is a well-known maize-derived source of dietary fibre with potential selective fermentation properties. Our aim was to determine the optimum prebiotic dose of tolerance, desired changes to microbiota and fermentation of SCF in healthy adult subjects. A double-blind, randomised, parallel study was completed where volunteers (n = 8/treatment group) consumed 8, 14 or 21 g from SCF (6, 12 and 18 g/fibre delivered respectively) over 14-d. Over the range of doses studied, SCF was well tolerated Numbers of bifidobacteria were significantly higher for the 6 g/fibre/day compared to 12 g and 18 g/fibre delivered/day (mean 9.25 and 9.73 Log10 cells/g fresh faeces in the pre-treatment and treatment periods respectively). Such a numerical change of 0.5 Log10 bifidobacteria/g fresh faeces is consistent with those changes observed for inulin-type fructans, which are recognised prebiotics. A possible prebiotic effect of SCF was therefore demonstrated by its stimulation of bifidobacteria numbers in the overall gut microbiota during a short-term intervention.

  19. A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Lu, Xiang; Yang, Lei; Yu, Mengyuan; Lai, Jianbin; Wang, Chao; McNeil, David; Zhou, Meixue; Yang, Chengwei

    2017-04-01

    The annual Zea mays ssp. mexicana L., a member of the teosinte group, is a close wild relative of maize and thus can be effectively used in maize improvement. In this study, an ICE-like gene, ZmmICE1, was isolated from a cDNA library of RNA-Seq from cold-treated seedling tissues of Zea mays ssp. mexicana L. The deduced protein of ZmmICE1 contains a highly conserved basic helix-loop-helix (bHLH) domain and C-terminal region of ICE-like proteins. The ZmmICE1 protein localizes to the nucleus and shows sumoylation when expressed in an Escherichia coli reconstitution system. In addition, yeast one hybrid assays indicated that ZmmICE1 has transactivation activities. Moreover, ectopic expression of ZmmICE1 in the Arabidopsis ice1-2 mutant increased freezing tolerance. The ZmmICE1 overexpressed plants showed lower electrolyte leakage (EL), reduced contents of malondialdehyde (MDA). The expression of downstream cold related genes of Arabidopsis C-repeat-binding factors (AtCBF1, AtCBF2 and AtCBF3), cold-responsive genes (AtCOR15A and AtCOR47), kinesin-1 member gene (AtKIN1) and responsive to desiccation gene (AtRD29A) was significantly induced when compared with wild type under low temperature treatment. Taken together, these results indicated that ZmmICE1 is the homolog of Arabidopsis inducer of CBF expression genes (AtICE1/2) and plays an important role in the regulation of freezing stress response. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize.

    PubMed

    Oury, Vincent; Tardieu, François; Turc, Olivier

    2016-06-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Ovary Apical Abortion under Water Deficit Is Caused by Changes in Sequential Development of Ovaries and in Silk Growth Rate in Maize1[OPEN

    PubMed Central

    Tardieu, François

    2016-01-01

    Grain abortion allows the production of at least a few viable seeds under water deficit but causes major yield loss. It is maximum for water deficits occurring during flowering in maize (Zea mays). We have tested the hypothesis that abortion is linked to the differential development of ovary cohorts along the ear and to the timing of silk emergence. Ovary volume and silk growth were followed over 25 to 30 d under four levels of water deficit and in four hybrids in two experiments. A position-time model allowed characterizing the development of ovary cohorts and their silk emergence. Silk growth rate decreased in water deficit and stopped 2 to 3 d after first silk emergence, simultaneously for all ovary cohorts, versus 7 to 8 d in well-watered plants. Abortion rate in different treatments and positions on the ear was not associated with ovary growth rate. It was accounted for by the superposition of (1) the sequential emergence of silks originating from ovaries of different cohorts along the ear with (2) one event occurring on a single day, the simultaneous silk growth arrest. Abortion occurred in the youngest ovaries whose silks did not emerge 2 d before silk arrest. This mechanism accounted for more than 90% of drought-related abortion in our experiments. It resembles the control of abortion in a large range of species and inflorescence architectures. This finding has large consequences for breeding drought-tolerant maize and for modeling grain yields in water deficit. PMID:26598464

  2. Lessons From Paired Data From exPVP Maize Lines in Agronomic Field Trials and RGB And Hyperspectral Time-Series Imaging In Controlled Environments

    NASA Astrophysics Data System (ADS)

    Schnable, J. C.; Pandey, P.; Ge, Y.; Xu, Y.; Qiu, Y.; Liang, Z.

    2017-12-01

    Maize Zea mays ssp. mays is one of three crops, along with rice and wheat, responsible for more than 1/2 of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding efforts. Datasets linking new types of high throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision based tools. A set of maize inbreds and hybrids - primarily recently off patent lines - were phenotyped using a high throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2014, 2015, 2016, and 2017. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, we demonstrate that naive approaches to measuring traits such as biomass where are developed without integrating genotypic information can introduce nonrandom measurement errors which are confounded with variation between plant accessions. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue which were not identified using aerial imagry. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors influencing yield plasticity.

  3. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials

    PubMed Central

    Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng

    2018-01-01

    Abstract Background Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision–based tools. Findings A set of maize inbreds—primarily recently off patent lines—were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. Conclusions Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. PMID:29186425

  4. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    PubMed Central

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  5. Comparing the water-use-efficiency of maize and biomass sorghum grown in the rain-fed, Midwestern US.

    NASA Astrophysics Data System (ADS)

    Roby, M.; VanLoocke, A. D.; Heaton, E.; Miguez, F.; Salas Fernandez, M.

    2015-12-01

    Uncertainty in the quantity and timing of precipitation in a changing climate, combined with an increased demand for non-grain ethanol feedstock, may necessitate expanding the production of more water-use-efficient and less drought sensitive crops for biofuel applications. Research suggests that biomass sorghum [Sorghum bicolor (L.) Moench] is more drought tolerant and can produce more biomass than maize in water-limiting environments; however, sorghum water use data are scarce for the rain-fed Midwestern US. To address this gap, a replicated (n=3) side-by-side trial was established in Ames, Iowa to determine cumulative water use and water-use-efficiency of maize and biomass sorghum throughout the 2014 and 2015 growing seasons. Latent heat flux was estimated using the residual in the energy balance technique. Continuous micrometeorological measurements were supplemented by periodic measurements of leaf area index (LAI) and above-ground biomass. Water use (WU), aboveground biomass, and water-use-efficiency (WUE) were found to be similar for both crop types in 2014; data from the 2015 growing season are currently being processed. In 2015, leaf gas exchange measurements were made with a portable photosynthesis instrument. Photosynthetic parameters from gas exchange measurements will be implemented in a semi-mechanistic crop model (BioCro) as a method for scaling WUE estimates across the rain-fed Midwestern US driven with future climate projections. This research highlights the importance of understanding the potential effects of expanding biomass sorghum production on the hydrologic cycle of the Midwestern, US.

  6. Conventional and hyperspectral time-series imaging of maize lines widely used in field trials.

    PubMed

    Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng; Schnable, James C

    2018-02-01

    Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision-based tools. A set of maize inbreds-primarily recently off patent lines-were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. © The Authors 2017. Published by Oxford University Press.

  7. Plant responses to environmental stresses—from gene to biotechnology

    PubMed Central

    Ahanger, Mohammad Abass; Akram, Nudrat Aisha; Ashraf, Muhammad; Alyemeni, Mohammed Nasser; Wijaya, Leonard

    2017-01-01

    Abstract Increasing global population, urbanization and industrialization are increasing the rate of conversion of arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that agriculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver. Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental extremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean. The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and challenges in developing stress-tolerant crop cultivars are discussed. PMID:28775828

  8. Effects of water deficit on radicle apex elongation and solute accumulation in Zea mays L.

    PubMed

    Velázquez-Márquez, S; Conde-Martínez, V; Trejo, C; Delgado-Alvarado, A; Carballo, A; Suárez, R; Mascorro, J O; Trujillo, A R

    2015-11-01

    In this study, we examined the effects of water deficit on the elongation of radicles of maize seedlings and on the accumulation of solutes in the radicle apices of two maize varieties: VS-22 (tolerant) and AMCCG-2 (susceptible). Sections of radicle corresponding to the first 2 mm of the primary roots were marked with black ink, and the seedlings were allowed to grow for 24, 48, and 72 h in polyvinyl chloride (PVC) tubes filled with vermiculite at three different water potentials (Ψ(w), -0.03, -1.0, and -1.5 MPa). The radicle elongation, sugar accumulation, and proline accumulation were determined after each of the growth periods specified above. The Ψ(w) of the substrate affected the dynamics of primary root elongation in both varieties. In particular, the lowest Ψ(w) (-1.5 MPa) inhibited root development by 72% and 90% for the VS-22 and AMCCG-2 varieties, respectively. The osmotic potential (Ψ(o)) was reduced substantially in both varieties to maintain root turgor; however, VS-22 had a higher root turgor (0.67 MPa) than AMCCG-2 (0.2 MPa). These results suggest that both varieties possess a capacity for osmotic adjustment. Sugar began to accumulate within the first 24 h of radicle apex growth. The sugar concentration was higher in VS-22 root apices compared to AMCCG-2, and the amount of sugar accumulation increased with a decrease in Ψ(w). Significant amounts of trehalose accumulated in VS-22 and AMCCG-2 (29.8 μmol/g fresh weight [FW] and 5.24 μmol/g FW, respectively). Starch accumulation in the root apices of these two maize varieties also differed significantly, with a lower level in VS-22. In both varieties, the proline concentration also increased as a consequence of the water deficit. At 72 h, the proline concentration in VS-22 (16.2 μmol/g FW) was almost 3 times greater than that in AMCCG-2 (5.19 μmol/g FW). Trehalose also showed a 3-fold increase in the tolerant variety. Accumulation of these solutes in the root growth zone may indicate an osmotic adjustment (OA) to maintain turgor pressure. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    NASA Astrophysics Data System (ADS)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation as well as ozone and climate change adaptation (e.g., selecting heat- and ozone-tolerant cultivars, irrigation) as possible strategies to enhance future food security in response to imminent environmental threats.

  10. Selection of Drought Tolerant Maize Hybrids Using Path Coefficient Analysis and Selection Index.

    PubMed

    Dao, Abdalla; Sanou, Jacob; V S Traore, Edgar; Gracen, Vernon; Danquah, Eric Y

    2017-01-01

    In drought-prone environments, direct selection for yield is not adequate because of the variable environment and genotype x environment interaction. Therefore, the use of secondary traits in addition to yield has been suggested. The relative usefulness of secondary traits as indirect selection criteria for maize grain yield is determined by the magnitudes of their genetic variance, heritability and genetic correlation with the grain yield. Forty eight testcross hybrids derived from lines with different genetic background and geographical origins plus 7 checks were evaluated in both well-watered and water-stressed conditions over two years for grain yield and secondary traits to determine the most appropriate secondary traits and select drought tolerant hybrids. Study found that broad-sense heritability of grain yield and Ear Per Plant (EPP) increased under drought stress. Ear aspect (EASP) and ear height (EHT) had larger correlation coefficients and direct effect on grain yield but in opposite direction, negative and positive respectively. Traits like, EPP, Tassel Size (TS) and Plant Recovery (PR) contributed to increase yield via EASP by a large negative indirect effect. Under drought stress, EHT had positive and high direct effect and negative indirect effect via plant height on grain yield indicating that the ratio between ear and plant heights (R-EPH) was associated to grain yield. Path coefficient analysis showed that traits EPP, TS, PR, EASP, R-EPH were important secondary traits in the present experiment. These traits were used in a selection index to classify hybrids according to their performance under drought. The selection procedure included also a Relative Decrease in Yield (RDY) index. Some secondary traits reported as significant selection criteria for selection under drought stress were not finally established in the present study. This is because the relationship between grain and secondary traits can be affected by various factors including germplasm, environment and applied statistical analysis. Therefore, different traits and selection procedure should be applied in the selection process of drought tolerant genotypes for diverse genetic materials and growing conditions.

  11. Consumer preferences for maize products in urban Kenya.

    PubMed

    De Groote, Hugo; Kimenju, Simon Chege

    2012-06-01

    New maize varieties have been biofortified with provitamin A, mainly a-carotene, which renders the grain yellow or orange. Unfortunately, many African consumers prefer white maize. The maize consumption patterns in Africa are, however, not known. To determine which maize products African consumers prefer to purchase and which maize preparations they prefer to eat. A survey of 600 consumers was conducted in Nairobi, Kenya, at three types of maize outlets: posho mills (small hammer mills), kiosks, and supermarkets. Clients of posho mills had lower incomes and less education than those of kiosks and supermarkets. The preferred maize product of the posho-mill clients was artisanal maize meal; the preferred product of the others was industrial maize meal. Maize is the preferred staple for lunch and dinner, eaten as a stiff porridge (ugali), followed by boiled maize and beans (githeri), regardless of socioeconomic background. For breakfast, only half the consumers prefer maize, mostly as a soft porridge (uji). This proportion is higher in low-income groups. Consumers show a strong preference for white maize over yellow, mostly for its organoleptic characteristics, and show less interest in biofortified maize. Maize is the major food staple in Nairobi, mostly eaten in a few distinct preparations. For biofortified yellow maize to be accepted, a strong public awareness campaign to inform consumers is needed, based on a sensory evaluation and the mass media, in particular on radio in the local language.

  12. Prospects for improving the salt tolerance of forest trees: A review

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Stine, M.

    1994-01-01

    Three major themes related to the improvement of salt tolerance in forest tree species are examined. First, evidence demonstrating that substantial intraspecific variation in salt tolerance exists in many species is presented. This evidence is important because it suggests that efforts to improve salt tolerance through conventional plant breeding techniques are justified. Second, the physiological and genetic mechanisms controlling salt tolerance are discussed briefly. Although salt tolerance involves the integration of numerous physiological processes, there is considerable evidence that differences in the ability to exclude Na+ and Cl- from leaves are the most important factors underlying intraspecific differences in tolerance. It is also becoming apparent that, although salt tolerance is a multigenic trait, major genes play an important role. Third, progress to date in improving salt tolerance of forest tree species is assessed. Compared with agricultural crops, relatively little progress has been made with either conventional or biotechnological methods, but field trials designed to test clones identified as salt tolerant in screening trials are underway now in several countries. We conclude that there is justification for cautious optimism about the prospects for improving salt tolerance in forest tree species.

  13. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. MaizeGDB, the maize model organism database

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the maize research community's database for maize genetic and genomic information. In this seminar I will outline our current endeavors including a full website redesign, the status of maize genome assembly and annotation projects, and work toward genome functional annotation. Mechanis...

  16. Analyses of flooding tolerance of soybean varieties at emergence and varietal differences in their proteomes.

    PubMed

    Nanjo, Yohei; Jang, Hee-Young; Kim, Hong-Sig; Hiraga, Susumu; Woo, Sun-Hee; Komatsu, Setsuko

    2014-10-01

    Flooding of fields due to heavy and/or continuous rainfall influences soybean production. To identify soybean varieties with flooding tolerance at the seedling emergence stage, 128 soybean varieties were evaluated using a flooding tolerance index, which is based on plant survival rates, the lack of apparent damage and lateral root development, and post-flooding radicle elongation rate. The soybean varieties were ranked according to their flooding tolerance index, and it was found that the tolerance levels of soybean varieties exhibit a continuum of differences between varieties. Subsequently, tolerant, moderately tolerant and sensitive varieties were selected and subjected to comparative proteomic analysis to clarify the tolerance mechanism. Proteomic analysis of the radicles, combined with correlation analysis, showed that the ratios of RNA binding/processing related proteins and flooding stress indicator proteins were significantly correlated with flooding tolerance index. The RNA binding/processing related proteins were positively correlated in untreated soybeans, whereas flooding stress indicator proteins were negatively correlated in flooded soybeans. These results suggest that flooding tolerance is regulated by mechanisms through multiple factors and is associated with abundance levels of the identified proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Reinventing MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    The Maize Database (MaizeDB) to the Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year, and such a significant milestone must be celebrated! With the release of the B73 reference sequence and more sequenced genomes on the way, the maize community needs to address various opportunitie...

  18. Maize Root Phytase (Purification, Characterization, and Localization of Enzyme Activity and Its Putative Substrate).

    PubMed Central

    Hubel, F.; Beck, E.

    1996-01-01

    Three phytase (EC 3.1.3.26) isoforms from the roots of 8-d-old maize (Zea mays L. var Consul) seedlings were separated from phosphatases and purified to near homogeneity. The molecular mass of the native protein was 71 kD, and the isoelectric points of the three isoforms were pH 5.0, 4.9, and 4.8. Each of the three isoforms consisted of two subunits with a molecular mass of 38 kD. The temperature and pH optima (40[deg]C, pH 5.0) of these three isoforms, as well as the apparent Michaelis constants for sodium inositol hexakisphosphate (phytate) (43, 25, and 24 [mu]M) as determined by the release of inorganic phosphate, were only slightly different. Phytate concentrations higher than 300 [mu]M were inhibitory to all three isoforms. In contrast, the dephosphorylation of 4-nitrophenyl phosphate was not inhibited by any substrate concentration, but the Michaelis constants for this substrate were considerably higher (137-157 [mu]M). Hydrolysis of phytate by the phytase isoforms is a nonrandom reaction. D/L-Inositol-1,2,3,4,5- pentakisphosphate was identified as the first and D/L-inositol-1,2,5,6-tetrakisphosphate as the second intermediate in phytate hydrolysis. Phytase activity was localized in root slices. Although phosphatase activity was present in the stele and the cortex of the primary root, phytase activity was confined to the endodermis. Phytate was identified as the putative native substrate in maize roots (45 [mu]g P g-1 dry matter). It was readily labeled upon supplying [32P]phosphate to the roots. PMID:12226456

  19. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize.

    PubMed

    Somaratne, Yamuna; Tian, Youhui; Zhang, Hua; Wang, Mingming; Huo, Yanqing; Cao, Fengge; Zhao, Li; Chen, Huabang

    2017-04-01

    Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay.

    PubMed

    Stadler, David; Sulyok, Michael; Schuhmacher, Rainer; Berthiller, Franz; Krska, Rudolf

    2018-05-01

    Multi-mycotoxin determination by LC-MS is commonly based on external solvent-based or matrix-matched calibration and, if necessary, the correction for the method bias. In everyday practice, the method bias (expressed as apparent recovery RA), which may be caused by losses during the recovery process and/or signal/suppression enhancement, is evaluated by replicate analysis of a single spiked lot of a matrix. However, RA may vary for different lots of the same matrix, i.e., lot-to-lot variation, which can result in a higher relative expanded measurement uncertainty (U r ). We applied a straightforward procedure for the calculation of U r from the within-laboratory reproducibility, which is also called intermediate precision, and the uncertainty of RA (u r,RA ). To estimate the contribution of the lot-to-lot variation to U r , the measurement results of one replicate of seven different lots of figs and maize and seven replicates of a single lot of these matrices, respectively, were used to calculate U r . The lot-to-lot variation was contributing to u r,RA and thus to U r for the majority of the 66 evaluated analytes in both figs and maize. The major contributions of the lot-to-lot variation to u r,RA were differences in analyte recovery in figs and relative matrix effects in maize. U r was estimated from long-term participation in proficiency test schemes with 58%. Provided proper validation, a fit-for-purpose U r of 50% was proposed for measurement results obtained by an LC-MS-based multi-mycotoxin assay, independent of the concentration of the analytes.

  1. [Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercropping system].

    PubMed

    Zhao, Wei; Song, Chun; Zhou, Pan; Wang, Jia Yu; Xui, Feng; Ye, Fang; Wang, Xiao Chun; Yang, Wen Yu

    2018-04-01

    In order to explore the advantage of intercropping on phosphorus (P) efficient utilization and the reduction of soil P loss, a field experiment in a maize-soybean intercropping system, which included three P application (P 2 O 5 ) rates (CP: 168 kg·hm -2 ; RP 1 : 135 kg·hm -2 ; RP 2 : 101 kg·hm -2 ) and three P application depths (D 1 : applied in 5 cm depth; D 2 : applied in 15 cm depth; D 3 : 1/2 of P fertilizer applied in 5 cm depth and another 1/2 in 15 cm depth) was carried out to analyze the effects of P application rates and depth on crop aboveground biomass, grain yield, crop P uptake, soil total and available P contents, and soil P adsorption-desorption characteristics. Compared with control treatment, the aboveground biomass, grain yield, crop P uptake, soil total P, and available P content were increased significantly by P application, regardless of P rate and application depth. Under the same application depth, RP 1 had similar grain yield but higher crop P uptake compared with CP, and thus higher P apparent utilization efficiency. Under the same P application rate, the application depth of D 2 had the highest crop aboveground biomass, grain yield, P uptake, soil total P, and available P. According to the characteristic of soil P adsorption-desorption, the treatment with the rate of RP 1 and the depth of D 2 had the strongest soil P retention capacity, which had advantage in alleviating P loss. These results suggested that reducing application rate but increasing application depth of P fertilizer could improve P use efficiency and reduce soil P loss without sacrifice in crop production in maize-soybean relay intercropping system.

  2. MaizeGDB - Past, present, and future

    USDA-ARS?s Scientific Manuscript database

    The Maize Genetics and Genomics Database (MaizeGDB) turns 20 this year. This editorial outlines MaizeGDB's history and connection to the Maize Genetics Cooperation, describes key components of how the MaizeGDB interface will be completely redesigned over the course of the next two years to meet cur...

  3. Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch gelatinization, digestibility, and the fecal concentration of fermentation products.

    PubMed

    Bazolli, R S; Vasconcellos, R S; de-Oliveira, L D; Sá, F C; Pereira, G T; Carciofi, A C

    2015-06-01

    The influence of rice, maize, and sorghum raw material particle size in extruded dry dog food on the digestibility of nutrients and energy and the fecal concentration of fermentation products was investigated. Three diets with similar nutrient compositions were formulated, each with 1 starch source. Before incorporation into diets, the cereals were ground into 3 different particle sizes (approximately 300, 450, and 600 µm); therefore, a total of 9 diets were in a 3 × 3 factorial arrangement (3 cereals and 3 particle sizes). Fifty-four beagle dogs (12.0 ± 0.1 kg BW) were randomly assigned to the diets, with 6 dogs per diet. The digestibility was measured with the chromium oxide method. The data were evaluated with ANOVA considering the carbohydrate source, grinding effect, and interactions. The means were compared with the Tukey test and polynomial contrasts (P < 0.05). With the same grinding procedure, rice was reduced to smaller particles than other cereals. The cereal mean geometric diameter (MGD) was directly related to starch gelatinization (SG) during extrusion. For rice diets, the MGD and SG did not change nutrient digestibility (P > 0.05); only GE digestibility was reduced at the largest MGD (P < 0.01). For maize and sorghum diets, the total tract apparent nutrient digestibility was reduced for foods with greater MGD and less SG (P < 0.01). A linear reduction in nutrient digestibility according to cereal particle size was observed for sorghum (r2 < 0.72; P < 0.01). Higher concentrations of fecal total short-chain fatty acids (SCFA) were observed for sorghum diets (P < 0.05) than for other diets. The rice diets led to the production of feces with less lactate (P < 0.05). The increase in raw material MGD did not influence fecal SCFA for rice diets, but for the dogs fed maize and sorghum foods, an increase in propionate and butyrate concentrations were observed as MGD increased (P < 0.05). In conclusion, for dogs fed different particle sizes of the cereal starches in the extruded diets, the digestibility and fecal characteristics were affected, and this effect was ingredient dependent.

  4. Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process.

    PubMed

    Wirth, Roland; Lakatos, Gergely; Maróti, Gergely; Bagi, Zoltán; Minárovics, János; Nagy, Katalin; Kondorosi, Éva; Rákhely, Gábor; Kovács, Kornél L

    2015-01-01

    The growing concern regarding the use of agricultural land for the production of biomass for food/feed or energy is dictating the search for alternative biomass sources. Photosynthetic microorganisms grown on marginal or deserted land present a promising alternative to the cultivation of energy plants and thereby may dampen the 'food or fuel' dispute. Microalgae offer diverse utilization routes. A two-stage energetic utilization, using a natural mixed population of algae (Chlamydomonas sp. and Scenedesmus sp.) and mutualistic bacteria (primarily Rhizobium sp.), was tested for coupled biohydrogen and biogas production. The microalgal-bacterial biomass generated hydrogen without sulfur deprivation. Algal hydrogen production in the mixed population started earlier but lasted for a shorter period relative to the benchmark approach. The residual biomass after hydrogen production was used for biogas generation and was compared with the biogas production from maize silage. The gas evolved from the microbial biomass was enriched in methane, but the specific gas production was lower than that of maize silage. Sustainable biogas production from the microbial biomass proceeded without noticeable difficulties in continuously stirred fed-batch laboratory-size reactors for an extended period of time. Co-fermentation of the microbial biomass and maize silage improved the biogas production: The metagenomic results indicated that pronounced changes took place in the domain Bacteria, primarily due to the introduction of a considerable bacterial biomass into the system with the substrate; this effect was partially compensated in the case of co-fermentation. The bacteria living in syntrophy with the algae apparently persisted in the anaerobic reactor and predominated in the bacterial population. The Archaea community remained virtually unaffected by the changes in the substrate biomass composition. Through elimination of cost- and labor-demanding sulfur deprivation, sustainable biohydrogen production can be carried out by using microalgae and their mutualistic bacterial partners. The beneficial effect of the mutualistic mixed bacteria in O2 quenching is that the spent algal-bacterial biomass can be further exploited for biogas production. Anaerobic fermentation of the microbial biomass depends on the composition of the biogas-producing microbial community. Co-fermentation of the mixed microbial biomass with maize silage improved the biogas productivity.

  5. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field.

    PubMed

    Selvaraj, Michael Gomez; Ishizaki, Takuma; Valencia, Milton; Ogawa, Satoshi; Dedicova, Beata; Ogata, Takuya; Yoshiwara, Kyouko; Maruyama, Kyonoshin; Kusano, Miyako; Saito, Kazuki; Takahashi, Fuminori; Shinozaki, Kazuo; Nakashima, Kazuo; Ishitani, Manabu

    2017-11-01

    Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non-transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Multiaxial and thermomechanical fatigue considerations in damage tolerant design

    NASA Technical Reports Server (NTRS)

    Leese, G. E.; Bill, R. C.

    1985-01-01

    In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.

  7. Management of Field-Evolved Resistance to Bt Maize in Argentina: A Multi-Institutional Approach.

    PubMed

    Signorini, Ana M; Abratti, Gustavo; Grimi, Damián; Machado, Marcos; Bunge, Florencia F; Parody, Betiana; Ramos, Laura; Cortese, Pablo; Vesprini, Facundo; Whelan, Agustina; Araujo, Mónica P; Podworny, Mariano; Cadile, Alejandro; Malacarne, María F

    2018-01-01

    Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by Diatraea saccharalis on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017 * ). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans D. saccharalis and Spodoptera frugiperda (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by the industry, growers and Governmental Agencies. Hybrids expressing Vip3A protein (event MIR162) and/or Cry1Ab protein (events MON 810 and Bt11) as single or stacked events are used in early plantings to control the first generations of D. saccharalis , and in later plantings date's technologies with good control of S. frugiperda . A commitment was made to plant the refuge, and pest damage is monitored. As a result, maize production in the area is sustainable and profitable with yields above the average.

  8. Answers to critics: Why there is a long term toxicity due to a Roundup-tolerant genetically modified maize and to a Roundup herbicide.

    PubMed

    Séralini, Gilles-Eric; Mesnage, Robin; Defarge, Nicolas; Gress, Steeve; Hennequin, Didier; Clair, Emilie; Malatesta, Manuela; de Vendômois, Joël Spiroux

    2013-03-01

    Our recent work (Séralini et al., 2012) remains to date the most detailed study involving the life-long consumption of an agricultural genetically modified organism (GMO). This is true especially for NK603 maize for which only a 90-day test for commercial release was previously conducted using the same rat strain (Hammond et al., 2004). It is also the first long term detailed research on mammals exposed to a highly diluted pesticide in its total formulation with adjuvants. This may explain why 75% of our first criticisms arising within a week, among publishing authors, come from plant biologists, some developing patents on GMOs, even if it was a toxicological paper on mammals, and from Monsanto Company who owns both the NK603 GM maize and Roundup herbicide (R). Our study has limits like any one, and here we carefully answer to all criticisms from agencies, consultants and scientists, that were sent to the Editor or to ourselves. At this level, a full debate is biased if the toxicity tests on mammals of NK603 and R obtained by Monsanto Company remain confidential and thus unavailable in an electronic format for the whole scientific community to conduct independent scrutiny of the raw data. In our article, the conclusions of long-term NK603 and Roundup toxicities came from the statistically highly discriminant findings at the biochemical level in treated groups in comparison to controls, because these findings do correspond in an blinded analysis to the pathologies observed in organs, that were in turn linked to the deaths by anatomopathologists. GM NK603 and R cannot be regarded as safe to date. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of Microbial inoculation in combating the aluminium toxicity effect on growth of Zea mays.

    PubMed

    Arora, P; Singh, G; Tiwari, A

    2017-07-31

    The present study is aimed at improving the aluminium tolerance in maize crop employing the potential of microbial inoculants in conferring resistance to these toxicities via production of certain chelating compounds like siderophores, exopolysachharides and organic acids. Acid soils have now-a-days become one of the key factors for limiting growth of many agriculturally important crops. Aluminium  is one of the major elements present in acid soils and is mainly responsible for toxicity in the soil. This aluminium is rapidly soluble in soil water and hence absorbed by plant roots under conditions where soil pH is below 5. This toxicity leads to severe root growth inhibition, thereby limiting the production of maize crops. It was observed that use of microbial inoculums can be helpful in elimination of these toxic compounds and prevent the inhibition of root growth . It was found that the soils contaminated with aluminium toxicity decreased the root length of maize plant significantly by 65% but Bacillus and Burkholderia inoculation increased this root length significantly by 1.4- folds and 2- folds respectively thereby combating the effect of aluminium toxicity. Aluminium concentration was found maximum in roots of plants which were grown under aluminium stress condition. But this aluminium accumulation decreased ̴ 2-folds when Burkholderia was used as seed inoculants under aluminium stress conditions. Also, at 60mM aluminium accumulation, phosphorus solubilisation in roots was found to be increased upto 30% on Burkholderia inoculation. However, Bacillus inoculation didn't show any significant difference in either of the case. Thus, the inoculation of seeds with Burkholderia isolates could prove to be a boon in sequestering aluminium toxicity in Zea mays.

  10. Natural antisense transcripts are significantly involved in regulation of drought stress in maize.

    PubMed

    Xu, Jie; Wang, Qi; Freeling, Micheal; Zhang, Xuecai; Xu, Yunbi; Mao, Yan; Tang, Xin; Wu, Fengkai; Lan, Hai; Cao, Moju; Rong, Tingzhao; Lisch, Damon; Lu, Yanli

    2017-05-19

    Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    PubMed

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  12. Management of Field-Evolved Resistance to Bt Maize in Argentina: A Multi-Institutional Approach

    PubMed Central

    Signorini, Ana M.; Abratti, Gustavo; Grimi, Damián; Machado, Marcos; Bunge, Florencia F.; Parody, Betiana; Ramos, Laura; Cortese, Pablo; Vesprini, Facundo; Whelan, Agustina; Araujo, Mónica P.; Podworny, Mariano; Cadile, Alejandro; Malacarne, María F.

    2018-01-01

    Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by Diatraea saccharalis on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017*). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans D. saccharalis and Spodoptera frugiperda (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by the industry, growers and Governmental Agencies. Hybrids expressing Vip3A protein (event MIR162) and/or Cry1Ab protein (events MON 810 and Bt11) as single or stacked events are used in early plantings to control the first generations of D. saccharalis, and in later plantings date's technologies with good control of S. frugiperda. A commitment was made to plant the refuge, and pest damage is monitored. As a result, maize production in the area is sustainable and profitable with yields above the average. PMID:29888224

  13. β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.).

    PubMed

    Shaw, Arun K; Bhardwaj, Pardeep K; Ghosh, Supriya; Roy, Sankhajit; Saha, Suman; Sherpa, Ang R; Saha, Samir K; Hossain, Zahed

    2016-02-01

    The present study highlights the role of β-aminobutyric acid (BABA) in alleviating drought stress effects in maize (Zea mays L.). Chemical priming was imposed by pretreating 1-week-old plants with 600 μM BABA prior to applying drought stress. Specific activities of key antioxidant enzymes and metabolites (ascorbate and glutathione) levels of ascorbate-glutathione cycle were studied to unravel the priming-induced modulation of plant defense system. Furthermore, changes in endogenous ABA and JA concentrations as well as mRNA expressions of key genes involved in their respective biosynthesis pathways were monitored in BABA-primed (BABA+) and non-primed (BABA-) leaves of drought-challenged plants to better understand the mechanistic insights into the BABA-induced hormonal regulation of plant response to water-deficit stress. Accelerated stomatal closure, high relative water content, and less membrane damage were observed in BABA-primed leaves under water-deficit condition. Elevated APX and SOD activity in non-primed leaves found to be insufficient to scavenge all H2O2 and O2 (·-) resulting in oxidative burst as evident after histochemical staining with NBT and DAB. A higher proline accumulation in non-primed leaves also does not give much protection against drought stress. Increased GR activity supported with the enhanced mRNA and protein expressions might help the BABA-primed plants to maintain a high GSH pool essential for sustaining balanced redox status to counter drought-induced oxidative stress damages. Hormonal analysis suggests that in maize, BABA-potentiated drought tolerance is primarily mediated through JA-dependent pathway by the activation of antioxidant defense systems while ABA biosynthesis pathway also plays an important role in fine-tuning of drought stress response.

  14. [Effects of nitrogen management on maize nitrogen utilization and residual nitrate nitrogen in soil under maize/soybean and maize/sweet potato relay strip intercropping systems].

    PubMed

    Wang, Xiao-Chun; Yang, Wen-Yu; Deng, Xiao-Yan; Zhang, Qun; Yong, Tai-Wen; Liu, Wei-Guo; Yang, Feng; Mao, Shu-Ming

    2014-10-01

    A large amount of nitrogen (N) fertilizers poured into the fields severely pollute the environment. Reasonable application of N fertilizer has always been the research hotpot. The effects of N management on maize N utilization and residual nitrate N in soil under maize/soybean and maize/ sweet potato relay strip intercropping systems were reported in a field experiment in southwest China. It was found that maize N accumulation, N harvest index, N absorption efficiency, N contribution proportion after the anthesis stage in maize/soybean relay strip intercropping were increased by 6.1%, 5.4%, 4.3%, and 15.1% than under maize/sweet potato with an increase of 22.6% for maize yield after sustainable growing of maize/soybean intercropping system. Nitrate N accumulation in the 0-60 cm soil layer was 12.9% higher under maize/soybean intercropping than under maize/sweet potato intercropping. However, nitrate N concentration in the 60-120 cm soil layer when intercropped with soybean decreased by 10.3% than when intercropped with sweet potato, indicating a decrease of N leaching loss. Increasing of N application rate enhanced N accumulation of maize and decreased N use efficiency and significantly increased nitrate concentration in the soil profile except in the 60-100 cm soil layer, where no significant difference was observed with nitrogen application rate at 0 to 270 kg · hm(-2). Further application of N fertilizer significantly enhanced nitrate leaching loss. Postponing N application increased nitrate accumulation in the 60-100 cm soil layer. The results suggested that N application rates and ratio of base to top dressing had different influences on maize N concentration and nitrate N between maize/soybean and maize/sweet potato intercropping. Maize N concentration in the late growing stage, N harvest index and N use efficiency under maize/soybean intercropping increased (with N application rate at 180-270 kg · hm(-2) and ratio of base to top dressing = 3:2:5) and decreased nitrate leaching loss with yield reaching 7757 kg · hm(-2) on average. However, for maize/sweet potato, N concentration and use efficiency and maize yield increased significantly with N application rate at 180 kg · hm(-2) and ratio of base to top dressing = 5:5 than that under other treatments with yield reaching 6572 kg · hm(-2). Under these circumstances, it would be possible to realize maize high yield, high efficiency and safety of N man- agement under maize/soybean and maize/sweet potato relay strip intercropping systems.

  15. Synthesis of Globulins in Maize Embryos 1

    PubMed Central

    Kriz, Alan L.; Schwartz, Drew

    1986-01-01

    The two major components of the globulin fraction in Zea mays embryos are specified by the Prot gene. Pulse-chase analysis of protein synthesis in cultured, immature embryos indicates that the smaller Prot-specific polypeptide, PROT, is derived from the larger polypeptide, PROT'. These experiments also demonstrate that PROT' is derived from a short-lived precursor polypeptide, prePROT'. The primary Prot-specific translation product, as detected by in vitro translation of immature embryo RNA, is of a lower apparent molecular weight than pre-PROT', suggesting the involvement of co- and/or post-translational modification in the production of prePROT'. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16665136

  16. Choosing a genome browser for a Model Organism Database: surveying the Maize community

    PubMed Central

    Sen, Taner Z.; Harper, Lisa C.; Schaeffer, Mary L.; Andorf, Carson M.; Seigfried, Trent E.; Campbell, Darwin A.; Lawrence, Carolyn J.

    2010-01-01

    As the B73 maize genome sequencing project neared completion, MaizeGDB began to integrate a graphical genome browser with its existing web interface and database. To ensure that maize researchers would optimally benefit from the potential addition of a genome browser to the existing MaizeGDB resource, personnel at MaizeGDB surveyed researchers’ needs. Collected data indicate that existing genome browsers for maize were inadequate and suggest implementation of a browser with quick interface and intuitive tools would meet most researchers’ needs. Here, we document the survey’s outcomes, review functionalities of available genome browser software platforms and offer our rationale for choosing the GBrowse software suite for MaizeGDB. Because the genome as represented within the MaizeGDB Genome Browser is tied to detailed phenotypic data, molecular marker information, available stocks, etc., the MaizeGDB Genome Browser represents a novel mechanism by which the researchers can leverage maize sequence information toward crop improvement directly. Database URL: http://gbrowse.maizegdb.org/ PMID:20627860

  17. Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii).

    PubMed

    Branà, Maria Teresa; Cimmarusti, Maria Teresa; Haidukowski, Miriam; Logrieco, Antonio Francesco; Altomare, Claudio

    2017-01-01

    Aflatoxin B1 (AFB1) is the most harmful mycotoxin that occurs as natural contaminant of agricultural commodities, particularly maize. Practical solutions for detoxification of contaminated staples and reduction of agricultural wastes are scarce. We investigated the capability of the white-rot and edible fungus Plerotus eryngii (king oyster mushroom) to degrade AFB1 both in vitro and in a laboratory-scale mushroom cultivation, using a substrate similar to that routinely used in mushroom farms. In malt extract broth, degradation of AFB1 (500 ng/mL) by nine isolates of P. eryngii ranged from 81 to 99% after 10 days growth, and reached 100% for all isolates after 30 days. The growth of P. eryngii on solid medium (malt extract-agar, MEA) was significantly reduced at concentrations of AFB1 500 ng/mL or higher. However, the addition of 5% wheat straw to the culture medium increased the tolerance of P. eryngii to AFB1 and no inhibition was observed at a AFB1 content of 500 ng/mL; degradation of AFB1 in MEA supplemented with 5% wheat straw and 2.5% (w/v) maize flour was 71-94% after 30 days of growth. Further, AFB1 degradation by P. eryngii strain ITEM 13681 was tested in a laboratory-scale mushroom cultivation. The mushroom growth medium contained 25% (w/w) of maize spiked with AFB1 to the final content of 128 μg/kg. Pleurotus eryngii degraded up to 86% of the AFB1 in 28 days, with no significant reduction of either biological efficiency or mushroom yield. Neither the biomass produced on the mushroom substrate nor the mature basidiocarps contained detectable levels of AFB1 or its metabolite aflatoxicol, thus ruling out the translocation of these toxins through the fungal thallus. These findings make a contribution towards the development of a novel technology for remediation of AFB1- contaminated corn through the exploitation of the degradative capability of P. eryngii and its bioconversion into high nutritional value material intended for feed production.

  18. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    PubMed Central

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  19. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  20. Sequence-Based Analysis of the Intestinal Microbiota of Sows and Their Offspring Fed Genetically Modified Maize Expressing a Truncated Form of Bacillus thuringiensis Cry1Ab Protein (Bt Maize)

    PubMed Central

    Buzoianu, Stefan G.; Walsh, Maria C.; Rea, Mary C.; Quigley, Lisa; O'Sullivan, Orla; Cotter, Paul D.; Ross, R. Paul; Lawlor, Peadar G.

    2013-01-01

    The aim was to investigate transgenerational effects of feeding genetically modified (GM) maize expressing a truncated form of Bacillus thuringiensis Cry1Ab protein (Bt maize) to sows and their offspring on maternal and offspring intestinal microbiota. Sows were assigned to either non-GM or GM maize dietary treatments during gestation and lactation. At weaning, offspring were assigned within sow treatment to non-GM or GM maize diets for 115 days, as follows: (i) non-GM maize-fed sow/non-GM maize-fed offspring (non-GM/non-GM), (ii) non-GM maize-fed sow/GM maize-fed offspring (non-GM/GM), (iii) GM maize-fed sow/non-GM maize-fed offspring (GM/non-GM), and (iv) GM maize-fed sow/GM maize-fed offspring (GM/GM). Offspring of GM maize-fed sows had higher counts of fecal total anaerobes and Enterobacteriaceae at days 70 and 100 postweaning, respectively. At day 115 postweaning, GM/non-GM offspring had lower ileal Enterobacteriaceae counts than non-GM/non-GM or GM/GM offspring and lower ileal total anaerobes than pigs on the other treatments. GM maize-fed offspring also had higher ileal total anaerobe counts than non-GM maize-fed offspring, and cecal total anaerobes were lower in non-GM/GM and GM/non-GM offspring than in those from the non-GM/non-GM treatment. The only differences observed for major bacterial phyla using 16S rRNA gene sequencing were that fecal Proteobacteria were less abundant in GM maize-fed sows prior to farrowing and in offspring at weaning, with fecal Firmicutes more abundant in offspring. While other differences occurred, they were not observed consistently in offspring, were mostly encountered for low-abundance, low-frequency bacterial taxa, and were not associated with pathology. Therefore, their biological relevance is questionable. This confirms the lack of adverse effects of GM maize on the intestinal microbiota of pigs, even following transgenerational consumption. PMID:24096421

  1. Seed desiccation mechanisms co-opted for vegetative desiccation in the resurrection grass Oropetium thomaeum.

    PubMed

    VanBuren, Robert; Wai, Ching Man; Zhang, Qingwei; Song, Xiaomin; Edger, Patrick P; Bryant, Doug; Michael, Todd P; Mockler, Todd C; Bartels, Dorothea

    2017-10-01

    Resurrection plants desiccate during periods of prolonged drought stress, then resume normal cellular metabolism upon water availability. Desiccation tolerance has multiple origins in flowering plants, and it likely evolved through rewiring seed desiccation pathways. Oropetium thomaeum is an emerging model for extreme drought tolerance, and its genome, which is the smallest among surveyed grasses, was recently sequenced. Combining RNA-seq, targeted metabolite analysis and comparative genomics, we show evidence for co-option of seed-specific pathways during vegetative desiccation. Desiccation-related gene co-expression clusters are enriched in functions related to seed development including several seed-specific transcription factors. Across the metabolic network, pathways involved in programmed cell death inhibition, ABA signalling and others are activated during dehydration. Oleosins and oil bodies that typically function in seed storage are highly abundant in desiccated leaves and may function for membrane stability and storage. Orthologs to seed-specific LEA proteins from rice and maize have neofunctionalized in Oropetium with high expression during desiccation. Accumulation of sucrose, raffinose and stachyose in drying leaves mirrors sugar accumulation patterns in maturing seeds. Together, these results connect vegetative desiccation with existing seed desiccation and drought responsive pathways and provide some key candidate genes for engineering improved drought tolerance in crop plants. © 2017 John Wiley & Sons Ltd.

  2. Occultifur kilbournensis f.a. sp. nov., a new member of the Cystobasidiales associated with maize (Zea mays) cultivation.

    PubMed

    Kurtzman, Cletus P; Robnett, Christie J

    2015-05-01

    During a study of microorganisms associated with maize (Zea mays) cultivation, yeasts were isolated from overwintered stalks, cobs and surrounding soil, which were collected from an agricultural field in south-central Illinois, USA. Predominant among isolates were two species of Cryptococcus (Cr. flavescens, Cr. magnus) and a red yeast that D1/D2 LSU rRNA gene sequences revealed to be a new species of the basidiomycete yeast genus Occultifur. The species, which was not detected in the same field during the growing season, is described here as Occultifur kilbournensis (MycoBank number MB 811259; type strain NRRL Y-63695, CBS 13982, GenBank numbers, D1/D2 LSU rRNA gene, KP413160, ITS, KP413162; allotype strain NRRL Y-63699, CBS 13983). Mixture of the type and allotype strains resulted in formation of hyphae with clamp connections and a small number of apparent basidia following incubation on 5% malt extract agar at 15 °C for 2 months. In view of the uncertainty of the life cycle, the new species is being designated as forma asexualis. From analysis of D1/D2 and ITS nucleotide sequences, the new species is most closely related to Occultifur externus.

  3. Spatial distribution of calcium in food, water and soil and its possible influence on rickets disease in Northern Nigeria.

    PubMed

    Hartmann, Lena; Sponholz, Barbara

    2012-08-01

    Since the 1990s, children of the Gbagyi tribe in Northern Nigeria have been suffering severe rickets with an incidence of up to 40% in the children's generation. The disease seems to be prevalent in an area of approximately 100 km(2) south-east of Kaduna. According to broad medical studies in that area, there is no evidence for a genetic disposition but for a nutritional cause of the disease. A lack of calcium was found in blood and was calculated to originate from diet. We therefore checked parent material, soil, maize cobs (Zea mays) and drinking water for their specific Ca contents from a region with rickets problem (study area A) and compared the results to Ca amounts in similar samples from a region where rickets is unknown among the Gbagyi population (study area B). It thereby became apparent that there are no differences in mineralogical composition of the parent material between the study areas, but that Ca contents in soil, maize cobs and drinking water are 47.6%, 26.6%, respectively, 79.1% lower in study area A compared to study area B. This result suggests that there may indeed be a nutritionally and/or environmentally influence on rickets disease. Nevertheless, further research on this topic is required.

  4. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28.

    PubMed

    Pla, M; Vilardell, J; Guiltinan, M J; Marcotte, W R; Niogret, M F; Quatrano, R S; Pagès, M

    1993-01-01

    The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.

  5. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  6. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition.

    PubMed

    Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying

    2016-12-01

    Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.

  7. 30 CFR 15.22 - Tolerances for performance, wrapper, and specific gravity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of that specified in the approval. (b) The weight of wrapper per 100 grams of explosive shall be within ±2 grams of that specified in the approval. (c) The apparent specific gravity of the explosive...

  8. 30 CFR 15.22 - Tolerances for performance, wrapper, and specific gravity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent of that specified in the approval. (b) The weight of wrapper per 100 grams of explosive shall be within ±2 grams of that specified in the approval. (c) The apparent specific gravity of the explosive...

  9. 30 CFR 15.22 - Tolerances for performance, wrapper, and specific gravity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of that specified in the approval. (b) The weight of wrapper per 100 grams of explosive shall be within ±2 grams of that specified in the approval. (c) The apparent specific gravity of the explosive...

  10. 30 CFR 15.22 - Tolerances for performance, wrapper, and specific gravity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of that specified in the approval. (b) The weight of wrapper per 100 grams of explosive shall be within ±2 grams of that specified in the approval. (c) The apparent specific gravity of the explosive...

  11. Global maize production, utilization, and consumption.

    PubMed

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  12. Effects of lipid sources, lysophospholipids and organic acids in maize-based broiler diets on nutrient balance, liver concentration of fat-soluble vitamins, jejunal microbiota and performance.

    PubMed

    Polycarpo, G V; Burbarelli, M F C; CarÃo, A C P; Merseguel, C E B; Dadalt, J C; Maganha, S R L; Sousa, R L M; Cruz-Polycarpo, V C; Albuquerque, R

    2016-12-01

    Three experiments with a 2 × 2 × 2 factorial arrangement were conducted to evaluate maize-based diets for broilers containing different lipid sources [soybean oil (S) or beef tallow (T)] supplemented with or without lysophospholipids and organic acids on nutrient balance (Experiment I, evaluation period of 10-14 d), on liver concentration of fat-soluble vitamins, on jejunal microbiota (Experiment II, sampling at d 14) and on performance (Experiment III, accumulated periods of 1-14, 1-21 and 1-42 d). A total of 1344 male chicks were used. In each experiment, the birds were allotted in a completely randomised design with 8 replications. The lysophospholipids were mainly composed of lysolecithins and the organic acids blend was constituted by lactic (40%), acetic (7%) and butyric acids (1%). An interaction between lipid sources and lysophospholipids was observed on faecal apparent digestibility of lipid (ADL), which improved with lysophospholipids addition in T diets. Broilers fed on S had higher ADL and faecal apparent digestibility of nitrogen-corrected gross energy (ADGE N ). It was not possible to demonstrate a significant treatment effect on the liver concentration of vitamins A and E, even with the differences in fatty acid profile between S and T. Enterobacteria values were below the detection threshold. Lysophospholipid supplementation reduced gram-positive cocci in T-fed birds. S diets promoted lower total anaerobe counts compared with T diets, independent of additives. S diets increased BW gain and feed:gain ratio in all evaluation periods. Lysophospholipids and organic acids improved feed:gain ratio at 1-21 d in T diets. Furthermore, main effects were observed for lysophospholipids and organic acids at 1-42 d, which increased BW gain and improved feed:gain ratio, respectively. No positive interactions between additives were found.

  13. Quality Protein Maize for Africa: Closing the Protein Inadequacy Gap in Vulnerable Populations12

    PubMed Central

    Nuss, Emily T.; Tanumihardjo, Sherry A.

    2011-01-01

    Africa shares a unique relationship with maize (Zea mays). After its introduction from New World explorers, maize was quickly adopted as the cornerstone of local cuisine, especially in sub-Saharan countries. Although maize provides macro- and micronutrients required for humans, it lacks adequate amounts of the essential amino acids lysine and tryptophan. For those consuming >50% of their daily energy from maize, pandemic protein malnutrition may exist. Severe protein and energy malnutrition increases susceptibility to life-threatening diseases such as tuberculosis and gastroenteritis. A nutritionally superior maize cultivar named quality protein maize (QPM) represents nearly one-half century of research dedicated to malnutrition eradication. Compared with traditional maize types, QPM has twice the amount of lysine and tryptophan, as well as protein bioavailability that rivals milk casein. Animal and human studies suggest that substituting QPM for common maize results in improved health. However, QPM’s practical contribution to maize-subsisting populations remains unresolved. Herein, total protein and essential amino acid requirements recommended by the WHO and the Institute of Medicine were applied to estimate QPM target intake levels for young children and adults, and these were compared with mean daily maize intakes by African country. The comparisons revealed that ∼100 g QPM is required for children to maintain adequacy of lysine, the most limiting amino acid, and nearly 500 g is required for adults. This represents a 40% reduction in maize intake relative to common maize to meet protein requirements. The importance of maize in Africa underlines the potential for QPM to assist in closing the protein inadequacy gap. PMID:22332054

  14. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants

    PubMed Central

    Orlovskis, Zigmunds; Canale, Maria Cristina; Haryono, Mindia; Lopes, João Roberto Spotti

    2017-01-01

    Background and Aims Maize bushy stunt phytoplasma (MBSP) is a bacterial pathogen of maize (Zea mays L.) across Latin America. MBSP belongs to the 16SrI-B sub-group within the genus ‘Candidatus Phytoplasma’. MBSP and its insect vector Dalbulus maidis (Hemiptera: Cicadellidae) are restricted to maize; both are thought to have coevolved with maize during its domestication from a teosinte-like ancestor. MBSP-infected maize plants show a diversity of symptoms. and it is likely that MBSP is under strong selection for increased virulence and insect transmission on maize hybrids that are widely grown in Brazil. In this study it was investigated whether the differences in genome sequences of MBSP isolates from two maize-growing regions in South-east Brazil explain variations in symptom severity of the MBSP isolates on various maize genotypes. Methods MBSP isolates were collected from maize production fields in Guaíra and Piracicaba in South-east Brazil for infection assays. One representative isolate was chosen for de novo whole-genome assembly and for the alignment of sequence reads from the genomes of other phytoplasma isolates to detect polymorphisms. Statistical methods were applied to investigate the correlation between variations in disease symptoms of infected maize plants and MBSP sequence polymorphisms. Key Results MBSP isolates contributed consistently to organ proliferation symptoms and maize genotype to leaf necrosis, reddening and yellowing of infected maize plants. The symptom differences are associated with polymorphisms in a phase-variable lipoprotein, which is a candidate effector, and an ATP-dependent lipoprotein ABC export protein, whereas no polymorphisms were observed in other candidate effector genes. Lipoproteins and ABC export proteins activate host defence responses, regulate pathogen attachment to host cells and activate effector secretion systems in other pathogens. Conclusions Polymorphisms in two putative virulence genes among MBSP isolates from maize-growing regions in South-east Brazil are associated with variations in organ proliferation symptoms of MBSP-infected maize plants. PMID:28069632

  15. Maize GO annotation—methods, evaluation, and review (maize-GAMER)

    USDA-ARS?s Scientific Manuscript database

    We created a new high-coverage, robust, and reproducible functional annotation of maize protein-coding genes based on Gene Ontology (GO) term assignments. Whereas the existing Phytozome and Gramene maize GO annotation sets only cover 41% and 56% of maize protein-coding genes, respectively, this stu...

  16. Mining natural variation for maize improvement: Selection on phenotypes and genes

    USDA-ARS?s Scientific Manuscript database

    Maize is highly genetically and phenotypically diverse. Tropical maize and teosinte are important genetic resources that harbor unique alleles not found in temperate maize hybrids. To access these resources, breeders must be able to extract favorable unique alleles from tropical maize and teosinte f...

  17. Metabolic pathway resources at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    Two maize metabolic networks are available at MaizeGDB: MaizeCyc (http://maizecyc.maizegdb.org, also at Gramene) and CornCyc (http://corncyc.maizegdb.org, also at the Plant Metabolic Network). MaizeCyc was developed by Gramene, and CornCyc by the Plant Metabolic Network, both in collaboration with M...

  18. Viruses in maize and Johnsongrass in southern Ohio

    USDA-ARS?s Scientific Manuscript database

    Two major maize viruses in the United States, Maize dwarf mosaic virus and Maize chlorotic dwarf virus, were first described in Southern Ohio and surrounding regions in the 1960s when they were major problems in maize (Zea mays L.) production. Planting resistant varieties and changing cultural prac...

  19. MaizeGDB: Curation and outreach go hand-in-hand

    USDA-ARS?s Scientific Manuscript database

    This is a brief synopsis of the formal and informal interactions among MaizeGDB (www.maizegdb.org) and maize researchers; and among MaizeGDB and other stakeholders, especially the MaizeGDB Working Group and farmers growing this important crop. Particular note is made of the efficacy in distribution ...

  20. MaizeGDB: enabling access to basic, translational, and applied research information

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the Maize Genetics and Genomics Database (available online at http://www.maizegdb.org). The MaizeGDB project is not simply an online database and website but rather an information service to maize researchers that supports customized data access and analysis needs to individual research...

  1. Breeder survey, tools, and resources to visualize diversity and pedigree relationships at MaizeGDB

    USDA-ARS?s Scientific Manuscript database

    In collaboration with maize researchers, the MaizeGDB Team prepared a survey to identify breeder needs for visualizing pedigrees, diversity data, and haplotypes, and distributed it to the maize community on behalf of the Maize Genetics Executive Committee (Summer 2015). We received 48 responses from...

  2. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.

    PubMed

    Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong

    2016-08-01

    The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.

  3. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    PubMed

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  4. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    PubMed Central

    Pechanova, Olga; Pechan, Tibor

    2015-01-01

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus. PMID:26633370

  5. Identification of Genetic Differentiation between Waxy and Common Maize by SNP Genotyping

    PubMed Central

    Hao, Derong; Zhang, Zhenliang; Cheng, Yujing; Chen, Guoqing; Lu, Huhua; Mao, Yuxiang; Shi, Mingliang; Huang, Xiaolan; Zhou, Guangfei; Xue, Lin

    2015-01-01

    Waxy maize (Zea mays L. var. ceratina) is an important vegetable and economic crop that is thought to have originated from cultivated flint maize and most recently underwent divergence from common maize. In this study, a total of 110 waxy and 110 common maize inbred lines were genotyped with 3072 SNPs to evaluate the genetic diversity, population structure, and linkage disequilibrium decay as well as identify putative loci that are under positive selection. The results revealed abundant genetic diversity in the studied panel and that genetic diversity was much higher in common than in waxy maize germplasms. Principal coordinate analysis and neighbor-joining cluster analysis consistently classified the 220 accessions into two major groups and a mixed group with mixed ancestry. Subpopulation structure in both waxy and common maize sets were associated with the germplasm origin and corresponding heterotic groups. The LD decay distance (1500–2000 kb) in waxy maize was lower than that in common maize. Fourteen candidate loci were identified as under positive selection between waxy and common maize at the 99% confidence level. The information from this study can assist waxy maize breeders by enhancing parental line selection and breeding program design. PMID:26566240

  6. Ontogeny of the Maize Shoot Apical Meristem[W][OA

    PubMed Central

    Takacs, Elizabeth M.; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J.; Schnable, Patrick S.; Timmermans, Marja C.P.; Sun, Qi; Nettleton, Dan; Scanlon, Michael J.

    2012-01-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize. PMID:22911570

  7. Host Status of Five Weed Species and Their Effects on Pratylenchus zeae Infestation of Maize.

    PubMed

    Jordaan, E M; De Waele, D

    1988-10-01

    The host suitability of five of the most common weed species occurring in maize (Zea mays L.) fields in South Africa to Pratylenchus zeae was tested. Based on the number of nematodes per root unit, mealie crotalaria (Crotalaria sphaerocarpa) was a good host; goose grass (Eleusine indica), common pigweed (Amaranthus hybridus), and thorn apple (Datura stramonium) were moderate hosts; and khaki weed (Tagetes minuta) was a poor host. Only the root residues of khaki weed suppressed the P. zeae infestation of subsequently grown maize. When goose grass, khaki weed, and mealie crotalaria were grown in association with maize in soil infested with P. zeae, goose grass and khaki weed severely suppressed maize root development; this resulted in a low number of nematodes per maize root system and a high number of nematodes per maize root unit. Mealie crotalaria did not restrict maize root growth and did not affect nematode densities per maize root system or maize root unit. Special attention should be given to the control of mealie crotalaria, which is a good host for P. zeae, and goose grass, which, in addition to its ability to compete with maize, is also a suitable host for P. zeae.

  8. Host Status of Five Weed Species and Their Effects on Pratylenchus zeae Infestation of Maize

    PubMed Central

    Jordaan, Elizabeth M.; De Waele, D.

    1988-01-01

    The host suitability of five of the most common weed species occurring in maize (Zea mays L.) fields in South Africa to Pratylenchus zeae was tested. Based on the number of nematodes per root unit, mealie crotalaria (Crotalaria sphaerocarpa) was a good host; goose grass (Eleusine indica), common pigweed (Amaranthus hybridus), and thorn apple (Datura stramonium) were moderate hosts; and khaki weed (Tagetes minuta) was a poor host. Only the root residues of khaki weed suppressed the P. zeae infestation of subsequently grown maize. When goose grass, khaki weed, and mealie crotalaria were grown in association with maize in soil infested with P. zeae, goose grass and khaki weed severely suppressed maize root development; this resulted in a low number of nematodes per maize root system and a high number of nematodes per maize root unit. Mealie crotalaria did not restrict maize root growth and did not affect nematode densities per maize root system or maize root unit. Special attention should be given to the control of mealie crotalaria, which is a good host for P. zeae, and goose grass, which, in addition to its ability to compete with maize, is also a suitable host for P. zeae. PMID:19290263

  9. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  10. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments

    PubMed Central

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil’s scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost. PMID:26694874

  11. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    PubMed

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  12. Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays)

    PubMed Central

    2005-01-01

    Unlike animals which accumulate glutathione (γ-glutamyl-L-cysteinyl-glycine) alone as their major thiol antioxidant, several crops synthesize alternative forms of glutathione by varying the carboxy residue. The molecular basis of this variation is not well understood, but the substrate specificity of the respective GSs (glutathione synthetases) has been implicated. To investigate their substrate tolerance, five GS-like cDNAs have been cloned from plants that can accumulate alternative forms of glutathione, notably soya bean [hGSH (homoglutathione or γ-glutamyl-L-cysteinyl-β-alanine)], wheat (hydroxymethylglutathione or γ-glutamyl-L-cysteinyl-serine) and maize (γ-Glu-Cys-Glu). The respective recombinant GSs were then assayed for the incorporation of differing C-termini into γ-Glu-Cys. The soya bean enzyme primarily incorporated β-alanine to form hGSH, whereas the GS enzymes from cereals preferentially catalysed the formation of glutathione. However, when assayed with other substrates, several GSs and one wheat enzyme in particular were able to synthesize a diverse range of glutathione variants by incorporating unusual C-terminal moieties including D-serine, non-natural amino acids and α-amino alcohols. Our results suggest that plant GSs are capable of producing a diverse range of glutathione homologues depending on the availability of the acyl acceptor. PMID:16008521

  13. Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants.

    PubMed

    Islam, Faisal; Yasmeen, Tahira; Riaz, Muhammad; Arif, Muhammad Saleem; Ali, Shafaqat; Raza, Syed Hammad

    2014-12-01

    Plant-associated bacteria can have beneficial effects on the growth and health of their host. However, the role of plant growth promoting bacteria (PGPR), under metal stress, has not been widely investigated. The present study investigated the possible mandatory role of plant growth promoting rhizobacteria in protecting plants from zinc (Zn) toxicity. The exposure of maize plants to 50µM zinc inhibited biomass production, decreased chlorophyll, total soluble protein and strongly increased accumulation of Zn in both root and shoot. Similarly, Zn enhanced hydrogen peroxide, electrolyte leakage and lipid peroxidation as indicated by malondaldehyde accumulation. Pre-soaking with novel Zn tolerant bacterial strain Proteus mirabilis (ZK1) isolated zinc (Zn) contaminated soil, alleviated the negative effect of Zn on growth and led to a decrease in oxidative injuries caused by Zn. Furthermore, strain ZK1 significantly enhanced the activities of catalase, guaiacol peroxidase, superoxide dismutase and ascorbic acid but lowered the Proline accumulation in Zn stressed plants. The results suggested that the inoculation of Zea mays plants with P. mirabilis during an earlier growth period could be related to its plant growth promoting activities and avoidance of cumulative damage upon exposure to Zn, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Modelling predicts that tolerance to drought during reproductive development will be required for high yield potential and stability of wheat in Europe

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail A.; Stratonovitch, Pierre; Paul, Matthew J.

    2017-04-01

    Short periods of extreme weather, such as a spell of high temperature or drought during a sensitive stage of development, could result in substantial yield losses due to reduction in grain number and grain size. In a modelling study (Stratonovitch & Semenov 2015), heat tolerance around flowering in wheat was identified as a key trait for increased yield potential in Europe under climate change. Ji et all (Ji et al. 2010) demonstrated cultivar specific responses of yield to drought stress around flowering in wheat. They hypothesised that carbohydrate supply to anthers may be the key in maintaining pollen fertility and grain number in wheat. It was shown in (Nuccio et al. 2015) that genetically modified varieties of maize that increase the concentration of sucrose in ear spikelets, performed better under non-drought and drought conditions in field experiments. The objective of this modelling study was to assess potential benefits of tolerance to drought during reproductive development for wheat yield potential and yield stability across Europe. We used the Sirius wheat model to optimise wheat ideotypes for 2050 (HadGEM2, RCP8.5) climate scenarios at selected European sites. Eight cultivar parameters were optimised to maximise mean yields, including parameters controlling phenology, canopy growth and water limitation. At those sites where water could be limited, ideotypes sensitive to drought produced substantially lower mean yields and higher yield variability compare with tolerant ideotypes. Therefore, tolerance to drought during reproductive development is likely to be required for wheat cultivars optimised for the future climate in Europe in order to achieve high yield potential and yield stability.

  15. Poaceae vs. Abiotic Stress: Focus on Drought and Salt Stress, Recent Insights and Perspectives

    PubMed Central

    Landi, Simone; Hausman, Jean-Francois; Guerriero, Gea; Esposito, Sergio

    2017-01-01

    Poaceae represent the most important group of crops susceptible to abiotic stress. This large family of monocotyledonous plants, commonly known as grasses, counts several important cultivated species, namely wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), and barley (Hordeum vulgare). These crops, notably, show different behaviors under abiotic stress conditions: wheat and rice are considered sensitive, showing serious yield reduction upon water scarcity and soil salinity, while barley presents a natural drought and salt tolerance. During the green revolution (1940–1960), cereal breeding was very successful in developing high-yield crops varieties; however, these cultivars were maximized for highest yield under optimal conditions, and did not present suitable traits for tolerance under unfavorable conditions. The improvement of crop abiotic stress tolerance requires a deep knowledge of the phenomena underlying tolerance, to devise novel approaches and decipher the key components of agricultural production systems. Approaches to improve food production combining both enhanced water use efficiency (WUE) and acceptable yields are critical to create a sustainable agriculture in the future. This paper analyzes the latest results on abiotic stress tolerance in Poaceae. In particular, the focus will be directed toward various aspects of water deprivation and salinity response efficiency in Poaceae. Aspects related to cell wall metabolism will be covered, given the importance of the plant cell wall in sensing environmental constraints and in mediating a response; the role of silicon (Si), an important element for monocots' normal growth and development, will also be discussed, since it activates a broad-spectrum response to different exogenous stresses. Perspectives valorizing studies on landraces conclude the survey, as they help identify key traits for breeding purposes. PMID:28744298

  16. Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea.

    PubMed

    Shagol, Charlotte C; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Sundaram, Subbiah; Sa, Tongmin

    2014-01-01

    The Janghang smelter in Chungnam, South Korea started in 1936 was subsequently shutdown in 1989 due to heavy metal (loid) pollution concerns in the vicinity. Thus, there is a need for the soil in the area to be remediated to make it usable again especially for agricultural purposes. The present study was conducted to exploit the potential of arsenic (As)-tolerant bacteria thriving in the vicinity of the smelter-polluted soils to enhance phytoremediation of hazardous As. We studied the genetic and taxonomic diversity of 21 As-tolerant bacteria isolated from soils nearer to and away from the smelter. These isolates belonging to the genera Brevibacterium, Pseudomonas, Microbacterium, Rhodococcus, Rahnella, and Paenibacillus, could tolerate high concentrations of arsenite (As(III)) and arsenate (As(V)) with the minimum inhibitory concentration ranging from 3 to >20 mM for NaAsO2 and 140 to 310 mM NaH2AsO4 · 7H2O, respectively. All isolates exhibited As(V) reduction except Pseudomonas koreensis JS123, which exhibited both oxidation and reduction of As. Moreover, all the 21 isolates produced indole acetic acid (IAA), 13 isolates exhibited 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, 12 produced siderophore, 17 solubilized phosphate, and 13 were putative nitrogen fixers under in vitro conditions. Particularly, Rhodococcus aetherivorans JS2210, P. koreensis JS2214, and Pseudomonas sp. JS238 consistently increased root length of maize in the presence of 100 and 200 μM As(V). Possible utilization of these As-tolerant plant-growth-promoting bacteria can be a potential strategy in increasing the efficiency of phytoremediation in As-polluted soils.

  17. Surveying the Maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    PubMed Central

    Braun, Bremen L.; Schott, David A.; Portwood, II, John L.; Schaeffer, Mary L.; Harper, Lisa C.; Gardiner, Jack M.; Cannon, Ethalinda K.; Andorf, Carson M.

    2017-01-01

    Abstract The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on behalf of the Maize Genetics Executive Committee in Summer 2015. The survey garnered 48 responses from maize researchers, of which more than half were self-identified as breeders. The survey showed that the maize researchers considered their top priorities for visualization as: (i) displaying single nucleotide polymorphisms in a given region for a given list of lines, (ii) showing haplotypes for a given list of lines and (iii) presenting pedigree relationships visually. The survey also asked which populations would be most useful to display. The following two populations were on top of the list: (i) 3000 publicly available maize inbred lines used in Romay et al. (Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol, 2013;14:R55) and (ii) maize lines with expired Plant Variety Protection Act (ex-PVP) certificates. Driven by this strong stakeholder input, MaizeGDB staff are currently working in four areas to improve its interface and web-based tools: (i) presenting immediate progenies of currently available stocks at the MaizeGDB Stock pages, (ii) displaying the most recent ex-PVP lines described in the Germplasm Resources Information Network (GRIN) on the MaizeGDB Stock pages, (iii) developing network views of pedigree relationships and (iv) visualizing genotypes from SNP-based diversity datasets. These survey results can help other biological databases to direct their efforts according to user preferences as they serve similar types of data sets for their communities. Database URL: https://www.maizegdb.org PMID:28605768

  18. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes.

    PubMed

    Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong

    2012-03-01

    Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.

  19. Surveying the maize community for their diversity and pedigree visualization needs to prioritize tool development and curation

    USDA-ARS?s Scientific Manuscript database

    The Maize Genetics and Genomics Database (MaizeGDB) team prepared a survey to identify breeders’ needs for visualizing pedigrees, diversity data, and haplotypes in order to prioritize tool development and curation efforts at MaizeGDB. The survey was distributed to the maize research community on beh...

  20. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa

    USDA-ARS?s Scientific Manuscript database

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on...

  1. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.

    PubMed

    Kermicle, Jerry L

    2006-01-01

    Some populations of maize's closest relatives, the annual teosintes of Mexico, are unreceptive to maize pollen. When present in the pistil (silk and ovary) a number of maize genes discriminate against or exclude pollen not carrying the same allele. An analogous gene Tcb1-s was found in some teosinte populations but not in sympatric or parapatric maize. It was polymorphic among populations of teosinte growing wild, but regularly present in populations growing in intimate association with maize as a weed. Introduction of Tcb1-s into maize substantially to fully restored compatibility with Tcb1-s carrying teosintes. Although Tcb1-s pollen can fertilize tcb1 tcb1 maize, it is at a competitive disadvantage relative to tcb1 pollen. Hence, the influence of Tcb1-s on crossability is bidirectional. In the absence of maize, Tcb1-s can increase in teosinte populations without improving their fitness. In the presence of maize, Tcb1-s appears to have been co-opted to provide reproductive isolation for adaptation to a cultivated habitat.

  2. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape

    PubMed Central

    Tank, Jennifer L.; Rosi-Marshall, Emma J.; Royer, Todd V.; Whiles, Matt R.; Griffiths, Natalie A.; Frauendorf, Therese C.; Treering, David J.

    2010-01-01

    Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape. PMID:20876106

  3. Occurrence of maize detritus and a transgenic insecticidal protein (Cry1Ab) within the stream network of an agricultural landscape.

    PubMed

    Tank, Jennifer L; Rosi-Marshall, Emma J; Royer, Todd V; Whiles, Matt R; Griffiths, Natalie A; Frauendorf, Therese C; Treering, David J

    2010-10-12

    Widespread planting of maize throughout the agricultural Midwest may result in detritus entering adjacent stream ecosystems, and 63% of the 2009 US maize crop was genetically modified to express insecticidal Cry proteins derived from Bacillus thuringiensis. Six months after harvest, we conducted a synoptic survey of 217 stream sites in Indiana to determine the extent of maize detritus and presence of Cry1Ab protein in the stream network. We found that 86% of stream sites contained maize leaves, cobs, husks, and/or stalks in the active stream channel. We also detected Cry1Ab protein in stream-channel maize at 13% of sites and in the water column at 23% of sites. We found that 82% of stream sites were adjacent to maize fields, and Geographical Information Systems analyses indicated that 100% of sites containing Cry1Ab-positive detritus in the active stream channel had maize planted within 500 m during the previous crop year. Maize detritus likely enters streams throughout the Corn Belt; using US Department of Agriculture land cover data, we estimate that 91% of the 256,446 km of streams/rivers in Iowa, Illinois, and Indiana are located within 500 m of a maize field. Maize detritus is common in low-gradient stream channels in northwestern Indiana, and Cry1Ab proteins persist in maize leaves and can be measured in the water column even 6 mo after harvest. Hence, maize detritus, and associated Cry1Ab proteins, are widely distributed and persistent in the headwater streams of a Corn Belt landscape.

  4. A multiplex PCR method of detecting recombinant DNAs from five lines of genetically modified maize.

    PubMed

    Matsuoka, T; Kuribara, H; Akiyama, H; Miura, H; Goda, Y; Kusakabe, Y; Isshiki, K; Toyoda, M; Hino, A

    2001-02-01

    Seven lines of genetically modified (GM) maize have been authorized in Japan as foods and feeds imported from the USA. We improved a multiplex PCR method described in the previous report in order to distinguish the five lines of GM maize. Genomic DNA was extracted from GM maize with a silica spin column kit, which could reduce experimental time and improve safety in the laboratory and potentially in the environment. We sequenced recombinant DNA (r-DNA) introduced into GM maize, and re-designed new primer pairs to increase the specificity of PCR to distinguish five lines of GM maize by multiplex PCR. A primer pair for the maize intrinsic zein gene (Ze1) was also designed to confirm the presence of amplifiable maize DNA. The lengths of PCR products using these six primer pairs were different. The Ze1 and the r-DNAs from the five lines of GM maize were qualitatively detected in one tube. The specific PCR bands were distinguishable from each other on the basis of the expected length. The r-DNA could be detected from maize samples containing 0.5% of each of the five lines of GM maize. The sensitivity would be acceptable to secure the verification of non-GMO materials and to monitor the reliability of the labeling system.

  5. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty.

    PubMed

    Gao, Yong; Wu, Meiqin; Zhang, Menjiao; Jiang, Wei; Liang, Enxing; Zhang, Dongping; Zhang, Changquan; Xiao, Ning; Chen, Jianmin

    2018-06-05

    ZmPIF3 plays an important role in ABA-mediated regulation of stomatal closure in the control of water loss, and can improve both drought tolerance and did not affect the grain yield in the transgenic rice. Phytochrome-interacting factors (PIFs) are a subfamily of basic helix-loop-helix (bHLH) transcription factors and play important roles in regulating plant growth and development. In our previous study, overexpression of a maize PIFs family gene, ZmPIF3, improved drought tolerance in transgenic rice. In this study, measurement of water loss rate, transpiration rate, stomatal conductance, guard cell aperture, density and length of ZmPIF3 transgenic plants showed that ZmPIF3 can enhance water-saving and drought-resistance by decreasing stomatal aperture and reducing transpiration in both transgenic rice and transgenic Arabidopsis. Scrutiny of sensitivity to ABA showed that ZmPIF3 transgenic rice was hypersensitive to ABA, while the endogenous ABA level was not significantly changed. These results indicate that ZmPIF3 plays a major role in the ABA signaling pathway. In addition, DGE results further suggest that ZmPIF3 participates in the ABA signaling pathway and regulates stomatal aperture in rice. Comparison analysis of the phenotype, physiology, and transcriptome of ZmPIF3 transgenic rice compared to control plants further suggests that ZmPIF3 is a positive regulator of ABA signaling and enhances water-saving and drought-resistance traits by reducing stomatal openings to control water loss. Moreover, investigation of the agronomic traits of ZmPIF3 transgenic rice from four cultivating seasons showed that ZmPIF3 expression increased the tiller and panicle number and did not affect the grain yield in the transgenic rice. These results demonstrate that ZmPIF3 is a promising candidate gene in the transgenic breeding of water-saving and drought-resistant rice plants and crop improvement.

  6. Supplementing dietary sugar promotes endoplasmic reticulum stress-independent insulin resistance and fatty liver in goose.

    PubMed

    Geng, Tuoyu; Zhao, Xing; Xia, Lili; Liu, Long; Li, Fuyuan; Yang, Biao; Wang, Qianqian; Montgomery, Sean; Cui, Hengmi; Gong, Daoqing

    2016-08-05

    It is known that endoplasmic reticulum stress (ERS) contributes to insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD) in mammals. However, we recently demonstrated that overfeeding with a traditional diet (mainly consisting of cooked maize) does not induce ERS in goose. As cellular studies show that high glucose and palmitate can trigger ERS in mammalian cells, we hypothesized that supplementing sugar to the traditional diet could induce ERS, thus promoting insulin resistance and fatty liver. To test the hypothesis, we first treated goose primary hepatocytes with high glucose (25 mM and 50 mM) and palmitate (0.5 mM) supplemented with or without 0.25 mM oleate. Data indicated that, as in mammalian cells, high glucose and palmitate indeed induced ERS in goose primary hepatocytes, and palmitate-induced ERS was suppressed by supplemental 0.25 mM oleate. We then tested the hypothesis with an in vivo study, in which Landes geese overfed with traditional or novel diets (i.e., the traditional diet supplemented with sugar) were compared with control geese (normally fed with cooked maize) for ERS, IR and fatty liver. The differences in glucose tolerance, insulin tolerance and postprandial blood glucose between the geese overfed with traditional and novel diets suggested that supplementing dietary sugar promoted IR. This promotion was accompanied with an increasing trend of liver weight and abdominal fat weight relative to body weight. Surprisingly, compared to overfeeding with the traditional diet, overfeeding with the novel diet did not induce ERS, even further suppressed ERS in goose fatty liver. Together, our findings suggest that supplementing dietary sugar promotes ERS-independent IR and fatty liver in goose. It is intriguing to discover the factor(s) protecting goose liver from ERS as well as the non-ERS mechanism underlying IR. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Sequence Resources at MaizeGDB with Emphasis on POPcorn: A Project Portal for Corn

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the maize research community’s centralized, long-term repository for genetic and genomic information about the crop plant and model organism Zea mays ssp. mays. The MaizeGDB team endeavors to meet the needs of the maize research community based on feedback and guidance. Recent work has f...

  8. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  9. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  10. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  11. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  12. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  13. Global Maize Trade and Food Security: Implications from a Social Network Model

    PubMed Central

    Wu, Felicia; Guclu, Hasan

    2013-01-01

    In this study, we developed a social network model of the global trade of maize: one of the most important food, feed, and industrial crops worldwide, and critical to food security. We used this model to analyze patterns of maize trade among nations, and to determine where vulnerabilities in food security might arise if maize availability were decreased due to factors such as diversion to non-food uses, climatic factors, or plant diseases. Using data on imports and exports from the United Nations Commodity Trade Statistics Database for each year from 2000 to 2009 inclusive, we summarized statistics on volumes of maize trade between pairs of nations for 217 nations. There is evidence of market segregation among clusters of nations; with three prominent clusters representing Europe, Brazil and Argentina, and the United States. The United States is by far the largest exporter of maize worldwide, while Japan and the Republic of Korea are the largest maize importers. In particular, the star-shaped cluster of the network that represents US maize trade to other nations indicates the potential for food security risks because of the lack of trade these other nations conduct with other maize exporters. If a scenario arose in which US maize could not be exported in as large quantities, maize supplies in many nations could be jeopardized. We discuss this in the context of recent maize ethanol production and its attendant impacts on food prices elsewhere worldwide. PMID:23656551

  14. Global maize trade and food security: implications from a social network model.

    PubMed

    Wu, Felicia; Guclu, Hasan

    2013-12-01

    In this study, we developed a social network model of the global trade of maize: one of the most important food, feed, and industrial crops worldwide, and critical to food security. We used this model to analyze patterns of maize trade among nations, and to determine where vulnerabilities in food security might arise if maize availability was decreased due to factors such as diversion to nonfood uses, climatic factors, or plant diseases. Using data on imports and exports from the U.N. Commodity Trade Statistics Database for each year from 2000 to 2009 inclusive, we summarized statistics on volumes of maize trade between pairs of nations for 217 nations. There is evidence of market segregation among clusters of nations; with three prominent clusters representing Europe, Brazil and Argentina, and the United States. The United States is by far the largest exporter of maize worldwide, whereas Japan and the Republic of Korea are the largest maize importers. In particular, the star-shaped cluster of the network that represents U.S. maize trade to other nations indicates the potential for food security risks because of the lack of trade these other nations conduct with other maize exporters. If a scenario arose in which U.S. maize could not be exported in as large quantities, maize supplies in many nations could be jeopardized. We discuss this in the context of recent maize ethanol production and its attendant impacts on food prices elsewhere worldwide. © 2013 Society for Risk Analysis.

  15. Tolerance of an albino fish to ultraviolet-B radiation

    USGS Publications Warehouse

    Fabacher, David L.; Little, Edward E.; Ostrander, Gary K.

    1999-01-01

    We exposed albino and pigmented medakaOryzias latipes to simulated solar ultraviolet-B (UVB) radiation to determine if albino medaka were less tolerant of UVB radiation than medaka pigmented with melanin. There was no difference in the number of albino and pigmented medaka that died during the exposure period. Spectrophotometric analyses of the outer dorsal skin layers from albino and pigmented medaka indicated that, prior to exposure, both groups of fish had similar amounts of an apparent colorless non-melanin photoprotective substance that appears to protect other fish species from UVB radiation. Our results indicate that albino medaka were as tolerant of UVB radiation as pigmented medaka because they had similar amounts of this photoprotective substance in the outer layers of the skin.

  16. Maize variety and method of production

    DOEpatents

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  17. Analysis of recombination QTLs, segregation distortion, and epistasis for fitness in maize multiple populations using ultra-high-density markers

    USDA-ARS?s Scientific Manuscript database

    Understanding the maize genomic features would be useful for the study of genetic diversity and evolution and for maize breeding. Here, we used two maize nested association mapping (NAM) populations separately derived in China (CN-NAM) and the US (US-NAM) to explore the maize genomic features. The t...

  18. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize

    USDA-ARS?s Scientific Manuscript database

    Objectives of this study were to understand how opaque-2 (o2) mutation and quality protein maize (QPM) affect maize kernel composition and starch structure, property, and enzyme digestibility. Kernels of o2 maize contained less protein (9.6−12.5%) than those of the wild-type (WT) counterparts (12...

  19. How are arbuscular mycorrhizal associations related to maize growth performance during short-term cover crop rotation?

    PubMed

    Higo, Masao; Takahashi, Yuichi; Gunji, Kento; Isobe, Katsunori

    2018-03-01

    Better cover crop management options aiming to maximize the benefits of arbuscular mycorrhizal fungi (AMF) to subsequent crops are largely unknown. We investigated the impact of cover crop management methods on maize growth performance and assemblages of AMF colonizing maize roots in a field trial. The cover crop treatments comprised Italian ryegrass, wheat, brown mustard and fallow in rotation with maize. The diversity of AMF communities among cover crops used for maize management was significantly influenced by the cover crop and time course. Cover crops did not affect grain yield and aboveground biomass of subsequent maize but affected early growth. A structural equation model indicated that the root colonization, AMF diversity and maize phosphorus uptake had direct strong positive effects on yield performance. AMF variables and maize performance were related directly or indirectly to maize grain yield, whereas root colonization had a positive effect on maize performance. AMF may be an essential factor that determines the success of cover crop rotational systems. Encouraging AMF associations can potentially benefit cover cropping systems. Therefore, it is imperative to consider AMF associations and crop phenology when making management decisions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Monitoring of Bt11 and Bt176 genetically modified maize in food sold commercially in Brazil from 2005 to 2007.

    PubMed

    Dinon, Andréia Z; Bosco, Kenia T; Arisi, Ana Carolina M

    2010-07-01

    The first genetically modified (GM) maize lines were approved for trading in Brazil after December 2007 and they were T25, MON810, Bt11, NK603 and GA21. The polymerase chain reaction (PCR) method was employed to monitor the presence of Bt11 and nested PCR was used to detect the presence of Bt176 in 81 maize-derived products (maize flour, corn meal, maize flour flakes and polenta) that were sold in Brazilian market from 2005 to 2007, before the release of GM maize in Brazil. The PCR detection limit for Bt11 was 10 g kg(-1) and for nested PCR of Bt176 it was 1 g kg(-1). All Brazilian samples analyzed showed no positive signal for these GM maize events. Bt11 and Bt176 GM maize lines were not detected by specific PCR in 81 maize-derived food samples sold in Brazil from 2005 to 2007, before the commercial release of GM maize in Brazil. These Brazilian food industries were in compliance with the rules stipulated by the current legislation with respect to consumer requirements about GMO labeling.

  1. Occupational Rhinoconjunctivitis due to Maize in a Snack Processor: A Cross-Reactivity Study Between Lipid Transfer Proteins From Different Cereals and Peach.

    PubMed

    Guillen, Daiana; Barranco, Pilar; Palacín, Arantxa; Quirce, Santiago

    2014-09-01

    We report the case of a snack processor who developed occupational rhinoconjunctivitis due to maize brand exposure during the extrusion process, and who experienced abdominal pain upon drinking beer. The allergens implicated and the cross-reactivity between non-specific lipid transfer proteins (LTPs) from different cereals and peach were investigated. Skin prick tests and specific IgE to cereal flours, pulmonary functions tests and specific conjunctival and inhalation challenges to maize extract were performed. In vitro studies included IgE immunoblotting and ELISA inhibition assays. Skin prick tests with maize flour, maize brand and wheat flour extracts were positive, whereas serum specific IgE was positive only to maize flour. Specific inhalation challenge (SIC) to maize flour did not elicit an asthmatic reaction; however, conjunctival challenge test with the same extract was positive. Patient's serum recognized IgE-binding bands in the maize and beer extracts corresponding to LTPs. In the ELISA inhibition assays, a significant degree of allergenic cross-reactivity was found between maize and beer LTPs, whereas no cross-reactivity was observed between maize LTP and wheat and peach LTPs.

  2. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.

    PubMed

    Baltazar, Baltazar M; Castro Espinoza, Luciano; Espinoza Banda, Armando; de la Fuente Martínez, Juan Manuel; Garzón Tiznado, José Antonio; González García, Juvencio; Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Heredia Díaz, Oscar; Horak, Michael J; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W; Stojšin, Duška; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.

  3. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize

    PubMed Central

    Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Horak, Michael J.; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W.; Stojšin, Duška; Uribe Montes, Hugo Raúl

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives. PMID:26162097

  4. Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice.

    PubMed

    Fukayama, H; Tsuchida, H; Agarie, S; Nomura, M; Onodera, H; Ono, K; Lee, B H; Hirose, S; Toki, S; Ku, M S; Makino, A; Matsuoka, M; Miyao, M

    2001-11-01

    The C(4)-Pdk gene encoding the C(4) enzyme pyruvate, orthophosphate dikinase (PPDK) of maize (Zea mays cv Golden Cross Bantam) was introduced into the C(3) plant, rice (Oryza sativa cv Kitaake). When the intact maize C(4)-Pdk gene, containing its own promoter and terminator sequences and exon/intron structure, was introduced, the PPDK activity in the leaves of some transgenic lines was greatly increased, in one line reaching 40-fold over that of wild-type plants. In a homozygous line, the PPDK protein accounted for 35% of total leaf-soluble protein or 16% of total leaf nitrogen. In contrast, introduction of a chimeric gene containing the full-length cDNA of the maize PPDK fused to the maize C(4)-Pdk promoter or the rice Cab promoter only increased PPDK activity and protein level slightly. These observations suggest that the intron(s) or the terminator sequence of the maize gene, or a combination of both, is necessary for high-level expression. In maize and transgenic rice plants carrying the intact maize gene, the level of transcript in the leaves per copy of the maize C(4)-Pdk gene was comparable, and the maize gene was expressed in a similar organ-specific manner. These results suggest that the maize C(4)-Pdk gene behaves in a quantitatively and qualitatively similar way in maize and transgenic rice plants. The activity of the maize PPDK protein expressed in rice leaves was light/dark regulated as it is in maize. This is the first reported evidence for the presence of an endogenous PPDK regulatory protein in a C(3) plant.

  5. T-cell receptor revision: friend or foe?

    PubMed

    Hale, J Scott; Fink, Pamela J

    2010-04-01

    T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.

  6. Ammonium and nitrate tolerance in lichens.

    PubMed

    Hauck, Markus

    2010-05-01

    Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Characterization and Regulation of Aquaporin Genes of Sorghum [Sorghum bicolor (L.) Moench] in Response to Waterlogging Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadam, Suhas; Abril, Alejandra; Dhanapal, Arun P.

    Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. Our study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18more » and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Furthermore experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve water logging tolerance in sorghum.« less

  8. Characterization and Regulation of Aquaporin Genes of Sorghum [Sorghum bicolor (L.) Moench] in Response to Waterlogging Stress

    DOE PAGES

    Kadam, Suhas; Abril, Alejandra; Dhanapal, Arun P.; ...

    2017-05-30

    Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. Our study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18more » and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Furthermore experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve water logging tolerance in sorghum.« less

  9. [Nitrogen status diagnosis and yield prediction of spring maize after green manure incorporation by using a digital camera].

    PubMed

    Bai, Jin-Shun; Cao, Wei-Dong; Xiong, Jing; Zeng, Nao-Hua; Shimizu, Katshyoshi; Rui, Yu-Kui

    2013-12-01

    In order to explore the feasibility of using the image processing technology to diagnose the nitrogen status and to predict the maize yield, a field experiment with different nitrogen rates with green manure incorporation was conducted. Maize canopy digital images over a range of growth stages were captured by digital camera. Maize nitrogen status and the relationships between image color indices derived by digital camera for maize at different growth stages and maize nitrogen status indicators were analyzed. These digital camera sourced image color indices at different growth stages for maize were also regressed with maize grain yield at maturity. The results showed that the plant nitrogen status for maize was improved by green manure application. The leaf chlorophyll content (SPAD value), aboveground biomass and nitrogen uptake for green manure treatments at different maize growth stages were all higher than that for chemical fertilization treatments. The correlations between spectral indices with plant nitrogen indicators for maize affected by green manure application were weaker than that affected by chemical fertilization. And the correlation coefficients for green manure application were ranged with the maize growth stages changes. The best spectral indices for diagnosis of plant nitrogen status after green manure incorporation were normalized blue value (B/(R+G+B)) at 12-leaf (V12) stage and normalized red value (R/(R+G+B)) at grain-filling (R4) stage individually. The coefficients of determination based on linear regression were 0. 45 and 0. 46 for B/(R+G+B) at V12 stage and R/(R+G+B) at R4 stage respectively, acting as a predictor of maize yield response to nitrogen affected by green manure incorporation. Our findings suggested that digital image technique could be a potential tool for in-season prediction of the nitrogen status and grain yield for maize after green manure incorporation when the suitable growth stages and spectral indices for diagnosis were selected.

  10. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    PubMed

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  11. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean monoculture, respectively. The reduced N application in the maize-soybean relay strip intercropping system was helpful to promote annual grain yield and improve N utilization efficiency.

  12. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat

    PubMed Central

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials. PMID:26061566

  13. The Role of Oxygen Radicals in Biology and Medicine 7-11 February 1983, Ventura, California,

    DTIC Science & Technology

    1983-02-11

    Center, Durham, NC 27710 Oxygen tolerant organisms usually contain superoxide dismutase (SOD). Lactobacillus plantarum was an apparent exception. We...prevented from accumulating Mn(II) by a phosphate deficiency, L. plantarum becomes oxygen intolerant and very sensitive to the lethality of

  14. Short-term incubation studies on degradation of biochar in soil

    NASA Astrophysics Data System (ADS)

    Lanza, Giacomo; Wirth, Stephan; Geßler, Arthur; Kern, Jürgen; Mumme, Jan

    2014-05-01

    Biochar is considered a stable, recalcitrant substance, which holds potential to store carbon in soils for prolonged time and therefore would provide a long-term carbon sink. Furthermore, biochar is discussed to enhance soil fertility and plant productivity, and may improve water and nutrient holding capacity. However, mineralisation to CO2 may occur, as for any soil organic carbon pool, depending on char composition, soil properties and environmental conditions. Therefore, it is important to gain insight into the stability of its carbon structure and the dynamics of decay processes in soil. The evaluation of biochar stability in soil is complicated by the impact of external factors thus as soil moisture and temperature, soil nutrient status and moreover by extended decay timescales. To overcome these difficulties, we performed dynamic incubation experiments under laboratory conditions, using a multi-channel, automated infra-red gas analysis system at 20°C for up to 10 days to detect CO2 emission over time. Our aim was to compare the decay dynamics of different biochar preparations added to soil, i.e. HTC-char and pyrochar from maize silage with and without biological post-processing (anaerobic digestion), as compared to unmodified maize straw. Digestate from a maize silage-fed anaerobic biogas reactor was also tested. As a result, the addition of charred or digested materials to soil resulted in much lower CO2 emission rates as compared to the unmodified maize straw, proving stability of biochar carbon compounds. Pyrochar showed to be the most stable of all substrates added, as the CO2 emission was hardly distinguishable from that of the control soil. Soil enriched with HTC-char emitted significantly more CO2 compared to soil enriched with pyrochar, but the post-processing was effective in reducing the emissions. Furthermore, HTC-char showed a two-step decay kinetics, which cannot apparently be explained with a simple double-pool model. In conclusion, the short-term incubation approach was effective to highlight differences in decomposition dynamics between the considered substrates in soil, and confirmed the effectiveness of the charring process to increase the stability of organic substrates in soil. More investigations are necessary to reveal the impact of readily available substrates and nutrients on degradation of biochar in soil, and to clarify the mechanisms responsible for the observed kinetics in order to derive a suitable process model.

  15. Early competition shapes maize whole-plant development in mixed stands

    PubMed Central

    Evers, Jochem B.

    2014-01-01

    Mixed cropping is practised widely in developing countries and is gaining increasing interest for sustainable agriculture in developed countries. Plants in intercrops grow differently from plants in single crops, due to interspecific plant interactions, but adaptive plant morphological responses to competition in mixed stands have not been studied in detail. Here the maize (Zea mays) response to mixed cultivation with wheat (Triticum aestivum) is described. Evidence is provided that early responses of maize to the modified light environment in mixed stands propagate throughout maize development, resulting in different phenotypes compared with pure stands. Photosynthetically active radiation (PAR), red:far-red ratio (R:FR), leaf development, and final organ sizes of maize grown in three cultivation systems were compared: pure maize, an intercrop with a small distance (25cm) between maize and wheat plants, and an intercop with a large distance (44cm) between the maize and the wheat. Compared with maize in pure stands, maize in the mixed stands had lower leaf and collar appearance rates, increased blade and sheath lengths at low ranks and smaller sizes at high ranks, increased blade elongation duration, and decreased R:FR and PAR at the plant base during early development. Effects were strongest in the treatment with a short distance between wheat and maize strips. The data suggest a feedback between leaf initiation and leaf emergence at the plant level and coordination between blade and sheath growth at the phytomer level. A conceptual model, based on coordination rules, is proposed to explain the development of the maize plant in pure and mixed stands. PMID:24307719

  16. Maize databases

    USDA-ARS?s Scientific Manuscript database

    This chapter is a succinct overview of maize data held in the species-specific database MaizeGDB (the Maize Genomics and Genetics Database), and selected multi-species data repositories, such as Gramene/Ensembl Plants, Phytozome, UniProt and the National Center for Biotechnology Information (NCBI), ...

  17. Detection of some safe plant-derived foods for LTP-allergic patients.

    PubMed

    Asero, Riccardo; Mistrello, Gianni; Roncarolo, Daniela; Amato, Stefano

    2007-01-01

    Lipid transfer protein (LTP) is a widely cross-reacting plant pan-allergen. Adverse reactions to Rosaceae, tree nuts, peanut, beer, maize, mustard, asparagus, grapes, mulberry, cabbage, dates, orange, fig, kiwi, lupine, fennel, celery, tomato, eggplant, lettuce, chestnut and pineapple have been recorded. To detect vegetable foods to be regarded as safe for LTP-allergic patients. Tolerance/intolerance to a large spectrum of vegetable foods other than Rosaceae, tree nuts and peanut was assessed by interview in 49 subjects monosensitized to LTP and in three distinct groups of controls monosensitized to Bet v 1 (n = 24) or Bet v 2 (n = 18), or sensitized to both LTP and birch pollen (n = 16), all with a history of vegetable food allergy. Patients and controls underwent skin prick test (SPT) with a large spectrum of vegetable foods. The absence of IgE reactivity to foods that were negative in both clinical history and SPT was confirmed by immunoblot analysis and their clinical tolerance was finally assessed by open oral challenge (50 g per food). All patients reported tolerance and showed negative SPT to carrot, potato, banana and melon; these foods scored positive in SPT and elicited clinical symptoms in a significant proportion of patients from all three control groups. All patients tolerated these four foods on oral challenge. Immunoblot analysis confirmed the lack of IgE reactivity to these foods by LTP-allergic patients. Carrot, potato, banana and melon seem safe for LTP-allergic patients. This finding may be helpful for a better management of allergy to LTP.

  18. Effect of exogenous enzymes in maize-based diets varying in nutrient density for young broilers: growth performance and digestibility of energy, minerals and amino acids.

    PubMed

    Cowieson, A J; Ravindran, V

    2008-01-01

    1. A total of 192 male broilers (Cobb 500) were used in a growth and digestibility assay, involving a 2 x 2 factorial arrangement of treatments, to assess the effects of an enzyme cocktail of xylanase, amylase and protease in maize-based diets. 2. The following two diets were formulated: a positive control diet containing adequate nutrient concentrations for broiler starters as per breeder recommendations and a negative control diet to contain approximately 0.63 MJ/kg apparent metabolisable energy (AME) and 3% amino acids less than the positive control. 3. A further two dietary treatments were developed by supplementing each control diet with an enzyme product containing xylanase, amylase and protease. 4. Birds fed on the negative control diet had poorer weight gain and feed efficiency than those given the positive control diet. There was no effect of diet or enzyme on feed intake. The digestibility of nitrogen, calcium, phosphorus and most amino acids were unaffected by dietary nutrient density. 5. Supplementation of both the positive and negative control diets with the enzyme improved weight gain and feed efficiency compared with the unsupplemented diets. In the case of the negative control, supplemental enzyme improved performance to that of the unsupplemented positive control diet. There was no interaction between diet and enzyme for either weight gain or FCR, suggesting similar beneficial responses regardless of the nutrient density of the diet. 6. In both diets, enzyme supplementation improved AME by an average of 3% (0.35 MJ/kg DM) and nitrogen retention by an average of 11.7% (26 g/kg DM intake vs 29 g/kg DM intake). There was no interaction between diet and enzyme for AME or nitrogen retention. 7. Ileal digestibilities of calcium and phosphorus were not influenced by supplemental enzyme, whereas the digestibility of nitrogen and most amino acids was improved by enzyme addition compared with the unsupplemented control diets. There was no interaction between diet and enzyme for the ileal digestibility of nitrogen and amino acids. 8. These data demonstrate that it is possible to improve the nutritional value of a maize/soy-based diet for broiler starters through the use of exogenous enzymes. The nutrient density of the diet does not appear markedly to influence the response to enzyme, offering flexibility in the use of enzymes for maize-based diets. 9. It is concluded that the energy and amino acid values of maize-based diets for broilers can be enhanced by supplementation with an enzyme cocktail of xylanase, amylase and protease, offering potential economic benefits to producers.

  19. Maize flour fortification in Africa: markets, feasibility, coverage, and costs.

    PubMed

    Fiedler, John L; Afidra, Ronald; Mugambi, Gladys; Tehinse, John; Kabaghe, Gladys; Zulu, Rodah; Lividini, Keith; Smitz, Marc-Francois; Jallier, Vincent; Guyondet, Christophe; Bermudez, Odilia

    2014-04-01

    The economic feasibility of maize flour and maize meal fortification in Kenya, Uganda, and Zambia is assessed using information about the maize milling industry, households' purchases and consumption levels of maize flour, and the incremental cost and estimated price impacts of fortification. Premix costs comprise the overwhelming share of incremental fortification costs and vary by 50% in Kenya and by more than 100% across the three countries. The estimated incremental cost of maize flour fortification per metric ton varies from $3.19 in Zambia to $4.41 in Uganda. Assuming all incremental costs are passed onto the consumer, fortification in Zambia would result in at most a 0.9% increase in the price of maize flour, and would increase annual outlays of the average maize flour-consuming household by 0.2%. The increases for Kenyans and Ugandans would be even less. Although the coverage of maize flour fortification is not likely to be as high as some advocates have predicted, fortification is economically feasible, and would reduce deficiencies of multiple micronutrients, which are significant public health problems in each of these countries. © 2013 New York Academy of Sciences.

  20. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    PubMed

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  1. Evaluation of the Effect of Four Fibers on Laxation, Gastrointestinal Tolerance and Serum Markers in Healthy Humans

    PubMed Central

    Stewart, Maria L.; Nikhanj, Soma D.; Timm, Derek A.; Thomas, William; Slavin, Joanne L.

    2010-01-01

    Background Average dietary fiber intake in the United States is roughly half of the recommended amount. As new dietary fiber products are introduced to increase fiber intake, it is critical to evaluate the physiological effects of such fibers. Aims: This study examined the effect of 4 fibers derived from maize or tapioca on fecal chemistry, gastrointestinal (GI) symptoms and serum markers of chronic disease. Methods Twenty healthy subjects completed the single-blind crossover study in which 12 g/day of fiber (pullulan, Promitor™ Resistant Starch, soluble fiber dextrin or Promitor Soluble Corn Fiber) or placebo (maltodextrin) were consumed for 14 days followed by a 21-day washout. GI symptom surveys were completed (days 3 and 14), stools were collected (days 11–14), diet was recorded (days 12–14) and fasting blood samples were obtained (day 15). Results The 4 test fibers were well tolerated, with mild to moderate GI symptoms. Total short-chain fatty acid (SCFA) concentrations did not differ among the treatments. Fecal pH and individual SCFAs were affected by some treatments. Stool weight and serum markers of chronic disease did not change with these treatments. Conclusion Increasing fiber intake by 12 g/day was well tolerated and may have a positive impact on colon health due to fermentation. PMID:20090313

  2. 78 FR 21603 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ..., LP, Mexicio City, Mexico and Rogelio Barrenechea Banzalez, Mexico City, Mexico; Constructora Maiz Mier, S.A. de C.V, Jose Sebastian Maiz Garcia, Carlos Francisco Maiz Garcia and Ricardo Javier Maiz...

  3. MaizeCyc: Metabolic networks in maize

    USDA-ARS?s Scientific Manuscript database

    MaizeCyc is a catalog of known and predicted metabolic and transport pathways that enables plant researchers to graphically represent the metabolome of maize (Zea mays), thereby supporting integrated systems-biology analysis. Supported analyses include molecular and genetic/phenotypic profiling (e.g...

  4. Field trials to evaluate the effects of transgenic cry1le maize on the community characteristics of arthropod natural enemies

    USDA-ARS?s Scientific Manuscript database

    Possible non-target effects of transgenic cry1Ie gene maize exerts on natural enemy community biodiversity in the field is unresolved. In the present study, a 2-yr study of transgenic cry1Ie gene maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) on natural enemy community...

  5. Screening and Selection of Maize to Enhance Associative Bacterial Nitrogen Fixation 1

    PubMed Central

    Ela, Stephen W.; Anderson, Mary Ann; Brill, Winston J.

    1982-01-01

    The ability of maize (corn, Zea mays L.) to support bacterial nitrogen fixation in or on maize roots has been increased, through screening and selection. Isotopic N fixed from 15N2 was found on the roots. The nitrogen-fixing association was found in germplasm from tropical maize, but this activity can be transferred to maize currently used in midwestern United States agriculture. PMID:16662718

  6. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of northeast China.

    PubMed

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China.

  7. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    PubMed

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  8. Alfalfa (Medicago sativa L.)/Maize (Zea mays L.) Intercropping Provides a Feasible Way to Improve Yield and Economic Incomes in Farming and Pastoral Areas of Northeast China

    PubMed Central

    Sun, Baoru; Peng, Yi; Yang, Hongyu; Li, Zhijian; Gao, Yingzhi; Wang, Chao; Yan, Yuli; Liu, Yanmei

    2014-01-01

    Given the growing challenges to food and eco-environmental security as well as sustainable development of animal husbandry in the farming and pastoral areas of northeast China, it is crucial to identify advantageous intercropping modes and some constraints limiting its popularization. In order to assess the performance of various intercropping modes of maize and alfalfa, a field experiment was conducted in a completely randomized block design with five treatments: maize monoculture in even rows, maize monoculture in alternating wide and narrow rows, alfalfa monoculture, maize intercropped with one row of alfalfa in wide rows and maize intercropped with two rows of alfalfa in wide rows. Results demonstrate that maize monoculture in alternating wide and narrow rows performed best for light transmission, grain yield and output value, compared to in even rows. When intercropped, maize intercropped with one row of alfalfa in wide rows was identified as the optimal strategy and the largely complementary ecological niches of alfalfa and maize were shown to account for the intercropping advantages, optimizing resource utilization and improving yield and economic incomes. These findings suggest that alfalfa/maize intercropping has obvious advantages over monoculture and is applicable to the farming and pastoral areas of northeast China. PMID:25329376

  9. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    PubMed

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain <3 % of genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  10. A laboratory assessment of the potential effect of Cry1Ab/Cry2Aj-containing Bt maize pollen on Folsomia candida by toxicological and biochemical analyses.

    PubMed

    Zhang, Bing; Yang, Yan; Zhou, Xiang; Shen, Ping; Peng, Yufa; Li, Yunhe

    2017-03-01

    The common soil arthropod Folsomia candida can survive well when fed only maize pollen and thus may be exposed to insecticidal proteins by ingesting insect-resistant genetically engineered maize pollen containing Bacillus thuringiensis (Bt) proteins when being released into the soil. Laboratory experiments were conducted to assess the potential effects of Cry1Ab/Cry2Aj-producing transgenic Bt maize (Shuangkang 12-5) pollen on F. candida fitness. Survival, development, and the reproduction were not significantly reduced when F. candida fed on Bt maize pollen rather than on non-Bt maize pollen, but these parameters were significantly reduced when F. candida fed on non-Bt maize pollen containing the protease inhibitor E-64 at 75 μg/g pollen. The intrinsic rate of increase (r m ) was not significantly reduced when F. candida fed on Bt maize pollen but was significantly reduced when F. candida fed on non-Bt maize pollen containing E-64. The activities of antioxidant-related enzymes in F. candida were not significantly affected when F. candida fed on Bt maize pollen but were significantly increased when F. candida fed on non-Bt pollen containing E-64. The results demonstrate that consumption of Bt maize pollen containing Cry1Ab/Cry2Aj has no lethal or sublethal effects on F. candida. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Resistance of Tripsacorn-introgressed maize lines to Sitophilus zeamais

    USDA-ARS?s Scientific Manuscript database

    The maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), is one of the major pests of maize worldwide. We tested one Tripsacorn-introgressed inbred maize line and 42 hybrid combinations between eleven public inbred lines and 16 different Tripsacorn-introgressed inbreds for resis...

  12. MaizeGDB: The Maize Genetics and Genomics Database.

    USDA-ARS?s Scientific Manuscript database

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project’s website...

  13. ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus

    PubMed Central

    Wu, Dongliang; Oide, Shinichi; Zhang, Ning; Choi, May Yee; Turgeon, B. Gillian

    2012-01-01

    LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation. PMID:22383877

  14. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: physicochemical and technological characterisation.

    PubMed

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2009-05-01

    Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.

  15. Maize ROP2 GTPase provides a competitive advantage to the male gametophyte.

    PubMed

    Arthur, K M; Vejlupkova, Z; Meeley, R B; Fowler, J E

    2003-12-01

    Rop GTPases have been implicated in the regulation of plant signal transduction and cell morphogenesis. To explore ROP2 function in maize, we isolated five Mutator transposon insertions (rop2::Mu alleles). Transmission frequency through the male gametophyte, but not the female, was lower than expected in three of the rop2::Mu mutants. These three alleles formed an allelic series on the basis of the relative transmission rate of each when crossed as trans-heterozygotes. A dramatic reduction in the level of ROP2-mRNA in pollen was associated with the three alleles causing a transmission defect, whereas a rop2::Mu allele that did not result in a defect had wild-type transcript levels, thus confirming that mutation of rop2 causes the mutant phenotype. These data strongly support a role for rop2 in male gametophyte function, perhaps surprisingly, given the expression in pollen of the nearly identical duplicate gene rop9. However, the transmission defect was apparent only when a rop2::Mu heterozygote was used as the pollen donor or when a mixture of wild-type and homozygous mutant pollen was used. Thus, mutant pollen is at a competitive disadvantage compared to wild-type pollen, although mutant pollen grains lacked an obvious cellular defect. Our data demonstrate the importance in vivo of a specific Rop, rop2, in the male gametophyte.

  16. Genetic Mapping of the Leaf Number above the Primary Ear and Its Relationship with Plant Height and Flowering Time in Maize.

    PubMed

    Cui, Min; Jia, Bo; Liu, Huanhuan; Kan, Xin; Zhang, Yu; Zhou, Ronghua; Li, Zhipeng; Yang, Liang; Deng, Dexiang; Yin, Zhitong

    2017-01-01

    The leaf number above the primary ear (LA) is a major contributing factor to plant architecture in maize. The yield of leafy maize, which has extra LA compared to normal maize, is higher than normal maize in some regions. One major concern is that increasing LA may be accompanied by increased plant height and/or flowering time. Using an F 2:3 population comprising 192 families derived from a leafy maize line and a normal maize line, an association population comprising 437 inbred maize lines, and a pair of near-isogenic maize lines, we mapped the quantitative trait loci (QTL) associated with LA and assessed its genetic relationship with flowering time and plant height. Ten QTL with an additive and dominant effect, 18 pairs of interacting QTL in the F 2:3 population and seventeen significant SNPs in the association population were detected for LA. Two major QTL, qLA3-4 and qLA7-1 , were repeatedly detected and explained a large proportion of the phenotypic variation. The qLA3-4 was centered on lfy1 , which is a dominant gene underlying extra leaves above the ear in leafy maize. Four LA QTL were found to overlap with flowering time and/or plant height, which suggested that these QTL might have a pleiotropic effect. The pleiotropy of the lfy1 locus on LA, flowering time and plant height were validated by near-isogenic line analysis. These results enhance our understanding of the genetic architecture affecting maize LA and the development of maize hybrids with increased LA.

  17. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize

    PubMed Central

    Poggio, Lidia

    2018-01-01

    In Argentina there are two different centers of maize diversity, the Northeastern (NEA) and the Northwestern (NWA) regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1) did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10) chromosomes were found with low frequency (0.1≥f ≤0.40) in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA) of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity. PMID:29879173

  18. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    PubMed

    Realini, María Florencia; Poggio, Lidia; Cámara Hernández, Julián; González, Graciela Esther

    2018-01-01

    In Argentina there are two different centers of maize diversity, the Northeastern (NEA) and the Northwestern (NWA) regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1) did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10) chromosomes were found with low frequency (0.1≥f ≤0.40) in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA) of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.

  19. Lack of Detectable Allergenicity in Genetically Modified Maize Containing “Cry” Proteins as Compared to Native Maize Based on In Silico & In Vitro Analysis

    PubMed Central

    Mathur, Chandni; Kathuria, Pooran C.; Dahiya, Pushpa; Singh, Anand B.

    2015-01-01

    Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize. PMID:25706412

  20. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production

    PubMed Central

    Okeke, Chiamaka A.; Ezekiel, Chibundu N.; Nwangburuka, Cyril C.; Sulyok, Michael; Ezeamagu, Cajethan O.; Adeleke, Rasheed A.; Dike, Stanley K.; Krska, Rudolf

    2015-01-01

    Bacterial diversity and community structure of two maize varieties (white and yellow) during fermentation/steeping for ogi production, and the influence of spontaneous fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial isolates obtained at 24–96 h intervals were preliminarily identified by conventional microbiological methods while 60 selected isolates were clustered into 39 OTUs consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis. Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white and yellow maize, respectively, while P. claussenii was present only at the climax stage of steeping white maize. In both maize varieties, P. pentosaceus was found at 24–72 h. Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4–483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7–513; citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252–1,586; zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05) reduced across steeping periods. This study reports for the first time: (a) the association of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize, (b) citrinin occurrence in Nigerian maize and ogi, and (c) aflatoxin M1, citrinin and cyclopiazonic acid degradation/loss due to fermentation in traditional cereal-based fermented food. PMID:26697001

Top