Measurement of thermal diffusivity of depleted uranium metal microspheres
NASA Astrophysics Data System (ADS)
Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.
2014-03-01
The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.
NASA Astrophysics Data System (ADS)
Kiamehr, Saeed; Ahmed, Hesham; Viswanathan, Nurni; Seetharaman, Seshadri
2017-06-01
Knowledge of the effective thermal diffusivity changes of systems undergoing reactions where heat transfer plays an important role in the reaction kinetics is essential for process understanding and control. Carbothermic reduction process of magnetite containing composites is a typical example of such systems. The reduction process in this case is highly endothermic and hence, the overall rate of the reaction is greatly influenced by the heat transfer through composite compact. Using Laser-Flash method, the change of effective thermal diffusivity of magnetite-graphite composite pellet was monitored in the dynamic mode over a pre-defined thermal cycle (heating at the rate of 7 K/min to 1423 K (1150 °C), holding the sample for 270 minutes at this temperature and then cooling it down to the room temperature at the same rate as heating). These measurements were supplemented by Thermogravimetric Analysis under comparable experimental conditions as well as quenching tests of the samples in order to combine the impact of various factors such as sample dilatations and changes in apparent density on the progress of the reaction. The present results show that monitoring thermal diffusivity changes during the course of reduction would be a very useful tool in a total understanding of the underlying physicochemical phenomena. At the end, effort is made to estimate the apparent thermal conductivity values based on the measured thermal diffusivity and dilatations.
Contreras, M; Benedito, J; Bon, J; Garcia-Perez, J V
2018-03-01
The application of power ultrasound (PuS) could be used as a novel technology with which to intensify thermal treatments using hot air. Mild thermal treatments have been applied to improve the soft texture of dry-cured ham caused by defective processing. In this regard, the aim of this study was to assess the kinetic intensification linked to the application of airborne PuS in the mild thermal treatment using hot air of dry-cured ham. For this purpose, vacuum packed cylindrical samples (2.52±0.11cm in diameter and 1.90±0.14cm in height) of dry-cured ham were heated using hot air at different temperatures (40, 45, 50°C) and air velocities (1, 2, 3, 4, 6m/s) with (22.3kHz, 50W) and without PuS application. Heat transfer was analyzed by considering that it was entirely controlled by conduction and the apparent thermal diffusivity was identified by fitting the model to the heating kinetics. The obtained results revealed that PuS application sped up the heat transfer, showing an increase in the apparent thermal diffusivity (up to 37%). The improvement in the apparent thermal diffusivity produced by PuS application was greater at high temperatures (50°C) but negligible at high air velocities (6m/s). Heating caused an increase in the hardness and elasticity of dry-cured ham, which would correct ham pastiness defects, while the influence of PuS on such textural parameters was negligible. Copyright © 2017 Elsevier B.V. All rights reserved.
THE DIFFUSION LENGTH OF THERMAL NEUTRONS IN PORTLAND CONCRETE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dugdale, R.A.; Healy, E.
1957-10-01
A measurement of the diffusion length of thermal neutrons in Portland concrete, originally raade by Salmon two years previously, has been repeated. An apparent decrease from 7.04 cm to 6.61 cm has oocurred. This change, which is only four times the standard deviation of the result, could be due to a small increase in water content. In assessing the amount required, a discrepancy between calculated and measured diffusion length was found. Possible explanations of the discrepancy are discussed. (auth)
NASA Astrophysics Data System (ADS)
Yang, Fan; Dames, Chris
2015-04-01
The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.
b matrix errors in echo planar diffusion tensor imaging
Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel
2001-01-01
Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015
A detailed study of the photo-injection annealing of thermally diffused InP solar cells
NASA Technical Reports Server (NTRS)
Walters, R. J.; Summers, G. P.; Bruening, J.
1993-01-01
A detailed analysis of the annealing of thermally diffused InP solar cells fabricated by the Nippon Mining Co. is presented. The cells were irradiated with 1 MeV electrons, and the induced degradation is measured using deep level transient spectroscopy and low temperature (86 K) IV measurements. Clear recovery of the photovoltaic parameters is observed during low temperature (T is less than 300 K) solar illuminations (1 sun, AMO) with further recovery at higher temperatures (300 less than T less than 500 K). For example, the output of a cell which was irradiated up to a fluence of 1 x 10(exp 16) cm(sup -2) was observed to recover to within 5 percent of the pre-irradiation output. An apparent correlation between the recovery of I(sub sc) and the annealing of the H4 defect and of the minority carrier trapping centers is observed. An apparent correlation between the recovery of VO, and the annealing of the H5 defect is also observed. These apparent correlations are used to develop a possible model for the mechanism of the recovery of the solar cells.
NASA Astrophysics Data System (ADS)
Raefat, Saad; Garoum, Mohammed; Laaroussi, Najma; Thiam, Macodou; Amarray, Khaoula
2017-07-01
In this work experimental investigation of apparent thermal diffusivity and adiabatic limit temperature of expanded granular perlite mixes has been made using the flash technic. Perlite granulates were sieved to produce essentially three characteristic grain sizes. The consolidated samples were manufactured by mixing controlled proportions of the plaster and water. The effect of the particle size on the diffusivity was examined. The inverse estimation of the diffusivity and the adiabatic limit temperature at the rear face as well as the heat losses coefficients were performed using several numerical global minimization procedures. The function to be minimized is the quadratic distance between the experimental temperature rise at the rear face and the analytical model derived from the one dimension heat conduction. It is shown that, for all granulometry tested, the estimated parameters lead to a good agreement between the mathematical model and experimental data.
Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig
2016-02-09
Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semelsberger, Troy Allen; Veenstra, Mike; Dixon, Craig
Metal-organic frameworks (MOFs) are a highly porous crystalline material with potential in various applications including on-board vehicle hydrogen storage for fuel cell vehicles. The thermal conductivity of MOFs is an important parameter in the design and ultimate performance of an on-board hydrogen storage system. However, in-situ thermal conductivity measurements have not been previously reported. The present study reports room temperature thermal conductivity and thermal diffusivity measurements performed on neat MOF-5 cylindrical compacts (ρ = 0.4 g/mL) as a function of pressure (0.27–90 bar) and gas type (hydrogen and helium). The transient plane source technique was used to measure both themore » non-directional thermal properties (isotropic method) and the directional thermal properties (anisotropic method). High pressure measurements were made using our in-house built low-temperature, high pressure thermal conductivity sample cell. The intrinsic thermal properties of neat MOF-5 measured under vacuum were—Isotropic: k isotropic = 0.1319 W/m K, α isotropic = 0.4165 mm 2/s; Anisotropic: k axial = 0.1477 W/m K, k radial = 0.1218 W/m K, α axial = 0.5096 mm 2/s, and α radial = 0.4232 mm 2/s. The apparent thermal properties of neat MOF-5 increased with increasing hydrogen and helium pressure, with the largest increase occurring in the narrow pressure range of 0–10 bar and then monotonically asymptoting with increasing pressures up to around 90 bar. On average, a greater than two-fold enhancement in the apparent thermal properties was observed with neat MOF-5 in the presence of helium and hydrogen compared to the intrinsic values of neat MOF-5 measured under vacuum. The apparent thermal properties of neat MOF-5 measured with hydrogen were higher than those measured with helium, which were directly related to the gas-specific thermal properties of helium and hydrogen. Neat MOF-5 exhibited a small degree of anisotropy under all conditions measured with thermal conductivities and diffusivities in the axial direction being higher than those in the radial direction. As a result, the low temperature specific heat capacities of neat MOF-5 were also measured and reported for the temperature range of 93–313 K (–180–40 °C).« less
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2008-01-01
The lattice and radiation conductivity of thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the apparent thermal conductivity of the coating to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature and the scattering and absorption properties of the coating material. High temperature scattering and absorption of the coating systems can also be derived based on the testing results using the modeling approach. The model prediction is found to have good agreement with experimental observations.
Opening the closed box: lattice diffusion in zircon?
NASA Astrophysics Data System (ADS)
Wheeler, J.; MacDonald, J.; Goodenough, K. M.; Crowley, Q.; Harley, S.; Mariani, E.
2015-12-01
In principle, any radiogenic parent or daughter element can diffuse through any crystalline lattice. Given improved analytic techniques and mathematical models, geochronology is beginning to take such diffusion into account in a quantitative fashion. Whilst lattice diffusion compromises simple interpretation of radiometric data, it can, when combined with spatially resolved data, provide more detailed insight into thermal histories. In regions that have experienced particularly high temperatures diffusion may become significant in minerals normally thought to be reliably closed. We have modelled Pb diffusion in zircon, building on earlier work on Ar diffusion in micas - the mathematics being basically the same. We are motivated by some challenging isotope data from zircon in the Lewisian Complex of NW Scotland (a TTG region with a long Archaean and Proterozoic history). For example we have grains with old rims and younger cores. Whilst other explanations are possible, we show how lattice diffusion of Pb is plausible, using experimental diffusion data together with estimates of ultra-high temperatures from the region. We have modified a previous model for Ar diffusion ("Diffarg") to include variations in parent isotope concentration, so we can understand the consequences of U zonation within zircon grains during prolonged thermal histories. This is also relevant to asking why Pb has apparently not diffused in zircon from other UHT regions - or has it?
Study of Aquifer Thermal Energy Storage
NASA Astrophysics Data System (ADS)
Okuyama, Masaaki; Umemiya, Hiromichi; Shibuya, Ikuko; Haga, Eiji
Yamagata University 'Aquifer Thermal Energy Storage (ATES)' is the experimental system which has been running since 1982. From the results for along terms of experiments, we obtain many important knowledge. This paper presents the accomplishments for 16 years and the characteristics of thermal energy storage in thermal energy storage well. The conclusions show as follows. 1)In recent years, the thermal recovery factor of warm energy storage well becomes almost constant at about 60%. 2) The thermal recovery factor of cool energy storage well increases gradually and becomes at about 15%. 3) Since the ferric colloidal dam is formed in aquifer, thermal recovery factor increase year after year. 4) Back wash can remove clogging for ferric colloidal dam. 5) The apparent thermal diffusivity decrease gradually due to ferric colloidal dam.
NASA Technical Reports Server (NTRS)
Cunningham, Ronan A.; McManus, Hugh L.
1996-01-01
It has previously been demonstrated that simple coupled reaction-diffusion models can approximate the aging behavior of PMR-15 resin subjected to different oxidative environments. Based on empirically observed phenomena, a model coupling chemical reactions, both thermal and oxidative, with diffusion of oxygen into the material bulk should allow simulation of the aging process. Through preliminary modeling techniques such as this it has become apparent that accurate analytical models cannot be created until the phenomena which cause the aging of these materials are quantified. An experimental program is currently underway to quantify all of the reaction/diffusion related mechanisms involved. The following contains a summary of the experimental data which has been collected through thermogravimetric analyses of neat PMR-15 resin, along with analytical predictions from models based on the empirical data. Thermogravimetric analyses were carried out in a number of different environments - nitrogen, air and oxygen. The nitrogen provides data for the purely thermal degradation mechanisms while those in air provide data for the coupled oxidative-thermal process. The intent here is to effectively subtract the nitrogen atmosphere data (assumed to represent only thermal reactions) from the air and oxygen atmosphere data to back-figure the purely oxidative reactions. Once purely oxidative (concentration dependent) reactions have been quantified it should then be possible to quantify the diffusion of oxygen into the material bulk.
Systematic variations of argon diffusion in feldspars and implications for thermochronometry
Cassata, William S.; Renne, Paul R.
2013-03-07
Coupled information about the time-dependent production and temperature-dependent diffusion of radiogenic argon in feldspars can be used to constrain the thermal evolution attending a host of Earth and planetary processes. To better assess the accuracy of thermal models, an understanding of the mechanisms and pathways by which argon diffuses in feldspars is desirable. Here we present step-heating Ar diffusion experiments conducted on feldspars with diverse compositions, structural states, and microstructural characteristics. The experiments reveal systematic variations in diffusive behavior that appear closely related to these variables, with apparent closure temperatures for 0.1–1 mm grains of ~200–400 °C (assuming a 10more » °C/Ma cooling rate). Given such variability, there is no broadly applicable set of diffusion parameters that can be utilized in feldspar thermal modeling; sample-specific data are required. Diffusion experiments conducted on oriented cleavage flakes do not reveal directionally-dependent diffusive anisotropy to within the resolution limits of our approach (approximately a factor of 2). Additional experiments aimed at constraining the physical significance of the diffusion domain are presented and indicate that unaltered feldspar crystals with or without coherent exsolution lamellae diffuse at the grain-scale, whereas feldspars containing hydrothermal alteration and/or incoherent sub-grain intergrowths do not. Arrhenius plots for argon diffusion in plagioclase and alkali feldspars appear to reflect a confluence of intrinsic diffusion kinetics and structural transitions that occur during incremental heating experiments. These structural transitions, along with sub-grain domain size variations, cause deviations from linearity (i.e., upward and downward curvature) on Arrhenius plots. An atomistic model for Arrhenius behavior is proposed that incorporates the variable lattice deformations of different feldspars in response to heating and compression. Furthermore, the resulting implications for accurately extrapolating laboratory-derived diffusion parameters to natural settings and over geologic time are discussed. We find that considerable inaccuracies may exist in published thermal histories obtained using multiple diffusion domain (MDD) models fit to Arrhenius plots for exsolved alkali feldspar, where the inferred Ar partial retention zones may be spuriously hot.« less
Driessen, Juliette P; van Bemmel, Alexander J M; van Kempen, Pauline M W; Janssen, Luuk M; Terhaard, Chris H J; Pameijer, Frank A; Willems, Stefan M; Stegeman, Inge; Grolman, Wilko; Philippens, Marielle E P
2016-04-01
Identification of prognostic patient characteristics in head and neck squamous cell carcinoma (HNSCC) is of great importance. Human papillomavirus (HPV)-positive HNSCCs have favorable response to (chemo)radiotherapy. Apparent diffusion coefficient, derived from diffusion-weighted MRI, has also shown to predict treatment response. The purpose of this study was to evaluate the correlation between HPV status and apparent diffusion coefficient. Seventy-three patients with histologically proven HNSCC were retrospectively analyzed. Mean pretreatment apparent diffusion coefficient was calculated by delineation of total tumor volume on diffusion-weighted MRI. HPV status was analyzed and correlated to apparent diffusion coefficient. Six HNSCCs were HPV-positive. HPV-positive HNSCC showed significantly lower apparent diffusion coefficient compared to HPV-negative. This correlation was independent of other patient characteristics. In HNSCC, positive HPV status correlates with low mean apparent diffusion coefficient. The favorable prognostic value of low pretreatment apparent diffusion coefficient might be partially attributed to patients with a positive HPV status. © 2015 Wiley Periodicals, Inc. Head Neck 38: E613-E618, 2016. © 2015 Wiley Periodicals, Inc.
The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Spuckler, Charles M.
2010-01-01
The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.
Near-limit flame structures at low Lewis number
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1990-01-01
The characteristics of premixed gas flames in mixtures with low Lewis numbers near flammability limits were studied experimentally using a low-gravity environment to reduce buoyant convection. The behavior of such flames was found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. Experimental observations are found to be in qualitative agreement with elementary analytical models based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and volumetric heat losses due to gas and/or soot radiation.
NASA Technical Reports Server (NTRS)
Ronney, Paul D.
1989-01-01
The characteristics of premixed gas flames in mixtures with low Lewis numbers, free of natural convection effects, were investigated and found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. As a result of these phenomena, well-defined flammability limits were not observed. The experimental results are found to be in qualitative agreement with a simple analytical model based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and heat losses due to gas radiation.
Formation and coarsening of near-surface Ga nanoparticles on SiN{sub x}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canniff, J. C.; Jeon, S.; Huang, S.
2015-06-15
We have investigated the formation and coarsening of near-surface Ga nanoparticles (NPs) in SiN{sub x} using Ga{sup +} focused-ion-beam-irradiation of SiN{sub x}, followed by rapid thermal annealing. For surfaces with minimal curvature, diffusive growth is apparent, leading to nearly close packed arrays with NP diameters as small as 3 nm and densities as high as ∼4 × 10{sup 12} cm{sup −2}. The diffusive flux increases with annealing temperature, leading to NP coarsening by Ostwald ripening. For surfaces with increased curvature, diffusion towards the valleys also increases during annealing, leading to Ga NP coalescence and a bi-modal distribution of NP sizes.
Thermal transport at the nanoscale: A Fourier's law vs. phonon Boltzmann equation study
NASA Astrophysics Data System (ADS)
Kaiser, J.; Feng, T.; Maassen, J.; Wang, X.; Ruan, X.; Lundstrom, M.
2017-01-01
Steady-state thermal transport in nanostructures with dimensions comparable to the phonon mean-free-path is examined. Both the case of contacts at different temperatures with no internal heat generation and contacts at the same temperature with internal heat generation are considered. Fourier's law results are compared to finite volume method solutions of the phonon Boltzmann equation in the gray approximation. When the boundary conditions are properly specified, results obtained using Fourier's law without modifying the bulk thermal conductivity are in essentially exact quantitative agreement with the phonon Boltzmann equation in the ballistic and diffusive limits. The errors between these two limits are examined in this paper. For the four cases examined, the error in the apparent thermal conductivity as deduced from a correct application of Fourier's law is less than 6%. We also find that the Fourier's law results presented here are nearly identical to those obtained from a widely used ballistic-diffusive approach but analytically much simpler. Although limited to steady-state conditions with spatial variations in one dimension and to a gray model of phonon transport, the results show that Fourier's law can be used for linear transport from the diffusive to the ballistic limit. The results also contribute to an understanding of how heat transport at the nanoscale can be understood in terms of the conceptual framework that has been established for electron transport at the nanoscale.
Yang, Yunjun; Gao, Lingyun; Fu, Jun; Zhang, Jun; Li, Yuxin; Yin, Bo; Chen, Weijian; Geng, Daoying
2013-01-01
Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffusion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially increased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion coefficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3–24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis. PMID:25206615
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-07-25
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25-6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5-4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = -0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.
Serial diffusion-weighted imaging in subacute sclerosing panencephalitis.
Kanemura, Hideaki; Aihara, Masao
2008-06-01
Subacute sclerosing panencephalitis may be associated with clinical features of frontal lobe dysfunction. We previously reported that frontal lobe volume falls significantly as clinical stage progresses, using three-dimensional magnetic resonance imaging-based brain volumetry. The hypothesis that frontal volume increases correlate with clinical improvement, however, was not tested in our previous study. Therefore, we reevaluated our patient with subacute sclerosing panencephalitis, to determine whether apparent diffusion coefficient maps can characterize the clinical course of subacute sclerosing panencephalitis. We studied an 8-year-old boy with subacute sclerosing panencephalitis, using serial diffusion-weighted imaging magnetic resonance imaging, and measured the regional apparent diffusion coefficient. The regional apparent diffusion coefficient of the frontal lobe decreased significantly with clinical progression, whereas it increased to within normal range during clinical improvements. The apparent diffusion coefficient of the other regions did not change. These results suggest that the clinical signs of patients with subacute sclerosing panencephalitis are attributable to frontal lobe dysfunction, and that apparent diffusion coefficient measurements may be useful in predicting the clinical course of subacute sclerosing panencephalitis.
NMR Observation of Mobile Protons in Proton-Implanted ZnO Nanorods
Park, Jun Kue; Kwon, Hyeok-Jung; Lee, Cheol Eui
2016-01-01
The diffusion properties of H+ in ZnO nanorods are investigated before and after 20 MeV proton beam irradiation by using 1H nuclear magnetic resonance (NMR) spectroscopy. Herein, we unambiguously observe that the implanted protons occupy thermally unstable site of ZnO, giving rise to a narrow NMR line at 4.1 ppm. The activation barrier of the implanted protons was found to be 0.46 eV by means of the rotating-frame spin-lattice relaxation measurements, apparently being interstitial hydrogens. High-energy beam irradiation also leads to correlated jump diffusion of the surface hydroxyl group of multiple lines at ~1 ppm, implying the presence of structural disorder at the ZnO surface. PMID:26988733
Jo, Yongcheol; Jung, Kyooho; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Hong, Jinpyo; Lee, Jeon-Kook; Im, Hyunsik
2014-01-01
This work reports on a mechanism for irreversible resistive switching (RS) transformation from bipolar to unipolar RS behavior in SrRuO3 (SRO)/Cr-doped SrZrO3 (SZO:Cr)/Pt capacitor structures prepared on a Ti/SiO2/Si substrate. Counter-clockwise bipolar RS memory current-voltage (I–V) characteristics are observed within the RS voltage window of −2.5 to +1.9 V, with good endurance and retention properties. As the bias voltage increases further beyond 4 V under a forward bias, a forming process occurs resulting in irreversible RS mode transformation from bipolar to unipolar mode. This switching mode transformation is a direct consequence of thermally activated Ti out-diffusion from a Ti adhesion layer. Transition metal Ti effectively out-diffuses through the loose Pt electrode layer at high substrate temperatures, leading to the unintended formation of a thin titanium oxide (TiOx where x < 2) layer between the Pt electrode and the SZO:Cr layer as well as additional Ti atoms in the SZO:Cr layer. Cross-sectional scanning electron microscopy, transmission electron microscopy and Auger electron spectroscopy depth-profile measurements provided apparent evidence of the Ti out-diffusion phenomenon. We propose that the out-diffusion-induced additional Ti atoms in the SZO:Cr layer contributes to the creation of the metallic filamentary channels. PMID:25483325
Three mechanisms model of shale gas in real state transport through a single nanopore
NASA Astrophysics Data System (ADS)
Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai
2018-02-01
At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.
Hu, Hui; Lu, Hong; He, Zhanping; Han, Xiangjun; Chen, Jing; Tu, Rong
2012-01-01
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25–6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5–4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = −0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema. PMID:25657707
Thermal properties of soils: effect of biochar application
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy
2014-05-01
Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity that decreased in soil with addition of biochar and pure biochar. The reduction of both properties was mostly due to decrease in both particle density and bulk density. Both biochar and the organic amendments addition resulted in a decrease of the heat capacity of the mixtures in dry state and considerable increase in wet state. The lowest and highest reduction in the thermal conductivity with decreasing water content was obtained for pure biochar and mineral soil, respectively. The thermal diffusivity had a characteristic maximum at higher bulk densities and lower water contents. The wetland soil higher in organic matter content exhibit smaller temporal variation of the thermal properties compared to soils lower in organic matter content in response to changes of water content. The statistical-physical model was found to be useful for satisfactory predicting thermal properties of the soil with addition of biochar and organic amendments. Usowicz B. et al., 2006. Thermal conductivity modelling of terrestrial soil media - A comparative study. Planetary and Space Science 54, 1086-1095.
Shuster, David L.; Cassata, William S.
2015-02-10
The simultaneous diffusion of both cosmogenic 38Ar and radiogenic 40Ar from solid phases is controlled by the thermal conditions of rocks while residing near planetary surfaces. Combined observations of 38Ar/ 37Ar and 40Ar/ 39Ar ratios during stepwise degassing analyses of neutron-irradiated Apollo samples can distinguish between diffusive loss of Ar due to solar heating of the rocks and that associated with elevated temperatures during or following impact events; the data provide quantitative constraints on the durations and temperatures of each process. From sequentially degassed 38Ar/ 37Ar ratios can be calculated a spectrum of apparent 38Ar exposure ages versus the cumulativemore » release fraction of 37Ar, which is particularly sensitive to conditions at the lunar surface typically over ~106–108 year timescales. Due to variable proportions of K- and Ca-bearing glass, plagioclase and pyroxene, with variability in the grain sizes of these phases, each sample will have distinct sensitivity to, and therefore different resolving power on, past near-surface thermal conditions. Furthermore, we present the underlying assumptions, and the analytical and numerical methods used to quantify the Ar diffusion kinetics in multi-phase whole-rock analyses that provide these constraints.« less
NASA Astrophysics Data System (ADS)
Schmidt, V. H.
1981-06-01
Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO3 was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis, an apparent absorption of hydrogen near 3000 C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 1700 C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.
Mechanisms of decoherence in electron microscopy.
Howie, A
2011-06-01
The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
Empirical constraints on closure temperatures from a single diffusion coefficient
NASA Astrophysics Data System (ADS)
Lee, J. K. W.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (Tc*) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (Tc*) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures (Tc) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of Tc* given knowledge of only one diffusion coefficient DM measured at one temperature TM. Qualitative constraints of the true closure temperature Tc* are obtained from the shapes of curves on a graph of the apparent Tc (Tc) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement DM at temperature TM. Using a realistic range of E, the concavity of the curve shows whether TM is less than, approximately equal to, or greater than Tc*. Quantitative estimates are obtained by considering two dimensionless parameters [
Low thermal diffusivity measurements of thin films using mirage technique
NASA Astrophysics Data System (ADS)
Wong, P. K.; Fung, P. C. W.; Tam, H. L.
1998-12-01
Mirage technique is proved to be powerful in measurements of thermal diffusivity. Its contactless nature makes it suitable for delicate samples such as thin films and single crystals. However, as the damping of the thermal wave profile increases progressively upon the decrease in thermal diffusivity of the medium, mirage technique becomes more difficult to be applied to low thermal diffusivity measurements. Moreover influences from substrate signals make analysis difficult when the samples are thermally thin. Recently a thermal-wave-coupling method for mirage signal analysis [P. K. Wong, P. C. W. Fung, H. L. Tam, and J. Gao, Phys. Rev. B 51, 523 (1995)] was reported for thermal diffusivity measurements of thin film down to 60 nm thick. In this article we apply the thermal-wave-coupling method to thin films of low thermal diffusivity, especially polymer films. A new lower limit of thermal diffusivity measurable by mirage technique has been reached.
Apparent critical phenomena in the superionic phase transition of Cu 2-xSe
Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...
2016-01-11
The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less
Ma, Wanling; Li, Na; Zhao, Weiwei; Ren, Jing; Wei, Mengqi; Yang, Yong; Wang, Yingmei; Fu, Xin; Zhang, Zhuoli; Larson, Andrew C; Huan, Yi
2016-01-01
To clarify diffusion and perfusion abnormalities and evaluate correlation between apparent diffusion coefficient (ADC), MR perfusion and histopathologic parameters of pancreatic cancer (PC). Eighteen patients with PC underwent diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Parameters of DCE-MRI and ADC of cancer and non-cancerous tissue were compared. Correlation between the rate constant that represents transfer of contrast agent from the arterial blood into the extravascular extracellular space (K, volume of the extravascular extracellular space per unit volume of tissue (Ve), and ADC of PC and histopathologic parameters were analyzed. The rate constant that represents transfer of contrast agent from the extravascular extracellular space into blood plasma, K, tissue volume fraction occupied by vascular space, and ADC of PC were significantly lower than nontumoral pancreases. Ve of PC was significantly higher than that of nontumoral pancreas. Apparent diffusion coefficient and K values of PC were negatively correlated to fibrosis content and fibroblast activation protein staining score. Fibrosis content was positively correlated to Ve. Apparent diffusion coefficient values and parameters of DCE-MRI can differentiate PC from nontumoral pancreases. There are correlations between ADC, K, Ve, and fibrosis content of PC. Fibroblast activation protein staining score of PC is negatively correlated to ADC and K. Apparent diffusion coefficient, K, and Ve may be feasible to predict prognosis of PC.
Yanagisawa, Osamu; Takahashi, Hideyuki; Fukubayashi, Toru
2010-09-01
In this study, we determined the effects of different cooling treatments on exercised muscles. Seven adults underwent four post-exercise treatments (20-min ice-bag application, 60-min gel-pack application at 10 degrees C and 17 degrees C, and non-cooling treatment) with at least 1 week between treatments. Magnetic resonance diffusion- and T2-weighted images were obtained to calculate the apparent diffusion coefficients (apparent diffusion coefficient 1, which reflects intramuscular water diffusion and microcirculation, and apparent diffusion coefficient 2, which is approximately equal to the true diffusion coefficient that excludes as much of the effect of intramuscular microcirculation as possible) and the T2 values (intramuscular water content level) of the ankle dorsiflexors, respectively, before and after ankle dorsiflexion exercise and after post-exercise treatment. The T2 values increased significantly after exercise and returned to pre-exercise values after each treatment; no significant differences were observed among the four post-exercise treatments. Both apparent diffusion coefficients also increased significantly after exercise and decreased significantly after the three cooling treatments; no significant difference was detected among the three cooling treatments. Local cooling suppresses both water diffusion and microcirculation within exercised muscles. Moreover, although the treatment time was longer, adequate cooling effects could be achieved using the gel-pack applications at relatively mild cooling temperatures.
The clumped-isotope geochemistry of exhumed marbles from Naxos, Greece
NASA Astrophysics Data System (ADS)
Ryb, U.; Lloyd, M. K.; Stolper, D. A.; Eiler, J. M.
2017-07-01
Exhumation and accompanying retrograde metamorphism alter the compositions and textures of metamorphic rocks through deformation, mineral-mineral reactions, water-rock reactions, and diffusion-controlled intra- and inter-mineral atomic mobility. Here, we demonstrate that these processes are recorded in the clumped- and single-isotope (δ13 C and δ18 O) compositions of marbles, which can be used to constrain retrograde metamorphic histories. We collected 27 calcite and dolomite marbles along a transect from the rim to the center of the metamorphic core-complex of Naxos (Greece), and analyzed their carbonate single- and clumped-isotope compositions. The majority of Δ47 values of whole-rock samples are consistent with exhumation- controlled cooling of the metamorphic complex. However, the data also reveal that water-rock interaction, deformation driven recrystallization and thermal shock associated with hydrothermal alteration may considerably impact the overall distribution of Δ47 values. We analyzed specific carbonate fabrics influenced by deformation and fluid-rock reaction to study how these processes register in the carbonate clumped-isotope system. Δ47 values of domains drilled from a calcite marble show a bimodal distribution. Low Δ47 values correspond to an apparent temperature of 260 °C and are common in static fabrics; high Δ47 values correspond to an apparent temperature of 200 °C and are common in dynamically recrystallized fabrics. We suggest that the low Δ47 values reflect diffusion-controlled isotopic reordering during cooling, whereas high Δ47 values reflect isotopic reordering driven by dynamic recrystallization. We further studied the mechanism by which dynamic recrystallization may alter Δ47 values by controlled heating experiments. Results show no significant difference between laboratory reactions rates in the static and dynamic fabrics, consistent with a mineral-extrinsic mechanism, in which slip along crystal planes was associated with atomic-scale isotopic reordering in the calcite lattice. An intrinsic mechanism (enhanced isotopic reordering rate in deformed minerals) is contraindicated by these experiments. We suggest that Δ47 values of dynamically recrystallized fabrics that form below the diffusion-controlled blocking-temperature for calcite constrain the temperature of deformation. We find that Δ47-based temperatures of static fabrics from Naxos marbles are ∼60-80 °C higher than commonly observed in slowly cooled metamorphic rocks, and would suggest cooling rates of ∼105 °CMyr-1. A similar thermal history is inferred for dolomite marbles from the core vicinity, which preserve apparent temperatures up to 200 °C higher than a typical blocking temperature (∼300 °C). This finding could be explained by a hydrothermal event driving a brief thermal pulse and locally resetting Δ47 values. Rapid cooling of the core-complex region is consistent with a compilation of published cooling ages and a new apatite U-Th/He age, associating the thermal event with the emplacement of a granodiorite pluton at ∼12 Ma.
Volatile Cycling and Layering on Mars: Observations, Theory and Modeling
NASA Technical Reports Server (NTRS)
Mischna, M. A.; McCleese, D. J.; Richardson, M. I.; Vasavada, A. R.; Wilson, R. J.
2003-01-01
With the release of Mars Odyssey Gamma Ray Spectrometer (GRS) results, which indicate the presence of vast reservoirs of near-surface ice in the martian polar regions, we are presented with an exquisite dilemma. These deposits, which are present as far down as 60 deg. latitude in both hemispheres, are consistent with the suggestion of thermal models that ice will be best protected in these extended regions during periods of higher obliquity. However, the current paradigm regarding the placement of these deposits, i.e., diffusive deposition of water vapor, appears to be inconsistent with the large volume mixing ratios (approx. 70%) inferred from the GRS data. This apparent conflict argues that diffusion alone cannot be the primary mechanism for the creation of these reservoirs, and that an alternate, large-scale process should be considered.
Wada, Masae; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Fujiwara-Igarashi, Aki; Fujita, Michio
2017-07-01
Although MRI has become widely used in small animal practice, little is known about the validity of advanced MRI techniques such as diffusion-weighted imaging and diffusion tensor imaging. The aim of this retrospective analytical observational study was to investigate the characteristics of diffusion parameters, that is the apparent diffusion coefficient and fractional anisotropy, in dogs with a solitary intracranial meningioma or histiocytic sarcoma. Dogs were included based on the performance of diffusion MRI and histological confirmation. Statistical analyses were performed to compare apparent diffusion coefficient and fractional anisotropy for the two types of tumor in the intra- and peritumoral regions. Eleven cases with meningioma and six with histiocytic sarcoma satisfied the inclusion criteria. Significant differences in apparent diffusion coefficient value (× 10 -3 mm 2 /s) between meningioma vs. histiocytic sarcoma were recognized in intratumoral small (1.07 vs. 0.76) and large (1.04 vs. 0.77) regions of interest, in the peritumoral margin (0.93 vs. 1.08), and in the T2 high region (1.21 vs. 1.41). Significant differences in fractional anisotropy values were found in the peritumoral margin (0.29 vs. 0.24) and the T2 high region (0.24 vs. 0.17). The current study identified differences in measurements of apparent diffusion coefficient and fractional anisotropy for meningioma and histiocytic sarcoma in a small sample of dogs. In addition, we observed that all cases of intracranial histiocytic sarcoma showed leptomeningeal enhancement and/or mass formation invading into the sulci in the contrast study. Future studies are needed to determine the sensitivity of these imaging characteristics for differentiating between these tumor types. © 2017 American College of Veterinary Radiology.
Thermal diffusivity of four Apollo 17 rock samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horai, K.; Winkler, J.L. Jr.
1976-01-01
The thermal diffusivities of four Apollo 17 rock samples (70017,77; 70215,18; 72395,14; and 77035,44) are measured in the temperature range between 180/sup 0/K and 460/sup 0/K at interstitial gaseous pressures of 1 atm and 10/sup -6/ torr of air. The thermal diffusivities at 1 atm are decreasing functions of temperature. Basalt samples (70017,77 and 70215,18) show higher thermal diffusivities than breccias (72395,14 and 77035,44), indicating that the thermal contact between mineral grains is better in crystalline rocks than in breccias. The magnitude of thermal diffusivities of the Apollo 17 basalt samples is intermediate between published diffusivities of Apollo 11 andmore » 12 basalts, suggesting that the intergranular cohesion of Apollo 17 basalts is weaker than that of Apollo 11 basalts but is stronger than that of Apollo 12 basalt. The thermal diffusivities measured at 10/sup -6/ torr are less temperature dependent. The basalt samples still show higher thermal diffusivities than the breccias, however. The low thermal diffusivity of the porous breccia sample (72395,14) is comparable to the lunar anorthositic gabbro (77017,24) studied by Mizutani and Osako (1974) that has the lowest thermal diffusivity of lunar rock samples ever reported. The difference between the thermal diffusivities the samples exhibit under atmospheric and vacuum conditions cannot be explained by the effect of thermal conduction through the gas medium filling the interstices of the samples that are absent under vacuum condition. A hypothesis is presented that the thermal conduction across the intergranular contact surfaces is strongly influenced by the adsorption of gas molecules on the surfaces of mineral grains. Measurements are also made in carbon dioxide atmosphere, in the temperature range between 200/sup 0/K and 460/sup 0/K.« less
Eggeman, A S; London, A; Midgley, P A
2013-11-01
Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.
Fielitz, Peter; Borchardt, Günter
2016-08-10
In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.
The Measurement of Thermal Diffusivity in Conductor and Insulator by Photodeflection Technique
NASA Astrophysics Data System (ADS)
Achathongsuk, U.; Rittidach, T.; Tipmonta, P.; Kijamnajsuk, P.; Chotikaprakhan, S.
2017-09-01
The purpose of this study is to estimate thermal diffusivities of high thermal diffusivity bulk material as well as low thermal diffusivity bulk material by using many types of fluid such as Ethyl alcohol and water. This method is studied by measuring amplitude and phase of photodeflection signal in various frequency modulations. The experimental setup consists of two laser lines: 1) a pump laser beams through a modulator, varied frequency, controlled by lock-in amplifier and focused on sample surface by lens. 2) a probe laser which parallels with the sample surface and is perpendicular to the pump laser beam. The probe laser deflection signal is obtained by a position sensor which controlled by lock-in amplifier. Thermal diffusivity is calculated by measuring the amplitude and phase of the photodeflection signal and compared with the thermal diffusivity of a standard value. The thermal diffusivity of SGG agrees well with the literature but the thermal diffusivity of Cu is less than the literature value by a factor of ten. The experiment requires further improvement to measure the thermal diffusivity of Cu. However, we succeed in using ethyl alcohol as the coupling medium instead of CCl4 which is highly toxic.
Deep Learning Role in Early Diagnosis of Prostate Cancer
Reda, Islam; Khalil, Ashraf; Elmogy, Mohammed; Abou El-Fetouh, Ahmed; Shalaby, Ahmed; Abou El-Ghar, Mohamed; Elmaghraby, Adel; Ghazal, Mohammed; El-Baz, Ayman
2018-01-01
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. PMID:29804518
Pore-scale lattice Boltzmann simulation of micro-gaseous flow considering surface diffusion effect
Wang, Junjian; Kang, Qinjun; Chen, Li; ...
2016-11-21
Some recent studies have shown that adsorbed gas and its surface diffusion have profound influence on micro-gaseous flow through organic pores in shale gas reservoirs. Here, a multiple-relaxation-time (MRT) LB model is adopted to estimate the apparent permeability of organic shale and a new boundary condition, which combines Langmuir adsorption theory with Maxwellian diffusive reflection boundary condition, is proposed to capture gas slip and surface diffusion of adsorbed gas. The simulation results match well with previous studies carried out using Molecular Dynamics (MD) and show that Maxwell slip boundary condition fails to characterize gas transport in the near wall regionmore » under the influence of the adsorbed gas. The total molar flux can be either enhanced or reduced depending on variations in adsorbed gas coverage and surface diffusion velocity. The effects of pore width, pressure as well as Langmuir properties on apparent permeability of methane transport in organic pores are further studied. It is found that the surface transport plays a significant role in determining the apparent permeability, and the variation of apparent permeability with pore size and pressure is affected by the adsorption and surface diffusion.« less
Intracellular diffusion in the presence of mobile buffers. Application to proton movement in muscle.
Irving, M; Maylie, J; Sizto, N L; Chandler, W K
1990-04-01
Junge and McLaughlin (1987) derived an expression for the apparent diffusion constant of protons in the presence of both mobile and immobile buffers. Their derivation applies only to cases in which the values of pH are considerably greater than the largest pK of the individual buffers, a condition that is not expected to hold in skeletal muscle or many other cell types. Here we show that, if the pH gradients are small, the same expression for the apparent diffusion constant of protons can be derived without such constraints on the values of the pK's. The derivation is general and can be used to estimate the apparent diffusion constant of any substance that diffuses in the presence of both mobile and immobile buffers. The apparent diffusion constant of protons is estimated to be 1-2 x 10(-6) cm2/s at 18 degrees C inside intact frog twitch muscle fibers. It may be smaller inside cut fibers, owing to a reduction in the concentration of mobile myoplasmic buffers, so that in this preparation a pH gradient, if established within a sarcomere following action potential stimulation, could last 10 ms or longer after stimulation ceased.
Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.
2012-01-01
With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578
Knudsen, W C; Spenner, K; Whitten, R C; Spreiter, J R; Miller, K L; Novak, V
1979-02-23
Thermal plasma quantities measured by, the retarding potential analyzer (RPA) are, together with companion Pioneer Venus measurements, the first in situ measurements of the Venus ionosphere. High ionospheric ion and electron temperatures imply significant solar wind heating of the ionosphere. Comparison of the measured altitude profiles of the dominant ions with an initial modlel indicates that the ionosphere is close to diffusive equilibrium. The ionopause height was observed to vary from 400 to 1000 kilometers in early orbits. The ionospheric particle pressure at the ionopause is apparently balanced at a solar zenith angle of about 70 degrees by the magnetic field pressure with little contribution from energetic solar wind particles. The measured ratio of ionospheric scale height to ionopause radius is consistent with that inferred from previously measured bow shock positions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, V.H.
1981-06-01
Several results regarding the effect of hydrogen on lanthanum chromite were determined. Thermally-activated diffusion of hydrogen through La(Mg)CrO/sub 3/ was found with a high activation energy. It was found that its electrical conductivity drops drastically, especially at low temperature, after exposure to hydrogen at high temperature. Also, the curvature of most of the conductivity plots, as well as the inability to observe the Hall effect, lends support to the proposal by Karim and Aldred that the small-polaron model which predicts thermally activated mobility is applicable to doped lanthanum chromite. From differential thermal analysis an apparent absorption of hydrogen near 300/supmore » 0/C was noticed. Upon cooling the lanthanum chromite in hydrogen and subsequently reheating it in air, desorption occurred near 170/sup 0/C. The immediate purpose of this study was to determine whether hydrogen has a deleterious effect on lanthanum chromite in solid oxide fuel cells.« less
Apparent diffusion coefficient of the normal human brain for various experimental conditions
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Dimitrievici, Lucian
2017-01-01
Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) is being increasingly used to assess both brain tissues and cerebrospinal fluid integrity. In this paper we study inter-site reproducibility of the apparent diffusion coefficient values for the main cerebral tissues such as gray matter, white matter and into cerebrospinal fluid and for three different stacks of slices that were spaced at L = 79.8, 84.9 and 90 mm. We assessed the impact of the attenuation factor and diffusion gradient on the results reproducibility.
NASA Astrophysics Data System (ADS)
Shuster, D. L.; Barrick-Bethell, I.; Fernandes, V. A.; Weiss, B. P.
2008-12-01
High-Resolution 40Ar/39Ar thermochronometry conducted on 8 separate whole-rock samples including shocked anorthosites, anorthositic impact melts, and fragmented breccias from Apollo 16 soil 63503 reveals an apparently short-duration thermal disturbance at ~3.3 Ga. Using feedback-controlled laser heating, we quantified the Ar diffusion kinetics and spatial distribution of radiogenic 40Ar (primarily contained in plagioclase) for each rock. Five of the samples show clear evidence for a partial resetting event in the K-Ar system at ~3.3 ± 0.1 Ga, despite two of them having 40Ar/39Ar "plateau" ages of ~3.9 Ga, and 3 having ages of ~4.2 Ga. Assuming that the observed Ar diffusion kinetics applies over all time, we constrained a time-temperature (t-T) pair required to diffusively perturb each of the 40Ar distributions at 3.3 Ga and result in the observed 40Ar/39Ar age spectra today. For each sample, this calculation quantified the non-dimensional parameter Dt/a2, with an estimated uncertainty. With each sample's Ar diffusion kinetics, the value of Dt/a2 corresponds to a non- unique family of t-T pairs (shown as continuous curves in t versus T); each pair would result in equivalent diffusive disturbance of the 40Ar spatial distribution at 3.3 Ga. Assuming there exists a best- fit solution for all 8 samples (i.e., that all samples experienced a common thermal event at 3.3 Ga), we constrain the unique t-T solution by minimizing the differences between each. We find that an instantaneous increase in temperature from ambient lunar near-surface conditions to ~530 °C for ~2.5 hours at 3.3 Ga would best explain the entire dataset, although longer durations (~days) spent cooling down to lower temperatures are permissible within the data uncertainty. The dataset also excludes the possibility of significant thermal disturbances after 3.3 Ga. We interpret the best-fit solution to represent the mean thermal state of the rocks during an impact event at ~3.3 Ga. This event may have helped mix separate ejecta units in the Cayley Plains and resulted in an admixture of both ~3.9 Ga and ~4.2 Ga aged rocks in lunar soil 63503.
Doblas, Sabrina; Almeida, Gilberto S; Blé, François-Xavier; Garteiser, Philippe; Hoff, Benjamin A; McIntyre, Dominick J O; Wachsmuth, Lydia; Chenevert, Thomas L; Faber, Cornelius; Griffiths, John R; Jacobs, Andreas H; Morris, David M; O'Connor, James P B; Robinson, Simon P; Van Beers, Bernard E; Waterton, John C
2015-12-01
To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems. A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.7T, 7T, and 9.4T Bruker, Agilent, and Magnex small-animal MRI systems using a common protocol across seven sites. Day-to-day repeatability was expressed as percent variation of mean ADC between acquisitions. Cross-site reproducibility was expressed as 1.96 × standard deviation of percent deviation of ADC values. ADC measurements were equivalent across all seven sites with a cross-site ADC reproducibility of 6.3%. Mean day-to-day repeatability of ADC measurements was 2.3%, and no site was identified as presenting different measurements than others (analysis of variance [ANOVA] P = 0.02, post-hoc test n.s.). Between-slice ADC variability was negligible and similar between sites (P = 0.15). Mean within-region-of-interest ADC variability was 5.5%, with one site presenting a significantly greater variation than the others (P = 0.0013). Absolute ADC values in preclinical studies are comparable between sites and equipment, provided standardized protocols are employed. © 2015 Wiley Periodicals, Inc.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Moksin, M. M.; Haydari, M.; Husin, M. S.; Yahya, N.; Azmi, B. Z.
2013-09-01
The suitability of a simple photoflash technique was further examined in the measurement of thermal diffusivity of nanotube-filled polyvinylidene difluoride (PVDF) film composites at low temperature. The effect of temperature and carbon nanotube (CNT) composition in PVDF composite on its thermal diffusivity is presented as equivalent to the effect of changing thermal phonon mean free path. It is done by assuming no other thermal carrier effects other than from phonons detected during measurement by using photoflash technique. The results show that thermal diffusivity of CNT-filled PVDF film composites was found to have consistently increased with increasing the CNT concentration or decreasing temperature, as in the case of insulators with dominant phonon thermal carriers. At any particular temperature, a dramatic increase in thermal diffusivity was noticed at the beginning as the CNT concentration was systematically increased up to a 1% turning point, from which the thermal diffusivity increased further at a much smaller rate with the CNT addition up to 10%. The thermal diffusivity of the samples was in the range of about (10-35) × 10- 8 m2/s depending on the temperature and the CNT concentration of the composites.
Thermal Dependence of the Apparent Km of Glutathione Reductases from Three Plant Species
Mahan, James R.; Burke, John J.; Orzech, Karen A.
1990-01-01
The thermal dependencies of the apparent Km of the glutathione reductases from spinach (Spinacia oleracea L.) corn (Zea mays L.), and cucumber (Cucumis sativus L.) were determined. The apparent Km of the enzymes were found to vary up to 9-fold between 12.5 and 45°C. Values of the apparent Km in excess of 200% of the observed minimum are suggested to be detrimental to the normal function of the enzyme. We propose the term “thermal kinetic window” to describe to the range of temperatures over which the apparent Km of the glutathione reductase is within 200% of its minimum and suggest that it may be a useful indicator of the limits of thermal stress for a given species. The thermal kinetic windows determined in this study are: <16°C for spinach, 23 to 32°C for corn, and 35 to 41°C for cucumber. PMID:16667543
Manipulation and simulations of thermal field profiles in laser heat-mode lithography
NASA Astrophysics Data System (ADS)
Wei, Tao; Wei, Jingsong; Wang, Yang; Zhang, Long
2017-12-01
Laser heat-mode lithography is a very useful method for high-speed fabrication of large-area micro/nanostructures. To obtain nanoscale pattern structures, one needs to manipulate the thermal diffusion channels. This work reports the manipulation of the thermal diffusion in laser heat-mode lithography and provides methods to restrain the in-plane thermal diffusion and improve the out-of-plane thermal diffusion. The thermal field profiles in heat-mode resist thin films have been given. It is found that the size of the heat-spot can be decreased by decreasing the thickness of the heat-mode resist thin films, inserting the thermal conduction layers, and shortening the laser irradiation time. The optimized laser writing strategy is also given, where the in-plane thermal diffusion is completely restrained and the out-of-plane thermal diffusion is improved. The heat-spot size is almost equal to that of the laser spot, accordingly. This work provides a very important guide to laser heat-mode lithography.
Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Takahashi, Satoru
2017-09-01
Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.
Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames
NASA Astrophysics Data System (ADS)
Schlup, Jason; Blanquart, Guillaume
2018-03-01
The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Tanaka, Takashi; Endo, Satoshi; Baba, Tetsuya; Harada, Yoshio; Kojima, Yoshitaka; Kawasaki, Akira; Ono, Fumio
2011-11-01
Ceramic-based thermal barrier coatings are used as heat and wear shields of gas turbine blades. There is a strong need to evaluate the thermal conductivity of coating for thermal design and use. The thermal conductivity of a bulk material is obtained as the product of thermal diffusivity, specific heat capacity, and density above room temperature in many cases. Thermal diffusivity and thermal conductivity are unique for a given material because they are sensitive to the structure of the material. Therefore, it is important to measure them in each sample. However it is difficult to measure the thermal diffusivity and thermal conductivity of coatings because coatings are attached to substrates. In order to evaluate the thermal diffusivity of a coating attached to the substrate, we have examined the laser flash method with the multilayer model on the basis of the response function method. We carried out laser flash measurements in layered samples composed of a CoNiCrAlY bond coating and a 8YSZ top coating by thermal spraying on a Ni-based superalloy substrate. It was found that the procedure using laser flash method with the multilayer model is useful for the thermal diffusivity evaluation of a coating attached to a substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streza, M.; Dadarlat, D.; Strzałkowski, K.
An accurate determination of thermophysical properties such as thermal diffusivity, thermal effusivity and thermal conductivity is extremely important for characterization and quality assurance of semiconductors. Thermal diffusivity and effusivity of some binary semiconductors have been investigated. Two experimental techniques were used: a contact technique (PPE calorimetry) and a non contact technique (lock-in thermography). When working with PPE, in the back (BPPE) configuration and in the thermally thick regim of the pyroelectric sensor, we can get the thermal diffusivity of the sample by performing a scanning of the excitation frequency of radiation. Thermal effusivity is obtained in front configuration (sensor directlymore » irradiated and sample in back position) by performing a thickness scan of a coupling fluid. By using the lock-in thermography technique, the thermal diffusivity of the sample is obtained from the phase image. The results obtained by the two techniques are in good agreement. Nevertheless, for the determination of thermal diffusivity, lock-in thermography is preferred.« less
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave
NASA Astrophysics Data System (ADS)
Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.
2017-08-01
In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois
In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L -shells
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-Francois; ...
2018-03-30
In the presence of drift-shell splitting intrinsic to the IGRF magnetic field model, pitch-angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered, and decreases with increasing L-shell. In this study we construct a numerical model for this coupled (radial and pitch-angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclearmore » detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch-angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of two (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to IGRF's azimuthal asymmetries) mitigates the decay expected from collisional pitch-angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.« less
Neoclassical Diffusion of Radiation-Belt Electrons Across Very Low L-Shells
NASA Astrophysics Data System (ADS)
Cunningham, Gregory S.; Loridan, Vivien; Ripoll, Jean-François; Schulz, Michael
2018-04-01
In the presence of drift-shell splitting intrinsic to the International Geomagnetic Reference Field magnetic field model, pitch angle scattering from Coulomb collisions experienced by radiation-belt electrons in the upper atmosphere and ionosphere produces extra radial diffusion, a form of neoclassical diffusion. The strength of the neoclassical radial diffusion at L < 1.2 exceeds that expected there from radial-diffusion mechanisms traditionally considered and decreases with increasing L-shell. In this work we construct a numerical model for this coupled (radial and pitch angle) collisional diffusion process and apply it to simulate raw count-rate data observed aboard the Gemini spacecraft for several years after the 1962 Starfish nuclear detonation. The data show apparent lifetimes 10-100 times as long as would have been expected from collisional pitch angle diffusion and Coulomb drag alone. Our model reproduces apparent lifetimes for >0.5-MeV electrons in the region 1.14 < L < 1.26 to within a factor of 2 (comparable to the uncertainty quoted for the observations). We conclude that neoclassical radial diffusion (resulting from drift-shell splitting intrinsic to International Geomagnetic Reference Field's azimuthal asymmetries) mitigates the decay expected from collisional pitch angle diffusion and inelastic energy loss alone and thus contributes importantly to the long apparent lifetimes observed at these low L-shells.
Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol; Yoon, Junghee
2014-01-01
Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.
Doblas, Sabrina; Wagner, Mathilde; Leitao, Helena S; Daire, Jean-Luc; Sinkus, Ralph; Vilgrain, Valérie; Van Beers, Bernard E
2013-10-01
The objective of this study was to compare the value of the apparent diffusion coefficient (ADC) determined with 3 b values and the intravoxel incoherent motion (IVIM)-derived parameters in the determination of malignancy and characterization of hepatic tumor type. Seventy-six patients with 86 solid hepatic lesions, including 8 hemangiomas, 20 lesions of focal nodular hyperplasia, 9 adenomas, 30 hepatocellular carcinomas, 13 metastases, and 6 cholangiocarcinomas, were assessed in this prospective study. Diffusion-weighted images were acquired with 11 b values to measure the ADCs (with b = 0, 150, and 500 s/mm) and the IVIM-derived parameters, namely, the pure diffusion coefficient and the perfusion-related diffusion fraction and coefficient. The diffusion parameters were compared between benign and malignant tumors and between tumor types, and their diagnostic value in identifying tumor malignancy was assessed. The apparent and pure diffusion coefficients were significantly higher in benign than in malignant tumors (benign: 2.32 [0.87] × 10 mm/s and 1.42 [0.37] × 10 mm/s vs malignant: 1.64 [0.51] × 10 mm/s and 1.14 [0.28] × 10 mm/s, respectively; P < 0.0001 and P = 0.0005), whereas the perfusion-related diffusion parameters did not differ significantly between the 2 groups. The apparent and pure diffusion coefficients provided similar accuracy in assessing tumor malignancy (areas under the receiver operating characteristic curve of 0.770 and 0.723, respectively). In the multigroup analysis, the ADC was found to be significantly higher in hemangiomas than in hepatocellular carcinomas, metastases, and cholangiocarcinomas. In the same manner, it was higher in lesions of focal nodular hyperplasia than in metastases and cholangiocarcinomas. However, the pure diffusion coefficient was significantly higher only in hemangiomas versus hepatocellular and cholangiocellular carcinomas. Compared with the ADC, the diffusion parameters derived from the IVIM model did not improve the determination of malignancy and characterization of hepatic tumor type.
Influence of precipitating light elements on stable stratification below the core/mantle boundary
NASA Astrophysics Data System (ADS)
O'Rourke, J. G.; Stevenson, D. J.
2017-12-01
Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically increases seismic velocity) growing to its present-day size while allowing enough precipitation to drive compositional convection below. Crucially, this modeling offers unique constrains on Earth's accretion and the light element composition of the core compared to degenerate estimates derived from bulk density and seismic measurements.
Transient in-plane thermal transport in nanofilms with internal heating
Cao, Bing-Yang
2016-01-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist. PMID:27118903
Transient in-plane thermal transport in nanofilms with internal heating.
Hua, Yu-Chao; Cao, Bing-Yang
2016-02-01
Wide applications of nanofilms in electronics necessitate an in-depth understanding of nanoscale thermal transport, which significantly deviates from Fourier's law. Great efforts have focused on the effective thermal conductivity under temperature difference, while it is still ambiguous whether the diffusion equation with an effective thermal conductivity can accurately characterize the nanoscale thermal transport with internal heating. In this work, transient in-plane thermal transport in nanofilms with internal heating is studied via Monte Carlo (MC) simulations in comparison to the heat diffusion model and mechanism analyses using Fourier transform. Phonon-boundary scattering leads to larger temperature rise and slower thermal response rate when compared with the heat diffusion model based on Fourier's law. The MC simulations are also compared with the diffusion model with effective thermal conductivity. In the first case of continuous internal heating, the diffusion model with effective thermal conductivity under-predicts the temperature rise by the MC simulations at the initial heating stage, while the deviation between them gradually decreases and vanishes with time. By contrast, for the one-pulse internal heating case, the diffusion model with effective thermal conductivity under-predicts both the peak temperature rise and the cooling rate, so the deviation can always exist.
Hagmann, Cornelia; Singer, Jitka; Latal, Beatrice; Knirsch, Walter; Makki, Malek
2016-03-01
The purpose of the study is to investigate the structural development of the corpus callosum in term neonates with congenital heart defect before and after surgery using diffusion tensor imaging and 3-dimensional T1-weighted magnetic resonance imaging (MRI). We compared parallel and radial diffusions, apparent diffusion coefficient (ADC), fractional anisotropy, and volume of 5 substructures of the corpus callosum: genu, rostral body, body, isthmus, and splenium. Compared to healthy controls, we found a significantly lower volume of the splenium and total corpus callosum and a higher radial diffusion and lower fractional anisotropy in the splenium of patients presurgery; a lower volume in all substructures in the postsurgery group; higher radial diffusion in the rostral body, body, and splenium; and a higher apparent diffusion coefficient in the splenium of postsurgery patients. Similar fractional anisotropy changes in congenital heart defect patients were reported in preterm infants. Our findings in apparent diffusion coefficient in the splenium of these patients (pre and postsurgery) are comparable to findings in preterm neonates with psychomotor delay. Delayed maturation of the isthmus was also reported in preterm infants. © The Author(s) 2015.
Thermal diffusivity of Bi 2Sr 2CaCu 2O 8 single crystals
NASA Astrophysics Data System (ADS)
Wu, X. D.; Fanton, J. G.; Kino, G. S.; Ryu, S.; Mitzi, D. B.; Kapitulnik, A.
1993-12-01
We have made direct measurements of the temperature dependence of the thermal diffusivity along all three axes of a single- crystal Bi 2Ca 2SrCu 2O 8 superconductor. We find that the thermal diffusivity is enhanced dramatically along the Cu-O planes below Tc. From our results, we estimate a 40% electronic contribution to the diffusivity along the Cu-O planes. At room temperature the total anisotropy in thermal diffusivity is 7:1, while the lattice contribution has only a 4.2:1 anisotropy.
The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn
NASA Astrophysics Data System (ADS)
Akoshima, Megumi; Ogwa, Mitsue; Baba, Tetsuya; Mizuno, Mineo
Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.
NASA Astrophysics Data System (ADS)
Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.
2011-04-01
The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.
Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens
NASA Astrophysics Data System (ADS)
Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.
2006-11-01
Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.
NASA Astrophysics Data System (ADS)
Willett, C. D.; Fox, M.; Shuster, D. L.
2016-12-01
Understanding helium diffusion kinetics in apatite is critical for the accurate interpretation of (U-Th)/He thermochronometric data. This problem is complicated by the observation that helium diffusivity is not a simple function of temperature, but may evolve as a function of damage to the apatite crystal lattice resulting from alpha recoil. This `radiation damage' increases as a function of the amount of radiometric parent products, or effective uranium concentration, and time, but decreases due to thermal annealing of damage, necessitating a detailed understanding of radiation damage production and annealing in cases of burial heating over geologic timescales. Published observations [1,2] suggest that annealing rates of damage caused by alpha recoil and fission tracks in apatite differ. Existing models, however, assume the diffusion kinetics resulting from the two sources of damage are identical [3], demonstrating the need for further investigation of these damage sources. We present modeling and experimental work designed to interrogate the effects of radiation damage and its annealing on helium diffusion kinetics in apatite. Using previously published results [4] that investigated the effects of annealing temperature and duration on measured helium diffusivity, we fit a set of functions that are then integrated into a numerical model that tracks the evolution of radiation damage and apparent (U-Th)/He age. We compare the results of this model calibration to existing models [3]. In addition, we present data from two suites of diffusion experiments. The first suite, intended to test the published methodology and results, uses Durango apatite, while the second uses Sierran (CA) granite as a first test to determine if apatite of varying chemistry and age responds differently to the thermal annealing of radiation damage. Ultimately, the updated model and experimental results will benefit the interpretation of the effects of radiation damage accumulation and annealing in apatite and expand the range of geologic settings that can be studied using low-temperature thermochronology. References: [1] Fox, M., Shuster, D. (2014), EPSL 397, 174-183; [2] Gautheron, C. et al. (2013), Chem. Geol. 351, 257-267; [3] Flowers, R. et al. (2009), GCA 73, 2347-2365; [4] Shuster, D., Farley, K. (2009), GCA 73, 6183-6196.
Single-beam thermal lens measurement of thermal diffusivity of engine coolants
NASA Astrophysics Data System (ADS)
George, Nibu A.; Thomas, Nibu B.; Chacko, Kavya; T, Neethu V.; Hussain Moidu, Haroon; Piyush, K.; David, Nitheesh M.
2015-04-01
Automobile engine coolant liquids are commonly used for efficient heat transfer from the engine to the surroundings. In this work we have investigated the thermal diffusivity of various commonly available engine coolants in Indian automobile market. We have used single beam laser induced thermal lens technique for the measurements. Engine coolants are generally available in concentrated solution form and are recommended to use at specified dilution. We have investigated the samples in the entire recommended concentration range for the use in radiators. While some of the brands show an enhanced thermal diffusivity compared to pure water, others show slight decrease in thermal diffusivity.
NASA Astrophysics Data System (ADS)
Lenart, V. M.; Astrath, N. G. C.; Turchiello, R. F.; Goya, G. F.; Gómez, S. L.
2018-02-01
Ferrofluids are colloids of superparamagnetic nanoparticles that are envisaged for use in hyperthermia, which is based on nonradiative relaxation after interaction with a high-frequency magnetic field or light. For such applications, an important parameter is the thermal diffusivity. In this communication, we present an experimental study of the dependence of thermal diffusivity of ferrofluids on the size of the magnetite nanoparticles by employing the mode-mismatched thermal lens technique. The results show a huge enhancement of the thermal diffusivity by increasing the average size of the nanoparticles, while the number density of the nanoparticles is maintained as constant.
Porosity Measurement in Laminated Composites by Thermography and FEA
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.
Bodzenta, Jerzy; Kaźmierczak-Bałata, Anna; Wokulska, Krystyna B; Kucytowski, Jacek; Łukasiewicz, Tadeusz; Hofman, Władysław
2009-03-01
Three crystals used in solid-state lasers, namely, yttrium aluminum garnet (YAG), yttrium orthovanadate (YVO(4)), and gadolinium calcium oxoborate (GdCOB), were investigated to determine the influence of dopants on their thermal diffusivity. The thermal diffusivity was measured by thermal wave method with a signal detection based on mirage effect. The YAG crystals were doped with Yb or V, the YVO(4) with Nd or Ca and Tm, and the GdCOB crystals contained Nd or Yb. In all cases, the doping caused a decrease in thermal diffusivity. The analysis of complementary measurements of ultrasound velocity changes caused by dopants leads to the conclusion that impurities create phonon scattering centers. This additional scattering reduces the phonon mean free path and accordingly results in the decrease of the thermal diffusivity of the crystal. The influence of doping on lattice parameters was investigated, additionally.
Thermal conductivity and thermal diffusivity of methane hydrate formed from compacted granular ice
NASA Astrophysics Data System (ADS)
Zhao, Jie; Sun, Shicai; Liu, Changling; Meng, Qingguo
2018-05-01
Thermal conductivity and thermal diffusivity of pure methane hydrate samples, formed from compacted granular ice (0-75 μm), and were measured simultaneously by the transient plane source (TPS) technique. The temperature dependence was measured between 263.15 and 283.05 K, and the gas-phase pressure dependence was measured between 2 and 10 MPa. It is revealed that the thermal conductivity of pure methane hydrate exhibits a positive trend with temperature and increases from 0.4877 to 0.5467 W·m-1·K-1. The thermal diffusivity of methane hydrate has inverse dependence on temperature and the values in the temperature range from 0.2940 to 0.3754 mm2·s-1, which is more than twice that of water. The experimental results show that the effects of gas-phase pressure on the thermal conductivity and thermal diffusivity are very small. Thermal conductivity of methane hydrate is found to have weakly positive gas-phase pressure dependence, whereas the thermal diffusivity has slightly negative trend with gas-phase pressure.
Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Kleinhenz, Julie E.
2011-01-01
Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.
Ellington, Benjamin M; Schmit, Brian D; Gourab, Krishnaj; Sieber-Blum, Maya; Hu, Yao F; Schmainda, Kathleen M
2009-01-01
Diffusion weighted magnetic resonance imaging (DWI) is a powerful tool for evaluation of microstructural anomalies in numerous central nervous system pathologies. Diffusion tensor imaging (DTI) allows for the magnitude and direction of water self diffusion to be estimated by sampling the apparent diffusion coefficient (ADC) in various directions. Clinical DWI and DTI performed at a single level of diffusion weighting, however, does not allow for multiple diffusion compartments to be elicited. Furthermore, assumptions made regarding the precise number of diffusion compartments intrinsic to the tissue of interest have resulted in a lack of consensus between investigations. To overcome these challenges, a stretched-exponential model of diffusion was applied to examine the diffusion coefficient and "heterogeneity index" within highly compartmentalized brain tumors. The purpose of the current study is to expand on the stretched-exponential model of diffusion to include directionality of both diffusion heterogeneity and apparent diffusion coefficient. This study develops the mathematics of this new technique along with an initial application in quantifying spinal cord regeneration following acute injection of epidermal neural crest stem cell (EPI-NCSC) grafts.
NASA Astrophysics Data System (ADS)
Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.
2014-12-01
Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.
NASA Astrophysics Data System (ADS)
Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.
2014-12-01
This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.
Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures
NASA Astrophysics Data System (ADS)
Chen, G.; Tien, C. L.; Wu, X.; Smith, J. S.
1994-05-01
This work develops a new measurement technique that determines the thermal diffusivity of thin films in both parallel and perpendicular directions, and presents experimental results on the thermal diffusivity of GaAs/AlGaAs-based thin-film structures. In the experiment, a modulated laser source heats up the sample and a fast-response temperature sensor patterned directly on the sample picks up the thermal response. From the phase delay between the heating source and the temperature sensor, the thermal diffusivity in either the parallel or perpendicular direction is obtained depending on the experimental configuration. The experiment is performed on a molecular-beam-epitaxy grown vertical-cavity surface-emitting laser (VCSEL) structure. The substrates of the samples are etched away to eliminate the effects of the interface between the film and the substrate. The results show that the thermal diffusivity of the VCSEL structure is 5-7 times smaller than that of its corresponding bulk media. The experiments also provide evidence on the anisotropy of thermal diffusivity caused solely by the effects of interfaces and boundaries of thin films.
Surface diffusion of In on Ge(111) studied by optical second harmonic microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suni, I.I.; Seebauer, E.G.
Surface diffusion of In on Ge(111) has been measured by optical second harmonic microscopy. This technique employs surface second harmonic generation to directly image submonolayer surface concentration profiles. The coverage dependence of the diffusivity [ital D] can then be obtained from a Boltzmann--Matano analysis. In the coverage range 0.1[lt][theta][lt]0.48, the activation energy [ital E][sub diff] decreased with increasing coverage, ranging from 31 kcal/mol at [theta]=0.1 to 23 kcal/mol at [theta]=0.48. Over the same coverage range, the pre-exponential factor [ital D][sub 0] decreased from 5[times]10[sup 2] to 1[times]10[sup [minus]1] cm[sup 2]/s. This gradual change reflects a change in diffusion mechanism arisingmore » from the disordered nature of the Ge(111) surface. At low coverages, In adatoms sink into the top layer of Ge, and diffusion is dominated by thermal formation of adatom-vacancy pairs. At high coverages, diffusion occurs by normal site-to-site hopping. The gradual change in diffusion parameters with coverage was interrupted by an apparent phase transition at [theta]=0.16. At this point, both [ital E][sub diff] and [ital D][sub 0] peaked sharply at 41 kcal/mol and 6[times]10[sup 5] cm[sup 2]/s, respectively. The desorption energy [ital E][sub des] was measured by temperature programmed desorption. [ital E][sub des] decreased from 60 kcal/mol at submonolayer coverages to 55 kcal/mol at multilayer coverages.« less
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
Improved lifetime high voltage switch electrode
NASA Astrophysics Data System (ADS)
Halverson, W.
1985-06-01
In this Phase 1 Small Business Innovation Research (SBIR) program, preliminary tests of ion implantation to increase the lifetime of spark switch electrodes have indicated that a 185 keV carbon ion implant into a tungsten-copper composite has reduced electrode erosion by a factor of two to four. Apparently, the thin layer of tungsten carbide (WC) has better thermal properties than pure tungsten; the WC may have penetrated into the unimplanted body of the electrode by liquid and/or solid phase diffusion during erosion testing. These encouraging results should provide the basis for a Phase 2 SBIR program to investigate further the physical and chemical effects of ion implantation on spark gap electrodes and to optimize the technique for applications.
Measuring Thermal Diffusivity Of A High-Tc Superconductor
NASA Technical Reports Server (NTRS)
Powers, Charles E.; Oh, Gloria; Leidecker, Henning
1992-01-01
Technique for measuring thermal diffusivity of superconductor of high critical temperature based on Angstrom's temperature-wave method. Peltier junction generates temperature oscillations, which propagate with attenuation up specimen. Thermal diffusivity of specimen calculated from distance between thermocouples and amplitudes and phases of oscillatory components of thermocouple readings.
NASA Astrophysics Data System (ADS)
Cao, Ning; Liang, Xuwei; Zhuang, Qi; Zhang, Jun
2009-02-01
Magnetic Resonance Imaging (MRI) techniques have achieved much importance in providing visual and quantitative information of human body. Diffusion MRI is the only non-invasive tool to obtain information of the neural fiber networks of the human brain. The traditional Diffusion Tensor Imaging (DTI) is only capable of characterizing Gaussian diffusion. High Angular Resolution Diffusion Imaging (HARDI) extends its ability to model more complex diffusion processes. Spherical harmonic series truncated to a certain degree is used in recent studies to describe the measured non-Gaussian Apparent Diffusion Coefficient (ADC) profile. In this study, we use the sampling theorem on band-limited spherical harmonics to choose a suitable degree to truncate the spherical harmonic series in the sense of Signal-to-Noise Ratio (SNR), and use Monte Carlo integration to compute the spherical harmonic transform of human brain data obtained from icosahedral schema.
NASA Astrophysics Data System (ADS)
Shen, Yanjun; Yang, Yang; Yang, Gengshe; Hou, Xin; Ye, Wanjun; You, Zhemin; Xi, Jiami
2018-05-01
A series of experiments were carried out to measure the damage characteristics of two common sedimentary rocks of limestone and sandstone at temperatures ranging from -30 °C to 1000 °C The apparent thermal conductivity, thermal diffusivity and specific heat capacity were investigated respectively. Then, several discrepancy reasons for the damage characteristics and thermo-physical properties of limestone and sandstone were probed. The results show that water migration and phase transition are two core factors for the frost damage and thermal behaviors improvement during the cooling process(20 °C → -30 °C).The heating process (20 °C → 1000 °C) was divided into three stages of 20 °C → 200 °C, 200 °C → 600 °Cand 600 °C → 1000 °C. The first stage was closely related to pore-water evaporation, and the next two stages were attributed to the thermal reactions of mineral partials. The mineral decomposition tended to be intensified and resulted in the interior damage or even the accelerated degradation of thermal properties until at a threshold temperature of 600 °C. In essential, the structural features and the sensitivity of mineral composition to temperature were two mainly influential factors on the damage effects and heat conduct of the sedimentary rocks during variations in environmental temperature.
NASA Technical Reports Server (NTRS)
Deb, Rahul; Snyder, Jeff G.
2005-01-01
A viewgraph presentation describing thermoelectric materials, an algorithm for heat capacity measurements and the process of flash thermal diffusivity. The contents include: 1) What are Thermoelectrics?; 2) Thermoelectric Applications; 3) Improving Thermoelectrics; 4) Research Goal; 5) Flash Thermal Diffusivity; 6) Background Effects; 7) Stainless Steel Comparison; 8) Pulse Max Integral; and 9) Graphite Comparison Algorithm.
Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen
2016-09-10
The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Apparent-Strain Correction for Combined Thermal and Mechanical Testing
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; O'Neil, Teresa L.
2007-01-01
Combined thermal and mechanical testing requires that the total strain be corrected for the coefficient of thermal expansion mismatch between the strain gage and the specimen or apparent strain when the temperature varies while a mechanical load is being applied. Collecting data for an apparent strain test becomes problematic as the specimen size increases. If the test specimen cannot be placed in a variable temperature test chamber to generate apparent strain data with no mechanical loads, coupons can be used to generate the required data. The coupons, however, must have the same strain gage type, coefficient of thermal expansion, and constraints as the specimen to be useful. Obtaining apparent-strain data at temperatures lower than -320 F is challenging due to the difficulty to maintain steady-state and uniform temperatures on a given specimen. Equations to correct for apparent strain in a real-time fashion and data from apparent-strain tests for composite and metallic specimens over a temperature range from -450 F to +250 F are presented in this paper. Three approaches to extrapolate apparent-strain data from -320 F to -430 F are presented and compared to the measured apparent-strain data. The first two approaches use a subset of the apparent-strain curves between -320 F and 100 F to extrapolate to -430 F, while the third approach extrapolates the apparent-strain curve over the temperature range of -320 F to +250 F to -430 F. The first two approaches are superior to the third approach but the use of either of the first two approaches is contingent upon the degree of non-linearity of the apparent-strain curve.
Graphene nanoplatelets: Thermal diffusivity and thermal conductivity by the flash method
NASA Astrophysics Data System (ADS)
Potenza, M.; Cataldo, A.; Bovesecchi, G.; Corasaniti, S.; Coppa, P.; Bellucci, S.
2017-07-01
The present work deals with the measurement of thermo-physical properties of a freestanding sheet of graphene (thermal diffusivity and thermal conductivity), and their dependence on sample density as result of uniform mechanical compression. Thermal diffusivity of graphene nano-platelets (thin slabs) was measured by the pulse flash method. Obtained response data were processed with a specifically developed least square data processing algorithm. GNP specific heat was assumed from literature and thermal conductivity derived from thermal diffusivity, specific heat and density. Obtained results show a significant difference with respect to other porous media: the thermal diffusivity decreases as the density increases, while thermal conductivity increases for low and high densities, and remain fairly constant for the intermediate range. This can be explained by the very high thermal conductivity values reached by the nano-layers of graphene and the peculiar arrangement of platelets during the compression applied to the samples to get the desired density. Due to very high thermal conductivity of graphene layers, the obtained results show that thermal conductivity of conglomerates increases when there is an air reduction due to compression, and consequent density increases, with the number of contact points between platelets also increased. In the intermediate range (250 ≤ ρ ≤ 700 kg.m-3) the folding of platelets reduces density, without increasing the contact points of platelets, so thermal conductivity can slightly decrease.
NASA Astrophysics Data System (ADS)
Camarano, D. M.; Mansur, F. A.; Santos, A. M. M.; Ferraz, W. B.; Ferreira, R. A. N.
2017-09-01
In nuclear reactors, the performance of uranium dioxide (UO2) fuel is strongly dependent on the thermal conductivity, which directly affects the fuel pellet temperature, the fission gas release and the fuel rod mechanical behavior during reactor operation. The use of additives to improve UO2 fuel performance has been investigated, and beryllium oxide (BeO) appears as a suitable additive because of its high thermal conductivity and excellent chemical compatibility with UO2. In this paper, UO2-BeO pellets were manufactured by mechanical mixing, pressing and sintering processes varying the BeO contents and compaction pressures. Pellets with BeO contents of 2 wt%, 3 wt%, 5 wt% and 7 wt% BeO were pressed at 400 MPa, 500 MPa and 600 MPa. The laser flash method was applied to determine the thermal diffusivity, and the results showed that the thermal diffusivity tends to increase with BeO content. Comparing thermal diffusivity results of UO2 with UO2-BeO pellets, it was observed that there was an increase in thermal diffusivity of at least 18 % for the UO2-2 wt% BeO pellet pressed at 400 MPa. The maximum relative expanded uncertainty (coverage factor k = 2) of the thermal diffusivity measurements was estimated to be 9 %.
A Device to Emulate Diffusion and Thermal Conductivity Using Water Flow
ERIC Educational Resources Information Center
Blanck, Harvey F.
2005-01-01
A device designed to emulate diffusion and thermal conductivity using flowing water is reviewed. Water flowing through a series of cells connected by a small tube in each partition in this plastic model is capable of emulating diffusion and thermal conductivity that occurs in variety of systems described by several mathematical equations.
Accurate measurements of the thermal diffusivity of thin filaments by lock-in thermography
NASA Astrophysics Data System (ADS)
Salazar, Agustín; Mendioroz, Arantza; Fuente, Raquel; Celorrio, Ricardo
2010-02-01
In lock-in (modulated) thermography the lateral thermal diffusivity can be obtained from the slope of the linear relation between the phase of the surface temperature and the distance to the heating spot. However, this slope is greatly affected by heat losses, leading to an overestimation of the thermal diffusivity, especially for thin samples of poor thermal conducting materials. In this paper, we present a complete theoretical model to calculate the surface temperature of filaments heated by a focused and modulated laser beam. All heat losses have been included: conduction to the gas, convection, and radiation. Monofilaments and coated wires have been studied. Conduction to the gas has been identified as the most disturbing effect preventing from the direct use of the slope method to measure the thermal diffusivity. As a result, by keeping the sample in vacuum a slope method combining amplitude and phase can be used to obtain the accurate diffusivity value. Measurements performed in a wide variety of filaments confirm the validity of the conclusion. On the other hand, in the case of coated wires, the slope method gives an effective thermal diffusivity, which verifies the in-parallel thermal resistor model. As an application, the slope method has been used to retrieve the thermal conductivity of thin tubes by filling them with a liquid of known thermal properties.
Thermal diffusivity of peat, sand and their mixtures at different water contents
NASA Astrophysics Data System (ADS)
Gvozdkova, Anna; Arkhangelskaya, Tatiana
2014-05-01
Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tralshawala, Nilesh; Howard, Don; Knight, Bryon
2008-02-28
In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropicmore » carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.« less
NASA Astrophysics Data System (ADS)
Stefanou, I.; Rattez, H.; Sulem, J.
2017-12-01
Rapid shear tests of granulated fault gouges show pronounced rate-dependency. For this reason rate-dependent constitutive laws are frequently used for describing fault friction.Here we propose a micromechanical, physics-based continuum approach by considering the characteristic size of the microstructure and the thermal- and pore-pressure-diffusion mechanisms that take place in the fault gouge during rapid shearing. It is shown that even for rate-independent materials, the apparent, macroscopic behavior of the system is rate-dependent. This is due to the competition of the characteristic lengths and time scales introduced indirectly by the microstructure and the thermal and hydraulic diffusivities.Both weakening and shear band thickness are rate dependent, despite the fact that the constitutive description of the material was considered rate-independent. Moreover the size of the microstructure, which here is identified with the grain size of the fault gouge (D50), plays an important role in the slope of the softening branch of the shear stress-strain response curve and consequently in the transition from aseismic to seismic slip.References Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research, 84(B5), 2161. http://doi.org/10.1029/JB084iB05p02161 Scholz, C. H. (2002). The mechanics of earthquakes and faulting (Second). Cambridge. Sulem, J., & Stefanou, I. (2016). Thermal and chemical effects in shear and compaction bands. Geomechanics for Energy and the Environment, 6, 4-21. http://doi.org/10.1016/j.gete.2015.12.004
Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method
NASA Technical Reports Server (NTRS)
Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.
2003-01-01
This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.
Directed Thermal Diffusions through Metamaterial Source Illusion with Homogeneous Natural Media
Xu, Guoqiang; Zhang, Haochun; Jin, Liang
2018-01-01
Owing to the utilization of transformation optics, many significant research and development achievements have expanded the applications of illusion devices into thermal fields. However, most of the current studies on relevant thermal illusions used to reshape the thermal fields are dependent of certain pre-designed geometric profiles with complicated conductivity configurations. In this paper, we propose a methodology for designing a new class of thermal source illusion devices for achieving directed thermal diffusions with natural homogeneous media. The employments of the space rotations in the linear transformation processes allow the directed thermal diffusions to be independent of the geometric profiles, and the utilization of natural homogeneous media improve the feasibility. Four schemes, with fewer types of homogeneous media filling the functional regions, are demonstrated in transient states. The expected performances are observed in each scheme. The related performance are analyzed by comparing the thermal distribution characteristics and the illusion effectiveness on the measured lines. The findings obtained in this paper see applications in the development of directed diffusions with minimal thermal loss, used in novel “multi-beam” thermal generation, thermal lenses, solar receivers, and waveguide. PMID:29671833
NASA Technical Reports Server (NTRS)
Paige, David A.; Keegan, Kenneth D.
1994-01-01
We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an absence of surface water ice deposits, which is consistent with Viking Mars atmospheric water detector (MAWD) measurements which show low atmospheric water vapor abundances throughout the summer season.
Thermal diffusivity of UO2 up to the melting point
NASA Astrophysics Data System (ADS)
Vlahovic, L.; Staicu, D.; Küst, A.; Konings, R. J. M.
2018-02-01
The thermal diffusivity of uranium dioxide was measured from 500 to 3060 K with two different set-ups, both based on the laser-flash technique. Above 1600 K the measurements were performed with an advanced laser-flash technique, which was slightly improved in comparison with a former work. In the temperature range 500-2000 K the thermal diffusivity is decreasing, then relatively constant up to 2700 K, and tends to increase by approaching the melting point. The measurements of the thermal diffusivity in the vicinity of the melting point are possible under certain conditions, and are discussed in this paper.
The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin.
Atla, Jyothi; Manne, Prakash; Gopinadh, A; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika
2013-08-01
This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat-polymerized acrylic resin. Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. RESULTS were analysed by using one-way analysis of variance (ANOVA). Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm(2)/sec, followed by D (9.09mm(2)/sec), C (8.49mm(2)/sec), B(8.28mm(2)/sec) and A(6.48mm(2)/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction.
Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui
2018-02-08
The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.
Requirement of spatiotemporal resolution for imaging intracellular temperature distribution
NASA Astrophysics Data System (ADS)
Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira
2017-04-01
Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.
López-Muñoz, Gerardo A; Balderas-López, José Abraham; Ortega-Lopez, Jaime; Pescador-Rojas, José A; Salazar, Jaime Santoyo
2012-12-06
The thermal properties of nanofluids are an especially interesting research topic because of the variety of potential applications, which range from bio-utilities to next-generation heat-transfer fluids. In this study, photopyroelectric calorimetry for measuring the thermal diffusivity of urchin-like colloidal gold nanofluids as a function of particle size, concentration and shape in water, ethanol and ethylene glycol is reported. Urchin-like gold nanoparticles were synthesised in the presence of hydroquinone through seed-mediated growth with homogeneous shape and size ranging from 55 to 115 nm. The optical response, size and morphology of these nanoparticles were characterised using UV-visible spectroscopy and transmission electron microscopy. The thermal diffusivity of these nanofluids decreased as the size of the nanoparticles increased, and the enhancement depended on the thermal diffusivity of the solvent. The opposite effect (increase in thermal diffusivity) was observed when the nanoparticle concentration was increased. These effects were more evident for urchin-like gold nanofluids than for the corresponding spherical gold nanofluids.
The effect of a realistic thermal diffusivity on numerical model of a subducting slab
NASA Astrophysics Data System (ADS)
Maierova, P.; Steinle-Neumann, G.; Cadek, O.
2010-12-01
A number of numerical studies of subducting slab assume simplified (constant or only depth-dependent) models of thermal conductivity. The available mineral physics data indicate, however, that thermal diffusivity is strongly temperature- and pressure-dependent and may also vary among different mantle materials. In the present study, we examine the influence of realistic thermal properties of mantle materials on the thermal state of the upper mantle and the dynamics of subducting slabs. On the basis of the data published in mineral physics literature we compile analytical relationships that approximate the pressure and temperature dependence of thermal diffusivity for major mineral phases of the mantle (olivine, wadsleyite, ringwoodite, garnet, clinopyroxenes, stishovite and perovskite). We propose a simplified composition of mineral assemblages predominating in the subducting slab and the surrounding mantle (pyrolite, mid-ocean ridge basalt, harzburgite) and we estimate their thermal diffusivity using the Hashin-Shtrikman bounds. The resulting complex formula for the diffusivity of each aggregate is then approximated by a simpler analytical relationship that is used in our numerical model as an input parameter. For the numerical modeling we use the Elmer software (open source finite element software for multiphysical problems, see http://www.csc.fi/english/pages/elmer). We set up a 2D Cartesian thermo-mechanical steady-state model of a subducting slab. The model is partly kinematic as the flow is driven by a boundary condition on velocity that is prescribed on the top of the subducting lithospheric plate. Reology of the material is non-linear and is coupled with the thermal equation. Using the realistic relationship for thermal diffusivity of mantle materials, we compute the thermal and flow fields for different input velocity and age of the subducting plate and we compare the results against the models assuming a constant thermal diffusivity. The importance of the realistic description of thermal properties in models of subducted slabs is discussed.
Ar-40/Ar-39 age of the Shergotty achondrite and implications for its post-shock thermal history
NASA Technical Reports Server (NTRS)
Bogard, D. D.; Nyquist, L. E.; Husain, L.
1979-01-01
Ar-40/Ar-39 measurements are used to determine the age of the Shergotty achondrite and the chronology of the shock event responsible for the complete conversion of its plagioclase to maskelynite is discussed. Apparent ages are found to vary between 240 and 640 million years for the whole rock sample, with a plateau age of 254 million years for a maskelynite separate. The Rb-Sr age of 165 million years determined by Nyquist at al (1978) suggests that the maskelynite as well as the whole rock was incompletely degassed. Argon diffusion characteristics indicate a post-shock cooling time greater than 1000 years and a burial depth greater than 300 m for a thermal model of a cooling ejecta blanket of variable thickness. It is concluded that the shock event which degassed the argon and reset the Rb-Sr systematics occurred between 165 and 250 million years ago when the parent body experienced a collision in the asteroid belt.
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Pepper, Stephen V.
1990-01-01
Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.
Removal of lead from aqueous solutions with a treated spent bleaching earth.
Mana, Mohamed; Ouali, Mohand Said; Lindheimer, Marc; Menorval, Louis Charles de
2008-11-30
A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the sorption of lead on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second-order kinetic model and the Weber & Morris, intraparticle diffusion model. The pH had effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A comparison between the results obtained with this material and those of the literature highlighted a good removal capacity of the treated spent bleaching earth at low cost.
Analysis of diffusion and binding in cells using the RICS approach.
Digman, Michelle A; Gratton, Enrico
2009-04-01
The movement of macromolecules in cells is assumed to occur either through active transport or by diffusion. However, the determination of the diffusion coefficients in cells using fluctuation methods or FRAP frequently give diffusion coefficient that are orders of magnitude smaller than the diffusion coefficients measured for the same macromolecule in solution. It is assumed that the cell internal viscosity is partially responsible for this decrease in the apparent diffusion. When the apparent diffusion is too slow to be due to cytoplasm viscosity, it is assumed that weak binding of the macromolecules to immobile or quasi immobile structures is taking place. In this article, we derive equations for fitting of the RICS (Raster-scan Image Correlations Spectroscopy) data in cells to a model that includes transient binding to immobile structures, and we show that under some conditions, the spatio-temporal correlation provided by the RICS approach can distinguish the process of diffusion and weak binding. We apply the method to determine the diffusion in the cytoplasm and binding of Focal Adhesion Kinase-EGFP to adhesions in MEF cells.
Jung, Da-Mi; De Ropp, Jeffrey S; Ebeler, Susan E
2002-07-17
Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.
Scarp degraded by linear diffusion: inverse solution for age.
Andrews, D.J.; Hanks, T.C.
1985-01-01
Under the assumption that landforms unaffected by drainage channels are degraded according to the linear diffusion equation, a procedure is developed to invert a scarp profile to find its 'diffusion age'. The inverse procedure applied to synthetic data yields the following rules of thumb. Evidence of initial scarp shape has been lost when apparent age reaches twice its initial value. A scarp that appears to have been formed by one event may have been formed by two with an interval between them as large as apparent age. The simplicity of scarp profile measurement and this inversion makes profile analysis attractive. -from Authors
Thermal behavior of horizontally mixed surfaces on Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Current methods for deriving thermal inertia from spacecraft observations of planetary brightness temperature generally assume that surface properties are uniform for any given observation or co-located set of observations. As a result of this assumption and the nonlinear relationship between temperature and thermal inertia, sub-pixel horizontal heterogeneity may yield different apparent thermal inertia at different times of day or seasons. We examine the effects of horizontal heterogeneity on Mars by modeling the thermal behavior of various idealized mixed surfaces containing differing proportions of either dust, sand, duricrust, and rock or slope facets at different angles and azimuths. Latitudinal effects on mixed-surface thermal behavior are also investigated. We find large (several 100 J m -2 K -1 s -1/2) diurnal and seasonal variations in apparent thermal inertia even for small (˜10%) admixtures of materials with moderately contrasting thermal properties or slope angles. Together with similar results for layered surfaces [Mellon, M.T., Putzig, N.E., 2007. Lunar Planet. Sci. XXXVIII. Abstract 2184], this work shows that the effects of heterogeneity on the thermal behavior of the martian surface are substantial and may be expected to result in large variations in apparent thermal inertia as derived from spacecraft instruments. While our results caution against the over-interpretation of thermal inertia taken from median or average maps or derived from single temperature measurements, they also suggest the possibility of using a suite of apparent thermal inertia values derived from single observations over a range of times of day and seasons to constrain the heterogeneity of the martian surface.
NASA Astrophysics Data System (ADS)
Lee, Mun Bae; Kwon, Oh-In
2018-04-01
Electrical brain stimulation (EBS) is an invasive electrotherapy and technique used in brain neurological disorders through direct or indirect stimulation using a small electric current. EBS has relied on computational modeling to achieve optimal stimulation effects and investigate the internal activations. Magnetic resonance diffusion weighted imaging (DWI) is commonly useful for diagnosis and investigation of tissue functions in various organs. The apparent diffusion coefficient (ADC) measures the intensity of water diffusion within biological tissues using DWI. By measuring trace ADC and magnetic flux density induced by the EBS, we propose a method to extract electrical properties including the effective extracellular ion-concentration (EEIC) and the apparent isotropic conductivity without any auxiliary additional current injection. First, the internal current density due to EBS is recovered using the measured one component of magnetic flux density. We update the EEIC by introducing a repetitive scheme called the diffusion weighting J-substitution algorithm using the recovered current density and the trace ADC. To verify the proposed method, we study an anesthetized canine brain to visualize electrical properties including electrical current density, effective extracellular ion-concentration, and effective isotropic conductivity by applying electrical stimulation of the brain.
Quasiballistic heat removal from small sources studied from first principles
NASA Astrophysics Data System (ADS)
Vermeersch, Bjorn; Mingo, Natalio
2018-01-01
Heat sources whose characteristic dimension R is comparable to phonon mean free paths display thermal resistances that exceed conventional diffusive predictions. This has direct implications to (opto)electronics thermal management and phonon spectroscopy. Theoretical analyses have so far limited themselves to particular experimental configurations. Here, we build upon the multidimensional Boltzmann transport equation (BTE) to derive universal expressions for the apparent conductivity suppression S (R ) =κeff(R ) /κbulk experienced by radially symmetric 2D and 3D sources. In striking analogy to cross-plane heat conduction in thin films, a distinct quasiballistic regime emerges between ballistic (κeff˜R ) and diffusive (κeff≃κbulk ) asymptotes that displays a logarithmic dependence κeff˜ln(R ) in single crystals and fractional power dependence κeff˜R2 -α in alloys (with α the Lévy superdiffusion exponent). Analytical solutions and Monte Carlo simulations for spherical and circular heat sources in Si, GaAs, Si0.99Ge0.01 , and Si0.82Ge0.18 , all carried out from first principles, confirm the predicted generic tendencies. Contrary to the thin film case, common approximations like kinetic theory estimates κeff≃∑Sωgreyκω and modified Fourier temperature curves perform relatively poorly. Up to threefold deviations from the BTE solutions for sub-100 nm sources underline the need for rigorous treatment of multidimensional nondiffusive transport.
Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x
Levenson-Falk, Eli M.; Ramshaw, B. J.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Hartnoll, Sean A.; Kapitulnik, Aharon
2017-01-01
The thermal diffusivity in the ab plane of underdoped YBCO crystals is measured by means of a local optical technique in the temperature range of 25–300 K. The phase delay between a point heat source and a set of detection points around it allows for high-resolution measurement of the thermal diffusivity and its in-plane anisotropy. Although the magnitude of the diffusivity may suggest that it originates from phonons, its anisotropy is comparable with reported values of the electrical resistivity anisotropy. Furthermore, the anisotropy drops sharply below the charge order transition, again similar to the electrical resistivity anisotropy. Both of these observations suggest that the thermal diffusivity has pronounced electronic as well as phononic character. At the same time, the small electrical and thermal conductivities at high temperatures imply that neither well-defined electron nor phonon quasiparticles are present in this material. We interpret our results through a strongly interacting incoherent electron–phonon “soup” picture characterized by a diffusion constant D∼vB2τ, where vB is the soup velocity, and scattering of both electrons and phonons saturates a quantum thermal relaxation time τ∼ℏ/kBT. PMID:28484003
The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin
Atla, Jyothi; Manne, Prakash; Gopinadh, A.; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika
2013-01-01
Aim: This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat–polymerized acrylic resin. Material and Methods: Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. Results were analysed by using one–way analysis of variance (ANOVA). Results: Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm2/sec, followed by D (9.09mm2/sec), C (8.49mm2/sec), B(8.28mm2/sec) and A(6.48mm2/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Conclusion: Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. PMID:24086917
Ye, Fengbin; Baldursdottir, Stefania; Hvidt, Søren; Jensen, Henrik; Larsen, Susan W; Yaghmur, Anan; Larsen, Claus; Østergaard, Jesper
2016-03-07
In the field of drug delivery to the articular cartilage, it is advantageous to apply artificial tissue models as surrogates of cartilage for investigating drug transport and release properties. In this study, artificial cartilage models consisting of 0.5% (w/v) agarose gel containing 0.5% (w/v) chondroitin sulfate or 0.5% (w/v) hyaluronic acid were developed, and their rheological and morphological properties were characterized. UV imaging was utilized to quantify the transport properties of the following four model compounds in the agarose gel and in the developed artificial cartilage models: H-Ala-β-naphthylamide, H-Lys-Lys-β-naphthylamide, lysozyme, and α-lactalbumin. The obtained results showed that the incorporation of the polyelectrolytes chondroitin sulfate or hyaluronic acid into agarose gel induced a significant reduction in the apparent diffusivities of the cationic model compounds as compared to the pure agarose gel. The decrease in apparent diffusivity of the cationic compounds was not caused by a change in the gel structure since a similar reduction in apparent diffusivity was not observed for the net negatively charged protein α-lactalbumin. The apparent diffusivity of the cationic compounds in the negatively charged hydrogels was highly dependent on the ionic strength, pointing out the importance of electrostatic interactions between the diffusant and the polyelectrolytes. Solution based affinity studies between the model compounds and the two investigated polyelectrolytes further confirmed the electrostatic nature of their interactions. The results obtained from the UV imaging diffusion studies are important for understanding the effect of drug physicochemical properties on the transport in articular cartilage. The extracted information may be useful in the development of hydrogels for in vitro release testing having features resembling the articular cartilage.
Geith, Tobias; Biffar, Andreas; Schmidt, Gerwin; Sourbron, Steven; Dietrich, Olaf; Reiser, Maximilian; Baur-Melnyk, Andrea
2015-01-01
To test the hypothesis that apparent diffusion coefficient (ADC) in vertebral bone marrow of benign and malignant fractures is related to the volume of the interstitial space, determined with dynamic contrast-enhanced (DCE) magnetic resonance imaging. Patients with acute benign (n = 24) and malignant (n = 19) vertebral body fractures were examined at 1.5 T. A diffusion-weighted single-shot turbo-spin-echo sequence (b = 100 to 600 s/mm) and DCE turbo-FLASH sequence were evaluated. Regions of interest were manually selected for each fracture. Apparent diffusion coefficient was determined with a monoexponential decay model. The DCE magnetic resonance imaging concentration-time curves were analyzed using a 2-compartment tracer-kinetic model. Apparent diffusion coefficient showed a significant positive correlation with interstitial volume in the whole study population (Pearson r = 0.66, P < 0.001), as well as in the malignant (Pearson r = 0.64, P = 0.004) and benign (Pearson r = 0.52, P = 0.01) subgroup. A significant correlation between ADC and the permeability-surface area product could be observed when analyzing the whole study population (Spearman rs = 0.40, P = 0.008), but not when separately examining the subgroups. Plasma flow showed a significant correlation with ADC in benign fractures (Pearson r = 0.23, P = 0.03). Plasma volume did not show significant correlations with ADC. The results support the hypothesis that the ADC of a lesion is inversely correlated to its cellularity. This explains previous observations that ADC is reduced in more malignant lesions.
Turner, Donald L.; Forbes, Robert B.; Aleinikoff, John N.; McDougall, Ian; Hedge, Carl E.; Wilson, Frederic H.; Layer, Paul W.; Hults, Chad P.
2009-01-01
The Kanektok complex of southwestern Alaska appears to be a rootless terrane of early Proterozoic sedimentary, volcanic, and intrusive rocks which were metamorphosed to amphibolite and granulite facies and later underwent a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism of overlying sediments. The terrane is structurally complex and exhibits characteristics generally attributed to mantled gneiss domes. U-Th-Pb analyses of zircon and sphene from a core zone granitic orthogneiss indicate that the orthogneiss protolith crystallized about 2.05 b.y. ago and that the protolithic sedimentary, volcanic and granitic intrusive rocks of the core zone were metamorphosed to granulite and amphibolite facies about 1.77 b.y. ago. A Rb-Sr study of 13 whole-rock samples also suggests metamorphism of an early Proterozoic [Paleoproterozoic] protolith at 1.77 Ga, although the data are scattered and difficult to interpret. Seventy-seven conventional 40K/40Ar mineral ages were determined for 58 rocks distributed throughout the outcrop area of the complex. Analysis of the K-Ar data indicate that nearly all of these ages have been totally or partially reset by a pervasive late Mesozoic thermal event accompanied by granitic plutonism and greenschist facies metamorphism. Several biotites gave apparent K-Ar ages over 2 Ga. These ages appear to be controlled by excess radiogenic 40Ar produced by the degassing protolith during the 1.77 Ga metamorphism and incorporated by the biotites when they were at temperatures at which Ar could diffuse through the lattice. Five amphibolites yielded apparent Precambrian 40K/40Ar hornblende ages. There is no evidence that these hornblende ages have been increased by excess argon. The oldest 40K/40Ar hornblende age of 1.77 Ga is identical to the sphene 207Pb/206Pb orthogneiss age and to the Rb-Sr 'isochron' age for six of the 13 whole-rock samples. The younger hornblende ages are interpreted as having been partially reset during the late Mesozoic thermal event. 40Ar/39Ar incremental heating experiments suggest metamorphism occurred at least 1.2 b.y. ago but do not exhibit high temperature plateau ages significantly older than the 40Ar/39Ar total fusion ages of these samples. The age spectra are much more uniform than expected from a terrane with such a complex thermal history, perhaps caused by the small grain size of the samples which may possibly be less than the effective Ar diffusion radii of the analyzed hornblendes.
NASA Astrophysics Data System (ADS)
Lim, H. S.; Lee, J. Y.; Yoon, H.
2016-12-01
Soil temperatures, water temperatures, and weather parameters were monitored at a variety of locations in the vicinity of King Sejong station, King George Island, Antarctica, during summer 2010-2011. Thermal characteristics of soil and water were analysed using time-series analyses, apparent thermal diffusivity (ATD), and active layer thickness. The temperatures of pond water and nearby seawater showed the distinctive diurnal variations and correlated strongly with solar radiation (r = 0.411-0.797). Soil temperature (0.1-0.3 m depth) also showed diurnal fluctuations that decreased with depth and were directly linked to air temperature (r = 0.513-0.783) rather than to solar radiation; correlation decreased with depth and the time lag in the response increased by 2-3 hours per 0.1 m of soil depth. Owing to the lack of snow cover, summertime soil temperature was not decoupled from air temperature. Estimated ATD was between 0.022 and 29.209 mm2/sec, showed temporal and spatial variations, and correlated strongly with soil moisture content. The maximum estimated active layer thickness in the study area was a 41-70 cm, which is consistent with values reported in the previous work.
Steady-state heat transport: Ballistic-to-diffusive with Fourier's law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, Jesse, E-mail: jmaassen@purdue.edu; Lundstrom, Mark
2015-01-21
It is generally understood that Fourier's law does not describe ballistic phonon transport, which is important when the length of a material is similar to the phonon mean-free-path. Using an approach adapted from electron transport, we demonstrate that Fourier's law and the heat equation do capture ballistic effects, including temperature jumps at ideal contacts, and are thus applicable on all length scales. Local thermal equilibrium is not assumed, because allowing the phonon distribution to be out-of-equilibrium is important for ballistic and quasi-ballistic transport. The key to including the non-equilibrium nature of the phonon population is to apply the proper boundarymore » conditions to the heat equation. Simple analytical solutions are derived, showing that (i) the magnitude of the temperature jumps is simply related to the material properties and (ii) the observation of reduced apparent thermal conductivity physically stems from a reduction in the temperature gradient and not from a reduction in actual thermal conductivity. We demonstrate how our approach, equivalent to Fourier's law, easily reproduces results of the Boltzmann transport equation, in all transport regimes, even when using a full phonon dispersion and mean-free-path distribution.« less
Thermal analysis of 3-mol%-yttria-stabilized tetragonal zirconia powder doped with copper oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidensticker, J.R.; Mayo, M.J.
Thermal analysis was performed upon 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) which had been doped with CuO using an aqueous adsorption technique. Cyclic differential thermal analysis (DTA) scans indicated that the CuO present on the powder surfaces first transforms to Cu{sub 2}O and then melts. The molten Cu{sub 2}O then reacts with yttria at the powder surfaces to form a new phase containing Y, Cu, and O. Because Y takes time to diffuse to the particle surfaces, the apparent melting point of this new phase appears at higher temperatures in initial DTA scans than in subsequent scans. Vaporization of the moltenmore » copper-oxide-rich phase at the temperatures studied causes a gradual shift in composition from Y{sub 2}Cu{sub 4}O{sub 5} to the less copper-rich Y{sub 2}Cu{sub 2}O{sub 5} phase. The presence of the Y{sub 2}Cu{sub 2}O{sub 5} phase in CuO-doped 3Y-TZP allows for previous sintering and superplasticity results to be explained.« less
NASA Astrophysics Data System (ADS)
Wentlent, Luke; Alghoul, Thaer M.; Greene, Christopher M.; Borgesen, Peter
2018-02-01
Although apparently simpler than in thermal cycling, the behavior of SnAgCu (SAC) solder joints in cyclic bending or vibration is not currently well understood. The rate of damage has been shown to scale with the inelastic work per cycle, and excursions to higher amplitudes lead to an apparent softening, some of which remains so that damage accumulation is faster in subsequent cycling at lower amplitudes. This frequently leads to a dramatic breakdown of current damage accumulation rules. An empirical damage accumulation rule has been proposed to account for this, but any applicability to the extrapolation of accelerated test results to life under realistic long-term service conditions remains to be validated. This will require a better understanding of the underlying mechanisms. The present work provides experimental evidence to support recent suggestions that the observed behavior is a result of cycling-induced dislocation structures providing for increased diffusion creep. It is argued that this means that the measured work is an indicator of the instantaneous dislocation density, rather than necessarily reflecting the actual work involved in the creation of the damage.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Microstructural changes in memory and reticular formation neural pathway after simple concussion☆
Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming
2012-01-01
Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions. PMID:25538741
Microstructural changes in memory and reticular formation neural pathway after simple concussion.
Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming
2012-10-05
Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions.
Kondo, Akihiro; Nishizawa, Yuji; Ito, Masaaki; Saito, Norio; Fujii, Satoshi; Akamoto, Shintaro; Fujiwara, Masao; Okano, Keiichi; Suzuki, Yasuyuki
2016-08-01
The aim of the study was to assess the relationship between tissue tension and thermal diffusion to peripheral tissues using an electric scalpel, ultrasonically activated device, or a bipolar sealing system. The mesentery of pigs was excised with each energy device (ED) at three tissue tensions (0, 300, 600 g). The excision time and thermal diffusion area were monitored with thermography, measured for each ED, and then histologically examined. Correlations between tissue tension and thermal diffusion area were examined. The excision time was inversely correlated with tissue tension for all ED (electric scalpel, r = 0.718; ultrasonically activated device, r = 0.949; bipolar sealing system, r = 0.843), and tissue tension was inversely correlated with the thermal diffusion area with the electric scalpel (r = 0.718) and bipolar sealing system (r = 0.869). Histopathologically, limited deep thermal denaturation occurred at a tension of 600 g with all ED. We conclude that thermal damage can be avoided with adequate tissue tension when any ED is used. © 2016 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Ishizaki, Takuya; Nagano, Hosei
2015-11-01
A new measurement technique to measure the in-plane thermal diffusivity, the distribution of in-plane anisotropy, and the out-of-plane thermal diffusivity has been developed to evaluate the thermal conductivity of anisotropic materials such as carbon fiber-reinforced plastics (CFRPs). The measurements were conducted by using a laser-spot-periodic-heating method. The temperature of the sample is detected by using lock-in thermography. Thermography can analyze the phase difference between the periodic heat input and the temperature response of the sample. Two kinds of samples, unidirectional (UD) and cross-ply (CP) pitch-based CFRPs, were fabricated and tested in an atmospheric condition. All carbon fibers of the UD sample run in one direction [90°]. The carbon fibers of the CP sample run in two directions [0°/90°]. It is found that, by using lock-in thermography, it is able to visualize the thermal anisotropy and calculate the angular dependence of the in-plane thermal diffusivity of the CFRPs. The out-of-plane thermal diffusivity of CFRPs was also measured by analyzing the frequency dependence of the phase difference.
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations
NASA Astrophysics Data System (ADS)
López-Muñoz, Gerardo A.; Pescador-Rojas, José A.; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J. Abraham
2012-07-01
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations.
López-Muñoz, Gerardo A; Pescador-Rojas, José A; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J Abraham
2012-07-30
In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.
Apparent thermal inertia and the surface heterogeneity of Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers
NASA Astrophysics Data System (ADS)
Belghachem, Nabil; Mlynczak, Jaroslaw; Kopczynski, krzysztof; Mierczyk, Zygmunt; Gawron, Michal
2016-10-01
The analysis of thermal effects in a diffusion bonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip laser is presented. The analysis is performed for both wavelengths at 940 nm and at 975 nm as well as for two different sides of pumping, glass side and saturable absorber side. The heat sink effect of Co2+:MgAl2O4, as well as the impact of the thermal expansion and induced stress on the diffusion bonding are emphasised. The best configurations for reducing the temperature peaks, the Von Mises stresses on the diffusion bonding, and the thermal lensing are determined.
Modeling diffusion in foamed polymer nanocomposites.
Ippalapalli, Sandeep; Ranaprathapan, A Dileep; Singh, Sachchida N; Harikrishnan, G
2013-04-15
Two-way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady-state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas-transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect-ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement
Hua, Zilong; Ban, Heng; Hurley, David H.
2015-05-05
A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less
The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Zilong; Ban, Heng; Hurley, David H.
A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency) 1/2 relation. The experimental validation is performed on three samples (SiO 2, CaF 2 andmore » Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less
USDA-ARS?s Scientific Manuscript database
Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...
Effective diffusion coefficient including the Marangoni effect
NASA Astrophysics Data System (ADS)
Kitahata, Hiroyuki; Yoshinaga, Natsuhiko
2018-04-01
Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.
Apparent Anomalous Diffusion in the Cytoplasm of Human Cells: The Effect of Probes' Polydispersity.
Kalwarczyk, Tomasz; Kwapiszewska, Karina; Szczepanski, Krzysztof; Sozanski, Krzysztof; Szymanski, Jedrzej; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Duszynski, Jerzy; Holyst, Robert
2017-10-26
This work, based on in vivo and in vitro measurements, as well as in silico simulations, provides a consistent analysis of diffusion of polydisperse nanoparticles in the cytoplasm of living cells. Using the example of fluorescence correlation spectroscopy (FCS), we show the effect of polydispersity of probes on the experimental results. Although individual probes undergo normal diffusion, in the ensemble of probes, an effective broadening of the distribution of diffusion times occurs-similar to anomalous diffusion. We introduced fluorescently labeled dextrans into the cytoplasm of HeLa cells and found that cytoplasmic hydrodynamic drag, exponentially dependent on probe size, extraordinarily broadens the distribution of diffusion times across the focal volume. As a result, the in vivo FCS data were effectively fitted with the anomalous subdiffusion model while for a monodisperse probe the normal diffusion model was most suitable. Diffusion time obtained from the anomalous diffusion model corresponds to a probe whose size is determined by the weight-average molecular weight of the polymer. The apparent anomaly exponent decreases with increasing polydispersity of the probes. Our results and methodology can be applied in intracellular studies of the mobility of nanoparticles, polymers, or oligomerizing proteins.
Anisotropic Thermal Response of Packed Copper Wire
Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin; ...
2017-04-19
The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less
Measurement of Apparent Thermal Conductivity of JSC-1A Under Ambient Pressure
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Kleinhenz, Julie E.
2011-01-01
The apparent thermal conductivity of JSC-1A lunar regolith simulant was measured experimentally using a cylindrical apparatus. Eleven thermocouples were embedded in the simulant bed to obtain the steady state temperature distribution at various radial, axial, and azimuthal locations. The high aspect ratio of a cylindrical geometry was proven to provide a one-dimensional, axisymmetric temperature field. A test series was performed at atmospheric pressure with varying heat fluxes. The radial temperature distribution in each test fit a logarithmic function, indicating a constant thermal conductivity throughout the soil bed. However, thermal conductivity was not constant between tests at different heat fluxes. This variation is attributed to stresses created by thermal expansion of the simulant particles against the rigid chamber wall. Under stress-free conditions (20 deg C), the data suggest a temperature independent apparent conductivity of 0.1961 +/- 0.0070 W/m/ deg C
Bi, Qiu; Xiao, Zhibo; Lv, Fajin; Liu, Yao; Zou, Chunxia; Shen, Yiqing
2018-02-05
The objective of this study was to find clinical parameters and qualitative and quantitative magnetic resonance imaging (MRI) features for differentiating uterine sarcoma from atypical leiomyoma (ALM) preoperatively and to calculate predictive values for uterine sarcoma. Data from 60 patients with uterine sarcoma and 88 patients with ALM confirmed by surgery and pathology were collected. Clinical parameters, qualitative MRI features, diffusion-weighted imaging with apparent diffusion coefficient values, and quantitative parameters of dynamic contrast-enhanced MRI of these two tumor types were compared. Predictive values for uterine sarcoma were calculated using multivariable logistic regression. Patient clinical manifestations, tumor locations, margins, T2-weighted imaging signals, mean apparent diffusion coefficient values, minimum apparent diffusion coefficient values, and time-signal intensity curves of solid tumor components were obvious significant parameters for distinguishing between uterine sarcoma and ALM (all P <.001). Abnormal vaginal bleeding, tumors located mainly in the uterine cavity, ill-defined tumor margins, and mean apparent diffusion coefficient values of <1.272 × 10 -3 mm 2 /s were significant preoperative predictors of uterine sarcoma. When the overall scores of these four predictors were greater than or equal to 7 points, the sensitivity, the specificity, the accuracy, and the positive and negative predictive values were 88.9%, 99.9%, 95.7%, 97.0%, and 95.1%, respectively. The use of clinical parameters and multiparametric MRI as predictive factors was beneficial for diagnosing uterine sarcoma preoperatively. These findings could be helpful for guiding treatment decisions. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Bickel, Hubert; Pinker, Katja; Polanec, Stephan; Magometschnigg, Heinrich; Wengert, Georg; Spick, Claudio; Bogner, Wolfgang; Bago-Horvath, Zsuzsanna; Helbich, Thomas H; Baltzer, Pascal
2017-05-01
To investigate the influence of region-of-interest (ROI) placement and different apparent diffusion coefficient (ADC) parameters on ADC values, diagnostic performance, reproducibility and measurement time in breast tumours. In this IRB-approved, retrospective study, 149 histopathologically proven breast tumours (109 malignant, 40 benign) in 147 women (mean age 53.2) were investigated. Three radiologists independently measured minimum, mean and maximum ADC, each using three ROI placement approaches:1 - small 2D-ROI, 2 - large 2D-ROI and 3 - 3D-ROI covering the whole lesion. One reader performed all measurements twice. Median ADC values, diagnostic performance, reproducibility, and measurement time were calculated and compared between all combinations of ROI placement approaches and ADC parameters. Median ADC values differed significantly between the ROI placement approaches (p < .001). Minimum ADC showed the best diagnostic performance (AUC .928-.956), followed by mean ADC obtained from 2D ROIs (.926-.94). Minimum and mean ADC showed high intra- (ICC .85-.94) and inter-reader reproducibility (ICC .74-.94). Median measurement time was significantly shorter for the 2D ROIs (p < .001). ROI placement significantly influences ADC values measured in breast tumours. Minimum and mean ADC acquired from 2D-ROIs are useful for the differentiation of benign and malignant breast lesions, and are highly reproducible, with rapid measurement. • Region of interest placement significantly influences apparent diffusion coefficient of breast tumours. • Minimum and mean apparent diffusion coefficient perform best and are reproducible. • 2D regions of interest perform best and provide rapid measurement times.
NASA Astrophysics Data System (ADS)
Kolesnichenko, A. V.; Marov, M. Ya.
2018-01-01
The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.
NASA Astrophysics Data System (ADS)
Proskurnin, M. A.; Korte, D.; Rogova, O. B.; Volkov, D. S.; Franko, M.
2018-07-01
Photothermal beam deflection spectroscopy (BDS) with a red He-Ne laser (632.8 nm, 35 mW) as an excitation beam source and a green He-Ne laser (543.1 nm, 2 mW) as a probe was used for estimating thermal diffusivity of several types of soil samples and individual soil aggregates with small surfaces (2 × 2 mm). It is shown that BDS can be used on demand for studies of changes in properties of soil entities of different hierarchical levels under the action of agrogenesis. It is presented that BDS clearly distinguishes between thermal diffusivities of different soil types: Sod-podzolic [Umbric Albeluvisols, Abruptic], 29 ± 3; Chernozem typical [Voronic Chernozems, Pachic], 9.9 ± 0.9; and Light Chestnut [Haplic Kastanozems, Chromic], 9.7 ± 0.9 cm2·h-1. Aggregates of chernozem soil show a significantly higher thermal diffusivity compared to the bulk soil. Thermal diffusivities of aggregates of Chernozem for virgin and bare fallow samples differ, 53 ± 4 cm2·h-1 and 45 ± 4 cm2·h-1, respectively. Micromonoliths of different Sod-podzolic soil horizons within the same profile (topsoil, depth 10-14 cm, and a parent rock with Fe illuviation, depth 180-185 cm) also show a significant difference, thermal diffusivities are 9.5 ± 0.8 cm2·h-1 and 27 ± 2 cm2·h-1, respectively. For soil micromonoliths, BDS is capable to distinguish the difference in thermal diffusivity resulting from the changes in the structure of aggregates.
Prediction of an Apparent Flame Length in a Co-Axial Jet Diffusion Flame Combustor.
1983-04-01
This report is comprised of two parts. In Part I a predictive model for an apparent flame length in a co-axial jet diffusion flame combustor is...Overall mass transfer coefficient, evaluated from an empirically developed correlation, is employed to predict total flame length . Comparison of the...experimental and predicted data on total flame length shows a reasonable agreement within sixteen percent over the investigated air and fuel flow rate
USDA-ARS?s Scientific Manuscript database
The thermal conductivity and thermal diffusivity of four types of rice flours and one type of rice protein were determine at temperatures ranging from 4.8 to 36.8 C, bulk densities 535 to 875.8 kg/m3, and moisture contents 2.6 to 16.7 percent (w.b.), using a KD2 Thermal Properties Analyzer. It was ...
NASA Astrophysics Data System (ADS)
Tai, Y.; Watanabe, T.; Nagata, K.
2018-03-01
A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.
Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil
2012-05-01
Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.
Bourg, Ian C; Sposito, Garrison
2010-03-15
In this paper, we address the manner in which the continuum-scale diffusive properties of smectite-rich porous media arise from their molecular- and pore-scale features. Our starting point is a successful model of the continuum-scale apparent diffusion coefficient for water tracers and cations, which decomposes it as a sum of pore-scale terms describing diffusion in macropore and interlayer "compartments." We then apply molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients D(interlayer) of water tracers and representative cations (Na(+), Cs(+), Sr(2+)) in Na-smectite interlayers. We find that a remarkably simple expression relates D(interlayer) to the pore-scale parameter δ(nanopore) ≤ 1, a constrictivity factor that accounts for the lower mobility in interlayers as compared to macropores: δ(nanopore) = D(interlayer)/D(0), where D(0) is the diffusion coefficient in bulk liquid water. Using this scaling expression, we can accurately predict the apparent diffusion coefficients of tracers H(2)0, Na(+), Sr(2+), and Cs(+) in compacted Na-smectite-rich materials.
Microfabricated valveless devices for thermal bioreactions based on diffusion-limited evaporation.
Wang, Fang; Yang, Ming; Burns, Mark A
2008-01-01
Microfluidic devices that reduce evaporative loss during thermal bioreactions such as PCR without microvalves have been developed by relying on the principle of diffusion-limited evaporation. Both theoretical and experimental results demonstrate that the sample evaporative loss can be reduced by more than 20 times using long narrow diffusion channels on both sides of the reaction region. In order to further suppress the evaporation, the driving force for liquid evaporation is reduced by two additional techniques: decreasing the interfacial temperature using thermal isolation and reducing the vapor concentration gradient by replenishing water vapor in the diffusion channels. Both thermal isolation and vapor replenishment techniques can limit the sample evaporative loss to approximately 1% of the reaction content.
Valette, Julien; Giraudeau, Céline; Marchadour, Charlotte; Djemai, Boucif; Geffroy, Françoise; Ghaly, Mohamed Ahmed; Le Bihan, Denis; Hantraye, Philippe; Lebon, Vincent; Lethimonnier, Franck
2012-12-01
Diffusion-weighted spectroscopy is a unique tool for exploring the intracellular microenvironment in vivo. In living systems, diffusion may be anisotropic, when biological membranes exhibit particular orientation patterns. In this work, a volume selective diffusion-weighted sequence is proposed, allowing single-shot measurement of the trace of the diffusion tensor, which does not depend on tissue anisotropy. With this sequence, the minimal echo time is only three times the diffusion time. In addition, cross-terms between diffusion gradients and other gradients are cancelled out. An adiabatic version, similar to localization by adiabatic selective refocusing sequence, is then derived, providing partial immunity against cross-terms. Proof of concept is performed ex vivo on chicken skeletal muscle by varying tissue orientation and intra-voxel shim. In vivo performance of the sequence is finally illustrated in a U87 glioblastoma mouse model, allowing the measurement of the trace apparent diffusion coefficient for six metabolites, including J-modulated metabolites. Although measurement performed along three separate orthogonal directions would bring similar accuracy on trace apparent diffusion coefficient under ideal conditions, the method described here should be useful for probing intimate properties of the cells with minimal experimental bias. Copyright © 2012 Wiley Periodicals, Inc.
Thermo-Mechanical and Thermal behavior of High-Temperature Structural Materials.
1982-12-31
34-’- Mr. 3. D. SilboldMr-J-..ibl Columbus, OH 43201 Coor Porcelain Company 17750 W. 32nd Avenue Dr. R. E. Engdahl Golden, CO 80401 Deposits and Composites ...number) Thermal shock, thermal stress, thermal diffusivity, thermal conductivity; refractories, composites , radiation heat transfer, cyclic heating...Hasselman and R. Ruh, "Effect of Hot-Pressing 4 -; Temperature on the Thermal Diffusivity/Conductivity of SiC-AIN Composites ." III M. A. Bucknam, L. D
Manipulation of heat-diffusion channel in laser thermal lithography.
Wei, Jingsong; Wang, Yang; Wu, Yiqun
2014-12-29
Laser thermal lithography is a good alternative method for forming small pattern feature size by taking advantage of the structural-change threshold effect of thermal lithography materials. In this work, the heat-diffusion channels of laser thermal lithography are first analyzed, and then we propose to manipulate the heat-diffusion channels by inserting thermal conduction layers in between channels. Heat-flow direction can be changed from the in-plane to the out-of-plane of the thermal lithography layer, which causes the size of the structural-change threshold region to become much smaller than the focused laser spot itself; thus, nanoscale marks can be obtained. Samples designated as "glass substrate/thermal conduction layer/thermal lithography layer (100 nm)/thermal conduction layer" are designed and prepared. Chalcogenide phase-change materials are used as thermal lithography layer, and Si is used as thermal conduction layer to manipulate heat-diffusion channels. Laser thermal lithography experiments are conducted on a home-made high-speed rotation direct laser writing setup with 488 nm laser wavelength and 0.90 numerical aperture of converging lens. The writing marks with 50-60 nm size are successfully obtained. The mark size is only about 1/13 of the focused laser spot, which is far smaller than that of the light diffraction limit spot of the direct laser writing setup. This work is useful for nanoscale fabrication and lithography by exploiting the far-field focusing light system.
Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement
Wang, Tianyu; Xu, Shen; Hurley, David H.; ...
2015-12-18
Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josephine, L. Y. C.; Talib, Z. A.; Yunus, W. M. M.
2007-05-09
This paper reports the preparation and the characterization of the (CuSe)1-xSex metal chalcogenide semiconductor compounds with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) in bulk form. The (CuSe)1-xSex compounds were prepared using the solid state reaction by varying the ratio of CuSe:Se in the reaction mixture. X-ray powder diffraction analysis is used to identify and measure the mass absorption coefficient of the (CuSe)1-xSex compounds to support the thermal diffusivity behaviour. The thermal diffusivity of the polycrystalline (CuSe)1-xSex compounds were measured and analyzed for the first time, using the photoflash technique. The thermal diffusivitymore » values were determined to be in the range of 2.524 x 10-3 cm2/s to 1.125 x 10-2 cm2/s. It was found that the thermal diffusivity value tends to decrease as the parameter x increases. The relationship between the thermal diffusivity, mass absorption coefficient and density of the (CuSe)1-xSex are discussed in detail.« less
Computational Analysis on Performance of Thermal Energy Storage (TES) Diffuser
NASA Astrophysics Data System (ADS)
Adib, M. A. H. M.; Adnan, F.; Ismail, A. R.; Kardigama, K.; Salaam, H. A.; Ahmad, Z.; Johari, N. H.; Anuar, Z.; Azmi, N. S. N.
2012-09-01
Application of thermal energy storage (TES) system reduces cost and energy consumption. The performance of the overall operation is affected by diffuser design. In this study, computational analysis is used to determine the thermocline thickness. Three dimensional simulations with different tank height-to-diameter ratio (HD), diffuser opening and the effect of difference number of diffuser holes are investigated. Medium HD tanks simulations with double ring octagonal diffuser show good thermocline behavior and clear distinction between warm and cold water. The result show, the best performance of thermocline thickness during 50% time charging occur in medium tank with height-to-diameter ratio of 4.0 and double ring octagonal diffuser with 48 holes (9mm opening ~ 60%) acceptable compared to diffuser with 6mm ~ 40% and 12mm ~ 80% opening. The conclusion is computational analysis method are very useful in the study on performance of thermal energy storage (TES).
Simulations on the Influence of Myelin Water in Diffusion-Weighted Imaging
Harkins, Kevin D.; Does, Mark D.
2016-01-01
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (Dapp) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (Dm), but exhibited important differences compared to Dapp values simulated that neglect Dm (=0). Compared to Dapp, the apparent diffusion kurtosis (Kapp) was generally more sensitive to Dm. Simulations also tested the sensitivity of Dapp and Kapp to the amount of myelin present. Unique variations in Dapp and Kapp caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in Dapp and Kapp with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter. PMID:27271991
Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2013-01-01
Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the “thermal transfer speed” to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm2/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ. PMID:23989589
Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2013-01-01
Using a simple and precise instrument system, we directly measured the thermo-physical properties of one-dimensional highly aligned carbon nanotubes (CNTs). A kind of CNT-based macroscopic materials named super aligned carbon nanotube (SACNT) buckypapers was measured in our experiment. We defined a new one-dimensional parameter, the "thermal transfer speed" to characterize the thermal damping mechanisms in the SACNT buckypapers. Our results indicated that the SACNT buckypapers with different densities have obviously different thermal transfer speeds. Furthermore, we found that the thermal transfer speed of high-density SACNT buckypapers may have an obvious damping factor along the CNTs aligned direction. The anisotropic thermal diffusivities of SACNT buckypapers could be calculated by the thermal transfer speeds. The thermal diffusivities obviously increase as the buckypaper-density increases. For parallel SACNT buckypapers, the thermal diffusivity could be as high as 562.2 ± 55.4 mm(2)/s. The thermal conductivities of these SACNT buckypapers were also calculated by the equation k = Cpαρ.
Yeshurun, Lilach; Azhari, Haim
2016-01-01
Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Du, G; Lewis, M M; Kanekar, S; Sterling, N W; He, L; Kong, L; Li, R; Huang, X
2017-05-01
Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls. A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis. Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson disease; those with Parkinson disease from those with multiple system atrophy/progressive supranuclear palsy; and those with Parkinson disease from those with multiple system atrophy; but not those with Parkinson disease from those with progressive supranuclear palsy, or those with multiple system atrophy from those with progressive supranuclear palsy. DTI and the apparent transverse relaxation rate provide different but complementary information for different parkinsonisms. Combined DTI and apparent transverse relaxation rate may be a superior marker for the differential diagnosis of parkinsonisms. © 2017 by American Journal of Neuroradiology.
Ballistic and Diffusive Thermal Conductivity of Graphene
NASA Astrophysics Data System (ADS)
Saito, Riichiro; Masashi, Mizuno; Dresselhaus, Mildred S.
2018-02-01
This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. Phonon-related thermal conductivity of graphene is calculated as a function of the temperature and sample size of graphene in which the crossover of ballistic and diffusive thermal conductivity occurs at around 100 K. The diffusive thermal conductivity of graphene is evaluated by calculating the phonon mean free path for each phonon mode in which the anharmonicity of a phonon and the phonon scattering by a 13C isotope are taken into account. We show that phonon-phonon scattering of out-of-plane acoustic phonon by the anharmonic potential is essential for the largest thermal conductivity. Using the calculated results, we can design the optimum sample size, which gives the largest thermal conductivity at a given temperature for applying thermal conducting devices.
Thermal Diffusivity in Bone and Hydroxyapatite
NASA Astrophysics Data System (ADS)
Calderón, A.; Peña Rodríguez, G.; Muñoz Hernández, R. A.; Díaz Gongora, J. A. I.; Mejia Barradas, C. M.
2004-09-01
We report thermal diffusivity measurements in bull bone and commercial hydroxyapatite (HA), both in powder form, in order to determinate the thermal compatibility between these materials. Besides this, we report a comparison between these measured values and those of metallic samples frequently used in implants, as high purity titanium and stainless steel. Our results show a good thermal compatibility (74%) between HA and bone, both in powder form. Finally, it was obtained a one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and HA being this difference greater in titanium than in stainless steel, which is important to consider in some biomedical and dental applications.
Effect of Thermal Diffusivity on the Detectability of TNDE
NASA Technical Reports Server (NTRS)
Zhao, Junduo; Chu, Tsuchin; Russell, Samuel S.
2000-01-01
The effect of thermal diffusively on the defect detectability in Carbon/Epoxy composite panels by transient thermography is presented in this paper. A series of Finite Element Models were constructed and analyzed to simulate the transient heat transfer phenomenon during Thermographic Non-destructive Evaluation (TNDE) of composite panels with square defects. Six common carbon fibers were considered. The models were built for composites with various combinations of fibers and volumetric ratios. Finite Element Analysis of these models showed the trends of the detectable range and the maximum thermal contrast versus the thermal diffusivity of various composites. Additionally, the trends of defect size to depth ratio and the thermal contrast has been investigated.
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
Thermal diffusivity of diamond nanowires studied by laser assisted atom probe tomography
NASA Astrophysics Data System (ADS)
Arnoldi, L.; Spies, M.; Houard, J.; Blum, I.; Etienne, A.; Ismagilov, R.; Obraztsov, A.; Vella, A.
2018-04-01
The thermal properties of single-crystal diamond nanowires (NWs) have been calculated from first principles but have never been measured experimentally. Taking advantage of the sharp geometry of samples analyzed in a laser assisted atom probe, this technique is used to measure the thermal diffusivity of a single NW at low temperature (<300 K). The obtained value is in good agreement with the ab-initio calculations and confirms that thermal diffusivity in nanoscale samples is lower than in bulk samples. The results impact the design and integration of diamond NWs and nanoneedles in nanoscale devices for heat dissipation.
NASA Technical Reports Server (NTRS)
Banish, R. Michael; Brantschen, Segolene; Pourpoint, Timothee L.; Wessling, Francis; Sekerka, Robert F.
2003-01-01
This paper presents methodologies for measuring the thermal diffusivity using the difference between temperatures measured at two, essentially independent, locations. A heat pulse is applied for an arbitrary time to one region of the sample; either the inner core or the outer wall. Temperature changes are then monitored versus time. The thermal diffusivity is calculated from the temperature difference versus time. No initial conditions are used directly in the final results.
(Energetics of silicate melts from thermal diffusion studies)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Research during the past year has been concentrated in four major areas. We are continuing work initiated during the first two years on modelling thermal diffusion on multicomponent silicate liquids. We have derived appropriate relations for ternary and quaternary systems and reanalyzed experimental thermal diffusion data for the ternary system fayalite-leucite-silica. In our manuscript entitled Thermal Diffusion in Petrology'', to be published in Adv. in Phy. Geochem., we show that these model results independently recover the compositional extent and temperature of liquid immiscibility in this system. Such retrieval provides a rigorous test of our theoretical predictions and simplified treatment ofmore » complex silicate liquids reported in Geochimica Cosmochimica Acta in 1986. The usefulness of our Soret research in providing mixing energies of silicate liquids has been recently confirmed by Ghiorso (1987, Cont. Min. Pet.). This demonstration provides a strategy for incorporating Soret data into the calibration of phase equilibrium-based solution models such as the one developed by Ghiorso. During the past year we also have resumed our studies of thermal diffusion in borosilicate glasses which also exhibit liquid immiscibility. Our objectives in studying these systems are (1) to further test of our multicomponent thermal diffusion model and (2) to provide quantitative constraints on the mixing properties of these glass-forming systems which are important for evaluating their suitability for storage of high-level nuclear waste. 16 refs.« less
Plumbing the depths of batholiths
Zen, E.-A.
1989-01-01
Knowledge of the pressure of consolidation of a pluton and the pressure-time history of magmatic evolution should allow better understanding of the tectonic and thermal history of the crust. Available methods to estimate pressures of plutons are mainly for those of consolidation. These are either extrinsic, based on geological context, or intrinsic, based on mineral texture, mineral assemblage, fluid inclusions, mineral inclusions, apparent cooling rates, and mineral chemistry. The methods of lattice-dimension matching of mineral inclusions and of detailed chemistry for zoned minerals could lead to pressure-time reconstructions. Future barometers based on mineral chemistry should use atomic species that have low diffusion coefficients and whose values are not sensitive to computational schemes and cumulative analytical errors. Aluminum and silicon in coexisting hornblende, biotite, pyroxene, plagioclase, or garnet are reasonable candidate phases for barometry. -from Author
Temperature anisotropy of the Jovian sulfur nebula
NASA Technical Reports Server (NTRS)
Eviatar, A.; Siscoe, G. L.; Mekler, Y.
1979-01-01
The apparent paradox between the reported observation of a 3-eV gyration energy of Jupiter's ionized sulfur nebula and its observed thickness is discussed. An observation of the thickness of the cloud taken nearly edge-on is presented and shown to imply a large bounce-averaged anisotropy of the sulfur in temperature. These observations are used to construct a self-consistent model of the sulfur nebula in which the sulfur ions are injected by Io as ions and remain sufficiently collisionless in the magnetosphere to maintain the anisotropy for a time longer than a characteristic diffusion time. It is also shown that the proton-electron plasma is collisionally thermalized and provides an adequate means of tapping the rotational energy of the planet to provide the power radiated in the sulfur lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zubkov, Tykhon; Smith, R. Scott; Engstrom, Todd R.
2007-11-14
Tykhon Zubkov, R. Scott Smith, Todd R. Engstrom, and Bruce D. Kay The adsorption, desorption, and diffusion kinetics of N2 on thick (up to ~9 mm) porous films of amorphous solid water (ASW) films were studied using molecular beam techniques and temperature programmed desorption (TPD). Porous ASW films were grown on Pt(111) at low temperature (<30 K) from a collimated H2O beam at glancing incident angles. In thin films (<1 mm), the desorption kinetics are well described by a model that assumes rapid and uniform N2 distribution throughout the film. In thicker films, (>1 mm), N2 adsorption at 27 Kmore » results in a non-uniform distribution where most of N2 is trapped in the outer region of the film. Redistribution of N2 can be induced by thermal annealing. The apparent activation energy for this process is ~7 kJ/mol, which is approximately half of the desorption activation energy at the corresponding coverage. Blocking adsorption sites near the film surface facilitates transport into the film. Despite the onset of limited diffusion, the adsorption kinetics are efficient, precursor-mediated and independent of film thickness. An adsorption mechanism is proposed, in which a high-coverage N2 front propagates into a pore by the rapid transport of physisorbed 2nd layer N2 species on top of the 1st layer chemisorbed layer.« less
Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components
NASA Astrophysics Data System (ADS)
Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.
2017-09-01
The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A.; Emily Cousineau, J.; Bennion, Kevin
The apparent thermal conductivity of packed copper wire test specimens was measured parallel and perpendicular to the axis of the wire using laser flash, transient plane source, and transmittance test methods. Approximately 50% wire packing efficiency was produced in the specimens using either 670- or 925-μm-diameter copper wires that both had an insulation coating thickness of 37 μm. The interstices were filled with a conventional varnish material and also contained some remnant porosity. The apparent thermal conductivity perpendicular to the wire axis was about 0.5–1 W/mK, whereas it was over 200 W/mK in the parallel direction. The Kanzaki model andmore » an finite element analysis (FEA) model were found to reasonably predict the apparent thermal conductivity perpendicular to the wires but thermal conductivity percolation from nonideal wire-packing may result in their underestimation of it.« less
Characterizing Resident Space Object Earthshine Signature Variability
NASA Astrophysics Data System (ADS)
Van Cor, Jared D.
There are three major sources of illumination on objects in the near Earth space environment: Sunshine, Moonshine, and Earthshine. For objects in this environment (satellites, orbital debris, etc.) known as Resident Space Objects (RSOs), the sun and the moon have consistently small illuminating solid angles and can be treated as point sources; this makes their incident illumination easily modeled. The Earth on the other hand has a large illuminating solid angle, is heterogeneous, and is in a constant state of change. The objective of this thesis was to characterize the impact and variability of observed RSO Earthshine on apparent magnitude signatures in the visible optical spectral region. A key component of this research was creating Earth object models incorporating the reflectance properties of the Earth. Two Earth objects were created: a homogeneous diffuse Earth object and a time sensitive heterogeneous Earth object. The homogeneous diffuse Earth object has a reflectance equal to the average global albedo, a standard model used when modeling Earthshine. The time sensitive heterogeneous Earth object was created with two material maps representative of the dynamic reflectance of the surface of the earth, and a shell representative of the atmosphere. NASA's Moderate-resolution Imaging Spectroradiometer (MODIS) Earth observing satellite product libraries, MCD43C1 global surface BRDF map and MOD06 global fractional cloud map, were utilized to create the material maps, and a hybridized version of the Empirical Line Method (ELM) was used to create the atmosphere. This dynamic Earth object was validated by comparing simulated color imagery of the Earth to that taken by: NASAs Earth Polychromatic Imaging Camera (EPIC) located on the Deep Space Climate Observatory (DSCOVR), and by MODIS located on the Terra satellite. The time sensitive heterogeneous Earth object deviated from MODIS imagery by a spectral radiance root mean square error (RMSE) of +/-14.86 [watts/m. 2sr?m]over a sample of ROIs. Further analysis using EPIC imagery found a total albedo difference of +0.03% and a cross correlation of 0.656. Also compared to EPIC imagery it was found our heterogeneous Earth model produced a reflected Earthshine radiance RMSE of +/-28 [watts/m. 2sr?m] incident on diffuse sphericalRSOs, specular spherical RSOs, and diffuse flat plate RSOs with an altitude of 1000km; this resulted in an apparent magnitude error of +/-0.28. Furthermore, it was found our heterogeneous Earthmodel produced a reflected Earthshine radiance RMSE of +/-68 [watts/m. 2sr?m] for specular flat plate RSOs withan altitude of 1000km; this resulted in an apparent magnitude error of +/-0.68. The Earth objects were used in a workflow with the Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool to explore the impact of a range of characteristic RSO geometries, geographies, orientations, and materials on the signatures from an RSO due to Earthshine. An apparent magnitude was calculated and used to quantify RSO Earthshine signature variability; this is discussed in terms of the RMSE and maximum deviations of visible RSO Earthshine apparent magnitude signatures comparing the homogeneous Earth model to heterogeneous Earth model. The homogeneous diffuse Earth object was shown to approximate visible RSO Earthshine apparent magnitude signatures from spheres with a RMSE in reflected Earthshine apparent magnitude of +/-0.4 and a maximum apparent magnitude difference of 1.09 when compared to the heterogeneous Earth model. Similarly for diffuse flat plates, the visible RSO Earthshine apparent magnitude signature RMSE was shown to be +/-0.64, with a maximum apparent magnitude difference of 0.82. For specular flat plates, the visible RSO Earthshine apparent magnitude signature RMSE was shown to be +/-0.97 with maximum apparent magnitude difference of 2.26. This thesis explored only a portion of the parameter dependencies of Earth shine, but has enabled a preliminary understanding of visible RSO Earthshine signature variability and its geometric dependence. This research has demonstrated the impact of Earth heterogeneity on the observed apparent magnitude signatures of RSOs illuminated by Earthshine and the potential for error that comes with approximating the Earth as a diffuse homogeneous object.
Determination of thermal diffusivities of cylindrical bodies being cooled
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dincer, I.
1996-09-01
This paper deals with the development of an analytical model for determining the thermal diffusivities of the individual solid cylindrical bodies subjected to cooling is presented. Applications of this model were made using the experimental center temperature data obtained from the cylindrical products (e.g., cucumber and grape) during air cooling at the flow velocity of 2 m/s. As an experimental result, the thermal diffusivities of products were found to be 1.45{times}10{sup {minus}7} m{sup 2}/s for cucumber and 1.68{times}10{sup {minus}7} m{sup 2}/s for grape. It can be concluded that the present model is capable of determining the thermal diffusivities of cylindricalmore » bodies during cooling in a simple and effective form.« less
On the nature of the NAA diffusion attenuated MR signal in the central nervous system.
Kroenke, Christopher D; Ackerman, Joseph J H; Yablonskiy, Dmitriy A
2004-11-01
In the brain, on a macroscopic scale, diffusion of the intraneuronal constituent N-acetyl-L-aspartate (NAA) appears to be isotropic. In contrast, on a microscopic scale, NAA diffusion is likely highly anisotropic, with displacements perpendicular to neuronal fibers being markedly hindered, and parallel displacements less so. In this report we first substantiate that local anisotropy influences NAA diffusion in vivo by observing differing diffusivities parallel and perpendicular to human corpus callosum axonal fibers. We then extend our measurements to large voxels within rat brains. As expected, the macroscopic apparent diffusion coefficient (ADC) of NAA is practically isotropic due to averaging of the numerous and diverse fiber orientations. We demonstrate that the substantially non-monoexponential diffusion-mediated MR signal decay vs. b value can be quantitatively explained by a theoretical model of NAA confined to an ensemble of differently oriented neuronal fibers. On the microscopic scale, NAA diffusion is found to be strongly anisotropic, with displacements occurring almost exclusively parallel to the local fiber axis. This parallel diffusivity, ADCparallel, is 0.36 +/- 0.01 microm2/ms, and ADCperpendicular is essentially zero. From ADCparallel the apparent viscosity of the neuron cytoplasm is estimated to be twice as large as that of a temperature-matched dilute aqueous solution. (c) 2004 Wiley-Liss, Inc.
THE SPECTRAL AMPLITUDE OF STELLAR CONVECTION AND ITS SCALING IN THE HIGH-RAYLEIGH-NUMBER REGIME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Featherstone, Nicholas A.; Hindman, Bradley W., E-mail: feathern@colorado.edu
2016-02-10
Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales.more » Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.« less
Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films
NASA Astrophysics Data System (ADS)
Aparimita, Adyasha; Sripan, C.; Ganesan, R.; Naik, Ramakanta
2018-03-01
In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As-Se-Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.
Bickel, Hubert; Pinker-Domenig, Katja; Bogner, Wolfgang; Spick, Claudio; Bagó-Horváth, Zsuzsanna; Weber, Michael; Helbich, Thomas; Baltzer, Pascal
2015-02-01
The objective of this study was to evaluate whether apparent diffusion coefficient (ADC) obtained through diffusion-weighted imaging magnetic resonance imaging at 3 T can be used as an imaging biomarker to differentiate invasive breast cancer from noninvasive ductal carcinoma in situ (DCIS). One hundred seventy-six histopathologically verified primary malignant breast tumors were retrospectively evaluated in 170 patients. All patients had undergone a standardized 3-T magnetic resonance imaging protocol, containing a diffusion-weighted sequence with 2 b values and a series of dynamic contrast-enhanced T1-weighted sequences. Apparent diffusion coefficient was measured manually by a reader blinded to the histopathological results. The ADC values were correlated with histopathological results. Mean ADC values were compared between invasive cancers and DCIS as well as between different tumor grades. Receiver operating characteristics curves were used to calculate diagnostic performance. There were 155 invasive cancers and 21 noninvasive DCIS. Mean (SD) values differed significantly between the invasive cancers (0.9 [0.15] ×10 mm/s) and the DCIS (1.24 [0.23] ×10 mm/s, P < 0.001). Area under the receiver operating characteristics curve was 0.895 (95% confidence interval [CI], 0.840-0.936). A threshold of 1.01 ×10 mm/s or less allowed an identification of invasive cancers with a sensitivity of 78.06% (95% CI, 70.7%-84.3%) and a specificity of 90.5% (95% CI, 69.6%-98.8%). No significant ADC differences were found among different tumor grades (P > 0.05). Apparent diffusion coefficient could be used as an imaging biomarker for the diagnosis of breast cancer. It seems to be a valuable noninvasive quantitative biomarker to assess breast cancer invasiveness. Thus, ADC measurements provide the potential to reduce overdiagnosis and subsequent overtreatment.
Evaluation of oxide-coated iridium-rhenium chambers
NASA Astrophysics Data System (ADS)
Reed, Brian D.
1994-03-01
Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Evaluation of oxide-coated iridium-rhenium chambers
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1994-01-01
Iridium-coated rhenium (Ir-Re) provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase Ir-Re rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated Ir-Re, 22-N rocket chambers were tested with gaseous hydrogen/gaseous oxygen (GHz/G02) propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia (HfO2) or zirconia (ZrO2). Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of ZrO2 infiltrated with sol gel HfO2. The other chamber had a coating composed of an Ir-oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. Testing the Ir-oxide composite-coated chamber included over 29 min at mixture ratio 16. The thicker walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner walled coatings did not experience the macrocracking and chipping of the chambers that was seen with the thick, monolithic coatings. However, burn-throughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stoichiometric. The burn-throughs were probably the result of oxygen diffusion through the oxide coating that allowed the underlying Ir and Re layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Testing and evaluation of oxide-coated iridium/rhenium chambers
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1993-01-01
Iridium-coated rhenium provides long life operation of radiation-cooled rockets at temperatures up to 2200 C. Ceramic oxide coatings could be used to increase iridium/rhenium rocket lifetimes and allow operation in highly oxidizing environments. Ceramic oxide coatings promise to serve as both thermal and diffusion barriers for the iridium layer. Seven ceramic oxide-coated iridium/rhenium, 22 N rocket chambers were tested on gaseous hydrogen/gaseous oxygen propellants. Five chambers had thick (over 10 mils), monolithic coatings of either hafnia or zirconia. Two chambers had coatings with thicknesses less than 5 mils. One of these chambers had a thin-walled coating of zirconia infiltrated with sol gel hafnia. The other chamber had a coating composed of an iridium/oxide composite. The purpose of this test program was to assess the ability of the oxide coatings to withstand the thermal shock of combustion initiation, adhere under repeated thermal cycling, and operate in aggressively oxidizing environments. All of the coatings survived the thermal shock of combustion and demonstrated operation at mixture ratios up to 11. The iridium/oxide composite coated chamber included testing for over 29 minutes at mixture ratio 16. The thicker-walled coatings provided the larger temperature drops across the oxide layer (up to 570 C), but were susceptible to macrocracking and eventual chipping at a stress concentrator. The cracks apparently resealed during firing, under compression of the oxide layer. The thinner-walled coatings did not experience the macrocracking and chipping of the chambers seen with the thick, monolithic coatings. However, burnthroughs in the throat region did occur in both of the thin-walled chambers at mixture ratios well above stochiometric. The burn-throughs were probably the result of oxygen-diffusion through the oxide coating that allowed the underlying iridium and rhenium layers to be oxidized. The results of this test program indicated that the thin-walled oxide coatings are better suited for repeated thermal cycling than the thick-walled coating, while thicker coatings may be required for operation in aggressively oxidizing environments.
Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve
Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.
Removal of basic dyes from aqueous solutions with a treated spent bleaching earth.
Mana, Mohamed; Ouali, Mohand-Said; de Menorval, L C
2007-03-01
A spent bleaching earth from an edible oil refinery was treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried, and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE), and the virgin bleaching earth (VBE). The kinetic results fit the pseudo-second-order kinetic model and the Weber and Morris intraparticle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of the determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of treated spent bleaching earth.
NASA Astrophysics Data System (ADS)
Varandani, Deepak; Agarwal, Khushboo; Brugger, Juergen; Mehta, Bodh Raj
2016-08-01
A commercial scanning thermal microscope has been upgraded to facilitate its use in estimating the radial thermal diffusivity of thin films close to room temperature. The modified setup includes a microcontroller driven microhotplate coupled with a Bluetooth module for wireless control. The microcontroller board (Arduino Leonardo) is used to generate a bias of suitable voltage amplitude and pulse duration which is applied across the microhotplate contact pads. A corresponding heat pulse from the Pt heating element (1 mm2) embedded within the microhotplate is delivered to the lower surface of the thin film (25 mm2) deposited over it. The large difference in the dimensions of the heating source and the thin film surface causes heat to flow radially outwards on the top surface of the latter. The decay of this radial heat wave as it flows outwards is recorded by the scanning thermal microscope in terms of temperature-time (T-t) profiles at varying positions around the central heating zone. A fitting procedure is suggested to extract the thermal diffusivity value from the array of T-t profiles. The efficacy of the above setup has been established by evaluating the thermal diffusivities of Bi2Te3 and Bi2Te3:Si thin film samples. Further, with only minor alterations in design the capabilities of the above setup can be extended to estimate the axial thermal diffusivity and specific heat of thin films, as a function of temperature.
NASA Astrophysics Data System (ADS)
Balderas-López, J. A.; Mandelis, Andreas
2003-01-01
The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.
NASA Astrophysics Data System (ADS)
Correia, A.; Vieira, G.; Ramos, M.
2012-06-01
During the month of January of 2008 a borehole (Permamodel-Gulbenkian 1 — PG1) 26 m deep was drilled on the top of Mount Reina Sofia (275 m a.s.l.) near the Spanish Antarctic Station of Livingston Island, South Shetland Islands. Cores from 1.5 m to about 26 m deep were collected for measuring several physical properties. The objective of the present work is to report the values of the thermal conductivity and the thermal diffusivity that were measured in the cores from the borehole and the heat production that was estimated for the geological formations intercepted by it. Seven cores were selected to measure the thermal conductivity and the thermal diffusivity. The measured values for the thermal conductivity vary from 2.6 W/mK to 3.3 W/mK while the measured values for the thermal diffusivity vary from 1.1 × 10- 6 m2/s to 1.6 × 10- 6 m2/s. Both thermal conductivity and thermal diffusivity, on average, show a slight increase with depth. Average heat production was also estimated for two portions of the borehole: one from 2 to 12 m and the other from 12 to 25 m. A gamma-ray spectrometer was used to estimate the concentrations of uranium, thorium, and potassium of the cores, from which the heat production per unit volume was calculated. The estimated heat production for the first half of the borehole is 2.218 μW/m3 while for the second half it is 2.173 μW/m3; these heat production values are compatible with acidic rock types. Porosity and density were also estimated for the same cores.
NASA Astrophysics Data System (ADS)
Nesic, M.; Popovic, M.; Rabasovic, M.; Milicevic, D.; Suljovrujic, E.; Markushev, D.; Stojanovic, Z.
2018-02-01
In this work, thermal diffusivity of crystalline high-density polyethylene samples of various thickness, and prepared using different procedures, was evaluated by transmission gas-microphone frequency photoacoustics. The samples' composition analysis and their degree of crystallinity were determined from the wide-angle X-ray diffraction, which confirmed that high-density polyethylene samples, obtained by slow and fast cooling, were equivalent in composition but with different degrees of crystallinity. Structural analysis, performed by differential scanning calorimetry, demonstrated that all of the used samples had different levels of crystallinity, depending not only on the preparing procedure, but also on sample thickness. Therefore, in order to evaluate the samples' thermal diffusivity, it was necessary to modify standard photoacoustic fitting procedures (based on the normalization of photoacoustic amplitude and phase characteristics on two thickness levels) for the interpretation of photoacoustic measurements. The calculated values of thermal diffusivity were in the range of the expected literature values. Besides that, the obtained results indicate the unexpected correlation between the values of thermal diffusivity and thermal conductivity with the degree of crystallinity of the investigated geometrically thin samples. The results indicate the necessity of additional investigation of energy transport in macromolecular systems, as well as the possible employment of the photoacoustic techniques in order to clarify its mechanism.
Physical Properties of Normal Grade Biodiesel and Winter Grade Biodiesel
Sadrolhosseini, Amir Reza; Moksin, Mohd Maarof; Nang, Harrison Lau Lik; Norozi, Monir; Yunus, W. Mahmood Mat; Zakaria, Azmi
2011-01-01
In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C16:0 content in normal grade than in winter grade palm oil biodiesel. PMID:21731429
Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia
NASA Astrophysics Data System (ADS)
Putzig, N. E.; Mellon, M. T.
2005-12-01
Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.
Li, Baowen; Wang, Jiao; Wang, Lei; Zhang, Gang
2005-03-01
We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (0
Transscleral diffusion of ethacrynic acid and sodium fluorescein
Lin, Cheng-Wen; Wang, Yong; Challa, Pratap; Epstein, David L.
2007-01-01
Purpose One of the current limitations in developing novel glaucoma drugs that target the trabecular meshwork (TM) is the induced corneal toxicity from eyedrop formulations. To avoid the corneal toxicity, an alternative approach would be to deliver TM drugs through the sclera. To this end, we quantified ex vivo diffusion coefficient of a potential TM drug, ethacrynic acid (ECA), and investigated mechanisms of ECA transport in the sclera. Methods An Ussing-type diffusion apparatus was built to measure the apparent diffusion coefficient of ECA in fresh porcine sclera at 4 °C. To understand mechanisms of ECA transport, we quantified the transscleral transport of a fluorescent tracer, sodium fluorescein (NaF), that has a similar molecular weight but is more hydrophilic compared to ECA. Furthermore, we developed a mathematical model to simulate the transport processes and used it to analyze the experimental data. The model was also used to investigate the dependence of diffusion coefficients on volume fraction of viable cells and the binding of NaF and ECA to scleral tissues. Results The diffusion coefficients of ECA and NaF in the sclera were 48.5±15.1x10-7 cm2/s (n=9) and 5.23±1.93x10-7 cm2/s (n=8), respectively. Both diffusion coefficients were insensitive to cell shrinkage caused by ECA during the diffusion experiments and cell damage caused by the storage of tissues ex vivo before the experiments. Binding of ECA to scleral tissues could not be detected. The apparent maximum binding capacity and the apparent equilibrium dissociation constant for NaF were 80±5 mM and 2.5±0.5 mM (n=3), respectively. Conclusions These data demonstrated that ECA diffusion was minimally hindered by structures in the sclera, presumably due to the lack of cells and binding sites for ECA in the sclera. PMID:17356511
Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone
Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.
2015-01-01
Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.
NASA Astrophysics Data System (ADS)
Maqsood, Asghari; Anis-ur-Rehman, M.
2013-12-01
Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D; Bottner, Harold
2013-01-01
For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA)more » group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.« less
Pandya, Shwetang N; Peterson, Byron J; Sano, Ryuichi; Mukai, Kiyofumi; Drapiko, Evgeny A; Alekseyev, Andrey G; Akiyama, Tsuyoshi; Itomi, Muneji; Watanabe, Takashi
2014-05-01
A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil. The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5-3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Shwetang N., E-mail: pandya.shwetang@LHD.nifs.ac.jp; Sano, Ryuichi; Peterson, Byron J.
A thin metal foil is used as a broad band radiation absorber for the InfraRed imaging Video Bolometer (IRVB), which is a vital diagnostic for studying three-dimensional radiation structures from high temperature plasmas in the Large Helical Device. The two-dimensional (2D) heat diffusion equation of the foil needs to be solved numerically to estimate the radiation falling on the foil through a pinhole geometry. The thermal, physical, and optical properties of the metal foil are among the inputs to the code besides the spatiotemporal variation of temperature, for reliable estimation of the exhaust power from the plasma illuminating the foil.more » The foil being very thin and of considerable size, non-uniformities in these properties need to be determined by suitable calibration procedures. The graphite spray used for increasing the surface emissivity also contributes to a change in the thermal properties. This paper discusses the application of the thermographic technique for determining the spatial variation of the effective in-plane thermal diffusivity of the thin metal foil and graphite composite. The paper also discusses the advantages of this technique in the light of limitations and drawbacks presented by other calibration techniques being practiced currently. The technique is initially applied to a material of known thickness and thermal properties for validation and finally to thin foils of gold and platinum both with two different thicknesses. It is observed that the effect of the graphite layer on the estimation of the thermal diffusivity becomes more pronounced for thinner foils and the measured values are approximately 2.5–3 times lower than the literature values. It is also observed that the percentage reduction in thermal diffusivity due to the coating is lower for high thermal diffusivity materials such as gold. This fact may also explain, albeit partially, the higher sensitivity of the platinum foil as compared to gold.« less
High-Temperature Thermal Diffusivity Measurements of Silicate Glasses
NASA Astrophysics Data System (ADS)
Pertermann, M.; Hofmeister, A. M.; Whittington, A. G.; Spera, F. J.; Zayac, J.
2005-12-01
Transport of heat in geologically relevant materials is of great interest because of its key role in heat transport, magmatism and volcanic activity on Earth. To better understand the thermal properties of magmatic materials at high temperatures, we measured the thermal diffusivity of four synthetic end-member silicate glasses with the following compositions: albite (NaAlSi3O8), orthoclase (KAlSi3O8), anorthite (CaAl2Si2O8), and diopside (CaMgSi2O6). Thermal diffusivity measurements were conducted with the laser-flash technique and data were acquired from room temperature to a maximum temperature near 1100°C, depending on the glass transition temperature. The presence of sub-mm sized bubbles in one of the orthoclase samples had no discernable effect on measured diffusivities. At room temperature, the three feldspar-type glasses have thermal diffusivity (D) values of 0.58-0.61 mm2/s, whereas the diopside glass has 0.52 mm2/s. With increasing temperature, D decreases by 5-10% (relative) for all samples and becomes virtually constant at intermediate temperatures. At higher temperatures, the anorthite and diopside glasses exhibit significant drops in thermal diffusivity over a 50-100°C interval, correlating with previously published heat capacity changes near the glass transition for these compositions. For anorthite, D (in mm2/s) decreases from 0.48 at 750-860°C to 0.36 at 975-1075°C; for diopside, D changes from 0.42 at 630-750°C to 0.30 at 850-910°C, corresponding to relative drops of 24 and 29%, respectively. Albite and orthoclase glasses do not exhibit this change and also lack significant changes in heat capacity near the glass transition. Instead, D is constant at 400-800°C for albite, and for orthoclase values go through a minimum at 500-600°C before increasing slightly towards 1100°C but it never exceeds the room temperature D. Our data on thermal diffusivity correlate closely with other thermophysical properties. Thus, at least in case of simple compositions, measurement of thermal diffusivity of glasses above the glass transition may closely approximate the behavior of magmatic liquids. For the orthoclase composition, our new data show that the thermal diffusivity of glass in the range of 20-1100°C is clearly lower than that of orthoclase single crystals (Hoefer and Schilling, 2002, Phys Chem Minerals, 29, 571-584).
NASA Astrophysics Data System (ADS)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.; Medina, A. N.; Baesso, M. L.; Astrath, N. G. C.; Astrath, F. B. G.; Santos, A. D.; Moraes, J. C. S.; Bento, A. C.
2013-11-01
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (˜7 min) and with similar thermal expansion (˜12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its application in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10-3 cm2/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s0.5/cm2 K and volume heat capacity (5.2 ± 0.7) J/cm3 K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picolloto, A. M.; Mariucci, V. V. G.; Szpak, W.
The thermal wave method is applied for thermal properties measurement in fast endodontic cement (CER). This new formula is developed upon using Portland cement in gel and it was successfully tested in mice with good biocompatibility and stimulated mineralization. Recently, thermal expansion and setting time were measured, conferring to this material twice faster hardening than the well known Angelus Mineral trioxide aggregate (MTA) the feature of fast hardening (∼7 min) and with similar thermal expansion (∼12 μstrain/ °C). Therefore, it is important the knowledge of thermal properties like thermal diffusivity, conductivity, effusivity in order to match thermally the tissue environment upon its applicationmore » in filling cavities of teeth. Photothermal radiometry technique based on Xe illumination was applied in CER disks 600 μm thick for heating, with prepared in four particle sizes (25, 38, 45, and 53) μm, which were added microemulsion gel with variation volumes (140, 150, 160, and 170) μl. The behavior of the thermal diffusivity CER disks shows linear decay for increase emulsion volume, and in contrast, thermal diffusivity increases with particles sizes. Aiming to compare to MTA, thermal properties of CER were averaged to get the figure of merit for thermal diffusivity as (44.2 ± 3.6) × 10{sup −3} cm{sup 2}/s, for thermal conductivity (228 ± 32) mW/cm K, the thermal effusivity (1.09 ± 0.06) W s{sup 0.5}/cm{sup 2} K and volume heat capacity (5.2 ± 0.7) J/cm{sup 3} K, which are in excellent agreement with results of a disk prepared from commercial MTA-Angelus (grain size < 10 μm using 57 μl of distilled water)« less
Simulations on the influence of myelin water in diffusion-weighted imaging
NASA Astrophysics Data System (ADS)
Harkins, K. D.; Does, M. D.
2016-07-01
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.
Simulations on the influence of myelin water in diffusion-weighted imaging.
Harkins, K D; Does, M D
2016-07-07
While myelinated axons present an important barrier to water diffusion, many models used to interpret DWI signal neglect other potential influences of myelin. In this work, Monte Carlo simulations were used to test the sensitivity of DWI results to the diffusive properties of water within myelin. Within these simulations, the apparent diffusion coefficient (D app) varied slowly over several orders of magnitude of the coefficient of myelin water diffusion (D m), but exhibited important differences compared to D app values simulated that neglect D m (=0). Compared to D app, the apparent diffusion kurtosis (K app) was generally more sensitive to D m. Simulations also tested the sensitivity of D app and K app to the amount of myelin present. Unique variations in D app and K app caused by differences in the myelin volume fraction were diminished when myelin water diffusion was included. Also, expected trends in D app and K app with experimental echo time were reduced or inverted when accounting for myelin water diffusion, and these reduced/inverted trends were seen experimentally in ex vivo rat brain DWI experiments. In general, myelin water has the potential to subtly influence DWI results and bias models of DWI that neglect these components of white matter.
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging. PMID:27004542
Detecting prostate cancer and prostatic calcifications using advanced magnetic resonance imaging.
Dou, Shewei; Bai, Yan; Shandil, Ankit; Ding, Degang; Shi, Dapeng; Haacke, E Mark; Wang, Meiyun
2017-01-01
Prostate cancer and prostatic calcifications have a high incidence in elderly men. We aimed to investigate the diagnostic capabilities of susceptibility-weighted imaging in detecting prostate cancer and prostatic calcifications. A total number of 156 men, including 34 with prostate cancer and 122 with benign prostate were enrolled in this study. Computed tomography, conventional magnetic resonance imaging, diffusion-weighted imaging, and susceptibility-weighted imaging were performed on all the patients. One hundred and twelve prostatic calcifications were detected in 87 patients. The sensitivities and specificities of the conventional magnetic resonance imaging, apparent diffusion coefficient, and susceptibility-filtered phase images in detecting prostate cancer and prostatic calcifications were calculated. McNemar's Chi-square test was used to compare the differences in sensitivities and specificities between the techniques. The results showed that the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic cancer were greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). In addition, the sensitivity and specificity of susceptibility-filtered phase images in detecting prostatic calcifications were comparable to that of computed tomography and greater than that of conventional magnetic resonance imaging and apparent diffusion coefficient (P < 0.05). Given the high incidence of susceptibility-weighted imaging (SWI) abnormality in prostate cancer, we conclude that susceptibility-weighted imaging is more sensitive and specific than conventional magnetic resonance imaging, diffusion-weighted imaging, and computed tomography in detecting prostate cancer. Furthermore, susceptibility-weighted imaging can identify prostatic calcifications similar to computed tomography, and it is much better than conventional magnetic resonance imaging and diffusion-weighted imaging.
Solubility and diffusion of oxygen in phospholipid membranes.
Möller, Matías N; Li, Qian; Chinnaraj, Mathivanan; Cheung, Herbert C; Lancaster, Jack R; Denicola, Ana
2016-11-01
The transport of oxygen and other nonelectrolytes across lipid membranes is known to depend on both diffusion and solubility in the bilayer, and to be affected by changes in the physical state and by the lipid composition, especially the content of cholesterol and unsaturated fatty acids. However, it is not known how these factors affect diffusion and solubility separately. Herein we measured the partition coefficient of oxygen in liposome membranes of dilauroyl-, dimiristoyl- and dipalmitoylphosphatidylcholine in buffer at different temperatures using the equilibrium-shift method with electrochemical detection. The apparent diffusion coefficient was measured following the fluorescence quenching of 1-pyrenedodecanoate inserted in the liposome bilayers under the same conditions. The partition coefficient varied with the temperature and the physical state of the membrane, from below 1 in the gel state to above 2.8 in the liquid-crystalline state in DMPC and DPPC membranes. The partition coefficient was directly proportional to the partial molar volume and was then associated to the increase in free-volume in the membrane as a function of temperature. The apparent diffusion coefficients were corrected by the partition coefficients and found to be nearly the same, with a null dependence on viscosity and physical state of the membrane, probably because the pyrene is disturbing the surrounding lipids and thus becoming insensitive to changes in membrane viscosity. Combining our results with those of others, it is apparent that both solubility and diffusion increase when increasing the temperature or when comparing a membrane in the gel to one in the fluid state. Copyright © 2016 Elsevier B.V. All rights reserved.
Flash Diffusivity Technique Applied to Individual Fibers
NASA Technical Reports Server (NTRS)
Mayeaux, Brian; Yowell, Leonard; Wang, Hsin
2007-01-01
A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.
Self-thermophoresis and thermal self-diffusion in liquids and gases.
Brenner, Howard
2010-09-01
This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.
Thermal imaging measurement of lateral diffusivity and non-invasive material defect detection
Sun, Jiangang; Deemer, Chris
2003-01-01
A system and method for determining lateral thermal diffusivity of a material sample using a heat pulse; a sample oriented within an orthogonal coordinate system; an infrared camera; and a computer that has a digital frame grabber, and data acquisition and processing software. The mathematical model used within the data processing software is capable of determining the lateral thermal diffusivity of a sample of finite boundaries. The system and method may also be used as a nondestructive method for detecting and locating cracks within the material sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049
In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, R. B.; Carroll, R. M.; Sisman, O.
1971-02-01
A method to measure the thermal diffusivity of reactor fuels during irradiation is developed, based on a time-dependent heat diffusion equation. With this technique the temperature is measured at only one point in the fuel specimen. This method has the advantage that it is not necessary to know the heat generation (a difficult evaluation during irradiation). The theory includes realistic boundary conditions, applicable to actual experimental systems. The parameters are the time constants associated with the first two time modes in the temperature-vs-time curve resulting from a step change in heat input to the specimen. With the time constants andmore » the necessary material properties and dimensions of the specimen and specimen holder, the thermal diffusivity of the specimen can be calculated.« less
Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L
2014-03-01
Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Paul Elliott; Cooper, Marcia A.
The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25°C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052more » glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300° C.« less
Morphological instability of a thermophoretically growing deposit
NASA Technical Reports Server (NTRS)
Castillo, Jose L.; Garcia-Ybarra, Pedro L.; Rosner, Daniel E.
1992-01-01
The stability of the planar interface of a structureless solid growing from a depositing component dilute in a carrier fluid is studied when the main solute transport mechanism is thermal (Soret) diffusion. A linear stability analysis, carried out in the limit of low growth Peclet number, leads to a dispersion relation which shows that the planar front is unstable either when the thermal diffusion factor of the condensing component is positive and the latent heat release is small or when the thermal diffusion factor is negative and the solid grows over a thermally-insulating substrate. Furthermore, the influence of interfacial energy effects and constitutional supersaturation in the vicinity of the moving interface is analyzed in the limit of very small Schmidt numbers (small solute Fickian diffusion). The analysis is relevant to physical vapor deposition of very massive species on cold surfaces, as in recent experiments of organic solid film growth under microgravity conditions.
Measuring restriction sizes using diffusion weighted magnetic resonance imaging: a review.
Martin, Melanie
2013-01-01
This article reviews a new concept in magnetic resonance as applied to cellular and biological systems. Diffusion weighted magnetic resonance imaging can be used to infer information about restriction sizes of samples being measured. The measurements rely on the apparent diffusion coefficient changing with diffusion times as measurements move from restricted to free diffusion regimes. Pulsed gradient spin echo (PGSE) measurements are limited in the ability to shorten diffusion times and thus are limited in restriction sizes which can be probed. Oscillating gradient spin echo (OGSE) measurements could provide shorter diffusion times so smaller restriction sizes could be probed.
Sun, Kun; Chen, Xiaosong; Chai, Weimin; Fei, Xiaochun; Fu, Caixia; Yan, Xu; Zhan, Ying; Chen, Kemin; Shen, Kunwei; Yan, Fuhua
2015-10-01
To assess diagnostic accuracy with diffusion kurtosis imaging (DKI) in patients with breast lesions and to evaluate the potential association between DKI-derived parameters and breast cancer clinical-pathologic factors. Institutional review board approval and written informed consent were obtained. Data from 97 patients (mean age ± standard deviation, 45.7 years ± 13.1; range, 19-70 years) with 98 lesions (57 malignant and 41 benign) who were treated between January 2014 and April 2014 were retrospectively analyzed. DKI (with b values of 0-2800 sec/mm(2)) and conventional diffusion-weighted imaging data were acquired. Kurtosis and diffusion coefficients from DKI and apparent diffusion coefficients from diffusion-weighted imaging were measured by two radiologists. Student t test, Wilcoxon signed-rank test, Jonckheere-Terpstra test, receiver operating characteristic curves, and Spearman correlation were used for statistical analysis. Kurtosis coefficients were significantly higher in the malignant lesions than in the benign lesions (1.05 ± 0.22 vs 0.65 ± 0.11, respectively; P < .0001). Diffusivity and apparent diffusion coefficients in the malignant lesions were significantly lower than those in the benign lesions (1.13 ± 0.27 vs 1.97 ± 0.33 and 1.02 ± 0.18 vs 1.48 ± 0.33, respectively; P < .0001). Significantly higher specificity for differentiation of malignant from benign lesions was shown with the use of kurtosis and diffusivity coefficients than with the use of apparent diffusion coefficients (83% [34 of 41] and 83% [34 of 41] vs 76% [31 of 41], respectively; P < .0001) with equal sensitivity (95% [54 of 57]). In patients with invasive breast cancer, kurtosis was positively correlated with tumor histologic grade (r = 0.75) and expression of the Ki-67 protein (r = 0.55). Diffusivity was negatively correlated with tumor histologic grades (r = -0.44) and Ki-67 expression (r = -0.46). DKI showed higher specificity than did conventional diffusion-weighted imaging for assessment of benign and malignant breast lesions. Patients with grade 3 breast cancer or tumors with high expression of Ki-67 were associated with higher kurtosis and lower diffusivity coefficients; however, this association must be confirmed in prospective studies. (©) RSNA, 2015 Online supplemental material is available for this article.
Neoclassical diffusion at low L-shel
NASA Astrophysics Data System (ADS)
Cunningham, G.; Ripoll, J. F.; Loridan, V.; Schulz, M.
2017-12-01
At very low L-shell, the lifetime of MeV electrons is dominated by pitch-angle scattering due to Coulomb collisions with background neutrals and ions. Walt's evaluation of this lifetime explained Van Allen's observations of the decay of the radiation belts in the early 1960's, for L<1.25 but Imhof et al showed that the apparent lifetime of >500 keV electrons for L=[1.15,1.21] was much greater than predicted by Walt's model when the decay was observed over 3 years rather than just a few months. Imhof et al argued that inward radial diffusion from larger L would be a source of electrons at low L, thus increasing the apparent lifetimes that were observed, but did not speculate on the cause of such diffusion across L. Newkirk and Walt estimated the radial diffusion coefficient that would be needed to explain the apparent lifetimes observed by Imhof et al. The radial diffusion coefficients they inferred dropped sharply as L increased, contrasting with the radial diffusion coefficients that had been recently developed by Falthammar [1965], which increase as a power law in L. Newkirk and Walt noted Falthammar's speculation that pitch-angle diffusion caused by Coulomb scattering, when coupled to drift-shell splitting associated with non-dipolar terms in the near-Earth geomagnetic field, might be the physical basis for the radial diffusion, but they did not attempt to quantify this effect. Roederer et al demonstrated that Coulomb scattering plus drift-shell splitting could explain the Newkirk and Walt results but they did not perform an exhaustive study. In the field of magnetically confined fusion, the movement of charged particles to different drift-shells caused by the combination of collisions and drift-shell splitting is labeled `neoclassical' diffusion. By contrast, `anomalous' diffusion results from pitch-angle diffusion caused by wave turbulence combined with drift-shell splitting, an effect recently studied by O'Brien in the outer radiation belt. We have constructed a comprehensive model of neoclassical diffusion at low L as a function of pitch-angle, energy and L-shell, and find that we quantitatively reproduce the results in Newkirk and Walt and Imhof et al, conclusively demonstrating that neoclassical diffusion is an important effect for energetic electrons in the deep inner belt.
Ultra high temperature ceramics for hypersonic vehicle applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tandon, Rajan; Dumm, Hans Peter; Corral, Erica L.
2006-01-01
HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2}more » ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.« less
On the Absence of Non-thermal X-Ray Emission around Runaway O Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toalá, J. A.; Oskinova, L. M.; Ignace, R.
Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations ofmore » AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.« less
Influence of ordering change on the optical and thermal properties of inflation polyethylene films
NASA Astrophysics Data System (ADS)
Morikawa, Junko; Orie, Akihiro; Hikima, Yuta; Hashimoto, Toshimasa; Juodkazis, Saulius
2011-04-01
Changes of thermal diffusivity inside femtosecond laser-structured volumes as small as few percent were reliably determined (with standard deviation less than 1%) with miniaturized sensors. An increase of thermal diffusivity of a crystalline high-density polyethylene (HDPE) inflation films by 10-20% from the measured (1.16 ± 0.01) × 10 -7 m 2 s -1 value in regions not structured by femtosecond laser pulses is considerably larger than that of non-crystalline polymers, 0-3%. The origin of the change of thermal diffusivity are interplay between the laser induced disordering, voids' formation, compaction, and changes in molecular orientation. It is shown that laser structuring can be used to modify thermal and optical properties. The birefringence and infrared spectroscopy with thermal imaging of CH 2 vibrations are confirming inter-relation between structural, optical, and thermal properties of the laser-structured crystalline HDPE inflation films. Birefringence modulation as high as Δ n ˜ ± 1 × 10 -3 is achieved with grating structures.
Computation of Thermal Transport in a Protein
NASA Astrophysics Data System (ADS)
Leitner, David M.
2003-03-01
Calculation of the coefficient of thermal conductivity and thermal diffusivity for a protein will be discussed. Thermal transport coefficients are obtained by computing the proteinÂ's normal modes, their lifetimes, the speed of sound and mean free path. We find the thermal diffusivity of myoglobin at 300 K to be 14 Å^2 /ps, the same as the value for water. The thermal conductivity at 300 K is calculated to be 2.0 mW/cm K in the absence of solvent and somewhat higher for the solvated protein, about one-third the value for water.
[Evaluation of the thermal effects of the plasma microtorch by infrared thermography].
Lhuisset, F; Zeboulon, S; Bouchier, G
1991-01-01
This study presents a detailed example of the examination of the tooth treated by thermal therapy, by infrared thermography and the different manners to show the results of the examination. The results of the work shows: the thermal diffusion into the tooth is similar to the thermal diffusion into an isotropic environment, the fusion heat of the dentine is reached without any damage to the pulp. The study of the tooth treated by the thermal action of the MICRO PLASMA SYSTEM confirms the thérapeutical effects of the thermal treatment without any damage to the pulp.
Monitoring the Thermal Parameters of Different Edible Oils by Using Thermal Lens Spectrometry
NASA Astrophysics Data System (ADS)
Jiménez-Pérez, J. L.; Cruz-Orea, A.; Lomelí Mejia, P.; Gutierrez-Fuentes, R.
2009-08-01
Several vegetable edible oils (sunflower, canola, soya, and corn) were used to study the thermal diffusivity of edible oils. Thermal lens spectrometry (TLS) was applied to measure the thermal properties. The results showed that the obtained thermal diffusivities with this technique have good agreement when compared with literature values. In this technique an Ar+ laser and intensity stabilized He-Ne laser were used as the heating source and probe beam, respectively. These studies may contribute to a better understanding of the physical properties of edible oils and the quality of these important foodstuffs.
NASA Astrophysics Data System (ADS)
von Aulock, Felix W.; Wadsworth, Fabian B.; Vasseur, Jeremie; Lavallée, Yan
2016-04-01
Heat diffusion in the Earth's crust is critical to fundamental geological processes, such as the cooling of magma, heat dissipation during and following transient heating events (e.g. during frictional heating along faults), and to the timescales of contact metamorphosis. The complex composition and multiphase nature of geomaterials prohibits the accurate modeling of thermal diffusivities and measurements over a range of temperatures are sparse due to the specialized nature of the equipment and lack of instrument availability. We present a novel method to measure the thermal diffusivity of geomaterials such as minerals and rocks with high precision and accuracy using a commercially available differential scanning calorimeter (DSC). A DSC 404 F1 Pegasus® equipped with a Netzsch high-speed furnace was used to apply a step-heating program to corundum single crystal standards of varying thicknesses. The standards were cylindrical discs of 0.25-1 mm thickness with 5.2-6 mm diameter. Heating between each 50 °C temperature interval was conducted at a rate of 100 °C/min over the temperature range 150-1050 °C. Such large heating rates induces temperature disequilibrium in the samples used. However, isothermal segments of 2 minutes were used during which the temperature variably equilibrated with the furnace between the heating segments and thus the directly-measured heat-flow relaxed to a constant value before the next heating step was applied. A finite-difference 2D conductive heat transfer model was used in cylindrical geometry for which the measured furnace temperature was directly applied as the boundary condition on the sample-cylinder surfaces. The model temperature was averaged over the sample volume per unit time and converted to heat-flow using the well constrained thermal properties for corundum single crystals. By adjusting the thermal diffusivity in the model solution and comparing the resultant heat-flow with the measured values, we obtain a model calibration for the thermal diffusivity of corundum. Preliminary calibration tests suggest a very good correlation between the measured results compared with literature values of the thermal diffusivity of this standard material. However, more measurements on standard materials are needed to guarantee the accuracy of the presented technique for measuring the thermal diffusion of materials and apply this method to numerical models for relevant processes in geoscience.
Thermal transport in suspended silicon membranes measured by laser-induced transient gratings
Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; ...
2016-12-05
Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements onmore » both “solid” and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.« less
NASA Astrophysics Data System (ADS)
Jensen, Jens H.; Helpern, Joseph A.
2011-06-01
Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.
Investigating Thermal Parameters of PVDF Sensor in the Front Pyroelectric Configuration
NASA Astrophysics Data System (ADS)
Noroozi, Monir; Zakaria, Azmi; Husin, Mohd Shahril; Moksin, Mohd Maarof; Wahab, Zaidan Abd
2013-11-01
A metalized PVDF pyroelectric (PE) sensor was used as an optically opaque sensor and in a thermally thick regime for both sensor and sample, instead of a very thick sensor in the conventional front PE configuration. From the frequency dependence measurements, the normalized amplitude and phase signal were independently analyzed to obtain the thermal effusivity of the sensor. The differential normalized amplitude measured with water as a substrate was analyzed to determine the sensor thermal diffusivity. The PVDF thermal diffusivity and thermal effusivity agree with literature values. Then, from the known thermal parameters of the sensor, the thermal effusivity of a standard liquid sample, glycerol, and other liquids were obtained by the similar procedure.
An Update on the Non-Mass-Dependent Isotope Fractionation under Thermal Gradient
NASA Technical Reports Server (NTRS)
Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard; Liu, Yun
2013-01-01
Mass flow and compositional gradient (elemental and isotope separation) occurs when flu-id(s) or gas(es) in an enclosure is subjected to a thermal gradient, and the phenomenon is named thermal diffusion. Gas phase thermal diffusion has been theoretically and experimentally studied for more than a century, although there has not been a satisfactory theory to date. Nevertheless, for isotopic system, the Chapman-Enskog theory predicts that the mass difference is the only term in the thermal diffusion separation factors that differs one isotope pair to another,with the assumptions that the molecules are spherical and systematic (monoatomic-like structure) and the particle collision is elastic. Our previous report indicates factors may be playing a role because the Non-Mass Dependent (NMD) effect is found for both symmetric and asymmetric, linear and spherical polyatomic molecules over a wide range of temperature (-196C to +237C). The observed NMD phenomenon in the simple thermal-diffusion experiments demands quantitative validation and theoretical explanation. Besides the pressure and temperature dependency illustrated in our previous reports, efforts are made in this study to address issues such as the role of convection or molecular structure and whether it is a transient, non-equilibrium effect only.
Preliminary study on pressure brazing and diffusion welding of Nb-1Zr to Inconel 718
NASA Technical Reports Server (NTRS)
Moore, T. J.
1990-01-01
Future space power systems may include Nb-1Zr/Inconel 718 dissimilar metal joints for operation at 1000 K for 60,000 h. The serviceability of pressure-brazed and diffusion-welded joints was investigated. Ni-based metallic glass foil filler metals were used for brazing. Ni and Fe foils were used as diffusion welding inter-layers. Joint soundness was determined by metallographic examination in the as-brazed and as-welded condition, after aging at 1000 K, and after thermal cycling. Brazed joints thermally cycled in the as-brazed condition and diffusion-welded joints were unsatisfactory because of cracking problems. Brazed joints may meet the service requirements if the joints are aged at 1000 K prior to thermal cycling.
Mathematics of thermal diffusion in an exponential temperature field
NASA Astrophysics Data System (ADS)
Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.
2018-04-01
The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.
Thermophysical properties of Apollo 12 fines.
NASA Technical Reports Server (NTRS)
Cremers, C. J.
1973-01-01
The vacuum thermal conductivity of the Apollo 12 fines is presented as a function of temperature for densities of 1300, 1640 and 1970 kg/cu m. It is found to vary from about .001 W/m-K at 100 K to about .003 W/m-K at 400 K. The conductivity of the fines is found to be close to that of terrestrial basalt both under vacuum and at higher pressures. The thermal diffusivity is calculated from conductivity and specific heat data. Average values of the thermal conductivity, thermal diffusivity and thermal parameter are also presented.
Effect of thermal diffusion on the stability of strongly tilted mantle plume tails
NASA Astrophysics Data System (ADS)
Kerr, R. C.; MéRiaux, C.; Lister, J. R.
2008-09-01
The effect of thermal diffusion on the stability of strongly tilted mantle plume tails is explored by investigating experimentally and numerically the gravitational instability of a rising horizontal cylindrical region of buoyant viscous fluid. At large viscosity ratios, we find that the instability is unaffected by diffusion when the Rayleigh number Ra is greater than about 300. When Ra is less than 300, diffusion significantly increases the time for instability, as the rising fluid region needs to grow substantially by entrainment before it becomes unstable. When Ra is less than about 140 and the rise height available H is less than about 40 times the cylinder radius, the rising region of fluid is unable to grow sufficiently and instability is prevented. When our results are applied to the Earth, we predict that thermal diffusion will stabilize plume tails in both the upper and lower mantle. We also predict that some of the buoyancy flux in mantle plumes is lost during ascent to form downstream thermal wakes in any larger-scale mantle flow.
Local measurement of thermal conductivity and diffusivity.
Hurley, David H; Schley, Robert S; Khafizov, Marat; Wendt, Brycen L
2015-12-01
Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness for extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.
Afacan, Onur; Gholipour, Ali; Mulkern, Robert V; Barnewolt, Carol E; Estroff, Judy A; Connolly, Susan A; Parad, Richard B; Bairdain, Sigrid; Warfield, Simon K
2016-12-01
To evaluate the feasibility of using diffusion-weighted magnetic resonance imaging (DW-MRI) to assess the fetal lung apparent diffusion coefficient (ADC) at 3 Tesla (T). Seventy-one pregnant women (32 second trimester, 39 third trimester) were scanned with a twice-refocused Echo-planar diffusion-weighted imaging sequence with 6 different b-values in 3 orthogonal diffusion orientations at 3T. After each scan, a region-of-interest (ROI) mask was drawn to select a region in the fetal lung and an automated robust maximum likelihood estimation algorithm was used to compute the ADC parameter. The amount of motion in each scan was visually rated. When scans with unacceptable levels of motion were eliminated, the lung ADC values showed a strong association with gestational age (P < 0.01), increasing dramatically between 16 and 27 weeks and then achieving a plateau around 27 weeks. We show that to get reliable estimates of ADC values of fetal lungs, a multiple b-value acquisition, where motion is either corrected or considered, can be performed. J. Magn. Reson. Imaging 2016;44:1650-1655. © 2016 International Society for Magnetic Resonance in Medicine.
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.
2018-05-01
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.; ...
2018-05-09
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less
Heat Diffusion in Gases, Including Effects of Chemical Reaction
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1960-01-01
The diffusion of heat through gases is treated where the coefficients of thermal conductivity and diffusivity are functions of temperature. The diffusivity is taken proportional to the integral of thermal conductivity, where the gas is ideal, and is considered constant over the temperature interval in which a chemical reaction occurs. The heat diffusion equation is then solved numerically for a semi-infinite gas medium with constant initial and boundary conditions. These solutions are in a dimensionless form applicable to gases in general, and they are used, along with measured shock velocity and heat flux through a shock reflecting surface, to evaluate the integral of thermal conductivity for air up to 5000 degrees Kelvin. This integral has the properties of a heat flux potential and replaces temperature as the dependent variable for problems of heat diffusion in media with variable coefficients. Examples are given in which the heat flux at the stagnation region of blunt hypersonic bodies is expressed in terms of this potential.
NASA Astrophysics Data System (ADS)
Handwerg, M.; Mitdank, R.; Galazka, Z.; Fischer, S. F.
2016-12-01
The monoclinic crystal structure of β-{{Ga}}2{{{O}}}3 leads to significant anisotropy of the thermal properties. The 2ω-method is used to measure the thermal diffusivity D in [010] and [001] direction respectively and to determine the thermal conductivity values λ of the [100], [010] and [001] direction from the same insulating Mg-doped β-{{Ga}}2{{{O}}}3 single crystal. We detect a temperature independent anisotropy factor of both the thermal diffusivity and conductivity values of {D}[010]/{D}[001]={λ }[010]/{λ }[001]=1.4+/- 0.1. The temperature dependence is in accord with phonon-phonon-Umklapp-scattering processes from 300 K down to 150 K. Below 150 K point-defect-scattering lowers the estimated phonon-phonon-Umklapp-scattering values.
Bourne, Roger; Liang, Sisi; Panagiotaki, Eleftheria; Bongers, Andre; Sved, Paul; Watson, Geoffrey
2017-10-01
The purpose of this study was to measure and model the diffusion time dependence of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) derived from conventional prostate diffusion-weighted imaging methods as used in recommended multiparametric MRI protocols. Diffusion tensor imaging (DTI) was performed at 9.4 T with three radical prostatectomy specimens, with diffusion times in the range 10-120 ms and b-values 0-3000 s/mm 2 . ADC and FA were calculated from DTI measurements at b-values of 800 and 1600 s/mm 2 . Independently, a two-component model (restricted isotropic plus Gaussian anisotropic) was used to synthesize DTI data, from which ADC and FA were predicted and compared with the measured values. Measured ADC and FA exhibited a diffusion time dependence, which was closely predicted by the two-component model. ADC decreased by about 0.10-0.15 μm 2 /ms as diffusion time increased from 10 to 120 ms. FA increased with diffusion time at b-values of 800 and 1600 s/mm 2 but was predicted to be independent of diffusion time at b = 3000 s/mm 2 . Both ADC and FA exhibited diffusion time dependence that could be modeled as two unmixed water pools - one having isotropic restricted dynamics, and the other unrestricted anisotropic dynamics. These results highlight the importance of considering and reporting diffusion times in conventional ADC and FA calculations and protocol recommendations, and inform the development of improved diffusion methods for prostate cancer imaging. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Zhu, Shen; Li, C.; Su, Ching-Hua; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devices. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed.
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Li, C.; Lin, B.; Ben, H.; Scripa, R. N.; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Tellurium is an element for many II-VI and I-III-VI(sub 2) compounds that are useful materials for fabricating many devises. In the melt growth techniques, the thermal properties of the molten phase are important parameter for controlling growth process to improve semiconducting crystal quality. In this study, thermal diffusivity of molten tellurium has been measured by a laser flash method in the temperature range from 500 C to 900 C. A pulsed laser with 1064 nm wavelength is focused on one side of the measured sample. The thermal diffusivity can be estimated from the temperature transient at the other side of the sample. A numerical simulation based on the thermal transport process has been also performed. By numerically fitting the experimental results, both the thermal conductivity and heat capacity can be derived. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. The error analysis and the comparison of the results to published data measured by other techniques will be discussed in the presentation.
Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.
1994-01-01
It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.
Automated software to determine thermal diffusivity of oilgas mixture
NASA Astrophysics Data System (ADS)
Khismatullin, A. S.
2018-05-01
The paper presents automated software to determine thermal diffusivity of oil-gas mixture. A series of laboratory testscovering transformer oil cooling in a power transformer tank was conducted. The paper also describes diagrams of temperature-timedependence of bubbling. Thermal diffusivity coefficients are experimentally defined. The paper considers a mathematical task of heat flowdistribution in a rectangular parallelepiped, alongside with the solution of heat a conduction equation in a power transformer tank, which represents a rectangular parallelepiped. A device for temperature monitoring in the tank is described in detail. The relay control diagram, which ensures temperature monitoring againsttransformer overheating is described.
Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2001-01-01
Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.
Thermal diffusivity study of aged Li-ion batteries using flash method
NASA Astrophysics Data System (ADS)
Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim
Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.
Thermal diffusion behavior of hard-sphere suspensions.
Ning, Hui; Buitenhuis, Johan; Dhont, Jan K G; Wiegand, Simone
2006-11-28
We studied the thermal diffusion behavior of octadecyl coated silica particles (R(h)=27 nm) in toluene between 15.0 and 50.0 degrees C in a volume fraction range of 1%-30% by means of thermal diffusion forced Rayleigh scattering. The colloidal particles behave like hard spheres at high temperatures and as sticky spheres at low temperatures. With increasing temperature, the obtained Soret coefficient S(T) of the silica particles changed sign from negative to positive, which implies that the colloidal particles move to the warm side at low temperatures, whereas they move to the cold side at high temperatures. Additionally, we observed also a sign change of the Soret coefficient from positive to negative with increasing volume fraction. This is the first colloidal system for which a sign change with temperature and volume fraction has been observed. The concentration dependence of the thermal diffusion coefficient of the colloidal spheres is related to the colloid-colloid interactions, and will be compared with an existing theoretical description for interacting spherical particles. To characterize the particle-particle interaction parameters, we performed static and dynamic light scattering experiments. The temperature dependence of the thermal diffusion coefficient is predominantly determined by single colloidal particle properties, which are related to colloid-solvent molecule interactions.
Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics
NASA Technical Reports Server (NTRS)
Good, Brian
2013-01-01
Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.
Transport properties of gases and binary liquids near the critical point
NASA Technical Reports Server (NTRS)
Sengers, J. V.
1972-01-01
A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.
Chan, Eric J; Neumann, Marcus A
2018-04-10
We have performed a comparison of the experimental thermal diffuse scattering (TDS) from crystalline Aspirin (form I) to that calculated from molecular dynamics (MD) simulations based on a variety of general force fields and a tailor-made force field (TMFF). A comparison is also made with Monte Carlo (MC) simulations which use a "harmonic network" approach to describe the intermolecular interactions. These comparisons were based on the hypothesis that TDS could be a useful experimental data in validation of such simulation parameter sets, especially when calculations of dynamical properties (e.g., thermodynamic free energies) from molecular crystals are concerned. Currently such a validation of force field parameters against experimental data is often limited to calculation of specific physical properties, e.g., absolute lattice energies usually at 0 K or heat capacity measurements. TDS harvested from in-house or synchrotron experiments comprises highly detailed structural information representative of the dynamical motions of the crystal lattice. Thus, TDS is a well-suited experimental data-driven means of cross validating theoretical approaches targeted at understanding dynamical properties of crystals. We found from the results of our investigation that the TMFF and COMPASS (from the commercial software "Materials Studio") parameter sets gave the best agreement with experiment. From our homologous MC simulation analysis we are able to show that force constants associated with the molecular torsion angles are likely to be a strong contributing factor for the apparent reason why these aforementioned force fields performed better.
Ma, Gao; Xu, Xiao-Quan; Hu, Hao; Su, Guo-Yi; Shen, Jie; Shi, Hai-Bin; Wu, Fei-Yun
2018-01-01
To compare the diagnostic performance of readout-segmented echo-planar imaging (RS-EPI)-based diffusion kurtosis imaging (DKI) and that of diffusion-weighted imaging (DWI) for differentiating malignant from benign masses in head and neck region. Between December 2014 and April 2016, we retrospectively enrolled 72 consecutive patients with head and neck masses who had undergone RS-EPI-based DKI scan (b value of 0, 500, 1000, and 1500 s/mm 2 ) for pretreatment evaluation. Imaging data were post-processed by using monoexponential and diffusion kurtosis (DK) model for quantitation of apparent diffusion coefficient (ADC), apparent diffusion for Gaussian distribution (D app ), and apparent kurtosis coefficient (K app ). Unpaired t test and Mann-Whitney U test were used to compare differences of quantitative parameters between malignant and benign groups. Receiver operating characteristic curve analyses were performed to determine and compare the diagnostic ability of quantitative parameters in predicting malignancy. Malignant group demonstrated significantly lower ADC (0.754 ± 0.167 vs. 1.222 ± 0.420, p < 0.001) and D app (1.029 ± 0.226 vs. 1.640 ± 0.445, p < 0.001) while higher K app (1.344 ± 0.309 vs. 0.715 ± 0.249, p < 0.001) than benign group. Using a combination of D app and K app as diagnostic index, significantly better differentiating performance was achieved than using ADC alone (area under curve: 0.956 vs. 0.876, p = 0.042). Compared to DWI, DKI could provide additional data related to tumor heterogeneity with significantly better differentiating performance. Its derived quantitative metrics could serve as a promising imaging biomarker for differentiating malignant from benign masses in head and neck region.
Chen, T; Li, Y; Lu, S-S; Zhang, Y-D; Wang, X-N; Luo, C-Y; Shi, H-B
2017-11-01
To evaluate the diagnostic performance of histogram analysis of diffusion kurtosis magnetic resonance imaging (DKI) and standard diffusion-weighted imaging (DWI) in discriminating tumour grades of endometrial carcinoma (EC). Seventy-three patients with EC were included in this study. The apparent diffusion coefficient (ADC) value from standard DWI, apparent diffusion for Gaussian distribution (D app ), and apparent kurtosis coefficient (K app ) from DKI were acquired using a 3 T magnetic resonance imaging (MRI) system. The measurement was based on an entire-tumour analysis. Histogram parameters (D app , K app , and ADC) were compared between high-grade (grade 3) and low-grade (grade 1 and 2) tumours. The diagnostic performance of imaging parameters for discriminating high- from low-grade tumours was analysed using a receiver operating characteristic curve (ROC). The area under the ROC curve (AUC) of the 10th percentile of D app , 90th percentile of K app and 10th percentile of ADC were higher than other parameters in distinguishing high-grade tumours from low-grade tumours (AUC=0.821, 0.891 and 0.801, respectively). The combination of 10th percentile of D app and 90th percentile of K app improved the AUC to 0.901, which was significantly higher than that of the 10th percentile of ADC (0.810, p=0.0314) in differentiating high- from low-grade EC. Entire-tumour volume histogram analysis of DKI and standard DWI were feasible for discriminating histological tumour grades of EC. DKI was relatively better than DWI in distinguishing high-grade from low-grade tumour in EC. Copyright © 2017. Published by Elsevier Ltd.
Characteristics of Matrix Metals in Which Fast Diffusion of Foreign Metallic Elements Occurs
NASA Astrophysics Data System (ADS)
Mae, Yoshiharu
2018-04-01
A few foreign elements are known to diffuse faster than the self-diffusion of the matrix metal. However, the characteristics of the matrix metal, which contribute to such fast diffusion remain unknown. In this study, the diffusion coefficients of various elements were plotted on a TC-YM diagram. The matrix metals that show fast diffusion are located in the low thermal conductivity range of the TC-YM diagram, while diffuser elements that undergo fast diffusion are mainly gulf elements such as Fe, Ni, Co, Cr, and Cu. The gulf elements are those that show the largest combination of thermal conductivity and Young's modulus. The great difference in the electron mobility between the matrix metal and diffuser elements generates a repulsive force between them, and the repulsive force—acting between the soft and large atoms of the matrix metal and the hard and small atoms of the diffuser elements—deforms the atoms of the matrix metal to open passageways for fast diffusion of diffuser elements.
NASA Astrophysics Data System (ADS)
Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang
2017-11-01
This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.
The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter.
Schyboll, Felix; Jaekel, Uwe; Weber, Bernd; Neeb, Heiko
2018-02-20
Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R 2 *(= 1/T 2 *) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R 2 *, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R 1 (= 1/T 1 ), as well as the apparent water content. For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R 1 and apparent water content. The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field. These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R 1 and apparent water content in white matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, X.; King, C.; DeVoto, D.
2014-08-01
With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less
Does Seeing Ice Really Feel Cold? Visual-Thermal Interaction under an Illusory Body-Ownership
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed. PMID:23144814
Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership.
Kanaya, Shoko; Matsushima, Yuka; Yokosawa, Kazuhiko
2012-01-01
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2015-01-12
A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significantmore » effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar, 2013) to report the framework and findings in tropocollagen-hydroxyapatite based idealized biomaterial interfaces. PHYSICAL FINDINGS 1. Analyses using experiments have revealed that in the case of bone thermal conductivity and thermal diffusivity at micron scale shows significant dependence on compressive stress and temperature. Overall, there is a decrease with respect to increase in temperature and increase with respect to increase in compressive stress. Bio-molecular simulations on idealized tropocollagen-hydroxyapatite interfaces confirm such findings. However, simulations also reveal that thermal diffusivity and thermal conductivity can be significantly tailored by interfacial orientation. More importantly, in inorganic materials, interfaces contribute to reduce thermal conductivity and diffusivity. However, analyses here reveal that both can be increased despite presence of a lot of interfaces. 2. Based on significant role played by interfaces in affecting bone thermal properties, a crustacean-exoskeleton system is examined for thermal diffusivity using the newly developed setup. Special emphasis here is on this system since such arrangement is found to be common in fresh water shrimp as well as in some deep water organisms surviving in environment extremes. Experiments reveal that in such system thermal diffusivity is highly tailorable. 3. Overall, experiments and models have established that in biomaterial interfaces a counterintuitive role of interfaces in mediating thermal conduction as a function of stress and temperature is possible in contrast to inorganic materials where interfaces almost always lead to reduction of thermal conductivity as a function of such factors. More investigations are underway to reveal physical origins of such counter-physical characteristics. Such principles can be significantly useful in developing new and innovative bioenergy and inorganic energy systems where heat dissipation significantly affects system performance.« less
The transient divided bar method for laboratory measurements of thermal properties
NASA Astrophysics Data System (ADS)
Bording, Thue S.; Nielsen, Søren B.; Balling, Niels
2016-12-01
Accurate information on thermal conductivity and thermal diffusivity of materials is of central importance in relation to geoscience and engineering problems involving the transfer of heat. Several methods, including the classical divided bar technique, are available for laboratory measurements of thermal conductivity, but much fewer for thermal diffusivity. We have generalized the divided bar technique to the transient case in which thermal conductivity, volumetric heat capacity and thereby also thermal diffusivity are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity can also be determined. The finite element formulation provides a flexible forward solution for heat transfer across the bar, and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties and information on their origin. The developed methodology was applied to various materials, including a standard ceramic material and different rock samples, and measuring results were compared with results applying traditional steady-state divided bar and an independent line-source method. All measurements show highly consistent results and with excellent reproducibility and high accuracy. For conductivity the obtained uncertainty is typically 1-3 per cent, and for diffusivity uncertainty may be reduced to about 3-5 per cent. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces in the bar. These are not resolved during inversion and it is imperative that they are minimized. The proposed procedure is simple and may quite easily be implemented to the many steady-state divided bar systems in operation. A thermally controlled bath, as applied here, may not be needed. Simpler systems, such as applying temperature-controlled water directly from a tap, may also be applied.
Total Scattering and Pair Distribution Function Analysis in Modelling Disorder in PZN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, Ross E.; Goossens, Darren J; Welberry, T. R.
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn 1/3Nb 2/3O 3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations inmore » the B-site—O separation distances and the fact that (110) Pb 2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF.« less
MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research
NASA Astrophysics Data System (ADS)
Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.
2013-12-01
We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities, we will present results from a thermophysical study of Gale Crater (Barratt and Putzig, 2013, EPSC abstract 613), for which TES and THEMIS mapping has been carried out during system development. Public access to the MARSTHERM system will be provided in conjunction with the 2013 AGU Fall Meeting and will feature the numerical thermal model and thermal-inertia derivation algorithm developed by Mellon et al. (2000, Icarus 148, 437-455) as modified by Putzig and Mellon (2007, Icarus 191, 68-94). Updates to the thermal model and derivation algorithm that include a more sophisticated representation of the atmosphere and a layered subsurface are presently in development, and these will be incorporated into the system when they are available. Other planned enhancements include tools for modeling temperatures from horizontal mixtures of materials and slope facets, for comparing heterogeneity modeling results to TES and THEMIS results, and for mosaicking THEMIS images.
Microstructure and thermal characterization of dense bone and metals for biomedical use
NASA Astrophysics Data System (ADS)
Rodríguez, G. Peña; Calderón, A.; Hernández, R. A. Muñoz; Orea, A. Cruz; Méndez, M.; Sinencio, F. Sánchez
2000-10-01
We present a microstructural study and thermal diffusivity measurements at room temperature in two different sections of bull dense bone, bull bone and commercial hydroxyapatite, the last two in powder form. A comparison was realised between these measured values and those obtained from metallic samples frequently used in implants, as high purity titanium and 316L stainless steel. Our results show that the porosity and its orientation in the bone are two important factors for the heat flux through the bone. On the other hand, we obtained that the hydroxyapatite, in compact powder form, presents a thermal diffusivity value close to those obtained for the samples of bone which gives a good thermal agreement between these materials. Finally, it was obtained at one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and hydroxyapatite being this difference greater in titanium than in stainless steel.
On the Effective Thermal Conductivity of Frost Considering Mass Diffusion and Eddy Convection
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
A physical model for the effective thermal conductivity of water frost is proposed for application to the full range of frost density. The proposed model builds on the Zehner-Schlunder one-dimensional formulation for porous media appropriate for solid-to-fluid thermal conductivity ratios less than about 1000. By superposing the effects of mass diffusion and eddy convection on stagnant conduction in the fluid, the total effective thermal conductivity of frost is shown to be satisfactorily described. It is shown that the effects of vapor diffusion and eddy convection on the frost conductivity are of the same order. The results also point out that idealization of the frost structure by cylindrical inclusions offers a better representation of the effective conductivity of frost as compared to spherical inclusions. Satisfactory agreement between the theory and the measurements for the effective thermal conductivity of frost is demonstrated for a wide range of frost density and frost temperature.
Space thermal control development
NASA Technical Reports Server (NTRS)
Hoover, M. J.; Grodzka, P. G.; Oneill, M. J.
1971-01-01
The results of experimental investigations on a number of various phase change materials (PCMs) and PCMs in combination with metals and other materials are reported. The evaluations include the following PCM system performance characteristics: PCM and PCM/filler thermal diffusivities, the effects of long-term thermal cycling, PCM-container compatibility, and catalyst effectiveness and stability. Three PCMs demonstrated performance acceptable enough to be considered for use in prototype aluminum thermal control devices. These three PCMs are lithium nitrate trihydrate with zinc hydroxy nitrate catalyst, acetamide, and myristic acid. Of the fillers tested, aluminum honeycomb filler was found to offer the most increase in system thermal diffusivity.
Numerical Analysis of Transient Temperature Response of Soap Film
NASA Astrophysics Data System (ADS)
Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji
2015-11-01
Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.
Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results
NASA Astrophysics Data System (ADS)
Bertolini, Davide; Tani, Alessandro
1997-10-01
Equilibrium molecular dynamics simulations have been carried out in the microcanonical ensemble at 300 and 255 K on the extended simple point charge (SPC/E) model of water [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)]. In addition to a number of static and dynamic properties, thermal conductivity λ has been calculated via Green-Kubo integration of the heat current time correlation functions (CF's) in the atomic and molecular formalism, at wave number k=0. The calculated values (0.67+/-0.04 W/mK at 300 K and 0.52+/-0.03 W/mK at 255 K) are in good agreement with the experimental data (0.61 W/mK at 300 K and 0.49 W/mK at 255 K). A negative long-time tail of the heat current CF, more apparent at 255 K, is responsible for the anomalous decrease of λ with temperature. An analysis of the dynamical modes contributing to λ has shown that its value is due to two low-frequency exponential-like modes, a faster collisional mode, with positive contribution, and a slower one, which determines the negative long-time tail. A comparison of the molecular and atomic spectra of the heat current CF has suggested that higher-frequency modes should not contribute to λ in this temperature range. Generalized thermal diffusivity DT(k) decreases as a function of k, after an initial minor increase at k=kmin. The k dependence of the generalized thermodynamic properties has been calculated in the atomic and molecular formalisms. The observed differences have been traced back to intramolecular or intermolecular rotational effects and related to the partial structure functions. Finally, from the results we calculated it appears that the SPC/E model gives results in better agreement with experimental data than the transferable intermolecular potential with four points TIP4P water model [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], with a larger improvement for, e.g., diffusion, viscosities, and dielectric properties and a smaller one for thermal conductivity. The SPC/E model shares, to a smaller extent, the insufficient slowing down of dynamics at low temperature already found for the TIP4P water model.
Waite, W.F.; Stern, L.A.; Kirby, S.H.; Winters, W.J.; Mason, D.H.
2007-01-01
Thermal conductivity, thermal diffusivity and specific heat of sI methane hydrate were measured as functions of temperature and pressure using a needle probe technique. The temperature dependence was measured between −20°C and 17°C at 31.5 MPa. The pressure dependence was measured between 31.5 and 102 MPa at 14.4°C. Only weak temperature and pressure dependencies were observed. Methane hydrate thermal conductivity differs from that of water by less than 10 per cent, too little to provide a sensitive measure of hydrate content in water-saturated systems. Thermal diffusivity of methane hydrate is more than twice that of water, however, and its specific heat is about half that of water. Thus, when drilling into or through hydrate-rich sediment, heat from the borehole can raise the formation temperature more than 20 per cent faster than if the formation's pore space contains only water. Thermal properties of methane hydrate should be considered in safety and economic assessments of hydrate-bearing sediment.
Diffusion-weighted magnetic resonance imaging of uterine cervical cancer.
Liu, Ying; Bai, Renju; Sun, Haoran; Liu, Haidong; Wang, Dehua
2009-01-01
To determine the feasibility of diffusion-weighted magnetic resonance (MR) imaging (DWI) of uterine cervical cancer and to investigate whether the apparent diffusion coefficient (ADC) values of cervical cancer differ from those of normal cervix and whether they could indicate the histologic type and the pathologic grade of tumor. Forty-two female patients with histopathologically proven uterine cervical cancer and 15 female patients with uterine leiomyomas underwent preoperative MR examinations using a 1.5-T clinical scanner (GE 1.5T Twin-Speed Infinity with Excite II scanner; GE Healthcare, Waukesha, Wis). Scanning sequences included T2-weighted fast spin-echo imaging, T2-weighted fast spin-echo with fat suppression imaging, T1-weighted spin-echo imaging, and DWI with diffusion factors of 0 and 1000 s/mm2. Parameters evaluated consisted of ADC values of uterine cervical cancer and normal cervix. Histologic specimens were stained with hematoxylin and eosin. The cellular densities of 32 uterine cervical cancers were calculated, which were regarded as the ratio of the total area of tumor cell nuclei divided by the area of sample image. Apparent diffusion coefficient value was statistically different (P = 0.000) between normal and cancerous tissue in the uterine cervix; the former one was (mean [SD], 1.50 [0.16]) x 10(-3) mm2/s, and the latter one was (0.88 [0.15]) x 10(-3) mm2/s. Apparent diffusion coefficient value of squamous carcinoma was statistically lower than that of adenocarcinoma (P = 0.040). The ADC value of uterine cervical cancer correlated negatively with cellular density (r = -0.711, P = 0.000) and the grading of tumor (r = -0.778, P = 0.000). Diffusion-weighted MR imaging has a potential ability to differentiate between normal and cancerous tissue in the uterine cervix, and it can indicate the histologic type of uterine cervical cancer as well. The ADC value of uterine cervical cancer represents tumor cellular density, thus providing a new method for evaluating the pathologic grading of tumor.
López-Larrubia, Pilar; Cauli, Omar
2011-03-15
Diffusion-weighted imaging (DWI) allows the assessment of the water apparent diffusion coefficient (ADC), a measure of tissue water diffusivity which is altered during different pathological conditions such as cerebral oedema. By means of DWI, we repeatedly measured in the same rats apparent diffusion coefficient ADC in different brain areas (motor cortex (MCx), somato-sensory cortex (SCx), caudate-putamen (CPu), hippocampus (Hip), mesencephalic reticular formation (RF), corpus callosum (CC) and cerebellum (Cb)) after 1 week, 4 and 12 weeks of lead acetate exposure via drinking water (50 or 500 ppm). After 12 weeks of lead exposure rats received albumin-Evans blue complex administration and were sacrificed 1h later. Blood-brain barrier permeability and water tissue content were determined in order to evaluate their relationship with ADC changes. Chronic exposure to lead acetate (500 ppm) for 4 weeks increased ADC values in Hip, RF and Cb but no in other brain areas. After 12 weeks of lead acetate exposure at 500 ppm ADC is significantly increased also in CPu and CC. Brain areas displaying high ADC values after lead exposure showed also an increased water content and increased BBB permeability to Evans blue-albumin complex. Exposure to 50 ppm for 12 weeks increased ADC values and BBB permeability in the RF and Cb. In summary, chronic lead exposure induces cerebral oedema in the adult brain depending on the brain area and the dose of exposure. RF and Cb appeared the most sensitive brain areas whereas cerebral cortex appears resistant to lead-induced cerebral oedema. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones
NASA Astrophysics Data System (ADS)
Trujillo, S.; Martínez-Torres, P.; Quintana, P.; Alvarado-Gil, Juan Jose
2010-05-01
Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.
Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.
1987-11-01
The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor (ETR) plasma (Tokamak Ignition/Burn Experimental Reactor (TIBER-II)) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-D transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alphamore » concentration significantly influence the ignition and steady-state burn capability. 23 refs., 9 figs., 4 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech-May, Nelson Wilbur; Department of Applied Physics, CINVESTAV Unidad Mérida, carretera Antigua a Progreso km6, A.P. 73 Cordemex, Mérida Yucatán 97310, México; Mendioroz, Arantza
2014-10-15
In this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration. Measurements performed on calibrated solids, covering a wide range of absorption coefficients (from transparent to opaque) and thermal diffusivities, validate the proposed method.
Electron heat transport measured in a stochastic magnetic field.
Biewer, T M; Forest, C B; Anderson, J K; Fiksel, G; Hudson, B; Prager, S C; Sarff, J S; Wright, J C; Brower, D L; Ding, W X; Terry, S D
2003-07-25
New profile measurements have allowed the electron thermal diffusivity profile to be estimated from power balance in the Madison Symmetric Torus where magnetic islands overlap and field lines are stochastic. The measurements show that (1) the electron energy transport is conductive not convective, (2) the measured thermal diffusivities are in good agreement with numerical simulations of stochastic transport, and (3) transport is greatly reduced near the reversal surface where magnetic diffusion is small.
NASA Astrophysics Data System (ADS)
Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.
2010-05-01
Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.
Local measurement of thermal conductivity and diffusivity
Hurley, David H.; Schley, Robert S.; Khafizov, Marat; ...
2015-12-01
Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness formore » extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representative of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agree closely with literature values. Lastly, a distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.« less
Local measurement of thermal conductivity and diffusivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, David H.; Schley, Robert S.; Khafizov, Marat
2015-12-15
Simultaneous measurement of local thermal diffusivity and conductivity is demonstrated on a range of ceramic samples. This was accomplished by measuring the temperature field spatial profile of samples excited by an amplitude modulated continuous wave laser beam. A thin gold film is applied to the samples to ensure strong optical absorption and to establish a second boundary condition that introduces an expression containing the substrate thermal conductivity. The diffusivity and conductivity are obtained by comparing the measured phase profile of the temperature field to a continuum based model. A sensitivity analysis is used to identify the optimal film thickness formore » extracting the both substrate conductivity and diffusivity. Proof of principle studies were conducted on a range of samples having thermal properties that are representatives of current and advanced accident tolerant nuclear fuels. It is shown that by including the Kapitza resistance as an additional fitting parameter, the measured conductivity and diffusivity of all the samples considered agreed closely with the literature values. A distinguishing feature of this technique is that it does not require a priori knowledge of the optical spot size which greatly increases measurement reliability and reproducibility.« less
Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds
NASA Astrophysics Data System (ADS)
Qian, Jin; Lin, Ji; Xu, Guang-Kui; Lin, Yuan; Gao, Huajian
A statistical model is proposed to describe the peeling of an elastic strip in adhesion with a flat substrate via an array of non-covalent molecular bonds. Under an imposed tensile peeling force, the interfacial bonds undergo diffusion-type transition in their bonding state, a process governed by a set of probabilistic equations coupled to the stretching, bending and shearing of the elastic strip. Because of the low characteristic energy scale associated with molecular bonding, thermal excitations are found to play an important role in assisting the escape of individual molecular bonds from their bonding energy well, leading to propagation of the peeling front well below the threshold peel-off force predicted by the classical theories. Our study establishes a link between the deformation of the strip and the spatiotemporal evolution of interfacial bonds, and delineates how factors like the peeling force, bending rigidity of the strip and binding energy of bonds influence the resultant peeling velocity and dimensions of the process zone. In terms of the apparent adhesion strength and dissipated energy, the bond-mediated interface is found to resist peeling in a strongly rate-dependent manner.
Thermal inertia and surface heterogeneity on Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.
Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer
Tracer diffusion in active suspensions
NASA Astrophysics Data System (ADS)
Burkholder, Eric W.; Brady, John F.
2017-05-01
We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a , characteristic swim speed U0, reorientation time τR, and mechanical energy ksTs=ζaU02τR/6 , where ζa is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity DP=kBT /ζP , where kBT is the thermal energy of the solvent and ζP is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion. In competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength of swimming relative to thermal diffusion is set by Pes=U0a /DP . The active contribution to the diffusivity scales as Pes2 for weak swimming and Pes for strong swimming, but the transition between these two regimes is nonmonotonic. When fluctuations in the probe motion decay on the time scale τR, the active diffusivity scales as ksTs/ζP : the probe moves as if it were immersed in a solvent with energy ksTs rather than kBT .
METHOD FOR REMOVAL OF LIGHT ISOTOPE PRODUCT FROM LIQUID THERMAL DIFFUSION UNITS
Hoffman, J.D.; Ballou, J.K.
1957-11-19
A method and apparatus are described for removing the lighter isotope of a gaseous-liquid product from a number of diffusion columns of a liquid thermal diffusion system in two stages by the use of freeze valves. The subject liquid flows from the diffusion columns into a heated sloping capsule where the liquid is vaporized by the action of steam in a heated jacket surrounding the capsule. When the capsule is filled the gas flows into a collector. Flow between the various stages is controlled by freeze valves which are opened and closed by the passage of gas and cool water respectively through coils surrounding portions of the pipes through which the process liquid is passed. The use of the dual stage remover-collector and the freeze valves is an improvement on the thermal diffusion separation process whereby the fraction containing the lighter isotope many be removed from the tops of the diffusion columns without intercolumn flow, or prior stage flow while the contents of the capsule is removed to the final receiver.
NASA Astrophysics Data System (ADS)
Lugo, J. M.; Oliva, A. I.
2017-02-01
The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films' thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.
NASA Technical Reports Server (NTRS)
Raj, S. V.
2017-01-01
This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
NASA Astrophysics Data System (ADS)
Raj, S. V.
2017-11-01
This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.
Anisotropic thermal conductivity of thin polycrystalline oxide samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, A., E-mail: abhishektiwariiitr@gmail.com; Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, VIC 3800; Boussois, K.
2013-11-15
This paper reports about the development of a modified laser-flash technique and relation to measure the in-plane thermal diffusivity of thin polycrystalline oxide samples. Thermal conductivity is then calculated with the product of diffusivity, specific heat and density. Design and operating features for evaluating in-plane thermal conductivities are described. The technique is advantageous as thin samples are not glued together to measure in-plane thermal conductivities like earlier methods reported in literature. The approach was employed to study anisotropic thermal conductivity in alumina sheet, textured kaolin ceramics and montmorillonite. Since it is rare to find in-plane thermal conductivity values for suchmore » anisotropic thin samples in literature, this technique offers a useful variant to existing techniques.« less
A MAGNETIC RIBBON MODEL FOR STAR-FORMING FILAMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auddy, Sayantan; Basu, Shantanu; Kudoh, Takahiro, E-mail: sauddy3@uwo.ca, E-mail: basu@uwo.ca, E-mail: kudoh@nagasaki-u.ac.jp
2016-11-01
We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which ismore » essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.« less
Structural disorder in molecular framework materials.
Cairns, Andrew B; Goodwin, Andrew L
2013-06-21
It is increasingly apparent that many important classes of molecular framework material exhibit a variety of interesting and useful types of structural disorder. This tutorial review summarises a number of recent efforts to understand better both the complex microscopic nature of this disorder and also how it might be implicated in useful functionalities of these materials. We draw on a number of topical examples including topologically-disordered zeolitic imidazolate frameworks (ZIFs), porous aromatic frameworks (PAFs), the phenomena of temperature-, pressure- and desorption-induced amorphisation, partial interpenetration, ferroelectric transition-metal formates, negative thermal expansion in cyanide frameworks, and the mechanics and processing of layered frameworks. We outline the various uses of pair distribution function (PDF) analysis, dielectric spectroscopy, peak-shape analysis of powder diffraction data and single-crystal diffuse scattering measurements as means of characterising disorder in these systems, and we suggest a number of opportunities for future research in the field.
Viscosity and viscoelasticity of two-phase systems having diffuse interfaces
NASA Technical Reports Server (NTRS)
Hopper, R. W.
1976-01-01
The equilibrium stability criterion for diffuse interfaces in a two-component solution with a miscibility gap requires that the interdiffusion flux vanish. If the system is continuously deformed, convective fluxes disrupt the equilibrium in the interface regions and induce a counter diffusive flux, which is dissipative and contributes to the apparent viscosity of the mixture. Chemical free energy is recoverably stored, causing viscoelastic phenomena. Both effects are significant.
Iverson, Brian D; Blendell, John E; Garimella, Suresh V
2010-03-01
Thermal diffusion measurements on polymethylmethacrylate-coated Si substrates using heated atomic force microscopy tips were performed to determine the contact resistance between an organic thin film and Si. The measurement methodology presented demonstrates how the thermal contrast signal obtained during a force-displacement ramp is used to quantify the resistance to heat transfer through an internal interface. The results also delineate the interrogation thickness beyond which thermal diffusion in the organic thin film is not affected appreciably by the underlying substrate.
Brownian ratchets: How stronger thermal noise can reduce diffusion
NASA Astrophysics Data System (ADS)
Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy
2017-02-01
We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.
Brownian ratchets: How stronger thermal noise can reduce diffusion.
Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy
2017-02-01
We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendergrass, J.H.
1977-10-01
Based on the theory developed in an earlier report, a FORTRAN computer program, DIFFUSE, was written. It computes, for design purposes, rates of transport of hydrogen isotopes by temperature-dependent quasi-unidirectional, and quasi-static combined ordinary and thermal diffusion through thin, hot thermonuclear reactor components that can be represented by composites of plane, cylindrical-shell, and spherical-shell elements when the dominant resistance to transfer is that of the bulk metal. The program is described, directions for its use are given, and a listing of the program, together with sample problem results, is presented.
Theoretical and experimental research in space photovoltaics
NASA Technical Reports Server (NTRS)
Faur, Mircea; Faur, Maria
1995-01-01
Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.
Commonsense Conceptions of Emergent Processes: Why Some Misconceptions Are Robust
ERIC Educational Resources Information Center
Chi, Michelene T. H.
2005-01-01
This article offers a plausible domain-general explanation for why some concepts of processes are resistant to instructional remediation although other, apparently similar concepts are more easily understood. The explanation assumes that processes may differ in ontological ways: that some processes (such as the apparent flow in diffusion of dye in…
Characterization of diffuse orbital mass using Apparent diffusion coefficient in 3-tesla MRI.
ElKhamary, Sahar M; Galindo-Ferreiro, Alicia; AlGhafri, Laila; Khandekar, Rajiv; Schellini, Silvana Artioli
2018-01-01
To evaluate if the apparent diffusion coefficient (ADC) value in diffusion-weighted magnetic resonance imaging (DW-MRI) improves the diagnostic accuracy of diffuse orbital masses. ADC DW-MRI was used to evaluate cases of diffuse orbital masses at our institution from 2000 to 2015. Lesions were grouped according to histopathologic diagnosis as, benign, pre-malignant and malignant. Lymphoproliferative lesions were further subgrouped as lymphoma or other lymphoproliferative lesions. The validity of the ADC value for the diffuse orbital mass was compared between groups. The area under curve (AUC) was also calculated. Thirty-nine cases of diffuse orbital masses were evaluated. The median ADC was 0.58 (25% quartile 0.48; minimum: 0.45; maximum: 1.72 × 10 (-3) ) for the malignant tumors and 1.19 (25% quartile 0.7; minimum: 0.5; maximum: 1.95 × 10 (-3) mm (2) s (-1) ) for benign lesions. This difference in ADC between lesions was statistically significant (Mann Whitney U test P < 0.001). The median ADC was 0.51 (25% quartile 0.48) for lymphomas and 0.9 (25% quartile 0.7) for other lymphoproliferative lesions. This difference in ADC was statistically significant (Mann Whitney U test P = 0.02). An ADC value of 0.8 × 10 (-3) mm (2) s (-1) was noted as the ideal threshold value for differentiating malignant from benign diffuse orbital masses. The validity of ADC in predicting a malignant or benign diffuse orbital mass had a sensitivity of 87%, specificity of 67% and accuracy of 88%. ADC is a promising imaging metric to characterize malignant and benign diffuse orbital masses and to distinguish lymphomas from other non-lymphoproliferative lesions.
Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien
2016-04-01
Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (t d) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long t d (from 86 to 1,011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the t d-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels, respectively, containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (t d varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging.
Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien
2016-01-01
Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (td) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long td (from 86 ms to 1011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the td-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels respectively containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (td varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging. PMID:25520054
Measurement of thermal conductivity and thermal diffusivity using a thermoelectric module
NASA Astrophysics Data System (ADS)
Beltrán-Pitarch, Braulio; Márquez-García, Lourdes; Min, Gao; García-Cañadas, Jorge
2017-04-01
A proof of concept of using a thermoelectric module to measure both thermal conductivity and thermal diffusivity of bulk disc samples at room temperature is demonstrated. The method involves the calculation of the integral area from an impedance spectrum, which empirically correlates with the thermal properties of the sample through an exponential relationship. This relationship was obtained employing different reference materials. The impedance spectroscopy measurements are performed in a very simple setup, comprising a thermoelectric module, which is soldered at its bottom side to a Cu block (heat sink) and thermally connected with the sample at its top side employing thermal grease. Random and systematic errors of the method were calculated for the thermal conductivity (18.6% and 10.9%, respectively) and thermal diffusivity (14.2% and 14.7%, respectively) employing a BCR724 standard reference material. Although errors are somewhat high, the technique could be useful for screening purposes or high-throughput measurements at its current state. This new method establishes a new application for thermoelectric modules as thermal properties sensors. It involves the use of a very simple setup in conjunction with a frequency response analyzer, which provides a low cost alternative to most of currently available apparatus in the market. In addition, impedance analyzers are reliable and widely spread equipment, which facilities the sometimes difficult access to thermal conductivity facilities.
Heat Transfar Properties of Flat-Panel Evacuated Porous Insrlators
NASA Astrophysics Data System (ADS)
Yoneno, Hirosyi; Yamamoto, Ryoichi
Flat Panel evacuated porous insulators have been produced by filling powder or fiber (such as perlite powder, diatomaceous earth powder, silica aerogel powder, g lass fiber and ceramic fiber) in film-like laminated plastic container and by evacuating to form vacuum in it is interior. Heat transfer properties of these evacuated insulators have been studied under various conditions (such as particle diameter, surface area, packing density, solid volume fraction and void dimension). The apparent mean thermal conductivity has been measured for the boundary surface temperature at cold face temperature 13°C and hot face temperature 35°. The effect of air pressure ranging from 1 Pa to one atomosphere (105 Pa) was examined. The results were as follows. (1) For each powder the apparent mean thermal conductivity decreases with decreasing residual air pressure, and at very low pressure bellow 1 -103 Pa the conductivity becomes indeqendent of pressure. The thermal conductivity at 1.3Pa is 0.0053 W/mK for perlite powder, 0.0048W/mK for diatomaceous earth powder, 0.0043 W/mK for silica aerogel powder and 0.0029W/mK for glass fiber. (2) With decreasing particle size, the apparent mean thermal conductivity is constant independent of residual air pressure in higher pressure region. It is that void dimension continues to decrease with particle size and the mean free path of air becomes comparable with void dimension. (3) In the range of minor solid volume fraction, the apparent mean thermal conductivity at very low precreases with decreasing particle size. This shows the thermal contact resistance of the solid particle increases with decreasing particle size.
Cai, Stephen S; von Coelln, Rainer; Kouo, Theresa J
2016-12-01
Imaging findings of adult-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is poorly documented. The authors present a 48-year-old woman with subacute onset of word-finding difficulties and right arm stiffness. Magnetic resonance imaging performed 2 weeks prior revealed left temporal lobe diffusion and fluid-attenuated inversion recovery hyperintensity predominantly involving the cortex. The apparent diffusion coefficient map showed preserved signal in the temporal cortex. Subsequent magnetic resonance imagings demonstrated a new diffusion signal abnormality extending to the left parietal cortex and occipital cortex with resolving diffusion hyperintensity in the temporal lobe. MR spectroscopy showed scattered areas of lactate deposition. Diagnosis of MELAS syndrome was confirmed by genetic analysis. Fluctuating, migratory stroke-like lesions with a predilection for the parietal, temporal, and occipital cortex that do not conform to a vascular territory and a lactate spike at 1.3 ppm on MR spectroscopy are characteristic of MELAS syndrome. Preserved signal intensity on apparent diffusion coefficient is useful to distinguish MELAS syndrome from ischemic infarction where the signal is typically reduced.
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Thermal diffusion through amalgam and cement base: comparison of in vitro and in vivo measurements.
Tibbetts, V R; Schnell, R J; Swartz, M L; Phillips, R W
1976-01-01
Thermal diffusion was measured in vitro and in vivo through amalgam and amalgam underlaid with bases of zinc phosphate, zinc oxide-eugenol, and calcium hydroxide cements. Although the magnitudes differed, there generally was good agreement between in vitro and in vivo data with respect to the relative rates of thermal diffusivity through amalgam restorations underlaid with bases of each of the three materials. In all tests, both in vitro and in vivo, the zinc oxide-eugenol base proved to be the best thermal insulator. Calcium hydroxide was the next best thermal barrier and was followed by zinc phosphate cement. In vitro tests indicated dentin to be a better thermal insulator than zinc phosphate cement but inferior to the zinc oxide-eugenol and calcium hydroxide base materials used here. Although a method has been presented here for the in vivo assessment of the efficacy of thermal insulating bases and a number of in vivo experiments were conducted, much research remains to be done in this area. Additional investigation is needed to better define the parameters of thermal change beneath various types of restoratives and also to establish more exactly the role of base thickness in providing thermal protection beneath clinical metallic restorations.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Thermal analysis of a growing crystal in an aqueous solution
NASA Astrophysics Data System (ADS)
Shiomi, Yuji; Kuroda, Toshio; Ogawa, Tomoya
1980-10-01
The temperature profiles around growing crystals in aqueous solutions of Rochelle salt were measured with accuracy of 0.005°C in a two-dimensional cell which was used for elimination of thermal convection current in the cell. The temperature distribution became stationary after 2 h from injection of the mother liquid, but the concentration distribution did not become stationary because the diffusion constant of solute in the solution was much smaller than the thermal diffusivity of the solution. The growth rate was linearly proportional to the temperature gradient at every growing interface. Since crystal growth is a typical interaction process between thermal and material flow, the experimental results were analysed by such an interaction model. The analysis confirms that the material flow is limited by diffusion within a layer width of about a few hundreds micrometers on the growing interface.
Shkilnyy, Andriy; Proulx, Pierre; Sharp, Jamie; Lepage, Martin; Vermette, Patrick
2012-05-01
Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin. Therefore, a method based on the analysis of fluorescence intensity for measuring the apparent diffusion coefficient of rhodamine B and fluorescein-labelled bovine serum albumin (FITC-BSA) is described. The experiments are performed in fibrin gels with and without human umbilical vein endothelial cells (HUVEC). The apparent diffusion coefficients of rhodamine B and FITC-BSA in fibrin (fibrinogen concentration of 4 mg/mL) with different cell densities are reported. A LIVE/DEAD(®) assay is performed to confirm the viability of HUVEC seeded at high densities. Diffusion coefficients for rhodamine B remain more or less constant up to 5×10(5) cells/mL and correlate well with literature values measured by other methods in water systems. This indicates that the presence of HUVEC in the fibrin gels (up to 5×10(5) cells/mL) has almost no effect on the diffusion coefficients. Higher cell densities (>5×10(5) cells/mL) result in a decrease of the diffusion coefficients. Diffusion coefficients of rhodamine B and FITC-BSA obtained by this method agree with diffusion coefficients in water predicted by the Stokes-Einstein equation. The experimental design used in this study can be applied to measure diffusion coefficients in different types of gels seeded or not with living cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Lober, Robert M; Cho, Yoon-Jae; Tang, Yujie; Barnes, Patrick D; Edwards, Michael S; Vogel, Hannes; Fisher, Paul G; Monje, Michelle; Yeom, Kristen W
2014-03-01
While pediatric diffuse intrinsic pontine gliomas (DIPG) remain fatal, recent data have shown subgroups with distinct molecular biology and clinical behavior. We hypothesized that diffusion-weighted MRI can be used as a prognostic marker to stratify DIPG subsets with distinct clinical behavior. Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MRI were computed in 20 consecutive children with treatment-naïve DIPG tumors. The median ADC for the cohort was used to stratify the tumors into low and high ADC groups. Survival, gender, therapy, and potential steroid effects were compared between the ADC groups. Median age at diagnosis was 6.6 (range 2.3-13.2) years, with median follow-up seven (range 1-36) months. There were 14 boys and six girls. Seventeen patients received radiotherapy, five received chemotherapy, and six underwent cerebrospinal fluid diversion. The median ADC of 1,295 × 10(-6) mm(2)/s for the cohort partitioned tumors into low or high diffusion groups, which had distinct median survivals of 3 and 13 months, respectively (log-rank p < 0.001). Low ADC tumors were found only in boys, whereas high ADC tumors were found in both boys and girls. Available tissue specimens in three low ADC tumors demonstrated high-grade histology, whereas one high ADC tumor demonstrated low-grade histology with a histone H3.1 K27M mutation and high-grade metastatic lesion at autopsy. ADC derived from diffusion-weighted MRI may identify prognostically distinct subgroups of pediatric DIPG.
Diffusion model validation and interpretation of stable isotopes in river and lake ice
Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.
2002-01-01
The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.
Heat transport by phonons in crystalline materials and nanostructures
NASA Astrophysics Data System (ADS)
Koh, Yee Kan
This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ≤ f ≤ 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ≤ ℓ ≤ 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youchison, D.L.; Watson, R.D.; McDonald, J.M.
Thermal response and thermal fatigue tests of four 5-mm-thick beryllium tiles on a Russian Federation International Thermonuclear Experimental Reactor (ITER)-relevant divertor mock-up were completed on the electron beam test system at Sandia National Laboratories. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m{sup 2} and surface temperatures near 300{degree}C using 1.4 MPa water at 5 m/s flow velocity and an inlet temperature of 8 to 15{degree}C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m{sup 2} and surface temperatures up to 690{degree}C before debonding at 10MW/m{sup 2}. A secondmore » tile debonded in 25 to 30 cycles at <0.5 MW/m{sup 2}. However, a third tile debonded after 9200 thermal fatigue cycles at 5 MW/m{sup 2}, while another debonded after 6800 cycles. Posttest surface analysis indicated that fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. It appears that microcracks growing at the diffusion bond produced the observed gradual temperature increases during thermal cycling. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER-relevant conditions. However, the reliability of the diffusion-bonded joint remains a serious issue. 17 refs., 25 figs., 6 tabs.« less
Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.
Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A
2006-07-01
Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.
Dillon, C R; Borasi, G; Payne, A
2016-01-01
For thermal modeling to play a significant role in treatment planning, monitoring, and control of magnetic resonance-guided focused ultrasound (MRgFUS) thermal therapies, accurate knowledge of ultrasound and thermal properties is essential. This study develops a new analytical solution for the temperature change observed in MRgFUS which can be used with experimental MR temperature data to provide estimates of the ultrasound initial heating rate, Gaussian beam variance, tissue thermal diffusivity, and Pennes perfusion parameter. Simulations demonstrate that this technique provides accurate and robust property estimates that are independent of the beam size, thermal diffusivity, and perfusion levels in the presence of realistic MR noise. The technique is also demonstrated in vivo using MRgFUS heating data in rabbit back muscle. Errors in property estimates are kept less than 5% by applying a third order Taylor series approximation of the perfusion term and ensuring the ratio of the fitting time (the duration of experimental data utilized for optimization) to the perfusion time constant remains less than one. PMID:26741344
In-Field Diffuse Ultraviolet Spectroscopy and Imaging of the Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Pugel, D. Elizabeth; Stackpoole, Mairead; McNamara, Karen; Schwartz, C.; Warren, J.; Kontinos, Dean
2008-01-01
In-field diffuse Ultraviolet (UV) spectroscopy and imaging systems were developed for the purposes of evaluating the surface chemical composition of spacecraft thermal control coatings and materials. The investigation of these systems and the compilation of an associated UV reflectance and luminescence database were conducted using the Stardust Sample Return Capsule (SRC), located at the Johnson Space Center. Spectral responses of the surfaces of the Stardust forebody and aftbody in both reflectance and fluorescence modes were examined post-flight. In this paper, we report on two primary findings of in-field diffuse UV spectroscopy and imaging: (1) deduction of the thermal history of thermal control coatings of the forebody and (2) bond line variations in the aftbody. In the forebody, the thermal history of thermal control coatings may be deduced from the presence of particular semiconducting defect states associated with ZnO, a common emissivity constituent in thermal control coatings. A spatial dependence of this history was mapped for these regions. In the aftbody, luminescing defect states, associated with Si and SiO2 color centers were found along regions of bond variability.
Thermal diffusivity determination using heterodyne phase insensitive transient grating spectroscopy
NASA Astrophysics Data System (ADS)
Dennett, Cody A.; Short, Michael P.
2018-06-01
The elastic and thermal transport properties of opaque materials may be measured using transient grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity and surface displacement. The "phase grating" response encodes both properties of interest, but complicates quantitative analysis by convolving temperature dynamics with surface displacement dynamics. Thus, thermal transport characteristics are typically determined using the "amplitude grating" response to isolate the surface temperature dynamics. However, this signal character requires absolute heterodyne phase calibration and contains no elastic property information. Here, a method is developed by which phase grating TGS measurements may be consistently analyzed to determine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured using this type of response and found to be consistent with theoretical predictions made by solving the Boltzmann transport equation. This ability to determine the elastic and thermal properties from a single set of TGS measurements will be particularly advantageous for new in situ implementations of the technique being used to study dynamic materials systems.
NASA Astrophysics Data System (ADS)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; Haynes, J. Allen; Porter, Wallace D.; England, Roger D.; Hays, Michael; Dwivedi, Gopal; Sampath, Sanjay
2018-02-01
Multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow. The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. The microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.
Effects of High Pressure on Membrane Ion Binding and Transport.
1980-12-31
diffusion in red cell membranes have appar- ent activation volumes of 40 ml/mol in agreement with data on liposomes, and ,6) perturbations in osmotic...Extrapolated to the Red Cell? (page 15) B. Pressure Dependence of Butanol Diffusion (page 17) C. Development of a High Pressure Stop-Flow (page 19...page 16 Figure 3 -- Pressure effect on the diffusion coefficient n-butanol in packed human red cells ................... page 18 Figure 9
NASA Astrophysics Data System (ADS)
Hu, Jiuning; Chen, Yong P.
2013-06-01
We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.
Dating thermal events at Cerro Prieto using fission track annealing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanford, S.J.; Elders, W..
1981-01-01
Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.
Transport coefficients in high-temperature ionized air flows with electronic excitation
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Oblapenko, G. P.
2018-01-01
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.
Isotope Fractionation by Diffusion in Liquids (Final Technical Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Frank
The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the keymore » for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.« less
Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira
2016-01-01
High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144
NASA Astrophysics Data System (ADS)
Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil
2008-06-01
The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirdel-Havar, A. H., E-mail: Amir.hushang.shirdel@gmail.com; Masoudian Saadabad, R.
2015-03-21
Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shownmore » that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.« less
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Hong-Yi, Fan; Ji-Suo, Wang
2018-04-01
This paper proposes a kind of displaced thermal states (DTS) and explores how this kind of optical field emerges using the entangled state representation. The results show that the DTS can be generated by a coherent state passing through a diffusion channel with the diffusion coefficient ϰ only when there exists κ t = (e^{\\hbar ν /kBT} - 1 )^{-1}. Also, its statistical properties, such as mean photon number, Wigner function and entropy, are investigated.
NASA Astrophysics Data System (ADS)
Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke
2017-09-01
To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.
NASA Astrophysics Data System (ADS)
Stolik, S.; Fabila, D. A.; de la Rosa, J. M.; Escobedo, G.; Suárez-Álvarez, K.; Tomás, S. A.
2015-09-01
Design of non-invasive and accurate novel methods for liver fibrosis diagnosis has gained growing interest. Different stages of liver fibrosis were induced in Wistar rats by intraperitoneally administering different doses of carbon tetrachloride. The liver fibrosis degree was conventionally determined by means of histological examination. An open-photoacoustic-cell (OPC) technique for the assessment of liver fibrosis was developed and is reported here. The OPC technique is based on the fact that the thermal diffusivity can be accurately measured by photoacoustics taking into consideration the photoacoustic signal amplitude versus the modulation frequency. This technique measures directly the heat generated in a sample, due to non-radiative de-excitation processes, following the absorption of light. The thermal diffusivity was measured with a home-made open-photoacoustic-cell system that was specially designed to perform the measurement from ex vivo liver samples. The human liver tissue showed a significant increase in the thermal diffusivity depending on the fibrosis stage. Specifically, liver samples from rats exhibiting hepatic fibrosis showed a significantly higher value of the thermal diffusivity than for control animals.
Whitfield, Ross E.; Goossens, Darren J.; Welberry, T. Richard
2016-01-01
The ability of the pair distribution function (PDF) analysis of total scattering (TS) from a powder to determine the local ordering in ferroelectric PZN (PbZn1/3Nb2/3O3) has been explored by comparison with a model established using single-crystal diffuse scattering (SCDS). While X-ray PDF analysis is discussed, the focus is on neutron diffraction results because of the greater extent of the data and the sensitivity of the neutron to oxygen atoms, the behaviour of which is important in PZN. The PDF was shown to be sensitive to many effects not apparent in the average crystal structure, including variations in the B-site—O separation distances and the fact that 〈110〉 Pb2+ displacements are most likely. A qualitative comparison between SCDS and the PDF shows that some features apparent in SCDS were not apparent in the PDF. These tended to pertain to short-range correlations in the structure, rather than to interatomic separations. For example, in SCDS the short-range alternation of the B-site cations was quite apparent in diffuse scattering at (½ ½ ½), whereas it was not apparent in the PDF. PMID:26870378
Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton
We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less
Laser-induced pressure-wave and barocaloric effect during flash diffusivity measurements
Wang, Hsin; Porter, Wallace D.; Dinwiddie, Ralph Barton
2017-08-01
We report laser-induced pressure-wave and barocaloric effect captured by an infrared detector during thermal diffusivity measurements. Very fast (< 1 ms) and negative transients during laser flash measurements were captured by the infrared detector on thin, high thermal conductivity samples. Standard thermal diffusivity analysis only focuses the longer time scale thermal transient measured from the back surface due to thermal conduction. These negative spikes are filtered out and ignored as noise or anomaly from instrument. This study confirmed that the initial negative signal was indeed a temperature drop induced by the laser pulse. The laser pulse induced instantaneous volume expansionmore » and the associated cooling in the specimen can be explained by the barocaloric effect. The initial cooling (< 100 microsecond) is also known as thermoelastic effect in which a negative temperature change is generated when the material is elastically deformed by volume expansion. A subsequent temperature oscillation in the sample was observed and only lasted about one millisecond. The pressure-wave induced thermal signal was systematically studied and analyzed. In conclusion, the underlying physics of photon-mechanical-thermal energy conversions and the potential of using this signal to study barocaloric effects in solids are discussed.« less
Modeling Issues and Results for Hydrogen Isotopes in NIF Materials
NASA Astrophysics Data System (ADS)
Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.
1998-11-01
The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.
NASA Technical Reports Server (NTRS)
Bellan, Josette; Harstad, Kenneth; Ohsaka, Kenichi
2003-01-01
Although the high pressure multicomponent fluid conservation equations have already been derived and approximately validated for binary mixtures by this PI, the validation of the multicomponent theory is hampered by the lack of existing mixing rules for property calculations. Classical gas dynamics theory can provide property mixing-rules at low pressures exclusively. While thermal conductivity and viscosity high-pressure mixing rules have been documented in the literature, there is no such equivalent for the diffusion coefficients and the thermal diffusion factors. The primary goal of this investigation is to extend the low pressure mixing rule theory to high pressures and validate the new theory with experimental data from levitated single drops. The two properties that will be addressed are the diffusion coefficients and the thermal diffusion factors. To validate/determine the property calculations, ground-based experiments from levitated drops are being conducted.
Thermal Diffusivity and Conductivity of Hg(1-x)Zn(x)Te Solids and Melts
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Mazuruk, K.; Lehoczky, S. L.
1996-01-01
The thermal diffusivity of pseudobinary Hg(1-x)Zn(x)Te solids and melts was measured by the laser flash method. The measured diffusivities for the solids of 0.10 less than or equal to x less than or equal to 0.30 are about 60% of that of the HgTe solid. Those for the melts rise rapidly with temperature but less so with increasing x. For x = 0.30, the diffusivity of the melt is about one third of that of the HgTe melt. Using the calculated beat capacity data from the associated solution model and measured density values, the thermal conductivity for the pseudobinary Hg(1-x)Zn(x)Te solids of 0.10 less than or equal to x less than or equal to 0.30 and for the melts of x = O.10, 0.16, and 0.30 was determined.
NASA Astrophysics Data System (ADS)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru
2018-03-01
The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.
Thermal Characterization of Edible Oils by Using Photopyroelectric Technique
NASA Astrophysics Data System (ADS)
Lara-Hernández, G.; Suaste-Gómez, E.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Sánchez-Sinéncio, F.; Valcárcel, J. P.; García-Quiroz, A.
2013-05-01
Thermal properties of several edible oils such as olive, sesame, and grape seed oils were obtained by using the photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back photopyroelectric configuration was used to obtain the thermal diffusivity of these oils; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these edible oils was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are in agreement with the thermal properties reported for the case of the olive oil.
Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, G. P.; Mangal, Ravindra; Bhojak, N.
2010-06-29
Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less
Observational analysis of the well-correlated diffuse bands: 6196 and 6614 Å
NASA Astrophysics Data System (ADS)
Krełowski, J.; Galazutdinov, G. A.; Bondar, A.; Beletsky, Y.
2016-08-01
We confirm, using spectra from seven observatories, that the diffuse bands 6196 and 6614 are very tightly correlated. However, their strength ratio is not constant as well as profile shapes. Apparently, the two interstellar features do not react in unison to the varying physical conditions of different interstellar clouds.
Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals
NASA Astrophysics Data System (ADS)
Natsik, V. D.; Smirnov, S. N.
2017-10-01
We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].
Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak
DOE R&D Accomplishments Database
Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))
1993-03-01
Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.
Nakata, T; Sato-Yoshitake, R; Okada, Y; Noda, Y; Hirokawa, N
1993-01-01
One-dimensional diffusion of microtubules (MTs), a back-and-forth motion of MTs due to thermal diffusion, was reported in dynein motility assay. The interaction between MTs and dynein that allows such motion was implicated in its importance in the force generating cycle of dynein ATPase cycle. However, it was not known whether the phenomenon is special to motor proteins. Here we show two independent examples of one-dimensional diffusion of MTs in the absence of motor proteins. Dynamin, a MT-activated GTPase, causes a nucleotide dependent back-and-forth movement of single MT up to 1 micron along the longitudinal axes, although the MT never showed unidirectional consistent movement. Quantitative analysis of the motion and its nucleotide condition indicates that the motion is due to a thermal driven diffusion, restricted to one dimension, under the weak interaction between MT and dynamin. However, specific protein-protein interaction is not essential for the motion, because similar back-and-forth movement of MT was achieved on coverslips coated with only 0.8% methylcellulose. Both cases demonstrate that thermal diffusion could provide a considerable sliding of MTs only if MTs are restricted on the surface appropriately. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7906153
Cao, Xia; Fang, Le; Cui, Chuan-yu; Gao, Shi; Wang, Tian-wei
2018-01-01
Excessive radiation exposure may lead to edema of the spinal cord and deterioration of the nervous system. Magnetic resonance imaging can be used to judge and assess the extent of edema and to evaluate pathological changes and thus may be used for the evaluation of spinal cord injuries caused by radiation therapy. Radioactive 125I seeds to irradiate 90% of the spinal cord tissue at doses of 40–100 Gy (D90) were implanted in rabbits at T10 to induce radiation injury, and we evaluated their safety for use in the spinal cord. Diffusion tensor imaging showed that with increased D90, the apparent diffusion coefficient and fractional anisotropy values were increased. Moreover, pathological damage of neurons and microvessels in the gray matter and white matter was aggravated. At 2 months after implantation, obvious pathological injury was visible in the spinal cords of each group. Magnetic resonance diffusion tensor imaging revealed the radiation injury to the spinal cord, and we quantified the degree of spinal cord injury through apparent diffusion coefficient and fractional anisotropy. PMID:29623940
Laun, Frederik Bernd; Kuder, Tristan Anselm; Zong, Fangrong; Hertel, Stefan; Galvosas, Petrik
2015-10-01
The time-dependent apparent diffusion coefficient as measured by pulsed gradient NMR can be used to estimate parameters of porous structures including the surface-to-volume ratio and the mean curvature of pores. In this work, the short-time diffusion limit and in particular the influence of the temporal profile of diffusion gradients on the expansion as proposed by Mitra et al. (1993) is investigated. It is shown that flow-compensated waveforms, i.e. those whose first moment is zero, are blind to the term linear in observation time, which is the term that is proportional to mean curvature and surface permeability. A gradient waveform that smoothly interpolates between flow-compensated and bipolar waveform is proposed and the degree of flow-compensation is used as a second experimental dimension. This two-dimensional ansatz is shown to yield an improved precision when characterizing the confining domain. This technique is demonstrated with simulations and in experiments performed with cylindrical capillaries of 100 μm radius. Copyright © 2015 Elsevier Inc. All rights reserved.
Hardie, Andrew D; Egbert, Robert E; Rissing, Michael S
2015-01-01
Diffusion-weighted magnetic resonance imaging (DW-MR) can be useful in the differentiation of hemangiomata from liver metastasis, but improved methods other than by mean apparent diffusion coefficient (mADC) are needed. A retrospective review identified 109 metastatic liver lesions and 86 hemangiomata in 128 patients who had undergone DW-MR. For each lesion, mADC and the standard deviation of the mean ADC (sdADC) were recorded and compared by receiver operating characteristic analysis. Mean mADC was higher in benign hemangiomata (1.52±0.12 mm(2)/s) than in liver metastases (1.33±0.18 mm(2)/s), but there was significant overlap in values. The mean sdADC was lower in hemangiomata (101±17 mm(2)/s) than metastases (245±25 mm(2)/s) and demonstrated no overlap in values, which was significantly different (P<.0001). Hemangiomata may be better able to be differentiated from liver metastases on the basis of sdADC than by mADC, although further studies are needed. Copyright © 2015 Elsevier Inc. All rights reserved.
Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media
NASA Astrophysics Data System (ADS)
Monnig, N. D.; Benson, D. A.
2007-12-01
Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.
Tracer diffusion in active suspensions.
Burkholder, Eric W; Brady, John F
2017-05-01
We study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a, characteristic swim speed U_{0}, reorientation time τ_{R}, and mechanical energy k_{s}T_{s}=ζ_{a}U_{0}^{2}τ_{R}/6, where ζ_{a} is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity D_{P}=k_{B}T/ζ_{P}, where k_{B}T is the thermal energy of the solvent and ζ_{P} is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion. In competition with this steric hindrance is an enhancement driven by the activity of the swimmers. The strength of swimming relative to thermal diffusion is set by Pe_{s}=U_{0}a/D_{P}. The active contribution to the diffusivity scales as Pe_{s}^{2} for weak swimming and Pe_{s} for strong swimming, but the transition between these two regimes is nonmonotonic. When fluctuations in the probe motion decay on the time scale τ_{R}, the active diffusivity scales as k_{s}T_{s}/ζ_{P}: the probe moves as if it were immersed in a solvent with energy k_{s}T_{s} rather than k_{B}T.
Ex vivo laser lipolysis assisted with radially diffusing optical applicator
NASA Astrophysics Data System (ADS)
Hwang, Jieun; Hau, Nguyen Trung; Park, Sung Yeon; Rhee, Yun-Hee; Ahn, Jin-Chul; Kang, Hyun Wook
2016-05-01
Laser-assisted lipolysis has been implemented to reduce body fat in light of thermal interactions with adipose tissue. However, using a flat fiber with high irradiance often needs rapid cannula movements and even undesirable thermal injury due to direct tissue contact. The aim of the current study was to explore the feasibility of a radially diffusing optical applicator to liquefy the adipose tissue for effective laser lipolysis. The proposed diffuser was evaluated with a flat fiber in terms of temperature elevation and tissue liquefaction after laser lipolysis with a 980-nm wavelength. Given the same power (20 W), the diffusing applicator generated a 30% slower temperature increase with a 25% lower maximum temperature (84±3.2°C in 1 min p<0.001) in the tissue, compared with the flat fiber. Under the equivalent temperature development, the diffuser induced up to fivefold larger area of the adipose liquefaction due to radial light emission than the flat fiber. Ex vivo tissue tests for 5-min irradiation demonstrated that the diffuser (1.24±0.15 g) liquefied 66% more adipose tissue than the flat fiber (0.75±0.05 g). The proposed diffusing applicator can be a feasible therapeutic device for laser lipolysis due to low temperature development and wide coverage of thermal treatment.
NASA Astrophysics Data System (ADS)
Gradzki, Marek J.; Mizerski, Krzysztof A.
2018-03-01
Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here, we revisit a problem introduc`ed by Gilman: the short-wavelength linear stability of a plane layer of compressible isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height. In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero. We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength of the most unstable mode scaling as either λ /d∼ {{ \\mathcal U }}κ 3/5 or λ /d∼ {{ \\mathcal U }}κ 3/4 or λ /d∼ {{ \\mathcal U }}κ 1/3, where d is the layer thickness and {{ \\mathcal U }}κ is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong enough.
The effect of thermal neutron field slagging caused by cylindrical BF3 counters in diffusion media
NASA Technical Reports Server (NTRS)
Gorshkov, G. V.; Tsvetkov, O. S.; Yakovlev, R. M.
1975-01-01
Computations are carried out in transport approximation (first collision method) for the attenuation of the field of thermal neutrons formed in counters of the CHM-8 and CHMO-5 type. The deflection of the thermal neutron field is also obtained near the counters and in the air (shade effect) and in various decelerating media (water, paraffin, plexiglas) for which the calculations are carried out on the basis of diffusion theory. To verify the calculations, the distribution of the density of the thermal neutrons at various distances from the counter in the water is measured.
An extended laser flash technique for thermal diffusivity measurement of high-temperature materials
NASA Technical Reports Server (NTRS)
Shen, F.; Khodadadi, J. M.
1993-01-01
Knowledge of thermal diffusivity data for high-temperature materials (solids and liquids) is very important in analyzing a number of processes, among them solidification, crystal growth, and welding. However, reliable thermal diffusivity versus temperature data, particularly those for high-temperature liquids, are still far from complete. The main measurement difficulties are due to the presence of convection and the requirement for a container. Fortunately, the availability of levitation techniques has made it possible to solve the containment problem. Based on the feasibility of the levitation technology, a new laser flash technique which is applicable to both levitated liquid and solid samples is being developed. At this point, the analysis for solid samples is near completion and highlights of the technique are presented here. The levitated solid sample which is assumed to be a sphere is subjected to a very short burst of high power radiant energy. The temperature of the irradiated surface area is elevated and a transient heat transfer process takes place within the sample. This containerless process is a two-dimensional unsteady heat conduction problem. Due to the nonlinearity of the radiative plus convective boundary condition, an analytic solution cannot be obtained. Two options are available at this point. Firstly, the radiation boundary condition can be linearized, which then accommodates a closed-form analytic solution. Comparison of the analytic curves for the temperature rise at different points to the experimentally-measured values will then provide the thermal diffusivity values. Secondly, one may set up an inverse conduction problem whereby experimentally obtained surface temperature history is used as the boundary conditions. The thermal diffusivity can then be elevated by minimizing the difference between the real heat flux boundary condition (radiation plus convection) and the measurements. Status of an experimental study directed at measuring the thermal diffusivity of high-temperature solid samples of pure Nickel and Inconel 718 superalloys are presented. Preliminary measurements showing surface temperature histories are discussed.
NASA Astrophysics Data System (ADS)
Chang, Chun-Hung; Fried, Nathaniel M.
2016-02-01
Infrared lasers have been used in combination with applied cooling methods to preserve superficial skin layers during cosmetic surgery. Similarly, combined laser irradiation and tissue cooling may also allow development of minimally invasive laser therapies beyond dermatology. This study compares diffusing, side-firing, and radial delivery laser balloon catheter designs for creation of subsurface lesions in tissue, ex vivo, using a near-IR laser and applied contact cooling. An Ytterbium fiber laser with 1075 nm wavelength delivered energy through custom built 18 Fr (6-mm-OD) balloon catheters incorporating either 10-mm-long diffusing fiber tip, 90 degree side-firing fiber, or radial delivery cone mirror, through a central lumen. A chilled solution was flowed through a separate lumen into 9-mm-diameter balloon to keep probe cooled at 7°C. Porcine liver tissue samples were used as preliminary tissue model for immediate observation of thermal lesion creation. The diffusing fiber produced subsurface thermal lesions measuring 49.3 +/- 10.0 mm2 and preserved 0.8 +/- 0.1 mm of surface tissue. The side-firing fiber produced subsurface thermal lesions of 2.4 +/- 0.9 mm2 diameter and preserved 0.5 +/- 0.1 mm of surface tissue. The radial delivery probe assembly failed to produce subsurface thermal lesions, presumably due to the small effective spot diameter at the tissue surface, which limited optical penetration depth. Optimal laser power and irradiation time measured 15 W and 100 s for diffusing fiber and 1.4 W and 20 s, for side-firing fiber, respectively. Diffusing and side-firing laser balloon catheter designs provided subsurface thermal lesions in tissue. However, the divergent laser beam in both designs limited the ability to preserve a thicker layer of tissue surface. Further optimization of laser and cooling parameters may be necessary to preserve thicker surface tissue layers.
Jiang, Jing; Liu, Wanhua; Ye, Yuanyuan; Wang, Rui; Li, Fengfang; Peng, Chengyu
2014-06-17
To investigate the diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0 T magnetic resonance imaging. A total of 152 patients with 162 confirmed histopathologically breast lesions (85 malignant and 77 benign) underwent 3.0 T diffusion-weighted magnetic resonance imaging. Four b values (0, 400, 800 and 1 000 s/mm²) were used. The signal intensity and ADC values of breast lesions were measured respectively. The signal intensity decline rate (SIDR) and apparent diffusion coefficient decline rate (ADCDR) were calculated respectively. SIDR = (signal intensity of lesions with low b value-signal intensity of lesions with high b value)/signal intensity of lesions with low b value, ADCDR = (ADC value of lesions with low b value-ADC value of lesions with high b value) /ADC value of lesions with low b value. The independent sample t-test was employed for statistical analyses and the receiver operating characteristic (ROC) curve for evaluating the diagnosis efficiency of SIDR and ADCDR values. Significant differences were observed in SIDR between benign and malignant breast lesions with b values of 0-400, 400-800 and 800-1 000 s/mm². The sensitivities of SIDR for differentiating benign and malignant breast lesions were 61.2%, 68.2% and 67.1%, the specificities 74.0%, 85.7% and 67.5%, the diagnosis accordance rates 67.3%, 76.5% and 67.3%, the positive predictive values 72.2%, 84.1% and 69.5% and the negative predictive values 63.3%, 71.0% and 65.0% respectively. Significant differences were observed in ADCDR between benign and malignant breast lesions with b values of 400-800 s/mm² and 800-1 000 s/mm². The sensitivities of SDR for differentiating benign and malignant breast lesions were 80.0% and 65.9%, the specificities 72.7% and 65.0%, the diagnostic accordance rates 76.5% and 65.4%, the positive predictive values 76.4% and 67.5% and the negative predictive values 76.7% and 63.3% respectively. The decline rate of signal intensity and apparent diffusion coefficient with different b values may be used for differentiating benign and malignant breast lesions. And the diagnostic efficiency with b values of 400-800 s/mm² is optimal.
Thermal Wadis in Support of Lunar Exploration: Concept Development and Utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Wegeng, Robert S.; Burgess, Jeremy M.
2009-10-12
Thermal wadis, engineered sources of heat, can be used to extend the life of lunar rovers by keeping them warm during the extreme cold of the lunar night. Thermal wadis can be manufactured by sintering or melting lunar regolith into a solid mass with more than two orders of magnitude higher thermal diffusivities compared to native regolith dust. Small simulant samples were sintered and melted in the electrical furnaces at different temperatures, different heating and cooling rates, various soaking times, under air, or in an argon atmosphere. The samples were analyzed with scanning electron microscopy and energy dispersive spectroscopy, X-raymore » diffraction, a laser-flash thermal diffusivity system, and the millimeter-wave system. The melting temperature of JSC-1AF simulant was ~50°C lower in an Ar atmosphere compared to an air atmosphere. The flow of Ar during sintering and melting resulted in a small mass loss of 0.04 to 0.1 wt% because of the volatization of alkali compounds. In contrast, the samples that were heat-treated under an air atmosphere gained from 0.012 to 0.31 wt% of the total weight. A significantly higher number of cavities were formed inside the samples melted under an argon atmosphere, possibly because of the evolution of oxygen bubbles from iron redox reactions. The calculated emissivity of JSCf-1AF simulant did not change much with temperature, varying between 0.8 and 0.95 at temperatures from 100 to 1200°C. The thermal diffusivities of raw regolith that was compressed under a pressure of 9 metric tons ranged from 0.0013 to 00011 in the 27 to 390°C temperature range. The thermal diffusivities of sintered and melted JSC-1AF simulant varied from 0.0028 to 0.0072 cm2/s with the maximum thermal diffusivities observed in the samples that were heated up 5°C/min from RT to 1150°C under Ar or air. These thermal diffusivities are high enough for the rovers to survive the extreme cold of the Moon at the rim of the Shackleton Crater and allow them to operate for months (or years) as opposed to weeks on the lunar surface. Future investigations will be focused on a system that can efficiently construct a thermal wadi from the lunar mare regolith. Solar heating, microwave heating, or electrical resistance melting are considered.« less
Thick thermal barrier coatings for diesel components
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.
1991-01-01
An engineered thick thermal barrier coating consisting of multiple layers of zirconia and CoCrAlY with a zirconia top layer and having a system thermal conductance less than 410 w/m(exp 2)K exceeded the 100 hour engine durability goals set forth in this program. The thermal barrier coatings were intact at the test conclusion. Back to back single cylinder research engine tests were conducted with watercooled, metal hardware and oil-cooled, thermal barrier coating insulated hardware to determine apparent heat release and fuel economy. Apparent heat release data revealed that the insulated engine had a shorter ignition delay and a longer combustion duration than the metal engine. The insulated engine fuel economy was approximately two percent worse on average for this series of tests. There was no attempt to optimize engine efficiency of the insulated engine by modifying the engine timing, coating, or other techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Heng
Thermal diffusivity of materials is of interest in nuclear applications at temperatures in excess of 2000°C. Commercial laser flash apparatus (LFA) that heats samples with a furnace typically do not reach these elevated temperatures nor are they easily adapted to a glove-box or hot cell environment. In this research, we performed work on an experimental technique using single laser surface heating, i.e. heating the disk sample only at its front surface with the continuous wave (CW) laser, to allow measurement of thermal diffusivity at very high temperatures within a small chamber. Thermal diffusivity is measured using a separate pulsed lasermore » on the front side and IR detector on the rear side. The new way of heating provides easy operation in comparison to other heating methods. The measurement of sample reference temperature is needed for the measured thermal diffusivity. A theoretical model was developed to describe transient heat transfer across the sample due to the laser pulse, starting from the steady state temperature of the sample heated by the CW laser. The experimental setup was established with a 500W CW laser and maximum 50 Joule pulse laser irradiated at the front surface of the sample. The induced temperature rise at the rear surface, along with the steady-state temperature at the front surface, was recorded for the determination of thermal diffusivity and the sample temperature. Three samples were tested in vacuum over a wide temperature range of 500°C to 2100°C, including graphite, Inconel 600 and tungsten. The latter two samples were coated with sprayed graphite on their front surfaces in order to achieve surface absorption/emission needs, i.e. high absorptivity of the front surface against relatively low emissivity of the rear surface. Thermal diffusivity of graphite determined by our system are within a 5% difference of the commercial LFA data at temperatures below 1300°C and agree well with its trend at higher temperatures. Good agreement would also exist for Inconel 600 and tungsten. Despite large uncertainty of measuringthe sample temperature, the uncertainties of thermal diffusivity are less than 6% for all samples at elevated temperatures. The results indicate that single laser surface heating could be convenient and practical for the application of the LFA measurements without extra uncertainty, as temperature dependence of thermal diffusivity is usually negligible in the sample. Moreover, it is concluded that unequal surface treatment, i.e., high absorption on the front side and low emission on the rear side, greatly improves the measurement in serval aspects: less power requirement of the CW laser, less uncertainty of measured thermal diffusivity, and more uniform temperature distribution in the sample. The result of this research can be used as a general guideline for the design of this type of measurement system for nuclear applications. It can also be used directly to design and build a system similar to the one implemented in this project.« less
NASA Astrophysics Data System (ADS)
Zbińkowski, Piotr; Zmywaczyk, Janusz; Koniorczyk, Piotr
2017-07-01
Phase-change materials (PCM) can be applied as a heat absorbing/releasing medium in passive cooling systems. Such systems can be used in cooling and temperature stabilization of electronic components, i.e., Li-ion batteries, photovoltaic modules or light emitting diodes (LED). In order to optimize heat transfer in passive cooling systems experimental studies of PCM thermophysical properties are necessary. A good PCM candidate for passive cooling systems may be paraffin waxes due to their relatively high latent heat of fusion (L 200 J.g-1), suitable for working of electronic devices range of melting temperatures (22 °C - 68 °C) and a reasonable price. However, their main drawback is a relatively low thermal conductivity k ranging from 0.148 W.m-1.K-1 to 0.358 W.m-1.K-1. In this paper were presented results of experimentally determined temperature characteristics of thermophysical parameters of four paraffin waxes industrially manufactured in Jasło/Poland by POLWAX. The density ρ of the test paraffin waxes determined at room temperature (20 °C) using a laboratory balance RADWAG X/60/220 comprised from 0.82 g.cm-3 to 0.94 g.cm-3. The thermal diffusivity κ of paraffin waxes was tested within temperature range from -50 °C to 30 °C every 20 °C interval using the NETZSCH LFA 467 HyperFlash. The test specimens having form of cylinder were 12.7 mm in diameter and 2.15 - 2.20 mm in height. Prior to the experiment the face and the back surface of each specimen were coated with a thin layer of graphite 33 having a thickness of several micrometers in accordance with the recommendation given by NETZSCH. The thermal diffusivity of the test paraffin waxes within temperature interval -40 °C - 20 °C was determined to be 0.083 mm2.s-1 to 0.216 mm2.s-1. Thermal effects and the apparent heat capacity cp of the tested materials were measured in the temperature range from -10 °C to 100 °C using the NETZSCH DSC 404 F1 Pegasus at 10 K.min-1 heating/cooling rates in an atmosphere of helium as an inert gas. Thermal degradation studies of the test specimens were carried out in TG/DTG analysis, using NETZSCH STA 2500 Regulus within temperature range from 30 °C - 800 °C. The results of the heat capacity obtained by using DSC method and determined from the LFA 467 thermal diffusivity measurements due to applying Pyroceram 9606 as a reference material of known thermophysical properties were compared with each other. The thermal conductivity k of the tested paraffin waxes was evaluated using a well-known relationship k = κ . ρ . cp. In the investigated temperature range from -40 °C to 20 °C the thermal conductivity of the test paraffin waxes was changing from 0.157 W.m-1.K-1 to 0.282 W.m-1.K-1. DSC investigations revealed that the phase-change transition connected with the melting of the test paraffin waxes was a two-step, and in case of LUXOLINA ST, it was a three-step process (solid-solid and then solid-liquid) within temperature range from 30 °C to 65 °C as determined from the onset. The current studies of determining thermophysical properties of some paraffin waxes are treated as a starting point for selecting the most adequate PCM candidate for passive cooling systems of high-power LED street lamp.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
NASA Astrophysics Data System (ADS)
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-11-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espanol, C.E.
1960-01-01
The effect of the appearance of localized perturbations on the separation factor and operation time of a thermal diffusion column is studied. The separation factor of a column was obtained experimentally and the enrichment was recorded continuously as a function of time by measurement of the thermal conductivity of the gaseous mixture at the foot and head of the column. A mixture of Ar and CO/sub 2/ was used as it behaves as an isotopic mixture. The results showed the linear decrease of the separation factor with the number of stages and the operation time practically does not vary. Themore » introduction of localized turbulences in a thermal diffusion column reduces the column yield. (J.S.R.)« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...
2015-11-03
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, F.; Mason, D. R.; Eliason, J. K.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-01-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099
A model for including thermal conduction in molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Wu, Yue; Friauf, Robert J.
1989-01-01
A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.
NASA Astrophysics Data System (ADS)
Luce, C.; Tonina, D.; Gariglio, F. P.; Applebee, R.
2012-12-01
Differences in the diurnal variations of temperature at different depths in streambed sediments are commonly used for estimating vertical fluxes of water in the streambed. We applied spatial and temporal rescaling of the advection-diffusion equation to derive two new relationships that greatly extend the kinds of information that can be derived from streambed temperature measurements. The first equation provides a direct estimate of the Peclet number from the amplitude decay and phase delay information. The analytical equation is explicit (e.g. no numerical root-finding is necessary), and invertable. The thermal front velocity can be estimated from the Peclet number when the thermal diffusivity is known. The second equation allows for an independent estimate of the thermal diffusivity directly from the amplitude decay and phase delay information. Several improvements are available with the new information. The first equation uses a ratio of the amplitude decay and phase delay information; thus Peclet number calculations are independent of depth. The explicit form also makes it somewhat faster and easier to calculate estimates from a large number of sensors or multiple positions along one sensor. Where current practice requires a priori estimation of streambed thermal diffusivity, the new approach allows an independent calculation, improving precision of estimates. Furthermore, when many measurements are made over space and time, expectations of the spatial correlation and temporal invariance of thermal diffusivity are valuable for validation of measurements. Finally, the closed-form explicit solution allows for direct calculation of propagation of uncertainties in error measurements and parameter estimates, providing insight about error expectations for sensors placed at different depths in different environments as a function of surface temperature variation amplitudes. The improvements are expected to increase the utility of temperature measurement methods for studying groundwater-surface water interactions across space and time scales. We discuss the theoretical implications of the new solutions supported by examples with data for illustration and validation.
NASA Astrophysics Data System (ADS)
Otsuka, Mioko; Homma, Ryoei; Hasegawa, Yasuhiro
2017-05-01
The phonon and carrier thermal conductivities of thermoelectric materials were calculated using the Wiedemann-Franz law, Boltzmann equation, and a method we propose in this study called the Debye specific heat method. We prepared polycrystalline n-type doped bismuth telluride (BiTe) and bismuth antimony (BiSb) bulk alloy samples and measured six parameters (Seebeck coefficient, resistivity, thermal conductivity, thermal diffusivity, magneto-resistivity, and Hall coefficient). The carrier density and mobility were estimated for calculating the carrier thermal conductivity by using the Boltzmann equation. In the Debye specific heat method, the phonon thermal diffusivity, and thermal conductivity were calculated from the temperature dependence of the effective specific heat by using not only the measured thermal conductivity and Debye model, but also the measured thermal diffusivity. The carrier thermal conductivity was also evaluated from the phonon thermal conductivity by using the specific heat. The ratio of carrier thermal conductivity to thermal conductivity was evaluated for the BiTe and BiSb samples, and the values obtained using the Debye specific heat method at 300 K were 52% for BiTe and <5.5% for BiSb. These values are either considerably larger or smaller than those obtained using other methods. The Dulong-Petit law was applied to validate the Debye specific heat method at 300 K, which is significantly greater than the Debye temperature of the BiTe and BiSb samples, and it was confirmed that the phonon specific heat at 300 K has been accurately reproduced using our proposed method.
Corrigendum to “Thermophysical properties of U 3Si 2 to 1773 K”
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Joshua Taylor; Nelson, Andrew Thomas; Dunwoody, John Tyler
2016-12-01
An error was discovered by the authors in the calculation of thermal diffusivity in “Thermophysical properties of U 3Si 2 to 1773 K”. The error was caused by operator error in entry of parameters used to fit the temperature rise versus time model necessary to calculate the thermal diffusivity. Lastly, this error propagated to the calculation of thermal conductivity, leading to values that were 18%–28% larger along with the corresponding calculated Lorenz values.
Distribution of thermal neutrons in a temperature gradient
NASA Astrophysics Data System (ADS)
Molinari, V. G.; Pollachini, L.
A method to determine the spatial distribution of the thermal spectrum of neutrons in heterogeneous systems is presented. The method is based on diffusion concepts and has a simple mathematical structure which increases computing efficiency. The application of this theory to the neutron thermal diffusion induced by a temperature gradient, as found in nuclear reactors, is described. After introducing approximations, a nonlinear equation system representing the neutron temperature is given. Values of the equation parameters and its dependence on geometrical factors and media characteristics are discussed.
NASA Astrophysics Data System (ADS)
Czaja, A. D.; Osterhout, J. T.; Gangidine, A. J.
2018-04-01
Raman spectroscopy, which will be used by Mars 2020, can identify organic carbon and can assess the level of thermal alteration experienced by organic fossils. This study provides evidence that lithology can also influence apparent thermal alteration.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.
1990-01-01
Advanced ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermal/environmental barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.
Elzibak, Alyaa H; Noseworthy, Michael D
2014-10-01
To investigate whether postural change from erect to recumbent position affects calf muscle water diffusivity. Ten healthy adults (27.2 ± 4.9 years, 3 females) were imaged at baseline (following assumption of recumbent position), and after 34 min (session 2) and 64 min (session 3) of laying supine within a 3T MRI scanner. Diffusion tensor imaging (DTI) eigenvalues, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were evaluated in five calf muscles (anterior and posterior tibialis and triceps surae) during each of the three imaging sessions. Significant decreases were observed in all of the eigenvalues and ADC in each of the muscles with postural change. These reductions ranged from 3.2 to 6.7% and 3.4 to 7.5% for the various DTI metrics, following 34 and 64 min of supine rest, respectively (P < 0.05). No significant differences were noted in ADC or eigenvalues between the second and third imaging sessions for any muscle. FA did not change significantly with postural manipulation in any muscle compartment. Diffusion tensor imaging indices were altered with postural change. As differences were not apparent between the latter two imaging sessions, we suggest that a short supine resting period (~34 min) is sufficient for muscle diffusivity to stabilize prior to quantitative MR imaging in healthy young adults.
Anomalous versus Slowed-Down Brownian Diffusion in the Ligand-Binding Equilibrium
Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues
2013-01-01
Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. PMID:24209851
NASA Technical Reports Server (NTRS)
Geiss, J.; Burgi, A.
1987-01-01
Previous calculations of thermal diffusion coefficients in partially ionized gases are extended to the case of unequal neutral and ion temperatures and/or temperature gradients. Formulas are derived for the general case of a major gas as well as for minor atoms and ions. Strong enhancements of minor-ion thermal diffusion coefficients over their values in the fully ionized gas are found when the degree of ionization in the main gas is relatively low. However, compared to the case of equal temperatures, the enhancements are less strong when the neutrals are cooler than the ions. The specific case of the H-H(+) mixture, which is important in the study of solar and stellar atmospheres, is discussed as an application.
A technique to measure the thermal diffusivity of high Tc superconductors
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1991-01-01
High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature.
Liquid Thermal Diffusion during the Manhattan Project
NASA Astrophysics Data System (ADS)
Cameron Reed, B.
2011-06-01
On the basis of Manhattan Engineer District documents, a little known Naval Research Laboratory report of 1946, and other sources, I construct a more complete history of the liquid-thermal-diffusion method of uranium enrichment during World War II than is presented in official histories of the Manhattan Project. This method was developed by Philip Abelson (1913-2004) and put into operation at the rapidly-constructed S-50 plant at Oak Ridge, Tennessee, which was responsible for the first stage of uranium enrichment, from 0.72% to 0.85% U-235, producing nearly 45,000 pounds of enriched U-235 by July 1945 at a cost of just under 20 million. I review the history, design, politics, construction, and operation of the S-50 liquid-thermal-diffusion plant.
NASA Astrophysics Data System (ADS)
Navin Paul, Andre; Spikings, Richard; Chew, David; Daly, J. Stephen; Ulyanov, Alexey
2017-04-01
High temperature (>350℃) U-Pb thermochronometers primarily use accessory minerals such as apatite, titanite and rutile, and assume that daughter isotopes are lost by thermally activated volume diffusion while the parent remains immobile. Studies exploiting such behaviour have been successfully used to reconstruct thermal histories spanning several hundred million years (e.g. Cochrane et al., 2014). However, outliers in date (ID-TIMS) vs diffusion length space are frequently observed, and grains are frequently found to be either too young or too old for expected thermal history solutions using the diffusion data of Cherniak et al. (2010). These deviations of single grain apatite U-Pb dates from expected behaviour could be caused by a combination of i) metamorphic (over-)growth, ii) fluid-aided Pb mobilisation during alteration/recrystallization, iii) parent isotope zonation, iv) metamictisation, and v) changes in diffusion length with time (e.g. fracturing). We present a large data set from the northern Andes of South America, where we compare apatite U-Pb ID-TIMS-(TEA) data with LA-ICP-MS element maps and in-situ apatite U-Pb LA-(MC)-ICP-MS dates. These are combined with U-Pb zircon and 40Ar/39Ar (muscovite) data to attempt to distinguish between thermally activated volume diffusion and secondary overgrowth/recrystallization. We demonstrate that in young (e.g. Phanerozoic) apatites that have not recrystallized or experienced metasomatic overgrowths, U-Pb dates are dominantly controlled by volume diffusion and intra-crystal uranium zonation. This implies that ID-TIMS analyses of apatites with zoned parent isotope distributions will not usually recover accurate thermal history solutions, and an in-situ dating method is required. Recovering the uranium distribution during in-situ analysis provides a means to account for parent zonation, substantially increasing the accuracy of the modelled t-T-paths. We present in-situ data from apatites where scatter in date v diffusion length scale is observed and compare t-T-paths from single grain and in-situ modelling. Modelling of in-situ data will further show if all apatites from a single hand specimen record the same thermal history using Cherniak et al. (2010) diffusion data, or if the Pb-in-apatite diffusion parameters are a function of composition. U zonation is ubiquitous in the studied rocks (Triassic apatites extracted from peraluminous leucosomes), implying that these conclusions may also apply to lower temperature thermochronometers that are based on uranium decay, such as (U-Th)/He dating.
Jelescu, Ileana Ozana; Ciobanu, Luisa; Geffroy, Françoise; Marquet, Pierre; Le Bihan, Denis
2014-03-01
There is evidence that physiological or pathological cell swelling is associated with a decrease of the apparent diffusion coefficient (ADC) of water in tissues, as measured with MRI. However the mechanism remains unclear. Magnetic resonance microscopy, performed on small tissue samples, has the potential to distinguish effects occurring at cellular and tissue levels. A three-dimensional diffusion prepared fast imaging with steady-state free precession sequence for MR microscopy was implemented on a 17.2 T imaging system and used to investigate the effect of two biological challenges known to cause cell swelling, exposure to a hypotonic solution or to ouabain, on Aplysia nervous tissue. The ADC was measured inside isolated neuronal soma and in the region of cell bodies of the buccal ganglia. Both challenges resulted in an ADC increase inside isolated neuronal soma (+31 ± 24% and +30 ± 11%, respectively) and an ADC decrease at tissue level in the buccal ganglia (-12 ± 5% and -18 ± 8%, respectively). A scenario involving a layer of water molecules bound to the inflating cell membrane surface is proposed to reconcile this apparent discrepancy. Copyright © 2014 John Wiley & Sons, Ltd.
Özarslan, Evren; Koay, Cheng Guan; Shepherd, Timothy M; Komlosh, Michal E; İrfanoğlu, M Okan; Pierpaoli, Carlo; Basser, Peter J
2013-09-01
Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in "q-space," and the corresponding "mean apparent propagator (MAP)" describing molecular displacements in "r-space." We also define and map novel quantitative descriptors of diffusion that can be computed robustly using this MAP-MRI framework. We describe efficient analytical representation of the three-dimensional q-space MR signal in a series expansion of basis functions that accurately describes diffusion in many complex geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of higher order terms enables the reconstruction of the true average propagator whose projection onto the unit "displacement" sphere provides an orientational distribution function (ODF) that contains only the orientational dependence of the diffusion process. The representation characterizes novel features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion process. Other important measures this representation provides include the return-to-the-origin probability (RTOP), and its variants for diffusion in one- and two-dimensions-the return-to-the-plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero net displacement probabilities measure the mean compartment (pore) volume and cross-sectional area in distributions of isolated pores irrespective of the pore shape. MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space signal and transform it into diffusion propagators. Experiments on an excised marmoset brain specimen demonstrate that MAP-MRI provides several novel, quantifiable parameters that capture previously obscured intrinsic features of nervous tissue microstructure. This should prove helpful for investigating the functional organization of normal and pathologic nervous tissue. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2015-12-01
In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.
Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.
Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K
2011-03-01
Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways.
Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury
Outtrim, Joanne G.; Chatfield, Doris A.; Manktelow, Anne; Hutchinson, Peter J.; Coles, Jonathan P.; Williams, Guy B.; Sahakian, Barbara J.; Menon, David K.
2011-01-01
Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways. PMID:21310727
Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions
ERIC Educational Resources Information Center
Magdelenat, H.; And Others
1978-01-01
Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)
Carbonate clumped-isotope constraints on the burial and exhumation history of the Colorado Plateau
NASA Astrophysics Data System (ADS)
Ryb, U.; Lloyd, M. K.; Eiler, J. M.
2016-12-01
Reconstruction of the thermal history of rocks is key to study the geodynamic evolution of sedimentary basins. Carbonate clumped-isotope measurements of minerals formed or re-equilibrated at elevated temperatures can constrain thermal histories of rocks. Experimental constraints on solid state isotopic reordering in carbonates let us translate clumped-isotope measurements into quantitative statements about the thermal history, and thus burial and exhumation. We use this approach to constrain peak burial temperatures of Paleozoic rocks across the Colorado Plateau, sampled carbonate rocks from the southwestern Plateau margin and from borehole cores in the Plateau interior. We sub-sampled specific fabrics (fossils, cements, etc.), determined their calcite and dolomite proportions using XRD, and analyzed clumped-isotope compositions (reported as apparent temperatures using Stolper and Eiler's (2015) calibration) for pure calcite or dolomite samples (>97 wt.%). At the Plateau margin, calcite and dolomite apparent temperatures are 49-79°C and 67-97°C, respectively. The maximum apparent temperature constrains the minimum peak burial temperature. The distribution of calcite apparent temperatures independently constrains the maximum burial temperature as follows: If the "coldest" sample had an initial apparent temperature of 20°C, then its observed value can be explained by isotopic reordering to a peak temperature of 105-120°C. We therefore hypothesize peak temperature at the base of the Paleozoic was 97-120°C. At the Plateau interior, apparent temperatures of Mississippian calcite samples are depth-dependent: Samples cored from <2km depth have apparent temperatures of 54-68°C; similar samples from 3km depth have apparent temperatures of 105-165°C and a smaller variability between sub-samples, interpreted to result from isotopic reordering at >150°C. Assuming a surface temperature of 20°C and a thermal gradient of 25°C km-1, we calculate total overburden (above the Mississippian) and exhumation of 2.7-3.7 km and 1.8-2.8 km, respectively, at the Plateau margin; and total overburden and exhumation of 5.8-6.6 km, and 3-3.8 km, respectively, at the Plateau interior. Our findings are consistent with peak burial estimates based on thermochronometry and other proxies.
Malkyarenko, Dariya I; Chenevert, Thomas L
2014-12-01
To describe an efficient procedure to empirically characterize gradient nonlinearity and correct for the corresponding apparent diffusion coefficient (ADC) bias on a clinical magnetic resonance imaging (MRI) scanner. Spatial nonlinearity scalars for individual gradient coils along superior and right directions were estimated via diffusion measurements of an isotropicic e-water phantom. Digital nonlinearity model from an independent scanner, described in the literature, was rescaled by system-specific scalars to approximate 3D bias correction maps. Correction efficacy was assessed by comparison to unbiased ADC values measured at isocenter. Empirically estimated nonlinearity scalars were confirmed by geometric distortion measurements of a regular grid phantom. The applied nonlinearity correction for arbitrarily oriented diffusion gradients reduced ADC bias from 20% down to 2% at clinically relevant offsets both for isotropic and anisotropic media. Identical performance was achieved using either corrected diffusion-weighted imaging (DWI) intensities or corrected b-values for each direction in brain and ice-water. Direction-average trace image correction was adequate only for isotropic medium. Empiric scalar adjustment of an independent gradient nonlinearity model adequately described DWI bias for a clinical scanner. Observed efficiency of implemented ADC bias correction quantitatively agreed with previous theoretical predictions and numerical simulations. The described procedure provides an independent benchmark for nonlinearity bias correction of clinical MRI scanners.
Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.
2015-01-01
Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607
Correlation time and diffusion coefficient imaging: application to a granular flow system.
Caprihan, A; Seymour, J D
2000-05-01
A parametric method for spatially resolved measurements for velocity autocorrelation functions, R(u)(tau) = , expressed as a sum of exponentials, is presented. The method is applied to a granular flow system of 2-mm oil-filled spheres rotated in a half-filled horizontal cylinder, which is an Ornstein-Uhlenbeck process with velocity autocorrelation function R(u)(tau) = e(- ||tau ||/tau(c)), where tau(c) is the correlation time and D = tau(c) is the diffusion coefficient. The pulsed-field-gradient NMR method consists of applying three different gradient pulse sequences of varying motion sensitivity to distinguish the range of correlation times present for particle motion. Time-dependent apparent diffusion coefficients are measured for these three sequences and tau(c) and D are then calculated from the apparent diffusion coefficient images. For the cylinder rotation rate of 2.3 rad/s, the axial diffusion coefficient at the top center of the free surface was 5.5 x 10(-6) m(2)/s, the correlation time was 3 ms, and the velocity fluctuation or granular temperature was 1.8 x 10(-3) m(2)/s(2). This method is also applicable to study transport in systems involving turbulence and porous media flows. Copyright 2000 Academic Press.
Sensitivity study on durability variables of marine concrete structures
NASA Astrophysics Data System (ADS)
Zhou, Xin'gang; Li, Kefei
2013-06-01
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
Brain lesions in septic shock: a magnetic resonance imaging study.
Sharshar, Tarek; Carlier, Robert; Bernard, Francis; Guidoux, Céline; Brouland, Jean-Philippe; Nardi, Olivier; de la Grandmaison, Geoffroy Lorin; Aboab, Jérôme; Gray, Françoise; Menon, David; Annane, Djillali
2007-05-01
Understanding of sepsis-induced brain dysfunction remains poor, and relies mainly on data from animals or post-mortem studies in patients. The current study provided findings from magnetic resonance imaging of the brain in septic shock. Nine patients with septic shock and brain dysfunction [7 women, median age 63 years (interquartile range 61-79 years), SAPS II: 48 (44-56), SOFA: 8 (6-10)] underwent brain magnetic resonance imaging including gradient echo T1-weighted, fluid-attenuated inversion recovery (FLAIR), T2-weighted and diffusion isotropic images, and mapping of apparent diffusion coefficient. Brain imaging was normal in two patients, showed multiple ischaemic strokes in two patients, and in the remaining patients showed white matter lesions at the level of the centrum semiovale, predominating around Virchow-Robin spaces, ranging from small multiple areas to diffuse lesions, and characterised by hyperintensity on FLAIR images. The main lesions were also characterised by reduced signal on diffusion isotropic images and increased apparent diffusion coefficient. The lesions of the white matter worsened with increasing duration of shock and were correlated with Glasgow Outcome Score. This preliminary study showed that sepsis-induced brain lesions can be documented by magnetic resonance imaging. These lesions predominated in the white matter, suggesting increased blood-brain barrier permeability, and were associated with poor outcome.
Chen, Tai-Yuan; Wu, Te-Chang; Tsui, Yu-Kun; Chen, Hou-Hsun; Lin, Chien-Jen; Lee, Huey-Jen; Wu, Tai-Ching
2015-01-01
Though diffusion-weighted (DW) magnetic resonance imaging (MRI) is useful for diagnosing many pathologies, its use in infectious spondylodiscitis is unclear. We aimed to evaluate the use of DW MRI and apparent diffusion coefficient (ADC) mapping for the diagnosis of infectious spondylodiscitis. In this retrospective study, 17 patients with confirmed infectious spondylodiscitis were matched by age and level of infected disc with 17 patients with degenerative disc disease (DDD) and 17 healthy controls. All patients received conventional MRI and diffusion-weighted imaging (DWI) in the same imaging session. ADC values of the 3 groups of patients were compared. The mean age of each group was 67.4 ± 11.6 years. The mean ADCs of the normal control, DDD, and infectious spondylodiscitis groups were 1.76 ± 0.19 × 10(-3) , 1.12 ± 0.22 × 10(-3) , and 1.27 ± 0.38 × 10(-3) mm2 /second, respectively. The ADCs of the DDD and infectious spondylodiscitis groups were both significantly lower than that of the normal control group (both, P < 0.001). These data suggest that DWI/ADC MRI may be useful in the early diagnosis of infectious spondylodiscitis. © 2014 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.
Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites.
Koelsch, Bertram L; Reed, Galen D; Keshari, Kayvan R; Chaumeil, Myriam M; Bok, Robert; Ronen, Sabrina M; Vigneron, Daniel B; Kurhanewicz, John; Larson, Peder E Z
2015-09-01
Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential. © 2014 Wiley Periodicals, Inc.
Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L
2016-03-01
Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.
Levy, Antonin; Medjhoul, Aïcha; Caramella, Caroline; Zareski, Elise; Berges, Oscar; Chargari, Cyrus; Boulet, Bérénice; Bidault, François; Dromain, Clarisse; Balleyguier, Corinne
2011-05-01
Magnetic resonance imaging (MRI) remains the standard modality for the local staging of gynecological malignancies but it has several limitations, particularly for lymph node staging or evaluating peritoneal carcinomatosis. Consequently, there has been a growing interest in functional imaging modalities. Based on molecular diffusion, diffusion-weighted imaging (DWI) is a unique, noninvasive modality that provides excellent tissue contrast and was shown to improve the radiological diagnosis of malignant tumors. Using quantitative apparent diffusion coefficient (ADC) measurement of DWI provides a new tool for better distinguishing malignant tissues from benign tumors. The aim of the present review is to report on the results of DWI for the assessment of patients with gynecological malignancies. An analysis of the literature suggests that DWI studies would improve the diagnosis of cervical and endometrial tumors. It may also improve the assessment of tumor extension in patients with peritoneal carcinomatosis from gynecological malignancies. However, since the signal intensity of some cancers can range from high intensity to low intensity, a degree of uncertainty was demonstrated due to the proximity of the normal uterine myometrium and ovaries. Interestingly, there is also evidence that ADC might improve the follow-up and monitoring of patients who receive anticancer therapies, including chemotherapy or radiation therapy. Copyright © 2011 Wiley-Liss, Inc.
Thermal removal from near-infrared imaging spectroscopy data of the Moon
Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Petro, N.E.
2011-01-01
In the near-infrared from about 2 ??m to beyond 3 ??m, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 ??m pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon. Copyright ?? 2011 by the American Geophysical Union.
Thermal removal from near-infrared imaging spectroscopy data of the Moon
Clark, Roger N.; Pieters, Carle M.; Green, Robert O.; Boardman, J.W.; Petro, Noah E.
2011-01-01
In the near-infrared from about 2 μm to beyond 3 μm, the light from the Moon is a combination of reflected sunlight and emitted thermal emission. There are multiple complexities in separating the two signals, including knowledge of the local solar incidence angle due to topography, phase angle dependencies, emissivity, and instrument calibration. Thermal emission adds to apparent reflectance, and because the emission's contribution increases over the reflected sunlight with increasing wavelength, absorption bands in the lunar reflectance spectra can be modified. In particular, the shape of the 2 μm pyroxene band can be distorted by thermal emission, changing spectrally determined pyroxene composition and abundance. Because of the thermal emission contribution, water and hydroxyl absorptions are reduced in strength, lowering apparent abundances. It is important to quantify and remove the thermal emission for these reasons. We developed a method for deriving the temperature and emissivity from spectra of the lunar surface and removing the thermal emission in the near infrared. The method is fast enough that it can be applied to imaging spectroscopy data on the Moon.
Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation
NASA Astrophysics Data System (ADS)
Tsuji, Tetsuro; Saita, Sho; Kawano, Satoyuki
2018-03-01
Brownian motion of a spherical particle induced by the interaction with surrounding molecules is considered. If the particle is larger than the molecules and the temperature of surrounding media is spatially non-uniform, the interaction between an individual molecule and the particle is also position-dependent. That is, the particle is subject to inhomogeneous thermal fluctuation. In this paper, we investigate the contribution of the inhomogeneous thermal fluctuation to the thermophoresis, i.e., the Soret coefficient or thermal diffusion factor. The problem is simplified by assuming a hard-sphere potential between the particle and the surrounding molecules and is investigated using the kinetic theory, namely, we consider a linear Boltzmann-type equation for the velocity distribution function of the particle. Using the perturbation analysis with respect to the square root of mass ratio between the molecule and the particle, the drift-diffusion equation of the particle is derived. It is found that the Soret coefficient, or thermal diffusion factor, is dependent on the mass ratio and the excluded volume of the particle. In particular, when the ratio of the mass density of the particle to that of the surrounding media decreases, the Soret coefficient also decreases and may take negative value. The present result well describes the mass-dependency of thermal diffusion factor obtained by the molecular dynamics simulation carried out in an existing study and the one in the present study, where soft potentials of Lennard-Jones-type are used instead of hard-sphere potential.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
2017-07-01
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
NASA Technical Reports Server (NTRS)
Donn, B.; Khanna, R. K.
1980-01-01
The visible and infrared spectra and thermal behavior of the bis-pyridal-magnesium-tetrabenz-porphyrin molecule proposed as the carrier of the diffuse interstellar bands were measured. Of the six band coincidences reported by Johnson (1977), only one, 4430 A, occurs in these experiments. This coincidence requires a special environment, not likely to occur in interstellar space but the infrared spectrum does not support Johnson's vibrational scheme. These spectroscopic and thermal measurements contradict the hypothesis that this molecule causes the diffuse bands.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
2017-07-05
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Ultrafast demagnetization by hot electrons: Diffusion or super-diffusion?
Salvatella, G; Gort, R; Bühlmann, K; Däster, S; Vaterlaus, A; Acremann, Y
2016-09-01
Ultrafast demagnetization of ferromagnetic metals can be achieved by a heat pulse propagating in the electron gas of a non-magnetic metal layer, which absorbs a pump laser pulse. Demagnetization by electronic heating is investigated on samples with different thicknesses of the absorber layer on nickel. This allows us to separate the contribution of thermalized hot electrons compared to non-thermal electrons. An analytical model describes the demagnetization amplitude as a function of the absorber thickness. The observed change of demagnetization time can be reproduced by diffusive heat transport through the absorber layer.
Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme
The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.
Glass diffusion source for constraining BSF region of a solar cell
Lesk, I.A.; Pryor, R.A.; Coleman, M.G.
1982-08-27
The present invention is directed to a method of fabricating a solar cell comprising simultaneous diffusion of the p and n dopant materials into the solar cell substrate. The simultaneous diffusion process is preceded by deposition of a capping layer impervious to doping by thermal diffusion processes.
NASA Astrophysics Data System (ADS)
Danilova-Tret'yak, S. M.; Evseeva, L. E.; Tanaeva, S. A.
2014-11-01
Experimental investigations of the thermophysical properties of traditional and modified asbestos-reinforced laminates depending on the type of their carbon nanofiller have been carried out in the range of temperatures from -150 to 150°C. It has been shown that the largest (nearly twofold) increase in the thermal-conductivity and thermal-diffusivity coefficients of the indicated materials is observed when they are modified with a small-scale fraction of a nanofiller (carbon nanotubes). The specific heats of the modified and traditional asbestos-reinforced laminates turned out to be identical, in practice, within the measurement error.
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.; ...
2018-01-04
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Muralidharan, Govindarajan; Leonard, Donovan N.
In this paper, multilayer, graded ceramic/metal coatings were prepared by an air plasma spray method on Ti-6Al-4V, 4140 steel and graphite substrates. The coatings were designed to provide thermal barriers for diesel engine pistons to operate at higher temperatures with improved thermal efficiency and cleaner emissions. A systematic, progressive variation in the mixture of yttria-stabilized zirconia and bondcoat alloys (NiCoCrAlYHfSi) was designed to provide better thermal expansion match with the substrate and to improve thermal shock resistance and cycle life. Heat transfer through the layers was evaluated by a flash diffusivity technique based on a model of one-dimensional heat flow.more » The aging effect of the as-sprayed coatings was captured during diffusivity measurements, which included one heating and cooling cycle. The hysteresis of thermal diffusivity due to aging was not observed after 100-h annealing at 800 °C. The measurements of coatings on substrate and freestanding coatings allowed the influence of interface resistance to be evaluated. Finally, the microstructure of the multilayer coating was examined using scanning electron microscope and electron probe microanalysis.« less
Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.
Barako, Michael T; Sood, Aditya; Zhang, Chi; Wang, Junjie; Kodama, Takashi; Asheghi, Mehdi; Zheng, Xiaolin; Braun, Paul V; Goodson, Kenneth E
2016-04-13
Porous metals are used in interfacial transport applications that leverage the combination of electrical and/or thermal conductivity and the large available surface area. As nanomaterials push toward smaller pore sizes to increase the total surface area and reduce diffusion length scales, electron conduction within the metal scaffold becomes suppressed due to increased surface scattering. Here we observe the transition from diffusive to quasi-ballistic thermal conduction using metal inverse opals (IOs), which are metal films that contain a periodic arrangement of interconnected spherical pores. As the material dimensions are reduced from ∼230 nm to ∼23 nm, the thermal conductivity of copper IOs is reduced by more than 57% due to the increase in surface scattering. In contrast, nickel IOs exhibit diffusive-like conduction and have a constant thermal conductivity over this size regime. The quasi-ballistic nature of electron transport at these length scales is modeled considering the inverse opal geometry, surface scattering, and grain boundaries. Understanding the characteristics of electron conduction at the nanoscale is essential to minimizing the total resistance of porous metals for interfacial transport applications, such as the total electrical resistance of battery electrodes and the total thermal resistance of microscale heat exchangers.
NASA Astrophysics Data System (ADS)
Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad
2017-12-01
This article offers a study on estimation of heat transfer parameters (coefficient and thermal diffusivity) using analytical solutions and experimental data for regular geometric shapes (such as infinite slab, infinite cylinder, and sphere). Analytical solutions have a broad use in experimentally determining these parameters. Here, the method of Finite Integral Transform (FIT) was used for solutions of governing differential equations. The temperature change at centerline location of regular shapes was recorded to determine both the thermal diffusivity and heat transfer coefficient. Aluminum and brass were used for testing. Experiments were performed for different conditions such as in a highly agitated water medium ( T = 52 °C) and in air medium ( T = 25 °C). Then, with the known slope of the temperature ratio vs. time curve and thickness of slab or radius of the cylindrical or spherical materials, thermal diffusivity value and heat transfer coefficient may be determined. According to the method presented in this study, the estimated of thermal diffusivity of aluminum and brass is 8.395 × 10-5 and 3.42 × 10-5 for a slab, 8.367 × 10-5 and 3.41 × 10-5 for a cylindrical rod and 8.385 × 10-5 and 3.40 × 10-5 m2/s for a spherical shape, respectively. The results showed there is close agreement between the values estimated here and those already published in the literature. The TAAD% is 0.42 and 0.39 for thermal diffusivity of aluminum and brass, respectively.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
NASA Technical Reports Server (NTRS)
Castillo, J. L.; Garcia-Ybarra, P. L.; Rosner, D. E.
1991-01-01
The stability of solid planar growth from a binary vapor phase with a condensing species dilute in a carrier gas is examined when the ratio of depositing to carrier species molecular mass is large and the main diffusive transport mechanism is thermal diffusion. It is shown that a deformation of the solid-gas interface induces a deformation of the gas phase isotherms that increases the thermal gradients and thereby the local mass deposition rate at the crests and reduces them at the valleys. The initial surface deformation is enhanced by the modified deposition rates in the absence of appreciable Fick/Brownian diffusion and interfacial energy effects.
METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT
Dole, M.
1959-09-22
An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.
Crystallization, flow and thermal histories of lunar and terrestrial compositions
NASA Technical Reports Server (NTRS)
Uhlmann, D. R.
1979-01-01
Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines.
NASA Astrophysics Data System (ADS)
Cervantes-Espinosa, L. M.; Castillo-Alvarado, F. de L.; Lara-Hernández, G.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.; Valcárcel, J. P.; García-Quiroz, A.
2012-11-01
Thermal properties of liquids used in the automobile industry such as engine oil, antifreeze, and a liquid for windshield wipers were obtained using the photopyroelectric (PPE) technique. The inverse PPE configuration was used in order to obtain the thermal effusivity of the liquid samples. The theoretical equation for the PPE signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. Also, the back PPE configuration was used to obtain the thermal diffusivity of these liquids; this thermal parameter was obtained by fitting the theoretical equation for this configuration, as a function of the sample thickness (called the thermal wave resonator cavity), to the experimental data. All measurements were done at room temperature. A complete thermal characterization of these liquids used in the automobile industry was achieved by the relationship between the obtained thermal diffusivities and thermal effusivities with their thermal conductivities and volumetric heat capacities. The obtained results are compared with the thermal properties of similar liquids.
Performance benefits from pulsed laser heating in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Xu, B. X.; Cen, Z. H.; Goh, J. H.; Li, J. M.; Toh, Y. T.; Zhang, J.; Ye, K. D.; Quan, C. G.
2014-05-01
Smaller cross track thermal spot size and larger down track thermal gradient are desired for increasing the density of heat assisted magnetic recording. Both parameters are affected significantly by the thermal energy accumulation and diffusion in the recording media. Pulsed laser heating is one of the ways to reduce the thermal diffusion. In this paper, we describe the benefits from the pulsed laser heating such as the dependences of the cross track thermal width, down track thermal gradient, the required laser pulse/average powers, and the transducer temperature rise on the laser pulse width at different media thermal properties. The results indicate that as the pulse width decreases, the thermal width decreases, the thermal gradient increases, the required pulse power increases and the average power decreases. For shorter pulse heating, the effects of the medium thermal properties on the thermal performances become weaker. This can greatly relax the required thermal properties of the media. The results also show that the pulsed laser heating can effectively reduce the transducer temperature rise and allow the transducer to reach its "dynamically" stable temperature more quickly.
NASA Astrophysics Data System (ADS)
Dai, Gaole; Shang, Jin; Huang, Jiping
2018-02-01
Heat can transfer via thermal conduction, thermal radiation, and thermal convection. All the existing theories of transformation thermotics and optics can treat thermal conduction and thermal radiation, respectively. Unfortunately, thermal convection has seldom been touched in transformation theories due to the lack of a suitable theory, thus limiting applications associated with heat transfer through fluids (liquid or gas). Here, we develop a theory of transformation thermal convection by considering the convection-diffusion equation, the equation of continuity, and the Darcy law. By introducing porous media, we get a set of equations keeping their forms under coordinate transformation. As model applications, the theory helps to show the effects of cloaking, concentrating, and camouflage. Our finite-element simulations confirm the theoretical findings. This work offers a transformation theory for thermal convection, thus revealing novel behaviors associated with potential applications; it not only provides different hints on how to control heat transfer by combining thermal conduction, thermal convection, and thermal radiation, but also benefits mass diffusion and other related fields that contain a set of equations and need to transform velocities at the same time.
NASA Astrophysics Data System (ADS)
Prasher, Ravi
2006-09-01
Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Mameri, A.; Tabet, F.; Hadef, A.
2017-08-01
This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.
NASA Astrophysics Data System (ADS)
Pettersen, Sigurd R.; Nagao, Shijo; Kristiansen, Helge; Helland, Susanne; Njagi, John; Suganuma, Katsuaki; Zhang, Zhiliang; He, Jianying
2017-01-01
The flash diffusivity method, also known as laser flash analysis (LFA), is commonly used to obtain the thermal diffusivity (α) and thermal conductivity (κ) of materials, due to its relative simplicity, rapid measurements, small sample size requirement, and standardized commercially available instruments. In this work, an epoxy adhesive was filled with a large fraction of homogeneous micron-sized polymethylmethacrylate spheres coated with thin silver films, such that a percolating metallic network that dominated the electric and thermal transport formed through the polymer at <3 vol. % silver. Specific heat capacity (Cp) was measured from the LFA measurements by a comparative method and from the total and reversible heat flow signals of modulated differential scanning calorimetry (MDSC). κ was estimated as the product of α, Cp, and density (ρ) and was found to vary significantly with the method to find Cp. The electron contribution was found from the electrical conductivity by the Wiedemann-Franz law and was used to elucidate the thermal transport mechanisms in the composite. A theoretical background for the various methods is included.
Paradoxes of Thermal Radiation
ERIC Educational Resources Information Center
Besson, U.
2009-01-01
This paper presents an analysis of the thermal behaviour of objects exposed to a solar-type flux of thermal radiation. It aims to clarify certain apparent inconsistencies between theory and observation, and to give a detailed exposition of some critical points that physics textbooks usually treat in an insufficient or incorrect way. In particular,…
The feasibility of thermal and compositional convection in Earth's inner core
NASA Astrophysics Data System (ADS)
Lythgoe, Karen H.; Rudge, John F.; Neufeld, Jerome A.; Deuss, Arwen
2015-05-01
Inner core convection, and the corresponding variations in grain size and alignment, has been proposed to explain the complex seismic structure of the inner core, including its anisotropy, lateral variations and the F-layer at the base of the outer core. We develop a parametrized convection model to investigate the possibility of convection in the inner core, focusing on the dominance of the plume mode of convection versus the translation mode. We investigate thermal and compositional convection separately so as to study the end-members of the system. In the thermal case the dominant mode of convection is strongly dependent on the viscosity of the inner core, the magnitude of which is poorly constrained. Furthermore recent estimates of a large core thermal conductivity result in stable thermal stratification, hindering convection. However, an unstable density stratification may arise due to the pressure dependant partition coefficient of certain light elements. We show that this unstable stratification leads to compositionally driven convection, and that inner core translation is likely to be the dominant convective mode due to the low compositional diffusivity. The style of convection resulting from a combination of both thermal and compositional effects is not easy to understand. For reasonable parameter estimates, the stabilizing thermal buoyancy is greater than the destabilizing compositional buoyancy. However we anticipate complex double diffusive processes to occur given the very different thermal and compositional diffusivities.
The Feasibility of Thermal and Compositional Convection in Earth's Inner Core
NASA Astrophysics Data System (ADS)
Lythgoe, K.; Rudge, J. F.; Neufeld, J. A.; Deuss, A. F.
2014-12-01
Inner core convection, and the corresponding variations in grain size and alignment, has been proposed to explain the complex seismic structure of the inner core, including its anisotropy, lateral variations and the F-layer at the base of the outer core. We develop a parameterised convection model to investigate the possibility of convection in the inner core, focusing on the dominance of the plume mode of convection versus the translation mode. We investigate thermal and compositional convection separately so as to study the end-members of the system. In the thermal case the dominant mode of convection is strongly dependent on the viscosity of the inner core, the magnitude of which is poorly constrained. Furthermore recent estimates of a large core thermal conductivity result in stable thermal stratification, hindering convection. However, an unstable density stratification may arise due to the pressure dependant partition coefficient of certain light elements. We show that this unstable stratification leads to compositionally driven convection, and that inner core translation is likely to be the dominant convective mode due to the low compositional diffusivity. The style of convection resulting from a combination of both thermal and compositional effects is not easy to understand. The stabilising thermal buoyancy is greater than the destabilising compositional buoyancy, however we anticipate complex double diffusive processes to occur given the very different thermal and compositional diffusivities and more work is needed to understand these processes.
NASA Astrophysics Data System (ADS)
Koca, H. D.; Evgin, T.; Horny, N.; Chirtoc, M.; Turgut, A.; Tavman, I. H.
2017-12-01
In this study, thermal properties of high-density polyethylene (HDPE) filled with nanosized Al particles (80 nm) were investigated. Samples were prepared using melt mixing method up to filler volume fraction of 29 %, followed by compression molding. By using modulated photothermal radiometry (PTR) technique, thermal diffusivity and thermal effusivity were obtained. The effective thermal conductivity of nanocomposites was calculated directly from PTR measurements and from the measurements of density, specific heat capacity (by differential scanning calorimetry) and thermal diffusivity (obtained from PTR signal amplitude and phase). It is concluded that the thermal conductivity of HDPE composites increases with increasing Al fraction and the highest effective thermal conductivity enhancement of 205 % is achieved at a filler volume fraction of 29 %. The obtained results were compared with the theoretical models and experimental data given in the literature. The results demonstrate that Agari and Uno, and Cheng and Vachon models can predict well the thermal conductivity of HDPE/Al nanocomposites in the whole range of Al fractions.
Thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x solid solutions
NASA Astrophysics Data System (ADS)
Nishi, Tsuyoshi; Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo
2013-09-01
The authors prepared the sintered sample of (Np0.20Pu0.50Am0.25Cm0.05)O2-x (2 - x = 1.98, 1.96) solid solution and evaluated the dependence of the thermal conductivity on storage time and temperature. The heat capacity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was measured between 324 and 1082 K by a drop calorimetry. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was measured when the storage time became 48, 216, 720 and 1584 h and that of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 was measured when the storage time became 0,528 and 1386 h. In this study, the latter sample was annealed at 1423 K in vacuum with background pressure of less than 2.0 × 10-4 Pa just after the measurement on the storage time, 1386 h. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 just after annealing returned to the values of the storage time, 0 h. This result reveals the thermal recovery behavior by annealing. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x was determined from the measured thermal diffusivity, heat capacity and bulk density. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x exponentially decreased with increasing storage time. This result suggested that the decrease of the thermal conductivity was attributed to the accumulation of lattice defects caused by self-irradiation. The heat capacity of (Np0.20Pu0.50Am0.25Cm0.05)O1.98 was expressed by Cp (J mol-1 K-1) = 1.7314 × 10-2T + 75.720 - 1.0579 × 106 T-2. The heat capacity at higher than 473 K was almost close to those of stoichiometric actinide dioxide within at least ±5%. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x decreased with increasing storage time in the temperature range from 473 to 573 K. The decrease of the thermal diffusivity was attributed by the lattice defect rapidly accumulated by the α-decay of 244Cm. The thermal diffusivity of (Np0.20Pu0.50Am0.25Cm0.05)O1.96 just after annealing returned to the values of the storage time, 0 h. This result reveals the thermal recovery behavior by annealing. The thermal conductivity of (Np0.20Pu0.50Am0.25Cm0.05)O2-x was smaller than those of PuO2 and (Pu0.91Cm0.09)O2 mainly because of the oxygen vacancies as is seen other actinide dioxide, such as mixed oxide (MOX) fuels.
Kleinnijenhuis, Michiel; Mollink, Jeroen; Lam, Wilfred W; Kinchesh, Paul; Khrapitchev, Alexandre A; Smart, Sean C; Jbabdi, Saad; Miller, Karla L
2018-02-01
To demonstrate how reference data affect the quantification of the apparent diffusion coefficient (ADC) in long diffusion time measurements with diffusion-weighted stimulated echo acquisition mode (DW-STEAM) measurements, and to present a modification to avoid contribution from crusher gradients in DW-STEAM. For DW-STEAM, reference measurements at long diffusion times have significant b 0 value, because b = 0 cannot be achieved in practice as a result of the need for signal spoiling. Two strategies for acquiring reference data over a range of diffusion times were considered: constant diffusion weighting (fixed-b 0 ) and constant gradient area (fixed-q 0 ). Fixed-b 0 and fixed-q 0 were compared using signal calculations for systems with one and two diffusion coefficients, and experimentally using data from postmortem human corpus callosum samples. Calculations of biexponential diffusion decay show that the ADC is underestimated for reference images with b > 0, which can induce an apparent time-dependence for fixed-q 0 . Restricted systems were also found to be affected. Experimentally, the exaggeration of the diffusion time-dependent effect under fixed-q 0 versus fixed-b 0 was in a range predicted theoretically, accounting for 62% (longitudinal) and 35% (radial) of the time dependence observed in white matter. Variation in the b-value of reference measurements in DW-STEAM can induce artificial diffusion time dependence in ADC, even in the absence of restriction. Magn Reson Med 79:952-959, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
A New Regime of Nanoscale Thermal Transport: Collective Diffusion Increases Dissipation Efficiency
2015-04-21
including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics , and nanoparticle-mediated...applications including thermoelectrics for energyharvesting, nanoparticle-mediated thermal therapy, nano- enhanced photovoltaics , and thermal... thermoelectric devices, nanoparticle- mediated thermal therapies, and nanoenhanced photovoltaics for improving clean-energy technologies. Author contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
The influence of Dupree diffusivity on the occurrence scattering time advance for the electron-ion collision is investigated in turbulent plasmas. The second-order eikonal method and the effective Dupree potential term associated with the plasma turbulence are employed to obtain the occurrence scattering time as a function of the diffusion coefficient, impact parameter, collision energy, thermal energy, and Debye length. The result shows that the occurrence scattering time advance decreases with an increase of the Dupree diffusivity. Hence, we have found that the influence of plasma turbulence diminishes the occurrence time advance in forward electron-ion collisions in thermal turbulent plasmas. Themore » occurrence time advance shows that the propensity of the occurrence time advance increases with increasing scattering angle. It is also found that the effect of turbulence due to the Dupree diffusivity on the occurrence scattering time advance decreases with an increase of the thermal energy. In addition, the variation of the plasma turbulence on the occurrence scattering time advance due to the plasma parameters is also discussed.« less
The Electron Diffusion Region: Forces and Currents
NASA Technical Reports Server (NTRS)
Hesse, Michael
2008-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertia1 effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.
The Electron Diffusion Region: Forces and Currents
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.
Improved thermal stability of TbF3-coated sintered Nd-Fe-B magnets by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Cao, X. J.; Chen, L.; Guo, S.; Di, J. H.; Ding, G. F.; Chen, R. J.; Yan, A. R.; Chen, K. Z.
2018-05-01
Using electrophoretic deposition (EPD) method, the impact of TbF3 diffusion on the coercivity, microstructure and thermal stability of sintered Nd-Fe-B magnets with different rare earth (RE) content was investigated. In the diffused magnets with the RE content of 34 wt.%, the maximum coercivity about 28.12 kOe with less than 1.44 wt.% Tb was achieved, the coercivity temperature coefficient (β) was improved to -0.50 %/°C from -0.58 %/°C within the temperature interval 25-160 °C, and the maximum operating temperature further increased to about 160 °C. It suggested that TbF3 diffused magnets had much superior thermal stability than the annealed samples. This was attributed to the formation of the Tb-rich (Nd, Tb)2Fe14B phase in the outer region of the matrix grains and the improved Nd-rich grain boundary phase after TbF3 diffusion.
Berger, Terry A
2016-04-29
The concept of peak fidelity was shown to be helpful in modeling tubing and detector cell dimensions. Connection tubing and flow cell variances were modeled to determine appropriate internal ID's, lengths, and volumes. A low dispersion plumbing configuration, based on these calculations, was assembled to replace the standard plumbing and produced the reported results. The modifications made were straightforward using commercially available parts. The full theoretical efficiency of a 3×100 mm column packed with 1.8 μm totally porous particles was achieved for the first time in supercritical fluid chromatography (SFC). Peak fidelity of >0.95 was maintained to below k=2. A reduced plate height as low as 1.87 was measured. Thus, true "ultra high performance" SFC was achieved, with the results a major improvement from all previous SFC reports. Since there were no efficiency losses, none could be attributed to thermal gradients caused by the expansion of the fluid over large pressure drops, under the conditions used. Similarly, changes in diffusion coefficients caused by significant decreases in density during expansion are apparently balanced by the increase in linear velocity, keeping the ratio between the diffusion coefficient and the linear velocity a constant. Changing modifier concentration to change retention was shown to not be a significant problem. All these issues have been a concern in the past. Diffusion coefficients, and viscosity data needs to be collected at high pressures before the actual limits of SFC can be discovered. Copyright © 2016 Elsevier B.V. All rights reserved.
Step - wise transient method - Influence of heat source inertia
NASA Astrophysics Data System (ADS)
Malinarič, Svetozár; Dieška, Peter
2016-07-01
Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.
Note: Focus error detection device for thermal expansion-recovery microscopy (ThERM).
Domené, E A; Martínez, O E
2013-01-01
An innovative focus error detection method is presented that is only sensitive to surface curvature variations, canceling both thermoreflectance and photodefelection effects. The detection scheme consists of an astigmatic probe laser and a four-quadrant detector. Nonlinear curve fitting of the defocusing signal allows the retrieval of a cutoff frequency, which only depends on the thermal diffusivity of the sample and the pump beam size. Therefore, a straightforward retrieval of the thermal diffusivity of the sample is possible with microscopic lateral resolution and high axial resolution (~100 pm).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifuentes, A.; Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería, Universidad del País Vasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao; Alvarado, S.
Here, we present a novel application of the shadowgraph technique for obtaining the thermal diffusivity of an opaque solid sample, inspired by the orthogonal skimming photothermal beam deflection technique. This new variant utilizes the shadow projected by the sample when put against a collimated light source. The sample is then heated periodically by another light beam, giving rise to thermal waves, which propagate across it and through its surroundings. Changes in the refractive index of the surrounding media due to the heating distort the shadow. This phenomenon is recorded and lock-in amplified in order to determine the sample's thermal diffusivity.
Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices
NASA Technical Reports Server (NTRS)
Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.
2014-01-01
We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.
An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion
NASA Technical Reports Server (NTRS)
Liu, Mian; Chase, Clement G.
1990-01-01
An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.
Guan, Yue; Shi, Hua; Chen, Ying; Liu, Song; Li, Weifeng; Jiang, Zhuoran; Wang, Huanhuan; He, Jian; Zhou, Zhengyang; Ge, Yun
2016-01-01
The aim of this study was to explore the application of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) values of cervical cancer. A total of 54 women (mean age, 53 years) with cervical cancers underwent 3-T diffusion-weighted imaging with b values of 0 and 800 s/mm prospectively. Whole-lesion histogram analysis of ADC values was performed. Paired sample t test was used to compare differences in ADC histogram parameters between cervical cancers and normal cervical tissues. Receiver operating characteristic curves were constructed to identify the optimal threshold of each parameter. All histogram parameters in this study including ADCmean, ADCmin, ADC10%-ADC90%, mode, skewness, and kurtosis of cervical cancers were significantly lower than those of normal cervical tissues (all P < 0.0001). ADC90% had the largest area under receiver operating characteristic curve of 0.996. Whole-lesion histogram analysis of ADC maps is useful in the assessment of cervical cancer.
Kinetics and mass-transfer phenomena in anaerobic granular sludge.
Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R
2001-04-20
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.
Thermal properties of nonstoichiometry uranium dioxide
NASA Astrophysics Data System (ADS)
Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.
2016-04-01
In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.
Miquelini, L A; Pérez Akly, M S; Funes, J A; Besada, C H
2016-01-01
To determine whether there are significant differences in the apparent diffusion coefficient (ADC) between the apparently normal peritumor white matter surrounding glioblastomas and that surrounding brain metastases. We retrospectively reviewed 42 patients with histologically confirmed glioblastomas and 42 patients with a single cerebral metastasis. We measured the signal intensity in the apparently normal peritumor white matter and in the abnormal peritumor white matter on the ADC maps. We used mean ADC values in the contralateral occipital white matter as a reference from which to design normalized ADC indices. We compared mean values between the two tumor types. We calculated the area under the receiver operator characteristic curve and estimated the sensitivity and specificity of the measurements taken. Supratentorial lesions and compromise of the corpus callosum were more common in patients with glioblastoma than in patients with brain metastases. The maximum diameter of the enhanced area after injection of a contrast agent was greater in the glioblastomas (p<0.001). The minimum ADC value measured in the apparently normal peritumor white matter was higher for the glioblastomas than for the metastases (p=0.002). Significant differences in the ADC index were found only for the minimum ADC value in apparently normal peritumor white matter. The sensitivity and specificity were less than 70% for all variables analyzed. There are differences in the ADC values of apparently normal peritumor white matter between glioblastomas and cerebral metastases, but the magnitude of these differences is slight and the application of these differences in clinical practice is still limited. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Thermophysical properties study of micro/nanoscale materials
NASA Astrophysics Data System (ADS)
Feng, Xuhui
Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.
Transport properties of partially ionized and unmagnetized plasmas.
Magin, Thierry E; Degrez, Gérard
2004-10-01
This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are readily usable for practical applications in fluid dynamics.
Apparent diffusion coefficient measurement in a moving phantom simulating linear respiratory motion.
Kwee, Thomas C; Takahara, Taro; Muro, Isao; Van Cauteren, Marc; Imai, Yutaka; Nievelstein, Rutger A J; Mali, Willem P T M; Luijten, Peter R
2010-10-01
The aim of this study was to examine the effect of simulated linear respiratory motion on apparent diffusion coefficient (ADC) measurements. Six rectangular test tubes (14 × 92 mm) filled with either water, tomato ketchup, or mayonnaise were positioned in a box containing agarose gel. This box was connected to a double-acting pneumatic cylinder, capable of inducing periodic linear motion in the long-axis direction of the magnetic bore (23-mm stroke). Diffusion-weighted magnetic resonance imaging was performed for both the static and moving phantoms, and ADC measurements were made in the six test tubes in both situations. In the three test tubes whose long axes were parallel to the direction of motion, ADCs agreed well between the moving and static phantom situations. However, in two test tubes that were filled with fluids that had a considerably lower diffusion coefficient than the surrounding agarose gel, and whose long axes were perpendicular to the direction of motion, the ADCs agreed poorly between the moving and static phantom situations. ADC measurements of large homogeneous structures are not affected by linear respiratory motion. However, ADC measurements of inhomogeneous or small structures are affected by linear respiratory motion due to partial volume effects.
Terada, Yukinori; Toda, Hiroki; Okumura, Ryosuke; Ikeda, Naokado; Yuba, Yoshiaki; Katayama, Toshiro; Iwasaki, Koichi
2018-03-01
Microcystic meningioma, a rare meningioma subtype, can present diagnostic difficulty. We aimed to investigate the historadiological properties of microcystic meningioma using conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) analysis. We retrospectively analyzed conventional MRI and DWI results of six microcystic meningioma cases by examining their appearance and determining their apparent diffusion coefficient (ADC) values. The ADC values of the intratumoral components were normalized with ADC values of the cerebrospinal fluid in the lateral ventricle (ADC ratios). As cystic formations are frequently associated with microcystic meningiomas, their MRI characteristics were compared with the imaging data from 11 cystic meningiomas of non-microcystic subtypes. We found that cysts in microcystic meningioma tended to have a reticular appearance on DWI, as they did on gadolinium-enhanced T1-weighted imaging. Additionally, these reticular cysts had significantly lower ADC ratios than microcystic non-reticular and non-microcystic cysts. These DWI characteristics likely reflect the histological properties of microcystic meningioma. A reticular appearance on gadolinium-enhanced T1-weighted MRI and DWI, and cyst formation with relatively low ADC values can be diagnostic markers of microcystic meningiomas.
Martel Villagrán, J; Bueno Horcajadas, Á; Pérez Fernández, E; Martín Martín, S
2015-01-01
To determine the ability of MRI to distinguish between benign and malignant vertebral lesions. We included 85 patients and studied a total of 213 vertebrae (both pathologic and normal). For each vertebra, we determined whether the lesion was hypointense in T1-weighted sequences and whether it was hyperintense in STIR and in diffusion-weighted sequences. We calculated the in-phase/out-of-phase quotient and the apparent diffusion coefficient for each vertebra. We combined parameters from T1-weighted, diffusion-weighted, and STIR sequences to devise a formula to distinguish benign from malignant lesions. The group comprised 60 (70.6%) women and 25 (29.4%) men with a mean age of 67±13.5 years (range, 33-90 y). Of the 85 patients, 26 (30.6%) had a known primary tumor. When the lesion was hypointense on T1-weighted sequences, hyperintense on STIR and diffusion-weighted sequences, and had a signal intensity quotient greater than 0.8, the sensitivity was 97.2%, the specificity was 90%, and the diagnostic accuracy was 91.2%. If the patient had a known primary tumor, these values increased to 97.2%, 99.4%, and 99%, respectively. Benign lesions can be distinguished from malignant lesions if we combine the information from T1-weighted, STIR, and diffusion-weighted sequences together with the in-phase/out-of-phase quotient of the lesion detected in the vertebral body on MRI. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Effect of air gap on apparent temperature of body wearing various sizes of T-shirt
NASA Astrophysics Data System (ADS)
Takatera, M.; Uchiyama, E.; Zhu, C.; Kim, KO; Ishizawa, H.
2017-10-01
We investigated the effect of air gap on the apparent temperature. Using the developed thermocouple fabric and a thermal manikin, we measured temperature distribution of the measuring garments due to the change of T-shirt sizes. We were able to measure the apparent temperature distribution at points near a body while wearing different sizes of T-shirts. It was observed that the temperature distribution depending on different air gap between clothing and body. The apparent temperature depends on garment size and place. The effect of air gap on apparent temperature of body was experimentally confirmed.
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Balling, Niels; Förster, Andrea
2016-04-01
Numerical temperature models generated for geodynamic studies as well as for geothermal energy solutions heavily depend on rock thermal properties. Best practice for the determination of those parameters is the measurement of rock samples in the laboratory. Given the necessity to enlarge databases of subsurface rock parameters beyond drill core measurements an approach for the indirect determination of these parameters is developed, for rocks as well a for geological formations. We present new and universally applicable prediction equations for thermal conductivity, thermal diffusivity and specific heat capacity in sedimentary rocks derived from data provided by standard geophysical well logs. The approach is based on a data set of synthetic sedimentary rocks (clastic rocks, carbonates and evaporates) composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities varying between 0 and 30%. Petrophysical properties are assigned to both the rock-forming minerals and the pore-filling fluids. Using multivariate statistics, relationships then were explored between each thermal property and well-logged petrophysical parameters (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) on a regression sub set of data (70% of data) (Fuchs et al., 2015). Prediction quality was quantified on the remaining test sub set (30% of data). The combination of three to five well-log parameters results in predictions on the order of <15% for thermal conductivity and thermal diffusivity, and of <10% for specific heat capacity. Comparison of predicted and benchmark laboratory thermal conductivity from deep boreholes of the Norwegian-Danish Basin, the North German Basin, and the Molasse Basin results in 3 to 5% larger uncertainties with regard to the test data set. With regard to temperature models, the use of calculated TC borehole profiles approximate measured temperature logs with an error of <3°C along a 4 km deep profile. A benchmark comparison for thermal diffusivity and specific heat capacity is pending. Fuchs, Sven; Balling, Niels; Förster, Andrea (2015): Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs, Geophysical Journal International 203, 1977-2000, doi: 10.1093/gji/ggv403
Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F
2016-05-01
To compare "standard" diffusion weighted imaging, and diffusion tensor imaging (DTI) of 2(nd) and 4(th) -order for the differentiation of malignant and benign breast lesions. Seventy-one patients were imaged at 3 Tesla with a 16-channel breast coil. A diffusion weighted MRI sequence including b = 0 and b = 700 in 30 directions was obtained for all patients. The image data were fitted to three different diffusion models: isotropic model - apparent diffusion coefficient (ADC), 2(nd) -order tensor model (the standard model used for DTI) and a 4(th) -order tensor model, with increased degrees of freedom to describe anisotropy. The ability of the fitted parameters in the different models to differentiate between malignant and benign tumors was analyzed. Seventy-two breast lesions were analyzed, out of which 38 corresponded to malignant and 34 to benign tumors. ADC (using any model) presented the highest discriminative ability of malignant from benign tumors with a receiver operating characteristic area under the curve (AUC) of 0.968, and sensitivity and specificity of 94.1% and 94.7% respectively for a 1.33 × 10(-3) mm(2) /s cutoff. Anisotropy measurements presented high statistical significance between malignant and benign tumors (P < 0.001), but with lower discriminative ability of malignant from benign tumors than ADC (AUC of 0.896 and 0.897 for fractional anisotropy and generalized anisotropy respectively). Statistical significant difference was found between generalized anisotropy and fractional anisotropy for cancers (P < 0.001) but not for benign lesions (P = 0.87). While anisotropy parameters have the potential to provide additional value for breast applications as demonstrated in this study, ADC exhibited the highest differentiation power between malignant and benign breast tumors. © 2015 Wiley Periodicals, Inc.
Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column
Rutherford, William M.
1988-05-24
A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.
Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column
Rutherford, W.M.
1985-12-04
A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.
Thermosolutal convection in high-aspect-ratio enclosures
NASA Technical Reports Server (NTRS)
Wang, L. W.; Chen, C. T.
1988-01-01
Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.
Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x
NASA Astrophysics Data System (ADS)
Zhang, Jiecheng; Levenson-Falk, Eli M.; Ramshaw, B. J.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Hartnoll, Sean A.; Kapitulnik, Aharon
2017-05-01
The thermal diffusivity in the
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Lee, Kang N.; Miller, Robert A.
2003-01-01
Advanced ceramic thermal harrier coatings will play an increasingly important role In future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability issue remains a major concern with the ever-increasing temperature requirements. In this paper, thermal cyclic response and delamination failure modes of a ZrO2-8wt%Y2O3 and mullite/BSAS thermaVenvironmenta1 barrier coating system on SiC/SiC ceramic matrix composites were investigated using a laser high-heat-flux technique. The coating degradation and delamination processes were monitored in real time by measuring coating apparent conductivity changes during the cyclic tests under realistic engine temperature and stress gradients, utilizing the fact that delamination cracking causes an apparent decrease in the measured thermal conductivity. The ceramic coating crack initiation and propagation driving forces under the cyclic thermal loads, in conjunction with the mechanical testing results, will be discussed.
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier
2010-10-01
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.
Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.
Soula, Hédi; Caré, Bertrand; Beslon, Guillaume; Berry, Hugues
2013-11-05
Measurements of protein motion in living cells and membranes consistently report transient anomalous diffusion (subdiffusion) that converges back to a Brownian motion with reduced diffusion coefficient at long times after the anomalous diffusion regime. Therefore, slowed-down Brownian motion could be considered the macroscopic limit of transient anomalous diffusion. On the other hand, membranes are also heterogeneous media in which Brownian motion may be locally slowed down due to variations in lipid composition. Here, we investigate whether both situations lead to a similar behavior for the reversible ligand-binding reaction in two dimensions. We compare the (long-time) equilibrium properties obtained with transient anomalous diffusion due to obstacle hindrance or power-law-distributed residence times (continuous-time random walks) to those obtained with space-dependent slowed-down Brownian motion. Using theoretical arguments and Monte Carlo simulations, we show that these three scenarios have distinctive effects on the apparent affinity of the reaction. Whereas continuous-time random walks decrease the apparent affinity of the reaction, locally slowed-down Brownian motion and local hindrance by obstacles both improve it. However, only in the case of slowed-down Brownian motion is the affinity maximal when the slowdown is restricted to a subregion of the available space. Hence, even at long times (equilibrium), these processes are different and exhibit irreconcilable behaviors when the area fraction of reduced mobility changes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.
Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M
2015-01-01
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.
Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats
Daianu, Madelaine; Jacobs, Russell E.; Weitz, Tara M.; Town, Terrence C.; Thompson, Paul M.
2015-01-01
Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric “shells” when computing three distinct anisotropy maps–fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals. PMID:26683657
Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion
NASA Astrophysics Data System (ADS)
Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.
2011-03-01
A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
40Ar/39Ar thermochronology of mesoproterozoic metamorphism in the Colorado Front Range
Shaw, C.A.; Snee, L.W.; Selverstone, J.; Reed, J.C.
1999-01-01
A low-pressure metamorphic episode in the Colorado Front Range has been identified by the presence of staurolite, andalusite, cordierite, and garnet porphyroblasts overprinting earlier assemblages. The overprinting assemblages and reaction textures are most consistent with porphyroblast growth on a prograde metamorphic path with peak temperatures exceeding ~525??C. Twenty-eight 40Ar/39Ar dates on hornblende, muscovite, biotite, and microcline were used to infer the age and thermal conditions of metamorphism. Muscovite and biotite 40Ar/39Ar ages fall mainly in the interval 1400-1340 Ma, consistent with cooling through the closure temperature interval of micas (~400??-300??C) after about 1400 Ma. In contrast, hornblende apparent ages (T(c)~500??-550??C) between 1600 and 1390 Ma reflect variable retention of radiogenic argon. Forward modeling of argon diffusion shows that the distribution of hornblende and mica ages is consistent with the partial resetting of argon systematics ca. 1400 Ma by a thermal pulse reaching maximum temperatures around 550??C and decaying within <20 m.yr. These temperatures match the conditions inferred from the overprinting assemblage; thus, muscovite and biotite ages are interpreted to date the cooling phase of this metamorphic event. This late metamorphism is broadly coeval with the intrusion of ca. 1400-Ma granitic plutons in the study area and throughout the southwestern United States. However, thermal effects are observed far from pluton margins, suggesting pervasive, regional crustal heating rather than restricted contact metamorphism. Our results suggest that ca. 1400-Ma metamorphism and plutonism are manifestations of a regional thermal episode that both partially melted the lower crust and pervasively metamorphosed middle crustal rocks.
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; ...
2018-03-07
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Enhancement of the thermal transport in a culture medium with Au nanoparticles
NASA Astrophysics Data System (ADS)
Jiménez-Pérez, J. L.; Fuentes, R. Gutierrez; Alvarado, E. Maldonado; Ramón-Gallegos, E.; Cruz-Orea, A.; Tánori-Cordova, J.; Mendoza-Alvarez, J. G.
2008-11-01
In this work, it is reported the gold nanoparticles synthesis, their characterization, and their application to the enhancement of the thermal transport in a cellular culture medium. The Au nanoparticles (NPs), with average size of 10 nm, contained into a culture medium (DMEM (1)/F12(1)) (CM) increased considerably the heat transfer in the medium. Thermal lens spectrometry (TLS) was used to measure the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression, for transient thermal lens, to the experimental data. Our results show that the thermal diffusivity of the culture medium is highly sensitive to the Au nanoparticle concentration and size. The ability to modify the thermal properties to nanometer scale becomes very important in medical applications as in the case of cancer treatment by using photodynamic therapy (PDT). A complementary study with UV-vis and TEM techniques was performed to characterize the Au nanoparticles.
Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques
NASA Astrophysics Data System (ADS)
Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.
2015-06-01
Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.
Discrete Diffusion Monte Carlo for Electron Thermal Transport
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory
2014-10-01
The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.
Determination of thermal and acoustic comfort inside a vehicle's cabin
NASA Astrophysics Data System (ADS)
Ene, Alexandra; Catalina, Tiberiu; Vartires, Andreea
2018-02-01
Thermal and acoustic comfort, inside a vehicle's cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.
Study of the transport parameters of cloud lightning plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z. S.; Yuan, P.; Zhao, N.
2010-11-15
Three spectra of cloud lightning have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud lightning, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud lightning channels. The result shows that these parameters decrease slightly along developing direction of the cloud lightning channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud lightning channel.« less
On the channel width-dependence of the thermal conductivity in ultra-narrow graphene nanoribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamitaheri, Hossein; Neophytou, Neophytos, E-mail: N.Neophytou@warwick.ac.uk
The thermal conductivity of low-dimensional materials and graphene nanoribbons, in particular, is limited by the strength of line-edge-roughness scattering. One way to characterize the roughness strength is the dependency of the thermal conductivity on the channel's width in the form W{sup β}. Although in the case of electronic transport, this dependency is very well studied, resulting in W{sup 6} for nanowires and quantum wells and W{sup 4} for nanoribbons, in the case of phonon transport it is not yet clear what this dependence is. In this work, using lattice dynamics and Non-Equilibrium Green's Function simulations, we examine the width dependencemore » of the thermal conductivity of ultra-narrow graphene nanoribbons under the influence of line edge-roughness. We show that the exponent β is in fact not a single well-defined number, but it is different for different parts of the phonon spectrum depending on whether phonon transport is ballistic, diffusive, or localized. The exponent β takes values β < 1 for semi-ballistic phonon transport, values β ≫ 1 for sub-diffusive or localized phonons, and β = 1 only in the case where the transport is diffusive. The overall W{sup β} dependence of the thermal conductivity is determined by the width-dependence of the dominant phonon modes (usually the acoustic ones). We show that due to the long phonon mean-free-paths, the width-dependence of thermal conductivity becomes a channel length dependent property, because the channel length determines whether transport is ballistic, diffusive, or localized.« less
Mathematical analysis of thermal diffusion shock waves
NASA Astrophysics Data System (ADS)
Gusev, Vitalyi; Craig, Walter; Livoti, Roberto; Danworaphong, Sorasak; Diebold, Gerald J.
2005-10-01
Thermal diffusion, also known as the Ludwig-Soret effect, refers to the separation of mixtures in a temperature gradient. For a binary mixture the time dependence of the change in concentration of each species is governed by a nonlinear partial differential equation in space and time. Here, an exact solution of the Ludwig-Soret equation without mass diffusion for a sinusoidal temperature field is given. The solution shows that counterpropagating shock waves are produced which slow and eventually come to a halt. Expressions are found for the shock time for two limiting values of the starting density fraction. The effects of diffusion on the development of the concentration profile in time and space are found by numerical integration of the nonlinear differential equation.
NASA Astrophysics Data System (ADS)
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-01
This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-01
This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along
Zhang, Yongfeng; Jiang, Chao; Bai, Xianming
2017-01-20
Here, this report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy ismore » dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along < c > is found to be slightly higher than that along < a >, with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.« less
High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared
NASA Technical Reports Server (NTRS)
1997-01-01
A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus, progressive changes in the apparent strain behavior were corroborated by the extensometer, which unlike the mounted gage can distinguish quantitative changes in the material's thermal strain response. One specimen was instrumented with both a fixed and floating gage. From the difference in output of these two gages, the thermal expansion strains were calculated. These data, which are given in the figure, show excellent agreement with the values measured by the high-temperature extensometry.
Evaluation of heat sink materials for thermal management of lithium batteries
NASA Astrophysics Data System (ADS)
Dimpault-Darcy, E. C.; Miller, K.
Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.
Evaluation of heat sink materials for thermal management of lithium batteries
NASA Technical Reports Server (NTRS)
Dimpault-Darcy, E. C.; Miller, K.
1988-01-01
Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.
Iima, Mami; Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori
2018-01-01
We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0-2500 s/mm2 with one number of excitations [NEX]) and five b-values (0-2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions.
Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori
2018-01-01
We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0–2500 s/mm2 with one number of excitations [NEX]) and five b-values (0–2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions. PMID:29494639
Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3
NASA Astrophysics Data System (ADS)
Goswami, Pallab; Nevidomskyy, Andriy H.
2015-12-01
The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.
Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO
NASA Astrophysics Data System (ADS)
Chenhall, Jeffrey; Moses, Gregory
2017-10-01
The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.
Energy and variance budgets of a diffusive staircase with implications for heat flux scaling
NASA Astrophysics Data System (ADS)
Hieronymus, M.; Carpenter, J. R.
2016-02-01
Diffusive convection, the mode of double-diffusive convection that occur when both temperature and salinity increase with increasing depth, is commonplace throughout the high latitude oceans and diffusive staircases constitute an important heat transport process in the Arctic Ocean. Heat and buoyancy fluxes through these staircases are often estimated using flux laws deduced either from laboratory experiments, or from simplified energy or variance budgets. We have done direct numerical simulations of double-diffusive convection at a range of Rayleigh numbers and quantified the energy and variance budgets in detail. This allows us to compare the fluxes in our simulations to those derived using known flux laws and to quantify how well the simplified energy and variance budgets approximate the full budgets. The fluxes are found to agree well with earlier estimates at high Rayleigh numbers, but we find large deviations at low Rayleigh numbers. The close ties between the heat and buoyancy fluxes and the budgets of thermal variance and energy have been utilized to derive heat flux scaling laws in the field of thermal convection. The result is the so called GL-theory, which has been found to give accurate heat flux scaling laws in a very wide parameter range. Diffusive convection has many similarities to thermal convection and an extension of the GL-theory to diffusive convection is also presented and its predictions are compared to the results from our numerical simulations.
Del Bigio, Marc R; Slobodian, Ili; Schellenberg, Angela E; Buist, Richard J; Kemp-Buors, Tanya L
2011-08-11
Hydrocephalus is associated with enlargement of cerebral ventricles. We hypothesized that magnetic resonance (MR) imaging parameters known to be influenced by tissue water content would change in parallel with ventricle size in young rats and that changes in blood-brain barrier (BBB) permeability would be detected. Hydrocephalus was induced by injection of kaolin into the cisterna magna of 4-week-old rats, which were studied 1 or 3 weeks later. MR was used to measure longitudinal and transverse relaxation times (T1 and T2) and apparent diffusion coefficients in several regions. Brain tissue water content was measured by the wet-dry weight method, and tissue density was measured in Percoll gradient columns. BBB permeability was measured by quantitative imaging of changes on T1-weighted images following injection of gadolinium diethylenetriamine penta-acetate (Gd-DTPA) tracer and microscopically by detection of fluorescent dextran conjugates. In nonhydrocephalic rats, water content decreased progressively from age 3 to 7 weeks. T1 and T2 and apparent diffusion coefficients did not exhibit parallel changes and there was no evidence of BBB permeability to tracers. The cerebral ventricles enlarged progressively in the weeks following kaolin injection. In hydrocephalic rats, the dorsal cortex was more dense and the white matter less so, indicating that the increased water content was largely confined to white matter. Hydrocephalus was associated with transient elevation of T1 in gray and white matter and persistent elevation of T2 in white matter. Changes in the apparent diffusion coefficients were significant only in white matter. Ventricle size correlated significantly with dorsal water content, T1, T2, and apparent diffusion coefficients. MR imaging showed evidence of Gd-DTPA leakage in periventricular tissue foci but not diffusely. These correlated with microscopic leak of larger dextran tracers. MR characteristics cannot be used as direct surrogates for water content in the immature rat model of hydrocephalus, probably because they are also influenced by other changes in tissue composition that occur during brain maturation. There is no evidence for widespread persistent opening of BBB as a consequence of hydrocephalus in young rats. However, increase in focal BBB permeability suggests that periventricular blood vessels may be disrupted.
New Cu(TiBN x ) copper alloy films for industrial applications
NASA Astrophysics Data System (ADS)
Lin, Chon-Hsin
2016-06-01
In this study, I explore a new type of copper alloy, Cu(TiBN x ), films by cosputtering Cu and TiB within an Ar/N2 gas atmosphere on Si substrates. The films are then annealed for 1 h in a vacuum environment at temperatures up to 700 °C. The annealed films exhibit not only excellent thermal stability and low resistivity but also little leakage current and strong adhesion to the substrates while no Cu/Si interfacial interactions are apparent. Within a Sn/Cu(TiBN x )/Si structure at 200 °C, the new alloy exhibits a minute dissolution rate, which is lower than that of pure Cu by at least one order of magnitude. Furthermore, the new alloy’s consumption rate is comparable to that of Ni commonly used in solder joints. The new films appear suitable for some industrial applications, such as barrierless Si metallization and new wetting and diffusion barrier layers required in flip-chip solder joints.
Bridgman Growth of GeSi Alloys in a Static Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.
1998-01-01
Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.
NASA Technical Reports Server (NTRS)
Wheeler, Donald R.; Pepper, Stephen V.
1990-01-01
Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.
On Roesler and Arzt's new model of creep in dispersion strengthened alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, A.; Cadek, J.
1992-08-01
The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density.more » On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.« less
Lodygensky, Gregory A; Kunz, Nicolas; Perroud, Elodie; Somm, Emmanuel; Mlynarik, Vladimir; Hüppi, Petra S; Gruetter, Rolf; Sizonenko, Stéphane V
2014-03-01
Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance spectroscopy (MRS) in vivo. Twenty-four hours after a 1-mg/kg injection of LPS in postnatal day 3 rat pups, diffusion tensor imaging and proton nuclear magnetic spectroscopy ((1)H NMR) were analyzed in conjunction to determine markers of cell death and inflammation using immunohistochemistry and gene expression. MRI and MRS in the CC revealed an increase in lactate and free lipids and a decrease of the apparent diffusion coefficient. Detailed evaluation of the CC showed a marked apoptotic response assessed by fractin expression. Interestingly, the degree of reduction in the apparent diffusion coefficient correlated strongly with the natural logarithm of fractin expression, in the same region of interest. LPS injection further resulted in increased activated microglia clustered in the cingulum, widespread astrogliosis, and increased expression of genes for interleukin (IL)-1, IL-6, and tumor necrosis factor. This model was able to reproduce the typical MRI hallmarks of acute diffuse white matter injury seen in preterm infants and allowed the evaluation of in vivo biomarkers of acute neuropathology after inflammatory challenge.
Kimura, Hidehito; Taniguchi, Masaaki; Mori, Tatsuya; Hosoda, Kohkichi; Kohmura, Eiji
2017-01-01
Postoperative hyperperfusion syndrome after extracranial-to-intracranial bypass causing temporary neurologic deterioration has been reported rarely as isosignal intensity on diffusion-weighted imaging (DWI) with hyperintense lesion on T2-weighted image and fluid-attenuated inversion recovery (FLAIR) imaging as an expression of vasogenic edema. We present a rare case of a patient suffering from temporary aphasia after an extracranial-to-intracranial bypass surgery, which was shown as a transient hypointense lesion on DWI with increased apparent diffusion coefficient value, evidence of postoperative hyperperfusion. By the preoperative single-photon emission computed tomography study analyzed retrospectively, preoperative cerebral blood flow (CBF) was compared between the lesions in which the hypointensity emerged and the lesions in which its signal remained unchanged in the hyperperfusion area. We found CBF after an acetazolamide challenge was much smaller and the percentage increase of CBF after an acetazolamide challenge was much less than zero in the temporal hypointense lesion on DWI. An abrupt increase of CBF after bypass installation to the brain with no vascular response and complete disruption of the blood-brain barrier would cause a remarkable increase of extracellular fluid and excessive water molecule diffusion, resulting in excessive vasogenic edema. This was a plausible mechanism for the transient hypointense lesion on DWI with increased apparent diffusion coefficient value. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhong, Xiu; Qiu, Shijun
2015-06-01
To investigate the effect of exercise load on apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of normal lumbar intervertebral discs in magnetic resonance (MR) diffusion tensor imaging (DTI). Thirty healthy volunteers (24 males and 6 females, aged 19 to 25 years) underwent examinations with MR T2WI and DTI of the lumbar intervertebral discs before and after exercise load. Pfirrmann grading was evaluated with T2WI, and the B0 map, ADC map and FA map were reconstructed based on the DTI data to investigate the changes in ADC and FA after exercise. Of the 30 volunteers (150 intervertebral discs) receiving the examination, 27 with discs of Pfirrminn grade II were included for analysis. In these 27 volunteers, the average ADC and FA before exercise were (1.99 ± 0.18)×10⁻³ mm²/s and 0.155∓0.059, respectively. After exercise, ADC was lowered significantly to (1.93 ± 0.17)×10⁻³ mm²/s (P<0.05) and FA increased slightly to 0.1623 ± 0.017 (P>0.05). DTI allows quantitatively analysis of the changes in water molecular diffusion and anisotropy of the lumbar intervertebral discs after exercise load, which can cause a decreased ADC and a increased FA value, and the change of ADC is more sensitive to exercise load.
Newitt, David C; Malyarenko, Dariya; Chenevert, Thomas L; Quarles, C Chad; Bell, Laura; Fedorov, Andriy; Fennessy, Fiona; Jacobs, Michael A; Solaiyappan, Meiyappan; Hectors, Stefanie; Taouli, Bachir; Muzi, Mark; Kinahan, Paul E; Schmainda, Kathleen M; Prah, Melissa A; Taber, Erin N; Kroenke, Christopher; Huang, Wei; Arlinghaus, Lori R; Yankeelov, Thomas E; Cao, Yue; Aryal, Madhava; Yen, Yi-Fen; Kalpathy-Cramer, Jayashree; Shukla-Dave, Amita; Fung, Maggie; Liang, Jiachao; Boss, Michael; Hylton, Nola
2018-01-01
Diffusion weighted MRI has become ubiquitous in many areas of medicine, including cancer diagnosis and treatment response monitoring. Reproducibility of diffusion metrics is essential for their acceptance as quantitative biomarkers in these areas. We examined the variability in the apparent diffusion coefficient (ADC) obtained from both postprocessing software implementations utilized by the NCI Quantitative Imaging Network and online scan time-generated ADC maps. Phantom and in vivo breast studies were evaluated for two ([Formula: see text]) and four ([Formula: see text]) [Formula: see text]-value diffusion metrics. Concordance of the majority of implementations was excellent for both phantom ADC measures and in vivo [Formula: see text], with relative biases [Formula: see text] ([Formula: see text]) and [Formula: see text] (phantom [Formula: see text]) but with higher deviations in ADC at the lowest phantom ADC values. In vivo [Formula: see text] concordance was good, with typical biases of [Formula: see text] to 3% but higher for online maps. Multiple b -value ADC implementations were separated into two groups determined by the fitting algorithm. Intergroup mean ADC differences ranged from negligible for phantom data to 2.8% for [Formula: see text] in vivo data. Some higher deviations were found for individual implementations and online parametric maps. Despite generally good concordance, implementation biases in ADC measures are sometimes significant and may be large enough to be of concern in multisite studies.
Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan
2017-10-20
To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.
Effects of thermal cycling on graphie-fiber-reinforced 6061 aluminum
NASA Technical Reports Server (NTRS)
Dries, G. A.; Tompkins, S. S.
1986-01-01
Graphite-reinforced aluminum alloy metal-matrix composites are among materials being considered for structural components in dimensionally stable space structures. This application requires materials with low values of thermal expansions and high specific stiffnesses. They must remain stable during exposures to the space environment for periods extending to 20 years. The effects of thermal cycling on the thermal expansion behavior and mechanical properties of Thornel P100 graphite 6061 aluminum composites, as fabricated and after thermal processing to eliminate thermal strain hysteresis, have been investigated. Two groups of composites were studied: one was fabricated by hot roll bonding and the other by diffusion bonding. Processing significantly reduced strain hysteresis during thermal cycling in both groups and improved the ultimate tensile strength and modulus in the diffusion-bonded composites. Thermal cycling stabilized the as-fabricated composites by reducing the residual fabrication stress and increased the matrix strength by metallurgical aging. Thermal expansion behavior of both groups after processing was insensitive to thermal cycling. Data scatter was too large to determine effects of thermal cycling on the mechanical properties. The primary effects of processing and thermal cycling can be attributed to changes in the metallurgical condition and stress state of the matrix.
Sarman, Hakan; Atmaca, Halil; Cakir, Ozgur; Muezzinoglu, Umit Sefa; Anik, Yonca; Memisoglu, Kaya; Baran, Tuncay; Isik, Cengiz
2015-01-01
Although pre- and postoperative imaging of Achilles tendon rupture (ATR) has been well documented, radiographic evaluations of postoperative intratendinous healing and microstructure are still lacking. Diffusion tensor imaging (DTI) is an innovative technique that offers a noninvasive method for describing the microstructure characteristics and organization of tissues. DTI was used in the present study for quantitative assessment of fiber continuity postoperatively in patients with acute ATR. The data from 16 patients with ATR from 2005 to 2012 were retrospectively analyzed. The microstructure of ART was evaluated using tendon fiber tracking, tendon continuity, fractional anisotropy, and apparent diffusion coefficient values by way of DTI. The distal and proximal portions were measured separately in both the ruptured and the healthy extremities of each patient. The mean patient age was 41.56 ± 8.49 (range 26 to 56) years. The median duration of follow-up was 21 (range 6 to 80) months. The tendon fractional anisotropy values of the ruptured Achilles tendon were significantly lower statistically than those of the normal side (p = .001). However, none of the differences between the 2 groups with respect to the distal and proximal apparent diffusion coefficient were statistically significant (p = .358 and p = .899, respectively). In addition, the fractional anisotropy and apparent diffusion coefficient measurements were not significantly different in the proximal and distal regions of the ruptured tendons compared with the healthy tendons. The present study used DTI and fiber tracking to demonstrate the radiologic properties of postoperative Achilles tendons with respect to trajectory and tendinous fiber continuity. Quantifying DTI and fiber tractography offers an innovative and effective tool that might be able to detect microstructural abnormalities not appreciable using conventional radiologic techniques. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations
NASA Astrophysics Data System (ADS)
Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.
2017-06-01
Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.
Diffusive sampling of 1,3-butadiene for 24 hr onto the graphitic adsorbent Carbopack X packed in a stainless steel tube badge (6.3 mm o.d., 5 mm i.d., and 90 mm in length) with analysis by thermal desorption/gas chromatography (GC)/mass spectrometry (MS) has been evaluated in con...
Electron Thermal Transport due to Magnetic Diffusion in the MST RFP
NASA Astrophysics Data System (ADS)
Reusch, J. A.; Anderson, J. K.; den Hartog, D. J.; Forest, C. B.; Kasten, C. P.; Schnack, D. D.; Stephens, H. D.
2011-10-01
Comparison of measurements made in the MST RFP to the results from extensive nonlinear resistive MHD simulations has provided two key observations. First, trapped particles reduce electron thermal diffusion; inclusion of this effect is required for quantitative agreement of simulation to measurement. Second, the structure and evolution of long-wavelength temperature fluctuations measured in MST shows remarkable qualitative similarity to fluctuations appearing in a finite-pressure simulation. These simulations were run at parameters matching those of 400 kA discharges in MST (S ~ 4 ×106). In a zero β simulation, the measured χe is compared to the thermal diffusion due to parallel losses along diffusing magnetic field lines, χst =v∥Dmag . Agreement is only found if the reduction in χst due to trapped particles is taken into account. In a second simulation, the pressure field was evolved self consistently assuming Ohmic heating and anisotropic thermal conduction. Fluctuations in the simulated temperature are very similar in character and time evolution to temperature fluctuations measured in MST. This includes m = 1 , n = 6 fluctuations that flatten the temperature profile as well as m = 1 , n = 5 fluctuations that generate hot island structures near the core shortly after sawtooth crashes. This work supported by the US DOE and NSF.
NASA Technical Reports Server (NTRS)
Horai, K.-I.
1981-01-01
A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.
Thermodynamic properties and diffusion of water + methane binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au
2014-03-14
Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less
Evolution of Edge Pedestal Profiles Over the L-H Transition
NASA Astrophysics Data System (ADS)
Sayer, M. S.; Stacey, W. M.; Floyd, J. P.; Groebner, R. J.
2012-10-01
The detailed time evolution of thermal diffusivities, electromagnetic forces, pressure gradients, particle pinch and momentum transport frequencies (which determine the diffusion coefficient) have been analyzed during the L-H transition in a DIII-D discharge. Density, temperature, rotation velocity and electric field profiles at times just before and after the L-H transition are analyzed in terms of these quantities. The analysis is based on the fluid particle balance, energy balance, force balance and heat conduction equations, as in Ref. [1], but with much greater time resolution and with account for thermal ion orbit loss. The variation of diffusive and non-diffusive transport over the L-H transition is determined from the variation in the radial force balance (radial electric field, VxB force, and pressure gradient) and the variation in the interpreted diffusive transport coefficients. 6pt [1] W.M. Stacey and R.J. Groebner, Phys. Plasmas 17, 112512 (2010).
Intermixing in Cu/Ni multilayers induced by cold rolling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.; Perepezko, J. H., E-mail: perepezk@engr.wisc.edu; Larson, D.
2015-04-28
Repeated cold rolling was performed on multilayers of Cu60/Ni40 and Cu40/Ni60 foil arrays to study the details of driven atomic scale interfacial mixing. With increasing deformation, there is a significant layer refinement down to the nm level that leads to the formation of a solid solution phase from the elemental end members. Intriguingly, the composition of the solid solution is revealed by an oscillation in the composition profile across the multilayers, which is different from the smoothly varying profile due to thermally activated diffusion. During the reaction, Cu mixed into Ni preferentially compared to Ni mixing into Cu, which ismore » also in contrast to the thermal diffusion behavior. This is confirmed by observations from X-ray diffraction, electron energy loss spectrum and atom probe tomography. The diffusion coefficient induced by cold rolling is estimated as 1.7 × 10{sup −17} m{sup 2}/s, which cannot be attributed to any thermal effect. The effective temperature due to the deformation induced mixing is estimated as 1093 K and an intrinsic diffusivity d{sub b}, which quantifies the tendency towards equilibrium in the absence of thermal diffusion, is estimated as 6.38 × 10{sup −18} m{sup 2}/s. The fraction of the solid solution phase formed is illustrated by examining the layer thickness distribution and is described by using an error function representation. The evolution of mixing in the solid solution phase is described by a simplified sinusoid model, in which the amplitude decays with increased deformation level. The promoted diffusion coefficient could be related to the effective temperature concept, but the establishment of an oscillation in the composition profile is a characteristic behavior that develops due to deformation.« less
Thermophysical properties of plasma sprayed coatings
NASA Technical Reports Server (NTRS)
Wilkes, K. E.; Lagedrost, J. F.
1973-01-01
Thermophysical properties of plasma sprayed materials were determined for the following plasma sprayed materials: CaO - stabilized ZrO2, Y2O3 - stabilized ZerO2, Al2O3, HfO2 Mo, nichrome, NiAl, Mo-ZrO2, and MoAl2O3 mixtures. In all cases the thermal conductivity of the as-sprayed materials was found to be considerably lower than that of the bulk material. The flash-laser thermal diffusivity technique was used both for diffusivity determination of single-layer materials and to determine the thermal contact resistance at the interface of two-layer specimens.
Healing of voids in the aluminum metallization of integrated circuit chips
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas R.
1990-01-01
The thermal stability of GaAs modulation-doped field effect transistors (MODFETs) is evaluated in order to identify failure mechanisms and validate the reliability of these devices. The transistors were exposed to thermal step-stress and characterized at ambient temperatures to indicate device reliability, especially that of the transistor ohmic contacts with and without molybdenum diffusion barriers. The devices without molybdenum exhibited important transconductance deterioration. MODFETs with molybdenum diffusion barriers were tolerant to temperatures above 300 C. This tolerance indicates that thermally activated failure mechanisms are slow at operational temperatures. Therefore, high-reliability MODFET-based circuits are possible.