Appetitive but Not Aversive Olfactory Conditioning Modifies Antennal Movements in Honeybees
ERIC Educational Resources Information Center
Cholé, Hanna; Junca, Pierre; Sandoz, Jean-Christophe
2015-01-01
In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting…
Appetitive but not aversive olfactory conditioning modifies antennal movements in honeybees
Cholé, Hanna; Junca, Pierre
2015-01-01
In honeybees, two olfactory conditioning protocols allow the study of appetitive and aversive Pavlovian associations. Appetitive conditioning of the proboscis extension response (PER) involves associating an odor, the conditioned stimulus (CS) with a sucrose solution, the unconditioned stimulus (US). Conversely, aversive conditioning of the sting extension response (SER) involves associating the odor CS with an electric or thermal shock US. Each protocol is based on the measure of a different behavioral response (proboscis versus sting) and both only provide binary responses (extension or not of the proboscis or sting). These limitations render the measure of the acquired valence of an odor CS difficult without testing the animals in a freely moving situation. Here, we studied the effects of both olfactory conditioning protocols on the movements of the antennae, which are crucial sensory organs for bees. As bees’ antennae are highly mobile, we asked whether their movements in response to an odorant change following appetitive or aversive conditioning and if so, do odor-evoked antennal movements contain information about the acquired valence of the CS? We implemented a tracking system for harnessed bees’ antennal movements based on a motion capture principle at a high frequency rate. We observed that differential appetitive conditioning had a strong effect on antennal movements. Bees responded to the reinforced odorant with a marked forward motion of the antennae and a strong velocity increase. Conversely, differential aversive conditioning had no associative effect on antennal movements. Rather than revealing the acquired valence of an odorant, antennal movements may represent a novel conditioned response taking place during appetitive conditioning and may provide a possible advantage to bees when foraging in natural situations. PMID:26572651
Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L
2008-01-01
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103
Olfactory priming reinstates extinguished chocolate-induced conditioned place preference.
La Mela, Immacolata; Latagliata, Emanuele Claudio; Patrono, Enrico; Puglisi-Allegra, Stefano; Ventura, Rossella
2010-02-01
A major problem in the dietary treatment of disorders associated with excessive eating, such as obesity, is the high rate of relapse into maladaptive eating habits after withdrawal from consumption of palatable, energy-dense food. As olfaction has a major role in appetite and eating behavior, in this study we used a reinstatement model based on conditioned place preference to investigate the ability of olfactory priming to reinstate extinguished chocolate-induced conditioned place preference in sated mice. We found that olfactory priming, which was ineffective in inducing conditioned place preference in the control group, reactivated place preference following the extinction procedure in the experimental group. These results extend previous reports of the reinstatement of food seeking induced by pellet priming and, for the first time, show the possibility of using olfactory priming in an animal model of relapse. In light of the major role of olfactory inputs in appetite and of cues in relapse, the present results indicate that smell is an important factor to consider in the treatment of eating disorders. 2009 Elsevier Ltd. All rights reserved.
Rohwedder, Astrid; Selcho, Mareike; Chassot, Bérénice; Thum, Andreas S
2015-12-15
All organisms continuously have to adapt their behavior according to changes in the environment in order to survive. Experience-driven changes in behavior are usually mediated and maintained by modifications in signaling within defined brain circuits. Given the simplicity of the larval brain of Drosophila and its experimental accessibility on the genetic and behavioral level, we analyzed if Drosophila neuropeptide F (dNPF) neurons are involved in classical olfactory conditioning. dNPF is an ortholog of the mammalian neuropeptide Y, a highly conserved neuromodulator that stimulates food-seeking behavior. We provide a comprehensive anatomical analysis of the dNPF neurons on the single-cell level. We demonstrate that artificial activation of dNPF neurons inhibits appetitive olfactory learning by modulating the sugar reward signal during acquisition. No effect is detectable for the retrieval of an established appetitive olfactory memory. The modulatory effect is based on the joint action of three distinct cell types that, if tested on the single-cell level, inhibit and invert the conditioned behavior. Taken together, our work describes anatomically and functionally a new part of the sugar reinforcement signaling pathway for classical olfactory conditioning in Drosophila larvae. © 2015 Wiley Periodicals, Inc.
Krashes, Michael J.; Waddell, Scott
2008-01-01
In Drosophila, formation of aversive olfactory long-term memory (LTM) requires multiple training sessions pairing odor and electric shock punishment with rest intervals. In contrast, here we show that a single 2 min training session pairing odor with a more ethologically relevant sugar reinforcement forms long-term appetitive memory that lasts for days. Appetitive LTM has some mechanistic similarity to aversive LTM in that it can be disrupted by cycloheximide, the dCreb2-b transcriptional repressor, and the crammer and tequila LTM-specific mutations. However, appetitive LTM is completely disrupted by the radish mutation that apparently represents a distinct mechanistic phase of consolidated aversive memory. Furthermore, appetitive LTM requires activity in the dorsal paired medial neuron and mushroom body α′ β′ neuron circuit during the first hour after training and mushroom body αβ neuron output during retrieval, suggesting that appetitive middle-term memory and LTM are mechanistically linked. Last, experiments feeding and/or starving flies after training reveals a critical motivational drive that enables appetitive LTM retrieval. PMID:18354013
Learning Modifies Odor Mixture Processing to Improve Detection of Relevant Components
Chen, Jen-Yung; Marachlian, Emiliano; Assisi, Collins; Huerta, Ramon; Smith, Brian H.
2015-01-01
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors. PMID:25568113
Wright, Geraldine A; Mustard, Julie A; Kottcamp, Sonya M; Smith, Brian H
2007-11-01
Animals possess the ability to assess food quality via taste and via changes in state that occur after ingestion. Here, we investigate the extent to which a honey bee's ability to assess food quality affected the formation of association with an odor stimulus and the retention of olfactory memories associated with reward. We used three different conditioning protocols in which the unconditioned stimulus (food) was delivered as sucrose stimulation to the proboscis (mouthparts), the antennae or to both proboscis and antennae. All means of delivery of the unconditioned stimulus produced robust associative conditioning with an odor. However, the memory of a conditioned odor decayed at a significantly greater rate for subjects experiencing antennal-only stimulation after either multiple- or single-trial conditioning. Finally, to test whether the act of feeding on a reward containing sucrose during conditioning affected olfactory memory formation, we conditioned honey bees to associate an odor with antennal stimulation with sucrose followed by feeding on a water droplet. We observed that a honey bee's ability to recall the conditioned odor was not significantly different from that of subjects conditioned with an antennal-only sucrose stimulus. Our results show that stimulation of the sensory receptors on the proboscis and/or ingestion of the sucrose reward during appetitive olfactory conditioning are necessary for long-term memory formation.
Roles of Aminergic Neurons in Formation and Recall of Associative Memory in Crickets
Mizunami, Makoto; Matsumoto, Yukihisa
2010-01-01
We review recent progress in the study of roles of octopaminergic (OA-ergic) and dopaminergic (DA-ergic) signaling in insect classical conditioning, focusing on our studies on crickets. Studies on olfactory learning in honey bees and fruit-flies have suggested that OA-ergic and DA-ergic neurons convey reinforcing signals of appetitive unconditioned stimulus (US) and aversive US, respectively. Our work suggested that this is applicable to olfactory, visual pattern, and color learning in crickets, indicating that this feature is ubiquitous in learning of various sensory stimuli. We also showed that aversive memory decayed much faster than did appetitive memory, and we proposed that this feature is common in insects and humans. Our study also suggested that activation of OA- or DA-ergic neurons is needed for appetitive or aversive memory recall, respectively. To account for this finding, we proposed a model in which it is assumed that two types of synaptic connections are strengthened by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus (CS) to neurons inducing conditioned response and the other being connections from neurons representing CS to OA- or DA-ergic neurons representing appetitive or aversive US, respectively. The former is called stimulus–response (S–R) connection and the latter is called stimulus–stimulus (S–S) connection by theorists studying classical conditioning in vertebrates. Results of our studies using a second-order conditioning procedure supported our model. We propose that insect classical conditioning involves the formation of S–S connection and its activation for memory recall, which are often called cognitive processes. PMID:21119781
Serotonin is critical for rewarded olfactory short-term memory in Drosophila.
Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy
2012-06-01
The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.
Effect of Flumethrin on Survival and Olfactory Learning in Honeybees
Tan, Ken; Yang, Shuang; Wang, Zhengwei; Menzel, Randolf
2013-01-01
Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time. PMID:23785490
Developmentally defined forebrain circuits regulate appetitive and aversive olfactory learning.
Muthusamy, Nagendran; Zhang, Xuying; Johnson, Caroline A; Yadav, Prem N; Ghashghaei, H Troy
2017-01-01
Postnatal and adult neurogenesis are region- and modality-specific, but the significance of developmentally distinct neuronal populations remains unclear. We demonstrate that chemogenetic inactivation of a subset of forebrain and olfactory neurons generated at birth disrupts responses to an aversive odor. In contrast, novel appetitive odor learning is sensitive to inactivation of adult-born neurons, revealing that developmentally defined sets of neurons may differentially participate in hedonic aspects of sensory learning.
The essence of appetite: Does olfactory receptor variation play a role?
USDA-ARS?s Scientific Manuscript database
Olfactory receptors are G-protein coupled chemoreceptors expressed on millions of olfactory sensory neurons within the nasal cavity. These receptors detect environmental odorants and signal the brain regarding the location of feed, potential mates, and the presence of possible threats (e.g., predato...
Effects of Caffeine on Olfactory Learning in Crickets.
Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro
2016-10-01
Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.
Context-Dependent Olfactory Learning in an Insect
ERIC Educational Resources Information Center
Matsumoto, Yukihisa; Mizunami, Makoto
2004-01-01
We studied the capability of the cricket "Gryllus bimaculatus" to select one of a pair of odors and to avoid the other in one context and to do the opposite in another context. One group of crickets was trained to associate one of a pair of odors (conditioned stimulus, CS1) with water reward (appetitive unconditioned stimulus, US+) and another…
ERIC Educational Resources Information Center
Raccuglia, Davide; Mueller, Uli
2013-01-01
Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…
Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa
2009-08-04
In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory traces, which match to stimulus-stimulus connection and stimulus-response connection. This is the first study to suggest that classical conditioning in insects involves, as does classical conditioning in higher vertebrates, the formation of stimulus-stimulus connection and its activation for memory recall, which are often called cognitive processes.
Drosophila Learn Opposing Components of a Compound Food Stimulus
Das, Gaurav; Klappenbach, Martín; Vrontou, Eleftheria; Perisse, Emmanuel; Clark, Christopher M.; Burke, Christopher J.; Waddell, Scott
2014-01-01
Summary Dopaminergic neurons provide value signals in mammals and insects [1–3]. During Drosophila olfactory learning, distinct subsets of dopaminergic neurons appear to assign either positive or negative value to odor representations in mushroom body neurons [4–9]. However, it is not known how flies evaluate substances that have mixed valence. Here we show that flies form short-lived aversive olfactory memories when trained with odors and sugars that are contaminated with the common insect repellent DEET. This DEET-aversive learning required the MB-MP1 dopaminergic neurons that are also required for shock learning [7]. Moreover, differential conditioning with DEET versus shock suggests that formation of these distinct aversive olfactory memories relies on a common negatively reinforcing dopaminergic mechanism. Surprisingly, as time passed after training, the behavior of DEET-sugar-trained flies reversed from conditioned odor avoidance into odor approach. In addition, flies that were compromised for reward learning exhibited a more robust and longer-lived aversive-DEET memory. These data demonstrate that flies independently process the DEET and sugar components to form parallel aversive and appetitive olfactory memories, with distinct kinetics, that compete to guide learned behavior. PMID:25042590
Insulin effects on honeybee appetitive behaviour.
Mengoni Goñalons, Carolina; Guiraud, Marie; de Brito Sanchez, María Gabriela; Farina, Walter M
2016-10-01
Worker honeybees (Apis mellifera) carry out multiple tasks throughout their adult lifespan. It has been suggested that the insulin/insulin-like signalling pathway participates in regulating behavioural maturation in eusocial insects. Insulin signalling increases as the honeybee worker transitions from nurse to food processor to forager. As behavioural shifts require differential usage of sensory modalities, our aim was to assess insulin effects on olfactory and gustatory responsiveness as well as on olfactory learning in preforaging honeybee workers of different ages. Adults were reared in the laboratory or in the hive. Immediately after being injected with insulin or vehicle (control), and focusing on the proboscis extension response, bees were tested for their spontaneous response to odours, sucrose responsiveness and ability to discriminate odours through olfactory conditioning. Bees injected with insulin have higher spontaneous odour responses. Sucrose responsiveness and odour discrimination are differentially affected by treatment according to age: whereas insulin increases gustatory responsiveness and diminishes learning abilities of younger workers, it has the opposite effect on older bees. In summary, insulin can improve chemosensory responsiveness in young workers, but also worsens their learning abilities to discriminate odours. The insulin signalling pathway is responsive in young workers, although they are not yet initiating outdoor activities. Our results show strong age-dependent effects of insulin on appetitive behaviour, which uncover differences in insulin signalling regulation throughout the honeybee worker's adulthood. © 2016. Published by The Company of Biologists Ltd.
Mizunami, Makoto; Matsumoto, Yukihisa
2017-01-01
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of “blocking” and “auto-blocking” phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals. PMID:29311961
Mizunami, Makoto; Matsumoto, Yukihisa
2017-01-01
Revealing neural systems that mediate appetite and aversive signals in associative learning is critical for understanding the brain mechanisms controlling adaptive behavior in animals. In mammals, it has been shown that some classes of dopamine neurons in the midbrain mediate prediction error signals that govern the learning process, whereas other classes of dopamine neurons control execution of learned actions. In this review, based on the results of our studies on Pavlovian conditioning in the cricket Gryllus bimaculatus and by referring to the findings in honey bees and fruit-flies, we argue that comparable aminergic systems exist in the insect brain. We found that administrations of octopamine (the invertebrate counterpart of noradrenaline) and dopamine receptor antagonists impair conditioning to associate an olfactory or visual conditioned stimulus (CS) with water or sodium chloride solution (appetitive or aversive unconditioned stimulus, US), respectively, suggesting that specific octopamine and dopamine neurons mediate appetitive and aversive signals, respectively, in conditioning in crickets. These findings differ from findings in fruit-flies. In fruit-flies, appetitive and aversive signals are mediated by different dopamine neuron subsets, suggesting diversity in neurotransmitters mediating appetitive signals in insects. We also found evidences of "blocking" and "auto-blocking" phenomena, which suggested that the prediction error, the discrepancy between actual US and predicted US, governs the conditioning in crickets and that octopamine neurons mediate prediction error signals for appetitive US. Our studies also showed that activations of octopamine and dopamine neurons are needed for the execution of an appetitive conditioned response (CR) and an aversive CR, respectively, and we, thus, proposed that these neurons mediate US prediction signals that drive appetitive and aversive CRs. Our findings suggest that the basic principles of functioning of aminergic systems in associative learning, i.e., to transmit prediction error signals for conditioning and to convey US prediction signals for execution of CR, are conserved among insects and mammals, on account of the fact that the organization of the insect brain is much simpler than that of the mammalian brain. Further investigation of aminergic systems that govern associative learning in insects should lead to a better understanding of commonalities and diversities of computational rules underlying associative learning in animals.
Kinase Activity in the Olfactory Bulb Is Required for Odor Memory Consolidation
ERIC Educational Resources Information Center
Tong, Michelle T.; Kim, Tae-Young P.; Cleland, Thomas A.
2018-01-01
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)--a process that is closely associated…
Wang, Zhengwei; Qu, Yufeng; Dong, Shihao; Wen, Ping; Li, Jianjun; Tan, Ken; Menzel, Randolf
2016-01-01
In Southeast Asia the native honey bee species Apis cerana is often attacked by hornets (Vespa velutina), mainly in the period from April to November. During the co-evolution of these two species honey bees have developed several strategies to defend themselves such as learning the odors of hornets and releasing alarm components to inform other mates. However, so far little is known about whether and how honey bees modulate their olfactory learning in the presence of the hornet predator and alarm components of honey bee itself. In the present study, we test for associative olfactory learning of A. cerana in the presence of predator odors, the alarm pheromone component isopentyl acetate (IPA), or a floral odor (hexanal) as a control. The results show that bees can detect live hornet odors, that there is almost no association between the innately aversive hornet odor and the appetitive stimulus sucrose, and that IPA is less well associated with an appetitive stimulus when compared with a floral odor. In order to imitate natural conditions, e.g. when bees are foraging on flowers and a predator shows up, or alarm pheromone is released by a captured mate, we tested combinations of the hornet odor and floral odor, or IPA and floral odor. Both of these combinations led to reduced learning scores. This study aims to contribute to a better understanding of the prey-predator system between A. cerana and V. velutina.
ERIC Educational Resources Information Center
Xie, Zhiyong; Huang, Cheng; Ci, Bo; Lianzhang, Wang; Zhong, Yi
2013-01-01
Extensive studies of "Drosophila" mushroom body in formation and retrieval of olfactory memories allow us to delineate the functional logic for memory storage and retrieval. Currently, there is a questionable disassociation of circuits for memory storage and retrieval during "Drosophila" olfactory memory processing. Formation…
Parametric and genetic analysis of Drosophila appetitive long-term memory and sugar motivation.
Colomb, J; Kaiser, L; Chabaud, M-A; Preat, T
2009-06-01
Distinct forms of memory can be highlighted using different training protocols. In Drosophila olfactory aversive learning, one conditioning session triggers memory formation independently of protein synthesis, while five spaced conditioning sessions lead to the formation of long-term memory (LTM), a long-lasting memory dependent on de novo protein synthesis. In contrast, one session of odour-sugar association appeared sufficient for the fly to form LTM. We designed and tuned an apparatus that facilitates repeated discriminative conditioning by alternate presentations of two odours, one being associated with sugar, as well as a new paradigm to test sugar responsiveness (SR). Our results show that both SR and short-term memory (STM) scores increase with starvation length before conditioning. The protein dependency of appetitive LTM is independent of the repetition and the spacing of training sessions, on the starvation duration and on the strength of the unconditioned stimulus. In contrast to a recent report, our test measures an abnormal SR of radish mutant flies, which might initiate their STM and LTM phenotypes. In addition, our work shows that crammer and tequila mutants, which are deficient for aversive LTM, present both an SR and an appetitive STM defect. Using the MB247-P[switch] system, we further show that tequila is required in the adult mushroom bodies for normal sugar motivation.
Development of a mouse test for repetitive, restricted behaviors: relevance to autism.
Moy, Sheryl S; Nadler, Jessica J; Poe, Michele D; Nonneman, Randal J; Young, Nancy B; Koller, Beverly H; Crawley, Jacqueline N; Duncan, Gary E; Bodfish, James W
2008-03-17
Repetitive behavior, a core symptom of autism, encompasses stereotyped responses, restricted interests, and resistance to change. These studies investigated whether different components of the repetitive behavior domain could be modeled in the exploratory hole-board task in mice. Four inbred mouse strains, C57BL/6J, BALB/cByJ, BTBR T+tf/J, and FVB/NJ, and mice with reduced expression of Grin1, leading to NMDA receptor hypofunction (NR1neo/neo mice), were tested for exploration and preference for olfactory stimuli in an activity chamber with a 16-hole floor-board. Reduced exploration and high preference for holes located in the corners of the chamber were observed in BALB/cByJ and BTBR T+tf/J mice. All inbred strains had initial high preference for a familiar olfactory stimulus (clean cage bedding). BTBR T+tf/J was the only strain that did not demonstrate a shift in hole preference towards an appetitive olfactory stimulus (cereal or a chocolate chip), following home cage exposure to the food. The NR1neo/neo mice showed lower hole selectivity and aberrant olfactory stimulus preference, in comparison to wildtype controls. The results indicate that NR1neo/neo mice have repetitive nose poke responses that are less modified by environmental contingencies than responses in wildtype mice. 25-30% of NMDA receptor hypomorphic mice also show self-injurious responses. Findings from the olfactory studies suggest that resistance to change and restricted interests might be modeled in mice by a failure to alter patterns of hole preference following familiarization with an appetitive stimulus, and by high preference persistently demonstrated for one particular olfactory stimulus. Further work is required to determine the characteristics of optimal mouse social stimuli in the olfactory hole-board test.
... article was contributed by: familydoctor.org editorial staff Categories: Men, Seniors, WomenTags: ageusia, anosmia, chemosensory disorders, decreased appetite, dysgeusia, flavor, olfactory dysfunction, overseasoning food, senses, sensory dysfunction, sensory impairment, smell, taste September ...
Contribution of DA Signaling to Appetitive Odor Perception in a Drosophila Model.
Pu, Yuhan; Palombo, Melissa Megan Masserant; Shen, Ping
2018-04-13
Understanding cognitive processes that translate chemically diverse olfactory stimuli to specific appetitive drives remains challenging. We have shown that food-related odors arouse impulsive-like feeding of food media that are palatable and readily accessible in well-nourished Drosophila larvae. Here we provide evidence that two assemblies of four dopamine (DA) neurons, one per brain hemisphere, contribute to perceptual processing of the qualitative and quantitative attributes of food scents. These DA neurons receive neural representations of chemically diverse food-related odors, and their combined neuronal activities become increasingly important as the chemical complexity of an appetizing odor stimulus increases. Furthermore, in each assembly of DA neurons, integrated odor signals are transformed to one-dimensional DA outputs that have no intrinsic reward values. Finally, a genetic analysis has revealed a D1-type DA receptor (Dop1R1)-gated mechanism in neuropeptide Y-like neurons that assigns appetitive significance to selected DA outputs. Our findings suggest that fly larvae provide a useful platform for elucidation of molecular and circuit mechanisms underlying cognitive processing of olfactory and possibly other sensory cues.
Appetite-enhancing effects of vanilla flavours such as vanillin.
Ogawa, Kakuyou; Tashima, Akira; Sadakata, Momoko; Morinaga, Osamu
2018-06-01
Vanilla flavour is familiar to consumers through foods, cosmetics, household products and some medicines. Vanilla flavouring agents typically contain vanillin or its analogue ethyl vanillin. Our previous study revealed that the inhalation of eugenol, which contains a vanillyl group, has an appetite-enhancing effect, and the inhalation of aroma compounds containing the vanillyl group or its analogues led to increased food intake in mice. Here, we found that vanillin, ethyl vanillin and eugenol showed appetite-enhancing effects, whereas isoeugenol and safrole did not. These results suggest that the appetite-enhancing effects could be attributable to the vanillyl group and could be affected by the position of the double bond in the aliphatic chain. Furthermore, the results of intraperitoneal administration of eugenol and vanillin suggest that their appetite-enhancing effects could occur via stimulation of olfactory receptors.
2014-01-01
The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299
ERIC Educational Resources Information Center
Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.
2011-01-01
An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…
Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour.
Herbert, Lucila T; Vázquez, Diego E; Arenas, Andrés; Farina, Walter M
2014-10-01
Glyphosate (GLY) is a broad-spectrum herbicide used for weed control. The sub-lethal impact of GLY on non-target organisms such as insect pollinators has not yet been evaluated. Apis mellifera is the main pollinator in agricultural environments and is a well-known model for behavioural research. Honeybees are also accurate biosensors of environmental pollutants and their appetitive behavioural response is a suitable tool with which to test sub-lethal effects of agrochemicals. We studied the effects of field-realistic doses of GLY on honeybees exposed chronically or acutely to the herbicide. We focused on sucrose sensitivity, elemental and non-elemental associative olfactory conditioning of the proboscis extension response (PER), and foraging-related behaviour. We found a reduced sensitivity to sucrose and learning performance for the groups chronically exposed to GLY concentrations within the range of recommended doses. When olfactory PER conditioning was performed with sucrose reward with the same GLY concentrations (acute exposure), elemental learning and short-term memory retention decreased significantly compared with controls. Non-elemental associative learning was also impaired by an acute exposure to GLY traces. Altogether, these results imply that GLY at concentrations found in agro-ecosystems as a result of standard spraying can reduce sensitivity to nectar reward and impair associative learning in honeybees. However, no effect on foraging-related behaviour was found. Therefore, we speculate that successful forager bees could become a source of constant inflow of nectar with GLY traces that could then be distributed among nestmates, stored in the hive and have long-term negative consequences on colony performance. © 2014. Published by The Company of Biologists Ltd.
Biergans, Stephanie D.; Claudianos, Charles; Reinhard, Judith; Galizia, C. G.
2016-01-01
The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., ‘correct’ (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes. PMID:27672359
Biergans, Stephanie D; Claudianos, Charles; Reinhard, Judith; Galizia, C G
2016-01-01
The activity of the epigenetic writers DNA methyltransferases (Dnmts) after olfactory reward conditioning is important for both stimulus-specific long-term memory (LTM) formation and extinction. It, however, remains unknown which components of memory formation Dnmts regulate (e.g., associative vs. non-associative) and in what context (e.g., varying training conditions). Here, we address these aspects in order to clarify the role of Dnmt-mediated DNA methylation in memory formation. We used a pharmacological Dnmt inhibitor and classical appetitive conditioning in the honeybee Apis mellifera, a well characterized model for classical conditioning. We quantified the effect of DNA methylation on naïve odor and sugar responses, and on responses following olfactory reward conditioning. We show that (1) Dnmts do not influence naïve odor or sugar responses, (2) Dnmts do not affect the learning of new stimuli, but (3) Dnmts influence odor-coding, i.e., 'correct' (stimulus-specific) LTM formation. Particularly, Dnmts reduce memory specificity when experience is low (one-trial training), and increase memory specificity when experience is high (multiple-trial training), generating an ecologically more useful response to learning. (4) In reversal learning conditions, Dnmts are involved in regulating both excitatory (re-acquisition) and inhibitory (forgetting) processes.
Hunger state affects both olfactory abilities and gustatory sensitivity.
Hanci, Deniz; Altun, Huseyin
2016-07-01
Chemical senses such as odor, taste and appearance are directly related with appetite. Understanding the relation between appetite and flavor is getting more important due to increasing number of obese patients worldwide. The literature on the studies investigating the change in olfactory abilities and gustatory sensitivity mostly performed using food-related odors and tastes rather than standardized tests were developed to study olfaction and gustation. Therefore, results are inconsistent and the relationship between olfactory and gustatory sensitivity with respect to the actual state of human satiety is still not completely understood. Here, for the first time in literature, we investigated the change in both olfactory abilities and gustatory sensitivity in hunger and in satiety using 123 subjects (37 men, 86 women; mean age 31.4 years, age range 21-41 years). The standardized Sniffin' Sticks Extended Test and Taste Strips were used for olfactory testing and gustatory sensitivity, respectively. TDI score (range 1-48) was calculated as the collective scores of odor threshold (T), odor discrimination (D) and odor identification (I). The evaluation was performed in two successive days where the hunger state of test subjects was confirmed by blood glucose test strips (mean blood glucose level 90.0 ± 5.6 mg/dl in hunger and 131.4 ± 8.1 mg/dl in satiety). The results indicated statistically significant decrease in olfaction in satiety compared to hunger (mean TDI 39.3 ± 1.1 in hunger, 37.4 ± 1.1 in satiety, p < 0.001). The comparison of gustatory sensitivity indicated significantly higher sensitivity to sweet, sour and salty in hunger (p < 0.001), but significantly higher sensitivity to bitter tastant in satiety (p < 0.001). With this prospective study, we were able to show that both olfactory abilities and gustatory sensitivity were affected by hunger state.
Liefting, Maartje; Hoedjes, Katja M; Lann, Cécile Le; Smid, Hans M; Ellers, Jacintha
2018-05-16
We are only starting to understand how variation in cognitive ability can result from local adaptations to environmental conditions. A major question in this regard is to what extent selection on cognitive ability in a specific context affects that ability in general through correlated evolution. To address this question we performed artificial selection on visual associative learning in female Nasonia vitripennis wasps. Using appetitive conditioning in which a visual stimulus was offered in association with a host reward, the ability to learn visual associations was enhanced within 10 generations of selection. To test for correlated evolution affecting this form of learning, the ability to readily form learned associations in females was also tested using an olfactory instead of a visual stimulus in the appetitive conditioning. Additionally, we assessed whether the improved associative learning ability was expressed across sexes by colour-conditioning males with a mating reward. Both females and males from the selected lines consistently demonstrated an increased associative learning ability compared to the control lines, independent of learning context or conditioned stimulus. No difference in relative volume of brain neuropils was detected between the selected and control lines. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ferreira, A; Dahlöf, L G; Hansen, S
1987-10-01
During lactation the female rat is hyperphagic, aggressive toward adult conspecifics, and less fearful than usual. In the first experiment the importance of olfactory receptors was investigated by surgically removing the olfactory epithelium of the nasal cavity. Mother rats subjected to this treatment consumed significantly less food and weighed less than sham-operated females. Moreover, experimental subjects displayed a dramatic decrease in maternal aggression. Fear behavior (sound-elicited freezing), on the other hand, was not affected by the lesions. The mediodorsal thalamic nucleus and the prefrontal insular cortex form part of the central olfactory system. The second experiment assessed the involvement of this olfactory-related thalamocortical system and the behavioral profile of mother rats. It was found that whereas the thalamic and cortical lesions left food intake and fear behavior unaffected, they significantly decreased the frequency with which the mother would attack an intruder male placed into her home cage. The sense of smell appears, according to the present experiments, to play a crucial role in maternal aggression.
Plaçais, Pierre-Yves; Trannoy, Séverine; Friedrich, Anja B; Tanimoto, Hiromu; Preat, Thomas
2013-11-14
One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs), prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM). Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM) retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Assessment of Appetitive Behavior in Honey Bee Dance Followers.
Moauro, Mariel A; Balbuena, M Sol; Farina, Walter M
2018-01-01
Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information.
Assessment of Appetitive Behavior in Honey Bee Dance Followers
Moauro, Mariel A.; Balbuena, M. Sol; Farina, Walter M.
2018-01-01
Honey bees transfer different informational components of the discovered feeding source to their nestmates during the waggle dance. To decode the multicomponent information of this complex behavior, dance followers have to attend to the most relevant signal elements while filtering out less relevant ones. To achieve that, dance followers should present improved abilities to acquire information compared with those bees not engaged in this behavior. Through proboscis extension response assays, sensory and cognitive abilities were tested in follower and non-follower bees. Individuals were captured within the hive, immediately after following waggle runs or a bit further from the dancer. Both behavioral categories present low and similar spontaneous odor responses (SORs). However, followers exhibit differences in responsiveness to sucrose and odor discrimination: followers showed increased gustatory responsiveness and, after olfactory differential conditioning, better memory retention than non-followers. Thus, the abilities of the dance followers related to appetitive behavior would allow them to improve the acquisition of the dance surrounding information. PMID:29755329
The participation of cortical amygdala in innate, odour-driven behaviour.
Root, Cory M; Denny, Christine A; Hen, René; Axel, Richard
2014-11-13
Innate behaviours are observed in naive animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centres have been anatomically defined, but the specific pathways responsible for innate responses to volatile odours have not been identified. Here we devise genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviours. Moreover, we use the promoter of the activity-dependent gene arc to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odours that elicit innate behaviours. Optical activation of these neurons leads to appropriate behaviours that recapitulate the responses to innate odours. These data indicate that the cortical amygdala plays a critical role in generating innate odour-driven behaviours but do not preclude its participation in learned olfactory behaviours.
He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien
2016-10-06
In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Junca, Pierre; Carcaud, Julie; Moulin, Sibyle; Garnery, Lionel; Sandoz, Jean-Christophe
2014-01-01
In Pavlovian conditioning, animals learn to associate initially neutral stimuli with positive or negative outcomes, leading to appetitive and aversive learning respectively. The honeybee (Apis mellifera) is a prominent invertebrate model for studying both versions of olfactory learning and for unraveling the influence of genotype. As a queen bee mates with about 15 males, her worker offspring belong to as many, genetically-different patrilines. While the genetic dependency of appetitive learning is well established in bees, it is not the case for aversive learning, as a robust protocol was only developed recently. In the original conditioning of the sting extension response (SER), bees learn to associate an odor (conditioned stimulus - CS) with an electric shock (unconditioned stimulus - US). This US is however not a natural stimulus for bees, which may represent a potential caveat for dissecting the genetics underlying aversive learning. We thus first tested heat as a potential new US for SER conditioning. We show that thermal stimulation of several sensory structures on the bee’s body triggers the SER, in a temperature-dependent manner. Moreover, heat applied to the antennae, mouthparts or legs is an efficient US for SER conditioning. Then, using microsatellite analysis, we analyzed heat sensitivity and aversive learning performances in ten worker patrilines issued from a naturally inseminated queen. We demonstrate a strong influence of genotype on aversive learning, possibly indicating the existence of a genetic determinism of this capacity. Such determinism could be instrumental for efficient task partitioning within the hive. PMID:24828422
Effect of strong fragrance on olfactory detection threshold.
Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin
2014-09-01
To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P < .05). Use of strong fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
The participation of cortical amygdala in innate, odor-driven behavior
Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard
2014-01-01
Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519
G(o) Activation Is Required for Both Appetitive and Aversive Memory Acquisition in "Drosophila"
ERIC Educational Resources Information Center
Madalan, Adrian; Yang, Xiao; Ferris, Jacob; Zhang, Shixing; Roman, Gregg
2012-01-01
Heterotrimeric G(o) is an abundant brain protein required for negatively reinforced short-term associative olfactory memory in "Drosophila". G(o) is the only known substrate of the S1 subunit of pertussis toxin (PTX) in fly, and acute expression of PTX within the mushroom body neurons (MB) induces a reversible deficit in associative olfactory…
ERIC Educational Resources Information Center
Coureaud, Gerard; Languille, Solene; Schaal, Benoist; Hars, Bernard
2009-01-01
Mammary pheromone (MP)-induced odor memory is a new model of appetitive memory functioning early in a mammal, the newborn rabbit. Some properties of this associative memory are analyzed by the use of anisomycin as an amnesic agent. Long-term memory (LTM) was impaired by anisomycin delivered immediately, but not 4 h after either acquisition or…
Spiny lobsters detect conspecific blood-borne alarm cues exclusively through olfactory sensilla.
Shabani, Shkelzen; Kamio, Michiya; Derby, Charles D
2008-08-01
When attacked by predators, diverse animals actively or passively release molecules that evoke alarm and related anti-predatory behavior by nearby conspecifics. The actively released molecules are alarm pheromones, whereas the passively released molecules are alarm cues. For example, many insects have alarm-signaling systems that involve active release of alarm pheromones from specialized glands and detection of these signals using specific sensors. Many crustaceans passively release alarm cues, but the nature of the cues, sensors and responses is poorly characterized. Here we show in laboratory and field experiments that injured Caribbean spiny lobsters, Panulirus argus, passively release alarm cues via blood (hemolymph) that induce alarm responses in the form of avoidance and suppression of feeding. These cues are detected exclusively through specific olfactory chemosensors, the aesthetasc sensilla. The alarm cues for Caribbean spiny lobsters are not unique to the species but do show some phylogenetic specificity: P. argus responds primarily with alarm behavior to conspecific blood, but with mixed alarm and appetitive behaviors to blood from the congener Panulirus interruptus, or with appetitive behaviors to blood from the blue crab Callinectes sapidus. This study lays the foundation for future neuroethological studies of alarm cue systems in this and other decapod crustaceans.
Massolt, Elske T; van Haard, Paul M; Rehfeld, Jens F; Posthuma, Eduardus F; van der Veer, Eveline; Schweitzer, Dave H
2010-04-09
Cephalic effects on appetite are mediated by vagal tone and altered gastrointestinal hormones. The objective of this study is to explore the relationship between appetite and levels of gastrointestinal hormones after smelling chocolate and after melt-and-swallow 30 g chocolate (1.059 oz, 85% cocoa, 12.5 g of sugar per 100g product). Twelve female residents (BMI between 18 and 25 kg/m(2)) all participated in two 60-minute study sessions. In the first session, all 12 women ate chocolate; for the second session, they were randomized either to smell chocolate (n=6) or to serve as a control (no eating or smelling; n=6). At the start of the sessions, levels of insulin, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK), but not glucose, correlated with appetite scored on a visual analogue scale (VAS). In contrast, ghrelin levels correlated inversely with scored appetite. Chocolate eating and smelling both induced a similar appetite suppression with a disappearance of correlations between VAS scores and insulin, GLP-1 and CCK levels. However, while the correlation between VAS score and ghrelin disappeared completely after chocolate eating, it reversed after chocolate smelling, that is, olfactory stimulation with dark chocolate (85%) resulted in a satiation response that correlated inversely with ghrelin levels. Copyright 2010 Elsevier B.V. All rights reserved.
Involvement of DNA methylation in memory processing in the honey bee.
Lockett, Gabrielle A; Helliwell, Paul; Maleszka, Ryszard
2010-08-23
DNA methylation, an important and evolutionarily conserved epigenetic mechanism, is implicated in learning and memory processes in vertebrates, but its role in behaviour in invertebrates is unknown. We examined the role of DNA methylation in memory in the honey bee using an appetitive Pavlovian olfactory discrimination task, and by assessing the expression of DNA methyltransferase3, a key driver of epigenetic reprogramming. Here we report that DNA methyltransferase inhibition reduces acquisition retention and alters the extinction depending on treatment time, and DNA methyltransferase3 is upregulated after training. Our findings add to the understanding of epigenetic mechanisms in learning and memory, extending known roles of DNA methylation to appetitive and extinction memory, and for the first time implicate DNA methylation in memory in invertebrates.
Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.
2007-01-01
The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances. PMID:16855098
Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L
2006-07-19
The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.
The wiring diagram of a glomerular olfactory system
Berck, Matthew E; Khandelwal, Avinash; Claus, Lindsey; Hernandez-Nunez, Luis; Si, Guangwei; Tabone, Christopher J; Li, Feng; Truman, James W; Fetter, Rick D; Louis, Matthieu; Samuel, Aravinthan DT; Cardona, Albert
2016-01-01
The sense of smell enables animals to react to long-distance cues according to learned and innate valences. Here, we have mapped with electron microscopy the complete wiring diagram of the Drosophila larval antennal lobe, an olfactory neuropil similar to the vertebrate olfactory bulb. We found a canonical circuit with uniglomerular projection neurons (uPNs) relaying gain-controlled ORN activity to the mushroom body and the lateral horn. A second, parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically connected local neurons (LNs) selectively integrates multiple ORN signals already at the first synapse. LN-LN synaptic connections putatively implement a bistable gain control mechanism that either computes odor saliency through panglomerular inhibition, or allows some glomeruli to respond to faint aversive odors in the presence of strong appetitive odors. This complete wiring diagram will support experimental and theoretical studies towards bridging the gap between circuits and behavior. DOI: http://dx.doi.org/10.7554/eLife.14859.001 PMID:27177418
A case of successful treatment with donepezil of olfactory hallucination in parkinson disease.
Osada, Osamu; Iwasaki, Akira
2017-01-31
We report a 74-year-old female patient with Parkinson disease (PD). Around 2010, she developed depression and bradykinesia and was diagnosed as PD. In July 2014, she came to our hospital, of which she lived in the neighborhood. In the last part of December 2014, she felt uneasy about her fecal smell and saw a psychiatrist in the first part of January 2015. Quetiapine (25 mg/day) was added. In the last part of January, she complained of fecal smell everywhere and could not take a meal. No-one else could detect the smell. A diagnosis of olfactory hallucination was made. The next day after increasing to 75mg/day, however, she was admitted to our hospital because of refusing to take medicine. After introducing donepezil, olfactory hallucination subsided and her appetite was improved. Brain MRI showed atrophy of the bilateral temporal lobes and N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography ( 123 I-IMP-SPECT) revealed hypoperfusion in the bilateral mesial temporal lobes. We suppose that cholinergic denervation in the mesial temporal lobes is an important determinant of her olfactory hallucination.
Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R
2016-02-01
Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.
Food Preference and Appetite after Switching between Sweet and Savoury Odours in Women
Ramaekers, Mariëlle G.; Luning, Pieternel A.; Lakemond, Catriona M. M.; van Boekel, Martinus A. J. S.; Gort, Gerrit; Boesveldt, Sanne
2016-01-01
Background Exposure to food odours increases the appetite for congruent foods and decreases the appetite for incongruent foods. However, the effect of exposure to a variety of food odours, as often occurs in daily life, is unknown. Objective Investigate how switching between sweet and savoury odours affects the appetite for sweet and savoury products. Design Thirty women (age: 18-45y; BMI: 18.5-25kg/m2) intensely smelled the contents of cups filled with banana, meat or water (no-odour) in a within-subject design with four combinations: no-odour/banana, no-odour/meat, meat/banana and banana/meat. Participants received one combination per test day. In each combination, two cups with different fillings were smelled for five minutes after each other. Treatment order was balanced as much as possible. The effects of previous exposure and current odour on the appetite for (in)congruent sweet and savoury products, and odour pleasantness were analysed. A change from meat to banana odour or banana to meat odour was referred to as switch, whereas a change from no-odour to meat odour or no-odour to banana odour was no-switch. Results The current odour (P<0.001), as opposed to the previous exposure (P = 0.71), determined the appetite for (in)congruent sweet and savoury products, already one minute after a switch between sweet and savoury odours. The pleasantness of the odour decreased during odour exposure (P = 0.005). Conclusions After a switch, the appetite for specific products quickly adjusted to the new odour and followed the typical pattern as found during odour exposure in previous studies. Interestingly, the appetite for the smelled food remained elevated during odour exposure, known as sensory-specific appetite, whereas the pleasantness of the odour decreased over time, previously termed olfactory sensory-specific satiety. This seeming contradiction may result from different mechanisms underlying the odour-induced anticipation of food intake versus the decrease in hedonic value during prolonged sensory stimulation. PMID:26751975
Food Preference and Appetite after Switching between Sweet and Savoury Odours in Women.
Ramaekers, Mariëlle G; Luning, Pieternel A; Lakemond, Catriona M M; van Boekel, Martinus A J S; Gort, Gerrit; Boesveldt, Sanne
2016-01-01
Exposure to food odours increases the appetite for congruent foods and decreases the appetite for incongruent foods. However, the effect of exposure to a variety of food odours, as often occurs in daily life, is unknown. Investigate how switching between sweet and savoury odours affects the appetite for sweet and savoury products. Thirty women (age: 18-45y; BMI: 18.5-25kg/m2) intensely smelled the contents of cups filled with banana, meat or water (no-odour) in a within-subject design with four combinations: no-odour/banana, no-odour/meat, meat/banana and banana/meat. Participants received one combination per test day. In each combination, two cups with different fillings were smelled for five minutes after each other. Treatment order was balanced as much as possible. The effects of previous exposure and current odour on the appetite for (in)congruent sweet and savoury products, and odour pleasantness were analysed. A change from meat to banana odour or banana to meat odour was referred to as switch, whereas a change from no-odour to meat odour or no-odour to banana odour was no-switch. The current odour (P<0.001), as opposed to the previous exposure (P = 0.71), determined the appetite for (in)congruent sweet and savoury products, already one minute after a switch between sweet and savoury odours. The pleasantness of the odour decreased during odour exposure (P = 0.005). After a switch, the appetite for specific products quickly adjusted to the new odour and followed the typical pattern as found during odour exposure in previous studies. Interestingly, the appetite for the smelled food remained elevated during odour exposure, known as sensory-specific appetite, whereas the pleasantness of the odour decreased over time, previously termed olfactory sensory-specific satiety. This seeming contradiction may result from different mechanisms underlying the odour-induced anticipation of food intake versus the decrease in hedonic value during prolonged sensory stimulation.
Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.
Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice
2012-01-01
Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.
Neuropeptide Y Enhances Olfactory Mucosa Responses to Odorant in Hungry Rats
Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice
2012-01-01
Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes. PMID:23024812
ERIC Educational Resources Information Center
Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi
2004-01-01
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…
Ghrelin, leptin and adiponectin as possible predictors of the hedonic value of odors.
Trellakis, Sokratis; Tagay, Sefik; Fischer, Cornelia; Rydleuskaya, Alena; Scherag, André; Bruderek, Kirsten; Schlegl, Sandra; Greve, Jens; Canbay, Ali E; Lang, Stephan; Brandau, Sven
2011-02-25
Several lines of evidence point to a close relationship between the hormones of energy homeostasis and the olfactory system. Examples are the localization of leptin and adiponectin receptors in the olfactory system or increased activation of brain regions related to the palatability and the hedonic value of food in response to food pictures after application of ghrelin. In this preliminary study, we tested in 31 subjects (17 male and 14 female) if and to what extent the peripheral blood concentrations of "satiety" hormones, such as leptin, adiponectin, and ghrelin (acyl and total), are correlated with the self-ratings of odor pleasantness and with the objective olfactory and gustatory ability. The hedonic values of some odors were found to be differently rated between donors depending on gender and body weight. The concentrations of leptin, adiponectin and total ghrelin were significantly associated with the hedonic value of pepper black oil, but failed to show significant correlations for 5 other odors tested. Except for a significant association between leptin and odor identification, hormone concentrations were not linked to the abilities of smell and taste. Peripheral adipokines and gut hormones may alter the perception and pleasantness of specific odors, presumably either directly through their receptors in the olfactory system or indirectly through central interfaces between the regulation systems of olfaction, appetite control, memory and motivation. Copyright © 2010 Elsevier B.V. All rights reserved.
Olfactory modulation by dopamine in the context of aversive learning
Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.
2012-01-01
The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185
Peterson, Claire M; Tissot, Abbigail M; Matthews, Abigail; Hillman, Jennifer B; Peugh, James L; Rawers, Emily; Tong, Jenny; Mitan, Laurie
2016-10-01
Restrictive eating disorders (ED) are increasing and represent a serious risk to the health of adolescent females. Restrictive ED in youth are often treated through aggressive short-term refeeding. Although evidence supports that this intervention is the "gold standard" for improving ED outcomes in youth, little research has specifically probed appetite and meal-related responses to this type of intensive, short-term refeeding in newly diagnosed individuals. Information about appetite and meal-related dysfunction could provide valuable insights regarding treatment-interfering features of ED in both acute inpatient and longer-term outpatient treatment. The purpose of this study was to evaluate the hunger, fullness, olfactory, and gustatory responses of adolescents with newly-diagnosed restrictive ED and to probe how and when these responses are altered by refeeding. Using a quasi-experimental ecologically valid methodology, this study described and compared profiles of hunger, fullness, olfactory, and gustatory responses in adolescent females (n = 15) with newly diagnosed restrictive ED at hospital admission (i.e., severe malnutrition) and after medical refeeding, in comparison to healthy controls (n = 15). Results showed that newly diagnosed (i.e., malnourished) adolescents with ED showed significantly different meal-related experiences than controls. Refeeding improved some of these differences, but not all. Following refeeding, females with ED continued to show lower hunger, greater fullness, and lower pleasantness of smell ratings compared to controls. Unpleasantness of taste ratings maladaptively increased, such that females who were re-fed reported more aversive scents than pre-treatment. Profiles of meal-related responses were also identified and compared between groups. The applicability of these findings are discussed within the context of critical periods of change during refeeding treatment and potentially promising intervention targets that might enhance treatment outcomes for adolescents with newly onset, restrictive ED. Copyright © 2016 Elsevier Ltd. All rights reserved.
Loss of appetite; Decreased appetite; Anorexia ... Any illness can reduce appetite. If the illness is treatable, the appetite should return when the condition is cured. Loss of appetite can cause weight ...
Impacts of upper respiratory tract disease on olfactory behavior of the Mojave desert tortoise
Germano, Jennifer; Van Zerr, Vanessa E.; Esque, Todd C.; Nussear, Ken E.; Lamberski, Nadine
2014-01-01
Upper respiratory tract disease (URTD) caused by Mycoplasma agassizii is considered a threat to desert tortoise populations that should be addressed as part of the recovery of the species. Clinical signs can be intermittent and include serous or mucoid nasal discharge and respiratory difficulty when nares are occluded. This nasal congestion may result in a loss of the olfactory sense. Turtles are known to use olfaction to identify food items, predators, and conspecifics; therefore, it is likely that URTD affects not only their physical well-being but also their behavior and ability to perform necessary functions in the wild. To determine more specifically the impact nasal discharge might have on free-ranging tortoises (Gopherus agassizii), we compared the responses of tortoises with and without nasal discharge and both positive and negative for M. agassizii antibodies to a visually hidden olfactory food stimulus and an empty control. We found that nasal discharge did reduce sense of smell and hence the ability to locate food. Our study also showed that moderate chronic nasal discharge in the absence of other clinical signs did not affect appetite in desert tortoises.
Kinase activity in the olfactory bulb is required for odor memory consolidation.
Tong, Michelle T; Kim, Tae-Young P; Cleland, Thomas A
2018-05-01
Long-term fear memory formation in the hippocampus and neocortex depends upon brain-derived neurotrophic factor (BDNF) signaling after acquisition. Incremental, appetitive odor discrimination learning is thought to depend substantially on the differentiation of adult-born neurons within the olfactory bulb (OB)-a process that is closely associated with BDNF signaling. We sought to elucidate the role of neurotrophin signaling within the OB on odor memory consolidation. Male mice were trained on odor-reward associative discriminations after bilateral infusion of the kinase inhibitor K252a, or vehicle control, into the OB. K252a is a partially selective inhibitor of tyrosine kinase (Trk) receptors, including the TrkB receptor for BDNF, though it also inhibits other plasticity-related kinases such as PKC and CaMKII/IV. K252a infusion into the OB did not impair odor acquisition or short-term (2 h) memory for the learned discriminations, but significantly impaired long-term (48 h) odor memory (LTM). This LTM deficit also was associated with reduced selectivity for the conditioned odorant in a reward-seeking digging task. Infusions of K252a immediately prior to testing did not impair LTM recall. These results indicate that kinase activation in the OB is required for the consolidation of odor memory of incrementally acquired information. © 2018 Tong et al.; Published by Cold Spring Harbor Laboratory Press.
An Appetitive Conditioned Stimulus Enhances Fear Acquisition and Impairs Fear Extinction
ERIC Educational Resources Information Center
Leung, Hiu T.; Holmes, Nathan M.; Westbrook, R. Frederick
2016-01-01
Four experiments used between- and within-subject designs to examine appetitive-aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus…
An appetitive conditioned stimulus enhances fear acquisition and impairs fear extinction
Leung, Hiu T.; Holmes, Nathan M.
2016-01-01
Four experiments used between- and within-subject designs to examine appetitive–aversive interactions in rats. Experiments 1 and 2 examined the effect of an excitatory appetitive conditioned stimulus (CS) on acquisition and extinction of conditioned fear. In Experiment 1, a CS shocked in a compound with an appetitive excitor (i.e., a stimulus previously paired with sucrose) underwent greater fear conditioning than a CS shocked in a compound with a neutral stimulus. Conversely, in Experiment 2, a CS extinguished in a compound with an appetitive excitor underwent less extinction than a CS extinguished in a compound with a neutral stimulus. Experiments 3 and 4 compared the amount of fear conditioning to an appetitive excitor and a familiar but neutral target CS when the compound of these stimuli was paired with shock. In each experiment, more fear accrued to the appetitive excitor than to the neutral CS. These results show that an appetitive excitor influences acquisition and extinction of conditioned fear to a neutral CS and itself undergoes a greater associative change than the neutral CS across compound conditioning. They are discussed with respect to the role of motivational information in regulating an associative change in appetitive–aversive interactions. PMID:26884229
Le, Hoang T. M. D.; Angotzi, Anna Rita; Ebbesson, Lars O. E.; Karlsen, Ørjan
2016-01-01
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding. PMID:27100086
Le, Hoang T M D; Angotzi, Anna Rita; Ebbesson, Lars O E; Karlsen, Ørjan; Rønnestad, Ivar
2016-01-01
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding.
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees
Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles
2015-01-01
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238
Reward Systems in the Brain and Nutrition.
Rolls, Edmund T
2016-07-17
The taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are combined by associative learning with olfactory and visual inputs for some neurons, and these neurons encode food reward value in that they respond to food only when hunger is present and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions and selective attention to affective value, modulate the representation of the reward value of taste, olfactory, and flavor stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex. These food reward representations are important in the control of appetite and food intake. Individual differences in reward representations may contribute to obesity, and there are age-related differences in these reward representations. Implications of how reward systems in the brain operate for understanding, preventing, and treating obesity are described.
Reward signal in a recurrent circuit drives appetitive long-term memory formation.
Ichinose, Toshiharu; Aso, Yoshinori; Yamagata, Nobuhiro; Abe, Ayako; Rubin, Gerald M; Tanimoto, Hiromu
2015-11-17
Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity.
Rauwolfia vomitoria inhibits olfaction and modifies olfactory bulb cells.
Ekong, Moses B; Peter, Aniekan I; Edagha, Innocent A; Ekpene, Ubong U; Friday, Daniel A
2016-06-01
The rising cost of orthodox medication has endeared so many to the use of herbs for the management of neurological conditions. Rauwolfia vomitoria (RV) one of such herbs is a rainforest shrub whose parts are used locally in the management of psychiatry and other medical issues. Its usefulness though not in doubt is wrapped with adverse reports as its active constituents depletes brain monoamine and dopamine stores. This motivated this research on the effects of the root bark extract on olfaction and the olfactory bulb of adult Wistar rats. Eighteen adult Wistar rats (220g average) were divided into three groups (n=6); control (placebo), 200mg/kg and 400mg/kg RV root bark extract, respectively. The oral administration lasted for seven days and on day 8, test of olfaction was carried out and the animals immediately anaesthetized with ketamine hydrochloride (i.p.) and perfuse-fixed with 10% neutral buffered formalin. All the brains were processed for histology and immunoreactivity. Results showed loss of body weights and olfaction in the 200mg/kg and 400mg/kg RV groups. There was hypertrophy and atrophy of mitral cells respectively, in the 200mg/kg and 400mg/kg RV groups, while there was hyperplasia of cells in the internal granular and plexiform layers of both groups. There was decreased neuron specific enolase (NSE) and neurofilament (NF) expression in the 200mg/kg RV group, while NF and glial fibrillary acidic protein (GFAP) expression was decreased in the 400mg/kg RV group. However, NSE expression was enhanced in the 400mg/kg group, while GFAP expression was enhanced in the 200mg/kg RV group. These results suggest that these doses of RV affect olfaction and appetite, and stimulate adverse cellular changes in the olfactory bulb. Copyright © 2016 Elsevier Inc. All rights reserved.
Changes of pressure and humidity affect olfactory function.
Kuehn, Michael; Welsch, Heiko; Zahnert, Thomas; Hummel, Thomas
2008-03-01
The present study aimed at investigating the question whether olfactory function changes in relation to barometric pressure and humidity. Using climate chambers, odor threshold and discrimination for butanol were tested in 75 healthy volunteers under hypobaric and hyperbaric, and different humidity conditions. Among other effects, olfactory sensitivity at threshold level, but not suprathreshold odor discrimination, was impaired in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests.
Associative Processes in Early Olfactory Preference Acquisition
Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael
2007-01-01
Acquisition of behavioral conditioned responding and learned odor preferences during olfactory classical conditioning in rat pups requires forward or simultaneous pairings of the conditioned stimulus (CS) and the unconditioned stimulus (US). Other temporal relationships between the CS and US do not usually result in learning. The present study examined the influence of this CS-US relationship upon the neural olfactory bulb modifications that are acquired during early classical conditioning. Wistar rat pups were trained from Postnatal Days (PN) 1-18 with either forward (odor overlapping temporally with reinforcing stroking) or backward (stroking followed by odor) CS-US pairings. On PN 19, pups received either a behavioral odor preference test to the odor CS or an injection of 14C 2-DG and exposure to the odor CS, or olfactory bulb single unit responses were recorded in response to exposure to the odor CS. Only pups that received forward presentations of the CS and US exhibited both a preference for the CS and modified olfactory bulb neural responses to the CS. These results, then, suggest that the modified olfactory bulb neural responses acquired during classical conditioning are guided by the same temporal constraints as those which govern the acquisition of behavioral conditioned responses. PMID:17572798
Mendoza, J; Sanio, C; Chaudhri, N
2015-02-01
The infralimbic medial prefrontal cortex (IL) has been posited as a common node in distinct neural circuits that mediate the extinction of appetitive and aversive conditioning. However, appetitive extinction is typically assessed using instrumental conditioning procedures, whereas the extinction of aversive conditioning is customarily studied using Pavlovian assays. The role of the IL in the extinction of appetitive Pavlovian conditioning remains underexplored. We investigated the involvement of the IL and prelimbic medial prefrontal cortex (PrL) in appetitive extinction in Pavlovian and instrumental conditioning assays in male, Long-Evans rats. Following acquisition, a gamma-aminobutyric acid agonist solution (0.03 nmol muscimol; 0.3 nmol baclofen; 0.3 μl/side) was bilaterally microinfused into the IL or PrL to pharmacologically inactivate each region before the first extinction session. Compared to saline, PrL inactivation did not affect the acquisition of extinction or the recall of extinction memory 24-h later. IL inactivation caused a more rapid extinction of Pavlovian conditioning, but had no effect on the extinction of instrumental conditioning or extinction recall. IL inactivation during a Pavlovian conditioning session in which conditioned stimulus (CS) trials were paired with sucrose did not affect CS-elicited behaviour, but increased responding during intervals that did not contain the CS. The same manipulation did not impact lever pressing for sucrose. These findings suggest that the IL may normally maintain Pavlovian conditioned responding when an anticipated appetitive CS is unexpectedly withheld, and that this region has distinct roles in the expression of Pavlovian conditioning when an appetitive unconditioned stimulus is either presented or omitted. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.
2005-01-01
In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…
Central localization of plasticity involved in appetitive conditioning in Lymnaea
Straub, Volko A.; Styles, Benjamin J.; Ireland, Julie S.; O'Shea, Michael; Benjamin, Paul R.
2004-01-01
Learning to associate a conditioned (CS) and unconditioned stimulus (US) results in changes in the processing of CS information. Here, we address directly the question whether chemical appetitive conditioning of Lymnaea feeding behavior involves changes in the peripheral and/or central processing of the CS by using extracellular recording techniques to monitor neuronal activity at two stages of the sensory processing pathway. Our data show that appetitive conditioning does not affect significantly the overall CS response of afferent nerves connecting chemosensory structures in the lips and tentacles to the central nervous system (CNS). In contrast, neuronal output from the cerebral ganglia, which represent the first central processing stage for chemosensory information, is enhanced significantly in response to the CS after appetitive conditioning. This demonstrates that chemical appetitive conditioning in Lymnaea affects the central, but not the peripheral processing of chemosensory information. It also identifies the cerebral ganglia of Lymnaea as an important site for neuronal plasticity and forms the basis for detailed cellular studies of neuronal plasticity. PMID:15537733
The strength of aversive and appetitive associations and maladaptive behaviors.
Itzhak, Yossef; Perez-Lanza, Daniel; Liddie, Shervin
2014-08-01
Certain maladaptive behaviors are thought to be acquired through classical Pavlovian conditioning. Exaggerated fear response, which can develop through Pavlovian conditioning, is associated with acquired anxiety disorders such as post-traumatic stress disorders (PTSDs). Inflated reward-seeking behavior, which develops through Pavlovian conditioning, underlies some types of addictive behavior (e.g., addiction to drugs, food, and gambling). These maladaptive behaviors are dependent on associative learning and the development of long-term memory (LTM). In animal models, an aversive reinforcer (fear conditioning) encodes an aversive contextual and cued LTM. On the other hand, an appetitive reinforcer results in conditioned place preference (CPP) that encodes an appetitive contextual LTM. The literature on weak and strong associative learning pertaining to the development of aversive and appetitive LTM is relatively scarce; thus, this review is particularly focused on the strength of associative learning. The strength of associative learning is dependent on the valence of the reinforcer and the salience of the conditioned stimulus that ultimately sways the strength of the memory trace. Our studies suggest that labile (weak) aversive and appetitive LTM may share similar signaling pathways, whereas stable (strong) aversive and appetitive LTM is mediated through different pathways. In addition, we provide some evidence suggesting that extinction of aversive fear memory and appetitive drug memory is likely to be mediated through different signaling molecules. We put forward the importance of studies aimed to investigate the molecular mechanisms underlying the development of weak and strong memories (aversive and appetitive), which would ultimately help in the development of targeted pharmacotherapies for the management of maladaptive behaviors that arise from classical Pavlovian conditioning. © 2014 International Union of Biochemistry and Molecular Biology.
Altered Appetitive Conditioning and Neural Connectivity in Subjects With Compulsive Sexual Behavior.
Klucken, Tim; Wehrum-Osinsky, Sina; Schweckendiek, Jan; Kruse, Onno; Stark, Rudolf
2016-04-01
There has been growing interest in a better understanding of the etiology of compulsive sexual behavior (CSB). It is assumed that facilitated appetitive conditioning might be an important mechanism for the development and maintenance of CSB, but no study thus far has investigated these processes. To explore group differences in neural activity associated with appetitive conditioning and connectivity in subjects with CSB and a healthy control group. Two groups (20 subjects with CSB and 20 controls) were exposed to an appetitive conditioning paradigm during a functional magnetic resonance imaging experiment, in which a neutral stimulus (CS+) predicted visual sexual stimuli and a second stimulus (CS-) did not. Blood oxygen level-dependent responses and psychophysiologic interaction. As a main result, we found increased amygdala activity during appetitive conditioning for the CS+ vs the CS- and decreased coupling between the ventral striatum and prefrontal cortex in the CSB vs control group. The findings show that neural correlates of appetitive conditioning and neural connectivity are altered in patients with CSB. The increased amygdala activation might reflect facilitated conditioning processes in patients with CSB. In addition, the observed decreased coupling could be interpreted as a marker for impaired emotion regulation success in this group. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Taste, olfactory, and food reward value processing in the brain.
Rolls, Edmund T
2015-04-01
Complementary neuronal recordings in primates, and functional neuroimaging in humans, show that the primary taste cortex in the anterior insula provides separate and combined representations of the taste, temperature, and texture (including fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in a second tier of processing, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by associative learning with olfactory and visual inputs, and these neurons encode food reward value on a continuous scale in that they only respond to food when hungry, and in that activations correlate linearly with subjective pleasantness. Cognitive factors, including word-level descriptions, and selective attention to affective value, modulate the representation of the reward value of taste and olfactory stimuli in the orbitofrontal cortex and a region to which it projects, the anterior cingulate cortex, a tertiary taste cortical area. The food reward representations formed in this way play an important role in the control of appetite, and food intake. Individual differences in these reward representations may contribute to obesity, and there are age-related differences in these value representations that shape the foods that people in different age groups find palatable. In a third tier of processing in medial prefrontal cortex area 10, decisions between stimuli of different reward value are taken, by attractor decision-making networks. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study.
Goltz, Fernanda R; Thackray, Alice E; King, James A; Dorling, James L; Atkinson, Greg; Stensel, David J
2018-04-01
Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within-subject variability over time.
Brain–immune interactions and the neural basis of disease-avoidant ingestive behaviour
Pacheco-López, Gustavo; Bermúdez-Rattoni, Federico
2011-01-01
Neuro–immune interactions are widely manifested in animal physiology. Since immunity competes for energy with other physiological functions, it is subject to a circadian trade-off between other energy-demanding processes, such as neural activity, locomotion and thermoregulation. When immunity is challenged, this trade-off is tilted to an adaptive energy protecting and reallocation strategy that is identified as ‘sickness behaviour’. We review diverse disease-avoidant behaviours in the context of ingestion, indicating that several adaptive advantages have been acquired by animals (including humans) during phylogenetic evolution and by ontogenetic experiences: (i) preventing waste of energy by reducing appetite and consequently foraging/hunting (illness anorexia), (ii) avoiding unnecessary danger by promoting safe environments (preventing disease encounter by olfactory cues and illness potentiation neophobia), (iii) help fighting against pathogenic threats (hyperthermia/somnolence), and (iv) by associative learning evading specific foods or environments signalling danger (conditioned taste avoidance/aversion) and/or at the same time preparing the body to counteract by anticipatory immune responses (conditioning immunomodulation). The neurobiology behind disease-avoidant ingestive behaviours is reviewed with special emphasis on the body energy balance (intake versus expenditure) and an evolutionary psychology perspective. PMID:22042916
Sleep deprivation affects extinction but not acquisition memory in honeybees.
Hussaini, Syed Abid; Bogusch, Lisa; Landgraf, Tim; Menzel, Randolf
2009-11-01
Sleep-like behavior has been studied in honeybees before, but the relationship between sleep and memory formation has not been explored. Here we describe a new approach to address the question if sleep in bees, like in other animals, improves memory consolidation. Restrained bees were observed by a web camera, and their antennal activities were used as indicators of sleep. We found that the bees sleep more during the dark phase of the day compared with the light phase. Sleep phases were characterized by two distinct patterns of antennal activities: symmetrical activity, more prominent during the dark phase; and asymmetrical activity, more common during the light phase. Sleep-deprived bees showed rebound the following day, confirming effective deprivation of sleep. After appetitive conditioning of the bees to various olfactory stimuli, we observed their sleep. Bees conditioned to odor with sugar reward showed lesser sleep compared with bees that were exposed to either reward alone or air alone. Next, we asked whether sleep deprivation affects memory consolidation. While sleep deprivation had no effect on retention scores after odor acquisition, retention for extinction learning was significantly reduced, indicating that consolidation of extinction memory but not acquisition memory was affected by sleep deprivation.
Can honey bees discriminate between floral-fragrance isomers?
Aguiar, João Marcelo Robazzi Bignelli Valente; Roselino, Ana Carolina; Sazima, Marlies; Giurfa, Martin
2018-05-24
Many flowering plants present variable complex fragrances, which usually include different isomers of the same molecule. As fragrance is an essential cue for flower recognition by pollinators, we ask if honey bees discriminate between floral-fragrance isomers in an appetitive context. We used the olfactory conditioning of the proboscis extension response (PER), which allows training a restrained bee to an odor paired with sucrose solution. Bees were trained under an absolute (a single odorant rewarded) or a differential conditioning regime (a rewarded vs. a non-rewarded odorant) using four different pairs of isomers. One hour after training, discrimination and generalization between pairs of isomers were tested. Bees trained under absolute conditioning exhibited high generalization between isomers and discriminated only one out of four isomer pairs; after differential conditioning, they learned to differentiate between two out of four pairs of isomers but in all cases generalization responses to the non-rewarding isomer remained high. Adding an aversive taste to the non-rewarded isomer facilitated discrimination of isomers that otherwise seemed non-discriminable, but generalization remained high. Although honey bees discriminated isomers under certain conditions, they achieved the task with difficulty and tended to generalize between them, thus showing that these molecules were perceptually similar to them. We conclude that the presence of isomers within floral fragrances might not necessarily contribute to a dramatic extent to floral odor diversity. © 2018. Published by The Company of Biologists Ltd.
Consumption of an acute dose of caffeine reduces acquisition but not memory in the honey bee.
Mustard, Julie A; Dews, Lauren; Brugato, Arlana; Dey, Kevin; Wright, Geraldine A
2012-06-15
Caffeine affects several molecules that are also involved in the processes underlying learning and memory such as cAMP and calcium. However, studies of caffeine's influence on learning and memory in mammals are often contradictory. Invertebrate model systems have provided valuable insight into the actions of many neuroactive compounds including ethanol and cocaine. We use the honey bee (Apis mellifera) to investigate how the ingestion of acute doses of caffeine before, during, and after conditioning influences performance in an appetitive olfactory learning and memory task. Consumption of caffeine doses of 0.01 M or greater during or prior to conditioning causes a significant reduction in response levels during acquisition. Although bees find the taste of caffeine to be aversive at high concentrations, the bitter taste does not explain the reduction in acquisition observed for bees fed caffeine before conditioning. While high doses of caffeine reduced performance during acquisition, the response levels of bees given caffeine were the same as those of the sucrose only control group in a recall test 24h after conditioning. In addition, caffeine administered after conditioning had no affect on recall. These results suggest that caffeine specifically affects performance during acquisition and not the processes involved in the formation of early long term memory. Copyright © 2012 Elsevier B.V. All rights reserved.
Neural Correlates of Appetitive-Aversive Interactions in Pavlovian Fear Conditioning
ERIC Educational Resources Information Center
Nasser, Helen M.; McNally, Gavan P.
2013-01-01
We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of…
Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.
Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A N; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S
2017-01-01
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.
Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae
Huser, Annina; Eschment, Melanie; Güllü, Nazli; Collins, Katharina A. N.; Böpple, Kathrin; Pankevych, Lyubov; Rolsing, Emilia; Thum, Andreas S.
2017-01-01
The biogenic amine serotonin (5-HT) is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects. PMID:28777821
Xu, Shiyu; Chan, Tammy; Shah, Vruntant; Zhang, Shixing; Pletcher, Scott D.; Roman, Gregg
2012-01-01
Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeding assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila demonstrates a significant preference for food containing between 5 and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in Drosophila melanogaster. PMID:22624869
Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition
ERIC Educational Resources Information Center
Tavassoli, T.; Baron-Cohen, S.
2012-01-01
Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants…
An increase in visceral fat is associated with a decrease in the taste and olfactory capacity
Fernandez-Garcia, Jose Carlos; Alcaide, Juan; Santiago-Fernandez, Concepcion; Roca-Rodriguez, MM.; Aguera, Zaida; Baños, Rosa; Botella, Cristina; de la Torre, Rafael; Fernandez-Real, Jose M.; Fruhbeck, Gema; Gomez-Ambrosi, Javier; Jimenez-Murcia, Susana; Menchon, Jose M.; Casanueva, Felipe F.; Fernandez-Aranda, Fernando; Tinahones, Francisco J.; Garrido-Sanchez, Lourdes
2017-01-01
Introduction Sensory factors may play an important role in the determination of appetite and food choices. Also, some adipokines may alter or predict the perception and pleasantness of specific odors. We aimed to analyze differences in smell–taste capacity between females with different weights and relate them with fat and fat-free mass, visceral fat, and several adipokines. Materials and methods 179 females with different weights (from low weight to morbid obesity) were studied. We analyzed the relation between fat, fat-free mass, visceral fat (indirectly estimated by bioelectrical impedance analysis with visceral fat rating (VFR)), leptin, adiponectin and visfatin. The smell and taste assessments were performed through the "Sniffin’ Sticks" and "Taste Strips" respectively. Results We found a lower score in the measurement of smell (TDI-score (Threshold, Discrimination and Identification)) in obese subjects. All the olfactory functions measured, such as threshold, discrimination, identification and the TDI-score, correlated negatively with age, body mass index (BMI), leptin, fat mass, fat-free mass and VFR. In a multiple linear regression model, VFR mainly predicted the TDI-score. With regard to the taste function measurements, the normal weight subjects showed a higher score of taste functions. However a tendency to decrease was observed in the groups with greater or lesser BMI. In a multiple linear regression model VFR and age mainly predicted the total taste scores. Discussion We show for the first time that a reverse relationship exists between visceral fat and sensory signals, such as smell and taste, across a population with different body weight conditions. PMID:28158237
Emotional eating and Pavlovian learning: does negative mood facilitate appetitive conditioning?
Bongers, Peggy; van den Akker, Karolien; Havermans, Remco; Jansen, Anita
2015-06-01
Emotional eating has been suggested to be a learned behaviour; more specifically, classical conditioning processes might be involved in its development. In the present study we investigated whether a negative mood facilitates appetitive conditioning and whether trait impulsivity influences this process. After undergoing either a negative or neutral mood induction, participants were subjected to a differential classical conditioning procedure, using neutral stimuli and appetizing food. Two initially neutral distinctive vases with flowers were (CS+) or were not (CS-) paired with chocolate mousse intake. We measured participants' expectancy and desire to eat (4 CS+ and 4 CS- trials), salivation response, and actual food intake. The BIS-11 was administered to assess trait impulsivity. In both mood conditions, participants showed a classically conditioned appetite. Unexpectedly, there was no evidence of facilitated appetitive learning in a negative mood with regard to expectancy, desire, salivation, or intake. However, immediately before the taste test, participants in the negative mood condition reported a stronger desire to eat in the CS+ compared to the CS- condition, while no such effect occurred in the neutral group. An effect of impulsivity was found with regard to food intake in the neutral mood condition: high-impulsive participants consumed less food when presented with the CS+ compared to the CS-, and also less than low-impulsive participants. An alternative pathway to appetitive conditioning with regard to emotions is that it is not the neutral stimuli, but the emotions themselves that become conditioned stimuli and elicit appetitive responses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Souza, Rimenez R; França, Sanmara L; Bessa, Marília M; Takahashi, Reinaldo N
2013-11-01
Due to the ability for depleting neuronal storages of monoamines, the reserpine model is a suitable approach for the investigation of the neurobiology of neurodegenerative diseases. However, the behavioral effects of low doses of reserpine are not always detected by classic animal tests of cognition, emotion, and sensory ability. In this study, the effects of reserpine (0.5-1.0mg/kg) were evaluated in olfactory fear conditioning, inhibitory avoidance, open-field, elevated plus-maze, and olfactory discrimination. Possible protective effects were also investigated. We found that single administration of reserpine impaired the acquisition of olfactory fear conditioning (in both doses) as well as olfactory discrimination (in the higher dose), while no effects were seen in all other tests. Additionally, we demonstrated that prior exposure to environmental enrichment prevented effects of reserpine in animals tested in olfactory fear conditioning. Altogether, these findings suggest that a combined cognitive, emotional and sensory-dependent task would be more sensitive to the effects of the reserpine model. In addition, the present data support the environmental enrichment as an useful approach for the study of resilience mechanisms in neurodegenerative processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Aversive learning of odor-heat associations in ants.
Desmedt, Lucie; Baracchi, David; Devaud, Jean-Marc; Giurfa, Martin; d'Ettorre, Patrizia
2017-12-15
Ants have recently emerged as useful models for the study of olfactory learning. In this framework, the development of a protocol for the appetitive conditioning of the maxilla-labium extension response (MaLER) provided the possibility of studying Pavlovian odor-food learning in a controlled environment. Here we extend these studies by introducing the first Pavlovian aversive learning protocol for harnessed ants in the laboratory. We worked with carpenter ants Camponotus aethiops and first determined the capacity of different temperatures applied to the body surface to elicit the typical aversive mandible opening response (MOR). We determined that 75°C is the optimal temperature to induce MOR and chose the hind legs as the stimulated body region because of their high sensitivity. We then studied the ability of ants to learn and remember odor-heat associations using 75°C as the unconditioned stimulus. We studied learning and short-term retention after absolute (one odor paired with heat) and differential conditioning (a punished odor versus an unpunished odor). Our results show that ants successfully learn the odor-heat association under a differential-conditioning regime and thus exhibit a conditioned MOR to the punished odor. Yet, their performance under an absolute-conditioning regime is poor. These results demonstrate that ants are capable of aversive learning and confirm previous findings about the different attentional resources solicited by differential and absolute conditioning in general. © 2017. Published by The Company of Biologists Ltd.
Role of gut nutrient sensing in stimulating appetite and conditioning food preferences
Ackroff, Karen
2012-01-01
The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning. PMID:22442194
Neural correlates of appetitive extinction in humans
Tapia León, Isabell; Stark, Rudolf; Klucken, Tim
2017-01-01
Abstract Appetitive extinction receives attention as an important model for the treatment of psychiatric disorders. However, in humans, its underlying neural correlates remain unknown. To close this gap, we investigated appetitive acquisition and extinction with fMRI in a 2-day monetary incentive delay paradigm. During appetitive conditioning, one stimulus (CS+) was paired with monetary reward, while another stimulus (CS−) was never rewarded. Twenty-four hours later, subjects underwent extinction, in which neither CS was reinforced. Appetitive conditioning elicited stronger skin conductance responses to the CS+ as compared with the CS−. Regarding subjective ratings, the CS+ was rated more pleasant and arousing than the CS− after conditioning. Furthermore, fMRI-results (CS+ − CS−) showed activation of the reward circuitry including amygdala, midbrain and striatal areas. During extinction, conditioned responses were successfully extinguished. In the early phase of extinction, we found a significant activation of the caudate, the hippocampus, the dorsal and ventral anterior cingulate cortex (dACC and vACC). In the late phase, we found significant activation of the nucleus accumbens (NAcc) and the amygdala. Correlational analyses with subjective ratings linked extinction success to the vACC and the NAcc, while associating the dACC with reduced extinction. The results reveal neural correlates of appetitive extinction in humans and extend assumptions from models for human extinction learning. PMID:27803289
Olfactory short-term memory encoding and maintenance - an event-related potential study.
Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan
2014-09-01
This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.
Ravi, Sridhar; Garcia, Jair E; Wang, Chun; Dyer, Adrian G
2016-11-01
Bees navigate in complex environments using visual, olfactory and mechano-sensorial cues. In the lowest region of the atmosphere, the wind environment can be highly unsteady and bees employ fine motor-skills to enhance flight control. Recent work reveals sophisticated multi-modal processing of visual and olfactory channels by the bee brain to enhance foraging efficiency, but it currently remains unclear whether wind-induced mechano-sensory inputs are also integrated with visual information to facilitate decision making. Individual honeybees were trained in a linear flight arena with appetitive-aversive differential conditioning to use a context-setting cue of 3 m s -1 cross-wind direction to enable decisions about either a 'blue' or 'yellow' star stimulus being the correct alternative. Colour stimuli properties were mapped in bee-specific opponent-colour spaces to validate saliency, and to thus enable rapid reverse learning. Bees were able to integrate mechano-sensory and visual information to facilitate decisions that were significantly different to chance expectation after 35 learning trials. An independent group of bees were trained to find a single rewarding colour that was unrelated to the wind direction. In these trials, wind was not used as a context-setting cue and served only as a potential distracter in identifying the relevant rewarding visual stimuli. Comparison between respective groups shows that bees can learn to integrate visual and mechano-sensory information in a non-elemental fashion, revealing an unsuspected level of sensory processing in honeybees, and adding to the growing body of knowledge on the capacity of insect brains to use multi-modal sensory inputs in mediating foraging behaviour. © 2016. Published by The Company of Biologists Ltd.
Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E
2017-09-06
To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need. SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in neurons that induce appetite can cause obesity, whereas an abnormal amount of activity in neurons that suppress appetite can cause malnutrition and a severe reduction in body weight. The purpose of this study was to determine whether a population of neurons known to induce appetite ("AgRP neurons") could induce food intake to overcome appetite-suppression following administration of various appetite-suppressing compounds. We found that stimulating AgRP neurons could overcome various forms of appetite suppression and decrease neural activity in a separate population of appetite-suppressing neurons, providing new insights into how the brain regulates food intake. Copyright © 2017 the authors 0270-6474/17/378678-10$15.00/0.
Central Localization of Plasticity Involved in Appetitive Conditioning in "Lymnaea"
ERIC Educational Resources Information Center
Straub, Volko A.; Styles, Benjamin J.; Ireland, Julie S.; O'Shea, Michael; Benjamin, Paul R.
2004-01-01
Learning to associate a conditioned (CS) and unconditioned stimulus (US) results in changes in the processing of CS information. Here, we address directly the question whether chemical appetitive conditioning of "Lymnaea" feeding behavior involves changes in the peripheral and/or central processing of the CS by using extracellular recording…
The effects of partial sleep restriction and altered sleep timing on olfactory performance.
McNeil, J; Forest, G; Hintze, L J; Brunet, J-F; Doucet, É
2017-12-01
Olfaction can increase the drive to eat and may partially explain the consistent increases in energy intake (EI) following sleep restriction. We investigated the effects of 50% sleep restriction with altered sleep timing on olfactory performance. We also evaluated whether changes (Δ) in olfactory performance were associated with Δ24 h EI. Twelve men and six women (age: 23±4 years; BMI: 23±3 kg/m 2 ) completed three randomized cross-over conditions: habitual sleep duration, 50% sleep restriction with advanced wake-time, and 50% sleep restriction with delayed bedtime. Sleep was measured in-laboratory (polysomnography). Olfactory performance ('sniffin sticks') and 24 h EI (food menu) were evaluated the next day. A trend for a significant condition*sex interaction was noted for threshold-discrimination-identification (TDI) scores (P=0.09); TDI scores were lowest in women and highest in men, following sleep restriction with advanced wake-time. Δolfactory performance were not associated with Δ24 h EI. The impact of sleep restriction on olfactory performance may differ between sexes. Changes in olfactory performance were not associated with changes in 24 h EI. Studies investigating prolonged effects of sleep loss on the relationship between olfactory performance with EI are needed.
Lesions of the rat nucleus basalis magnocellularis disrupt appetitive-to-aversive transfer learning.
Butt, A E; Schultz, J A; Arnold, L L; Garman, E E; George, C L; Garraghty, P E
2003-01-01
Rats with selective lesions of the nucleus basalis magnocellularis (NBM) and sham-lesion control animals were tested in an operant appetitive-to-aversive transfer task. We hypothesized that NBM lesions would not affect performance in the appetitive phase, but that performance would be impaired during subsequent transfer to the aversive phase of the task. Additional groups of NBM lesion and control rats were tested in the avoidance condition only, where we hypothesized that NBM lesions would not disrupt performance. These hypotheses were based on the argument that the NBM is not necessary for simple association learning that does not tax attention. Both the appetitive phase of the transfer task and the avoidance only task depend only on simple associative learning and are argued not to tax attention. Consequently, performance in these tasks was predicted to be spared following NBM lesions. Complex, attention-demanding associative learning, however, is argued to depend on the NBM. Performance in the aversive phase of the transfer task is both attentionally demanding and associatively more complex than in either the appetitive or aversive tasks alone; thus, avoidance performance in the NBM lesion group was predicted to be impaired following transfer from prior appetitive conditioning. Results supported our hypotheses, with the NBM lesion group acquiring the appetitive response normally, but showing impaired performance following transfer to the aversive conditioning phase of the transfer task. Impairments were not attributable to disrupted avoidance learning per se, as avoidance behavior was normal in the NBM lesion group tested in the avoidance condition only.
Fraley, Gregory S
2017-08-01
Galanin-like peptide (GALP) is a neuropeptide transcribed only within the arcuate nucleus of the hypothalamus and is thought to be a mediator between energetics and reproductive function. Intracerebroventricular (ICV) injection of GALP is known to have effects on feeding, and to significantly increase gonadotropin releasing hormone- (GnRH-) mediated luteinizing hormone (LH) secretion. Furthermore, ICV GALP is known to stimulate fos production in the medial pre-optic area (mPOA) and to a lesser extent, the paraventricular nucleus (PVN). ICV injection of 5.0nmol GALP profoundly stimulates male rat sexual behavior. It is not known if GALP's effects on sex behavior are due to an increase in appetitive or mechanical (erectile) aspects of male sexual behavior. To determine this, sexually experienced male rats were cannulated in the lateral ventricle and injected with 5.0nmol GALP or vehicle. Immediately after injections, male rats were placed in an arena connected to a second arena via a tube with a fan. The second arena contained a steroid-primed female and her bedding. The male rat had olfactory but not visual or tactile contact with the female. We analyzed the amount of time the male rats spent investigating the air intake and the number of non-contact erections (NCEs) in a 30minute test. ICV GALP significantly (p<0.05) increased both the amount of time of olfactory investigations and NCEs compared to vehicle. In a second set of animals, we tested if ICV GALP could stimulate touch-based erections. GALP had no significant effect on touch-based erections compared to vehicle. These data suggest that GALP's activation of fos within the mPOA is indicative of its action to stimulate the appetitive aspects of male sexual behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Woods, Amanda M.; Bouton, Mark E.
2008-01-01
Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In…
Neural correlates of appetitive extinction in humans.
Kruse, Onno; Tapia León, Isabell; Stark, Rudolf; Klucken, Tim
2017-01-01
Appetitive extinction receives attention as an important model for the treatment of psychiatric disorders. However, in humans, its underlying neural correlates remain unknown. To close this gap, we investigated appetitive acquisition and extinction with fMRI in a 2-day monetary incentive delay paradigm. During appetitive conditioning, one stimulus (CS+) was paired with monetary reward, while another stimulus (CS-) was never rewarded. Twenty-four hours later, subjects underwent extinction, in which neither CS was reinforced. Appetitive conditioning elicited stronger skin conductance responses to the CS+ as compared with the CS-. Regarding subjective ratings, the CS+ was rated more pleasant and arousing than the CS- after conditioning. Furthermore, fMRI-results (CS+ - CS-) showed activation of the reward circuitry including amygdala, midbrain and striatal areas. During extinction, conditioned responses were successfully extinguished. In the early phase of extinction, we found a significant activation of the caudate, the hippocampus, the dorsal and ventral anterior cingulate cortex (dACC and vACC). In the late phase, we found significant activation of the nucleus accumbens (NAcc) and the amygdala. Correlational analyses with subjective ratings linked extinction success to the vACC and the NAcc, while associating the dACC with reduced extinction. The results reveal neural correlates of appetitive extinction in humans and extend assumptions from models for human extinction learning. © The Author (2016). Published by Oxford University Press.
Zielinski, B.S.; Fredricks, Keith; McDonald, R.; Zaidi, A.U.
2005-01-01
This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage. ?? 2006 Springer Science + Business Media, LLC.
Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche
Choi, Rhea
2018-01-01
Disorders causing a loss of the sense of smell remain a therapeutic challenge. Basic research has, however, greatly expanded our knowledge of the organization and function of the olfactory system. This review describes advances in our understanding of the cellular components of the peripheral olfactory system, specifically the olfactory epithelium in the nose. The article discusses recent findings regarding the mechanisms involved in regeneration and cellular renewal from basal stem cells in the adult olfactory epithelium, considering the strategies involved in embryonic olfactory development and insights from research on other stem cell niches. In the context of clinical conditions causing anosmia, the current view of adult olfactory neurogenesis, tissue homeostasis, and failures in these processes is considered, along with current and future treatment strategies. Level of Evidence NA PMID:29492466
The Sense of Smell Impacts Metabolic Health and Obesity.
Riera, Celine E; Tsaousidou, Eva; Halloran, Jonathan; Follett, Patricia; Hahn, Oliver; Pereira, Mafalda M A; Ruud, Linda Engström; Alber, Jens; Tharp, Kevin; Anderson, Courtney M; Brönneke, Hella; Hampel, Brigitte; Filho, Carlos Daniel de Magalhaes; Stahl, Andreas; Brüning, Jens C; Dillin, Andrew
2017-07-05
Olfactory inputs help coordinate food appreciation and selection, but their role in systemic physiology and energy balance is poorly understood. Here we demonstrate that mice upon conditional ablation of mature olfactory sensory neurons (OSNs) are resistant to diet-induced obesity accompanied by increased thermogenesis in brown and inguinal fat depots. Acute loss of smell perception after obesity onset not only abrogated further weight gain but also improved fat mass and insulin resistance. Reduced olfactory input stimulates sympathetic nerve activity, resulting in activation of β-adrenergic receptors on white and brown adipocytes to promote lipolysis. Conversely, conditional ablation of the IGF1 receptor in OSNs enhances olfactory performance in mice and leads to increased adiposity and insulin resistance. These findings unravel a new bidirectional function for the olfactory system in controlling energy homeostasis in response to sensory and hormonal signals. Copyright © 2017 Elsevier Inc. All rights reserved.
Tapia-Rodríguez, Miguel; Esquivelzeta-Rabell, José F; Gutiérrez-Ospina, Gabriel
2012-12-01
The mammalian brain preserves the ability to replace olfactory periglomerular cells (PGC) throughout life. Even though we have detailed a great deal the mechanisms underlying stem and amplifying cells maintenance and proliferation, as well as those modulating migration and differentiation, our knowledge on PGC phenotypic plasticity is at best fragmented and controversial. Here we explored whether chronically reinforced olfactory conditioning influences the phenotype of newborn PGC. Accordingly, olfactory conditioned rats showed increased numbers of GAD 65/67 positive PGC. Because such phenotypic change was not accompanied neither by increments in the total number of PGC, or periglomerular cell nuclei labeled with bromodeoxyuridine, nor by reductions in the number of tyrosine hydroxylase (TH), calbindin (CB) or calretinin (CR) immunoreactive PGC, we speculate that increments in the number of GABAergic PGC occur at the expense of other PGC phenotypes. In any event, these results support that adult newborn PGC phenotype may be subjected to phenotypic plasticity influenced by sensory stimulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Impaired associative learning after chronic exposure to pesticides in young adult honey bees.
Mengoni Goñalons, Carolina; Farina, Walter M
2018-04-11
Neonicotinoids are the most widespread insecticides in agriculture, preferred for their low toxicity to mammals and their systemic nature. Nevertheless, there have been increasing concerns regarding their impact on non-target organisms. Glyphosate is also widely used in crops and, therefore, traces of this pesticide are likely to be found together with neonicotinoids. Although glyphosate is considered a herbicide, adverse effects have been found on animal species, including honey bees. Apis mellifera is one of the most important pollinators in agroecosystems and is exposed to both these pesticides. Traces can be found in nectar and pollen of flowers that honey bees visit, but also in honey stores inside the hive. Young workers, which perform in-hive tasks that are crucial for colony maintenance, are potentially exposed to both these contaminated resources. These workers present high plasticity and are susceptible to stimuli that can modulate their behaviour and impact on colony state. Therefore, by performing standardised assays to study sublethal effects of these pesticides, these bees can be used as bioindicators. We studied the effect of chronic joint exposure to field-realistic concentrations of the neonicotinoid imidacloprid and glyphosate on gustatory perception and olfactory learning. Both pesticides reduced sucrose responsiveness and had a negative effect on olfactory learning. Glyphosate also reduced food uptake during rearing. The results indicate differential susceptibility according to honey bee age. The two agrochemicals had adverse effects on different aspects of honey bee appetitive behaviour, which could have repercussions for food distribution, propagation of olfactory information and task coordination within the nest. © 2018. Published by The Company of Biologists Ltd.
Effect of exercise on food consumption and appetite sensations in subjects with diabetes.
Dubé, Marie-Christine; Tremblay, Angelo; Lavoie, Carole; John Weisnagel, S
2013-12-01
Evaluate appetite sensations following 60-min moderate intensity exercise and to predict energy intake in adults with diabetes. Visual analogue scales measured appetite sensations before and after a fixed test meal. Fasting appetite sensations, 1h post-prandial area under the curve (AUC) and the satiety quotient predicted energy intake. Two measures of energy intake were recorded: (1) following an ad libitum test lunch and (2) a 3-day self-report dietary record. Appetite sensations were assessed in a control condition (rest, C) and when two exercise sessions were performed: one associated with a free (F) blood glucose decrease and one with limited blood glucose decreases i.e. maintained (M) above 4 mmol/l by dextrose infusion. 16 generally well-controlled (HbA1c: 7.0 ± 0.6%) subjects (12 with type 1 diabetes, 4 with type 2 diabetes) ate 1020 ± 519, 1170 ± 282 and 1020 ± 304 kcal (NS between conditions nor diabetes type) during the buffet meal following the C, F and M conditions, respectively. Exercise induced a mean blood glucose decrease of 3.7 ± 0.6 and 3.1 ± 0.6 mmol/l for the F and M conditions, respectively. The greater the blood glucose decrease, the greater the appetite sensations of hunger and prospective food consumption measured fasting and before the test meal (all p<0.05) in the whole group. One-hour post-prandial AUC for hunger and desire to eat represented the strongest predictors of ad libitum test lunch energy intake (p<0.05), especially in type 1 diabetes. These results suggest that appetite sensations are predictors of spontaneous energy intake in both diabetes type. Moderate intensity exercise for 60 min induced a positive effect by lowering blood glucose which was associated with appetite sensations. These results support the glucostatic theory of food intake control which protects against exercised-induced blood glucose declines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gray, Richard; French, Stephen; Robinson, Tristan; Yeomans, Martin
2002-05-01
Previous research suggests that enhancing the volume of a food preload without altering energy content can result in reduced appetite, although the limited evidence means that the conditions under which this effect will occur are not yet clear. In the present study, we used a Universal Eating Monitor (UEM) to record test meal intake constantly, in parallel with appetite ratings, following soup-based preloads that varied both in volume (150 vs. 450 ml) and energy density (1.4 vs. 4.2 kJ/ml). Healthy young men (n=20) received four different preload conditions (repeated measures) followed by unlimited hot pasta test meals (interval 30 min). They completed appetite ratings during and after each laboratory session, and food diaries for the afternoon and evening following each session. Subjective appetite after the preloads was reduced by the high-volume preloads relative to low-volume preloads, with no difference between the two at each volume level. This indicates an effect of volume, but no effect of energy. Test meal intake in the high-volume, high-energy-density condition was reduced relative to the other conditions, which did not differ from one another. This indicates an effect of total energy, but no effect of volume. The dissociation between these different measures of appetite might be explained in terms of largely cognitive influences on subjective appetite between preload and test meal, contrasted with stronger physiological influences on actual intake during the test meal. With regard to previous studies, it is argued that food volume is more influential under circumstances where gastric volume is closer to its normal limits.
Differential Recruitment of Distinct Amygdalar Nuclei across Appetitive Associative Learning
ERIC Educational Resources Information Center
Cole, Sindy; Powell, Daniel J.; Petrovich, Gorica D.
2013-01-01
The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a…
Distinct amyloid precursor protein processing machineries of the olfactory system.
Kim, Jae Yeon; Rasheed, Ameer; Yoo, Seung-Jun; Kim, So Yeun; Cho, Bongki; Son, Gowoon; Yu, Seong-Woon; Chang, Keun-A; Suh, Yoo-Hun; Moon, Cheil
2018-01-01
Processing of amyloid precursor protein (APP) occurs through sequential cleavages first by β-secretase and then by the γ-secretase complex. However, abnormal processing of APP leads to excessive production of β-amyloid (Aβ) in the central nervous system (CNS), an event which is regarded as a primary cause of Alzheimer's disease (AD). In particular, gene mutations of the γ-secretase complex-which contains presenilin 1 or 2 as the catalytic core-could trigger marked Aβ accumulation. Olfactory dysfunction usually occurs before the onset of typical AD-related symptoms (eg, memory loss or muscle retardation), suggesting that the olfactory system may be one of the most vulnerable regions to AD. To date however, little is known about why the olfactory system is affected so early by AD prior to other regions. Thus, we examined the distribution of secretases and levels of APP processing in the olfactory system under either healthy or pathological conditions. Here, we show that the olfactory system has distinct APP processing machineries. In particular, we identified higher expressions levels and activity of γ-secretase in the olfactory epithelium (OE) than other regions of the brain. Moreover, APP c-terminal fragments (CTF) are markedly detected. During AD progression, we note increased expression of presenilin2 of γ-secretases in the OE, not in the OB, and show that neurotoxic Aβ*56 accumulates more quickly in the OE. Taken together, these results suggest that the olfactory system has distinct APP processing machineries under healthy and pathological conditions. This finding may provide a crucial understanding of the unique APP-processing mechanisms in the olfactory system, and further highlights the correlation between olfactory deficits and AD symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.
Social Modulation of Associative Fear Learning by Pheromone Communication
ERIC Educational Resources Information Center
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…
Larsen, Tobias; Collette, Sven; Tyszka, Julian M.; Seymour, Ben; O'Doherty, John P.
2015-01-01
The role of neurons in the substantia nigra (SN) and ventral tegmental area (VTA) of the midbrain in contributing to the elicitation of reward prediction errors during appetitive learning has been well established. Less is known about the differential contribution of these midbrain regions to appetitive versus aversive learning, especially in humans. Here we scanned human participants with high-resolution fMRI focused on the SN and VTA while they participated in a sequential Pavlovian conditioning paradigm involving an appetitive outcome (a pleasant juice), as well as an aversive outcome (an unpleasant bitter and salty flavor). We found a degree of regional specialization within the SN: Whereas a region of ventromedial SN correlated with a temporal difference reward prediction error during appetitive Pavlovian learning, a dorsolateral area correlated instead with an aversive expected value signal in response to the most distal cue, and to a reward prediction error in response to the most proximal cue to the aversive outcome. Furthermore, participants' affective reactions to both the appetitive and aversive conditioned stimuli more than 1 year after the fMRI experiment was conducted correlated with activation in the ventromedial and dorsolateral SN obtained during the experiment, respectively. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. SIGNIFICANCE STATEMENT The role of the substantia nigra (SN) and ventral tegmental area (VTA) in appetitive learning is well established, but less is known about their contribution to aversive compared with appetitive learning, especially in humans. We used high-resolution fMRI to measure activity in the SN and VTA while participants underwent higher-order Pavlovian learning. We found a regional specialization within the SN: a ventromedial area was selectively engaged during appetitive learning, and a dorsolateral area during aversive learning. Activity in these areas predicted affective reactions to appetitive and aversive conditioned stimuli over 1 year later. These findings suggest that, whereas the human ventromedial SN contributes to long-term learning about rewards, the dorsolateral SN may be particularly important for long-term learning in aversive contexts. PMID:26490862
Norepinephrine and Learning-Induced Plasticity in Infant Rat Olfactory System
Sullivan, Regina M.; Wilson, Donald A.; Leon, Michael
2007-01-01
Postnatal olfactory learning produces both a conditioned behavioral response and a modified olfactory bulb neural response to the learned odor. The present report describes the role of norepinephrine (NE) on both of these learned responses in neonatal rat pups. Pups received olfactory classical conditioning training from postnatal days (PN) 1-18. Training consisted of 18 trials with an intertrial interval of 24 hr. For the experimental group, a trial consisted of a pairing of unconditioned stimulus (UCS, stroking/tactile stimulation) and the conditioned stimulus (CS, odor). Control groups received either only the CS (Odor only) or only the UCS (Stroke only). Within each training condition, pups were injected with either the NE β-receptor agonist isoproterenol (1, 20, or 4 mg/kg), the NE β-receptor antagonist propranolol (10, 20, 40 mg/kg), or saline 30 min prior to training. On day 20, pups received one of the following tests: (1) behavioral conditioned responding, (2) injection with 14C-2-deoxyglucase (2-DG) and exposed to the CS odor, or (3) tested for olfactory bulb mitral/tufted cell single-unit responses to the CS odor. The results indicated that training with either: (1) Odor-Stroke-Saline, (2) Odor-Stroke-lsoproterenol-Propranolol, or (3) Odor only-lsoproterenol (2 mg/kg) was sufficient to produce a learned behavioral odor preference, enhanced uptake of 14C-2-DG in the odor-specific foci within the bulb, and a modified output signal from the bulb as measured by single-cell recordings of mitral/tufted cells. Moreover, propranolol injected prior to Odor-Stroke training blocked the acquisition of both the learned behavior and olfactory bulb responses. PMID:2585063
Appetitive Pavlovian Goal-Tracking Memories Reconsolidate Only under Specific Conditions
ERIC Educational Resources Information Center
Reichelt, Amy C.; Lee, Jonathan L. C.
2013-01-01
Despite extensive evidence that appetitive memories undergo reconsolidation, two notable failures to observe reconsolidation have been reported: instrumental responding and goal-tracking. However, these studies do not provide conclusive evidence for a lack of memory reconsolidation due to the numerous boundary conditions that dictate whether a…
ERIC Educational Resources Information Center
Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea
2014-01-01
This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…
van den Akker, Karolien; Nederkoorn, Chantal; Jansen, Anita
2017-08-01
Studies on human appetitive conditioning using food rewards can benefit from including psychophysiological outcome measures. The present study tested whether the skin conductance response can function as a measure of differential responding in an appetitive conditioning paradigm including an acquisition and extinction phase, and examined which time window during a trial is most sensitive to conditioning effects. As a secondary aim, the effects of ambiguous vs. non-ambiguous contingency instructions on conditioned responses (skin conductance responses, US expectancies, chocolate desires, and CS evaluations) were assessed. Results indicated differential skin conductance responses in an anticipatory time window and during unexpected omission of the US in early extinction. Interestingly however, anticipatory responses were only found for participants who received ambiguous contingency instructions - possibly indicating a call for additional processing resources in response to the ambiguous CS+. Further, ambiguous instructions slowed the extinction of US expectancies but did not influence chocolate desires and CS evaluations. It is concluded that skin conductance can function as a sensitive measure of differential responding in appetitive conditioning, though its sensitivity might depend on the specific task context. Copyright © 2017 Elsevier B.V. All rights reserved.
Itzhak, Yossef; Roger-Sánchez, Concepción; Kelley, Jonathan B; Anderson, Karen L
2010-03-01
The conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving. Therefore, we investigated (a) methods by which to discriminate between cue- and context-dependent appetitive learning, and (b) the role of the neuronal nitric oxide synthase (nNOS) gene in appetitive learning. Wild-type (WT) and nNOS knockout (KO) mice were trained by cocaine (20 mg/kg) in a discrete context paired with a light cue (a compound context-cue stimulus). In test 1, approach behaviour to either the training context or to the cue in a novel context was determined. WT mice showed robust preference for both cocaine-associated context and cue. nNOS KO mice acquired approach behaviour for the cocaine-associated context but not cue. This finding suggests that the nNOS gene is required for cue-dependent appetitive learning. On the following day (test 2), mice were tested for approach behaviour to the compound context-cue stimulus. Context but not cue exposure in test 1 reduced approach behaviour to the compound context-cue stimulus in test 2, suggesting that repeated context but not cue exposures diminished the conditioned response. Hence, this modified CPP paradigm is useful for the investigation of approach behaviour for both drug-associated context and cue, and allows further investigation of mechanisms underlying cue- and context-dependent appetitive learning.
Larsen, Penelope S; Donges, Cheyne E; Guelfi, Kym J; Smith, Greg C; Adams, David R; Duffield, Rob
2017-10-01
Aerobic exercise (AE) and strength exercise (SE) are reported to induce discrete and specific appetite-related responses; however, the effect of combining AE and SE (i.e., combined exercise; CE) remains relatively unknown. Twelve inactive overweight men (age: 48 ± 5 y; BMI: 29.9 ± 1.9 kg∙m 2 ) completed four conditions in a random order: 1) nonexercise control (CON) (50 min seated rest); 2) AE (50 min cycling; 75% VO 2peak ); 3) SE (10 × 8 leg extensions; 75% 1RM); and 4) CE (50% SE + 50% AE). Perceived appetite, and appetiterelated peptides and metabolites were assessed before and up to 2 h postcondition (0P, 30P, 60P, 90P, 120P). Perceived appetite did not differ between trials (p < .05). Acylated ghrelin was lower at 0P in AE compared with CON (p = .039), while pancreatic polypeptide (PP) was elevated following AE compared with CON and CE. Glucose-dependent insulinotropic peptide (GIP total ) was greater following all exercise conditions compared with CON, as was glucagon, although concentrations were generally highest in AE (p < .05). Glucose was acutely increased with SE and AE (p < .05), while insulin and C-peptide were higher after SE compared with all other conditions (p < .05). In inactive, middle-aged men AE, SE and CE each have their own distinct effects on circulating appetite-related peptides and metabolites. Despite these differential exercise-induced hormone responses, exercise mode appears to have little effect on perceived appetite compared with a resting control in this population.
Kral, Tanja V E; Bannon, Annika L; Chittams, Jesse; Moore, Reneé H
2016-01-01
Few studies exist that have systematically examined the role of protein, and egg protein in particular, in appetite and energy intake regulation in children. The aim of this study was to compare the effects of three different types of breakfast on appetite and energy intake at subsequent meals in children. Forty children, ages 8-10, were served a compulsory breakfast (egg, cereal, or oatmeal) and lunch, consumed ad libitum, once a week for three weeks. Children's appetite ratings were assessed repeatedly throughout the morning. On each test day, caregivers completed food records, which captured children's intake for the remainder of the day. There was a significant main effect of breakfast condition on energy intake at lunch (P=0.02) indicating that children consumed ~70 fewer calories at lunch following the egg breakfast (696 ± 53 kcal) compared to the cereal (767 ± 53 kcal) and oatmeal (765 ± 53 kcal) breakfasts. Calories consumed for the remainder of the day and daily energy intake did not differ across conditions (P>0.30). There also were no significant differences in children's appetite ratings between conditions (P>0.43). Consuming an egg-based breakfast significantly reduced short-term, but not longer-term, energy intake in children in the absence of differences in appetite ratings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Appetitive Motivation and Negative Emotion Reactivity among Remitted Depressed Youth
Hankin, Benjamin L.; Wetter, Emily K.; Flory, Kate
2012-01-01
Depression has been characterized as involving altered appetitive motivation and emotional reactivity. Yet no study has examined objective indices of emotional reactivity when the appetitive/approach system is suppressed in response to failure to attain a self-relevant goal and desired reward. Three groups of youth (N = 98, ages 9–15; remitted depressed, n = 34; externalizing disordered without depression, n = 30, and healthy controls, n = 34) participated in a novel reward striving task designed to activate the appetitive/approach motivation system. Objective facial expressions of emotion were videotaped and coded throughout both failure (i.e., nonreward) and control (success and reward) conditions. Observational coding of facial expressions as well as youths’ subjective emotion reports showed that the remitted depressed youth specifically exhibited more negative emotional reactivity to failure in the reward striving task, but not the control condition. Neither externalizing disordered (i.e., ADHD, CD, and/ or ODD) nor control youth displayed greater negative emotional reactivity in either the failure or control condition. Findings suggest that depression among youth is related to dysregulated appetitive motivation and associated negative emotional reactivity after failing to achieve an important, self-relevant goal and not attaining reward. These deficits in reward processing appear to be specific to depression as externalizing disordered youth did not display negative emotional reactivity to failure after their appetitive motivation system was activated. PMID:22901275
Appetitive motivation and negative emotion reactivity among remitted depressed youth.
Hankin, Benjamin L; Wetter, Emily K; Flory, Kate
2012-01-01
Depression has been characterized as involving altered appetitive motivation and emotional reactivity. Yet no study has examined objective indices of emotional reactivity when the appetitive/approach system is suppressed in response to failure to attain a self-relevant goal and desired reward. Three groups of youth (N = 98, ages 9-15; remitted depressed, n = 34; externalizing disordered without depression, n = 30; and healthy controls, n = 34) participated in a novel reward striving task designed to activate the appetitive/approach motivation system. Objective facial expressions of emotion were videotaped and coded throughout both failure (i.e., nonreward) and control (success and reward) conditions. Observational coding of facial expressions as well as youths' subjective emotion reports showed that the remitted depressed youth specifically exhibited more negative emotional reactivity to failure in the reward striving task, but not the control condition. Neither externalizing disordered (i.e., attention deficit hyperactivity disorder, conduct disorder, and/or oppositional defiant disorder) nor control youth displayed greater negative emotional reactivity in either the failure or control condition. Findings suggest that depression among youth is related to dysregulated appetitive motivation and associated negative emotional reactivity after failing to achieve an important, self-relevant goal and not attaining reward. These deficits in reward processing appear to be specific to depression as externalizing disordered youth did not display negative emotional reactivity to failure after their appetitive motivation system was activated.
Olshavsky, Megan E; Song, Bryan J; Powell, Daniel J; Jones, Carolyn E; Monfils, Marie-H; Lee, Hongjoo J
2013-01-01
When presented with a light cue followed by food, some rats simply approach the foodcup (Nonorienters), while others first orient to the light in addition to displaying the food-cup approach behavior (Orienters). Cue-directed orienting may reflect enhanced attentional and/or emotional processing of the cue, suggesting divergent natures of cue-information processing in Orienters and Nonorienters. The current studies investigate how differences in cue processing might manifest in appetitive memory retrieval and updating using a paradigm developed to persistently attenuate fear responses (Retrieval-extinction paradigm; Monfils et al., 2009). First, we examined whether the retrieval-extinction paradigm could attenuate appetitive responses in Orienters and Nonorienters. Next, we investigated if the appetitive memory could be updated using reversal learning (fear conditioning) during the reconsolidation window (as opposed to repeated unreinforced trials, i.e., extinction). Both extinction and new fear learning given within the reconsolidation window were effective at persistently updating the initial appetitive memory in the Orienters, but not the Nonorienters. Since conditioned orienting is mediated by the amygdala central nucleus (CeA), our final experiment examined the CeA's role in the retrieval-extinction process. Bilateral CeA lesions interfered with the retrieval-extinction paradigm-did not prevent spontaneous recovery of food-cup approach. Together, our studies demonstrate the critical role of conditioned orienting behavior and the CeA in updating appetitive memory during the reconsolidation window.
Pre-meal screen-time activities increase subjective emotions, but not food intake in young girls.
Totosy de Zepetnek, Julia O; Pollard, Damion; Welch, Jo M; Rossiter, Melissa; Faghih, Shiva; Bellissimo, Nick
2017-04-01
To determine the effect of pre-meal screen-time activities on subjective emotions, subjective appetite, and food intake (FI) in 9-14 year-old girls. In this clinical study, 31 girls completed four 45-min treatment conditions of television viewing (TVV), video game playing (VGP), a challenging computer task (CT), and sitting without screen exposure (control) in a randomized order. Each treatment condition was followed immediately by an ad libitum pizza lunch, and FI was calculated from the weight of the consumed pizza. Subjective appetite was assessed at baseline, 15, 30, and 45 min during the treatment condition, and upon trial completion at 75 min. Subjective emotions were assessed at baseline and at 45 min. FI was not affected by screen type, but was positively correlated with body composition (fat mass [FM, kg], fat free mass [FFM, kg]) in all treatment conditions. Subjective appetite was not affected by screen type, but increased with time in all treatment conditions (p < 0.0001). Subjective emotions were affected by VGP only. Anger, excitement, frustration, and upset feelings were increased at 45 min following VGP. VGP led to increased frustration compared to control (p = 0.0003), CT (p = 0.007) and TVV (p = 0.0002). Exposure to TVV or CT before eating did not affect subjective emotions, subjective appetite, or FI, and no difference was found between screen activities and the control condition for average appetite or FI. Despite a change in subjective emotions during the VGP condition, there was no increase in subjective appetite or subsequent FI. These findings suggest that physiologic signals of satiation and satiety are not overridden by environmental stimuli of pre-meal screen-time exposure among young girls. (Clinical trial number NCT01750177). Copyright © 2016 Elsevier Ltd. All rights reserved.
Levels-of-processing effects on a task of olfactory naming.
Royet, Jean-Pierre; Koenig, Olivier; Paugam-Moisy, Helene; Puzenat, Didier; Chasse, Jean-Luc
2004-02-01
The effects of odor processing were investigated at various analytical levels, from simple sensory analysis to deep or semantic analysis, on a subsequent task of odor naming. Students (106 women, 23.6 +/- 5.5 yr. old; 65 men, 25.1 +/- 7.1 yr. old) were tested. The experimental procedure included two successive sessions, a first session to characterize a set of 30 odors with criteria that used various depths of processing and a second session to name the odors as quickly as possible. Four processing conditions rated the odors using descriptors before naming the odor. The control condition did not rate the odors before naming. The processing conditions were based on lower-level olfactory judgments (superficial processing), higher-level olfactory-gustatory-somesthetic judgments (deep processing), and higher-level nonolfactory judgments (Deep-Control processing, with subjects rating odors with auditory and visual descriptors). One experimental condition successively grouped lower- and higher-level olfactory judgments (Superficial-Deep processing). A naming index which depended on response accuracy and the subjects' response time were calculated. Odor naming was modified for 18 out of 30 odorants as a function of the level of processing required. For 94.5% of significant variations, the scores for odor naming were higher following those tasks for which it was hypothesized that the necessary olfactory processing was carried out at a deeper level. Performance in the naming task was progressively improved as follows: no rating of odors, then superficial, deep-control, deep, and superficial-deep processings. These data show that the deepest olfactory encoding was later associated with progressively higher performance in naming.
Caous, Cristofer André; Tobo, Patrícia Renovato; Talarico, Vânia Hercília; Gonçales, Luciana Ribeiro Lopes; Yoshimine, Elise; da Cruz Jr, Antonio Cesário; Albuquerque, Cristóvão; Amaro Jr, Edson
2015-01-01
Olfactory perception, although restricted to just a few contexts in everyday life, is key in medicine. Several dementia conditions have been associated with early loss of olfactory discrimination. Despite the fact that several brain areas have been associated with olfaction in functional magnetic resonance imaging (fMRI), the mechanisms by which emotional valence is conveyed to the brain are not fully understood. Methods In this study, we compared cerebral activations by olfactory stimuli using different emotional valence stimuli on event-related fMRI. We used three standard olfactory odorants with different valence (positive, neutral and negative). Forty-three healthy subjects (22 males) were scanned on a 3.0T MR system. Olfactory stimulation was attained through a delivery system synchronized with image acquisition and subjects´ breathing instructions. fMRI data analysis was performed by the FSL package (Oxford University) including head movement correction, GLM modeling of the neurovascular (BOLD) response and group activation maps produced at p<0.05and corrected for multiple comparison. Results Increased cerebral responses within the anterior cingulate, amygdaloid nuclei, as well as the dorsolateral prefrontal, occipital and orbitofrontal cortices were observed in positive and negative valence conditions, while response to neutral valence arousal was less intense and not observed in the amygdaloid complex. The most significant statistical response aroused from the stimuli clusters was observed in the negative condition. Conclusion The results of the present study support the hypothesis that neutral stimuli may be more sensitive to early losses in pathological conditions, particularly dementia. PMID:29213990
Brady, Shauna; Lalli, Paul; Midha, Nisha; Chan, Ayechen; Garven, Alexandra; Chan, Cynthia; Toth, Cory
2013-07-01
Olfactory dysfunction in neurodegenerative conditions such as Parkinson's syndrome and Alzheimer's disease can hallmark disease onset. We hypothesized that patients with diabetes mellitus, a condition featuring peripheral and central neurodegeneration, would have decreased olfaction abilities. We examined participants with diabetic peripheral neuropathy, participants with diabetes without diabetic peripheral neuropathy, and control participants in blinded fashion using standardized Sniffin' Sticks. Diabetic peripheral neuropathy severity was quantified using the Utah Early Neuropathy Scale. Further subcategorization of diabetic peripheral neuropathy based on presence of neuropathic pain was performed with Douleur Neuropathique 4 Questionnaires. Participants with diabetes had decreased olfactory sensitivity, impaired olfactory discrimination abilities, and reduced odor identification skills when compared with controls. However, loss of olfaction ability was, at least partially, attributed to presence of neuropathic pain on subcategory assessment, although pain severity was not associated with dysfunction. Those participants with diabetes without diabetic peripheral neuropathy and those with diabetic peripheral neuropathy without neuropathic pain had similar olfactory function as controls in general. The presence of neuropathic pain, associated with limited attention and concentration, may explain at least a portion of the olfactory dysfunction witnessed in the diabetic patient population.
Golob, Edward J; Taube, Jeffrey S
2002-10-17
Tasks using appetitive reinforcers show that following disorientation rats use the shape of an arena to reorient, and cannot distinguish two geometrically similar corners to obtain a reward, despite the presence of a prominent visual cue that provides information to differentiate the two corners. Other studies show that disorientation impairs performance on certain appetitive, but not aversive, tasks. This study evaluated whether rats would make similar geometric errors in a working memory task that used aversive reinforcement. We hypothesized that in a task that used aversive reinforcement rats that were initially disoriented would not reorient by arena shape and thus make similar geometric errors. Tests were performed in a rectangular arena having one polarizing cue. In the appetitive condition water consumption was the reward. The aversive condition was a water maze task with reinforcement provided by escape to a hidden platform. In the aversive condition rats returned to the reinforced corner significantly more often than in the dry condition, and did not favor the diagonally opposite corner. Results show that rats can use cues besides arena shape to reorient in an aversive reinforcement condition. These findings may also reflect different strategies, with an escape/homing strategy in the wet condition and a foraging strategy in the dry condition.
Popescu, Alexandra; Couton, Louise; Almaas, Tor-Jørgen; Rospars, Jean-Pierre; Wright, Geraldine A; Marion-Poll, Frédéric; Anton, Sylvia
2013-05-01
Chemosensory information is crucial for most insects to feed and reproduce. Olfactory signals are mainly used at a distance, whereas gustatory stimuli play an important role when insects directly contact chemical substrates. In noctuid moths, although the antennae are the main olfactory organ, they also bear taste sensilla. These taste sensilla detect sugars and hence are involved in appetitive learning but could also play an important role in food evaluation by detecting salts and bitter substances. To investigate this, we measured the responses of individual taste sensilla on the antennae of Spodoptera littoralis to sugars and salts using tip recordings. We also traced the projections of their neuronal axons into the brain. In each sensillum, we found one or two neurons responding to sugars: one NaCl-responsive and one water-sensitive neuron. Responses of these neurons were dose-dependent and similar across different locations on the antenna. Responses were dependent on the sex for sucrose and on both sex and location for glucose and fructose. We did not observe a spatial map for the projections from specific regions of the antennae to the deutocerebrum or the tritocerebrum/suboesophageal ganglion complex. In accordance with physiological recordings, back-fills from individual sensilla revealed up to four axons, in most cases targeting different projection zones.
McCabe, Ciara; Rocha-Rego, Vanessa
2016-01-01
Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder.
Hibi, Masanobu; Kubota, Chie; Mizuno, Tomohito; Aritake, Sayaka; Mitsui, Yuki; Katashima, Mitsuhiro; Uchida, Sunao
2017-01-10
The effects of sleep restriction on energy metabolism and appetite remain controversial. We examined the effects of shortened sleep duration on energy metabolism, core body temperature (CBT), and appetite profiles. Nine healthy men were evaluated in a randomised crossover study under two conditions: a 3.5-h sleep duration and a 7-h sleep duration for three consecutive nights followed by one 7-h recovery sleep night. The subjects' energy expenditure (EE), substrate utilisation, and CBT were continually measured for 48 h using a whole-room calorimeter. The subjects completed an appetite questionnaire every hour while in the calorimeter. Sleep restriction did not affect total EE or substrate utilisation. The 48-h mean CBT decreased significantly during the 3.5-h sleep condition compared with the 7-h sleep condition (7-h sleep, 36.75 ± 0.11 °C; 3.5-h sleep, 36.68 ± 0.14 °C; p = 0.016). After three consecutive nights of sleep restriction, fasting peptide YY levels and fullness were significantly decreased (p = 0.011), whereas hunger and prospective food consumption were significantly increased, compared to those under the 7-h sleep condition. Shortened sleep increased appetite by decreasing gastric hormone levels, but did not affect EE, suggesting that greater caloric intake during a shortened sleep cycle increases the risk of weight gain.
Anemomenotatic orientation in beetles and scorpions
NASA Technical Reports Server (NTRS)
Linsenmair, K. E.
1972-01-01
Orientation, by beetles and scorpions, according to wind direction and force are analyzed. Major efforts were made to determine: (1) which physical qualities of the air current influence anemomenotaxis, (2) which physiological mechanism is responsible for such orientation, (3) which sense organs do beetles and scorpions use to perceive wind directions, and (4) what the biological significance of anemomenotaxis in the beetle and scorpion is. Experimental results show that the trichobothria in scorpions perceives wind direction; in the beetle it is perceived by sense organs excited by pendicellus-flagellum joint movements. A compensation mechanism is suggested as the basis for anemomenotactic orientation. It was also suggested that the biological significance of anemomenotaxis in scorpions is space orientation; while in beetles it was found to be part of the appetitive behavior used to search for olfactory sign stimuli.
Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs.
Zukerman, Steven; Ackroff, Karen; Sclafani, Anthony
2013-10-01
Post-oral sugar actions enhance the intake of and preference for sugar-rich foods, a process referred to as appetition. Here, we investigated the role of intestinal sodium glucose cotransporters (SGLTs) in sugar appetition in C57BL/6J mice using sugars and nonmetabolizable sugar analogs that differ in their affinity for SGLT1 and SGLT3. In experiments 1 and 2, food-restricted mice were trained (1 h/day) to consume a flavored saccharin solution [conditioned stimulus (CS-)] paired with intragastric (IG) self-infusions of water and a different flavored solution (CS+) paired with infusions of 8 or 12% sugars (glucose, fructose, and galactose) or sugar analogs (α-methyl-D-glucopyranoside, MDG; 3-O-methyl-D-glucopyranoside, OMG). Subsequent two-bottle CS+ vs. CS- choice tests were conducted without coinfusions. Infusions of the SGLT1 ligands glucose, galactose, MDG, and OMG stimulated CS+ licking above CS- levels. However, only glucose, MDG, and galactose conditioned significant CS+ preferences, with the SGLT3 ligands (glucose, MDG) producing the strongest preferences. Fructose, which is not a ligand for SGLTs, failed to stimulate CS+ intake or preference. Experiment 3 revealed that IG infusion of MDG+phloridzin (an SGLT1/3 antagonist) blocked MDG appetition, whereas phloridzin had minimal effects on glucose-induced appetition. However, adding phloretin (a GLUT2 antagonist) to the glucose+phloridzin infusion blocked glucose appetition. Taken together, these findings suggest that humoral signals generated by intestinal SGLT1 and SGLT3, and to a lesser degree, GLUT2, mediate post-oral sugar appetition in mice. The MDG results indicate that sugar metabolism is not essential for the post-oral intake-stimulating and preference-conditioning actions of sugars in mice.
Pezze, Marie-Astrid; Marshall, Hayley J; Cassaday, Helen J
2017-06-28
The muscarinic acetylcholine receptor is an important modulator of medial prefrontal cortex (mPFC) functions, such as the working memory required to bridge a trace interval in associative leaning. Aversive and appetitive trace conditioning procedures were used to examine the effects of scopolamine (0.1 and 0.5 mg/kg, i.p.) in male rats. Follow-up experiments tested the effects of microinfusion of 0.15 μg of scopolamine (0.075 μg of in 0.5 μl/side) in infralimbic (IL) versus prelimbic regions of rat mPFC, in appetitive trace and locomotor activity (LMA) procedures. Systemic scopolamine was without effect in an aversive trace conditioning procedure, but impaired appetitive conditioning at a 2 s trace interval. This effect was demonstrated as reduced responding during presentations of the conditioned stimulus (CS) and during the interstimulus interval (ISI). There was no such effect on responding during food (unconditioned stimulus, US) responding or in the intertrial interval (ITI). In contrast, systemic scopolamine dose-relatedly increased LMA. Trace conditioning was similarly impaired at the 2 s trace (shown as reduced responding to the CS and during the ISI, but not during US presentations or in the ITI) after infusion in mPFC, whereas LMA was increased (after infusion in IL only). Therefore, our results point to the importance of cholinergic modulation in mPFC for trace conditioning and show that the observed effects cannot be attributed to reduced activity. SIGNIFICANCE STATEMENT Events are very often separated in time, in which case working memory is necessary to condition their association in "trace conditioning." The present study used conditioning variants motivated aversively with foot shock and appetitively with food. The drug scopolamine was used to block muscarinic acetylcholine receptors involved in working memory. The results show that reduced cholinergic transmission in medial prefrontal cortex (mPFC) impaired appetitive trace conditioning at a 2 s trace interval. However, scopolamine was without effect in the aversive procedure, revealing the importance of procedural differences to the demonstration of the drug effect. The finding that blockade of muscarinic receptors in mPFC impaired trace conditioning shows that these receptors are critical modulators of short-term working memory. Copyright © 2017 Pezze et al.
Pezze, Marie-Astrid; Marshall, Hayley J.
2017-01-01
The muscarinic acetylcholine receptor is an important modulator of medial prefrontal cortex (mPFC) functions, such as the working memory required to bridge a trace interval in associative leaning. Aversive and appetitive trace conditioning procedures were used to examine the effects of scopolamine (0.1 and 0.5 mg/kg, i.p.) in male rats. Follow-up experiments tested the effects of microinfusion of 0.15 μg of scopolamine (0.075 μg of in 0.5 μl/side) in infralimbic (IL) versus prelimbic regions of rat mPFC, in appetitive trace and locomotor activity (LMA) procedures. Systemic scopolamine was without effect in an aversive trace conditioning procedure, but impaired appetitive conditioning at a 2 s trace interval. This effect was demonstrated as reduced responding during presentations of the conditioned stimulus (CS) and during the interstimulus interval (ISI). There was no such effect on responding during food (unconditioned stimulus, US) responding or in the intertrial interval (ITI). In contrast, systemic scopolamine dose-relatedly increased LMA. Trace conditioning was similarly impaired at the 2 s trace (shown as reduced responding to the CS and during the ISI, but not during US presentations or in the ITI) after infusion in mPFC, whereas LMA was increased (after infusion in IL only). Therefore, our results point to the importance of cholinergic modulation in mPFC for trace conditioning and show that the observed effects cannot be attributed to reduced activity. SIGNIFICANCE STATEMENT Events are very often separated in time, in which case working memory is necessary to condition their association in “trace conditioning.” The present study used conditioning variants motivated aversively with foot shock and appetitively with food. The drug scopolamine was used to block muscarinic acetylcholine receptors involved in working memory. The results show that reduced cholinergic transmission in medial prefrontal cortex (mPFC) impaired appetitive trace conditioning at a 2 s trace interval. However, scopolamine was without effect in the aversive procedure, revealing the importance of procedural differences to the demonstration of the drug effect. The finding that blockade of muscarinic receptors in mPFC impaired trace conditioning shows that these receptors are critical modulators of short-term working memory. PMID:28559376
Olfactory acuity in theropods: palaeobiological and evolutionary implications.
Zelenitsky, Darla K; Therrien, François; Kobayashi, Yoshitsugu
2009-02-22
This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds.
Olfactory acuity in theropods: palaeobiological and evolutionary implications
Zelenitsky, Darla K.; Therrien, François; Kobayashi, Yoshitsugu
2008-01-01
This research presents the first quantitative evaluation of the olfactory acuity in extinct theropod dinosaurs. Olfactory ratios (i.e. the ratio of the greatest diameter of the olfactory bulb to the greatest diameter of the cerebral hemisphere) are analysed in order to infer the olfactory acuity and behavioural traits in theropods, as well as to identify phylogenetic trends in olfaction within Theropoda. A phylogenetically corrected regression of olfactory ratio to body mass reveals that, relative to predicted values, the olfactory bulbs of (i) tyrannosaurids and dromaeosaurids are significantly larger, (ii) ornithomimosaurs and oviraptorids are significantly smaller, and (iii) ceratosaurians, allosauroids, basal tyrannosauroids, troodontids and basal birds are within the 95% CI. Relative to other theropods, olfactory acuity was high in tyrannosaurids and dromaeosaurids and therefore olfaction would have played an important role in their ecology, possibly for activities in low-light conditions, locating food, or for navigation within large home ranges. Olfactory acuity was the lowest in ornithomimosaurs and oviraptorids, suggesting a reduced reliance on olfaction and perhaps an omnivorous diet in these theropods. Phylogenetic trends in olfaction among theropods reveal that olfactory acuity did not decrease in the ancestry of birds, as troodontids, dromaeosaurids and primitive birds possessed typical or high olfactory acuity. Thus, the sense of smell must have remained important in primitive birds and its presumed decrease associated with the increased importance of sight did not occur until later among more derived birds. PMID:18957367
Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits
Navarrete, Erika; Ortega-Bernal, Juan Roberto; Trejo-Muñoz, Lucero; Díaz, Georgina; Montúfar-Chaveznava, Rodrigo; Caldelas, Ivette
2016-01-01
Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb. PMID:27305041
Montague, Shelby A; Baker, Bruce S
2016-01-01
An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.
Montague, Shelby A.; Baker, Bruce S.
2016-01-01
An animal’s ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory. PMID:27764141
Reappraising social insect behavior through aversive responsiveness and learning.
Roussel, Edith; Carcaud, Julie; Sandoz, Jean-Christophe; Giurfa, Martin
2009-01-01
The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsive to shock learned and memorized better aversive associations. Finally, guards were less responsive than nectar foragers to electric shocks, exhibiting higher tolerance to low voltage shocks. Consequently, foragers, which are more sensitive, were the ones learning and memorizing better in aversive conditioning. Our results constitute the first integrative study on how aversive responsiveness affects learning, memory and social organization in honeybees. We suggest that parallel behavioral modules (e.g. appetitive, aversive) coexist within each individual bee and determine its tendency to adopt a given task. This conclusion, which is at odds with a simple threshold model, should open new opportunities for exploring the division of labor in social insects.
Cross-modal interaction between visual and olfactory learning in Apis cerana.
Zhang, Li-Zhen; Zhang, Shao-Wu; Wang, Zi-Long; Yan, Wei-Yu; Zeng, Zhi-Jiang
2014-10-01
The power of the small honeybee brain carrying out behavioral and cognitive tasks has been shown repeatedly to be highly impressive. The present study investigates, for the first time, the cross-modal interaction between visual and olfactory learning in Apis cerana. To explore the role and molecular mechanisms of cross-modal learning in A. cerana, the honeybees were trained and tested in a modified Y-maze with seven visual and five olfactory stimulus, where a robust visual threshold for black/white grating (period of 2.8°-3.8°) and relatively olfactory threshold (concentration of 50-25%) was obtained. Meanwhile, the expression levels of five genes (AcCREB, Acdop1, Acdop2, Acdop3, Actyr1) related to learning and memory were analyzed under different training conditions by real-time RT-PCR. The experimental results indicate that A. cerana could exhibit cross-modal interactions between visual and olfactory learning by reducing the threshold level of the conditioning stimuli, and that these genes may play important roles in the learning process of honeybees.
Impulsivity makes more susceptible to overeating after contextual appetitive conditioning.
van den Akker, Karolien; Jansen, Anita; Frentz, Florentine; Havermans, Remco C
2013-11-01
Animals can learn that specific contexts are associated with important biological events such as food intake through classical conditioning. Very few studies suggest this is also possible in humans and contextual appetitive conditioning might even be a main determinant of habitual overeating in vulnerable humans. A Virtual Reality laboratory was used to test whether humans show conditioned responding (increased food desires and expectations, increased salivation and increased food intake) to a specific context after repeated pairings of this context with intake. It was also examined whether the personality trait impulsivity strengthens this contextual appetitive conditioning. Conditioned context-induced reactivity was indeed demonstrated and impulsivity predicted increased intake in only the intake-associated context. It is concluded that humans easily learn desires to eat in intake-related environments. The data also suggest that in particular more impulsive people are vulnerable for conditioned context-induced overeating. This relatively easy learning of associations between specific contexts and intake might stimulate habitual overeating and contribute to increased obesity prevalence. Copyright © 2013 Elsevier Ltd. All rights reserved.
Olfaction: New Understandings, Diagnostic Applications.
Ruggiero, Gabrielle F; Wick, Jeannette Y
2016-11-01
Estimates indicate that 14 million Americans have olfactory dysfunction. As with other senses, such as sight and hearing, olfaction frequently declines with age. Impaired olfaction can be a warning sign of Parkinson's disease, sometimes occurring before motor symptoms develop. It's also an initial symptom of Alzheimer's dementia (AD); the amyloid plaques and tangles characterizing AD invade the olfactory bulb and hippocampus early in its course, hampering odor identification. Olfactory dysfunction is associated with some serious problems, including inability to smell warning odors (fire, gas) and impaired ability to taste food. Standardized, validated methods are available to measure several different dimensions of olfactory function, including odor identification, discrimination, and threshold levels. Researchers are currently studying the unique olfactory deficits associated with different conditions in hopes of identifying new, noninvasive tools for early diagnosis and treatment. Drugs may cause or contribute to olfactory dysfunction, but it can be difficult to pinpoint offending medications.
Perisse, Emmanuel; Owald, David; Barnstedt, Oliver; Talbot, Clifford B; Huetteroth, Wolf; Waddell, Scott
2016-06-01
In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Enhanced olfactory sensitivity in autism spectrum conditions.
Ashwin, Chris; Chapman, Emma; Howells, Jessica; Rhydderch, Danielle; Walker, Ian; Baron-Cohen, Simon
2014-01-01
People with autism spectrum conditions (ASC) report heightened olfaction. Previous sensory experiments in people with ASC have reported hypersensitivity across visual, tactile, and auditory domains, but not olfaction. The aims of the present study were to investigate olfactory sensitivity in ASC, and to test the association of sensitivity to autistic traits. We recruited 17 adult males diagnosed with ASC and 17 typical adult male controls and tested their olfactory sensitivity using the Alcohol Sniff Test (AST), a standardised clinical evaluation of olfactory detection. The AST involves varying the distance between subject and stimulus until an odour is barely detected. Participants with ASC also completed the Autism Spectrum Quotient (AQ) as a measure of autism traits. The ASC group detected the odour at a mean distance of 24.1 cm (SD =11.5) from the nose, compared to the control group, who detected it at a significantly shorter mean distance of 14.4 cm (SD =5.9). Detection distance was independent of age and IQ for both groups, but showed a significant positive correlation with autistic traits in the ASC group (r =0.522). This is the first experimental demonstration, as far as the authors are aware, of superior olfactory perception in ASC and showing that greater olfactory sensitivity is correlated with a higher number of autistic traits. This is consistent with results from previous findings showing hypersensitivity in other sensory domains and may help explain anecdotal and questionnaire accounts of heightened olfactory sensitivity in ASC. Results are discussed in terms of possible underlying neurophysiology.
Appetite influences the responses to meal ingestion.
Pribic, T; Nieto, A; Hernandez, L; Malagelada, C; Accarino, A; Azpiroz, F
2017-08-01
We have previously shown that the postprandial experience includes cognitive sensations, such as satiety and fullness, with a hedonic dimension involving digestive well-being and mood. Preload conditioning has been shown to modulate appetite and food consumption under certain conditions, but its effects on the responses to meal ingestion are not clear. We hypothesized that appetite modulation by preload conditioning has differential effects on the cognitive and the emotive responses to meal ingestion. The effects of preload conditioning (ingestion of a low- vs a high-calorie breakfast) on appetite and on the cognitive and emotive responses to a comfort probe meal ingested 2 hours later (ham and cheese sandwich with orange juice; 300 mL, 425 Kcal) was tested in healthy subjects (n=12) in a cross-over design. Sensations were measured at regular intervals 15 minutes before and 60 minutes after the probe meal. As compared to the low-calorie breakfast, the high-calorie breakfast reduced basal hunger sensation and influenced the responses to the subsequent probe meal: it increased satiety (4.3±0.2 score vs 2.7±0.2 score; P<.001) and fullness (5.4±0.5 score vs 3.1±0.5; P<.001), but reduced the expected postprandial experience of digestive well-being after a palatable meal (1.3±0.7 score vs 3.0±0.3; P=.045). Appetite modulation by preload conditioning has differential effects on the cognitive and emotive responses to a meal. Preload conditioning of the postprandial experience may be applicable to dietary planning and prevention of postprandial symptoms. © 2017 John Wiley & Sons Ltd.
Effects of 20 mg oral Δ9-tetrahydrocannabinol on the olfactory function of healthy volunteers*
Walter, Carmen; Oertel, Bruno G; Ludyga, Dagmar; Ultsch, Alfred; Hummel, Thomas; Lötsch, Jörn
2014-01-01
Aims Olfactory loss impairs the patient's quality of life. In individualized therapies, olfactory drug effects gain clinical importance. Molecular evidence suggests that among drugs with potential olfactory effects is Δ9-tetrahydrocannabinol (THC), which is approved for several indications, including neuropathic pain or analgesia in cancer patients. The present study aimed at assessing the olfactory effects of THC to be expected during analgesic treatment. Methods The effects of 20 mg oral THC on olfaction were assessed in a placebo-controlled, randomized cross-over study in healthy volunteers. Using an established olfactory test (Sniffin' Sticks), olfactory thresholds, odour discrimination and odour identification were assessed in 15 subjects at baseline and 2 h after THC administration. Results Δ9-Tetrahydrocannabinol impaired the performance of subjects (n = 15) in the olfactory test. Specifically, olfactory thresholds were increased and odour discrimination performance was reduced. This resulted in a significant drop in composite threshold, discrimination, identification (TDI) olfactory score by 5.5 points (from 37.7 ± 4.2 to 32.2 ± 5.6, 95% confidence interval for differences THC vs. placebo, −7.8 to −2.0, P = 0.003), which is known to be a subjectively perceptible impairment of olfactory function. Conclusions Considering the resurgence of THC in medical use for several pathological conditions, the present results indicate that THC-based analgesics may be accompanied by subjectively noticeable reductions in olfactory acuity. In particular, for patients relying on their sense of smell, this might be relevant information for personalized therapy strategies. PMID:24802974
Effects of 20 mg oral Δ(9) -tetrahydrocannabinol on the olfactory function of healthy volunteers.
Walter, Carmen; Oertel, Bruno G; Ludyga, Dagmar; Ultsch, Alfred; Hummel, Thomas; Lötsch, Jörn
2014-11-01
Olfactory loss impairs the patient's quality of life. In individualized therapies, olfactory drug effects gain clinical importance. Molecular evidence suggests that among drugs with potential olfactory effects is Δ(9) -tetrahydrocannabinol (THC), which is approved for several indications, including neuropathic pain or analgesia in cancer patients. The present study aimed at assessing the olfactory effects of THC to be expected during analgesic treatment. The effects of 20 mg oral THC on olfaction were assessed in a placebo-controlled, randomized cross-over study in healthy volunteers. Using an established olfactory test (Sniffin' Sticks), olfactory thresholds, odour discrimination and odour identification were assessed in 15 subjects at baseline and 2 h after THC administration. Δ(9) -Tetrahydrocannabinol impaired the performance of subjects (n = 15) in the olfactory test. Specifically, olfactory thresholds were increased and odour discrimination performance was reduced. This resulted in a significant drop in composite threshold, discrimination, identification (TDI) olfactory score by 5.5 points (from 37.7 ± 4.2 to 32.2 ± 5.6, 95% confidence interval for differences THC vs. placebo, -7.8 to -2.0, P = 0.003), which is known to be a subjectively perceptible impairment of olfactory function. Considering the resurgence of THC in medical use for several pathological conditions, the present results indicate that THC-based analgesics may be accompanied by subjectively noticeable reductions in olfactory acuity. In particular, for patients relying on their sense of smell, this might be relevant information for personalized therapy strategies. © 2014 The British Pharmacological Society.
Hibi, Masanobu; Kubota, Chie; Mizuno, Tomohito; Aritake, Sayaka; Mitsui, Yuki; Katashima, Mitsuhiro; Uchida, Sunao
2017-01-01
The effects of sleep restriction on energy metabolism and appetite remain controversial. We examined the effects of shortened sleep duration on energy metabolism, core body temperature (CBT), and appetite profiles. Nine healthy men were evaluated in a randomised crossover study under two conditions: a 3.5-h sleep duration and a 7-h sleep duration for three consecutive nights followed by one 7-h recovery sleep night. The subjects’ energy expenditure (EE), substrate utilisation, and CBT were continually measured for 48 h using a whole-room calorimeter. The subjects completed an appetite questionnaire every hour while in the calorimeter. Sleep restriction did not affect total EE or substrate utilisation. The 48-h mean CBT decreased significantly during the 3.5-h sleep condition compared with the 7-h sleep condition (7-h sleep, 36.75 ± 0.11 °C; 3.5-h sleep, 36.68 ± 0.14 °C; p = 0.016). After three consecutive nights of sleep restriction, fasting peptide YY levels and fullness were significantly decreased (p = 0.011), whereas hunger and prospective food consumption were significantly increased, compared to those under the 7-h sleep condition. Shortened sleep increased appetite by decreasing gastric hormone levels, but did not affect EE, suggesting that greater caloric intake during a shortened sleep cycle increases the risk of weight gain. PMID:28071649
Does eating slowly influence appetite and energy intake when water intake is controlled?
2012-01-01
Background Slow eating has been associated with enhanced satiation, but also with increased water intake. Therefore, the role of water ingestion in regard to eating rate needs to be discerned. This study examined the influence of eating rate on appetite regulation and energy intake when water intake is controlled. Methods In a randomized design, slow and fast eating rates were compared on two occasions, in 30 women (22.7±1.2y; BMI=22.4±0.4kg/m2) who consumed an ad libitum mixed-macronutrient lunch with water (300 mL). Satiation was examined as the main outcome by measuring energy intake during meals. At designated times, subjects rated hunger, satiety, desire-to-eat, thirst, and meal palatability on visual analogue scales. Paired t-tests were used to compare hypothesis-driven outcomes. Appetite ratings were compared across time points and conditions by repeated measures analysis of variance (ANOVA) using a within-subject model. Results Energy intake and appetite ratings did not differ between conditions at meal completion. However, subjects rated less hunger and tended to rate lower desire-to-eat and greater satiety at 1 hour following the slow condition. Conclusions Results tend to support a role of slow eating on decreased hunger and higher inter-meal satiety when water intake is controlled. However, the lack of significant differences in energy intake under these conditions indicates that water intake may account for the effects of eating rate on appetite regulation. PMID:23171246
Odors: appetizing or satiating? Development of appetite during odor exposure over time.
Ramaekers, M G; Boesveldt, S; Lakemond, C M M; van Boekel, M A J S; Luning, P A
2014-05-01
Exposure to palatable food odors influences appetite responses, either promoting or inhibiting food intake. Possibly, food odors are appetizing after a short exposure (of circa 1-3 min), but become satiating over time (circa 10-20 min). To investigate the effect of odor exposure on general appetite and sensory-specific appetite (SSA) over time. In a cross-over study, 21 unrestrained women (age: 18-45 years; BMI: 18.5-25 kg m(-2)) were exposed for 20 min to eight different odor types: five food odors, two nonfood odors and no-odor. All odors were distributed in a test room at suprathreshold levels. General appetite, SSA and salivation were measured over time. All food odors significantly increased general appetite and SSA, compared with the no-odor condition. The nonfood odors decreased general appetite. All effects did not change over time during odor exposure. Savory odors increased the appetite for savory foods, but decreased appetite for sweet foods, and vice versa after exposure to sweet odors. Neither food odors nor nonfood odors affected salivation. Palatable food odors were appetizing during and after odor exposure and did not become satiating over a 20-min period. Food odors had a large impact on SSA and a small impact on general appetite. Moreover, exposure to food odors increased the appetite for congruent foods, but decreased the appetite for incongruent foods. It may be hypothesized that, once the body is prepared for intake of a certain food with a particular macronutrient composition, it is unfavorable to consume foods that are very different from the cued food.
Monosodium glutamate delivered in a protein-rich soup improves subsequent energy compensation.
Masic, Una; Yeomans, Martin R
2014-01-01
Previous research suggests that monosodium glutamate (MSG) may have a biphasic effect on appetite, increasing appetite within a meal with its flavour-enhancing effect, but enhancing subsequent satiety due to its proposed role as a predictor of protein content. The present study explored this by assessing the impact of a 450 g soup preload differing in MSG concentration (1 % MSG added (MSG+) or no MSG (MSG-)) and nutrient content (low-energy control or high-energy carbohydrate or high-energy protein) on rated appetite and ad libitum intake of a test meal in thirty-five low-restraint male volunteers using a within-participant design. Protein-rich preloads significantly reduced intake at the test meal and resulted in more accurate energy compensation than did carbohydrate-rich preloads. This energy compensation was stronger in the MSG+ protein conditions when compared with MSG+ carbohydrate conditions. No clear differences in rated appetite were seen in MSG or the macronutrient conditions alone during preload ingestion or 45 min after intake. Overall, these findings indicate that MSG may act to further improve energy compensation when provided in a protein-rich context.
McCabe, Ciara; Rocha-Rego, Vanessa
2016-01-01
Background Dysfunctional neural responses to appetitive and aversive stimuli have been investigated as possible biomarkers for psychiatric disorders. However it is not clear to what degree these are separate processes across the brain or in fact overlapping systems. To help clarify this issue we used Gaussian process classifier (GPC) analysis to examine appetitive and aversive processing in the brain. Method 25 healthy controls underwent functional MRI whilst seeing pictures and receiving tastes of pleasant and unpleasant food. We applied GPCs to discriminate between the appetitive and aversive sights and tastes using functional activity patterns. Results The diagnostic accuracy of the GPC for the accuracy to discriminate appetitive taste from neutral condition was 86.5% (specificity = 81%, sensitivity = 92%, p = 0.001). If a participant experienced neutral taste stimuli the probability of correct classification was 92. The accuracy to discriminate aversive from neutral taste stimuli was 82.5% (specificity = 73%, sensitivity = 92%, p = 0.001) and appetitive from aversive taste stimuli was 73% (specificity = 77%, sensitivity = 69%, p = 0.001). In the sight modality, the accuracy to discriminate appetitive from neutral condition was 88.5% (specificity = 85%, sensitivity = 92%, p = 0.001), to discriminate aversive from neutral sight stimuli was 92% (specificity = 92%, sensitivity = 92%, p = 0.001), and to discriminate aversive from appetitive sight stimuli was 63.5% (specificity = 73%, sensitivity = 54%, p = 0.009). Conclusions Our results demonstrate the predictive value of neurofunctional data in discriminating emotional and neutral networks of activity in the healthy human brain. It would be of interest to use pattern recognition techniques and fMRI to examine network dysfunction in the processing of appetitive, aversive and neutral stimuli in psychiatric disorders. Especially where problems with reward and punishment processing have been implicated in the pathophysiology of the disorder. PMID:27870866
Altered reward learning and hippocampal connectivity following psychosocial stress.
Kruse, Onno; Tapia León, Isabell; Stalder, Tobias; Stark, Rudolf; Klucken, Tim
2018-05-01
Acute stress has a profound influence on learning, as has been demonstrated in verbal learning or fear conditioning. However, its effect on appetitive conditioning is still unclear. Fear conditioning research suggests the possibility of overgeneralization of conditioning to the CS- under acute stress due to its effect on prefrontal and hippocampal processing. In this study, participants (N = 56 males) were subjected to the Trier Social Stress Test or a placebo version. After that, all participants underwent an appetitive conditioning paradigm in the fMRI, in which one neutral cue (CS+) was repeatedly paired with reward, while another (CS-) was not. Importantly, the stress-group revealed overgeneralization of conditioning to the CS- on the behavioral level. On the neural level, stressed participants showed increased connectivity between the hippocampus and amygdala, vACC, and OFC, which maintain specificity of conditioning and also showed reduced differential activation. The results indicate overgeneralization of appetitive conditioning promoted by maladaptive balancing of pattern separation and pattern completion in the hippocampus under acute stress and are discussed with respect to clinical implications. Copyright © 2017 Elsevier Inc. All rights reserved.
Niu, Haichen; Zheng, Yingwei; Huma, Tanzeel; Rizak, Joshua D; Li, Ling; Wang, Guimei; Ren, He; Xu, Liqi; Yang, Jianzhen; Ma, Yuanye; Lei, Hao
2013-01-01
Previous studies have shown that olfactory impairment by disrupting the olfactory epithelium prior to morphine administration attenuated the development addiction-related behaviors. However, it is unclear whether olfactory impairment will affect the expression of already established addiction-related behaviors. To address this issue, mice were conditioned with morphine to induce behavioral sensitization and condition placed preference (CPP). After an abstinence period, the animals were subjected to either an intranasal ZnSO(4) effusion (ZnE) or sham treatment with saline. Behavioral sensitization and CPP reinstatement were evaluated 24h later, as well as the expression of c-Fos protein, a marker of activated neural sites, in brain regions of interest. It was found that ZnE treatment attenuated morphine-induced behavioral sensitization and reinstatement of CPP. Compared to the saline-treated ones, the ZnE-treated animals showed reduced c-Fos expression in the nucleus accumbens (NAc) associated with behavioral sensitization, and in the NAc, cingulate cortex, dentate gyrus, amygdala, lateral hypothalamus and ventral tegmental area associated with CPP reinstatement. Together, these results demonstrated that acute olfactory impairment could attenuate already established addiction-related behaviors and expression of c-Fos in drug addiction related brain regions, perhaps by affecting the coordination between reward and motivational systems in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.
Hackenberg, Timothy D.; Hineline, Philip N.
1987-01-01
Disruption of ongoing appetitive behavior before and after daily avoidance sessions was examined. After baselines of appetitive responding were established under a fixed-interval 180-s schedule of food presentation, 4 rats were exposed to 40-min sessions of the appetitive schedule just prior to 100-min sessions of electric shock postponement, while another 4 rats received the 40-min appetitive sessions just following daily sessions of shock postponement. In all 8 subjects, fixed-interval response rates decreased relative to baseline levels, the effect being somewhat more pronounced when the avoidance sessions immediately followed. The disruption of fixed-interval responding was only partially reversed when avoidance sessions were discontinued. During the initial exposure to the avoidance sessions, patterns of responding under the fixed-interval schedule were differentially sensitive to disruption, with high baseline response rates generally more disturbed than low rates. These disruptions were not systematically related to changes in reinforcement frequency, which remained fairly high and invariant across all conditions of the experiment; they were also not systematically related to the response rates or to the shock rates of the adjacent avoidance sessions. The results, while qualitatively resembling patterns of conditioned suppression as typically studied, occurred on a greatly expanded time scale. As disruption of behavior extending over time, the present data suggest that some forms of conditioned suppression are perhaps best viewed within a larger temporal context. PMID:16812486
Perceptual and Neural Olfactory Similarity in Honeybees
Sandoz, Jean-Christophe
2005-01-01
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975
Default Mode Network (DMN) Deactivation during Odor-Visual Association
Karunanayaka, Prasanna R.; Wilson, Donald A.; Tobia, Michael J.; Martinez, Brittany; Meadowcroft, Mark; Eslinger, Paul J.; Yang, Qing X.
2017-01-01
Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, we investigated the DMN’s role during olfactory processing using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26±4 yrs., 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor+visual and visual-only trial conditions. During odor+visual trials, a visual cue was presented simultaneously with an odor, while during visual-only trial conditions the same visual cue was presented alone. Eighteen of the 29 participants (mean age = 27.0 ± 6.0 yrs.,11 females) also took part in a control no-odor fMRI paradigm that consisted of visual-only trial conditions which were identical to the visual-only trials in the odor-visual association paradigm. We used Independent Component Analysis (ICA), extended unified structural equation modeling (euSEM), and psychophysiological interaction (PPI) to investigate the interplay between the DMN and olfactory network. In the odor-visual association paradigm, DMN deactivation was evoked by both the odor+visual and visual-only trial conditions. In contrast, the visual-only trials in the no-odor paradigm did not evoke consistent DMN deactivation. In the odor-visual association paradigm, the euSEM and PPI analyses identified a directed connectivity between the DMN and olfactory network which was significantly different between odor+visual and visual-only trial conditions. The results support a strong interaction between the DMN and olfactory network and highlights DMN’s role in task-evoked brain activity and behavioral responses during olfactory processing. PMID:27785847
Guerdoux, Estelle; Trouillet, Raphaël; Brouillet, Denis
2014-07-01
This study aimed to examine the age-related differences in the olfactory-visual cross-correspondences and the extent to which they are moderated by the odors pleasantness. Sixty participants aged from 20- to 75- years (young, middle-aged and older adults) performed a priming task to explore the influence of six olfactory primes (lemon, orange, rose, thyme, mint and fish) on the categorization (cool vs. warm) of six subsequent color targets (yellow, orange, pink, malachite green, grass-green, and blue-gray). We tested mixed effects models. Response times were regressed on covariates models using both fixed effects (Groups of age, olfactory Pleasantness and multimodal Condition) and cross-random effects (Subject, Color and Odor). The random effects coding for Odor (p < .001) and Color (p = .001) were significant. There was a significant interaction effect ( p= .004) between Condition × Pleasantness, but not with Groups of age. The compatibility effect (i.e., when odors and colors were congruent, the targets processing were facilitated) was as much enhanced as the olfactory primes were pleasant. Cross-correspondences between olfaction and vision may be robust in aging. They should be considered alongside spatiotemporal but also emotional congruency.
Social modulation of associative fear learning by pheromone communication
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912
Social modulation of associative fear learning by pheromone communication.
Bredy, Timothy W; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.
Olfactory Functioning in First-Episode Psychosis.
Kamath, Vidyulata; Lasutschinkow, Patricia; Ishizuka, Koko; Sawa, Akira
2018-04-06
Though olfactory deficits are well-documented in schizophrenia, fewer studies have examined olfactory performance profiles across the psychosis spectrum. The current study examined odor identification, discrimination, and detection threshold performance in first-episode psychosis (FEP) patients diagnosed with schizophrenia, schizoaffective disorder, bipolar disorder with psychotic features, major depression with psychotic features, and other psychotic conditions. FEP patients (n = 97) and healthy adults (n = 98) completed birhinal assessments of odor identification, discrimination, and detection threshold sensitivity for lyral and citralva. Participants also completed measures of anticipatory pleasure, anhedonia, and empathy. Differences in olfactory performances were assessed between FEP patients and controls and within FEP subgroups. Sex-stratified post hoc analyses were employed for a complete analysis of sex differences. Relationships between self-report measures and olfactory scores were also examined. Individuals with psychosis had poorer scores across all olfactory measures when compared to the control group. Within the psychosis cohort, patients with schizophrenia-associated psychosis had poorer odor identification, discrimination, and citralva detection threshold scores relative to controls. In schizophrenia patients, greater olfactory disturbance was associated with increased negative symptomatology, greater self-reported anhedonia, and lower self-reported anticipatory pleasure. Patients with mood-associated psychosis performed comparable to controls though men and women in this cohort showed differential olfactory profiles. These findings indicate that olfactory deficits extend beyond measures of odor identification in FEP with greater deficits observed in schizophrenia-related subgroups of psychosis. Studies examining whether greater olfactory dysfunction confers greater risk for developing schizophrenia relative to other forms of psychosis are warranted.
Impact of ambient odors on food intake, saliva production and appetite ratings.
Proserpio, Cristina; de Graaf, Cees; Laureati, Monica; Pagliarini, Ella; Boesveldt, Sanne
2017-05-15
The aim of this study was to investigate the effect of ambient odor exposure on appetite, salivation and food intake. 32 normal-weight young women (age: 21.4±5.3year; BMI: 21.7±1.9kg/m 2 ) attended five test sessions in a non-satiated state. Each participant was exposed to ambient odors (chocolate, beef, melon and cucumber), in a detectable but mild concentration, and to a control condition (no-odor exposure). During each condition, at different time points, participants rated appetite for 15 food products, and saliva was collected. After approximately 30min, ad libitum intake was measured providing a food (chocolate rice, high-energy dense product) that was congruent with one of the odors they were exposed to. A significant odor effect on food intake (p=0.034) and salivation (p=0.017) was found. Exposure to odors signaling high-energy dense products increased food intake (243.97±22.84g) compared to control condition (206.94±24.93g; p=0.03). Consistently, salivation was increased significantly during chocolate and beef exposure (mean: 0.494±0.050g) compared to control condition (0.417±0.05g; p=0.006). Even though odor exposure did not induce specific appetite for congruent products (p=0.634), appetite scores were significantly higher during odor exposure (p<0.0001) compared to the no-odor control condition and increased significantly over time (p=0.010). Exposure to food odors seems to drive behavioral and physiological responses involved in eating behavior, specifically for odors and foods that are high in energy density. This could have implications for steering food intake and ultimately influencing the nutritional status of people. Copyright © 2017 Elsevier Inc. All rights reserved.
Ebrahimi, Claudia; Koch, Stefan P; Friedel, Eva; Crespo, Ilsoray; Fydrich, Thomas; Ströhle, Andreas; Heinz, Andreas; Schlagenhauf, Florian
2017-07-01
Appetitive Pavlovian conditioning plays a crucial role in the pathogenesis of drug addiction and conditioned reward cues can trigger craving and relapse even after long phases of abstinence. Promising preclinical work showed that the NMDA-receptor partial agonist D-cycloserine (DCS) facilitates Pavlovian extinction learning of fear and drug cues. Furthermore, DCS-augmented exposure therapy seems to be beneficial in various anxiety disorders, while the supposed working mechanism of DCS during human appetitive or aversive extinction learning is still not confirmed. To test the hypothesis that DCS administration before extinction training improves extinction learning, healthy adults (n=32) underwent conditioning, extinction, and extinction recall on three successive days in a randomized, double-blind, placebo-controlled fMRI design. Monetary wins and losses served as unconditioned stimuli during conditioning to probe appetitive and aversive learning. An oral dose of 50mg of DCS or placebo was administered 1h before extinction training and DCS effects during extinction recall were evaluated on a behavioral and neuronal level. We found attenuated amygdala activation in the DCS compared to the placebo group during recall of the extinguished appetitive cue, along with evidence for enhanced functional amygdala-vmPFC coupling in the DCS group. While the absence of additional physiological measures of conditioned responses during recall in this study prevent the evaluation of a behavioral DCS effect, our neuronal findings are in accordance with recent theories linking successful extinction recall in humans to modulatory top-down influences from the vmPFC that inhibit amygdala activation. Our results should encourage further translational studies concerning the usefulness of DCS to target maladaptive Pavlovian reward associations. Copyright © 2017 Elsevier Inc. All rights reserved.
Appetite course over time and the risk of death in patients on chronic hemodialysis.
Bossola, Maurizio; Di Stasio, Enrico; Rosa, Fausto; Dominici, Loredana; Antocicco, Manuela; Pazzaglia, Costanza; Aprile, Irene; Tazza, Luigi
2013-08-01
Appetite in patients on chronic hemodialysis (HD) may be constantly very good/good or fair/poor or may fluctuate up and down over time. When constantly fair/poor, appetite has been shown to be associated with older age, more comorbidities, and more hospitalizations; however, it is unknown if it predicts survival. The aim of the present study was to assess appetite monthly for 6 months in patients on chronic HD and to determine if the course of appetite over time predicts mortality. Ninety-two HD patients were evaluated at baseline for appetite, nutritional and inflammatory markers, comorbid conditions, and Charlson's comorbidity index. Appetite assessment was repeated monthly for 6 consecutive months. Survival in relation with the course of appetite over time was determined. Appetite was constantly very good/good in 45 patients (Group 1), fair/poor/very poor in 30 (Group 2), and fluctuated in 17 (Group 3). Twenty-seven (29.3 %) patients died after a mean period of 28 ± 13 months. Overall, the mean survival time was 42.1 ± 1.2 months. For Groups 1, 2, and 3, the mean survival time was 46.1 ± 0.92, 37.9 ± 2.5, and 39.1 ± 3.7 months, respectively (p < 0.0001). After multivariate logistic regression analysis, the course of appetite over time was not found to be an independent risk factor for mortality. The course of appetite over time does not seem to predict mortality in patients on chronic hemodialysis. Considering that the study included a relatively small number of patients, larger similar studies are desirable.
Laska, Matthias; Genzel, Daria; Wieser, Alexandra
2005-02-01
The ability of four squirrel monkeys and three pigtail macaques to distinguish between nine enantiomeric odor pairs sharing an isopropenyl group at the chiral center was investigated in terms of a conditioning paradigm. All animals from both species were able to discriminate between the optical isomers of limonene, carvone, dihydrocarvone, dihydrocarveole and dihydrocarvyl acetate, whereas they failed to distinguish between the (+)- and (-)-forms of perillaaldehyde and limonene oxide. The pigtail macaques, but not the squirrel monkeys, also discriminated between the antipodes of perillaalcohol and isopulegol. A comparison of the across-task patterns of discrimination performance shows a high degree of similarity among the two primate species and also between these nonhuman primates and human subjects tested in an earlier study on the same tasks. These findings suggest that between-species comparisons of the relative size of olfactory brain structures or of the number of functional olfactory receptor genes are poor predictors of olfactory discrimination performance with enantiomers.
Breunig, Esther; Kludt, Eugen; Czesnik, Dirk; Schild, Detlev
2011-08-12
Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.
Efficacy of attention bias modification using threat and appetitive stimuli: a meta-analytic review.
Beard, Courtney; Sawyer, Alice T; Hofmann, Stefan G
2012-12-01
Attention bias modification (ABM) protocols aim to modify attentional biases underlying many forms of pathology. Our objective was to conduct an effect size analysis of ABM across a wide range of samples and psychological problems. We conducted a literature search using PubMed, PsycInfo, and author searches to identify randomized studies that examined the effects of ABM on attention and subjective experiences. We identified 37 studies (41 experiments) totaling 2,135 participants who were randomized to training toward neutral, positive, threat, or appetitive stimuli or to a control condition. The effect size estimate for changes in attentional bias was large for the neutral versus threat comparisons (g=1.06), neutral versus appetitive (g=1.41), and neutral versus control comparisons (g=0.80), and small for positive versus control (g=0.24). The effects of ABM on attention bias were moderated by stimulus type (words vs. pictures) and sample characteristics (healthy vs. high symptomatology). Effect sizes of ABM on subjective experiences ranged from 0.03 to 0.60 for postchallenge outcomes, -0.31 to 0.51 for posttreatment, and were moderated by number of training sessions, stimulus type, and stimulus orientation (top/bottom vs. left/right). Fail-safe N calculations suggested that the effect size estimates were robust for the training effects on attentional biases, but not for the effect on subjective experiences. ABM studies using threat stimuli produced significant effects on attention bias across comparison conditions, whereas appetitive stimuli produced changes in attention only when comparing appetitive versus neutral conditions. ABM has a moderate and robust effect on attention bias when using threat stimuli. Further studies are needed to determine whether these effects are also robust when using appetitive stimuli and for affecting subjective experiences. Copyright © 2012. Published by Elsevier Ltd.
Effect of moderate- and high-intensity acute exercise on appetite in obese individuals.
Martins, Catia; Stensvold, Dorthe; Finlayson, Graham; Holst, Jens; Wisloff, Ulrik; Kulseng, Bård; Morgan, Linda; King, Neil A
2015-01-01
The effect of acute exercise, and exercise intensity, on appetite control in obese individuals requires further study. The aim of this study was to compare the effects of acute isocaloric bouts (250 kcal) of high-intensity intermittent cycling (HIIC) and moderate-intensity continuous cycling (MICC) or short-duration HIIC (S-HIIC) (125 kcal) and a resting control condition on the appetite hormone responses, subjective feelings of appetite, energy intake (EI), and food reward in overweight/obese individuals. This study is a randomized crossover study on 12 overweight/obese volunteers. Participants were assigned to the control, MICC, HIIC, and S-HIIC conditions, 1 wk apart, in a counterbalanced order. Exercise was performed 1 h after a standard breakfast. An ad libitum test lunch was served 3 h after breakfast. Fasting/postprandial plasma samples of insulin, acylated ghrelin, polypeptide YY3-36, and glucagon-like peptide 1 and subjective feelings of appetite were measured every 30 min for 3 h. Nutrient and taste preferences were measured at the beginning and end of each condition using the Leeds Food Preference Questionnaire. Insulin levels were significantly reduced, and glucagon-like peptide 1 levels significantly increased during all exercise bouts compared with those during rest. Acylated ghrelin plasma levels were lower in the MICC and HIIC, but not in S-HIIC, compared with those in control. There were no significant differences for polypeptide YY3-36 plasma levels, hunger or fullness ratings, EI, or food reward. Our findings suggest that, in overweight/obese individuals, isocaloric bouts of moderate- or high-intensity exercise lead to a similar appetite response. This strengthens previous findings in normal-weight individuals that acute exercise, even at high intensity, does not induce any known physiological adaptation that would lead to increased EI.
Brain activation associated to olfactory conditioned same-sex partner preference in male rats.
Coria-Avila, Genaro A; Cibrian-Llanderal, Tamara; Díaz-Estrada, Victor X; García, Luis I; Toledo-Cárdenas, Rebeca; Pfaus, James G; Manzo, Jorge
2018-03-01
Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination. Copyright © 2018 Elsevier Inc. All rights reserved.
Odors as effective retrieval cues for stressful episodes.
Wiemers, Uta S; Sauvage, Magdalena M; Wolf, Oliver T
2014-07-01
Olfactory information seems to play a special role in memory due to the fast and direct processing of olfactory information in limbic areas like the amygdala and the hippocampus. This has led to the assumption that odors can serve as effective retrieval cues for autobiographic memories, especially emotional memories. The current study sought to investigate whether an olfactory cue can serve as an effective retrieval cue for memories of a stressful episode. A total of 95 participants were exposed to a psychosocial stressor or a well matching but not stressful control condition. During both conditions were visual objects present, either bound to the situation (central objects) or not (peripheral objects). Additionally, an ambient odor was present during both conditions. The next day, participants engaged in an unexpected object recognition task either under the influence of the same odor as was present during encoding (congruent odor) or another odor (non-congruent odor). Results show that stressed participants show a better memory for all objects and especially for central visual objects if recognition took place under influence of the congruent odor. An olfactory cue thus indeed seems to be an effective retrieval cue for stressful memories. Copyright © 2013 Elsevier Inc. All rights reserved.
Acquired appetitive responding to intravenous nicotine reflects a Pavlovian conditioned association
Murray, Jennifer E.; Bevins, Rick A.
2008-01-01
Recent research examining Pavlovian appetitive conditioning has extended the associative properties of nicotine from the unconditioned stimulus or reward to include the role of a conditional stimulus (CS), capable of acquiring the ability to evoke a conditioned response. To date, published research has used pre-session extravascular injections to examine nicotine as a contextual CS in that appetitive Pavlovian drug discrimination task. Two studies in the current research examined whether a nicotine CS can function discretely, multiple times within a session using passive intravenous infusions. In Experiment 1, rats readily acquired a discrimination in conditioned responding between nicotine and saline infusions when nicotine was selectively paired with sucrose presentations. In Experiment 2, rats were either trained with nicotine paired with sucrose or explicitly unpaired with sucrose. The results showed that rats trained with explicitly unpaired nicotine and sucrose did not increase dipper entries after the infusions. Nicotine was required to be reliably paired with sucrose for control of conditioned responding to develop. Implications of these findings are discussed in relation to tobacco addiction, learning theory, and pharmacology. PMID:19170434
Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides
Sandoz, Jean-Christophe; Menzel, Randolf
2001-01-01
Honeybees (Apis mellifera) can be trained to associate an odor stimulus with a sucrose reward. The neural structures involved in the detection and integration of olfactory stimuli are represented bilaterally in the brain. Little is known about the respective roles of the two sides of the brain in olfactory learning. Does each side learn independently of the other, or do they communicate, and if so, to what extent and at what level of neural integration? We addressed these questions using the proboscis extension response (PER) conditioning paradigm applied in a preparation that allows the separation of the two input sides during olfactory stimulations. Bees conditioned to two odorants A and B, one being learned on each side (A+/B+ training), showed in extinction tests rather unspecific responses: They responded to both odorants on both sides. This could be attributable to either a transfer of the learned information between sides, or to a generalization between odorants on each side. By subjecting bees to conditioning on one side only (A+/0 training), we found that the learned information is indeed transferred between sides. However, when bees were trained explicitly to give opposite values to the two odorants on the two sides (A+B−/B+A− training), they showed clear side-specific response patterns to these odorants. These results are used in the elaboration of a functional model of laterality of olfactory learning and memory processing in the honeybee brain. PMID:11584076
Ito, Rutsuko; Everitt, Barry J; Robbins, Trevor W
2005-01-01
The hippocampus (HPC) is known to be critically involved in the formation of associations between contextual/spatial stimuli and behaviorally significant events, playing a pivotal role in learning and memory. However, increasing evidence indicates that the HPC is also essential for more basic motivational processes. The amygdala, by contrast, is important for learning about the motivational significance of discrete cues. This study investigated the effects of excitotoxic lesions of the rat HPC and the basolateral amygdala (BLA) on the acquisition of a number of appetitive behaviors known to be dependent on the formation of Pavlovian associations between a reward (food) and discrete stimuli or contexts: (1) conditioned/anticipatory locomotor activity to food delivered in a specific context and (2) autoshaping, where rats learn to show conditioned discriminated approach to a discrete visual CS+. While BLA lesions had minimal effects on conditioned locomotor activity, hippocampal lesions facilitated the development of both conditioned activity to food and autoshaping behavior, suggesting that hippocampal lesions may have increased the incentive motivational properties of food and associated conditioned stimuli, consistent with the hypothesis that the HPC is involved in inhibitory processes in appetitive conditioning. (c) 2005 Wiley-Liss, Inc.
Manipulating affective state influences conditioned appetitive responses.
Arnaudova, Inna; Krypotos, Angelos-Miltiadis; Effting, Marieke; Kindt, Merel; Beckers, Tom
2017-10-06
Affective states influence how individuals process information and behave. Some theories predict emotional congruency effects (e.g. preferential processing of negative information in negative affective states). Emotional congruency should theoretically obstruct the learning of reward associations (appetitive learning) and their ability to guide behaviour under negative mood. Two studies tested the effects of the induction of a negative affective state on appetitive Pavlovian learning, in which neutral stimuli were associated with chocolate (Experiment 1) or alcohol (Experiment 2) rewards. In both experiments, participants showed enhanced approach tendencies towards predictors of reward after a negative relative to a positive performance feedback manipulation. This increase was related to a reduction in positive affect in Experiment 1 only. No effects of the manipulation on conditioned reward expectancies, craving, or consumption were observed. Overall, our findings support the idea of counter-regulation, rather than emotional congruency effects. Negative affective states might therefore serve as a vulnerability factor for addiction, through increasing conditioned approach tendencies.
Context-dependent extinction of an appetitive operant conditioned response in infant rats.
Orellana Barrera, Estefanía; Arias, Carlos; González, Felisa; Abate, Paula
2017-04-01
The present study evaluated context-dependent learning under an operant conditioning procedure in infant rats. Preweanling rats were trained in context A during postnatal days (PDs) 16 and 17 to learn an appetitive operant conditioning task, employing milk chocolate as appetitive reinforcer. On PD18 the operant response was extinguished in context A, or in an alternative context B. The change from context A to B between acquisition and extinction did not affect the number of responses during extinction, but slightly modified the shape of the extinction curve. On PD19, a renewal test conducted in context A clearly showed ABA-renewal of the extinguished operant response. These results add to the body of evidence indicating that infants are able to acquire and retain contextual information, and support the notion that extinction during this ontogenetic period involves new learning. © 2017 Wiley Periodicals, Inc.
Salt appetite of adrenalectomized rats after a lesion of the SFO.
Wilson, Wendy L; Starbuck, Elizabeth M; Fitts, Douglas A
2002-11-15
Circumventricular organs such as the subfornical organ (SFO) may mediate the effects of circulating angiotensin (ANG) II on salt appetite under conditions of sodium depletion in the rat. We studied the effects of an electrolytic lesion of SFO on salt appetite after adrenalectomy (ADX) in Long-Evans rats. The SFO lesion had no effect on saline intake, but it did abolish water intake after acute peripheral treatments with 2 mg/kg of captopril or a 10 mg/kg of furosemide. These findings contrast with other recent data from this laboratory demonstrating large reductions in salt appetite in adrenal-intact rats with lesions of either SFO or the organum vasculosum laminae terminalis during acute iv infusions of ANG II. Thus, the SFO may contribute to the salt appetite response to circulating ANG II, but it is not essential for the response to adrenalectomy. Copyright 2002 Elsevier Science B.V.
d-Cycloserine reduces context specificity of sexual extinction learning.
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Trimbos, Baptist; Both, Stephanie
2015-11-01
d-Cycloserine (DCS) enhances extinction processes in animals. Although classical conditioning is hypothesized to play a pivotal role in the aetiology of appetitive motivation problems, no research has been conducted on the effect of DCS on the reduction of context specificity of extinction in human appetitive learning, while facilitation hereof is relevant in the context of treatment of problematic reward-seeking behaviors. Female participants were presented with two conditioned stimuli (CSs) that either predicted (CS+) or did not predict (CS-) a potential sexual reward (unconditioned stimulus (US); genital vibrostimulation). Conditioning took place in context A and extinction in context B. Subjects received DCS (125mg) or placebo directly after the experiment on day 1 in a randomized, double-blind, between-subject fashion (Placebo n=31; DCS n=31). Subsequent testing for CS-evoked conditioned responses (CRs) in both the conditioning (A) and the extinction context (B) took place 24h later on day 2. Drug effects on consolidation were then assessed by comparing the recall of sexual extinction memories between the DCS and the placebo groups. Post learning administration of DCS facilitates sexual extinction memory consolidation and affects extinction's fundamental context specificity, evidenced by reduced conditioned genital and subjective sexual responses, relative to placebo, for presentations of the reward predicting cue 24h later outside the extinction context. DCS makes appetitive extinction memories context-independent and prevents the return of conditioned response. NMDA receptor glycine site agonists may be potential pharmacotherapies for the prevention of relapse of appetitive motivation disorders with a learned component. Copyright © 2015 Elsevier Inc. All rights reserved.
Distinct molecular underpinnings of Drosophila olfactory trace conditioning
Shuai, Yichun; Hu, Ying; Qin, Hongtao; Campbell, Robert A. A.; Zhong, Yi
2011-01-01
Trace conditioning is valued as a simple experimental model to assess how the brain associates events that are discrete in time. Here, we adapted an olfactory trace conditioning procedure in Drosophila melanogaster by training fruit flies to avoid an odor that is followed by foot shock many seconds later. The molecular underpinnings of the learning are distinct from the well-characterized simultaneous conditioning, where odor and punishment temporally overlap. First, Rutabaga adenylyl cyclase (Rut-AC), a putative molecular coincidence detector vital for simultaneous conditioning, is dispensable in trace conditioning. Second, dominant-negative Rac expression, thought to sustain early labile memory, significantly enhances learning of trace conditioning, but leaves simultaneous conditioning unaffected. We further show that targeting Rac inhibition to the mushroom body (MB) but not the antennal lobe (AL) suffices to achieve the enhancement effect. Moreover, the absence of trace conditioning learning in D1 dopamine receptor mutants is rescued by restoration of expression specifically in the adult MB. These results suggest the MB as a crucial neuroanatomical locus for trace conditioning, which may harbor a Rac activity-sensitive olfactory “sensory buffer” that later converges with the punishment signal carried by dopamine signaling. The distinct molecular signature of trace conditioning revealed here shall contribute to the understanding of how the brain overcomes a temporal gap in potentially related events. PMID:22123966
Higher Eating Frequency Does Not Decrease Appetite in Healthy Adults12
Perrigue, Martine M; Drewnowski, Adam; Wang, Ching-Yun; Neuhouser, Marian L
2016-01-01
Background: Consumption of small, frequent meals is suggested as an effective approach to control appetite and food intake and might be a strategy for weight loss or healthy weight maintenance. Despite much speculation on the topic, scientific evidence is limited to support such a relation in the absence of changes to diet composition. Objective: We examined the effects of high compared with low eating frequency (EF) on self-reported appetite as a secondary outcome in a controlled trial. Methods: We conducted a randomized, crossover intervention trial in 12 participants (4 men, 8 women) who completed 2 isocaloric 3-wk intervention phases of low EF (3 eating occasions/d) compared with high EF (8 eating occasions/d). On the last morning of each study phase, participants completed a 4-h appetite testing session. During the appetite testing session, participants completing the low EF phase consumed a meal at 0800. Participants completing the high EF intervention consumed the same meal spread evenly over 2 eating occasions at 0800 and 1030. Standardized ratings of hunger, desire to eat, fullness, thirst, and nausea were completed every 30 min with the use of paper-and-pencil semianchored 100-mm visual analog scales. A composite appetite score was calculated as the mean of hunger, desire to eat, and the inverse of fullness (calculated as 100-fullness rating). Linear regression analysis compared ratings between low EF and high EF conditions. Results: The mean composite appetite score was higher in the high EF condition for the total testing period (baseline through 1200) (P < 0.05) and for the time period from baseline through 1030 (P < 0.001). Conclusion: The results from this study in 12 healthy adults do not support the popularized notion that small, frequent meals help to decrease overall appetite. This trial was registered at clinicaltrials.gov as NCT02548026. PMID:26561409
Higher Eating Frequency Does Not Decrease Appetite in Healthy Adults.
Perrigue, Martine M; Drewnowski, Adam; Wang, Ching-Yun; Neuhouser, Marian L
2016-01-01
Consumption of small, frequent meals is suggested as an effective approach to control appetite and food intake and might be a strategy for weight loss or healthy weight maintenance. Despite much speculation on the topic, scientific evidence is limited to support such a relation in the absence of changes to diet composition. We examined the effects of high compared with low eating frequency (EF) on self-reported appetite as a secondary outcome in a controlled trial. We conducted a randomized, crossover intervention trial in 12 participants (4 men, 8 women) who completed 2 isocaloric 3-wk intervention phases of low EF (3 eating occasions/d) compared with high EF (8 eating occasions/d). On the last morning of each study phase, participants completed a 4-h appetite testing session. During the appetite testing session, participants completing the low EF phase consumed a meal at 0800. Participants completing the high EF intervention consumed the same meal spread evenly over 2 eating occasions at 0800 and 1030. Standardized ratings of hunger, desire to eat, fullness, thirst, and nausea were completed every 30 min with the use of paper-and-pencil semianchored 100-mm visual analog scales. A composite appetite score was calculated as the mean of hunger, desire to eat, and the inverse of fullness (calculated as 100-fullness rating). Linear regression analysis compared ratings between low EF and high EF conditions. The mean composite appetite score was higher in the high EF condition for the total testing period (baseline through 1200) (P < 0.05) and for the time period from baseline through 1030 (P < 0.001). The results from this study in 12 healthy adults do not support the popularized notion that small, frequent meals help to decrease overall appetite. This trial was registered at clinicaltrials.gov as NCT02548026. © 2016 American Society for Nutrition.
Woods, Amanda M; Bouton, Mark E
2008-12-01
Five experiments with rat subjects compared the effects of immediate and delayed extinction on the durability of extinction learning. Three experiments examined extinction of fear conditioning (using the conditioned emotional response method), and two experiments examined extinction of appetitive conditioning (using the food-cup entry method). In all experiments, conditioning and extinction were accomplished in single sessions, and retention testing took place 24 h after extinction. In both fear and appetitive conditioning, immediate extinction (beginning 10 min after conditioning) caused a faster loss of responding than delayed extinction (beginning 24 h after conditioning). However, immediate extinction was less durable than delayed extinction: There was stronger spontaneous recovery during the final retention test. There was also substantial renewal of responding when the physical context was changed between immediate extinction and testing (Experiment 1). The results suggest that, in these two widely used conditioning preparations, immediate extinction does not erase or depotentiate the original learning, and instead creates a less permanent reduction in conditioned responding. Results did not support the possibility that the strong recovery after immediate extinction was due to a mismatch in the recent "context" provided by the presence or absence of a recent conditioning experience. Several other accounts are considered.
Differential Endocannabinoid Regulation of Extinction in Appetitive and Aversive Barnes Maze Tasks
ERIC Educational Resources Information Center
Harloe, John P.; Thorpe, Andrew J.; Lichtman, Aron H.
2008-01-01
CB[subscript 1] receptor-compromised animals show profound deficits in extinguishing learned behavior from aversive conditioning tasks, but display normal extinction learning in appetitive operant tasks. However, it is difficult to discern whether the differential involvement of the endogenous cannabinoid system on extinction results from the…
Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning.
Nasser, Helen M; McNally, Gavan P
2013-03-19
We used Pavlovian counterconditioning in rats to identify the neural mechanisms for appetitive-aversive motivational interactions. In Stage I, rats were trained on conditioned stimulus (CS)-food (unconditioned stimulus [US]) pairings. In Stage II, this appetitive CS was transformed into a fear CS via pairings with footshock. The development of fear responses was retarded in rats that had received Stage I appetitive training. This counterconditioning was associated with increased levels of phosphorylated mitogen activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions, including midline thalamus, rostral agranular insular cortex (RAIC), lateral amygdala, and nucleus accumbens core and shell, but decreased expression in the ventrolateral quadrant of the midbrain periaqueductal gray. These brain regions showing differential pMAPK-IR have previously been identified as part of the fear prediction error circuit. We then examined the causal role of RAIC MAPK in fear learning and showed that Stage II fear learning was prevented by RAIC infusions of the MEK inhibitor PD098059 (0.5 µg/hemisphere). Taken together, these results show that there are opponent interactions between the appetitive and aversive motivational systems during fear learning and that the transformation of a reward CS into a fear CS is linked to heightened activity in the fear prediction error circuit.
Aromatherapy for travel-induced excitement in dogs.
Wells, Deborah L
2006-09-15
To evaluate the efficacy of the ambient odor of lavender as a treatment for travel-induced excitement in dogs. Clinical trial. Animals-32 dogs with a history of travel-induced excitement in owners' cars. Each dog was studied during travel in the owner's car to a familiar walking site during 2 conditions of olfactory stimulation. The first condition was a control condition, during which dogs were exposed to no odor other than that arising naturally from the environment. The second condition was an experimental condition during which dogs were exposed to the ambient odor of lavender. Dogs' behavior was recorded during the car journey for 3 consecutive days under the control condition and for 3 consecutive days under the experimental condition. The percentage of time spent moving, standing, sitting, resting, and vocalizing in each condition of olfactory stimulation was quantified for each dog. Dogs spent significantly more time resting and sitting and less time moving and vocalizing during the experimental condition. There was no significant relationship between dogs' behavior and sex, castration status, day, or the order of exposure to each olfactory condition. Traditional treatments for travel-induced excitement in dogs may be time-consuming, expensive, or associated with adverse effects. Aromatherapy in the form of diffused lavender odor may offer a practical alternative treatment for travel-induced excitement in this species.
Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration.
Holliday, Adrian; Blannin, Andrew
2017-12-01
The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m 2 ; VO 2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO 2max Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake - expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period. © 2017 Society for Endocrinology.
Female rats express a conditioned object preference for receipt of sexual stimulation.
Guterl, Sophie A; McNamara, Tanner A; Klumpp, Gracie C; Meerts, Sarah H
2015-11-01
Female rats alternately approach and avoid the male rat during copulation, potentially reflecting appetitive and aversive aspects of mating, respectively. We developed a novel classical conditioning procedure, conditioned object preference (COP), to test whether female rats show increased approach toward a conditioned stimulus associated directly with receipt of sexual stimulation. During conditioning, one scented object was paired with an appetitive stimulus and a different object plus scent was paired with a control stimulus on a separate day. After conditioning, preference for each object was evaluated with a choice task. Experiment 1 was conducted to verify the procedure. Rats exhibited a significant COP for 1mg/kg amphetamine, indicating that the conditioned object preference procedure is an effective tool for evaluating the rewarding nature of a treatment. In Experiment 2, paced mating to one ejaculation and experimenter-delivered artificial vaginocervical stimulation (aVCS) each induced a COP. The robust COPs for paced mating and aVCS support the notion that female rats experience a reward state during receipt of sexual stimulation. Moreover, the data suggest that any aversive aspects of receipt of sexual stimulation do not overshadow the appetitive effects. Copyright © 2015 Elsevier Inc. All rights reserved.
Flavor-Intensity Perception: Effects of Stimulus Context
Marks, Lawrence E.; Shepard, Timothy G.; Burger, Kelly; Chakwin, Emily M.
2011-01-01
Stimulus context affects judgments of intensity of both gustatory and olfactory flavors, and the contextual effects are modality-specific. Does context also exert separate effects on the gustatory and olfactory components of flavor mixtures? To answer this question, in each of 4 experiments, subjects rated the perceived intensity of 16 mixtures constructed by combining 4 concentrations of the gustatory flavorant sucrose with 4 concentrations of the retronasal olfactory flavorant citral. In 1 contextual condition of each experiment, concentrations of sucrose were relatively high and those of citral low; in the other condition, the relative concentrations of sucrose and citral reversed. There were 2 main results: First, consistent with earlier findings, in 5 of the 8 conditions, the ratings were consistent with linear addition of perceived sucrose and citral; departures from additivity appeared, however, in 3 conditions where the relative concentrations of citral were high. Second, changes in context produced contrast (adaptation-like changes) in perceived intensity: The contribution to perceived intensity of a given concentration of a flavorant was smaller when the contextual concentrations of that flavorant were high rather than low. A notable exception was the absence of contextual effects on the perceived intensity of near-threshold citral. These findings suggest that the contextual effects may arise separately in the gustatory and olfactory channels, prior to the integration of perceived flavor intensity. PMID:21930139
Hogarth, Lee; Duka, Theodora
2006-03-01
Two seemingly contrary theories describe the learning mechanisms that mediate human addictive behaviour. According to the classical incentive theories of addiction, addictive behaviour is motivated by a Pavlovian conditioned appetitive emotional response elicited by drug-paired stimuli. Expectancy theory, on the other hand, argues that addictive behaviour is mediated by an expectancy of the drug imparted by cognitive knowledge of the Pavlovian (predictive) contingency between stimuli (S+) and the drug and of the instrumental (causal) contingency between instrumental behaviour and the drug. The present paper reviewed human-nicotine-conditioning studies to assess the role of appetitive emotional conditioning and explicit contingency knowledge in mediating addictive behaviour. The studies reviewed here provided evidence for both the emotional conditioning and the expectancy accounts. The first source of evidence is that nicotine-paired S+ elicit an appetitive emotional conditioned response (CR), albeit only in participants who expect nicotine. Furthermore, the magnitude of this emotional state is modulated by nicotine deprivation/satiation. However, the causal status of the emotional response in driving other forms of conditioned behaviour remains undemonstrated. The second source of evidence is that other nicotine CRs, including physiological responses, self-administration, attentional bias and subjective craving, are also dependent on participants possessing explicit knowledge of the Pavlovian contingencies arranged in the experiment. In addition, several of the nicotine CRs can be brought about or modified by instructed contingency knowledge, demonstrating the causal status of this knowledge. Collectively, these data suggest that human nicotine conditioned effects are mediated by an explicit expectancy of the drug coupled with an appetitive emotional response that reflects the positive biological value of the drug. The implication of this conclusion is that treatments designed to modify the expected value of the drug may prove effective.
Respiratory and olfactory turbinal size in canid and arctoid carnivorans.
Green, Patrick A; Van Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail
2012-12-01
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Respiratory and olfactory turbinal size in canid and arctoid carnivorans
Green, Patrick A; Valkenburgh, Blaire; Pang, Benison; Bird, Deborah; Rowe, Timothy; Curtis, Abigail
2012-01-01
Within the nasal cavity of mammals is a complex scaffold of paper-thin bones that function in respiration and olfaction. Known as turbinals, the bones greatly enlarge the surface area available for conditioning inspired air, reducing water loss, and improving olfaction. Given their functional significance, the relative development of turbinal bones might be expected to differ among species with distinct olfactory, thermoregulatory and/or water conservation requirements. Here we explore the surface area of olfactory and respiratory turbinals relative to latitude and diet in terrestrial Caniformia, a group that includes the canid and arctoid carnivorans (mustelids, ursids, procyonids, mephitids, ailurids). Using high-resolution computed tomography x-ray scans, we estimated respiratory and olfactory turbinal surface area and nasal chamber volume from three-dimensional virtual models of skulls. Across the Caniformia, respiratory surface area scaled isometrically with estimates of body size and there was no significant association with climate, as estimated by latitude. Nevertheless, one-on-one comparisons of sister taxa suggest that arctic species may have expanded respiratory turbinals. Olfactory surface area scaled isometrically among arctoids, but showed positive allometry in canids, reflecting the fact that larger canids, all of which are carnivorous, had relatively greater olfactory surface areas. In addition, among the arctoids, large carnivorous species such as the polar bear (Ursus maritimus) and wolverine (Gulo gulo) also displayed enlarged olfactory turbinals. More omnivorous caniform species that feed on substantial quantities of non-vertebrate foods had less expansive olfactory turbinals. Because large carnivorous species hunt widely dispersed prey, an expanded olfactory turbinal surface area may improve a carnivore's ability to detect prey over great distances using olfactory cues. PMID:23035637
Olfactory Blocking and Odorant Similarity in the Honeybee
ERIC Educational Resources Information Center
Gerber, Bertram; Giurfa, Martin; Guerrieri, Fernando; Lachnit, Harald
2005-01-01
Blocking occurs when previous training with a stimulus A reduces (blocks) subsequent learning about a stimulus B, when A and B are trained in compound. The question of whether blocking exists in olfactory conditioning of proboscis extension reflex (PER) in honeybees is under debate. The last published accounts on blocking in honeybees state that…
ERIC Educational Resources Information Center
Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.
2013-01-01
We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…
IGF1-Dependent Synaptic Plasticity of Mitral Cells in Olfactory Memory during Social Learning.
Liu, Zhihui; Chen, Zijun; Shang, Congping; Yan, Fei; Shi, Yingchao; Zhang, Jiajing; Qu, Baole; Han, Hailin; Wang, Yanying; Li, Dapeng; Südhof, Thomas C; Cao, Peng
2017-07-05
During social transmission of food preference (STFP), mice form long-term memory of food odors presented by a social partner. How does the brain associate a social context with odor signals to promote memory encoding? Here we show that odor exposure during STFP, but not unconditioned odor exposure, induces glomerulus-specific long-term potentiation (LTP) of synaptic strength selectively at the GABAergic component of dendrodendritic synapses of granule and mitral cells in the olfactory bulb. Conditional deletion of synaptotagmin-10, the Ca 2+ sensor for IGF1 secretion from mitral cells, or deletion of IGF1 receptor in the olfactory bulb prevented the socially relevant GABAergic LTP and impaired memory formation after STFP. Conversely, the addition of IGF1 to acute olfactory bulb slices elicited the GABAergic LTP in mitral cells by enhancing postsynaptic GABA receptor responses. Thus, our data reveal a synaptic substrate for a socially conditioned long-term memory that operates at the level of the initial processing of sensory information. Copyright © 2017 Elsevier Inc. All rights reserved.
Olfactory Nerve—A Novel Invasion Route of Neisseria meningitidis to Reach the Meninges
Sjölinder, Hong; Jonsson, Ann-Beth
2010-01-01
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival. PMID:21124975
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.
Sjölinder, Hong; Jonsson, Ann-Beth
2010-11-18
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
A coupled-oscillator model of olfactory bulb gamma oscillations
2017-01-01
The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity. PMID:29140973
Coactivation of Gustatory and Olfactory Signals in Flavor Perception
Veldhuizen, Maria G.; Shepard, Timothy G.; Wang, Miao-Fen
2010-01-01
It is easier to detect mixtures of gustatory and olfactory flavorants than to detect either component alone. But does the detection of mixtures exceed the level predicted by probability summation, assuming independent detection of each component? To answer this question, we measured simple response times (RTs) to detect brief pulses of one of 3 flavorants (sucrose [gustatory], citral [olfactory], sucrose–citral mixture) or water, presented into the mouth by a computer-operated, automated flow system. Subjects were instructed to press a button as soon as they detected any of the 3 nonwater stimuli. Responses to the mixtures were faster (RTs smaller) than predicted by a model of probability summation of independently detected signals, suggesting positive coactivation (integration) of gustation and retronasal olfaction in flavor perception. Evidence for integration appeared mainly in the fastest 60% of the responses, indicating that integration arises relatively early in flavor processing. Results were similar when the 3 possible flavorants, and water, were interleaved within the same session (experimental condition), and when each flavorant was interleaved with water only (control conditions). This outcome suggests that subjects did not attend selectively to one flavor component or the other in the experimental condition and further supports the conclusion that (late) decisional or attentional strategies do not exert a large influence on the gustatory–olfactory flavor integration. PMID:20032112
Time frequency analysis of olfactory induced EEG-power change.
Schriever, Valentin Alexander; Han, Pengfei; Weise, Stefanie; Hösel, Franziska; Pellegrino, Robert; Hummel, Thomas
2017-01-01
The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA) of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function. A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects. Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%). In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III. Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.
Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees
Sandoz, Jean Christophe
2011-01-01
The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion. PMID:22163215
Determinants of human olfactory performance: a cross-cultural study.
Sorokowska, Agnieszka; Sorokowski, Piotr; Frackowiak, Tomasz
2015-02-15
Olfaction allows us to detect subtle changes in our environment, but sensitivity of the sense of smell varies among individuals. Although a significant number of research papers discuss the relationship between olfactory abilities and environmental factors, most studies have been conducted on Western populations or in developed Asian societies. The potential environmental and cultural determinants of olfactory acuity warrant further exploration. In the current study, we compared previously published data on olfaction in an industrialized, modern society (i.e., Europeans) and an indigenous society living in unpolluted, natural environmental conditions (i.e., Tsimane'), with novel data on the olfactory acuity of inhabitants of the Cook Islands. Like the European population (and contrary to the Tsimane'), the Cook Islands people form a modern society, and like the Tsimane' population (and contrary to the Europeans), they live in an unpolluted region. Thus, these comparisons enabled us to independently assess the importance of both air pollution and changes in lifestyle for olfactory abilities in modern societies. Our results indicate that people from the Cook Islands had significantly higher olfactory acuity (i.e., lower thresholds of odor detection) than did Europeans and Tsimane' people. Interestingly, the olfactory sensitivity of Europeans was significantly lower than the olfactory sensitivity of the remaining two groups. Our data suggest that air pollution is an important factor in the deterioration of the sense of smell. However, it is also possible that factors such as agricultural and/or cooking practices, alcohol consumption, and access to medical service may also influence olfactory acuity. Copyright © 2014 Elsevier B.V. All rights reserved.
Doucet, Éric; Pomerleau, Sonia
2016-01-01
Nutrition claims may help people to adopt healthier eating habits, but little is known about the potential cognitive effects of such claims on appetite sensations. The main purpose of this study was to evaluate the impact of nutrition claims and individual factors on perceived appetite sensations. According to a three (“healthy” versus “diet” (i.e., satiating) versus “hedonic”) by two (restrained or not restrained) by two (normal-weight or overweight/obese) by two (men versus women) factorial design, 164 males and 188 females aged 18–65 were invited to taste an oatmeal-raisin snack in a blinded and ad libitum context. Visual analog scales (150 mm) were used to evaluate appetite sensations before and over 1 h after consumption period. BMI and Restraint Scale were used to categorize participants according to their weight and restraint status. No main condition effect was observed for any of the four appetite sensations. However, subgroups analysis revealed significant differences among specific subgroups. A main effect of sex was also observed for all appetite sensations with men reporting higher levels of desire to eat, hunger and prospective food consumption, and lower levels of fullness than women. These findings highlight the importance of considering individual characteristics in interaction when studying appetite sensations. PMID:27725885
Hamel, Laurie; Thangarasa, Tharshika; Samadi, Osai
2017-01-01
The nucleus accumbens (NAc) is thought to be a site of integration of positively and negatively valenced information and action selection. Functional differentiation in valence processing has previously been found along the rostrocaudal axis of the shell region of the NAc in assessments of unconditioned motivation. Given that the core region of the NAc has been implicated in the elicitation of motivated behavior in response to conditioned cues, we sought to assess the role of caudal, intermediate, and rostral sites within this subregion in cue-elicited approach-avoidance decisions. Rats were trained to associate visuo-tactile cues with appetitive, aversive, and neutral outcomes. Following the successful acquisition of the cue-outcome associations, rats received microinfusions of GABAA and GABAB receptor agonists (muscimol/baclofen) or saline into the caudal, intermediate, or rostral NAc core and were then exposed to a superimposition of appetitively and aversively valenced cues versus neutral cues in a “conflict test,” as well as to the appetitive versus neutral cues, and aversive cues versus neutral cues, in separate conditioned preference/avoidance tests. Disruption of activity in the intermediate to caudal parts of the NAc core resulted in a robust avoidance bias in response to motivationally conflicting cues, as well as a potentiated avoidance of aversive cues as compared with control animals, coupled with an attenuated conditioned preference for the appetitive cue. These results suggest that the caudal NAc core may have the capacity to exert bidirectional control over appetitively and aversively motivated responses to valence signals. PMID:28275709
Bongers, Peggy; Jansen, Anita
2017-02-01
Appetitive learning has been demonstrated several times using neutral cues or contexts as a predictor of food intake and it has been shown that humans easily learn cued desires for foods. It has, however, never been studied whether internal cues are also capable of appetitive conditioning. In this study, we tested whether humans can learn cued eating desires to negative moods as conditioned stimuli (CS), thereby offering a potential explanation of emotional eating (EE). Female participants were randomly presented with 10 different stimuli eliciting either negative or neutral emotional states, with one of these states paired with eating chocolate. Expectancy to eat, desire to eat, salivation, and unpleasantness of experiencing negative emotions were assessed. After conditioning, participants were brought into a negative emotional state and were asked to choose between money and chocolate. Data showed differential conditioned responding on the expectancy and desire measures, but not on salivation. Specific conditioned effects were obtained for participants with a higher BMI (body mass index) on the choice task, and for participants high on EE on the unpleasantness ratings. These findings provide the first experimental evidence for the idea that negative emotions can act as conditioned stimuli, and might suggest that classical conditioning is involved in EE.
Striberny, Anja; Jørgensen, Even H
2017-05-15
Despite vast research attention, the knowledge about central mechanisms of appetite regulation in teleost remains inconclusive. A common strategy in studies on appetite regulating mechanisms is to measure the response to feed restriction or - deprivation, but responses vary between fish species and between experiments, and are also likely dependent on the degree of energy perturbation. The anadromous Arctic charr is an interesting model for studying appetite regulation as its feeding cycle comprises months of winter anorexia, and hyperphagia during summer. Here we studied how the gene expression of putative hypothalamic appetite regulators were affected by two days, one week and one month feed deprivation during summer, and subsequent re-feeding and exposure to feed flavour. Short-term feed deprivation caused only a minor reduction in condition factor and had no effect on hypothalamic gene expression. Long-term feed-deprivation caused a marked reduction in weight and condition factor which contrasted the increase in weight and condition factor seen in ad libitum fed controls. A marked energy perturbation by feed deprivation was also indicated by a lower hypothalamic expression of the genes encoding insulin-like growth factor 1 (IGF1) and IGF1 binding protein 5 in the feed deprived charr compared to fed controls. Surprisingly, long-term feed deprivation and energy perturbation did not induce changes in hypothalamic appetite regulators. Unexpectedly, re-feeding and exposure to feed flavour caused an increase in the expression of the genes encoding the orexigenic agouti-related peptide and the anorexigenic melanocortin receptor 4 and cocaine- and amphetamine-regulated transcript. Our study gives strong evidence for a role of these in appetite regulation in Arctic charr, but their mechanisms of action remain unknown. We suggest that changes in gene expression are more likely to be registered during transition phases, e.g. from fasting to feeding and upon stimulatory inputs such as feed flavour. Copyright © 2017 Elsevier Inc. All rights reserved.
Sorokowska, Agnieszka; Sorokowski, Piotr; Hummel, Thomas; Huanca, Tomas
2013-01-01
Olfactory sensitivity varies between individuals. However, data regarding cross-cultural and inter-group differences are scarce. We compared the thresholds of odor detection of the traditional society of Tsimane’ (native Amazonians of the Bolivian rainforest; n = 151) and people living in Dresden (Germany; n = 286) using “Sniffin’ Sticks” threshold subtest. Tsimane’ detected n-butanol at significantly lower concentrations than the German subjects. The distribution of thresholds of the Tsimane’ was very specific, with 25% of Tsimane’ obtaining better results in the olfactory test than any member of the German group. These data suggest that differences in olfactory sensitivity seem to be especially salient between industrialized and non-industrialized populations inhabiting different environmental conditions. We hypothesize that the possible sources of such differences are: (i) the impact of pollution which impairs the olfactory abilities of people from industrialized countries; (ii) better training of olfaction because of the higher importance of smell in traditional populations; (iii) environmental pressures shaping olfactory abilities in these populations. PMID:23922693
Sorokowska, Agnieszka; Sorokowski, Piotr; Hummel, Thomas; Huanca, Tomas
2013-01-01
Olfactory sensitivity varies between individuals. However, data regarding cross-cultural and inter-group differences are scarce. We compared the thresholds of odor detection of the traditional society of Tsimane' (native Amazonians of the Bolivian rainforest; n = 151) and people living in Dresden (Germany; n = 286) using "Sniffin' Sticks" threshold subtest. Tsimane' detected n-butanol at significantly lower concentrations than the German subjects. The distribution of thresholds of the Tsimane' was very specific, with 25% of Tsimane' obtaining better results in the olfactory test than any member of the German group. These data suggest that differences in olfactory sensitivity seem to be especially salient between industrialized and non-industrialized populations inhabiting different environmental conditions. We hypothesize that the possible sources of such differences are: (i) the impact of pollution which impairs the olfactory abilities of people from industrialized countries; (ii) better training of olfaction because of the higher importance of smell in traditional populations; (iii) environmental pressures shaping olfactory abilities in these populations.
Olfactory bulb size, odor discrimination and magnetic insensitivity in hummingbirds.
Ioalé, P; Papi, F
1989-05-01
Relative olfactory bulb size with respect to telencephalic hemispheres (olfactory ratio) was measured in five species of hummingbirds. Trochiliformes were found to be next to last among 25 avian orders with respect to olfactory bulb development. One hummingbird species, the White-vented Violetear (Colibri serrirostris), was trained in a successive go/no-go discrimination task, and learned to feed or not to feed from a container dependent on the olfactory stimuli associated with it. Test birds learned to discriminate amyl acetate vs. turpentine essence, jasmine essence vs. lavender essence, eucalyptus essence vs. no odor, beta-ionone vs. no odor, carvone vs. eucalyptol. In contrast, 1-phenylethanol vs. beta-ionone discrimination, two odorants which appear similar to humans, was unsuccessful. Using a similar procedure, attempts were made to condition a White-vented Violetear and a Versicolored Emerald (Amazilia versicolor) to magnetic stimuli. The birds were unable to discriminate between a normal field and an oscillating field (square wave, 1 Hz, amplitude +/- 0.40 G).
[Changes in olfaction during ageing and in certain neurodegenerative diseases: up-to-date].
Bianchi, A-J; Guépet-Sordet, H; Manckoundia, P
2015-01-01
Olfaction is a complex sensory system, and increasing interest is being shown in the link between olfaction and cognition, notably in the elderly. In this literature review, we revisit the specific neurophysiological features of the olfactory system and odorants that lead to a durable olfactory memory and an emotional memory, for which the implicit component produces subconscious olfactory conditioning. Olfaction is known to affect cognitive abilities and mood. We also consider the impairment of olfactory function due to ageing and to neurodegenerative diseases, in particular Alzheimer's disease and Parkinson's disease, through anatomopathological changes in the peripheral and central olfactory structures. The high frequency of these olfactory disorders as well as their early occurrence in Alzheimer disease and Parkinson disease are in favour of their clinical detection in subjects suffering from these two neurodegenerative diseases. Finally, we analyse the impact of olfactory stimulation on cognitive performance and attention. Current observational data from studies in elderly patients with Alzheimer-type dementia are limited to multiple sensory stimulation methods, such as the Snoezelen method, and aromatherapy. These therapies have shown benefits for dementia-related mood and behaviour disorders in the short term, with few side effects. Since olfactory chemosensory stimulation may be beneficial, it may be proposed in patients with dementia, especially Alzheimer-type dementia, as a complementary or even alternative therapy to existing medical strategies. Copyright © 2014 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Widmer, Yves F; Bilican, Adem; Bruggmann, Rémy; Sprecher, Simon G
2018-06-20
Memory formation is achieved by genetically tightly controlled molecular pathways that result in a change of synaptic strength and synapse organization. While for short-term memory traces rapidly acting biochemical pathways are in place, the formation of long-lasting memories requires changes in the transcriptional program of a cell. Although many genes involved in learning and memory formation have been identified, little is known about the genetic mechanisms required for changing the transcriptional program during different phases of long-term memory formation. With Drosophila melanogaster as a model system we profiled transcriptomic changes in the mushroom body, a memory center in the fly brain, at distinct time intervals during appetitive olfactory long-term memory formation using the targeted DamID technique. We describe the gene expression profiles during these phases and tested 33 selected candidate genes for deficits in long-term memory formation using RNAi knockdown. We identified 10 genes that enhance or decrease memory when knocked-down in the mushroom body. For vajk-1 and hacd1 , the two strongest hits, we gained further support for their crucial role in appetitive learning and forgetting. These findings show that profiling gene expression changes in specific cell-types harboring memory traces provides a powerful entry point to identify new genes involved in learning and memory. The presented transcriptomic data may further be used as resource to study genes acting at different memory phases. Copyright © 2018, Genetics.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-03-14
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor-malaise association.
Ferry, Barbara; Duchamp-Viret, Patricia
2014-01-01
To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor–malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor–malaise association. PMID:24634353
Moran, James K.; Weierstall, Roland; Elbert, Thomas
2014-01-01
Aggressive behavior is thought to divide into two motivational elements: The first being a self-defensively motivated aggression against threat and a second, hedonically motivated “appetitive” aggression. Appetitive aggression is the less understood of the two, often only researched within abnormal psychology. Our approach is to understand it as a universal and adaptive response, and examine the functional neural activity of ordinary men (N = 50) presented with an imaginative listening task involving a murderer describing a kill. We manipulated motivational context in a between-subjects design to evoke appetitive or reactive aggression, against a neutral control, measuring activity with Magnetoencephalography (MEG). Results show differences in left frontal regions in delta (2–5 Hz) and alpha band (8–12 Hz) for aggressive conditions and right parietal delta activity differentiating appetitive and reactive aggression. These results validate the distinction of reward-driven appetitive aggression from reactive aggression in ordinary populations at the level of functional neural brain circuitry. PMID:25538590
William R. Glenny; Justin B. Runyon; Laura A. Burkle
2018-01-01
Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...
ERIC Educational Resources Information Center
Geddes, Lisa H.; McQuillan, H. James; Aiken, Alastair; Vergoz, Vanina; Mercer, Alison R.
2013-01-01
Here, we examine effects of the steroid hormone, 20-hydroxyecdysone (20-E), on associative olfactory learning in the honeybee, "Apis mellifera." 20-E impaired the bees' ability to associate odors with punishment during aversive conditioning, but did not interfere with their ability to associate odors with a food reward (appetitive…
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.
Hommer, Rebecca E.; Seo, Dongju; Lacadie, Cheryl M.; Chaplin, Tara M.; Mayes, Linda C.; Sinha, Rajita; Potenza, Marc N.
2012-01-01
Adolescence is a critical period of neurodevelopment for stress and appetitive processing, as well as a time of increased vulnerability to stress and engagement in risky behaviors. The current study was conducted to examine brain activation patterns during stress and favorite-food-cue experiences relative to a neutral-relaxing condition in adolescents. Functional magnetic resonance imaging was employed using individualized script-driven guided imagery to compare brain responses to such experiences in 43 adolescents. Main effects of condition and gender were found, without a significant gender-by-condition interaction. Stress imagery, relative to neutral, was associated with activation in the caudate, thalamus, left hippocampus/parahippocampal gyrus, midbrain, left superior/middle temporal gyrus, and right posterior cerebellum. Appetitive imagery of favorite food was associated with caudate, thalamus, and midbrain activation compared to the neutral-relaxing condition. To understand neural correlates of anxiety and craving, subjective (self-reported) measures of stress-induced anxiety and favorite-food-cue-induced craving were correlated with brain activity during stress and appetitive food-cue conditions, respectively. High self-reported stress-induced anxiety was associated with hypoactivity in the striatum, thalamus, hippocampus and midbrain. Self-reported favorite-food-cue-induced craving was associated with blunted activity in cortical-striatal regions, including the right dorsal and ventral striatum, medial prefrontal cortex, motor cortex, and left anterior cingulate cortex. The current findings in adolescents indicate the activation of predominantly subcortical-striatal regions in the processing of stressful and appetitive experiences and link hypoactive striatal circuits to self-reported stress-induced anxiety and cue-induced favorite-food craving. PMID:22504779
Hommer, Rebecca E; Seo, Dongju; Lacadie, Cheryl M; Chaplin, Tara M; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N
2013-10-01
Adolescence is a critical period of neurodevelopment for stress and appetitive processing, as well as a time of increased vulnerability to stress and engagement in risky behaviors. This study was conducted to examine brain activation patterns during stress and favorite-food-cue experiences relative to a neutral-relaxing condition in adolescents. Functional magnetic resonance imaging was employed using individualized script-driven guided imagery to compare brain responses with such experiences in 43 adolescents. Main effects of condition and gender were found, without a significant gender-by-condition interaction. Stress imagery, relative to neutral, was associated with activation in the caudate, thalamus, left hippocampus/parahippocampal gyrus, midbrain, left superior/middle temporal gyrus, and right posterior cerebellum. Appetitive imagery of favorite food was associated with caudate, thalamus, and midbrain activation compared with the neutral-relaxing condition. To understand neural correlates of anxiety and craving, subjective (self-reported) measures of stress-induced anxiety and favorite-food-cue-induced craving were correlated with brain activity during stress and appetitive food-cue conditions, respectively. High self-reported stress-induced anxiety was associated with hypoactivity in the striatum, thalamus, hippocampus, and midbrain. Self-reported favorite-food-cue-induced craving was associated with blunted activity in cortical-striatal regions, including the right dorsal and ventral striatum, medial prefrontal cortex, motor cortex, and left anterior cingulate cortex. These findings in adolescents indicate the activation of predominantly subcortical-striatal regions in the processing of stressful and appetitive experiences and link hypoactive striatal circuits to self-reported stress-induced anxiety and cue-induced favorite-food craving. Copyright © 2012 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Weierstall, Roland; Haer, Roos; Banholzer, Lilli; Elbert, Thomas
2013-01-01
Appetitive aggression--a rewarding perception of the perpetration of violence--seems to be an adaptation common to adverse conditions. Children raised within armed groups may develop attitudes and values that favour harming others when socialized within a combat force. Combatants who joined an armed force early in their lives should, therefore,…
[Is olfactory function impaired in moderate height?].
Kühn, M; Welsch, H; Zahnert, T; Hummel, Thomas
2009-09-01
The human sense of smell seems to be influenced by the surrounding barometric pressure. These factors appear to be especially important during flights, for example, in order to recognize the smell of fire etc. Thus, questions are whether pilots or passengers exhibit an impaired smell sensitivity when tested at moderate heights, or, whether changes in humidity would affect the sense of smell. Using climate chambers, odor discrimination and butanol odor thresholds were tested in 77 healthy normosmic volunteers (5 female, 72 male; aged 25+/-8 years from 18 up to 53 years) under hypobaric (2 700+/-20 m, 20 degrees C+/-1 K, rh=50+/-5%) and hyperbaric, (10+/-0.5 m (2 bar)) and different humidity conditions (30 vs. 80%, 20 degrees C+/-1 K, normobaric). During all conditions cognitive performance was tested. Among other effects, olfactory sensitivity was impaired at threshold, but not suprathreshold level, in a hypobaric compared to a hyperbaric milieu, and thresholds were lower in humid, compared to relatively dry conditions. In conclusion, environmental conditions modulate the sense of smell, and may, consecutively, influence results from olfactory tests. During flight hypobaric conditions, mild hypoxia and dry air may cause impaired sensitivity of smell. Georg Thieme Verlag KG Stuttgart * New York.
The effect of hyperbaric conditions on olfactory functions.
Ay, Hakan; Salihoglu, Murat; Altundag, Aytug; Tekeli, Hakan; Memis, Ali; Cayonu, Melih
2014-01-01
The aim of this study was to investigate the effect of increased atmospheric pressure (AP) on olfactory function. The present study included 40 healthy volunteers with no history of chronic rhinosinusitis and nasal polyposis. The experimental procedure consisted of two episodes: (a) baseline episode, with normal AP; 1 absolute atmosphere (atm abs) in a test room at sea level; (b) experimental episode, increased level of AP; 2.4 atm abs in the hyperbaric chamber. Sino-nasal outcome test-20, Trail Making Test A and olfactory testing were performed in each episodes. The study group consisted of 23 men (57.5%) and 17 women (42.5%); the mean age of the study population was 38.7 +/- 9 years (range 23-58 years). The current investigation produced two major findings: (1) the mean of odor threshold scores was significantly increased in the hyperbaric condition when compared to the normobaric condition; (2) rather, there was no significant change in odor discrimination and identification scores in the hyperbaric condition. Based on two measurements taken at two different barometric pressures and the same temperature and relative humidity, this study suggests that odor threshold scores increase under hyperbaric conditions.
Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival
François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas
2013-01-01
The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants. PMID:24399931
Lemons, Kayla; Aoudé, Imad; Ogura, Tatsuya; Mbonu, Kenechukwu; Matsumoto, Ichiro; Arakawa, Hiroyuki
2017-01-01
The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE. PMID:28612045
Cameron, Jameason D; Goldfield, Gary S; Riou, Marie-Ève; Finlayson, Graham S; Blundell, John E; Doucet, Éric
2016-04-01
Millions of Americans attempt to lose weight each year, and it is unclear whether the modality of acute, tightly controlled energy depletions can differently affect appetite parameters and olfaction. The objectives were to examine how the modality of an acute 3-d isocaloric 25% energy depletion by dieting alone or by aerobic exercise alone differently affects appetite and appetite-related hormones, ad libitum feeding, food reward (snack points), and olfaction. Ten male participants with a mean ± SD age of 23.7 ± 5.1 y and an initial mean ± SD body weight of 83.2 ± 11.5 kg participated in this randomized crossover design. Baseline measurement [day 1 of the control condition (CON1)] was performed and repeated 3 d later [day 4 of the control condition (CON4)], after which randomization was applied to the order of the 2 experimental conditions: 25% daily needs energy deficits induced by diet only (DIET) and by exercise only (EX) and tested before [day 1 of DIET (DIET1) and day 1 of EX (EX1)] and after 3 d [day 4 of DIET (DIET4) and day 4 of EX (EX4)] of the intervention. Body weight, leptin and ghrelin concentrations, relative-reinforcing value of food, and olfaction were measured at days 1 and 4. Body composition (dual-energy X-ray absorptiometry), ad libitum energy intake (EI; buffet), and palatability (visual analog scale) were measured only at day 4. Relative to CON4, EI (P= 0.001), palatability (P= 0.01), and odor threshold (P= 0.05) were higher at DIET4; relative to CON4, palatability (P= 0.03) was higher at EX4. Compared with EX4, EI was higher for DIET4 (P= 0.006). Relative to CON4, snack points earned were higher at DIET4 (P= 0.03) and EX4 (P= 0.001); more snack points were earned at EX4 relative to DIET4 (P= 0.001). Compared with the control condition, DIET represented a greater acute challenge to appetite regulation than EX, as demonstrated by greater appetite and ad libitum EI. This study confirms that compared with depletions by exercise alone, acute caloric restriction results in rapid changes in appetite that result in compensatory eating, which may initially dissuade potential success in weight-loss efforts. This trial was registered at clinicaltrials.gov as NCT02653378. © 2016 American Society for Nutrition.
Tsuruta, Miho; Takahashi, Toru; Tokunaga, Miki; Iwasaki, Masanori; Kataoka, Shota; Kakuta, Satoko; Soh, Inho; Awano, Shuji; Hirata, Hiromi; Kagawa, Masaharu; Ansai, Toshihiro
2017-03-14
Pathologic subjective halitosis is known as a halitosis complaint without objective confirmation of halitosis by others or by halitometer measurements; it has been reported to be associated with social anxiety disorder. Olfactory reference syndrome is a preoccupation with the false belief that one emits a foul and offensive body odor. Generally, patients with olfactory reference syndrome are concerned with multiple body parts. However, the mouth is known to be the most common source of body odor for those with olfactory reference syndrome, which could imply that the two conditions share similar features. Therefore, we investigated potential causal relationships among pathologic subjective halitosis, olfactory reference syndrome, social anxiety, and preoccupations with body part odors. A total of 1360 female students (mean age 19.6 ± 1.1 years) answered a self-administered questionnaire regarding pathologic subjective halitosis, olfactory reference syndrome, social anxiety, and preoccupation with odors of body parts such as mouth, body, armpits, and feet. The scale for pathologic subjective halitosis followed that developed by Tsunoda et al.; participants were divided into three groups based on their scores (i.e., levels of pathologic subjective halitosis). A Bayesian network was used to analyze causal relationships between pathologic subjective halitosis, olfactory reference syndrome, social anxiety, and preoccupations with body part odors. We found statistically significant differences in the results for olfactory reference syndrome and social anxiety among the various levels of pathologic subjective halitosis (P < 0.001). Residual analyses indicated that students with severe levels of pathologic subjective halitosis showed greater preoccupations with mouth and body odors (P < 0.05). Bayesian network analysis showed that social anxiety directly influenced pathologic subjective halitosis and olfactory reference syndrome. Preoccupations with mouth and body odors also influenced pathologic subjective halitosis. Social anxiety may be a causal factor of pathologic subjective halitosis and olfactory reference syndrome.
Xi, Jinxiang; Zhang, Ze; Si, Xiuhua A
2015-01-01
Background Although direct nose-to-brain drug delivery has multiple advantages, its application is limited by the extremely low delivery efficiency (<1%) to the olfactory region where drugs can enter the brain. It is crucial to developing new methods that can deliver drug particles more effectively to the olfactory region. Materials and methods We introduced a delivery method that used magnetophoresis to improve olfactory delivery efficiency. The performance of the proposed method was assessed numerically in an image-based human nose model. Influences of the magnet layout, magnet strength, drug-release position, and particle diameter on the olfactory dosage were examined. Results and discussion Results showed that particle diameter was a critical factor in controlling the motion of nasally inhaled ferromagnetic drug particles. The optimal particle size was found to be approximately 15 μm for effective magnetophoretic guidance while avoiding loss of particles to the walls in the anterior nose. Olfactory delivery efficiency was shown to be sensitive to the position and strength of magnets and the release position of drug particles. The results of this study showed that clinically significant olfactory doses (up to 45%) were feasible using the optimal combination of magnet layout, selective drug release, and microsphere-carrier diameter. A 64-fold-higher delivery of dosage was predicted in the magnetized nose compared to the control case, which did not have a magnetic field. However, the sensitivity of olfactory dosage to operating conditions and the unstable nature of magnetophoresis make controlled guidance of nasally inhaled aerosols still highly challenging. PMID:25709443
Altered motivation masks appetitive learning potential of obese mice
Harb, Mazen R.; Almeida, Osborne F. X.
2014-01-01
Eating depends strongly on learning processes which, in turn, depend on motivation. Conditioned learning, where individuals associate environmental cues with receipt of a reward, forms an important part of hedonic mechanisms; the latter contribute to the development of human overweight and obesity by driving excessive eating in what may become a vicious cycle. Although mice are commonly used to explore the regulation of human appetite, it is not known whether their conditioned learning of food rewards varies as a function of body mass. To address this, groups of adult male mice of differing body weights were tested two appetitive conditioning paradigms (pavlovian and operant) as well as in food retrieval and hedonic preference tests in an attempt to dissect the respective roles of learning/motivation and energy state in the regulation of feeding behavior. We found that (i) the rate of pavlovian conditioning to an appetitive reward develops as an inverse function of body weight; (ii) higher body weight associates with increased latency to collect food reward; and (iii) mice with lower body weights are more motivated to work for a food reward, as compared to animals with higher body weights. Interestingly, as compared to controls, overweight and obese mice consumed smaller amounts of palatable foods (isocaloric milk or sucrose, in either the presence or absence of their respective maintenance diets: standard, low fat-high carbohydrate or high fat-high carbohydrate). Notably, however, all groups adjusted their consumption of the different food types, such that their body weight-corrected daily intake of calories remained constant. Thus, overeating in mice does not reflect a reward deficiency syndrome and, in contrast to humans, mice regulate their caloric intake according to metabolic status rather than to the hedonic properties of a particular food. Together, these observations demonstrate that excess weight masks the capacity for appetitive learning in the mouse. PMID:25400563
A novel tool to predict food intake: the Visual Meal Creator.
Holliday, Adrian; Batey, Chris; Eves, Frank F; Blannin, Andrew K
2014-08-01
Subjective appetite is commonly measured using an abstract visual analogue scale (VAS) technique, that provides no direct information about desired portion size or food choice. The purpose of this investigation was to develop and validate a user-friendly tool - the Visual Meal Creator (VIMEC) - that would allow for independent, repeated measures of subjective appetite and provide a prediction of food intake. Twelve participants experienced dietary control over a 5-hour period to manipulate hunger state on three occasions (small breakfast (SB) vs. large breakfast (LB) vs. large breakfast + snacks (LB+S)). Appetite measures were obtained every 60 minutes using the VIMEC and VAS. At 4.5 hours, participants were presented with an ad libitum test meal, from which energy intake (EI) was measured. The efficacy of the VIMEC was assessed by its ability to detect expected patterns of appetite and its strength as a predictor of energy intake. Day-to-day reproducibility and test-retest repeatability were assessed. Between- and within-condition differences in VAS and VIMEC scores (represented as mm and kcal of the "created" meal, respectively) were significantly correlated with one another throughout. Between- and within-condition changes in appetite scores obtained with the VIMEC exhibited a stronger correlation with EI at the test meal than those obtained with VAS. Pearson correlation coefficients for within-condition comparisons were 0.951, 0.914 and 0.875 (all p < 0.001) for SB, LB and LB+S respectively. Correlation coefficients for between-condition differences in VIMEC and EI were 0.273, 0.940 (p < 0.001) and 0.525 (p < 0.05) for SB - LB+S, SB - LB and LB - LB+S respectively. The VIMEC exhibited a similar degree of reproducibility to VAS. These findings suggest that the VIMEC appears to be a stronger predictor of energy intake than VAS. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sufian, Kaosar Niaz Bin; Hira, Tohru; Nakamori, Toshihiro; Furuta, Hitoshi; Asano, Kozo; Hara, Hiroshi
2011-01-01
A peptic digest of soybean β-conglycinin (BconP) suppresses the appetite in rats through cholecystokinin (CCK) secretion by enteroendocrine cells. We investigate in this study more appetite-suppressing hydrolysates. β-Conglycinin hydrolyzed with food-processing proteases thermolysin (BconT), bromelain (BconB), chymotrypsin, protease S, and protease M was examined for CCK-secreting activity in a CCK-producing cell line for comparison with BconP. The potent CCK-releasing hydrolysates were then tested for their suppression of the food intake by rats. BconB, BconT, and BconP stimulated high CCK secretion, with the highest by BconB. Orogastric preloading by BconB, but not by BconT, suppressed the 60-min food intake. A meal-feeding trial twice a day in the morning (a.m.) and evening (p.m.) for 10 d showed that BconB preloading before every meal attenuated the p.m. meal size, but not that a.m., resulting in an overall reduction of the daily meal size. These results demonstrate that the bromelain hydrolysate of β-conglycinin having potent CCK-releasing activity suppressed the appetite of rats under meal-feeding conditions.
van den Akker, Karolien; Havermans, Remco C; Bouton, Mark E; Jansen, Anita
2014-10-01
Animals and humans can easily learn to associate an initially neutral cue with food intake through classical conditioning, but extinction of learned appetitive responses can be more difficult. Intermittent or partial reinforcement of food cues causes especially persistent behaviour in animals: after exposure to such learning schedules, the decline in responding that occurs during extinction is slow. After extinction, increases in responding with renewed reinforcement of food cues (reacquisition) might be less rapid after acquisition with partial reinforcement. In humans, it may be that the eating behaviour of some individuals resembles partial reinforcement schedules to a greater extent, possibly affecting dieting success by interacting with extinction and reacquisition. Furthermore, impulsivity has been associated with less successful dieting, and this association might be explained by impulsivity affecting the learning and extinction of appetitive responses. In the present two studies, the effects of different reinforcement schedules and impulsivity on the acquisition, extinction, and reacquisition of appetitive responses were investigated in a conditioning paradigm involving food rewards in healthy humans. Overall, the results indicate both partial reinforcement schedules and, possibly, impulsivity to be associated with worse extinction performance. A new model of dieting success is proposed: learning histories and, perhaps, certain personality traits (impulsivity) can interfere with the extinction and reacquisition of appetitive responses to food cues and they may be causally related to unsuccessful dieting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118
Sad man's nose: Emotion induction and olfactory perception.
Flohr, Elena L R; Erwin, Elena; Croy, Ilona; Hummel, Thomas
2017-03-01
Emotional and olfactory processing is frequently shown to be closely linked both anatomically and functionally. Depression, a disease closely related to the emotional state of sadness, has been shown to be associated with a decrease in olfactory sensitivity. The present study focuses on the state of sadness in n = 31 healthy subjects in order to investigate the specific contribution of this affective state in the modulation of olfactory processing. A sad or indifferent affective state was induced using 2 movies that were presented on 2 separate days. Afterward, chemosensory-evoked potentials were recorded after stimulation with an unpleasant (hydrogen sulfide: "rotten eggs") or a pleasant (phenyl ethyl alcohol: "rose") odorant. Latencies of N1 and P2 peaks were longer after induction of the sad affective state. Additionally, amplitudes were lower in a sad affective state when being stimulated with the unpleasant odorant. Processing of olfactory input has thus been reduced under conditions of the sad affective state. We argue that the affective state per se could at least partially account for the reduced olfactory sensitivity in depressed patients. To our knowledge, the present study is the first to show influence of affective state on chemosensory event-related potentials. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Video game playing increases food intake in adolescents: a randomized crossover study.
Chaput, Jean-Philippe; Visby, Trine; Nyby, Signe; Klingenberg, Lars; Gregersen, Nikolaj T; Tremblay, Angelo; Astrup, Arne; Sjödin, Anders
2011-06-01
Video game playing has been linked to obesity in many observational studies. However, the influence of this sedentary activity on food intake is unknown. The objective was to examine the acute effects of sedentary video game play on various components of energy balance. With the use of a randomized crossover design, 22 healthy, normal-weight, male adolescents (mean ± SD age: 16.7 ± 1.1 y) completed two 1-h experimental conditions, namely video game play and rest in a sitting position, followed by an ad libitum lunch. The endpoints were spontaneous food intake, energy expenditure, stress markers, appetite sensations, and profiles of appetite-related hormones. Heart rate, systolic and diastolic blood pressures, sympathetic tone, and mental workload were significantly higher during the video game play condition than during the resting condition (P < 0.05). Although energy expenditure was significantly higher during video game play than during rest (mean increase over resting: 89 kJ; P < 0.01), ad libitum energy intake after video game play exceeded that measured after rest by 335 kJ (P < 0.05). A daily energy surplus of 682 kJ (163 kcal) over resting (P < 0.01) was observed in the video game play condition. The increase in food intake associated with video game play was observed without increased sensations of hunger and was not compensated for during the rest of the day. Finally, the profiles of glucose, insulin, cortisol, and ghrelin did not suggest an up-regulation of appetite during the video game play condition. A single session of video game play in healthy male adolescents is associated with an increased food intake, regardless of appetite sensations. The trial was registered at clinicaltrials.gov as NCT01013246.
Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L
2017-05-10
Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.
Olfactory source localization in the open field using one or both nostrils.
Welge-Lussen, A; Looser, G L; Westermann, B; Hummel, T
2014-03-01
This study aims to examine humans ́ abilities to localize odorants within the open field. Young participants were tested on a localization task using a relatively selective olfactory stimulus (2-phenylethyl-alcohol, PEA) and cineol, an odorant with a strong trigeminal component. Participants were blindfolded and had to localize an odorant source at 2 m distance (far-field condition) and a 0.4 m distance (near-field condition) with either two nostrils open or only one open nostril. For the odorant with trigeminal properties, the number of correct trials did not differ when one or both nostrils were used, while more PEA localization trials were correctly completed with both rather than one nostril. In the near-field condition, correct localization was possible in 72-80% of the trials, irrespective of the odorant and the number of nostrils used. Localization accuracy, measured as spatial deviation from the olfactory source, was significantly higher in the near-field compared to the far-field condition, but independent of the odorant being localized. Odorant localization within the open field is difficult, but possible. In contrast to the general view, humans seem to be able to exploit the two-nostril advantage with increasing task difficulty.
From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation.
Howick, Ken; Griffin, Brendan T; Cryan, John F; Schellekens, Harriët
2017-01-27
Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrallymediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin's central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.
From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation
Howick, Ken; Griffin, Brendan T.; Cryan, John F.; Schellekens, Harriët
2017-01-01
Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry. PMID:28134808
ERIC Educational Resources Information Center
Pavesi, Eloisa; Heldt, Scott A.; Fletcher, Max L.
2013-01-01
Experience-induced changes associated with odor learning are mediated by a number of signaling molecules, including nitric oxide (NO), which is predominantly synthesized by neuronal nitric oxide synthase (nNOS) in the brain. In the current study, we investigated the role of nNOS in the acquisition and retention of conditioned olfactory fear. Mice…
A Neutral Odor May Become a Sexual Incentive through Classical Conditioning in Male Rats
ERIC Educational Resources Information Center
Kvitvik, Inger-Line; Berg, Kristine Marit; Agmo, Anders
2010-01-01
A neutral olfactory stimulus was employed as CS in a series of experiments with a sexually receptive female as UCS and the execution of an intromission as the UCR. Each experimental session lasted until the male ejaculated. The time the experimental subject spent in a zone adjacent to the source of the olfactory stimulus during the 10 s of CS…
Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.
2013-01-01
Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263
ERIC Educational Resources Information Center
Holmes, Nathan M.; Westbrook, R. Frederick
2014-01-01
Four experiments used rats to study appetitive-aversive transfer. Rats trained to eat a palatable food in a distinctive context and shocked in that context ate and did not freeze when tested 1 d later but froze and did not eat when tested 14 d later. These results were associatively mediated (Experiments 1 and 2), observed when rats were or were…
ERIC Educational Resources Information Center
Kirschmann, Erin K. Z.; Mauna, Jocelyn C.; Willis, Cory M.; Foster, Rebecca L.; Chipman, Amanda M.; Thiels, Edda
2014-01-01
Conditioned stimuli (CS) can modulate reward-seeking behavior. This modulatory effect can be maladaptive and has been implicated in excessive reward seeking and relapse to drug addiction. We previously demonstrated that exposure to an appetitive CS causes an increase in the activation of extracellular signal-regulated kinase (ERK) and cyclic-AMP…
Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.
Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick
2018-01-01
Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.
Adolescent, but not adult, rats exhibit ethanol-mediated appetitive second-order conditioning
Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.
2008-01-01
Background Adolescent rats are less sensitive to the sedative effects of ethanol than older animals. They also seem to perceive the reinforcing properties of ethanol. However, unlike neonates or infants, ethanol-mediated appetitive behavior has yet to be clearly shown in adolescents. Appetitive ethanol reinforcement was assessed in adolescent (postnatal day 33, P33) and adult rats (P71) through second-order conditioning (SOC). Methods On P32 or P70 animals were intragastrically administered ethanol (0.5 or 2.0 g/kg) paired with intraoral pulses of sucrose (CS1, first-order conditioning phase). CS1 delivery took place either 5-20 (Early pairing) or 30-45 (Late pairing) min following ethanol. CS1 exposure and ethanol administration were separated by 240 min in unpaired controls. On P33 or P71, animals were presented the CS1 (second-order conditioning phase) while in a distinctive chamber (CS2). Then, they were tested for CS2 preference. Results Early and late paired adolescents, but not adults, had greater preference for the CS2 than controls, a result indicative of ontogenetic variation in ethanol-mediated reinforcement. During the CS1 - CS2 associative phase, paired adolescents given 2.0 g/kg ethanol wall-climbed more than controls. Blood and brain ethanol levels associated with the 0.5 and 2.0 g/kg doses at the onset of each conditioning phase did not differ substantially across age, with mean BECs of 38 and 112 mg %. Conclusions These data indicate age-related differences between adolescent and adult rats in terms of sensitivity to ethanol’s motivational effects. Adolescents exhibit high sensitivity for ethanol’s appetitive effects. These animals also showed EtOH-mediated behavioral activation during the second-order conditioning phase. The SOC preparation provides a valuable conditioning model for assessing ethanol’s motivational effects across ontogeny. PMID:18782343
Ayers, Luke W; Asok, Arun; Heyward, Frankie D; Rosen, Jeffrey B
2013-09-15
2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is a synthesized component of red fox anal secretions that reliably elicits defensive behaviors in rats and mice. TMT differs from other predator odors because it is a single molecule, it can be synthesized in large quantities, and the dose for exposure is highly controllable in an experimental setting. TMT has become a popular tool for studying the brain mechanisms that mediate innate fear behavior to olfactory stimuli. However, this view of TMT as a biologically relevant olfactory stimulus has been challenged by suggestions that the odor elicits fear behavior due to its irritating properties, presumably working through a nociceptive mechanism. To address this criticism our lab measured freezing behavior in rats during exposures to 2 odors (TMT and butyric acid) and H2O (no odor control) following either surgical transection of the trigeminal nerves or ablation of the olfactory bulbs. Our findings (Experiment 1) indicate that freezing behavior to TMT requires an intact olfactory system, as indicated by the loss of freezing following olfactory bulb removal. Experiment 2 revealed that rats with trigeminal nerve transection freeze normally to TMT, suggesting the olfactory system mediates this behavior to TMT. A replication of Experiment 1 that included contextual fear conditioning revealed that the decreased freezing behavior was not due to an inability of olfactory bulb ablated rats to freeze (Experiment 3). Taken together, these findings support TMT's role as an ecologically relevant predator odor useful in experiments of unconditioned fear that is mediated via olfaction and not nociception. Copyright © 2013 Elsevier B.V. All rights reserved.
Carcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe
2016-01-01
The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance. PMID:26834589
Gómez, C; Briñón, J G; Colado, M I; Orio, L; Vidal, M; Barbado, M V; Alonso, J R
2006-09-15
The lack of environmental olfactory stimulation produced by sensory deprivation causes significant changes in the deprived olfactory bulb. Olfactory transmission in the main olfactory bulb (MOB) is strongly modulated by centrifugal systems. The present report examines the effects of unilateral deprivation on the noradrenergic and cholinergic centrifugal systems innervating the MOB. The morphology, distribution, and density of positive axons were studied in the MOBs of control and deprived rats, using dopamine-beta-hydroxylase (DBH)-immunohistochemistry and acetylcholinesterase (AChE) histochemistry in serial sections. Catecholamine content was compared among the different groups of MOBs (control, contralateral, and ipsilateral to the deprivation) using high-performance liquid chromatography analysis. Sensory deprivation revealed that the noradrenergic system developed adaptive plastic changes after olfactory deprivation, including important modifications in its fiber density and distribution, while no differences in cholinergic innervation were observed under the same conditions. The noradrenergic system underwent an important alteration in the glomerular layer, in which some glomeruli showed a dense noradrenergic innervation that was not detected in control animals. The DBH-positive glomeruli with the highest noradrenergic fiber density were compared with AChE-stained sections and it was observed that the strongly noradrenergic-innervated glomeruli were always atypical glomeruli (characterized by their strong degree of cholinergic innervation). In addition to the morphological findings, our biochemical data revealed that olfactory deprivation caused a decrease in the content of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the ipsilateral MOB in comparison to the contralateral and control MOBs, together with an increase in noradrenaline levels in both the ipsilateral and contralateral MOBs. Our results show that regulation of the noradrenergic centrifugal system in the MOB depends on environmental olfactory stimulation and that it is highly reactive to sensory deprivation. By contrast, the cholinergic system is fairly stable and does not exhibit clear changes after the loss of sensory inputs.
Rains, Tia M; Leidy, Heather J; Sanoshy, Kristen D; Lawless, Andrea L; Maki, Kevin C
2015-02-10
Dietary protein at breakfast has been shown to enhance satiety and reduce subsequent energy intake more so than carbohydrate or fat. However, relatively few studies have assessed substitution of protein for carbohydrate on indicators of appetite and glucose homeostasis simultaneously. The acute appetitive and metabolic effects of commercially-prepared sausage and egg-based breakfast meals at two different protein levels (30 g and 39 g/serving), vs. a low-protein pancake breakfast (3 g protein) and no breakfast (water), were examined in premenopausal women (N = 35; age 32.5 ± 1.6 yr; BMI 24.8 ± 0.5 kg/m(2)). Test products provided ~280 kcal/serving and similar fat (12-14 g) and fiber contents (0-1 g). Visual Analog Scale ratings for appetite (hunger, fullness, prospective consumption, desire to eat) and repeated blood sampling for plasma glucose and insulin concentrations were assessed throughout each test day. Energy intake was recorded at an ad libitum lunch meal at 240 min. Results showed increased satiety ratings for both the 30 and 39 g protein meals vs. the low-protein and no breakfast conditions (p < 0.001 for all). Postprandial glucose and insulin excursions were lower following the 30 g and 39 g protein conditions vs. the low-protein condition, with smaller responses following the 39 g vs. 30 g protein condition (p < 0.05 for all). Energy intake at lunch was significantly less (p < 0.001) following the 39 g protein meal (692 kcal) vs. the low-protein and no breakfast conditions (789 and 810 kcal, respectively). Total energy intake from the test condition + lunch was higher (p < 0.01) for the 30 and 39 g meals (982 and 983 kcal, respectively) vs. no breakfast (810 kcal), and less than the low protein breakfast (1064 kcal; p < 0.01 vs. 39 g condition only). Results suggest that convenience meals providing 30 or 39 g protein/serving produce greater appetite control, lower postprandial glycemia and insulinemia, and reduced subsequent intake at lunch relative to a low-protein control, or no breakfast. NCT01713114.
The effect of verbal context on olfactory neural responses.
Bensafi, Moustafa; Croy, Ilona; Phillips, Nicola; Rouby, Catherine; Sezille, Caroline; Gerber, Johannes; Small, Dana M; Hummel, Thomas
2014-03-01
Odor names refer usually to "source" object categories. For example, the smell of rose is often described with its source category (flower). However, linguistic studies suggest that odors can also be named with labels referring to categories of "practices". This is the case when rose odor is described with a verbal label referring to its use in fragrance practices ("body lotion," cosmetic for example). It remains unknown whether naming an odor by its practice category influences olfactory neural responses differently than that observed when named with its source category. The aim of this study was to investigate this question. To this end, functional MRI was used in a within-subjects design comparing brain responses to four different odors (peach, chocolate, linden blossom, and rose) under two conditions whereby smells were described either (1) with their source category label (food and flower) or (2) with a practice category label (body lotion). Both types of labels induced activations in secondary olfactory areas (orbitofrontal cortex), whereas only the source label condition induced activation in the cingulate cortex and the insula. In summary, our findings offer a new look at olfactory perception by indicating differential brain responses depending on whether odors are named according to their source or practice category. Copyright © 2012 Wiley Periodicals, Inc.
Ablation of Mouse Adult Neurogenesis Alters Olfactory Bulb Structure and Olfactory Fear Conditioning
Valley, Matthew T.; Mullen, Tanner R.; Schultz, Lucy C.; Sagdullaev, Botir T.; Firestein, Stuart
2009-01-01
Adult neurogenesis replenishes olfactory bulb (OB) interneurons throughout the life of most mammals, yet during this constant flux it remains unclear how the OB maintains a constant structure and function. In the mouse OB, we investigated the dynamics of turnover and its impact on olfactory function by ablating adult neurogenesis with an x-ray lesion to the sub-ventricular zone (SVZ). Regardless of the magnitude of the lesion to the SVZ, we found no change in the survival of young adult born granule cells (GCs) born after the lesion, and a gradual decrease in the population of GCs born before the lesion. After a lesion producing a 96% reduction of incoming adult born GCs to the OB, we found a diminished behavioral fear response to conditioned odor cues but not to audio cues. Interestingly, despite this behavioral deficit and gradual anatomical changes, we found no electrophysiological changes in the GC population assayed in vivo through dendro-dendritic synaptic plasticity and odor-evoked local field potential oscillations. These data indicate that turnover in the granule cell layer is generally decoupled from the rate of adult neurogenesis, and that OB adult neurogenesis plays a role in a wide behavioral system extending beyond the OB. PMID:20582278
Anguah, Katherene O-B; Wonnell, Brittany S; Campbell, Wayne W; McCabe, George P; McCrory, Megan A
2014-01-01
Background: Disrupting the physical structure of pulses by blending them or by using a digestive supplement (α-galactosidase) to reduce intestinal discomfort could potentially negate the previously observed beneficial effects of whole pulses of lowering appetitive and glycemic responses because of more rapid digestion. Objective: We hypothesized that blended lentils, α-galactosidase, or both increase postprandial appetite and blood glucose responses vs. whole lentils. Methods: Men and women [n = 12; means ± SDs body mass index (kg/m2): 23.3 ± 3.1; aged 28 ± 10 y] consumed breakfast meals containing whole (W), blended (B), or no lentils [control (C)], each with 3 α-galactosidase or placebo capsules in a randomized, crossover, double-blind placebo-controlled trial. Between each test day there was a 3- to 5-d washout period. Results: Mixed-model ANOVA showed effects of meal on postprandial appetite and glucose (P = 0.0001–0.031). The B meal resulted in higher postprandial appetite ratings than did the W meal but not the C meal for hunger, desire to eat, and prospective consumption (Δ = 0.4–0.5 points; P = 0.002–0.044). Postprandial glucose concentration was 4.5 mg/dL lower for the B meal than for the C meal (P < 0.0001) but did not differ from the W meal. There were no main effects of α-galactosidase, but there were meal × α-galactosidase interaction effects, with a greater postprandial desire to eat and lower postprandial fullness with the B meal than with the 2 other meals in the placebo condition but not in the α-galactosidase condition. Conclusions: Blending lentils increased appetite (∼6%), but not glycemic response, compared with whole lentils, whereas α-galactosidase did not. Both B and W meals may be consumed (with or without an α-galactosidase supplement) with little impact on appetite, without increasing glycemic response. This trial was registered at clinicaltrials.gov as NCT02110511. PMID:25411033
Eye closure in darkness animates olfactory and gustatory cortical areas.
Wiesmann, M; Kopietz, R; Albrecht, J; Linn, J; Reime, U; Kara, E; Pollatos, O; Sakar, V; Anzinger, A; Fesl, G; Brückmann, H; Kobal, G; Stephan, T
2006-08-01
In two previous fMRI studies, it was reported that eyes-open and eyes-closed conditions in darkness had differential effects on brain activity, and typical patterns of cortical activity were identified. Without external stimulation, ocular motor and attentional systems were activated when the eyes were open. On the contrary, the visual, somatosensory, vestibular, and auditory systems were activated when the eyes were closed. In this study, we investigated whether cortical areas related to the olfactory and gustatory system are also animated by eye closure without any other external stimulation. In a first fMRI experiment (n = 22), we identified cortical areas including the piriform cortex activated by olfactory stimulation. In a second experiment (n = 12) subjects lying in darkness in the MRI scanner alternately opened and closed their eyes. In accordance to previous studies, we found activation clusters bilaterally in visual, somatosensory, vestibular and auditory cortical areas for the contrast eyes-closed vs. eyes-open. In addition, we were able to show that cortical areas related to the olfactory and gustatory system were also animated by eye closure. These results support the hypothesis that there are two different states of mental activity: with the eyes closed, an "interoceptive" state characterized by imagination and multisensory activity and with the eyes open, an "exteroceptive" state characterized by attention and ocular motor activity. Our study also suggests that the chosen baseline condition may have a considerable impact on activation patterns and on the interpretation of brain activation studies. This needs to be considered for studies of the olfactory and gustatory system.
Lehallier, Benoist; Rampin, Olivier; Saint-Albin, Audrey; Jérôme, Nathalie; Ouali, Christian; Maurin, Yves; Bonny, Jean-Marie
2012-01-01
So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages. Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex. By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.
Working Memory Systems in the Rat.
Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D
2016-02-08
A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Odours reduce the magnitude of object substitution masking for matching visual targets in females.
Robinson, Amanda K; Laning, Julia; Reinhard, Judith; Mattingley, Jason B
2016-08-01
Recent evidence suggests that olfactory stimuli can influence early stages of visual processing, but there has been little focus on whether such olfactory-visual interactions convey an advantage in visual object identification. Moreover, despite evidence that some aspects of olfactory perception are superior in females than males, no study to date has examined whether olfactory influences on vision are gender-dependent. We asked whether inhalation of familiar odorants can modulate participants' ability to identify briefly flashed images of matching visual objects under conditions of object substitution masking (OSM). Across two experiments, we had male and female participants (N = 36 in each group) identify masked visual images of odour-related objects (e.g., orange, rose, mint) amongst nonodour-related distracters (e.g., box, watch). In each trial, participants inhaled a single odour that either matched or mismatched the masked, odour-related target. Target detection performance was analysed using a signal detection (d') approach. In females, but not males, matching odours significantly reduced OSM relative to mismatching odours, suggesting that familiar odours can enhance the salience of briefly presented visual objects. We conclude that olfactory cues exert a subtle influence on visual processes by transiently enhancing the salience of matching object representations. The results add to a growing body of literature that points towards consistent gender differences in olfactory perception.
Gómez, C; Briñón, J G; Valero, J; Recio, J S; Murias, A R; Curto, G G; Orio, L; Colado, M I; Alonso, J R
2007-03-01
The dopaminergic system plays important roles in the modulation of olfactory transmission. The present study examines the distribution of dopaminergic cells and the content of dopamine (DA) and its metabolites in control and deprived olfactory bulbs (OB), focusing on the differences between sexes. The content of DA and of its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were measured by HPLC. The morphology and distribution of dopaminergic neurons were studied using tyrosine hydroxylase (TH) immunohistochemistry. Cells were typified with TH-parvalbumin, TH-cholecystokinin or TH-neurocalcin double-immunofluorescence assays. Biochemical analyses revealed sex differences in the content of DA and of its metabolites. In normal conditions, the OBs of male rats had higher concentrations of DA, DOPAC and HVA than the OBs of females. The immunohistochemical data pointed to sex differences in the number of TH-immunopositive cells (higher in male than in female rats). Colocalization analyses revealed that dopaminergic cells constitute a different cell subpopulation from those labelled after parvalbumin, cholecystokinin or neurocalcin immunostaining. Unilateral olfactory deprivation caused dramatic alterations in the dopaminergic system. The DA content and the density of dopaminergic cells decreased, the contents of DA and DOPAC as well as TH immunoreactivity were similar in deprived males and females and, finally, the metabolite/neurotransmitter ratio increased. Our results show that the dopaminergic modulation of olfactory transmission seems to differ between males and females and that it is regulated by peripheral olfactory activity. A possible role of the dopaminergic system in the sexually different olfactory sensitivity, discrimination and memory is discussed.
Plasticity in the olfactory bulb of the maternal mouse is prevented by gestational stress
Belnoue, Laure; Malvaut, Sarah; Ladevèze, Elodie; Abrous, Djoher Nora; Koehl, Muriel
2016-01-01
Maternal stress is associated with an altered mother-infant relationship that endangers offspring development, leading to emotional/behavioral problems. However, little research has investigated the stress-induced alterations of the maternal brain that could underlie such a disruption of mother-infant bonding. Olfactory cues play an extensive role in the coordination of mother-infant interactions, suggesting that motherhood may be associated to enhanced olfactory performances, and that this effect may be abolished by maternal stress. To test this hypothesis, we analyzed the impact of motherhood under normal conditions or after gestational stress on olfactory functions in C57BL/6 J mice. We report that gestational stress alters maternal behavior and prevents both mothers’ ability to discriminate pup odors and motherhood-induced enhancement in odor memory. We investigated adult bulbar neurogenesis as a potential mechanism of the enhanced olfactory function in mothers and found that motherhood was associated with an increased complexity of the dendritic tree of newborn neurons. This motherhood-evoked remodeling was totally prevented by gestational stress. Altogether, our results may thus provide insight into the neural changes that could contribute to altered maternal behavior in stressed mothers. PMID:27886228
Bioelectronic nose and its application to smell visualization.
Ko, Hwi Jin; Park, Tai Hyun
2016-01-01
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.
Classical conditioning through auditory stimuli in Drosophila: methods and models
Menda, Gil; Bar, Haim Y.; Arthur, Ben J.; Rivlin, Patricia K.; Wyttenbach, Robert A.; Strawderman, Robert L.; Hoy, Ronald R.
2011-01-01
SUMMARY The role of sound in Drosophila melanogaster courtship, along with its perception via the antennae, is well established, as is the ability of this fly to learn in classical conditioning protocols. Here, we demonstrate that a neutral acoustic stimulus paired with a sucrose reward can be used to condition the proboscis-extension reflex, part of normal feeding behavior. This appetitive conditioning produces results comparable to those obtained with chemical stimuli in aversive conditioning protocols. We applied a logistic model with general estimating equations to predict the dynamics of learning, which successfully predicts the outcome of training and provides a quantitative estimate of the rate of learning. Use of acoustic stimuli with appetitive conditioning provides both an alternative to models most commonly used in studies of learning and memory in Drosophila and a means of testing hearing in both sexes, independently of courtship responsiveness. PMID:21832129
Adolphus, Katie; Bellissimo, Nick; Lawton, Clare L; Ford, Nikki A; Rains, Tia M; Totosy de Zepetnek, Julia; Dye, Louise
2017-01-01
Breakfast is purported to confer a number of benefits on diet quality, health, appetite regulation, and cognitive performance. However, new evidence has challenged the long-held belief that breakfast is the most important meal of the day. This review aims to provide a comprehensive discussion of the key methodological challenges and considerations in studies assessing the effect of breakfast on cognitive performance and appetite control, along with recommendations for future research. This review focuses on the myriad challenges involved in studying children and adolescents specifically. Key methodological challenges and considerations include study design and location, sampling and sample section, choice of objective cognitive tests, choice of objective and subjective appetite measures, merits of providing a fixed breakfast compared with ad libitum, assessment and definition of habitual breakfast consumption, transparency of treatment condition, difficulty of isolating the direct effects of breakfast consumption, untangling acute and chronic effects, and influence of confounding variables. These methodological challenges have hampered a clear substantiation of the potential positive effects of breakfast on cognition and appetite control and contributed to the debate questioning the notion that breakfast is the most important meal of the day. © 2017 American Society for Nutrition.
Bellissimo, Nick; Ford, Nikki A; Rains, Tia M
2017-01-01
Breakfast is purported to confer a number of benefits on diet quality, health, appetite regulation, and cognitive performance. However, new evidence has challenged the long-held belief that breakfast is the most important meal of the day. This review aims to provide a comprehensive discussion of the key methodological challenges and considerations in studies assessing the effect of breakfast on cognitive performance and appetite control, along with recommendations for future research. This review focuses on the myriad challenges involved in studying children and adolescents specifically. Key methodological challenges and considerations include study design and location, sampling and sample section, choice of objective cognitive tests, choice of objective and subjective appetite measures, merits of providing a fixed breakfast compared with ad libitum, assessment and definition of habitual breakfast consumption, transparency of treatment condition, difficulty of isolating the direct effects of breakfast consumption, untangling acute and chronic effects, and influence of confounding variables. These methodological challenges have hampered a clear substantiation of the potential positive effects of breakfast on cognition and appetite control and contributed to the debate questioning the notion that breakfast is the most important meal of the day. PMID:28096143
Klingerman, Candice M.; Patel, Anand; Hedges, Valerie L.; Meisel, Robert L.; Schneider, Jill E.
2012-01-01
Animals can switch their behavioral priorities from ingestive to sex behaviors to optimize reproductive success in environments where energy fluctuates. We hypothesized that energy availability differentially affects the appetitive (motivation), consummatory (performance), and learned (rewarding) components of behavior. In Experiment 1, appetitive and consummatory aspects of sex behavior were dissociated in the majority of female Syrian hamsters restricted to 75% of their ad libitum food intake for 11 days. Food restriction significantly inhibited vaginal scent marking, decreased the preference for spending time with male hamsters vs. spending time with food, and increased food hoarding with no significant effect on consummatory behaviors such as the incidence of lordosis or food intake. In Experiments 2 and 3, we attempted to use a similar level of food restriction to dissociate sexual appetite from sexual reward. In hamsters, formation of a conditioned place preference (CPP) for copulatory reward is reflected in increased nucleus accumbens (NAc) neural activation, measured as immunocytochemical staining for c-Fos, the protein product of the immediate-early gene, c-fos. In Experiment 2, neural activation increased 1 h after copulation in the NAc core and shell, and did not differ significantly between 10-day food-restricted and ad libitum-fed females in any brain area examined. In Experiment 3, females were either food-restricted or fed ad libitum over 8-30 days of conditioning with copulatory stimuli. Food-restricted females showed significantly fewer appetitive behaviors, but no difference in formation of a CPP compared to females fed ad libitum. Together these data are consistent with the idea that mild levels of food restriction that inhibit appetitive behaviors fail to attenuate consummatory behaviors and the rewarding consequences of copulation. Thus, appetitive sex behaviors are, at least partially, neuroanatomically and behaviorally distinct from both consummatory behaviors and copulatory reward. PMID:21600244
Bailey, Daniel P; Smith, Lindsey R; Chrismas, Bryna C; Taylor, Lee; Stensel, David J; Deighton, Kevin; Douglas, Jessica A; Kerr, Catherine J
2015-06-01
This study investigated the effects of continuous moderate-intensity exercise (MIE) and high-intensity interval exercise (HIIE) in combination with short exposure to hypoxia on appetite and plasma concentrations of acylated ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). Twelve healthy males completed four, 2.6 h trials in a random order: (1) MIE-normoxia, (2) MIE-hypoxia, (3) HIIE-normoxia, and (4) HIIE-hypoxia. Exercise took place in an environmental chamber. During MIE, participants ran for 50 min at 70% of altitude-specific maximal oxygen uptake (V˙O2max) and during HIIE performed 6 × 3 min running at 90% V˙O2max interspersed with 6 × 3 min active recovery at 50% V˙O2max with a 7 min warm-up and cool-down at 70% V˙O2max (50 min total). In hypoxic trials, exercise was performed at a simulated altitude of 2980 m (14.5% O2). Exercise was completed after a standardised breakfast. A second meal standardised to 30% of participants' daily energy requirements was provided 45 min after exercise. Appetite was suppressed more in hypoxia than normoxia during exercise, post-exercise, and for the full 2.6 h trial period (linear mixed modelling, p <0.05). Plasma acylated ghrelin concentrations were lower in hypoxia than normoxia post-exercise and for the full 2.6 h trial period (p <0.05). PYY concentrations were higher in HIIE than MIE under hypoxic conditions during exercise (p = 0.042). No differences in GLP-1 were observed between conditions (p > 0.05). These findings demonstrate that short exposure to hypoxia causes suppressions in appetite and plasma acylated ghrelin concentrations. Furthermore, appetite responses to exercise do not appear to be influenced by exercise modality. Copyright © 2015 Elsevier Ltd. All rights reserved.
A retrospective study of horses investigated for weight loss despite a good appetite (2002-2011).
Metcalfe, L V A; More, S J; Duggan, V; Katz, L M
2013-05-01
Weight loss despite a good appetite is a frequent diagnostic challenge for equine veterinarians; however, there are few objective reports and little descriptive information regarding risk factors and prognostic indicators. To provide a descriptive epidemiological analysis of horses evaluated for weight loss despite a good appetite and evaluate relationships between historical and clinicopathological findings and final outcome (survival vs. nonsurvival) to identify risk factors and prognostic indicators. Medical records of horses referred for investigation of weight loss despite a good appetite were reviewed. Data collated included history, case details, clinical and diagnostic findings, diagnoses and outcome. Univariable associations were evaluated with a Mann-Whitney U test (continuous data), Fisher's exact test (categorical or binary data) or Pearson's rank correlation (continuous data), with P≤0.05 significant. Forty cases met the inclusion criteria. Total protein (P = 0.004) and albumin concentrations (P = 0.0008) at admission were higher in survivors than nonsurvivors, with total protein (r(2) = 0.31; P = 0.002) and albumin (r(2) = 0.36; P = 0.0002) positively correlated with outcome. Hypoproteinaemic (P = 0.008, odds ratio (OR) = 12, 95% confidence interval (CI) = 1.99-72.4) and hypoalbuminaemic (P = 0.0009, OR = 28, 95% CI = 2.94-266.6) animals were at greater odds for nonsurvival. Body condition score was positively correlated with total protein (r(2) = 0.16; P = 0.05) and albumin (r(2) = 0.53; P<0.0001) concentrations at admission and duration of clinical signs (r(2) = 0.19; P = 0.03). The severity of hypoproteinaemia and hypoalbuminaemia were related with nonsurvival. Body condition score and albumin concentration could potentially be used as prognostic indicators for survival. These findings highlight the importance of body condition assessment in conjunction with clinicopathological evaluation in horses with weight loss despite a good appetite. © 2012 EVJ Ltd.
Lorca, T A; Gingerich, T M; Pierson, M D; Flick, G J; Hackney, C R; Sumner, S S
2001-12-01
The objective of this study was to determine the effect of normal microflora and Morganella morganii on histamine formation and olfactory acceptability in raw bluefish under controlled storage conditions. Fillets inoculated with and without M. morganii were stored at 5, 10, and 15 degrees C for 7 days. Microbial isolates from surface swabs were identified and screened for histidine decarboxylase activity. Olfactory acceptance was performed by an informal sensory panel. Histamine levels were quantified using high-performance liquid chromatography and fluorescence detection. While olfactory acceptance decreased, histamine concentration and bacterial counts increased. Storage temperature had a significant effect on histamine levels, bacterial counts, and olfactory acceptance of the bluefish. Inoculation with M. morganii had a positive significant effect on histamine formation for bluefish held at 10 and 15 degrees C (P < 0.0001). The results of the study will serve in supporting U.S. Food and Drug Administration (FDA) regulations regarding guidance and hazard levels of histamine in fresh bluefish.
Kanoski, Scott E; Grill, Harvey J
2017-05-01
Food intake is a complex behavior that can occur or cease to occur for a multitude of reasons. Decisions about where, when, what, and how much to eat are not merely reflexive responses to food-relevant stimuli or to changes in energy status. Rather, feeding behavior is modulated by various contextual factors and by previous experiences. The data reviewed here support the perspective that neurons in multiple hippocampal subregions constitute an important neural substrate linking the external context, the internal context, and mnemonic and cognitive information to control both appetitive and ingestive behavior. Feeding behavior is heavily influenced by hippocampal-dependent mnemonic functions, including episodic meal-related memories and conditional learned associations between food-related stimuli and postingestive consequences. These mnemonic processes are undoubtedly influenced by both external and internal factors relating to food availability, location, and physiological energy status. The afferent and efferent neuroanatomical connectivity of the subregions of the hippocampus is reviewed with regard to the integration of visuospatial and olfactory sensory information (the external context) with endocrine and gastrointestinal interoceptive stimuli (the internal context). Also discussed are recent findings demonstrating that peripherally derived endocrine signals act on receptors in hippocampal neurons to reduce (leptin, glucagon-like peptide-1) or increase (ghrelin) food intake and learned food reward-driven responding, thereby highlighting endocrine and neuropeptidergic signaling in hippocampal neurons as a novel substrate of importance in the higher-order regulation of feeding behavior. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Plavicki, Jessica; Mader, Sara; Pueschel, Eric; Peebles, Patrick; Boekhoff-Falk, Grace
2012-01-01
Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis. PMID:22307614
Abramowitz, Eitan G; Lichtenberg, Pesach
2009-04-01
The authors developed a technique, which they call hypnotherapeutic olfactory conditioning (HOC), for exploiting the ability of scents to arouse potent emotional reactions. During hypnosis, the patient learns to associate pleasant scents with a sense of security and self-control. The patient can subsequently use this newfound association to overcome phobias and prevent panic attacks. This may be especially effective for posttraumatic stress disorder (PTSD) with episodes of anxiety, flashbacks, and dissociation triggered by smells. The authors present 3 cases, patients with needle phobia, panic disorder, and combat-induced PTSD who were successfully treated with the HOC technique.
Aversive aftertaste changes visual food cue reactivity: An fMRI study on cross-modal perception.
Wabnegger, Albert; Schwab, Daniela; Schienle, Anne
2018-04-23
In western cultures, we are surrounded by appealing visual food cues that stimulate our desire to eat, overeating and subsequent weight gain. Cognitive control of appetite (reappraisal) requires substantial attentional resources and effort in order to work. Therefore, we tested an alternative approach for appetite regulation via functional magnetic resonance imaging. Healthy, normal-weight women were presented with images depicting food (high-/low-caloric), once in combination with a bitter aftertaste (a gustatory stop signal) and once with a neutral taste (water), in a retest design. The aversive aftertaste elicited increased activation in the orbitofrontal/dorsolateral prefrontal cortex (OFC, DLPFC), striatum and frontal operculum during the viewing of high-caloric food (vs. low-caloric food). In addition, the increase in DLPFC activity to high-caloric food in the bitter condition was correlated with reported appetite reduction. The findings indicate that this aftertaste procedure was able to reduce the appetitive value of visual food cues. Copyright © 2018 Elsevier B.V. All rights reserved.
Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory
2014-01-01
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093
Habitat-dependent olfactory discrimination in three-spined sticklebacks (Gasterosteus aculeatus).
Hiermes, Meike; Mehlis, Marion; Rick, Ingolf P; Bakker, Theo C M
2015-07-01
The ability to recognize conspecifics is indispensible for differential treatment of particular individuals in social contexts like grouping behavior. The advantages of grouping are multifarious, and there exist numerous additional benefits of joining aggregations of conspecifics. Recognition is based on different signals and transmitted via multiple channels, among others the olfactory channel. The sensory system or the combination of sensory modalities used in recognition processes is highly dependent on the availability and effectiveness of modalities, which are a function of the environmental conditions. Using F1-generations of six three-spined stickleback (Gasterosteus aculeatus) populations from two habitat types (tea-stained and clear-water lakes) from the Outer Hebrides, Scotland, we investigated whether individuals are able to recognize members of their own population solely based on olfactory cues and whether the habitat type an individual originated from had an influence on its recognition abilities. When given the choice (own vs. foreign population) sticklebacks from tea-stained lakes significantly preferred the odor of their own population, whereas fish from clear-water habitats did not show any preference. Moreover, fish from the two habitat types differed significantly in their recognition abilities, indicating that olfactory communication is better developed when visual signaling is disturbed. Thus, the observed odor preferences appear to be the consequence of different selective constraints and adaptations as a result of the differences in environmental conditions that have acted on the parental generations. These adaptations are likely genetically based as the differences are present in the F1-generation that had been reared under identical laboratory conditions.
Differential associative training enhances olfactory acuity in Drosophila melanogaster.
Barth, Jonas; Dipt, Shubham; Pech, Ulrike; Hermann, Moritz; Riemensperger, Thomas; Fiala, André
2014-01-29
Training can improve the ability to discriminate between similar, confusable stimuli, including odors. One possibility of enhancing behaviorally expressed discrimination (i.e., sensory acuity) relies on differential associative learning, during which animals are forced to detect the differences between similar stimuli. Drosophila represents a key model organism for analyzing neuronal mechanisms underlying both odor processing and olfactory learning. However, the ability of flies to enhance fine discrimination between similar odors through differential associative learning has not been analyzed in detail. We performed associative conditioning experiments using chemically similar odorants that we show to evoke overlapping neuronal activity in the fly's antennal lobes and highly correlated activity in mushroom body lobes. We compared the animals' performance in discriminating between these odors after subjecting them to one of two types of training: either absolute conditioning, in which only one odor is reinforced, or differential conditioning, in which one odor is reinforced and a second odor is explicitly not reinforced. First, we show that differential conditioning decreases behavioral generalization of similar odorants in a choice situation. Second, we demonstrate that this learned enhancement in olfactory acuity relies on both conditioned excitation and conditioned inhibition. Third, inhibitory local interneurons in the antennal lobes are shown to be required for behavioral fine discrimination between the two similar odors. Fourth, differential, but not absolute, training causes decorrelation of odor representations in the mushroom body. In conclusion, differential training with similar odors ultimately induces a behaviorally expressed contrast enhancement between the two similar stimuli that facilitates fine discrimination.
The influence of emotion down-regulation on the expectation of sexual reward.
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Cousijn, Janna; Both, Stephanie
2015-05-01
Emotion regulation research has shown successful altering of unwanted aversive emotional reactions. Cognitive strategies can also regulate expectations of reward arising from conditioned stimuli. However, less is known about the efficacy of such strategies with expectations elicited by conditioned appetitive sexual stimuli, and possible sex differences therein. In the present study it was examined whether a cognitive strategy (attentional deployment) could successfully down-regulate sexual arousal elicited by sexual reward-conditioned cues in men and women. A differential conditioning paradigm was applied, with genital vibrostimulation as unconditioned stimulus (US) and sexually relevant pictures as conditional stimuli (CSs). Evidence was found for emotion down-regulation to effect extinction of conditioned sexual responding in men. In women, the emotion down-regulatory strategy resulted in attenuated conditioned approach tendencies towards the CSs. The findings support that top-down modulation may indeed influence conditioned sexual responses. This knowledge may have implications for treating disturbances in sexual appetitive responses. Copyright © 2015. Published by Elsevier Ltd.
Vanadium Exposure Induces Olfactory Dysfunction in an Animal Model of Metal Neurotoxicity
Ngwa, Hilary Afeseh; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G.
2014-01-01
Epidemiological evidence indicates chronic environmental exposure to transition metals may play a role in chronic neurodegenerative conditions such as Parkinson’s disease (PD). Chronic inhalation exposure to welding fumes containing metal mixtures may be associated with development of PD. A significant amount of vanadium is present in welding fumes, as vanadium pentoxide (V2O5), and incorporation of vanadium in the production of high strength steel has become more common. Despite the increased vanadium use in recent years, the neurotoxicological effects of this metal are not well characterized. Recently, we demonstrated that V2O5 induces dopaminergic neurotoxicity via protein kinase C delta (PKCδ)-dependent oxidative signaling mechanisms in dopaminergic neuronal cells. Since anosmia (inability to perceive odors) and non-motor deficits are considered to be early symptoms of neurological diseases, in the present study, we examined the effect of V2O5 on the olfactory bulb in animal models. To mimic the inhalation exposure, we intranasally administered C57 black mice a low-dose of 182 µg of V2O5 three times a week for one month, and behavioral, neurochemical and biochemical studies were performed. Our results revealed a significant decrease in olfactory bulb weights, tyrosine hydroxylase (TH) levels, levels of dopamine (DA) and its metabolite, 3, 4-dihydroxyphenylacetic acid (DOPAC) and increases in astroglia of the glomerular layer of the olfactory bulb in the treatment groups relative to vehicle controls. Neurochemical changes were accompanied by impaired olfaction and locomotion. These findings suggest that nasal exposure to V2O5 adversely affects olfactory bulbs, resulting in neurobehavioral and neurochemical impairments. These results expand our understanding of vanadium neurotoxicity in environmentally-linked neurological conditions. PMID:24362016
Walla, Peter; Hufnagl, Bernd; Lehrner, Johann; Mayer, Dagmar; Lindinger, Gerald; Deecke, Lüder; Lang, Wilfried
2002-11-01
The present study was meant to distinguish between unconscious and conscious olfactory information processing and to investigate the influence of olfaction on word information processing. Magnetic field changes were recorded in healthy young participants during deep encoding of visually presented words whereby some of the words were randomly associated with an odor. All recorded data were then split into two groups. One group consisted of participants who did not consciously perceive the odor during the whole experiment whereas the other group did report continuous conscious odor perception. The magnetic field changes related to the condition 'words without odor' were subtracted from the magnetic field changes related to the condition 'words with odor' for both groups. First, an odor-induced effect occurred between about 200 and 500 ms after stimulus onset which was similar in both groups. It is interpreted to reflect an activity reduction during word encoding related to the additional olfactory stimulation. Second, a later effect occurred between about 600 and 900 ms after stimulus onset which differed between the two groups. This effect was due to higher brain activity related to the additional olfactory stimulation. It was more pronounced in the group consisting of participants who consciously perceived the odor during the whole experiment as compared to the other group. These results are interpreted as evidence that the later effect is related to conscious odor perception whereas the earlier effect reflects unconscious olfactory information processing. Furthermore, our study provides evidence that only the conscious perception of an odor which is simultaneously presented to the visual presentation of a word reduces its chance to be subsequently recognized.
Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H.; Yoshihara, Yoshihiro
2013-01-01
The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory–inhibitory balance crucial for odor information processing. PMID:22745484
Mizuguchi, Rumiko; Naritsuka, Hiromi; Mori, Kensaku; Mao, Chai-An; Klein, William H; Yoshihara, Yoshihiro
2012-06-27
The olfactory bulb (OB) is the first relay station in the brain where odor information from the olfactory epithelium is integrated, processed through its intrinsic neural circuitry, and conveyed to higher olfactory centers. Compared with profound mechanistic insights into olfactory axon wiring from the nose to the OB, little is known about the molecular mechanisms underlying the formation of functional neural circuitry among various types of neurons inside the OB. T-box transcription factor Tbr2 is expressed in various types of glutamatergic excitatory neurons in the brain including the OB projection neurons, mitral and tufted cells. Here we generated conditional knockout mice in which the Tbr2 gene is inactivated specifically in mitral and tufted cells from late embryonic stages. Tbr2 deficiency caused cell-autonomous changes in molecular expression including a compensatory increase of another T-box member, Tbr1, and a concomitant shift of vesicular glutamate transporter (VGluT) subtypes from VGluT1 to VGluT2. Tbr2-deficient mitral and tufted cells also exhibited anatomical abnormalities in their dendritic morphology and projection patterns. Additionally, several non-cell-autonomous phenotypes were observed in parvalbumin-, calbindin-, and 5T4-positive GABAergic interneurons. Furthermore, the number of dendrodendritic reciprocal synapses between mitral/tufted cells and GABAergic interneurons was significantly reduced. Upon stimulation with odorants, larger numbers of mitral and tufted cells were activated in Tbr2 conditional knockout mice. These results suggest that Tbr2 is required for not only the proper differentiation of mitral and tufted cells, but also for the establishment of functional neuronal circuitry in the OB and maintenance of excitatory-inhibitory balance crucial for odor information processing.
Hastrup, J L; Johnson, C A; Hotchkiss, A P; Kraemer, D L
1986-11-01
Fowles (1983), citing evidence from separate studies, suggests that both incentive and response cost paradigms increase heart rate and should be subsumed under Gray's (1975) 'appetitive motivational system'. Shock avoidance and loss of reward (response cost) contingencies, while aversive, appear to evoke this motivational system; consequently both should elicit heart rate increases independent of anxiety. The present investigation compared magnitude of heart rate changes observed under conditions of winning and losing money. Results showed: no differences between incentive and response cost conditions; no effect of state anxiety on heart rate in these conditions, despite an elevation of state anxiety on the task day relative to a subsequent relaxation day assessment; and some evidence for the presence under both such appetitive conditions of cardiovascular hyperresponsivity among offspring of hypertensive parents. The results suggest a need for systematic parametric studies of experimental conditions.
Willbond, S M; Doucet, É
2011-01-01
Gut hormones have been shown to influence energy intake (EI). To our knowledge, no study has investigated the effects of dietary patterns aimed at optimizing fullness on EI, appetite and gut hormones. To determine whether individually timing high-protein preloads would impact EI, appetite, and peptide YY and glucagon-like peptide-1 (GLP-1) levels. Ten men (body mass index = 25.5 ± 2.6 kg/m(2)) participated in a randomized crossover trial. The three conditions consisted of the self-selection of snacks (condition 1), or the consumption of a preload (300 kcal: 40% protein, 40% carbohydrates and 20% fat) at either 15 min (condition 2) or ∼ 50 min (individually set) (condition 3) before lunch and dinner. During each condition, a standardized breakfast was served, whereas lunch and dinner were self-selected from a five-item menu, and eaten ad libitum. Mealtime and daily EI were measured. Appetite, peptide YY and GLP-1 were sampled over 9 h. No differences in daily EI were noted across conditions (1 = 3078 ± 720 kcal; 2 = 2929 ± 264 kcal; 3 = 2998 ± 437 kcal; not significant). For the most part, daily profiles as well as premeal levels of peptide YY and GLP-1 were not different between conditions. Desire to eat, hunger and prospective food consumption were found to be lowest during condition 1 (P < 0.05). According to these results, it would seem that individually timing high-protein preloads does not reduce daily EI in healthy human subjects.
Olfactory Interference during Inhibitory Backward Pairing in Honey Bees
Dacher, Matthieu; Smith, Brian H.
2008-01-01
Background Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees) is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing), the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor) has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity. Methodology/Principal Findings If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds) after the sucrose (backward pairing). We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning) trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference. Conclusions/Significance Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed. PMID:18946512
Gleizes, Marie; Perrier, Simon P.; Fonta, Caroline
2017-01-01
Neuronal activity is characterized by a diversity of oscillatory phenomena that are associated with multiple behavioral and cognitive processes, yet the functional consequences of these oscillations are not fully understood. Our aim was to determine whether and how these different oscillatory activities affect short-term synaptic plasticity (STP), using the olfactory system as a model. In response to odorant stimuli, the olfactory bulb displays a slow breathing rhythm as well as beta and gamma oscillations. Since the firing of olfactory bulb projecting neurons is phase-locked with beta and gamma oscillations, structures downstream from the olfactory bulb should be driven preferentially at these frequencies. We examined STP exhibited by olfactory bulb inputs in slices of adult mouse piriform cortex maintained in vitro in an in vivo-like ACSF (calcium concentration: 1.1 mM). We replaced the presynaptic neuronal firing rate by repeated electrical stimulation (frequency between 3.125 and 100 Hz) applied to the lateral olfactory tract. Our results revealed a considerable enhancement of postsynaptic response amplitude for stimulation frequencies in the beta and gamma range. A phenomenological model of STP fitted to the data suggests that the experimental results can be explained by the interplay between three mechanisms: a short-term facilitation mechanism (time constant ≈160 msec), and two short-term depression mechanisms (recovery time constants <20 msec and ≈140 msec). Increasing calcium concentration (2.2 mM) resulted in an increase in the time constant of facilitation and in a strengthening of the slowest depression mechanism. As a result, response enhancement was reduced and its peak shifted toward the low beta and alpha ranges while depression became predominant in the gamma band. Using environmental conditions corresponding to those that prevail in vivo, our study shows that STP in the lateral olfactory tract to layer Ia synapse allows amplification of olfactory bulb inputs at beta and gamma frequencies. PMID:28820903
Fujiwara, Masaya; Chiba, Atsuhiko
2018-03-01
Sexual behavior is a natural reward that activates mesolimbic dopaminergic system. Microdialysis studies have shown that extracellular level of dopamine (DA) in the nucleus accumbens (NAcc) significantly increases during copulation in male rats. The NAcc DA level is also known to be increased during the presentation of a sexually receptive female before mating. This rise in DA was probably associated with sexual motivation elicited by incentive stimuli from the receptive female. These microdialysis studies, however, did not thoroughly investigated if olfactory stimuli from estrous females could significantly increase the extracellular DA in the NAcc of male rats. The present study was designed to examine systematically the relationship between the expression of preference for the olfactory stimuli from estrous females and the effects of these stimuli on the extracellular DA levels in the NAcc measured by in vivo microdialysis in male Long-Evans (LE) rats. We used two types of olfactory stimuli, either airborne odors (volatile stimuli) or soiled bedding (volatile plus nonvolatile stimuli). The sexually experienced male rats, which experienced six ejaculations, significantly preferred both of these olfactory stimuli from estrous females as opposed to males. Exposure to these female olfactory stimuli gradually increased extracellular DA in the NAcc, which reached significantly higher level above baseline during the period following the removal of the stimuli although not during the 15-min stimulus presentation period. The sexually naïve male rats, on the other hand, showed neither preference for olfactory stimuli from estrous females nor increase in the NAcc DA after exposure to these stimuli. These data suggest that in male LE rats olfactory stimuli from estrous females in and of themselves can be conditional cues that induce both incentive motivation and a significant increase in the NAcc DA probably as a result of being associated with sexual reward through copulatory experience. Copyright © 2017. Published by Elsevier Inc.
Mechanisms of Regulation of Olfactory Transduction and Adaptation in the Olfactory Cilium
Antunes, Gabriela; Sebastião, Ana Maria; Simoes de Souza, Fabio Marques
2014-01-01
Olfactory adaptation is a fundamental process for the functioning of the olfactory system, but the underlying mechanisms regulating its occurrence in intact olfactory sensory neurons (OSNs) are not fully understood. In this work, we have combined stochastic computational modeling and a systematic pharmacological study of different signaling pathways to investigate their impact during short-term adaptation (STA). We used odorant stimulation and electroolfactogram (EOG) recordings of the olfactory epithelium treated with pharmacological blockers to study the molecular mechanisms regulating the occurrence of adaptation in OSNs. EOG responses to paired-pulses of odorants showed that inhibition of phosphodiesterases (PDEs) and phosphatases enhanced the levels of STA in the olfactory epithelium, and this effect was mimicked by blocking vesicle exocytosis and reduced by blocking cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and vesicle endocytosis. These results suggest that G-coupled receptors (GPCRs) cycling is involved with the occurrence of STA. To gain insights on the dynamical aspects of this process, we developed a stochastic computational model. The model consists of the olfactory transduction currents mediated by the cyclic nucleotide gated (CNG) channels and calcium ion (Ca2+)-activated chloride (CAC) channels, and the dynamics of their respective ligands, cAMP and Ca2+, and it simulates the EOG results obtained under different experimental conditions through changes in the amplitude and duration of cAMP and Ca2+ response, two second messengers implicated with STA occurrence. The model reproduced the experimental data for each pharmacological treatment and provided a mechanistic explanation for the action of GPCR cycling in the levels of second messengers modulating the levels of STA. All together, these experimental and theoretical results indicate the existence of a mechanism of regulation of STA by signaling pathways that control GPCR cycling and tune the levels of second messengers in OSNs, and not only by CNG channel desensitization as previously thought. PMID:25144232
Odorant Metabolism Analysis by an Automated Ex Vivo Headspace Gas-Chromatography Method.
Faure, Philippe; Legendre, Arièle; Hanser, Hassan-Ismail; Andriot, Isabelle; Artur, Yves; Guichard, Elisabeth; Coureaud, Gérard; Heydel, Jean-Marie
2016-01-01
In the olfactory epithelium (OE), odorant metabolizing enzymes have the dual function of volatile component detoxification and active clearance of odorants from the perireceptor environment to respectively maintain the integrity of the tissues and the sensitivity of the detection. Although emphasized by recent studies, this enzymatic mechanism is poorly documented in mammals. Thus, olfactory metabolism has been characterized mainly in vitro and for a limited number of odorants. The automated ex vivo headspace gas-chromatography method that was developed here was validated to account for odorant olfactory metabolism. This method easily permits the measurement of the fate of an odorant in the OE environment, taking into account the odorant gaseous state and the cellular structure of the tissue, under experimental conditions close to physiological conditions and with a high reproducibility. We confirmed here our previous results showing that a high olfactory metabolizing activity of the mammary pheromone may be necessary to maintain a high level of sensitivity toward this molecule, which is critical for newborn rabbit survival. More generally, the method that is presented here may permit the screening of odorants metabolism alone or in mixture or studying the impact of aging, pathology, polymorphism or inhibitors on odorant metabolism. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Kredlow, M. Alexandra; Unger, Leslie D.; Otto, Michael W.
2015-01-01
A new understanding of the mechanisms of memory retrieval and reconsolidation holds the potential for improving exposure-based treatments. Basic research indicates that following fear extinction, safety and fear memories may compete, raising the possibility of return of fear. One possible solution is to modify original fear memories through reconsolidation interference, reducing the likelihood of return of fear. Post-retrieval extinction is a behavioral method of reconsolidation interference that has been explored in the context of conditioned fear and appetitive memory paradigms. This meta-analysis examines the magnitude of post-retrieval extinction effects and potential moderators of these effects. A PubMed and PsycINFO search was conducted through June 2014. Sixty-three comparisons examining post-retrieval extinction for preventing the return of fear or appetitive responses in animals or humans met inclusion criteria. Post-retrieval extinction demonstrated a significant, small-to-moderate effect (g = .40) for further reducing the return of fear in humans and a significant, large effect (g = 0.89) for preventing the return of appetitive responses in animals relative to standard extinction. For fear outcomes in animals, effects were small (g = 0.21) and non-significant, but moderated by the number of animals housed together and the duration of time between post-retrieval extinction/extinction and test. Across paradigms, these findings support the efficacy of this pre-clinical strategy for preventing the return of conditioned fear and appetitive responses. Overall, findings to date support the continued translation of post-retrieval extinction research to human and clinical applications, with particular application to the treatment of anxiety, traumatic stress, and substance use disorders. PMID:26689086
Ilango, A; Wetzel, W; Scheich, H; Ohl, F W
2010-03-31
Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Chen, Zhang; Veling, Harm; Dijksterhuis, Ap; Holland, Rob W
2016-12-01
In a series of 6 experiments (5 preregistered), we examined how not responding to appetitive stimuli causes devaluation. To examine this question, a go/no-go task was employed in which appetitive stimuli were consistently associated with cues to respond (go stimuli), or with cues to not respond (either no-go cues or the absence of cues; no-go stimuli). Change in evaluations of no-go stimuli was compared to change in evaluations of both go stimuli and of stimuli not presented in the task (untrained stimuli). Experiments 1 to 3 show that not responding to appetitive stimuli in a go/no-go task causes devaluation of these stimuli regardless of the presence of an explicit no-go cue. Experiments 4a and 4b show that the devaluation effect of appetitive stimuli is contingent on the percentage of no-go trials; devaluation appears when no-go trials are rare, but disappears when no-go trials are frequent. Experiment 5 shows that simply observing the go/no-go task does not lead to devaluation. Experiment 6 shows that not responding to neutral stimuli does not cause devaluation. Together, these results suggest that devaluation of appetitive stimuli by not responding to them is the result of response inhibition. By employing both go stimuli and untrained stimuli as baselines, alternative explanations are ruled out, and apparent inconsistencies in the literature are resolved. These experiments provide new theoretical insight into the relation between not responding and evaluation, and can be applied to design motor response training procedures aimed at changing people's behavior toward appetitive stimuli. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Tahavorgar, Atefeh; Vafa, Mohammadreza; Shidfar, Farzad; Gohari, Mahmoodreza; Heydari, Iraj
2014-10-01
High-protein diets exert beneficial effects on appetite, anthropometry, and body composition; however, the effects of protein preloads depend on the amount, type, and time of consumption. Therefore, we hypothesized that long-term supplemental preloads of whey protein concentrate (WPC) and soy protein isolate (SPI) consumed 30 minutes before the largest meal would decrease appetite, calorie intake (CI), and anthropometry and improve body composition in overweight and obese men in free-living conditions. The subjects included 45 men with a body mass index between 25 and 40 kg/m(2) and who were randomly allocated to either the WPC (n = 26) or SPI (n = 19) groups. For 12 weeks, the subjects consumed 65 g WPC or 60 g SPI that was dissolved in 500 mL water 30 minutes before their ad libitum lunch. Appetite, CI, anthropometry, and body composition were assessed before and after the study and biweekly throughout. After 12 weeks, mean changes between the groups were significant for appetite (P = .032), CI (P = .045), anthropometry (body weight [P = .008], body mass index [P = .006], and waist circumference), and body composition (body fat mass and lean muscle [P < .001]). Relative to baseline, within-group mean changes from WPC were significant for appetite, CI, anthropometry, and body composition (P < .001). In the SPI group, mean changes were significant, relative to baseline, for all variables except lean muscle (P = .37). According to this 12-week study, WPC preloads conducted 30 minutes prior to the ad libitum main meal exerted stronger beneficial effects than did SPI preloads on appetite, CI, anthropometry, and body composition of free-living overweight and obese men. Copyright © 2014 Elsevier Inc. All rights reserved.
Köbach, Anke; Schaal, Susanne; Elbert, Thomas
2015-01-01
Former members of armed groups in eastern DR Congo had typically witnessed, experienced, and perpetrated extreme forms of violence. Enhanced trauma-related symptoms had been shown in prior research. But also lashing out in self-defense is a familiar response to threat defined as reactive aggression. Another potential response is appetitive aggression, in which the perpetration of excessive violence is perceived as pleasurable (combat high). What roles do these forms of aggressive behavior play in modern warfare and how are they related to posttraumatic stress symptoms? To answer the question, we sought to determine predictors for appetitive aggressive and trauma-related mental illness, and investigated the frequency of psychopathological symptoms for high- and low-intensity conflict demobilization settings. To this end, we interviewed 213 former members of (para)military groups in the eastern Democratic Republic of Congo in regard to their combat exposure, posttraumatic stress, appetitive aggression, depression, suicidality, and drug dependence. Random forest regression embedded in a conditional inference framework revealed that perpetrated violent acts are not necessarily stressful. In fact, the experience of violent acts that typically implicated salient cues of hunting (e.g., blood, suffering of the victim, etc.) had the strongest association with an appetite for aggression. Furthermore, the number of lifetime perpetrated violent acts was the most important predictor of appetitive aggression. However, the number of perpetrated violent acts did not significantly affect the posttraumatic stress. Greater intensity of conflict was associated with more severe posttraumatic stress symptoms and depression. Psychotherapeutic interventions that address appetitive aggression in addition to trauma-related mental illness, including drug dependence, therefore seem indispensible for a successful reintegration of those who fought in the current civil wars. PMID:25709586
Harrold, J A; Hughes, G M; O'Shiel, K; Quinn, E; Boyland, E J; Williams, N J; Halford, J C G
2013-03-01
The impact of two commercially available products, a patented herb extract Yerbe Maté, Guarana and Damiana (YGD) formulation and an inulin-based soluble fermentable fibre (SFF), alone or in combination, on appetite and food intake were studied for the first time in a double blind, placebo-controlled, cross-over design. 58 normal to slightly overweight women consumed a fixed-load breakfast followed 4h later by an ad libitum lunch. They were administered YGD (3 tablets) and SFF (5g in 100ml water), YGD and water (100ml), SFF and placebo (3 tablets) or water and placebo 15min before meals. Appetite was assessed using visual analogue scales, and energy intake was measured at lunch. Significant reductions in food intake and energy intake were observed when YGD was present (59.5g, 16.3%; 112.4kcal, 17.3%) and when SFF was present (31.9g, 9.1%; 80kcal, 11.7%) compared with conditions were products were absent. The lowest intake (gram and kcal) was in the YGD+SFF condition. Significant reductions in AUC hunger and AUC desire to eat were also observed after YGD+SFF combination. The data demonstrate that YGD produces a robust short-term effect on caloric intake, an effect augmented by SFF. Caloric compensation for SFF indicates independent effects on appetite regulation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tabbara, Rayane I; Maddux, Jean-Marie N; Beharry, Priscilla F; Iannuzzi, Jessica; Chaudhri, Nadia
2016-04-01
An appetitive Pavlovian conditioned stimulus (CS) can predict an unconditioned stimulus (US) and acquire incentive salience. We tested the hypothesis that US intensity and motivational state of the subject would influence Pavlovian learning and impact the attribution of incentive salience to an appetitive Pavlovian CS. To this end, we examined the effects of sucrose concentration and water deprivation on the acquisition of Pavlovian conditioning and responding for a conditioned reinforcer. Male Long-Evans rats (Harlan; 220-240 g) receiving 3% (3S) or 20% (20S) sucrose were either non-water deprived or given water for 1 hr per day. During Pavlovian conditioning sessions, half the rats in each concentration and deprivation condition received a 10-s CS paired with 0.2 ml of sucrose (16 trials/session; 3.2 ml/session). The remainder received unpaired CS and US presentations. Entries into a port where sucrose was delivered were recorded. Next, responding for conditioned reinforcement was tested, wherein pressing an active lever produced the CS and pressing an inactive lever had no consequences. CS-elicited port entries increased, and latency to the first CS-elicited port entry decreased across sessions in paired groups. Water deprivation augmented these effects, whereas sucrose concentration had no significant impact on behavior. Responding for conditioned reinforcement was observed in the 20S water-deprived, paired group. Thus, water deprivation can facilitate the acquisition of Pavlovian conditioning, potentially by enhancing motivational state, and a high-intensity US and a high motivational state can interact to heighten the attribution of incentive salience to an appetitive Pavlovian CS. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging.
Child, Kevin M; Herrick, Daniel B; Schwob, James E; Holbrook, Eric H; Jang, Woochan
2018-06-22
The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium, maintained under normal condition by a population of stem and progenitor cells - globose basal cells (GBCs) that also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion - the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using OMP-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. As early as 2 months of age the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs, while the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) is also examined. Constant neuronal turnover leaves glomeruli shrunken and impacts the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Thus, the capacity for OE regeneration is tempered when GBCs disappear. SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Consequently, quality of life suffers, and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well-known capacity for recovering from most forms of injury when younger which may contribute to age-related olfactory loss. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA ; TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need. Copyright © 2018 the authors.
No appetite efficacy of a commercial structured lipid emulsion in minimally processed drinks.
Smit, H J; Keenan, E; Kovacs, E M R; Wiseman, S A; Mela, D J; Rogers, P J
2012-09-01
Fabuless (Olibra) is a commercially structured lipid emulsion, claimed to be a food ingredient that is effective for food intake and appetite reduction. The present study assessed its efficacy in a yoghurt-based mini-drink undergoing low or minimal food manufacturing (thermal and shear) processes. Study 1: Twenty-four healthy volunteers (16 female, 8 male; age: 18-47 years; body mass index (BMI): 17-28 kg m(-2)) took part in a randomised, placebo-controlled, double-blind parallel crossover trial. Consumption of a minimally processed 'preload' mini-drink (containing two different doses of Fabuless or a control fat) at 2 h after breakfast was followed by appetite and mood ratings, and food intake measured in ad libitum meals at 3 and 7 h post consumption of the preload. Study 2: As Study 1 (16 female, 8 male; age: 20-54 years; BMI: 21-30 kg m(-2)). A chilled, virtually unprocessed, preload breakfast mini-drink (containing minimally processed Fabuless or a control fat) was provided 5 min after a standardised breakfast, followed by appetite and mood ratings, and food intake measured in ad libitum meals at 4 and 8 h post consumption of the preload. The structured lipid emulsion tested had no significant effect on the primary measures of food intake or appetite. Even when exposed to minimal food-manufacturing conditions, Fabuless showed no efficacy on measures of appetite and food intake.
Successful acquisition of an olfactory discrimination test by Asian elephants, Elephas maximus.
Arvidsson, Josefin; Amundin, Mats; Laska, Matthias
2012-02-01
The present study demonstrates that Asian elephants, Elephas maximus, can successfully be trained to cooperate in an olfactory discrimination test based on a food-rewarded two-alternative instrumental conditioning procedure. The animals learned the basic principle of the test within only 60 trials and readily mastered intramodal stimulus transfer tasks. Further, they were capable of distinguishing between structurally related odor stimuli and remembered the reward value of previously learned odor stimuli after 2, 4, 8, and 16 weeks of recess without any signs of forgetting. The precision and consistency of the elephants' performance in tests of odor discrimination ability and long-term odor memory demonstrate the suitability of this method for assessing olfactory function in this proboscid species. An across-species comparison of several measures of olfactory learning capabilities such as speed of initial task acquisition and ability to master intramodal stimulus transfer tasks shows that Asian elephants are at least as good in their performance as mice, rats, and dogs, and clearly superior to nonhuman primates and fur seals. The results support the notion that Asian elephants may use olfactory cues for social communication and food selection and that the sense of smell may play an important role in the control of their behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
Nasal neuron PET imaging quantifies neuron generation and degeneration
Van de Bittner, Genevieve C.; Riley, Misha M.; Cao, Luxiang; Herrick, Scott P.; Ricq, Emily L.; O’Neill, Michael J.; Ahmed, Zeshan; Murray, Tracey K.; Smith, Jaclyn E.; Wang, Changning; Schroeder, Frederick A.; Albers, Mark W.; Hooker, Jacob M.
2017-01-01
Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics. PMID:28112682
Gender Differences in the Appetite Response to a Satiating Diet
Bédard, Alexandra; Hudon, Anne-Marie; Drapeau, Vicky; Corneau, Louise; Dodin, Sylvie; Lemieux, Simone
2015-01-01
We examined gender differences in appetite sensations when exposed to Mediterranean diet (MedDiet) meals and determined whether there are gender differences in the change in the satiating properties of the MedDiet over time. Thirty-eight men and 32 premenopausal women consumed a 4-week isoenergetic MedDiet under controlled conditions. Visual analogue scales were used to measure perceived appetite sensations before and immediately after each meal consumed over the course of one day (Wednesday) of the first and the fourth week of intervention. Women reported greater decreases for desire to eat, hunger, and appetite score than men in response to the consumption of the MedDiet meals (gender-by-meal interactions, resp., P = 0.04, P = 0.048, and P = 0.03). Fullness and prospective food consumption responses did not significantly differ between men and women. Between the first and the fourth week of intervention, premeal prospective food consumption increased with time in men (P = 0.0007) but not in women (P = 0.84; P for gender-by-time interaction = 0.04). These results indicate gender differences in appetite sensations when exposed to the MedDiet. These results may be useful in order to have a better understanding of gender issues for body weight management. PMID:26442158
Validation of an iPad visual analogue rating system for assessing appetite and satiety.
Brunger, Louise; Smith, Adam; Re, Roberta; Wickham, Martin; Philippides, Andrew; Watten, Phil; Yeomans, Martin R
2015-01-01
The study aimed to validate appetite ratings made on a new electronic device, the Apple iPad Mini, against an existing but now obsolete electronic device (Hewlett Packard iPAQ). Healthy volunteers (9 men and 9 women) rated their appetite before and 0, 30, 60, 90 and 120 minutes after consuming both a low energy (LE: 77 kcal) and high energy (HE: 274 kcal) beverage at breakfast on 2 non-consecutive days in counter-balanced order. Rated hunger, desire to eat and how much participants could consume was significantly lower after HE than LE on both devices, although there was better overall differentiation between HE and LE for ratings on iPad. Rated satiation and fullness, and a composite measure combining all five ratings, was significantly higher after HE than LE on both devices. There was also evidence that differences between conditions were more significant when analysed at each time point than using an overall area under the curve (AUC) measure. Overall, these data confirm that appetite ratings made using iPad are at least as sensitive as those on iPAQ, and offer a new platform for researchers to collect appetite data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ferrer Monti, Roque I.; Giachero, Marcelo; Alfei, Joaquín M.; Bueno, Adrián M.; Cuadra, Gabriel
2016-01-01
It is known that a consolidated memory can return to a labile state and become transiently malleable following reactivation. This instability is followed by a restabilization phase termed reconsolidation. In this work, we explored whether an unrelated appetitive experience (voluntary consumption of diluted sucrose) can affect a contextual fear memory in rats during the reactivation-induced destabilization phase. Our findings show that exposure to an appetitive experience following reactivation can diminish fear retention. This effect persisted after 1 wk. Importantly, it was achieved only under conditions that induced fear memory destabilization. This result could not be explained as a potentiated extinction, because sucrose was unable to promote extinction. Since GluN2B-containing NMDA receptors in the basolateral amygdala complex (BLA) have been implicated in triggering fear memory destabilization, we decided to block pharmacologically these receptors to explore the neurobiological bases of the observed effect. Intra-BLA infusion with ifenprodil, a GluN2B-NMDA antagonist, prevented the fear reduction caused by the appetitive experience. In sum, these results suggest that the expression of a fear memory can be dampened by an unrelated appetitive experience, as long as memory destabilization is achieved during reactivation. Possible mechanisms behind this effect and its clinical implications are discussed. PMID:27531837
Lizarbe, Blanca; Benitez, Ania; Peláez Brioso, Gerardo A.; Sánchez-Montañés, Manuel; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián
2013-01-01
We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable. PMID:23781199
Visual discrimination transfer and modulation by biogenic amines in honeybees.
Vieira, Amanda Rodrigues; Salles, Nayara; Borges, Marco; Mota, Theo
2018-05-10
For more than a century, visual learning and memory have been studied in the honeybee Apis mellifera using operant appetitive conditioning. Although honeybees show impressive visual learning capacities in this well-established protocol, operant training of free-flying animals cannot be combined with invasive protocols for studying the neurobiological basis of visual learning. In view of this, different attempts have been made to develop new classical conditioning protocols for studying visual learning in harnessed honeybees, though learning performance remains considerably poorer than that for free-flying animals. Here, we investigated the ability of honeybees to use visual information acquired during classical conditioning in a new operant context. We performed differential visual conditioning of the proboscis extension reflex (PER) followed by visual orientation tests in a Y-maze. Classical conditioning and Y-maze retention tests were performed using the same pair of perceptually isoluminant chromatic stimuli, to avoid the influence of phototaxis during free-flying orientation. Visual discrimination transfer was clearly observed, with pre-trained honeybees significantly orienting their flights towards the former positive conditioned stimulus (CS+), thus showing that visual memories acquired by honeybees are resistant to context changes between conditioning and the retention test. We combined this visual discrimination approach with selective pharmacological injections to evaluate the effect of dopamine and octopamine in appetitive visual learning. Both octopaminergic and dopaminergic antagonists impaired visual discrimination performance, suggesting that both these biogenic amines modulate appetitive visual learning in honeybees. Our study brings new insight into cognitive and neurobiological mechanisms underlying visual learning in honeybees. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Ishida, Yuko; Ozaki, Mamiko
2012-01-01
In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.
Effect of oxytocin receptor blockade on appetite for sugar is modified by social context.
Olszewski, Pawel K; Allen, Kerry; Levine, Allen S
2015-03-01
Research on oxytocin (OT) has yielded two seemingly unrelated sets of discoveries: OT has prosocial effects, and it elicits termination of feeding, especially of food rich in carbohydrates. Here we investigated whether OT's involvement in food intake is affected by the social context in mice, with particular focus on the role of dominance. We used two approaches: injections and gene expression analysis. We housed two males per cage and determined a dominant one. Then we injected a blood-brain barrier penetrant OT receptor antagonist L-368,899 in either dominant or subordinate animals and gave them 10-min access to a sucrose solution in the apparatus in which social exposure was modified and it ranged from none to unrestricted contact. L-368,899 increased the amount of consumed sugar in dominant mice regardless of whether these animals had access to sucrose in the non-social or social contexts (olfactory-derived or partial social exposure). The antagonist also increased the proportion of time that dominant mice spent drinking the sweet solution in the paradigm in which both mice had to share a single source of sucrose. L-368,899-treated subordinate mice consumed more sucrose solution than saline controls only when the environment in which sugar was presented was devoid of social cues related to the dominant animal. Finally, we investigated whether hypothalamic OT gene expression differs between dominant and subordinate mice consuming sugar and found OT mRNA levels to be higher in dominant mice. We conclude that social context and dominance affect OT's effect on appetite for sucrose. Copyright © 2014 Elsevier Ltd. All rights reserved.
Infection with an acanthocephalan manipulates an amphipod's reaction to a fish predator's odours.
Baldauf, Sebastian A; Thünken, Timo; Frommen, Joachim G; Bakker, Theo C M; Heupel, Oliver; Kullmann, Harald
2007-01-01
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.
Effects of exercise on energy-regulating hormones and appetite in men and women
Hagobian, Todd A.; Sharoff, Carrie G.; Stephens, Brooke R.; Wade, George N.; Silva, J. Enrique; Chipkin, Stuart R.; Braun, Barry
2009-01-01
When previously sedentary men and women follow exercise training programs with ad libitum feeding, men lose body fat, but women do not. The purpose of this study was to evaluate whether this observation could be related to sex differences in the way energy-regulating hormones and appetite perception respond to exercise. Eighteen (9 men, 9 women) overweight/obese individuals completed four bouts of exercise with energy added to the baseline diet to maintain energy balance (BAL), and four bouts without energy added to induce energy deficit (DEF). Concentrations of acylated ghrelin, insulin, and leptin, as well as appetite ratings were measured in response to a meal after a no-exercise baseline and both exercise conditions. In men, acylated ghrelin area under the curve (AUC) was not different between conditions. In women, acylated ghrelin AUC was higher after DEF (+32%) and BAL (+25%), and the change from baseline was higher than men (P < 0.05). In men, insulin AUC was reduced (−17%) after DEF (P < 0.05), but not BAL. In women, insulin AUC was lower (P < 0.05) after DEF (−28%) and BAL (−15%). Leptin concentrations were not different across conditions in either sex. In men, but not in women, appetite was inhibited after BAL relative to DEF. The results indicate that, in women, exercise altered energy-regulating hormones in a direction expected to stimulate energy intake, regardless of energy status. In men, the response to exercise was abolished when energy balance was maintained. The data are consistent with the paradigm that mechanisms to maintain body fat are more effective in women. PMID:19073905
Carlson, Kaitlin S; Whitney, Meredith S; Gadziola, Marie A; Deneris, Evan S; Wesson, Daniel W
2016-01-01
The neurotransmitter serotonin (5-HT) is considered a powerful modulator of sensory system organization and function in a wide range of animals. The olfactory system is innervated by midbrain 5-HT neurons into both its primary and secondary odor-processing stages. Facilitated by this circuitry, 5-HT and its receptors modulate olfactory system function, including odor information input to the olfactory bulb. It is unknown, however, whether the olfactory system requires 5-HT for even its most basic behavioral functions. To address this question, we established a conditional genetic approach to specifically target adult brain tryptophan hydroxylase 2 ( Tph2 ), encoding the rate-limiting enzyme in brain 5-HT synthesis, and nearly eliminate 5-HT from the mouse forebrain. Using this novel model, we investigated the behavior of 5-HT-depleted mice during performance in an olfactory go/no-go task. Surprisingly, the near elimination of 5-HT from the forebrain, including the olfactory bulbs, had no detectable effect on the ability of mice to perform the odor-based task. Tph2 -targeted mice not only were able to learn the task, but also had levels of odor acuity similar to those of control mice when performing coarse odor discrimination. Both groups of mice spent similar amounts of time sampling odors during decision-making. Furthermore, odor reversal learning was identical between 5-HT-depleted and control mice. These results suggest that 5-HT neurotransmission is not necessary for the most essential aspects of olfaction, including odor learning, discrimination, and certain forms of cognitive flexibility.
Schultes, Bernd; Panknin, Ann-Kristin; Hallschmid, Manfred; Jauch-Chara, Kamila; Wilms, Britta; de Courbière, Felix; Lehnert, Hendrik; Schmid, Sebastian M
2016-10-01
Meal-dependent fluctuations of blood glucose and corresponding endocrine signals such as insulin are thought to provide important regulatory input for central nervous processing of hunger and satiety. Since food intake also triggers the release of numerous gastrointestinal signals, the specific contribution of changes in blood glucose to appetite regulation in humans has remained unclear. Here we tested the hypothesis that inducing glycemic fluctuations by intravenous glucose infusion is associated with concurrent changes in hunger, appetite, and satiety. In a single blind, counter-balanced crossover study 15 healthy young men participated in two experimental conditions on two separate days. 500 ml of a solution containing 50 g glucose or 0.9% saline, respectively, was intravenously infused over a 1-h period followed by a 1-h observation period. One hour before start of the respective infusion subjects had a light breakfast (284 kcal). Blood glucose and serum insulin concentrations as well as self-rated feelings of hunger, appetite, satiety, and fullness were assessed during the entire experiment. Glucose as compared to saline infusion markedly increased glucose and insulin concentrations (peak glucose level: 9.7 ± 0.8 vs. 5.3 ± 0.3 mmol/l; t(14) = -5.159, p < 0.001; peak insulin level: 370.4 ± 66.5 vs. 109.6 ± 21.5 pmol/l; t(14) = 4.563, p < 0.001) followed by a sharp decline in glycaemia to a nadir of 3.0 ± 0.2 mmol/l (vs. 3.9 ± 0.1 mmol/l at the corresponding time in the control condition; t(14) = -3.972, p = 0.001) after stopping the infusion. Despite this wide glycemic fluctuation in the glucose infusion condition subjective feelings of hunger, appetite satiety, and fullness did not differ from the control condition throughout the experiment. These findings clearly speak against the notion that fluctuations in glycemia and also insulinemia represent major signals in the short-term regulation of hunger and satiety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of dietary fat source and exercise on odorant-detecting ability of canine athletes.
Altom, Eric K; Davenport, Gary M; Myers, Lawrence J; Cummins, Keith A
2003-10-01
Eighteen male English Pointers (2-4 years of age, 23.94+/-0.54 kg body weight) were allotted to three diet and two physical conditioning groups to evaluate the effect of level and source of dietary fat on the olfactory acuity of canine athletes subjected to treadmill exercise. Diet groups (6 dogs/diet) consisted of commercially prepared diets (minimum of 26% crude protein) containing 12% fat as beef tallow (A), 16% fat provided by equivalent amounts of beef tallow and corn oil (B), or 16% fat provided by equivalent amounts of beef tallow and coconut oil (C). This dietary formulation resulted in approximately 60% of the total fatty acid being saturated for diets A and C, while approximately 72% of the total fatty acids were unsaturated in diet B. One-half of the dogs within each dietary group were subjected to treadmill exercise 3 times per week for 30 min (8.05 km/h, 0% grade) for 12 weeks. All dogs were subjected to a submaximal exercise stress test (8.05 km/h, 10% slope for 60 min) every four weeks beginning at week 0. Olfactory acuity was measured utilizing behavioral olfactometry before and after each physical stress test. Non-conditioned (NON) dogs displayed a greater decrease (P<0.05) in olfactory acuity following exercise, while physically conditioned (EXE) dogs did not show a change from pre-test values. A diet by treatment interaction (P<0.10) was detected over the course of the study. NON dogs fed coconut oil had decreased odorant-detecting capabilities when week 4 values were compared with week 12 values. Feeding a diet that is predominately high in saturated fat may affect the odorant-detecting capabilities of working dogs. Additionally, these data indicate that utilization of a moderate physical conditioning program can assist canine athletes in maintaining olfactory acuity during periods of intense exercise.
Wunsch, Annabel; Philippot, Pierre; Plaghki, Léon
2003-03-01
The present experiment examined the possibility to change the sensory and/or the affective perception of thermal stimuli by an emotional associative learning procedure known to operate without participants' awareness (evaluative conditioning). In a mixed design, an aversive conditioning procedure was compared between subjects to an appetitive conditioning procedure. Both groups were also compared within-subject to a control condition (neutral conditioning). The aversive conditioning was induced by associating non-painful and painful thermal stimuli - delivered on the right forearm - with unpleasant slides. The appetitive conditioning consisted in an association between thermal stimuli - also delivered on the right forearm - and pleasant slides. The control condition consisted in an association between thermal stimuli - delivered for all participants on the left forearm - and neutral slides. The effects of the conditioning procedures on the sensory and affective dimensions were evaluated with visual analogue scale (VAS)-intensity and VAS-unpleasantness. Startle reflex was used as a physiological index of emotional valence disposition. Results confirmed that no participants were aware of the conditioning procedure. After unpleasant slides (aversive conditioning), non-painful and painful thermal stimuli were judged more intense and more unpleasant than when preceded by neutral slides (control condition) or pleasant slides (appetitive conditioning). Despite a strong correlation between the intensity and the unpleasantness scales, effects were weaker for the affective scale and, became statistically non-significant when VAS-intensity was used as covariate. This experiment shows that it is possible to modify the perception of intensity of thermal stimuli by a non-conscious learning procedure based on the transfer of the valence of the unconditioned stimuli (pleasant or unpleasant slides) towards the conditioned stimuli (non-painful and painful thermal stimuli). These results plead for a conception of pain as a conscious output of complex informational processes all of which are not accessible to participants' awareness. Mechanisms by which affective input may influence sensory experience and clinical implications of the present study are discussed.
Fu, Yiling; Vallon, Volker
2014-01-01
An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899
Interference with olfactory memory by visual and verbal tasks.
Annett, J M; Cook, N M; Leslie, J C
1995-06-01
It has been claimed that olfactory memory is distinct from memory in other modalities. This study investigated the effectiveness of visual and verbal tasks in interfering with olfactory memory and included methodological changes from other recent studies. Subjects were allocated to one of four experimental conditions involving interference tasks [no interference task; visual task; verbal task; visual-plus-verbal task] and presented 15 target odours. Either recognition of the odours or free recall of the odour names was tested on one occasion, either within 15 minutes of presentation or one week later. Recognition and recall performance both showed effects of interference of visual and verbal tasks but there was no effect for time of testing. While the results may be accommodated within a dual coding framework, further work is indicated to resolve theoretical issues relating to task complexity.
ERIC Educational Resources Information Center
Rabinak, Christine A.; Orsini, Caitlin A.; Zimmerman, Joshua M.; Maren, Stephen
2009-01-01
The basolateral complex (BLA) and central nucleus (CEA) of the amygdala play critical roles in associative learning, including Pavlovian conditioning. However, the precise role for these structures in Pavlovian conditioning is not clear. Recent work in appetitive conditioning paradigms suggests that the amygdala, particularly the BLA, has an…
Airado, Carmen; Gómez, Carmela; Recio, Javier S; Baltanás, Fernando C; Weruaga, Eduardo; Alonso, José R
2008-12-01
Zinc ions are selectively accumulated in certain neurons (zinc-enriched neurons). The mouse olfactory bulb is richly innervated by zinc-enriched terminals. Here, the plasticity of the zincergic system was studied in the olfactory bulb of the Purkinje Cell Degeneration mutant mouse, an animal with specific postnatal neurodegeneration of the main projection neurons of the olfactory bulb. The analysis focused particularly on the anterior olfactory nucleus since most centrifugal afferents coming to the olfactory bulb arise from this structure. Zinc-enriched terminals in the olfactory bulb and zinc-enriched somata in the anterior olfactory nucleus were visualized after selenite injections. Immunohistochemistry against the vesicular zinc transporter was also carried out to confirm the distribution pattern of zinc-enriched terminals in the olfactory bulb. The mutant mice showed a clear reorganization of zincergic centrifugal projections from the anterior olfactory nucleus to the olfactory bulb. First, all zincergic contralateral neurons projecting to the olfactory bulb were absent in the mutant mice. Second, a significant increase in the number of stained somata was detected in the ipsilateral anterior olfactory nucleus. Since no noticeable changes were observed in the zinc-enriched terminals in the olfactory bulb, it is conceivable that mitral cell loss could induce a reorganization of zinc-enriched projections coming from the anterior olfactory nucleus, probably directed at balancing the global zincergic centrifugal modulation. These results show that zincergic anterior olfactory nucleus cells projecting to the olfactory bulb undergo plastic changes to adapt to the loss of mitral cells in the olfactory bulb of Purkinje Cell Degeneration mutant mice.
Gonzalez, Javier T; Veasey, Rachel C; Rumbold, Penny L S; Stevenson, Emma J
2012-10-01
The present study aimed to investigate the reliability of metabolic and subjective appetite responses under fasted conditions and following consumption of a cereal-based breakfast. Twelve healthy, physically active males completed two postabsorption (PA) and two postprandial (PP) trials in a randomised order. In PP trials a cereal based breakfast providing 1859 kJ of energy was consumed. Expired gas samples were used to estimate energy expenditure and fat oxidation and 100mm visual analogue scales were used to determine appetite sensations at baseline and every 30 min for 120 min. Reliability was assessed using limits of agreement, coefficient of variation (CV), intraclass coefficient of correlation and 95% confidence limits of typical error. The limits of agreement and typical error were 292.0 and 105.5 kJ for total energy expenditure, 9.3 and 3.4 g for total fat oxidation and 22.9 and 8.3mm for time-averaged AUC for hunger sensations, respectively over the 120 min period in the PP trial. The reliability of energy expenditure and appetite in the 2h response to a cereal-based breakfast would suggest that an intervention requires a 211 kJ and 16.6mm difference in total postprandial energy expenditure and time-averaged hunger AUC to be meaningful, fat oxidation would require a 6.7 g difference which may not be sensitive to most meal manipulations. Copyright © 2012 Elsevier Ltd. All rights reserved.
Graham, M Dean; Pfaus, James G
2013-10-02
Ascorbic acid (AA), also known as Vitamin C, enhances dopamine (DA) transmission in mesolimbic and nigrostriatal terminals and augments DA-mediated behaviors. It is not yet known whether AA has a similar influence in other DA terminals, in particular terminals of the incertohypothalamic system that modulate the function of the medial preoptic area (mPOA). In female rats, DA in the mPOA plays a critical role in the generation of appetitive sexual responses, notably solicitations, hops, and darts, and we have shown previously that the role of DA in this region on female sexual behavior changes depending on the hormonal profile of the female. Since AA has often been used as a vehicle control in the examination of rat sexual behavior, the present study examined the effect of infusions of AA to the mPOA of sexual experienced ovariectomized rats under two hormonal conditions: partially-primed with estradiol benzoate (EB) alone or fully-primed with EB and progesterone. Relative to saline baselines, females under both hormonal conditions displayed a significant increase in appetitive sexual behaviors following infusions of AA. No difference in lordosis behavior was observed following AA infusions relative to saline baselines. We suggest that the mechanism by which AA infusions to the mPOA increase appetitive sexual behaviors in female rats may be through dose-dependent DA receptor interactions, possibly through both presynaptic release mechanisms and postsynaptic DA D1-related messenger systems. © 2013.
Kalyanasundar, B; Solorio, Jessica; Perez, Claudia I; Hoyo-Vadillo, Carlos; Simon, Sidney A; Gutierrez, Ranier
2016-05-01
Obesity is a public health problem caused by excessive consumption of high caloric diets and/or lack of physical activity. Although treatments for obesity include low caloric diets and exercise programs, these activities frequently are supplemented with appetite suppressants. For the short-term treatment of weight loss, diethylpropion (DEP) is a commonly used appetite suppressant. However, little is known with regard to how to improve its weight loss efficacy. We therefore evaluated, in rats, two administration protocols where the animals received daily injections of DEP. First, when these nocturnal animals were normally active (at night) and when they were normally inactive (daytime), and second, with or without high fat dietary restriction (HFDR). We observed that DEP induced a greater weight-loss administered when the animals were in their active phase than in their inactive phase. Moreover, DEP's administration during the inactive phase (and to a lesser degree in the active phase) promotes the consumption of food during normal sleeping time. In addition, we found that DEP-induced weight loss under ad libitum access to a HF diet, but its efficacy significantly improved under conditions of HFDR. In summary, the efficacy of DEP, and presumably other like appetite suppressants, is enhanced by carefully controlling the time it is administered and under dietary restriction of HF diets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Figueres-Oñate, Maria; López-Mascaraque, Laura
2016-01-01
Neurons are generated during embryonic development and in adulthood, although adult neurogenesis is restricted to two main brain regions, the hippocampus and olfactory bulb. The subventricular zone (SVZ) of the lateral ventricles generates neural stem/progenitor cells that continually provide the olfactory bulb (OB) with new granule or periglomerular neurons, cells that arrive from the SVZ via the rostral migratory stream. The continued neurogenesis and the adequate integration of these newly generated interneurons is essential to maintain homeostasis in the olfactory bulb, where the differentiation of these cells into specific neural cell types is strongly influenced by temporal cues. Therefore, identifying the critical features that control the generation of adult OB interneurons at either pre- or post-natal stages is important to understand the dynamic contribution of neural stem cells. Here, we used in utero and neonatal SVZ electroporation along with a transposase-mediated stable integration plasmid, in order to track interneurons and glial lineages in the OB. These plasmids are valuable tools to study the development of OB interneurons from embryonic and post-natal SVZ progenitors. Accordingly, we examined the location and identity of the adult progeny of embryonic and post-natally transfected progenitors by examining neurochemical markers in the adult OB. These data reveal the different cell types in the olfactory bulb that are generated in function of age and different electroporation conditions. PMID:27242400
Gengatharan, Archana; Bammann, Rodrigo R.; Saghatelyan, Armen
2016-01-01
In mammals, new neurons in the adult olfactory bulb originate from a pool of neural stem cells in the subventricular zone of the lateral ventricles. Adult-born cells play an important role in odor information processing by adjusting the neuronal network to changing environmental conditions. Olfactory bulb neurogenesis is supported by several non-neuronal cells. In this review, we focus on the role of astroglial cells in the generation, migration, integration, and survival of new neurons in the adult forebrain. In the subventricular zone, neural stem cells with astrocytic properties display regional and temporal specificity when generating different neuronal subtypes. Non-neurogenic astrocytes contribute to the establishment and maintenance of the neurogenic niche. Neuroblast chains migrate through the rostral migratory stream ensheathed by astrocytic processes. Astrocytes play an important regulatory role in neuroblast migration and also assist in the development of a vasculature scaffold in the migratory stream that is essential for neuroblast migration in the postnatal brain. In the olfactory bulb, astrocytes help to modulate the network through a complex release of cytokines, regulate blood flow, and provide metabolic support, which may promote the integration and survival of new neurons. Astrocytes thus play a pivotal role in various processes of adult olfactory bulb neurogenesis, and it is likely that many other functions of these glial cells will emerge in the near future. PMID:27092050
Refining the dual olfactory hypothesis: pheromone reward and odour experience.
Martínez-García, Fernando; Martínez-Ricós, Joana; Agustín-Pavón, Carmen; Martínez-Hernández, Jose; Novejarque, Amparo; Lanuza, Enrique
2009-06-25
In rodents, sexual advertisement and gender recognition are mostly (if not exclusively) mediated by chemosignals. Specifically, there is ample evidence indicating that female mice are 'innately' attracted by male sexual pheromones that have critical non-volatile components and are detected by the vomeronasal organ. These pheromones can only get access to the vomeronasal organ by active pumping mechanisms that require close contact with the source of the stimulus (e.g. urine marks) during chemoinvestigation. We have hypothesised that male sexual pheromones are rewarding to female mice. Indeed, male-soiled bedding can be used as a reinforcer to induce conditioned place preference, provided contact with the bedding is allowed. The neural mechanisms of pheromone reward seem, however, different from those employed by other natural reinforcers, such as the sweetness or postingestive effects of sucrose. In contrast to vomeronasal-detected male sexual pheromones, male-derived olfactory stimuli (volatiles) are not intrinsically attractive to female mice. However, after repeated exposure to male-soiled bedding, intact female mice develop an acquired preference for male odours. On the contrary, in females whose accessory olfactory bulbs have been lesioned, exposure to male-soiled bedding induces aversion to male odorants. These considerations, together with data on the different properties of olfactory and vomeronasal receptors, lead us to make a proposal for the complementary roles that the olfactory and vomeronasal systems play in intersexual attraction and in other forms of intra- or inter-species communication.
Impact of olfactory and auditory priming on the attraction to foods with high energy density.
Chambaron, S; Chisin, Q; Chabanet, C; Issanchou, S; Brand, G
2015-12-01
\\]\\Recent research suggests that non-attentively perceived stimuli may significantly influence consumers' food choices. The main objective of the present study was to determine whether an olfactory prime (a sweet-fatty odour) and a semantic auditory prime (a nutritional prevention message), both presented incidentally, either alone or in combination can influence subsequent food choices. The experiment included 147 participants who were assigned to four different conditions: a control condition, a scented condition, an auditory condition or an auditory-scented condition. All participants remained in the waiting room during15 min while they performed a 'lure' task. For the scented condition, the participants were unobtrusively exposed to a 'pain au chocolat' odour. Those in the auditory condition were exposed to an audiotape including radio podcasts and a nutritional message. A third group of participants was exposed to both olfactory and auditory stimuli simultaneously. In the control condition, no stimulation was given. Following this waiting period, all participants moved into a non-odorised test room where they were asked to choose, from dishes served buffet-style, the starter, main course and dessert that they would actually eat for lunch. The results showed that the participants primed with the odour of 'pain au chocolat' tended to choose more desserts with high energy density (i.e., a waffle) than the participants in the control condition (p = 0.06). Unexpectedly, the participants primed with the nutritional auditory message chose to consume more desserts with high energy density than the participants in the control condition (p = 0.03). In the last condition (odour and nutritional message), they chose to consume more desserts with high energy density than the participants in the control condition (p = 0.01), and the data reveal an additive effect of the two primes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Behavioural memory reconsolidation of food and fear memories
Flavell, Charlotte R.; Barber, David J.; Lee, Jonathan L. C.
2012-01-01
The reactivation of a memory through retrieval can render it subject to disruption or modification through the process of memory reconsolidation. In both humans and rodents, briefly reactivating a fear memory results in effective erasure by subsequent extinction training. Here we show that a similar strategy is equally effective in the disruption of appetitive pavlovian cue–food memories. However, systemic administration of the NMDA receptor partial agonist D-cycloserine under the same behavioural conditions did not potentiate appetitive memory extinction, suggesting that reactivation does not enhance subsequent extinction learning. To confirm that reactivation followed by extinction reflects a behavioural analog of memory reconsolidation, we show that prevention of contextual fear memory reactivation by the LVGCC blocker nimodipine interferes with the amnestic outcome. Therefore, the reconsolidation process can be manipulated behaviourally to disrupt both aversive and appetitive memories. PMID:22009036
Urlacher, Elodie; Soustelle, Laurent; Parmentier, Marie-Laure; Verlinden, Heleen; Gherardi, Marie-Julie; Fourmy, Daniel; Mercer, Alison R.
2016-01-01
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling. PMID:26741132
Association of Amine-Receptor DNA Sequence Variants with Associative Learning in the Honeybee.
Lagisz, Malgorzata; Mercer, Alison R; de Mouzon, Charlotte; Santos, Luana L S; Nakagawa, Shinichi
2016-03-01
Octopamine- and dopamine-based neuromodulatory systems play a critical role in learning and learning-related behaviour in insects. To further our understanding of these systems and resulting phenotypes, we quantified DNA sequence variations at six loci coding octopamine-and dopamine-receptors and their association with aversive and appetitive learning traits in a population of honeybees. We identified 79 polymorphic sequence markers (mostly SNPs and a few insertions/deletions) located within or close to six candidate genes. Intriguingly, we found that levels of sequence variation in the protein-coding regions studied were low, indicating that sequence variation in the coding regions of receptor genes critical to learning and memory is strongly selected against. Non-coding and upstream regions of the same genes, however, were less conserved and sequence variations in these regions were weakly associated with between-individual differences in learning-related traits. While these associations do not directly imply a specific molecular mechanism, they suggest that the cross-talk between dopamine and octopamine signalling pathways may influence olfactory learning and memory in the honeybee.
Frozen with fear: Conditioned suppression in a virtual reality model of human anxiety.
Allcoat, Devon; Greville, W James; Newton, Philip M; Dymond, Simon
2015-09-01
Freezing-like topographies of behavior are elicited in conditioned suppression tasks whereby appetitive behavior is reduced by presentations of an aversively conditioned threat cue relative to a safety cue. Conditioned suppression of operant behavior by a Pavlovian threat cue is an established laboratory model of quantifying the response impairment seen in anxiety disorders. Little is known however about how different response topographies indicative of conditioned suppression are elicited in humans. Here, we refined a novel virtual reality (VR) paradigm in which presentations of a threat cue of unpredictable duration occurred while participants performed an operant response of shooting and destroying boxes searching for hidden gold. The VR paradigm detected significant suppression of response topographies (shots, hits and breaks) for a Pavlovian threat cue relative to a safety cue and novel cue presentations. Implications of the present findings for translational research on appetitive and aversive conflict in anxiety disorders are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Hindbrain serotonin and the rapid induction of sodium appetite
NASA Technical Reports Server (NTRS)
Menani, J. V.; De Luca, L. A. Jr; Thunhorst, R. L.; Johnson, A. K.
2000-01-01
Both systemically administered furosemide and isoproterenol produce water intake (i.e., thirst). Curiously, however, in light of the endocrine and hemodynamic effects produced by these treatments, they are remarkably ineffective in eliciting intake of hypertonic saline solutions (i.e., operationally defined as sodium appetite). Recent work indicates that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nuclei (LPBN) markedly enhance a preexisting sodium appetite. The present studies establish that a de novo sodium appetite can be induced with LPBN-methysergide treatment under experimental conditions in which only water is typically ingested. The effects of bilateral LPBN injections of methysergide were studied on the intake of water and 0. 3 M NaCl following acute (beginning 1 h after treatment) diuretic (furosemide)-induced sodium and water depletion and following subcutaneous isoproterenol treatment. With vehicle injected into the LPBN, furosemide treatment and isoproterenol injection both caused water drinking but essentially no intake of hypertonic saline. In contrast, bilateral treatment of the LPBN with methysergide induced the intake of 0.3 M NaCl after subcutaneous furosemide and isoproterenol. Water intake induced by subcutaneous furosemide or isoproterenol was not changed by LPBN-methysergide injections. The results indicate that blockade of LPBN-serotonin receptors produces a marked intake of hypertonic NaCl (i.e., a de novo sodium appetite) after furosemide treatment as well as subcutaneous isoproterenol.
ERIC Educational Resources Information Center
Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion
2015-01-01
Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…
Enwere, Emeka; Shingo, Tetsuro; Gregg, Christopher; Fujikawa, Hirokazu; Ohta, Shigeki; Weiss, Samuel
2004-09-22
Previous studies demonstrating olfactory interneuron involvement in olfactory discrimination and decreased proliferation in the forebrain subventricular zone with age led us to ask whether olfactory neurogenesis and, consequently, olfactory discrimination were impaired in aged mice. Pulse labeling showed that aged mice (24 months of age) had fewer new interneurons in the olfactory bulb than did young adult (2 months of age) mice. However, the aged mice had more olfactory interneurons in total than their younger counterparts. Aged mice exhibited no differences from young adult mice in their ability to discriminate between two discrete odors but were significantly poorer at performing discriminations between similar odors (fine olfactory discrimination). Leukemia inhibitory factor receptor heterozygote mice, which have less neurogenesis and fewer olfactory interneurons than their wild-type counterparts, performed more poorly at fine olfactory discrimination than the wild types, suggesting that olfactory neurogenesis, rather than the total number of interneurons, was responsible for fine olfactory discrimination. Immunohistochemistry and Western blot analyses revealed a selective reduction in expression levels of epidermal growth factor (EGF) receptor (EGFR) signaling elements in the aged forebrain subventricular zone. Waved-1 mutant mice, which express reduced quantities of transforming growth factor-alpha, the predominant EGFR ligand in adulthood, phenocopy aged mice in olfactory neurogenesis and performance on fine olfactory discrimination tasks. These results suggest that the impairment in fine olfactory discrimination with age may result from a reduction in EGF-dependent olfactory neurogenesis.
Smith, Timothy D; Bhatnagar, Kunwar P; Tuladhar, Praphul; Burrows, Annie M
2004-11-01
The terms "microsmatic" and "macrosmatic" are used to compare species with greater versus lesser olfactory capabilities, such as carnivores compared to certain primates. These categories have been morphologically defined based on the size of olfactory bulb and surface area of olfactory epithelium in the nasal fossa. The present study examines assumptions regarding the morphological relationship of bony elements to the olfactory mucosa, the utility of olfactory epithelial surface area as a comparative measurement, and the utility of the microsmatic concept. We examined the distribution of olfactory neuroepithelium (OE) across the anteroposterior length of the nasal fossa (from the first completely enclosed cross-section of the nasal fossa to the choanae) in the microsmatic marmoset (Callithrix jacchus) compared to four species of nocturnal strepsirrhines (Otolemur crassicaudatus, O. garnetti, Microcebus murinus, and Cheirogaleus medius). Adults of all species were examined and infant C. jacchus, O. crassicaudatus, M. murinus, and C. medius were also examined. All specimens were serially sectioned in the coronal plane and prepared for light microscopic study. Distribution of OE across all the turbinals, nasal septal surfaces, and accessory spaces of the nasal chamber was recorded for each specimen. The right nasal fossae of one adult C. jacchus and one neonatal M. murinus were also three-dimensionally reconstructed using Scion Image software to reveal OE distribution. Findings showed OE to be distributed relatively more anteriorly in adult C. jacchus compared to strepsirrhines. It was also distributed more anteriorly along the nasal septal walls and recesses in neonates than adults. Our findings also showed that OE surface area was not a reliable proxy for receptor neuron numbers due to differing OE thickness among species. Such results indicate that nasal cavity morphology must be carefully reconsidered regarding traditional functional roles (olfaction versus air conditioning) assigned to various nasal cavity structures. At present, the microsmatic concept itself lacks a basis in nasal chamber morphology, since OE may have varying patterns of distribution among different primates. (c) 2004 Wiley-Liss, Inc.
Fogarty, Dillon T; Elmore, R Dwayne; Fuhlendorf, Samuel D; Loss, Scott R
2017-08-01
Habitat selection by animals is influenced by and mitigates the effects of predation and environmental extremes. For birds, nest site selection is crucial to offspring production because nests are exposed to extreme weather and predation pressure. Predators that forage using olfaction often dominate nest predator communities; therefore, factors that influence olfactory detection (e.g., airflow and weather variables, including turbulence and moisture) should influence nest site selection and survival. However, few studies have assessed the importance of olfactory cover for habitat selection and survival. We assessed whether ground-nesting birds select nest sites based on visual and/or olfactory cover. Additionally, we assessed the importance of visual cover and airflow and weather variables associated with olfactory cover in influencing nest survival. In managed grasslands in Oklahoma, USA, we monitored nests of Northern Bobwhite ( Colinus virginianus ), Eastern Meadowlark ( Sturnella magna ), and Grasshopper Sparrow ( Ammodramus savannarum ) during 2015 and 2016. To assess nest site selection, we compared cover variables between nests and random points. To assess factors influencing nest survival, we used visual cover and olfactory-related measurements (i.e., airflow and weather variables) to model daily nest survival. For nest site selection, nest sites had greater overhead visual cover than random points, but no other significant differences were found. Weather variables hypothesized to influence olfactory detection, specifically precipitation and relative humidity, were the best predictors of and were positively related to daily nest survival. Selection for overhead cover likely contributed to mitigation of thermal extremes and possibly reduced detectability of nests. For daily nest survival, we hypothesize that major nest predators focused on prey other than the monitored species' nests during high moisture conditions, thus increasing nest survival on these days. Our study highlights how mechanistic approaches to studying cover informs which dimensions are perceived and selected by animals and which dimensions confer fitness-related benefits.
Tam, Shu K.E.; Hasan, Sibah; Brown, Laurence A.; Jagannath, Aarti; Hankins, Mark W.; Foster, Russell G.; Vyazovskiy, Vladyslav V.
2017-01-01
Circadian rhythms optimize physiology and behavior to the varying demands of the 24 h day. The master circadian clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and it regulates circadian oscillators in tissues throughout the body to prevent internal desynchrony. Here, we demonstrate for the first time that, under standard 12 h:12 h light/dark (LD) cycles, object, visuospatial, and olfactory recognition performance in C57BL/6J mice is consistently better at midday relative to midnight. However, under repeated exposure to constant light (rLL), recognition performance becomes desynchronized, with object and visuospatial performance better at subjective midday and olfactory performance better at subjective midnight. This desynchrony in behavioral performance is mirrored by changes in expression of the canonical clock genes Period1 and Period2 (Per1 and Per2), as well as the immediate-early gene Fos in the SCN, dorsal hippocampus, and olfactory bulb. Under rLL, rhythmic Per1 and Fos expression is attenuated in the SCN. In contrast, hippocampal gene expression remains rhythmic, mirroring object and visuospatial performance. Strikingly, Per1 and Fos expression in the olfactory bulb is reversed, mirroring the inverted olfactory performance. Temporal desynchrony among these regions does not result in arrhythmicity because core body temperature and exploratory activity rhythms persist under rLL. Our data provide the first demonstration that abnormal lighting conditions can give rise to temporal desynchrony between autonomous circadian oscillators in different regions, with different consequences for performance across different sensory domains. Such a dispersed network of dissociable circadian oscillators may provide greater flexibility when faced with conflicting environmental signals. SIGNIFICANCE STATEMENT A master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus regulates physiology and behavior across the 24 h day by synchronizing peripheral clocks throughout the brain and body. Without the SCN, these peripheral clocks rapidly become desynchronized. Here, we provide a unique demonstration that, under lighting conditions in which the central clock in the SCN is dampened, peripheral oscillators in the hippocampus and olfactory bulb become desynchronized, along with the behavioral processes mediated by these clocks. Multiple clocks that adopt different phase relationships may enable processes occurring in different brain regions to be optimized to specific phases of the 24 h day. Moreover, such a dispersed network of dissociable circadian clocks may provide greater flexibility when faced with conflicting environmental signals (e.g., seasonal changes in photoperiod). PMID:28264977
Immunocytochemistry of the olfactory marker protein.
Monti-Graziadei, G A; Margolis, F L; Harding, J W; Graziadei, P P
1977-12-01
The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.
Perceptual learning transfer in an appetitive Pavlovian task.
Artigas, Antonio A; Prados, Jose
2017-06-01
In two experiments, rats were given intermixed or blocked preexposure to two similar compound stimuli, AX and BX. Following preexposure, conditioning trials took place in which AX (Experiment 1) or a novel compound stimulus NX (Experiment 2) was paired with a food-unconditioned stimulus in an appetitive Pavlovian preparation. Animals that were given alternated preexposure showed lower generalization from AX to BX (Experiment 1) and from NX to a new compound, ZX (Experiment 2), than animals that were given blocked preexposure, a perceptual learning and a perceptual learning transfer effect, respectively.
Olfaction and the homing ability of pigeons raised in a tropical area in Brazil.
Benvenuti, Silvano; Ranvaud, Ronald
2004-12-01
Several workers have investigated the effect of anosmia on pigeon navigation in different geographical locations because it has been suggested that homing behavior is based on different cues, such as olfactory cues, the Earth's magnetic field or infrasound, and that in the absence of one cue another would be used. In this situation, no cue is universally indispensable, including olfactory ones. In order to extend such observations to a novel biome, we observed the behaviour of 192 young inexperienced birds raised in southeastern Brazil, a tropical area where olfactory tests had never been run before. The birds were released from eight symmetrically distributed sites 17 to 44 km from the loft. Half of these birds (experimentals) had been made temporarily anosmic by washing their olfactory mucosae with 4% solution of ZnSO4 the day before release, while controls were treated with Ringer solution. The results of release tests showed that anosmia totally impaired the navigational performance of experimental birds, which were unable to home from sites at relatively short distances from home (34-44 km) and whose pooled initial bearings produced a (negative) homeward component not significantly different from 0. Homing performance of controls was significantly better, and their pooled vanishing bearings had a significant homeward component, in spite of much scatter in individual releases. We conclude that pigeon homing in the study area depends on olfactory information, even though local environmental conditions in the interior of the State of Sao Paulo, as in several other parts of the world, do not appear to be as favorable as Italy for the development of efficient olfactory navigation.
Olfactory Sensitivity for Six Predator Odorants in CD-1 Mice, Human Subjects, and Spider Monkeys
Sarrafchi, Amir; Odhammer, Anna M. E.; Hernandez Salazar, Laura Teresa; Laska, Matthias
2013-01-01
Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species’ olfactory sensitivity. Analysis of odor structure–activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity. PMID:24278296
Persistent anosmia and olfactory bulb atrophy after mulga (Pseudechis australis) snakebite.
Sethi, Moksh; Cook, Mark; Winkel, Kenneth D
2016-07-01
Loss of sense of smell is an intriguing yet under-recognised complication of snakebite. We report olfactory function testing and neuroimaging of the olfactory bulbs in a 30-year-old man with anosmia persisting for more than 1year after mulga (Pseudechis australis) snakebite. This problem was first noted by the patient 1week after being definitely bitten in Queensland, Australia. He had then presented to a regional hospital where his envenomation was considered mild enough to not warrant antivenom administration. A week later the patient noted a reduction of sense of smell, which progressed to complete inability to smell over the ensuing weeks. On clinical review the patient's neurologic and rhinologic examination did not reveal any structural cause for anosmia. Formal olfactory testing was performed using ''sniffin' sticks" and the patient scored 17 on this test, indicating severe hyposmia (functional anosmia <16.5, normal score >30.3 for men aged 16-35years). MRI of the brain showed no abnormalities. The olfactory bulb volumes were then measured on a volumetric T2-weighted MRI that demonstrated significantly reduced volume of both bulbs, with the right 34.86mm(3) and left 36.25mm(3) (normal volume ⩾58mm(3), 10th centile). The current patient represents a rare instance of a definite, untreated, elapid (mulga snake) envenomation with an intriguing disjunction between the mildness of the systemic features and the severity of the olfactory lesion. It is also unclear if early antivenom use attenuates this condition, and due to the delayed manifestation of the symptoms, awareness of this phenomenon may be lacking amongst physicians. Copyright © 2016 Elsevier Ltd. All rights reserved.
Olfactory dysfunction, olfactory bulb pathology and urban air pollution
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L
2010-01-01
Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138
Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias
2015-10-01
Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
[Posttraumatic anosmia: olfactory event related potentials and MRI evaluation].
Liu, Jian-Feng; You, Hui; Ni, Dao-Feng; Zhang, Qiu-Hang; Yang, Da-Zhang; Wang, Na-Ya
2008-03-01
Using olfactory event related potentials (OERP) and magnetic resonance to evaluate olfactory function in patients with posttraumatic anosmia. Twenty four patients with posttraumatic anosmia were reviewed retrospectively. A thorough medical history, physical examination, nasal endoscopy, T&T olfactory testing, olfactory event-related potentials, brain computed tomography scan and magnetic resonance image of olfactory pathway were performed in all patients. Subjective olfactory testing indicated 20 of 24 patients were birhinal anosmia, 2 with right nostril anosmia and left impairment, 2 with left anosmia and right normal. No OERP were obtained in 24 (20 were birhinal, 4 was monorhinal), except 4 cases with single nostril. Magnetic resonance imaging revealed the injures to the olfactory bulbs (100%), rectus gyrus (91.7%), orbital gyrus (67%), olfactory tracts (8%) and temporal lobes (8%). OERP can objectively evaluate posttraumatic olfactory function, and magnetic resonance of olfactory pathway can precisely identify the location and extent of injures.
Horner, Katy M; Byrne, Nuala M; King, Neil A
2014-10-01
To determine whether changes in appetite and energy intake (EI) can be detected and play a role in the effectiveness of interventions, it is necessary to identify their variability under normal conditions. We assessed the reproducibility of subjective appetite ratings and ad libitum test meal EI after a standardised pre-load in overweight and obese males. Fifteen overweight and obese males (BMI 30.3 ± 4.9 kg/m(2), aged 34.9 ± 10.6 years) completed two identical test days, 7 days apart. Participants were provided with a standardised fixed breakfast (1676 kJ) and 5 h later an ad libitum pasta lunch. An electronic appetite rating system was used to assess subjective ratings before and after the fixed breakfast, and periodically during the postprandial period. EI was assessed at the ad libitum lunch meal. Sample size estimates for paired design studies were calculated. Appetite ratings demonstrated a consistent oscillating pattern between test days, and were more reproducible for mean postprandial than fasting ratings. The correlation between ad libitum EI on the two test days was r = 0.78 (P <0.01). Using a paired design and a power of 0.8, a minimum of 12 participants would be needed to detect a 10 mm change in 5 h postprandial mean ratings and 17 to detect a 500 kJ difference in ad libitum EI. Intra-individual variability of appetite and ad libitum test meal EI in overweight and obese males is comparable to previous reports in normal weight adults. Sample size requirements for studies vary depending on the parameter of interest and sensitivity needed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Variety within a cooked meal increases meal energy intake in older women with a poor appetite.
Wijnhoven, Hanneke Ah; van der Meij, Barbara S; Visser, Marjolein
2015-12-01
Effective strategies to increase dietary intake in older persons with a poor appetite are needed. Previous studies have shown that increasing diet variety may increase dietary intake. This has not been tested in older adults with a poor appetite. We investigated if an increased variety of foods within a cooked meal results in a higher meal energy intake in older women with a poor appetite. This study was a randomized, controlled, cross-over trial among 19 older (>65 years) women with a poor appetite. Two cooked meals of similar weight and energy density (except starch) were served under standardized conditions on two weekdays: a test meal consisting of three different varieties of vegetables, meat or fish, and starch components, and a control meal without variety. Participants ate ad libitum and the actual consumed amounts and their nutritional content were calculated. Data were analyzed by mixed linear models. Average intake in energy was 427 kcal (SD 119) for the test meal with variety and 341 kcal (SD 115) for the control meal without variety. This resulted in a statistically significant (for period effects adjusted) mean difference of 79 kcal (95% CI = 25-134). Total meal intake in grams was also higher for the test meal with variety (48 g, 95% CI = 1-97) but protein intake (g) was not (3.7 g, 95% CI = -1.4 to 8.8). This was consistent for all meal components except starch and within each component three varieties were consumed equally. The results of the present study suggest that increasing meal variety may be an effective strategy to increase energy intake in older adults with a poor appetite. Copyright © 2015 Elsevier Ltd. All rights reserved.
Calmodulin permanently associates with rat olfactory CNG channels under native conditions.
Bradley, Jonathan; Bönigk, Wolfgang; Yau, King-Wai; Frings, Stephan
2004-07-01
An important mechanism by which vertebrate olfactory sensory neurons rapidly adapt to odorants is feedback modulation of the Ca(2+)-permeable cyclic nucleotide-gated (CNG) transduction channels. Extensive heterologous studies of homomeric CNGA2 channels have led to a molecular model of channel modulation based on the binding of calcium-calmodulin to a site on the cytoplasmic amino terminus of CNGA2. Native rat olfactory CNG channels, however, are heteromeric complexes of three homologous but distinct subunits. Notably, in heteromeric channels, we found no role for CNGA2 in feedback modulation. Instead, an IQ-type calmodulin-binding site on CNGB1b and a similar but previously unidentified site on CNGA4 are necessary and sufficient. These sites seem to confer binding of Ca(2+)-free calmodulin (apocalmodulin), which is then poised to trigger inhibition of native channels in the presence of Ca(2+).
Odour discrimination and identification are improved in early blindness.
Cuevas, Isabel; Plaza, Paula; Rombaux, Philippe; De Volder, Anne G; Renier, Laurent
2009-12-01
Previous studies showed that early blind humans develop superior abilities in the use of their remaining senses, hypothetically due to a functional reorganization of the deprived visual brain areas. While auditory and tactile functions have been investigated for long, little is known about the effects of early visual deprivation on olfactory processing. However, blind humans make an extensive use of olfactory information in their daily life. Here we investigated olfactory discrimination and identification abilities in early blind subjects and age-matched sighted controls. Three levels of cuing were used in the identification task, i.e., free-identification (no cue), categorization (semantic cues) and multiple choice (semantic and phonological cues). Early blind subjects significantly outperformed the controls in odour discrimination, free-identification and categorization. In addition, the larger group difference was observed in the free-identification as compared to the categorization and the multiple choice conditions. This indicated that a better access to the semantic information from odour perception accounted for part of the improved olfactory performances in odour identification in the blind. We concluded that early blind subjects have both improved perceptual abilities and a better access to the information stored in semantic memory than sighted subjects.
Ocean acidification impairs olfactory discrimination and homing ability of a marine fish.
Munday, Philip L; Dixson, Danielle L; Donelson, Jennifer M; Jones, Geoffrey P; Pratchett, Morgan S; Devitsina, Galina V; Døving, Kjell B
2009-02-10
The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO(2)) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO(2)-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.
Ocean acidification impairs olfactory discrimination and homing ability of a marine fish
Munday, Philip L.; Dixson, Danielle L.; Donelson, Jennifer M.; Jones, Geoffrey P.; Pratchett, Morgan S.; Devitsina, Galina V.; Døving, Kjell B.
2009-01-01
The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity. PMID:19188596
Odor Landscapes in Turbulent Environments
NASA Astrophysics Data System (ADS)
Celani, Antonio; Villermaux, Emmanuel; Vergassola, Massimo
2014-10-01
The olfactory system of male moths is exquisitely sensitive to pheromones emitted by females and transported in the environment by atmospheric turbulence. Moths respond to minute amounts of pheromones, and their behavior is sensitive to the fine-scale structure of turbulent plumes where pheromone concentration is detectible. The signal of pheromone whiffs is qualitatively known to be intermittent, yet quantitative characterization of its statistical properties is lacking. This challenging fluid dynamics problem is also relevant for entomology, neurobiology, and the technological design of olfactory stimulators aimed at reproducing physiological odor signals in well-controlled laboratory conditions. Here, we develop a Lagrangian approach to the transport of pheromones by turbulent flows and exploit it to predict the statistics of odor detection during olfactory searches. The theory yields explicit probability distributions for the intensity and the duration of pheromone detections, as well as their spacing in time. Predictions are favorably tested by using numerical simulations, laboratory experiments, and field data for the atmospheric surface layer. The resulting signal of odor detections lends itself to implementation with state-of-the-art technologies and quantifies the amount and the type of information that male moths can exploit during olfactory searches.
Crossley, Matthew J; Horvitz, Jon C; Balsam, Peter D; Ashby, F Gregory
2016-01-01
The basal ganglia are a collection of subcortical nuclei thought to underlie a wide variety of vertebrate behavior. Although a great deal is known about the functional and physiological properties of the basal ganglia, relatively few models have been formally developed that have been tested against both behavioral and physiological data. Our previous work (Ashby FG, Crossley MJ. J Cogn Neurosci 23: 1549-1566, 2011) showed that a model grounded in the neurobiology of the basal ganglia could account for basic single-neuron recording data, as well as behavioral phenomena such as fast reacquisition that constrain models of conditioning. In this article we show that this same model accounts for a variety of appetitive instrumental conditioning phenomena, including the partial reinforcement extinction (PRE) effect, rapid and slowed reacquisition following extinction, and renewal of previously extinguished instrumental responses by environmental context cues. Copyright © 2016 the American Physiological Society.
Olfactory conditioned same-sex partner preference in female rats: Role of ovarian hormones.
Tecamachaltzi-Silvaran, M B; Barradas-Moctezuma, M; Herrera-Covarrubias, D; Carrillo, P; Corona-Morales, A A; Perez, C A; García, L I; Manzo, J; Coria-Avila, Genaro A
2017-11-01
The dopamine D2-type receptor agonist quinpirole (QNP) facilitates the development of conditioned same-sex partner preference in males during cohabitation, but not in ovariectomized (OVX) females, primed with estradiol benzoate (EB) and progesterone (P). Herein we tested the effects of QNP on OVX, EB-only primed females. Females received a systemic injection (every four days) of either saline (Saline-conditioned) or QNP (QNP-conditioned) and then cohabited for 24h with lemon-scented stimulus females (CS+), during three trials. In test 1 (female-female) preference was QNP-free, and females chose between the CS+ female and a novel female. In test 2 (male-female) they chose between the CS+ female and a sexually experienced male. In test 1 Saline-conditioned females displayed more hops & darts towards the novel female, but QNP-conditioned females displayed more sexual solicitations towards the CS+ female. In test 2 Saline-conditioned females displayed a clear preference for the male, whereas QNP-conditioned females displayed what we considered a bisexual preference. We discuss the effect of dopamine and ovarian hormones on the development of olfactory conditioned same-sex preference in females. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Baxter, Douglas A.; Byrne, John H.
2006-01-01
Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…
The protective effect of curcumin in Olfactory Ensheathing Cells exposed to hypoxia.
Bonfanti, Roberta; Musumeci, Teresa; Russo, Cristina; Pellitteri, Rosalia
2017-02-05
Curcumin, a phytochemical component derived from the rhizomes of Curcuma longa, has shown a great variety of pharmacological activities, such as anti-inflammatory, anti-tumor, anti-depression and anti-oxidant activity. Therefore, in the last years it has been used as a therapeutic agent since it confers protection in different neurodegenerative diseases, cerebral ischemia and excitotoxicity. Olfactory Ensheathing Cells (OECs) are glial cells of the olfactory system. They are able to secrete several neurotrophic growth factors, promote axonal growth and support the remyelination of damaged axons. OEC transplantation has emerged as a possible experimental therapy to induce repair of spinal cord injury, even if the functional recovery is still limited. Since hypoxia is a secondary effect in spinal cord injury, this in vitro study investigates the protective effect of curcumin in OECs exposed to hypoxia. Primary OECs were obtained from neonatal rat olfactory bulbs and placed both in normal and hypoxic conditions. Furthermore, some cells were grown with basic Fibroblast Growth Factor (bFGF) and/or curcumin at different concentration and times. The results obtained through immunocytochemical procedures and MTT test show that curcumin stimulates cell viability in OECs grown in normal and hypoxic conditions. Furthermore, the synergistic effect of curcumin and bFGF is the most effective exerting protection on OECs. Since spinal cord injury is often accompanied by secondary insults, such as ischemia or hypoxia, our results suggest that curcumin in combination with bFGF might be considered a possible approach for restoration in injuries. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenotypic transformation affects associative learning in the desert locust.
Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R
2013-12-02
In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effects of aging on mineralocorticoid-induced salt appetite in rats
Beltz, Terry G.; Johnson, Alan Kim
2013-01-01
This work examined the effects of age on salt appetite measured in the form of daily saline (i.e., 0.3 M NaCl) drinking in response to administration of deoxycorticosterone acetate (DOCA; 5 mg/kg body wt) using young (4 mo), “middle-aged” adult (12 mo), and old (30 mo) male Brown Norway rats. Water and sodium intakes, excretions, and balances were determined daily. The salt appetite response was age dependent with “middle-aged” rats ingesting the most saline solution followed in order by young and then old rats. While old rats drank the least saline solution, the amounts of saline ingested still were copious and comprise an unambiguous demonstration of salt appetite in old rats. Middle-aged rats had the highest saline preference ratios of the groups under baseline conditions and throughout testing consistent with an increased avidity for sodium taste. There were age differences in renal handling of water and sodium that were consistent with a renal contribution to the greater saline intakes by middle-aged rats. There was evidence of impaired renal function in old rats, but this did not account for the reduced saline intakes of the oldest rats. PMID:24133100
Low subjective socioeconomic status stimulates orexigenic hormone ghrelin - A randomised trial.
Sim, A Y; Lim, E X; Leow, M K; Cheon, B K
2018-03-01
Recent evidence suggests that lower perceived socioeconomic status is linked to increased appetite and intake of greater calories. Yet, whether insecurity of socioeconomic resources directly influences regulatory systems of appetite and energy intake is not known. Considering psychological states, mindsets and beliefs have shown to meaningfully affect physiological responses to food, the present study tested the hypothesis that low subjective socioeconomic status (SSS) will have a direct influence on physiological responses, such as appetite-related hormones (ghrelin, pancreatic polypeptide and insulin). Forty-eight healthy males were randomly (crossover, counterbalanced) assigned, to two experimental conditions where participants were either experimentally induced to feel low SSS or not (control; CON). Feelings of low SSS resulted in an increase in active ghrelin (an orexigenic hormone) following the SSS manipulation compared with baseline, while no change in active ghrelin was observed in CON. Furthermore, participants reported lower fullness and satiety following low SSS compared with CON. Our findings demonstrate that SSS may influence hunger regulation and appetite, and suggest that physiological systems regulating energy balance (i.e. caloric resources) may also be sensitive to perceived deprivation or imbalances in critical non-food resources (socioeconomic resources). Copyright © 2018 Elsevier Ltd. All rights reserved.
Systematic literature review shows that appetite rating does not predict energy intake.
Holt, Guy M; Owen, Lauren J; Till, Sophie; Cheng, Yanying; Grant, Vicky A; Harden, Charlotte J; Corfe, Bernard M
2017-11-02
Ratings of appetite are commonly used to assess appetite modification following an intervention. Subjectively rated appetite is a widely employed proxy measure for energy intake (EI), measurement of which requires greater time and resources. However, the validity of appetite as a reliable predictor of EI has not yet been reviewed systematically. This literature search identified studies that quantified both appetite ratings and EI. Outcomes were predefined as: (1) agreement between self-reported appetite scores and EI; (2) no agreement between self-reported appetitescores and EI. The presence of direct statistical comparison between the endpoints, intervention type and study population were also recorded. 462 papers were included in this review. Appetite scores failed to correspond with EI in 51.3% of the total studies. Only 6% of all studies evaluated here reported a direct statistical comparison between appetite scores and EI. χ 2 analysis demonstrated that any relationship between EI and appetite was independent of study type stratification by age, gender or sample size. The very substantive corpus reviewed allows us to conclude that self-reported appetite ratings of appetite do not reliably predict EI. Caution should be exercised when drawing conclusions based from self-reported appetite scores in relation to prospective EI.
Tadesse, Tizeta; Derby, Charles D; Schmidt, Manfred
2014-01-01
We determined if a newly developed antennule slice preparation allows studying chemosensory properties of spiny lobster olfactory receptor neurons under in situ conditions with Ca(2+) imaging. We show that chemical stimuli reach the dendrites of olfactory receptor neurons but not their somata, and that odorant-induced Ca(2+) signals in the somata are sufficiently stable over time to allow stimulation with a substantial number of odorants. Pharmacological manipulations served to elucidate the source of odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons. Both Ca(2+) signals are primarily mediated by an influx of extracellular Ca(2+) through voltage-activated Ca(2+) channels that can be blocked by CoCl2 and the L-type Ca(2+) channel blocker verapamil. Intracellular Ca(2+) stores contribute little to odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations. The odorant-induced Ca(2+) transients as well as the spontaneous Ca(2+) oscillations depend on action potentials mediated by Na(+) channels that are largely TTX-insensitive but blocked by the local anesthetics tetracaine and lidocaine. Collectively, these results corroborate the conclusion that odorant-induced Ca(2+) transients and spontaneous Ca(2+) oscillations in the somata of olfactory receptor neurons closely reflect action potential activity associated with odorant-induced phasic-tonic responses and spontaneous bursting, respectively. Therefore, both types of Ca(2+) signals represent experimentally accessible proxies of spiking.
Enterochromaffin cells of the human gut: sensors for spices and odorants.
Braun, Thomas; Voland, Petra; Kunz, Lars; Prinz, Christian; Gratzl, Manfred
2007-05-01
Release of serotonin from mucosal enterochromaffin cells triggered by luminal substances is the key event in the regulation of gut motility and secretion. We were interested to know whether nasal olfactory receptors are also expressed in the human gut mucosa by enterochromaffin cells and whether their ligands and odorants present in spices, fragrances, detergents, and cosmetics cause serotonin release. Receptor expression was studied by the reverse-transcription polymerase chain reaction method in human mucosal enterochromaffin cells isolated by laser microdissection and in a cell line derived from human enterochromaffin cells. Activation of the cells by odorants was investigated by digital fluorescence imaging using the fluorescent Ca(2+) indicator Fluo-4. Serotonin release was measured in culture supernatants by a serotonin enzyme immunoassay and amperometry using carbon fiber microelectrodes placed on single cells. We found expression of 4 olfactory receptors in microdissected human mucosal enterochromaffin cells and in a cell line derived from human enterochromaffin cells. Ca(2+) imaging studies revealed that odorant ligands of the identified olfactory receptors cause Ca(2+) influx, elevation of intracellular free Ca(2+) levels, and, consequently, serotonin release. Our results show that odorants present in the luminal environment of the gut may stimulate serotonin release via olfactory receptors present in human enterochromaffin cells. Serotonin controls both gut motility and secretion and is implicated in pathologic conditions such as vomiting, diarrhea, and irritable bowel syndrome. Thus, olfactory receptors are potential novel targets for the treatment of gastrointestinal diseases and motility disorders.
Ribas, Eduardo Santamaria Carvalhal; Duffau, Hugues
2012-05-01
Five percent of the general population has olfactory or gustatory disorders, although most do not complain about it. However, in some cases, these symptoms can be disabling and may affect quality of life. Anosmia was reported as a possible complication following head injury and neurosurgical procedures, particularly after the resection of tumors located in the anterior fossa and the treatment of aneurysms in the anterior circulation. Nonetheless, in all of these situations, olfactory dysfunction could be explained by damage to the peripheral olfactory system. Here, the authors report a case of complete anosmia associated with ageusia following awake resection of a low-grade glioma involving the left temporoinsular region, with no recovery during a follow-up of 3 years. The frontal lobe was not retracted, and the olfactory tract was not visualized during surgery; therefore, postoperative anosmia and ageusia are likely explained by damage to the cortex and central pathways responsible for these senses. The authors suggest that the patient might have had a subclinical right hemianosmia before surgery, which is a common condition. After resection of the central structures critical for smell and taste processing in the left hemisphere, the patient could have finally had bilateral and complete olfactory and gustatory loss. This is the first known report of permanent anosmia and ageusia following glioma surgery. Because these symptoms might have been underestimated, more attention should be devoted to olfaction and taste, especially with regard to possible subclinical preoperative deficit.
Can Güven, Selçuk; Laska, Matthias
2012-01-01
Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. PMID:22479594
[Effects of odor cue on morphine-induced dependence and craving in mice].
Liu, Xiao-Fen; Yang, Guang; Yang, Rui; Jia, Qiang; Guan, Su-Dong
2012-04-01
The olfactory system may play a pivotal role in drug addiction. To clarify the issues, we investigated the morphine dependence and psychological craving in morphine addicted mice using the conditioned place preference (CPP) paradigm by taking an only odor cue as the conditioned stimulus (CS). The results showed that by pairing morphine with odor, the CPP could be induced in mice. When the morphine addicted mice were exposed to a novel environment during morphine withdrawal, they spent significantly longer time in the chamber with morphine-paired odor than in the control chamber. The effects of odor cue on the morphine CPP were blocked by the administration of dopamine D1 or D2 antagonists. The studies indicated that olfactory system plays an important role in drug addiction.
Changes in olfactory bulb volume following lateralized olfactory training.
Negoias, S; Pietsch, K; Hummel, T
2017-08-01
Repeated exposure to odors modifies olfactory function. Consequently, "olfactory training" plays a significant role in hyposmia treatment. In addition, numerous studies show that the olfactory bulb (OB) volume changes in disorders associated with olfactory dysfunction. Aim of this study was to investigate whether and how olfactory bulb volume changes in relation to lateralized olfactory training in healthy people. Over a period of 4 months, 97 healthy participants (63 females and 34 males, mean age: 23.74 ± 4.16 years, age range: 19-43 years) performed olfactory training by exposing the same nostril twice a day to 4 odors (lemon, rose, eucalyptus and cloves) while closing the other nostril. Before and after olfactory training, magnetic resonance imaging (MRI) scans were performed to measure OB volume. Furthermore, participants underwent lateralized odor threshold and odor identification testing using the "Sniffin' Sticks" test battery.OB volume increased significantly after olfactory training (11.3 % and 13.1 % respectively) for both trained and untrained nostril. No significant effects of sex, duration and frequency of training or age of the subjects were seen. Interestingly, PEA odor thresholds worsened after training, while olfactory identification remained unchanged.These data show for the first time in humans that olfactory training may involve top-down process, which ultimately lead to a bilateral increase in olfactory bulb volume.
The effect of hydroalcoholic extract of Coriandrum sativum on rat appetite
Nematy, Mohsen; Kamgar, Maryam; Mohajeri, Seyed Mohammad Reza; Tabatabaei Zadeh, Seyed Amir; Jomezadeh, Mohammad Reza; Akbarieh Hasani, Omid; Kamali, Najmeh; Vojouhi, Shohreh; Baghban, Sara; Aghaei, Azita; Soukhtanloo, Mohammad; Hosseini, Mahmoud; Gholamnezhad, Zahra; Rakhshandeh, Hassan; Norouzy, Abdolreza; Esmaily, Habibollah; Ghayour-Mobarhan, Majid; Patterson, Michael
2013-01-01
Objective: Losing weight in consequence of appetite loss can be a sign of a serious underlying condition. Currently, the most widely prescribed medication for anorexia is cyproheptadine hydrochloride. However, the clinical use of cyproheptadine hydrochloride is limited by its side effects. In Iranian traditional medicine, Coriandrum sativum stimulates the appetite. Therefore, the effect of Coriandrum sativum (coriander) hydroalcoholic extract was investigated on food intake in rats. Material and Methods: Thirty male Wistar rats were randomly divided into five groups. Two control groups were used, one group received 0.5 ml water per day (vehicle group), and another group did not receive anything (control group). The other 3 groups were daily treated by 50, 100 or 150 mg/kg of coriander for 7 days, respectively. The daily amount of the food eaten by each rat was measured for 10 days. The amount of energy intake of each rat was also calculated for 7 days during the intervention. The difference in energy intake was calculated and compared between groups. Result: There was no significant change in energy intake between control and vehicle groups. The change in energy intake after treatment by 100 and 150 mg/kg of the extract was significantly higher than other groups (p=0.030 and p=0.007) Conclusion: This study indicated that coriander had positive effects on appetite of rats. Future studies are needed to evaluate the mechanisms of the effects of this plant on appetite. PMID:25050262
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen
2017-11-07
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.
[Clinical and magnetic resonance imaging characteristics of isolated congenital anosmia].
Liu, Jian-feng; Wang, Jian; You, Hui; Ni, Dao-feng; Yang, Da-zhang
2010-05-25
To report a series of patients with isolated congenital anosmia and summarize their clinical and magnetic resonance imaging (MRI) characteristics. Twenty patients with isolated congenital anosmia were reviewed retrospectively. A thorough medical and chemosensory history, physical examination, nasal endoscopy, T&T olfactory testing, olfactory event-related potentials, sinonasal computed tomography scan and magnetic resonance image of olfactory pathway were performed in all patients. Neither ENT physical examination nor nasal endoscopy was remarkable. Subjective olfactory testing indicated all of them were of anosmia. No olfactory event-related potentials to maximal stimulus were obtained. Computed tomography scan was normal. MRI revealed the absence of olfactory bulbs and tracts in all cases. And hypoplasia or aplasia of olfactory sulcus was found in all cases. All the patients had normal sex hormone level. The diagnosis of isolated congenital anosmia is established on chief complaints, physical examination, olfactory testing and olfactory imaging. MRI of olfactory pathway is indispensable.
Clinical features of olfactory disorders in patients seeking medical consultation
Chen, Guowei; Wei, Yongxiang; Miao, Xutao; Li, Kunyan; Ren, Yuanyuan; Liu, Jia
2013-01-01
Background Olfactory disorders are common complaints in ENT clinics. We investigated causes and relevant features of olfactory disorders and the need for gustatory testing in patients with olfactory dysfunction. Material/Methods A total of 140 patients seeking medical consultations were enrolled. All patients were asked about their olfactory disorders in a structured interview of medical history and underwent thorough otolaryngologic examinations and imaging of the head. Results Causes of olfactory disorders were classified as: upper respiratory tract infection (URTI), sinonasal diseases (NSD), head trauma, idiopathic, endoscopic sinus surgery, congenital anosmia, and other causes. Each of the various causes of olfactory dysfunction had its own distinct clinical features. Nineteen of 54 patients whose gustation was assessed had gustatory disorders. Conclusions The leading causes of olfactory dysfunction were URTI, NSD, head trauma, and idiopathic causes. Gustatory disorders were fairly common in patients with olfactory dysfunction. High priority should be given to complaints of olfactory disorders. PMID:23748259
Smell or vision? The use of different sensory modalities in predator discrimination.
Fischer, Stefan; Oberhummer, Evelyne; Cunha-Saraiva, Filipa; Gerber, Nina; Taborsky, Barbara
2017-01-01
Theory predicts that animals should adjust their escape responses to the perceived predation risk. The information animals obtain about potential predation risk may differ qualitatively depending on the sensory modality by which a cue is perceived. For instance, olfactory cues may reveal better information about the presence or absence of threats, whereas visual information can reliably transmit the position and potential attack distance of a predator. While this suggests a differential use of information perceived through the two sensory channels, the relative importance of visual vs. olfactory cues when distinguishing between different predation threats is still poorly understood. Therefore, we exposed individuals of the cooperatively breeding cichlid Neolamprologus pulcher to a standardized threat stimulus combined with either predator or non-predator cues presented either visually or chemically. We predicted that flight responses towards a threat stimulus are more pronounced if cues of dangerous rather than harmless heterospecifics are presented and that N. pulcher , being an aquatic species, relies more on olfaction when discriminating between dangerous and harmless heterospecifics. N. pulcher responded faster to the threat stimulus, reached a refuge faster and entered a refuge more likely when predator cues were perceived. Unexpectedly, the sensory modality used to perceive the cues did not affect the escape response or the duration of the recovery phase. This suggests that N. pulcher are able to discriminate heterospecific cues with similar acuity when using vision or olfaction. We discuss that this ability may be advantageous in aquatic environments where the visibility conditions strongly vary over time. The ability to rapidly discriminate between dangerous predators and harmless heterospecifics is crucial for the survival of prey animals. In seasonally fluctuating environment, sensory conditions may change over the year and may make the use of multiple sensory modalities for heterospecific discrimination highly beneficial. Here we compared the efficacy of visual and olfactory senses in the discrimination ability of the cooperatively breeding cichlid Neolamprologus pulcher . We presented individual fish with visual or olfactory cues of predators or harmless heterospecifics and recorded their flight response. When exposed to predator cues, individuals responded faster, reached a refuge faster and were more likely to enter the refuge. Unexpectedly, the olfactory and visual senses seemed to be equally efficient in this discrimination task, suggesting that seasonal variation of water conditions experienced by N. pulcher may necessitate the use of multiple sensory channels for the same task.
Tillerson, Jennifer L; Caudle, W Michael; Parent, Jack M; Gong, C; Schallert, Timothy; Miller, Gary W
2006-09-15
Previous pharmacological studies have implicated dopamine as a modulator of olfactory bulb processing. Several disorders characterized by altered dopamine homeostasis in olfaction-related brain regions display olfactory deficits. To further characterize the role of dopamine in olfactory processing, we subjected dopamine transporter knockout mice (DAT -/-) and dopamine receptor 2 knockout mice (D2 -/-) to a battery of olfactory tests. In addition to behavioral characterization, several neurochemical markers of olfactory bulb integrity and function were examined. DAT -/- mice displayed an olfactory discrimination deficit, but did not differ detectably from DAT wildtype (DAT +/+) mice in odor habituation, olfactory sensitivity, or odor recognition memory. Neurochemically, DAT -/- mice have decreased D2 receptor staining in the periglomerular layer of the olfactory bulb and increased tyrosine hydroxylase immunoreactivity compared to DAT +/+ controls. D2 -/- mice exhibited the same olfactory deficit as the DAT -/- mice, further supporting the role of dopamine at the D2 synapse in olfactory discrimination processing. The findings presented in this paper reinforce the functional significance of dopamine and more specifically the D2 receptor in olfactory discrimination and may help explain the behavioral phenotype in the DAT and D2 knockout mice.
The development of the olfactory organs in newly hatched monotremes and neonate marsupials
Schneider, Nanette Yvette
2011-01-01
Olfactory cues are thought to play a crucial role in the detection of the milk source at birth in mammals. It has been shown that a marsupial, the tammar wallaby, can detect olfactory cues from its mother's pouch at birth. This study investigates whether the main olfactory and accessory olfactory system are similarly well developed in other marsupials and monotremes at birth/hatching as in the tammar. Sections of the head of various marsupial and two monotreme species were investigated by light microscopy. Both olfactory systems were less well developed in the kowari and Eastern quoll. No olfactory or vomeronasal or terminal nerves could be observed; the main olfactory bulb (MOB) had only two layers while no accessory olfactory bulb or ganglion terminale were visible. All other investigated marsupials and monotremes showed further developed olfactory systems with olfactory, vomeronasal and terminal nerves, a three-layered MOB, and in the marsupials a prominent ganglion terminale. The main olfactory system was further developed than the accessory olfactory system in all species investigated. The olfactory systems were the least developed in species in which the mother's birth position removed most of the difficulty in reaching the teat, placing the neonate directly in the pouch. In monotremes they were the furthest developed as Bowman glands were found underlying the main olfactory epithelium. This may reflect the need to locate the milk field each time they drink as they cannot permanently attach to it, unlike therian mammals. While it still needs to be determined how an odour signal could be further processed in the brain, this study suggests that marsupials and monotremes possess well enough developed olfactory systems to be able to detect an odour cue from the mammary area at birth/hatching. It is therefore likely that neonate marsupials and newly hatched monotremes find their way to the milk source using olfactory cues, as has been previously suggested for the marsupial tammar wallaby, rabbits, rats and other eutherians. PMID:21592102
Hyposmia: an underestimated and frequent adverse effect of chemotherapy.
Riga, Maria; Chelis, Leonidas; Papazi, Theano; Danielides, Vasilios; Katotomichelakis, Michael; Kakolyris, Stylianos
2015-10-01
Optimal function of both the olfactory sensory neurons and the olfactory mucosa is a prerequisite for normal olfactory perception. Both the olfactory neurons and mucosa might be subjects to the neurotoxic and mucotoxic effects of chemotherapy. Despite the recognized importance of olfaction in nutrition and quality of life, the potential olfactory toxicity of chemotherapy regimens has not been adequately assessed. The aim of this study is to investigate whether mucotoxic and/or neurotoxic drugs compromise olfactory performance. Forty-four consecutive patients completed the "Sniffin' Sticks" test, an objective quantitative/qualitative method to assess olfactory function, at diagnosis and immediately before the infusion of the last session of three to four chemotherapy cycles, according to the therapeutic protocol. The patients underwent therapy containing oxaliplatin and antimetabolites (5-FU or capecitabine; O+A group), taxanes and platinum analogues (cisplatin and carboplatin; T+P group), or taxanes and anthracyclines (doxorubicin or liposomal doxorubicin; T+A group). A significant decrease was noted for olfactory threshold (OT), olfactory discrimination (OD), olfactory identification (OI), and the composite threshold-discrimination-identification (TDI) score. A significant deterioration of all olfactory indices was found for each chemotherapy group. Pairwise comparisons revealed significant differences between the O+A and the T+P group regarding OT and TDI. TDI scores were significantly lower after chemotherapy in all age groups. Patients older than 50 years were found to be more susceptible to olfactory toxicity than younger patients. Patients who undergo chemotherapy experience significant compromise in their olfactory function. A grading system for olfactory toxicity is proposed.
Simmons, W. Kyle; Burrows, Kaiping; Avery, Jason A.; Kerr, Kara L.; Bodurka, Jerzy; Savage, Cary R.; Drevets, Wayne C.
2016-01-01
Objective Appetite and weight changes are common but variable diagnostic markers in major depressive disorder: some depressed individuals manifest increased appetite, while others lose their appetite. Many of the brain regions implicated in appetitive responses to food have also been implicated in depression. It is thus remarkable that there exists no published research comparing the neural responses to food stimuli of depressed patients with increased versus decreased appetites. Method Using functional magnetic resonance imaging we compared brain activity in unmedicated depressed patients with increased or decreased appetite, and healthy control subjects, while viewing photographs of food and non-food objects. We also measured how resting-state functional connectivity related to subjects’ food pleasantness ratings. Results Within putative reward regions, depressed participants with increased appetites exhibited greater hemodynamic activity to food stimuli than both those reporting appetite decreases and healthy control subjects. In contrast, depressed subjects experiencing appetite loss exhibited hypoactivation within a region of the mid-insula implicated in interoception, with no difference observed in this region between healthy subjects and those with depression-related appetite increases. Mid-insula activity was negatively correlated with food pleasantness ratings of depressed participants with increased appetites, and its functional connectivity to reward circuitry was positively correlated with food pleasantness ratings. Conclusions Depression-related increases in appetite are associated with hyperactivation of putative mesocorticolimbic reward circuitry, while depression-related appetite loss is associated with hypoactivation of insular regions that support monitoring the body’s physiological state. Importantly, the interactions among these regions also contribute to individual differences in the depression-related appetite changes. PMID:26806872
Simmons, W Kyle; Burrows, Kaiping; Avery, Jason A; Kerr, Kara L; Bodurka, Jerzy; Savage, Cary R; Drevets, Wayne C
2016-04-01
Appetite and weight changes are common but variable diagnostic markers in major depressive disorder: some depressed individuals manifest increased appetite, while others lose their appetite. Many of the brain regions implicated in appetitive responses to food have also been implicated in depression. It is thus remarkable that there exists no published research comparing the neural responses to food stimuli of depressed patients with increased versus decreased appetites. Using functional MRI, brain activity was compared in unmedicated depressed patients with increased or decreased appetite and healthy control subjects while viewing photographs of food and nonfood objects. The authors also measured how resting-state functional connectivity related to subjects' food pleasantness ratings. Within putative reward regions, depressed participants with increased appetites exhibited greater hemodynamic activity to food stimuli than both those reporting appetite decreases and healthy control subjects. In contrast, depressed subjects experiencing appetite loss exhibited hypoactivation within a region of the mid-insula implicated in interoception, with no difference observed in this region between healthy subjects and those with depression-related appetite increases. Mid-insula activity was negatively correlated with food pleasantness ratings of depressed participants with increased appetites, and its functional connectivity to reward circuitry was positively correlated with food pleasantness ratings. Depression-related increases in appetite are associated with hyperactivation of putative mesocorticolimbic reward circuitry, while depression-related appetite loss is associated with hypoactivation of insular regions that support monitoring the body's physiological state. Importantly, the interactions among these regions also contribute to individual differences in the depression-related appetite changes.
NASA Technical Reports Server (NTRS)
Johnson, Alan Kim; Thunhorst, Robert L.
1997-01-01
This review examines recent advances in the study of the behavioral responses to deficits of body water and body sodium that in humans are accompanied by the sensations of thirst and salt appetite. Thirst and salt appetite are satisfied by ingesting water and salty substances. These behavioral responses to losses of body fluids, together with reflex endocrine and neural responses, are critical for reestablishing homeostasis. Like their endocrine and neural counterparts, these behaviors are under the control of both excitatory and inhibitory influences arising from changes in osmolality, endocrine factors such as angiotensin and aldosterone, and neural signals from low and high pressure baroreceptors. The excitatory and inhibitory influences reaching the brain require the integrative capacity of a neural network which includes the structures of the lamina terminalis, the amygdala, the perifornical area, and the paraventricular nucleus in the forebrain, and the lateral parabrachial nucleus (LPBN), the nucleus tractus solitarius (NTS), and the area postrema in the hindbrain. These regions are discussed in terms of their roles in receiving afferent sensory input and in processing information related to hydromineral balance. Osmoreceptors controlling thirst are located in systemic Viscera and in central structures that lack the blood-brain barrier. Angiotensin and aldosterone act on and through structures of the lamina terminalis and the amygdala to stimulate thirst and sodium appetite under conditions of hypovolemia. The NTS and LPBN receive neural signals from baroreceptors and are responsible for inhibiting the ingestion of fluids under conditions of increased volume and pressure and for stimulating thirst under conditions of bypovolemia and hypotension. The interplay of multiple facilitory influences within the brain may take the form of interactions between descending angiotensinergic systems originating in the forebrain and ascending adrenergic systems emanating from the hindbrain. Oxytocin and serotonin are additional candidate neuro- chemicals with postulated inhibitory central actions and with essential roles in the overall integration of sensory input within the neural network devoted to maintaining hydromineral balance.
Human nutrition in cold and high terrestrial altitudes
NASA Astrophysics Data System (ADS)
Srivastava, K. K.; Kumar, Ratan
1992-03-01
The calorie and nutritional requirements for a man working in an alien hostile environment of cold regions and high altitude are described and compared to those of normal requirements. Carbohydrates, fats and vitamins fulfilling the caloric and nutritional requirements are generally available in adequate amounts except under conditions of appetite loss. However, the proteins and amino acids should be provided in such a way as to meet the altered behavioral and metabolic requirements. Work in extreme cold requires fulfilling enhanced calorie needs. In high mountainous regions, cold combined with hypoxia produced loss of appetite and necessitated designing of special foods.
Heden, Timothy D; Liu, Ying; Sims, Lauren; Kearney, Monica L; Whaley-Connell, Adam T; Chockalingam, Anand; Dellsperger, Kevin C; Fairchild, Timothy J; Kanaley, Jill A
2013-04-01
The purpose of this study was to compare postprandial satiety regulating hormone responses (pancreatic polypeptide (PP) and peptide tyrosine tyrosine (PYY)) and visual analog scale- (VAS) assessed perceived appetite and satiety between liquid high-protein (HP) and high-carbohydrate (HC) meals in obese women during acute (24-h) caloric restriction. Eleven obese premenopausal women completed two conditions in random order in which they consumed 1500 calories as six 250-calorie HP meals or six 250-calorie HC meals over a 12-h period. Blood samples were taken at baseline and every 20 min thereafter and analyzed for PP and PYY concentrations. At these same points, perceived hunger and fullness were assessed with a VAS. The incremental area under the curve (iAUC) was used to compare postprandial responses. The 12-h PP and PYY iAUC were greater (P≤0.05) during the HP condition (PP: 4727±1306 pg/ml×12 h, PYY: 1373±357 pg/ml×12 h) compared with the HC condition (PP: 2300±528 pg/ml×12 h, PYY: 754±246 pg/ml×12 h). Perceived hunger and fullness were not different between conditions (P>0.05). The greatest changes in PYY and perceived fullness occurred after the morning meals during both conditions. These data suggest that in obese women during acute caloric restriction before weight loss, i) liquid HP meals, compared with HC meals, result in greater postprandial PP and PYY concentrations, an effect not associated with differential appetite or satiety responses, and ii) meal-induced changes in PYY and satiety are greatest during the morning period, regardless of dietary macronutrient composition.
Latent Inhibition in an Insect: The Role of Aminergic Signaling
ERIC Educational Resources Information Center
Fernandez, Vanesa M.; Giurfa, Martin; Devaud, Jean-Marc; Farina, Walter M.
2012-01-01
Latent inhibition (LI) is a decrement in learning performance that results from the nonreinforced pre-exposure of the to-be-conditioned stimulus, in both vertebrates and invertebrates. In vertebrates, LI development involves dopamine and serotonin; in invertebrates there is yet no information. We studied differential olfactory conditioning of the…
Schluessel, Vera; Bennett, Michael B; Bleckmann, Horst; Blomberg, Simon; Collin, Shaun P
2008-11-01
This study investigated the relationship between olfactory morphology, habitat occupancy, and lifestyle in 21 elasmobranch species in a phylogenetic context. Four measures of olfactory capability, that is, the number of olfactory lamellae, the surface area of the olfactory epithelium, the mass of the olfactory bulb, and the mass of the olfactory rosette were compared between individual species and groups, comprised of species with similar habitat and/or lifestyle. Statistical analyses using generalized least squares phylogenetic regression revealed that bentho-pelagic sharks and rays possess significantly more olfactory lamellae and larger sensory epithelial surface areas than benthic species. There was no significant correlation between either olfactory bulb or rosette mass and habitat type. There was also no significant difference between the number of lamellae or the size of the sensory surface area in groups comprised of species with similar diets, that is, groups preying predominantly on crustaceans, cephalopods, echinoderms, polychaetes, molluscs, or teleosts. However, some groups had significantly larger olfactory bulb or rosette masses than others. There was little evidence to support a correlation between phylogeny and morphology, indicating that differences in olfactory capabilities are the result of functional rather than phylogenetic adaptations. All olfactory epithelia exhibited microvilli and cilia, with microvilli in both nonsensory and sensory areas, and cilia only in sensory areas. Cilia over the sensory epithelia originated from supporting cells. In contrast to teleosts, which possess ciliated and microvillous olfactory receptor types, no ciliated olfactory receptor cells were observed. This is the first comprehensive study comparing olfactory morphology to several aspects of elasmobranch ecology in a phylogenetic context.
The physiological basics of the olfactory neuro-epithelium.
Watelet, J B; Katotomichelakis, M; Eloy, P; Danielidis, V
2009-01-01
All living organisms can detect and identify chemical substances in their environment. The olfactory epithelium is covered by a mucus layer which is essential for the function of the olfactory neurons that are directly connected to the brain through the cribriform plate. However, little is known about the composition of this mucus in humans and its significance for the diagnosis of olfactory disorders. The olfactory epithelium consists of four primary cell types, including the olfactory receptor cells essential for odour transduction. This review examines the anatomical, histological and physiological fundamentals of olfactory mucosa. Particular attention is paid to the biochemical environment of the olfactory mucosa that regulates both peri-receptor events and several protective functions.
A Closer Look at Acid-Base Olfactory Titrations
ERIC Educational Resources Information Center
Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole
2005-01-01
Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.
de Castro, Fernando
2009-01-01
Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc.) and secreted mechanisms (semaphorins, slits, growth factors, etc.) are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB) and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors) have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex) remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny. PMID:20582279
Hawkins, Sara J; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan
2017-01-01
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks.
Hawkins, Sara J.; Weiss, Lukas; Offner, Thomas; Dittrich, Katarina; Hassenklöver, Thomas; Manzini, Ivan
2017-01-01
Understanding the mechanisms involved in maintaining lifelong neurogenesis has a clear biological and clinical interest. In the present study, we performed olfactory nerve transection on larval Xenopus to induce severe damage to the olfactory circuitry. We surveyed the timing of the degeneration, subsequent rewiring and functional regeneration of the olfactory system following injury. A range of structural labeling techniques and functional calcium imaging were performed on both tissue slices and whole brain preparations. Cell death of olfactory receptor neurons and proliferation of stem cells in the olfactory epithelium were immediately increased following lesion. New olfactory receptor neurons repopulated the olfactory epithelium and once again showed functional responses to natural odorants within 1 week after transection. Reinnervation of the olfactory bulb (OB) by newly formed olfactory receptor neuron axons also began at this time. Additionally, we observed a temporary increase in cell death in the OB and a subsequent loss in OB volume. Mitral/tufted cells, the second order neurons of the olfactory system, largely survived, but transiently lost dendritic tuft complexity. The first odorant-induced responses in the OB were observed 3 weeks after nerve transection and the olfactory network showed signs of major recovery, both structurally and functionally, after 7 weeks. PMID:29234276
Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K
2004-09-01
The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.
Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.
Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo
2017-01-01
Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system. © 2016 S. Karger AG, Basel.
[Clinical observation of isolated congenital anosmia].
Li, Li; Wei, Yong-xiang; Wang, Ning-yu; Miao, Xu-tao; Yang, Ling; Ge, Xiao-hui; Wu, Ying; Liu, Jia; Tian, Jun; Li, Kun-yan; Liu, Chun-li
2013-12-01
To introduce 8 patients with isolated congenital anosmia and to discuss the clinical manifestations, imaging characteristics and family characteristics of this rarely seen disorder. Eight patients with isolated congenital anosmia treated between April 2007 and April 2012 were reviewed retrospectively. There were 4 males and 4 females. A detailed medical history collection, physical examination, nasal endoscopy, T&T and Sniffin'Sticks subjective olfactory function tests, olfactory event-related potentials sinonasal computed tomography scan and sex hormones level monitoring were performed in all patients. Seven cases underwent magnetic resonance image of olfactory pathway examination. All patients were anosmia without evidence of other defects. ENT physical examination, nasal endoscopy and computed tomography scan were normal except 4 cases with obvious nasal septum deviation, 2 cases with concha bullosa. Subjective olfactory test indicated all of them were anosmia. Olfactory event-related potentials were obtained in only 1 patient. Magnetic resonance imaging revealed the smaller or atrophy olfactory bulb and olfactory tract in five cases, the absence of olfactory bulbs and tracts in two case. A female patient did not have MRI examination because of wearing IUDs. Detection of 8 patients of sex hormones were normal. Family characteristics: 3 patients showed family inheritance pattern. The diagnosis of isolated congenital anosmia should be based on chief complaint, medical history, physical examination, olfactory test, nasal endoscopy, olfactory testing, olfactory imaging and olfactory event-related potentials. Magnetic resonance image of olfactory pathway and olfactory event-related potentials have important value for the diagnosis. More attention should be paid to the genetic susceptibility of the family.
Uptake and transport of manganese in primary and secondary olfactory neurones in pike.
Tjälve, H; Mejàre, C; Borg-Neczak, K
1995-07-01
gamma-spectrometry and autoradiography were used to examine the axoplasmic flow of manganese in the olfactory nerves and to study the uptake of the metal in the brain after application of 54Mn2+ in the olfactory chambers of pikes. The results show that the 54Mn2+ is taken up in the olfactory receptor cells and is transported at a constant rate along the primary olfactory neurones into the brain. The maximal velocity for the transported 54Mn2+ was 2.90 +/- 0.21 mm/hr (mean +/- S.E.) at 10 degrees, which was the temperature used in the experiments. The 54Mn2+ accumulated in the entire olfactory bulbs, although most marked in central and caudal parts. The metal was also seen to migrate into large areas of the telencephalon, apparently mainly via the secondary olfactory axons present in the medial olfactory tract. A transfer along fibres of the medial olfactory tract probably also explains the labelling which was seen in the diencephalon down to the hypothalamus. The results also showed that there is a pathway connecting the two olfactory bulbs of the pike and that this can carry the metal. Our data further showed a marked accumulation of 54Mn2+ in the meningeal epithelium and in the contents of the meningeal sacs surrounding the olfactory bulbs. It appears from our study that manganese has the ability to pass the synaptic junctions between the primary and the secondary olfactory neurones in the olfactory bulbs and to migrate along secondary olfactory pathways into the telencephalon and the diencephalon.(ABSTRACT TRUNCATED AT 250 WORDS)
Prevalence and associated factors for decreased appetite among patients with stable heart failure.
Andreae, Christina; Strömberg, Anna; Årestedt, Kristofer
2016-06-01
To explore the prevalence of decreased appetite and factors associated with appetite among patients with stable heart failure. Decreased appetite is an important factor for the development of undernutrition among patients with heart failure, but there are knowledge gaps about prevalence and the factors related to appetite in this patient group. Observational, cross-sectional study. A total of 186 patients with mild to severe heart failure were consecutively recruited from three heart failure outpatient clinics. Data were obtained from medical records (heart failure diagnosis, comorbidity and medical treatment) and self-rated questionnaires (demographics, appetite, self-perceived health, symptoms of depression and sleep). Blood samples were taken to determine myocardial stress and nutrition status. Heart failure symptoms and cognitive function were assessed by clinical examinations. The Council on Nutrition Appetite Questionnaire was used to assess self-reported appetite. Bivariate correlations and multivariate linear regression analyses were conducted to explore factors associated with appetite. Seventy-one patients (38%) experienced a loss of appetite with a significant risk of developing weight loss. The final multiple regression model showed that age, symptoms of depression, insomnia, cognitive function and pharmacological treatment were associated with appetite, explaining 27% of the total variance. In this cross-sectional study, a large share of patients with heart failure was affected by decreased appetite, associated with demographic, psychosocial and medical factors. Loss of appetite is a prevalent problem among patients with heart failure that may lead to undernutrition. Health care professionals should routinely assess appetite and discuss patients' experiences of appetite, nutrition intake and body weight and give appropriate nutritional advice with respect to individual needs. © 2016 John Wiley & Sons Ltd.
Locatelli, Fernando F; Fernandez, Patricia C; Smith, Brian H
2016-09-01
Natural odors are typically mixtures of several chemical components. Mixtures vary in composition among odor objects that have the same meaning. Therefore a central 'categorization' problem for an animal as it makes decisions about odors in natural contexts is to correctly identify odor variants that have the same meaning and avoid variants that have a different meaning. We propose that identified mechanisms of associative and non-associative plasticity in early sensory processing in the insect antennal lobe and mammalian olfactory bulb are central to solving this problem. Accordingly, this plasticity should work to improve categorization of odors that have the opposite meanings in relation to important events. Using synthetic mixtures designed to mimic natural odor variation among flowers, we studied how honey bees learn about and generalize among floral odors associated with food. We behaviorally conditioned honey bees on a difficult odor discrimination problem using synthetic mixtures that mimic natural variation among snapdragon flowers. We then used calcium imaging to measure responses of projection neurons of the antennal lobe, which is the first synaptic relay of olfactory sensory information in the brain, to study how ensembles of projection neurons change as a result of behavioral conditioning. We show how these ensembles become 'tuned' through plasticity to improve categorization of odors that have the different meanings. We argue that this tuning allows more efficient use of the immense coding space of the antennal lobe and olfactory bulb to solve the categorization problem. Our data point to the need for a better understanding of the 'statistics' of the odor space. © 2016. Published by The Company of Biologists Ltd.
Chemel, C; Riesenmey, C; Batton-Hubert, M; Vaillant, H
2012-01-01
Gases released from landfill sites into the atmosphere have the potential to cause olfactory nuisances within the surrounding communities. Landfill sites are often located over complex topography for convenience mainly related to waste disposal and environmental masking. Dispersion of odours is strongly conditioned by local atmospheric dynamics. Assessment of odour impacts needs to take into account the variability of local atmospheric dynamics. In this study, we discuss a method to assess odour impacts around a landfill site located over complex terrain in order to provide information to be used subsequently to identify management strategies to reduce olfactory nuisances in the residential neighbourhoods. A weather-type classification is defined in order to identify meteorological conditions under which olfactory nuisances are to be expected. A non-steady state Gaussian model and a full-physics meteorological model are used to predict olfactory nuisances, for both the winter and summer scenarios that lead to the majority of complaints in neighbourhoods surrounding the landfill site. Simulating representative scenarios rather than full years make a high resolution simulation of local atmospheric dynamics in space and time possible. Results underline the key role of local atmospheric dynamics in driving the dispersion of odours. The odour concentration simulated by the full-physics meteorological model is combined with the density of the population in order to calculate an average population exposure for the two scenarios. Results of this study are expected to provide helpful information to develop technical solutions for an effective management of landfill operations, which would reduce odour impacts within the surrounding communities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Taste matters - effects of bypassing oral stimulation on hormone and appetite responses.
Spetter, Maartje S; Mars, Monica; Viergever, Max A; de Graaf, Cees; Smeets, Paul A M
2014-10-01
The interaction between oral and gastric signals is an important part of food intake regulation. Previous studies suggest that bypassing oral stimulation diminishes the suppression of hunger and increases gastric emptying rate. However, the role of appetite hormones, like cholecystokinin-8 and ghrelin, in this process is still unclear. Our objective was to determine the contributions of gastric and oral stimulation to subsequent appetite and hormone responses and their effect on ad libitum intake. Fourteen healthy male subjects (age 24.6±3.8y, BMI 22.3±1.6kg/m(2)) completed a randomized, single-blinded, cross-over experiment with 3 treatment-sessions: 1) Stomach distention: naso-gastric infusion of 500mL/0kJ water, 2) Stomach distention with caloric content: naso-gastric infusion of 500mL/1770kJ chocolate milk, and 3) Stomach distention with caloric content and oral exposure: oral administration of 500mL/1770kJ chocolate milk. Changes in appetite ratings and plasma glucose, insulin, cholecystokinin-8, and active and total ghrelin concentrations were measured at fixed time-points up to 30min after infusion or oral administration. Subsequently, subjects consumed an ad libitum buffet meal. Oral administration reduced appetite ratings more than both naso-gastric infusions (P<0.0001). Gastric infusion of a caloric load increased insulin and cholecystokinin-8 and decreased total ghrelin concentrations more than ingestion (all P<0.0001). No differences in active ghrelin response were observed between conditions. Ad libitum intake did not differ between oral and gastric administration of chocolate milk (P>0.05). Thus, gastric infusion of nutrients induces greater appetite hormone responses than ingestion does. These data provide novel and additional evidence that bypassing oral stimulation not only affects the appetite profile but also increases anorexigenic hormone responses, probably driven in part by faster gastric emptying. This confirms the idea that learned associations between sensory characteristics and associated metabolic consequences serve to adapt hormone responses to nutrient content. These findings underscore the importance of oral stimulation in the regulation of food intake. Copyright © 2014 Elsevier Inc. All rights reserved.
No evidence for visual context-dependency of olfactory learning in Drosophila
NASA Astrophysics Data System (ADS)
Yarali, Ayse; Mayerle, Moritz; Nawroth, Christian; Gerber, Bertram
2008-08-01
How is behaviour organised across sensory modalities? Specifically, we ask concerning the fruit fly Drosophila melanogaster how visual context affects olfactory learning and recall and whether information about visual context is getting integrated into olfactory memory. We find that changing visual context between training and test does not deteriorate olfactory memory scores, suggesting that these olfactory memories can drive behaviour despite a mismatch of visual context between training and test. Rather, both the establishment and the recall of olfactory memory are generally facilitated by light. In a follow-up experiment, we find no evidence for learning about combinations of odours and visual context as predictors for reinforcement even after explicit training in a so-called biconditional discrimination task. Thus, a ‘true’ interaction between visual and olfactory modalities is not evident; instead, light seems to influence olfactory learning and recall unspecifically, for example by altering motor activity, alertness or olfactory acuity.
Individual olfactory perception reveals meaningful nonolfactory genetic information
Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam
2015-01-01
Each person expresses a potentially unique subset of ∼400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the “olfactory fingerprint.” Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10−10), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10−4), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10−6). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information. PMID:26100865
Ito, Keishi; Arakawa, Sousuke; Murakami, Shingo; Sawamoto, Kazunobu
2012-01-01
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training. PMID:23133633
[Clinical and MRI Findings in Patients with Congenital Anosmia].
Ogawa, Takao; Kato, Tomohisa; Ono, Mayu; Shimizu, Takeshi
2015-08-01
The clinical characteristics of 16 patients with congenital anosmia were examined retrospectively. MRI (magnetic resonance imaging) was used to assess the morphological changes in the olfactory bulbs and olfactory sulci according to the method of P. Rombaux (2009). Congenital anosmia was divided into two forms: syndromic forms in association with a syndrome, and isolated forms without evidence of other defects. Only three patients (19%) in our series had syndromic forms of congenital anosmia, such as the Kallmann syndrome. Most cases (13 patients, 81%) had isolated congenital anosmia. Psychophysical testing of the olfactory function included T&T olfactometry and the intravenous Alinamin test, which are widely used in Japan. In T&T olfactometry, detection and recognition thresholds for the five odorants are used to assign a diagnostic category representing the level of olfactory function. Most cases (14 patients, 88%) showed off-scale results on T&T olfactometry, and the Alinamin test resulted in no response in all 11 patients who underwent the test. Abnormal MRI findings of the olfactory bulbs and sulci were detected in 15 of 16 patients (94%). Olfactory bulbs were bilaterally absent in nine patients (56%), and two patients (13%) had unilateral olfactory bulbs. Four patients (25%) had bilateral hypoplastic olfactory bulbs, and only one patient had normal olfactory bulbs (6%). The olfactory sulcus was unilaterally absent in one patient (6%), and nine patients (56%) had bilaterally hypoplastic olfactory sulci. Two patients (13%) had a unilateral normal olfactory sulcus and hypoplastic olfactory sulcus. Three patients (19%) had normal olfactory sulci. Quantitative analysis showed that the volume of olfactory bulbs varied from 0 mm3 to 63.5 mm3, with a mean volume of 10.20 ± 18 mm3, and the mean depth of the olfactory sulcus varied from 0 mm to 12.22 mm, with a mean length of 4.85 ± 4.1 mm. Currently, there is no effective treatment for congenital anosmia. However, diagnosis of congenital anosmia is important, as its presence can lead to dangerous situations. Careful examination for hypogonadism is also required in people with anosmia. MRI examinations of the olfactory bulbs and sulci were useful for the diagnosis of congenital anosmia.
Willander, Johan; Sikström, Sverker; Karlsson, Kristina
2015-01-01
Previous studies on autobiographical memory have focused on unimodal retrieval cues (i.e., cues pertaining to one modality). However, from an ecological perspective multimodal cues (i.e., cues pertaining to several modalities) are highly important to investigate. In the present study we investigated age distributions and experiential ratings of autobiographical memories retrieved with unimodal and multimodal cues. Sixty-two participants were randomized to one of four cue-conditions: visual, olfactory, auditory, or multimodal. The results showed that the peak of the distributions depends on the modality of the retrieval cue. The results indicated that multimodal retrieval seemed to be driven by visual and auditory information to a larger extent and to a lesser extent by olfactory information. Finally, no differences were observed in the number of retrieved memories or experiential ratings across the four cue-conditions.
Olfactory discrimination ability of CD-1 mice for a large array of enantiomers.
Laska, M; Shepherd, G M
2007-01-05
With use of a conditioning paradigm, the ability of eight CD-1 mice to distinguish between 15 enantiomeric odor pairs was investigated. The results demonstrate a) that CD-1 mice are capable of discriminating between all odor pairs tested, b) that the enantiomeric odor pairs clearly differed in their degree of discriminability and thus in their perceptual similarity, and c) that pre-training with the rewarded stimuli led to improved initial but not terminal or overall performance. A comparison between the proportion of discriminated enantiomeric odor pairs of the CD-1 mice and those of other species tested in earlier studies on the same discrimination tasks (or on subsets thereof) shows a significant positive correlation between discrimination performance and the number of functional olfactory receptor genes. These findings provide the first evidence of a highly developed ability of CD-1 mice to discriminate between an array of non-pheromonal chiral odorants. Further, they suggest that a species' olfactory discrimination capabilities for these odorants may be correlated with its number of functional olfactory receptor genes. The data presented here may provide useful information for the interpretation of findings from electrophysiological or imaging studies in the mouse and the elucidation of odor structure-activity relationships.
Olfactory discrimination ability of CD-1 mice for a large array of enantiomers
Laska, Matthias; Shepherd, Gordon M.
2006-01-01
With use of a conditioning paradigm, the ability of eight CD-1 mice to distinguish between 15 enantiomeric odor pairs was investigated. The results demonstrate a) that CD-1 mice are capable of discriminating between all odor pairs tested, b) that the enantiomeric odor pairs clearly differed in their degree of discriminability and thus in their perceptual similarity, and c) that pre-training with the rewarded stimuli led to improved initial but not terminal or overall performance. A comparison between the proportion of discriminated enantiomeric odor pairs of the CD-1 mice and those of other species tested in earlier studies on the same discrimination tasks (or on subsets thereof) shows a significant positive correlation between discrimination performance and the number of functional olfactory receptor genes. These findings provide the first evidence of a highly developed ability of CD-1 mice to discriminate between an array of non-pheromonal chiral odorants. Further, they suggest that a species′ olfactory discrimination capabilities for these odorants may be correlated with its number of functional olfactory receptor genes. The data presented here may provide useful information for the interpretation of findings from electrophysiological or imaging studies in the mouse and the elucidation of odor structure-activity relationships. PMID:17045753
Cross-modal and modality-specific expectancy effects between pain and disgust
Sharvit, Gil; Vuilleumier, Patrik; Delplanque, Sylvain; Corradi-Dell’ Acqua, Corrado
2015-01-01
Pain sensitivity increases when a noxious stimulus is preceded by cues predicting higher intensity. However, it is unclear whether the modulation of nociception by expectancy is sensory-specific (“modality based”) or reflects the aversive-affective consequence of the upcoming event (“unpleasantness”), potentially common with other negative events. Here we compared expectancy effects for pain and disgust by using different, but equally unpleasant, nociceptive (thermal) and olfactory stimulations. Indeed both pain and disgust are aversive, associated with threat to the organism, and processed in partly overlapping brain networks. Participants saw cues predicting the unpleasantness (high/low) and the modality (pain/disgust) of upcoming thermal or olfactory stimulations, and rated the associated unpleasantness after stimuli delivery. Results showed that identical thermal stimuli were perceived as more unpleasant when preceded by cues threatening about high (as opposed to low) pain. A similar expectancy effect was found for olfactory disgust. Critically, cross-modal expectancy effects were observed on inconsistent trials when thermal stimuli were preceded by high-disgust cues or olfactory stimuli preceded by high-pain cues. However, these effects were stronger in consistent than inconsistent conditions. Taken together, our results suggest that expectation of an unpleasant event elicits representations of both its modality-specific properties and its aversive consequences. PMID:26631975
An alarm pheromone reduces ventral tegmental area-nucleus accumbens shell responsivity.
Gutiérrez-García, Ana G; Contreras, Carlos M; Saldivar-Lara, Mauricio
2018-06-21
2-Heptanone (methyl n-amyl ketone) is a ketone that produces alarm reactions in insects (e.g., bees and ants). As an olfactory stimulus, 2-heptanone produces anxiety reactions in the short term and despair in the long term in rodent models. Among the anatomical connections of the olfactory system that integrate behavioral responses, connections between the amygdala and nucleus accumbens are important, which in turn form a circuit with the ventral tegmental area (VTA). 2-Heptanone increases the firing rate of amygdala neurons without participation of the vomeronasal organ. The olfactory amygdala-VTA-nucleus accumbens circuit may integrate defensive behaviors, but the possible actions of 2-heptanone on the responsivity of VTA-nucleus accumbens connections have not yet been explored. In the present study, multiunit activity recordings were obtained in adult Wistar rats from the core and shell subregions of the nucleus accumbens during electrical stimulation of the VTA under basal conditions and later during simultaneous stimulation of the VTA and olfactory exposure to 2-heptanone. 2-Heptanone reduced the responsivity of the VTA-nucleus accumbens shell but did not influence the responsivity of the VTA-nucleus accumbens core. The lower VTA-nucleus accumbens shell excitability may be related to a primary defensive warning when exposed to an alarm pheromone. Copyright © 2018 Elsevier B.V. All rights reserved.
Predators Are Attracted to the Olfactory Signals of Prey
Hughes, Nelika K.; Price, Catherine J.; Banks, Peter B.
2010-01-01
Background Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking. Methodology/Principal Findings To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals. Conclusions/Significance This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not. PMID:20927352
Effects of Different Anesthetics on Oscillations in the Rat Olfactory Bulb
Li, Anan; Zhang, Lei; Liu, Min; Gong, Ling; Liu, Qing; Xu, Fuqiang
2012-01-01
Different types of oscillations in the olfactory bulb (OB), including θ (1 to 4 and 5 to 12 Hz), β (13 to 30 Hz), and γ oscillations (31 to 64 and 65 to 90 Hz), are important in olfactory information processing and olfactory-related functions and have been investigated extensively in recent decades. The awake and anesthetized states, 2 different brain conditions, are used widely in electrophysiologic studies of OB. Chloral hydrate, pentobarbital, and urethane are commonly used anesthetics in these studies. However, the influence of these anesthetics on the oscillations has not been reported. In the present study, we recorded the local field potential (LFP) in the OB of rats that were freely moving or anesthetized with these agents. Chloral hydrate and pentobarbital had similar effects: they slightly affected the power of θ oscillations; significantly increased the power of β oscillations; significantly decreased the power of γ oscillations, and showed similar recovery of γ oscillations. Urethane had very different effects: it significantly increased oscillations at 1 to 4 Hz but decreased those at 5 to 12 Hz, decreased β and γ oscillations, and showed no overt recovery in γ oscillations. These results provide experimental evidence of different effects of various anesthetics on OB oscillations and suggest that the choice of anesthetic should consider the experimental application. PMID:23043811
Kjeldmand, Luna; Salazar, Laura Teresa Hernandez; Laska, Matthias
2011-01-01
Using a three-alternative forced-choice ascending staircase procedure, we determined olfactory detection thresholds in 20 human subjects for seven aromatic aldehydes and compared them to those of four spider monkeys tested in parallel using an operant conditioning paradigm. With all seven odorants, both species detected concentrations <1 ppm, and with several odorants single individuals of both species even discriminated concentrations <1 ppb from the solvent. No generalizable species differences in olfactory sensitivity were found despite marked differences in neuroanatomical and genetic features. The across-odorant patterns of sensitivity correlated significantly between humans and spider monkeys, and both species were more sensitive to bourgeonal than to lilial, cyclamal, canthoxal, helional, lyral, and 3-phenylpropanal. No significant correlation between presence/absence of an oxygen-containing moiety attached to the benzene ring or presence/absence of an additional alkyl group next to the functional aldehyde group, and olfactory sensitivity was found in any of the species. However, the presence of a tertiary butyl group in para position (relative to the functional aldehyde group) combined with a lack of an additional alkyl group next to the functional aldehyde group may be responsible for the finding that both species were most sensitive to bourgeonal.
Zucco, Gesualdo M; Bollini, Fabiola
2011-12-30
Olfactory deficits, in detection, recognition and identification of odorants have been documented in ageing and in several neurodegenerative and psychiatric conditions. However, olfactory abilities in Major Depressive Disorder (MDD) have been less investigated, and available studies have provided inconsistent results. The present study assessed odour recognition memory and odour identification in two groups of 12 mild MDD patients (M age 41.3, range 25-57) and 12 severe MDD patients (M age, 41.9, range 23-58) diagnosed according to DSM-IV criteria and matched for age and gender to 12 healthy normal controls. The suitability of olfactory identification and recognition memory tasks as predictors of the progression of MDD was also addressed. Data analyses revealed that Severe MDD patients performed significantly worse than Mild MDD patients and Normal controls on both tasks, with these last groups not differing significantly from one another. The present outcomes are consistent with previous studies in other domains which have shown reliable, although not conclusive, impairments in cognitive function, including memory, in patients with MDD, and highlight the role of olfactory identification and recognition tasks as an important additional tool to discriminate between patients characterised by different levels of severity of MDD. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gagliardo, Anna; Ioalè, Paolo; Filannino, Caterina; Wikelski, Martin
2011-01-01
A large body of evidence has shown that anosmic pigeons are impaired in their navigation. However, the role of odours in navigation is still subject to debate. While according to the olfactory navigation hypothesis homing pigeons possess a navigational map based on the distribution of environmental odours, the olfactory activation hypothesis proposes that odour perception is only needed to activate a navigational mechanism based on cues of another nature. Here we tested experimentally whether the perception of artificial odours is sufficient to allow pigeons to navigate, as expected from the olfactory activation hypothesis. We transported three groups of pigeons in air-tight containers to release sites 53 and 61 km from home in three different olfactory conditions. The Control group received natural environmental air; both the Pure Air and the Artificial Odour groups received pure air filtered through an active charcoal filter. Only the Artificial Odour group received additional puffs of artificial odours until release. We then released pigeons while recording their tracks with 1 Hz GPS data loggers. We also followed non-homing pigeons using an aerial data readout to a Cessna plane, allowing, for the first time, the tracking of non-homing homing pigeons. Within the first hour after release, the pigeons in both the Artificial Odour and the Pure Air group (receiving no environmental odours) showed impaired navigational performances at each release site. Our data provide evidence against an activation role of odours in navigation, and document that pigeons only navigate well when they perceive environmental odours.
Yokota, Satoshi; Hori, Hiroshi; Umezawa, Masakazu; Kubota, Natsuko; Niki, Rikio; Yanagita, Shinya; Takeda, Ken
2013-01-01
There is an emerging concern that particulate air pollution increases the risk of cranial nerve disease onset. Small nanoparticles, mainly derived from diesel exhaust particles reach the olfactory bulb by their nasal depositions. It has been reported that diesel exhaust inhalation causes inflammation of the olfactory bulb and other brain regions. However, these toxicological studies have not evaluated animal rearing environment. We hypothesized that rearing environment can change mice phenotypes and thus might alter toxicological study results. In this study, we exposed mice to diesel exhaust inhalation at 90 µg/m3, 8 hours/day, for 28 consecutive days after rearing in a standard cage or environmental enrichment conditions. Microarray analysis found that expression levels of 112 genes were changed by diesel exhaust inhalation. Functional analysis using Gene Ontology revealed that the dysregulated genes were involved in inflammation and immune response. This result was supported by pathway analysis. Quantitative RT-PCR analysis confirmed 10 genes. Interestingly, background gene expression of the olfactory bulb of mice reared in a standard cage environment was changed by diesel exhaust inhalation, whereas there was no significant effect of diesel exhaust exposure on gene expression levels of mice reared with environmental enrichment. The results indicate for the first time that the effect of diesel exhaust exposure on gene expression of the olfactory bulb was influenced by rearing environment. Rearing environment, such as environmental enrichment, may be an important contributive factor to causation in evaluating still undefined toxic environmental substances such as diesel exhaust. PMID:23940539
Russo, Cristina; Russo, Antonella; Pellitteri, Rosalia; Stanzani, Stefania
2017-07-13
Feeding is a process controlled by a complex of associations between external and internal stimuli. The processes that involve learning and memory seem to exert a strong control over appetite and food intake, which is modulated by a gastrointestinal hormone, Ghrelin (Ghre). Recent studies claim that Ghre is involved in cognitive and neurobiological mechanisms that underlie the conditioning of eating behaviors. The expression of Ghre increases in anticipation of food intake based on learned behaviors. The hippocampal Ghre-containing neurons neurologically influence the orexigenic hypothalamus and consequently the learned feeding behavior. The CA1 field of Ammon's horn of the hippocampus (H-CA1) constitutes the most important neural substrate to control both appetitive and ingestive behavior. It also innervates amygdala regions that in turn innervate the hypothalamus. A recent study also implies that Ghre effects on cue-potentiated feeding behavior occur, at the least, via indirect action on the amygdala. In the present study, we investigate the neural substrates through which endogenous Ghre communicates conditioned appetite and feeding behavior within the CNS. We show the existence of a neural Ghre dependent pathway whereby peripherally-derived Ghre activates H-CA1 neurons, which in turn activate Ghre-expressing hypothalamic and amygdaloid neurons to stimulate appetite and feeding behavior. To highlight this pathway, we use two fluorescent retrograde tracers (Fluoro Gold and Dil) and immunohistochemical detection of Ghre expression in the hippocampus. Triple fluorescent-labeling has determined the presence of H-CA1 Ghre-containing collateralized neurons that project to the hypothalamus and amygdala monosynaptically. We hypothesize that H-Ghre-containing neurons in H-CA1 modulate food-intake behavior through direct pathways to the arcuate hypothalamic nucleus and medial amygdaloid nucleus. Copyright © 2017 Elsevier B.V. All rights reserved.
Marsh, Channa E; Green, Daniel J; Naylor, Louise H; Guelfi, Kym J
2017-09-01
Chocolate has a reputation for contributing to weight gain due to its high fat, sugar and calorie content. However, the effect of varying concentrations of cocoa in chocolate on energy intake and appetite is not clear. To compare the acute effect of consuming an isocaloric dose of dark, milk and white chocolate on subsequent energy intake, appetite and mood in postmenopausal women. Fourteen healthy postmenopausal women (57.6 ± 4.8yr) attended an introductory session followed by three experimental trials performed in a counterbalanced order at a standardised time of day, each separated by one week. Ad libitum energy intake, perceived appetite, mood and appetite-related peptides were assessed in response to consumption of 80% cocoa [dark chocolate], 35% cocoa [milk chocolate] and cocoa butter [white chocolate] (2099 kJ), prepared from a single-origin cacao bean. Ad libitum energy intake was significantly lower following dark (1355 ± 750 kJ) compared with both milk (1693 ± 969 kJ; P = 0.008) and white (1842 ± 756 kJ; P = 0.001) chocolate consumption. Blood glucose and insulin concentrations were transiently elevated in response to white and milk chocolate consumption compared with the dark chocolate (P < 0.05), while pancreatic polypeptide was elevated in response to higher cocoa content chocolate (dark and milk) compared with white chocolate (P < 0.05). No differences in active ghrelin or leptin were observed between conditions, nor was mood altered between conditions (P > 0.05). Dark chocolate attenuates subsequent food intake in postmenopausal women, compared to the impact of milk and white chocolate consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maraki, M; Tsofliou, F; Pitsiladis, Y P; Malkova, D; Mutrie, N; Higgins, S
2005-12-01
This study aimed to investigate the acute effects of a single exercise class on appetite sensations, energy intake and mood, and to determine if there was a time of day effect. Twelve healthy, young, normal weight females, who were non-regular exercisers, participated in four trials: morning control, morning exercise, evening control and evening exercise. Exercise trials were a one-hour class of aerobic and muscle conditioning exercise of varying intensities, to music. Control trials were a one-hour rest. Ratings of perceived exertion were significantly greater during the warm-up and muscle conditioning parts of the morning exercise trial compared to those of the evening exercise trial. Although both exercise trials, compared to control trials, produced an increase in appetite sensations, they did not alter energy intake and produced a decrease in 'relative' energy intake. In relation to mood, both exercise trials increased positive affect and decreased negative affect. These results suggest that a single exercise class, representative of that offered by many sports centres, regardless of whether it is performed in the morning or evening produces a short-term negative energy balance and improves mood in normal weight women. However, when this type of exercise was performed in the morning it was perceived to require more effort.
... suspension is used to treat loss of appetite, malnutrition, and severe weight loss in patients with acquired ... Megestrol is also sometimes used to treat malnutrition in patients with ... called the prostate), endometriosis (condition in which the type of tissue ...
Clostridium Difficile Infections
Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Loss of appetite Nausea Abdominal pain or tenderness C. difficile is more common in people who need ...
The influence of CS-US interval on several different indices of learning in appetitive conditioning
Delamater, Andrew R.; Holland, Peter C.
2010-01-01
Four experiments examined the effects of varying the CS-US interval (and US density) on learning in an appetitive magazine approach task with rats. Learning was assessed with conditioned response (CR) measures, as well as measures of sensory-specific stimulus-outcome associations (Pavlovian-instrumental transfer, potentiated feeding, and US devaluation). The results from these studies indicate that there exists an inverse relation between CS-US interval and magazine approach CRs, but that sensory-specific stimulus-outcome associations are established over a wide range of relatively long, but not short, CS-US intervals. These data suggest that simple CR measures provide us with different information about what is learned than measures of the specific stimulus-outcome association, and that time is a more critical variable for the former than latter component of learning. PMID:18426304
Tomie, Arthur; Tirado, Aidaluz D; Yu, Lung; Pohorecky, Larissa A
2004-08-12
Pavlovian autoshaping procedures provide for pairings of a small object conditioned stimulus (CS) with a rewarding substance unconditioned stimulus (US), resulting in the acquisition of complex sequences of CS-directed skeletal-motor responses or autoshaping conditioned responses (CRs). Autoshaping procedures induce higher post-session levels of corticosterone than in controls receiving CS and US randomly, and the enhanced post-session corticosterone levels have been attributed to the appetitive or arousal-inducing effects of autoshaping procedures. Enhanced corticosterone release can be induced by aversive stimulation or stressful situations, where it is often accompanied by higher levels of norepinephrine (NE) and serotonin (5-HT) in prefrontal cortex (PFC) but not in striatum (ST). Effects of autoshaping procedures on post-session corticosterone levels, NE contents in PFC, and 5-HT contents in PFC and ST were investigated in male Long-Evans rats. Post-session blood samples revealed higher corticosterone levels in the CS-US Paired group (n = 46) than in the CS-US Random control group (n = 21), and brain samples revealed higher levels of PFC NE and 5-HT in CS-US Paired group. Striatal 5-HT levels were unaltered by the autoshaping procedures. Autoshaping procedures provide for appetitive stimulation and induce an arousal-like state, as well as simultaneous stress-like changes in plasma corticosterone and monoamine levels in PFC. Autoshaping, therefore, may be useful for the study of endocrine and central processes associated with appetitive conditions.
Singru, Praful S; Sakharkar, Amul J; Subhedar, Nishikant
2003-07-11
The aim of the present study is to explore the distribution of nitric oxide synthase in the olfactory system of an adult teleost, Oreochromis mossambicus using neuronal nitric oxide synthase (nNOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry methods. Intense nNOS immunoreactivity was noticed in several olfactory receptor neurons (ORNs), in their axonal extensions over the olfactory nerve and in some basal cells of the olfactory epithelium. nNOS containing fascicles of the ORNs enter the bulb from its rostral pole, spread in the olfactory nerve layer in the periphery of the bulb and display massive innervation of the olfactory glomeruli. Unilateral ablation of the olfactory organ resulted in dramatic loss of nNOS immunoreactivity in the olfactory nerve layer of the ipsilateral bulb. In the olfactory bulb of intact fish, some granule cells showed intense immunoreactivity; dendrites arising from the granule cells could be traced to the glomerular layer. Of particular interest is the occurrence of nNOS immunoreactivity in the ganglion cells of the nervus terminalis. nNOS containing fibers were also encountered in the medial olfactory tracts as they extend to the telencephalon. The NADPHd staining generally coincides with that of nNOS suggesting that it may serve as a marker for nNOS in the olfactory system of this fish. However, mismatch was encountered in the case of mitral cells, while all are nNOS-negative, few were NADPHd positive. The present study for the first time revealed the occurrence of nNOS immunoreactivity in the ORNs of an adult vertebrate and suggests a role for nitric oxide in the transduction of odor stimuli, regeneration of olfactory epithelium and processing of olfactory signals.
Olfactory epithelium influences the orientation of mitral cell dendrites during development.
López-Mascaraque, Laura; García, Concepción; Blanchart, Albert; De Carlos, Juan A
2005-02-01
We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium. Copyright 2004 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Lee, Hongjoo J.; Gallagher, Michela; Holland, Peter C.
2010-01-01
The central amygdala nucleus (CeA) plays a critical role in cognitive processes beyond fear conditioning. For example, intact CeA function is essential for enhancing attention to conditioned stimuli (CSs). Furthermore, this enhanced attention depends on the CeA's connections to the nigrostriatal system. In the current study, we examined the role…
[Dietary factors and their relation to appetite in children under two years with mild malnutrition].
Quijada, Mariana Martínez; Gutiérrez, María Luisa Alvarez
2012-06-01
Malnutrition is conditioned by a series of factors, among them the dietary factors, which include appetite, eating behaviors and habits. In order to assess these factors, the following objective was pursued: describe the dietary factors and their relation to appetite in children under two years of age with mild malnutrition. A correlational study was conducted. The sample consisted of all children under two years of age (n = 168) diagnosed with primary (mild) malnutrition, who attended consultation at the Centro de Atención Nutricional Infantil Antímano, CANIA, during the period 2000-2008. The results showed intake of energy and macronutrients was lower than the individual requirement; iron intake < 85% of the requirement, in accordance with the Recommended Dietary Allowances (RDA) in over 50% of the sample; weekly consumption of vegetables (57%) and miscellaneous (66%) was inadequate; inadequate intake of formula and whole milk in more than 60%; 9% were exclusively breastfed during the first six months; 64% lacked a regular eating place; in child-caregiver interaction during mealtimes, more than half of the children showed rebellious behavior and caregivers were permissive. Protein adequacy, vegetable and whole milk consumption frequency, preparation type, identification of refusals and preferences, place and duration of meals, and child-caregiver interaction at mealtimes were significantly associated with appetite; if we consider this last one as a guide and we try to modify inadequate eating behaviors and habits, we will generate an impact over the child appetite that could improve the food consumption and prevent malnutrition.
Zou, Junhui; Pan, Yung-Wei; Wang, Zhenshan; Chang, Shih-Yu; Wang, Wenbin; Wang, Xin; Tournier, Cathy; Storm, Daniel R.; Xia, Zhengui
2012-01-01
ERK5 MAP kinase is highly expressed in the developing nervous system and has been implicated in promoting the survival of immature neurons in culture. However, its role in the development and function of the mammalian nervous system has not been established in vivo. Here, we report that conditional deletion of the erk5 gene in mouse neural stem cells during development reduces the number of GABAergic interneurons in the main olfactory bulb (OB). Our data suggest that this is due to a decrease in proliferation and an increase in apoptosis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of ERK5 mutant mice. Interestingly, ERK5 mutant mice have smaller OB and are impaired in odor discrimination between structurally similar odorants. We conclude that ERK5 is a novel signaling pathway regulating developmental OB neurogenesis and olfactory behavior. PMID:22442076
NASA Astrophysics Data System (ADS)
Kim, Daesan; Jin, Hye; Lee, San; Kim, Tae; Park, Juhun; Song, Hyun; Park, Tai; Hong, Seunghun
2013-03-01
We have developed a nanovesicle-based bioelectronic nose (NBN) that could mimic the receptor-mediated signal transmission of human olfactory systems and recognize a specific odorant. The NBN was comprised of a single-walled carbon nanotube (CNT)-based field effect transistor and cell-derived nanovesicles containing human olfactory receptors and calcium ion signal pathways. Importantly, the NBN took advantages of cell signal pathways for sensing signal amplification. It enabled ~100 times higher sensitivity than that of previous bioelectronic noses based on only olfactory receptor protein and CNT transistors. The NBN sensors exhibited a high sensitivity of 1 fM detection limit and a human-like selectivity with single-carbon-atomic resolution. Furthermore, these sensors could mimic a receptor-mediated cellular signal transmission in live cells. This versatile sensor platform should be useful for the study of molecular recognition and biological processes on cell membranes and also for various practical applications such as food conditioning and medical diagnostics.
Chen, Ben; Zhong, Xiaomei; Mai, Naikeng; Peng, Qi; Wu, Zhangying; Ouyang, Cong; Zhang, Weiru; Liang, Wanyuan; Wu, Yujie; Liu, Sha; Chen, Lijian; Ning, Yuping
2018-03-15
Late-life depression patients are at a high risk of developing Alzheimer's disease, and diminished olfactory identification is an indicator in early screening for Alzheimer's disease in the elderly. However, whether diminished olfactory identification is associated with risk of developing Alzheimer's disease in late-life depression patients remains unclear. One hundred and twenty-five late-life depression patients, 50 Alzheimer's disease patients, and 60 normal controls were continuously recruited. The participants underwent a clinical evaluation, olfactory test, neuropsychological assessment, and neuroimaging assessment. The olfactory identification impairment in late-life depression patients was milder than that in Alzheimer's disease patients. Diminished olfactory identification was significantly correlated with worse cognitive performance (global function, memory language, executive function, and attention) and reduced grey matter volume (olfactory bulb and hippocampus) in the late-life depression patients. According to a multiple linear regression analysis, olfactory identification was significantly associated with the memory scores in late-life depression group (B=1.623, P<.001). The late-life depression with olfactory identification impairment group had worse cognitive performance (global, memory, language, and executive function) and more structural abnormalities in Alzheimer's disease-related regions than the late-life depression without olfactory identification impairment group, and global cognitive function and logical memory in the late-life depression without olfactory identification impairment group was intact. Reduced volume observed in many areas (hippocampus, precuneus, etc.) in the Alzheimer's disease group was also observed in late-life depression with olfactory identification impairment group but not in the late-life depression without olfactory identification impairment group. The patterns of cognitive impairment and structural abnormalities in late-life depression with olfactory identification impairment patients were similar to those in Alzheimer's disease; olfactory identification may help identify late-life depression patients who are at a high risk of developing Alzheimer's disease.
Zabel, R; Ash, S; King, N; Bauer, J
2009-08-01
Poor appetite is a marker of morbidity and mortality in haemodialysis patients, making it an important area for research. Visual analogue scales (VAS) can capture a range of subjective sensations related to appetite (such as hunger, desire to eat or fullness), but have not been commonly used to measure appetite in dialysis patients. The present study aimed to explore the association between retrospective ratings of appetite using VAS and a range of clinical variables, as well as biomarkers of appetite in haemodialysis patients. Twenty-eight haemodialysis patients [mean age 61 +/- 17 years, 50% male, median dialysis vintage 19.5 (4-101) months] rated their appetite using VAS for hunger, fullness and desire to eat and a five-point categorical scale measuring general appetite. Blood levels of the appetite peptides leptin, ghrelin and peptide YY were also measured. Hunger ratings measured by VAS were significantly (P < 0.05) correlated with a range of clinical, nutritional and inflammatory markers: age (r = -0.376), co-morbidities, (r = -0.380) Patient-Generated Subjective Global Assessment score (r = -0.451), weight (r = -0.375), fat-free mass (r = -0.435), C-reactive protein (r = -0.383) and intercellular adhesion molecule (r = -0.387). There was a consistent relationship between VAS and appetite on a five-point categorical scale for questions of hunger, and a similar trend for desire to eat, but not for fullness. Neither method for measuring subjective appetite correlated with appetite peptides. Retrospective ratings of hunger on a VAS are associated with a range of clinical variables and further studies are warranted to support their use as a method for measuring appetite in dialysis patients.
Fluctuating olfactory sensitivity and distorted odor perception in allergic rhinitis.
Apter, A J; Gent, J F; Frank, M E
1999-09-01
To characterize the relationship between allergic rhinitis, the severity and duration of nasal disease, olfactory function, and self-reported olfactory symptoms, including fluctuations or distortions in odor perception. Assessment of olfactory function and symptoms of 90 patients with allergic rhinitis. A clinic of a university teaching hospital and research facility. Sixty patients who presented to the Taste and Smell Clinic who had positive allergy test results and 30 patients who presented to the Allergy-Immunology Clinic. The Taste and Smell Clinic patients were grouped by nasal-sinus disease status (30 without chronic rhinosinusitis or nasal polyps, 14 with chronic rhinosinusitis but without polyps, and 16 with nasal polyps). Subjective olfactory symptom questionnaire and objective olfactory function tests. The Allergy-Immunology Clinic patients were diagnosed as being normosmic and the Taste and Smell Clinic patients as being hyposmic or anosmic with olfactory loss that increased significantly with nasal-sinus disease severity. Comparisons with normative data confirm that olfactory scores observed in all groups were significantly lower than expected because of the aging process alone. The self-reported duration of olfactory loss increased significantly with nasal-sinus disease severity. The Taste and Smell Clinic patients without chronic rhinosinusitis or nasal polyps reported the greatest incidence of olfactory distortions and olfactory loss associated with upper respiratory tract infections. There appears to be a continuum of duration and severity of olfactory loss in allergic rhinitis that parallels increasing severity of nasal-sinus disease. As a result of the increased frequency of respiratory infection associated with allergic rhinitis, these patients are at risk for damage to the olfactory epithelium.
Chemosensory interaction: acquired olfactory impairment is associated with decreased taste function.
Landis, Basile N; Scheibe, Mandy; Weber, Cornelia; Berger, Robert; Brämerson, Annika; Bende, Mats; Nordin, Steven; Hummel, Thomas
2010-08-01
Olfaction, taste and trigeminal function are three distinct modalities. However, in daily life they are often activated concomitantly. In health and disease, it has been shown that in two of these senses, the trigeminal and olfactory senses, modification of one sense leads to changes in the other sense and vice versa. The objective of the study was to investigate whether and (if so) how, the third modality, taste, is influenced by olfactory impairment. We tested 210 subjects with normal (n = 107) or impaired (n = 103) olfactory function for their taste identification capacities. Validated tests were used for olfactory and gustatory testing (Sniffin' Sticks, Taste Strips). In an additional experiment, healthy volunteers underwent reversible olfactory cleft obstruction to investigate short-time changes of gustatory function after olfactory alteration. Mean gustatory identification (taste strip score) for the subjects with impaired olfaction was 19.4 +/- 0.6 points and 22.9 +/- 0.5 points for those with normal olfactory function (t = 4.6, p < 0.001). The frequencies of both, smell and taste impairments interacted significantly (Chi(2), F = 16.4, p < 0.001), and olfactory and gustatory function correlated (r (210) = 0.30, p < 0.001). Neither age nor olfactory impairment cause effects interfered with this olfactory-gustatory interaction. In contrast, after short-lasting induced olfactory decrease, gustatory function remained unchanged. The present study suggests that longstanding impaired olfactory function is associated with decreased gustatory function. These findings seem to extend previously described mutual chemosensory interactions also to smell and taste. It further raises the question whether chemical senses in general decrease mutually after acquired damage.
Layman, W.S.; McEwen, D.P.; Beyer, L.A.; Lalani, S.R.; Fernbach, S.D.; Oh, E.; Swaroop, A.; Hegg, C.C.; Raphael, Y.; Martens, J.R.; Martin, D.M.
2009-01-01
Mutations in CHD7, a chromodomain gene, are present in a majority of individuals with CHARGE syndrome, a multiple anomaly disorder characterized by ocular Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital hypoplasia and Ear anomalies. The clinical features of CHARGE syndrome are highly variable and incompletely penetrant. Olfactory dysfunction is a common feature in CHARGE syndrome and has been potentially linked to primary olfactory bulb defects, but no data confirming this mechanistic link have been reported. On the basis of these observations, we hypothesized that loss of Chd7 disrupts mammalian olfactory tissue development and function. We found severe defects in olfaction in individuals with CHD7 mutations and CHARGE, and loss of odor evoked electro-olfactogram responses in Chd7 deficient mice, suggesting reduced olfaction is due to a dysfunctional olfactory epithelium. Chd7 expression was high in basal olfactory epithelial neural stem cells and down-regulated in mature olfactory sensory neurons. We observed smaller olfactory bulbs, reduced olfactory sensory neurons, and disorganized epithelial ultrastructure in Chd7 mutant mice, despite apparently normal functional cilia and sustentacular cells. Significant reductions in the proliferation of neural stem cells and regeneration of olfactory sensory neurons in the mature Chd7Gt/+ olfactory epithelium indicate critical roles for Chd7 in regulating neurogenesis. These studies provide evidence that mammalian olfactory dysfunction due to Chd7 haploinsufficiency is linked to primary defects in olfactory neural stem cell proliferation and may influence olfactory bulb development. PMID:19279158
Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"
ERIC Educational Resources Information Center
Amano, Hisayuki; Maruyama, Ichiro N.
2011-01-01
The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…
SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila.
Martelli, Carlotta; Pech, Ulrike; Kobbenbring, Simon; Pauls, Dennis; Bahl, Britta; Sommer, Mirjam Vanessa; Pooryasin, Atefeh; Barth, Jonas; Arias, Carmina Warth Perez; Vassiliou, Chrystalleni; Luna, Abud Jose Farca; Poppinga, Haiko; Richter, Florian Gerhard; Wegener, Christian; Fiala, André; Riemensperger, Thomas
2017-07-11
Animal behavior is, on the one hand, controlled by neuronal circuits that integrate external sensory stimuli and induce appropriate motor responses. On the other hand, stimulus-evoked or internally generated behavior can be influenced by motivational conditions, e.g., the metabolic state. Motivational states are determined by physiological parameters whose homeostatic imbalances are signaled to and processed within the brain, often mediated by modulatory peptides. Here, we investigate the regulation of appetitive and feeding behavior in the fruit fly, Drosophila melanogaster. We report that four neurons in the fly brain that release SIFamide are integral elements of a complex neuropeptide network that regulates feeding. We show that SIFamidergic cells integrate feeding stimulating (orexigenic) and feeding suppressant (anorexigenic) signals to appropriately sensitize sensory circuits, promote appetitive behavior, and enhance food intake. Our study advances the cellular dissection of evolutionarily conserved signaling pathways that convert peripheral metabolic signals into feeding-related behavior. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
McFarlane, Matthew R.; Brown, Michael S.; Goldstein, Joseph L.; Zhao, Tong-Jin
2014-01-01
SUMMARY Injection of the peptide hormone ghrelin stimulates food intake in mice and humans. However, mice born without ghrelin demonstrate no significant loss of appetite. This paradox suggests either that compensation develops in mice born without ghrelin or that ghrelin is not essential for appetite control. To distinguish these possibilities, we generated transgenic mice (Ghrl-DTR) that express the diphtheria toxin receptor in ghrelin-secreting cells. Injection of diphtheria toxin in adulthood ablated ghrelin cells and reduced plasma ghrelin by 80-95%. Ghrelin cell-ablated mice exhibited no loss of appetite or body weight and no resistance to a high fat diet. To stimulate food intake in mice by ghrelin injection, we had to raise plasma levels many-fold above normal. Like germline ghrelin-deficient mice, the ghrelin cell-ablated mice developed profound hypoglycemia when subjected to prolonged calorie restriction, confirming that ghrelin acts to maintain blood glucose under famine conditions. PMID:24836560
Inactivation of the Ventrolateral Orbitofrontal Cortex Impairs Flexible Use of Safety Signals.
Sarlitto, Mary C; Foilb, Allison R; Christianson, John P
2018-05-21
Survival depends on adaptation to shifting environmental risks and opportunities. Regarding risks, the mechanisms which permit acquisition, recall, and flexible use of aversive associations is poorly understood. Drawing on the evidence that the orbital frontal cortex is critical to integrating outcome expectancies with flexible appetitive behavioral responses, we hypothesized that OFC would contribute to behavioral flexibility within an aversive learning domain. We introduce a fear conditioning procedure in which adult male rats were presented with shock-paired conditioned stimulus (CS+) or a safety cue (CS-). In a recall test, rats exhibit greater freezing to the CS+ than the CS-. Temporary inactivation of the ventrolateral OFC with muscimol prior to conditioning did not affect later discrimination, but inactivation after learning and prior to recall impaired discrimination between safety and danger cues. This result complements prior research in the appetitive domain and suggests that the OFC plays a general role in behavioral flexibility regardless of the valence of the CS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Zhang, Zhou; Zhang, Bing; Wang, Xin; Zhang, Xin; Yang, Qing X; Qing, Zhao; Lu, Jiaming; Bi, Yan; Zhu, Dalong
2018-05-01
Type 2 diabetes is reported to be associated with olfactory dysfunction and cognitive decline. However, whether and how olfactory neural circuit abnormalities involve cognitive impairment in diabetes remains uncovered. This study thus aimed to investigate olfactory network alterations and the associations of odor-induced brain activity with cognitive and metabolic parameters in type 2 diabetes. Participants with normal cognition, including 51 patients with type 2 diabetes and 41 control subjects without diabetes, underwent detailed cognitive assessment, olfactory behavior tests, and odor-induced functional MRI measurements. Olfactory brain regions showing significantly different activation between the two groups were selected for functional connectivity analysis. Compared with the control subjects, patients with diabetes demonstrated significantly lower olfactory threshold score, decreased brain activation, and disrupted functional connectivity in the olfactory network. Positive associations of the disrupted functional connectivity with decreased neuropsychology test scores and reduced pancreatic function were observed in patients with diabetes. Notably, the association between pancreatic function and executive function was mediated by olfactory behavior and olfactory functional connectivity. Our results suggested the alteration of olfactory network is present before clinically measurable cognitive decrements in type 2 diabetes, bridging the gap between the central olfactory system and cognitive decline in diabetes. © 2018 by the American Diabetes Association.
Proteomic Analysis of the Human Olfactory Bulb.
Dammalli, Manjunath; Dey, Gourav; Madugundu, Anil K; Kumar, Manish; Rodrigues, Benvil; Gowda, Harsha; Siddaiah, Bychapur Gowrishankar; Mahadevan, Anita; Shankar, Susarla Krishna; Prasad, Thottethodi Subrahmanya Keshava
2017-08-01
The importance of olfaction to human health and disease is often underappreciated. Olfactory dysfunction has been reported in association with a host of common complex diseases, including neurological diseases such as Alzheimer's disease and Parkinson's disease. For health, olfaction or the sense of smell is also important for most mammals, for optimal engagement with their environment. Indeed, animals have developed sophisticated olfactory systems to detect and interpret the rich information presented to them to assist in day-to-day activities such as locating food sources, differentiating food from poisons, identifying mates, promoting reproduction, avoiding predators, and averting death. In this context, the olfactory bulb is a vital component of the olfactory system receiving sensory information from the axons of the olfactory receptor neurons located in the nasal cavity and the first place that processes the olfactory information. We report in this study original observations on the human olfactory bulb proteome in healthy subjects, using a high-resolution mass spectrometry-based proteomic approach. We identified 7750 nonredundant proteins from human olfactory bulbs. Bioinformatics analysis of these proteins showed their involvement in biological processes associated with signal transduction, metabolism, transport, and olfaction. These new observations provide a crucial baseline molecular profile of the human olfactory bulb proteome, and should assist the future discovery of biomarker proteins and novel diagnostics associated with diseases characterized by olfactory dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu
2013-01-15
Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidativemore » stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The olfactory antioxidant response is blocked by Nrf2 knockdown. ► Disruption of olfactory neurobehaviors is associated with Nrf2 knockdown. ► Nrf2 morphants show increased cell death and olfactory sensory neuron loss.« less
Food odors trigger an endocrine response that affects food ingestion and metabolism.
Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R
2015-08-01
Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.
Ghrelin: A link between memory and ingestive behavior
Hsu, Ted M.; Suarez, Andrea N.; Kanoski, Scott E.
2016-01-01
Feeding is a highly complex behavior that is influenced by learned associations between external and internal cues. The type of excessive feeding behavior contributing to obesity onset and metabolic deficit may be based, in part, on conditioned appetitive and ingestive behaviors that occur in response to environmental and/or interoceptive cues associated with palatable food. Therefore, there is a critical need to understand the neurobiology underlying learned aspects of feeding behavior. The stomach-derived “hunger” hormone, ghrelin, stimulates appetite and food intake and may function as an important biological substrate linking mnemonic processes with feeding control. The current review highlights data supporting a role for ghrelin in mediating the cognitive and neurobiological mechanisms that underlie conditioned feeding behavior. We discuss the role of learning and memory on food intake control (with a particular focus on hippocampal-dependent memory processes) and provide an overview of conditioned cephalic endocrine responses. A neurobiological framework is provided through which conditioned cephalic ghrelin secretion signals in neurons in the hippocampus, which then engage orexigenic neural circuitry in the lateral hypothalamus to express learned feeding behavior. PMID:27072509
Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E
2009-06-01
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
New perspectives on adolescent motivated behavior: attention and conditioning
Ernst, Monique; Daniele, Teresa; Frantz, Kyle
2011-01-01
Adolescence is a critical transition period, during which fundamental changes prepare the adolescent for becoming an adult. Heuristic models of the neurobiology of adolescent behavior have emerged, promoting the central role of reward and motivation, coupled with cognitive immaturities. Here, we bring focus to two basic sets of processes, attention and conditioning, which are essential for adaptive behavior. Using the dual-attention model developed by Corbetta and Shulman (2002), which identifies a stimulus-driven and a goal-driven attention network, we propose a balance that favors stimulus-driven attention over goal-driven attention in youth. Regarding conditioning, we hypothesize that stronger associations tend to be made between environmental cues and appetitive stimuli, and weaker associations with aversive stimuli, in youth relative to adults. An attention system geared to prioritize stimulus-driven attention, together with more powerful associative learning with appetitive incentives, contribute to shape patterns of adolescent motivated behavior. This proposed bias in attention and conditioning function could facilitate the impulsive, novelty-seeking and risk-taking behavior that is typical of many adolescents. PMID:21977221
Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.
2009-01-01
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects. PMID:19428502
Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion
2014-01-01
This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis. PMID:25403456
Drosophila fatty acid taste signals through the PLC pathway in sugar-sensing neurons.
Masek, Pavel; Keene, Alex C
2013-01-01
Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.
The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells
de Carlos, Juan A.
2012-01-01
The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546
Morphology of the olfactory system in the predatory mite Phytoseiulus persimilis.
van Wijk, Michiel; Wadman, Wytse J; Sabelis, Maurice W
2006-01-01
The predatory mite Phytoseiulus persimilis locates its prey, the two-spotted spider mite, by means of herbivore-induced plant volatiles. The olfactory response to this quantitatively and qualitatively variable source of information is particularly well documented. The mites perform this task with a peripheral olfactory system that consists of just five putative olfactory sensilla that reside in a dorsal field at the tip of their first pair of legs. The receptor cells innervate a glomerular olfactory lobe just ventral of the first pedal ganglion. We have made a 3D reconstruction of the caudal half of the olfactory lobe in adult females. The glomerular organization as well as the glomerular innervation appears conserved across different individuals. The adult females have, by approximation, a 1:1 ratio of olfactory receptor cells to olfactory glomeruli.
Perceived Appetite and Clinical Outcomes in Children with Chronic Kidney Disease
Ayestaran, Frank W.; Schneider, Michael F.; Kaskel, Frederick J.; Srivaths, Poyyapakkam R.; Seo-Mayer, Patricia W.; Moxey-Mims, Marva; Furth, Susan L.; Warady, Bradley A.; Greenbaum, Larry A.
2017-01-01
Background Children with chronic kidney disease (CKD) may have impaired caloric intake through a variety of mechanisms, with decreased appetite as a putative contributor. In adult CKD, decreased appetite has been associated with poor clinical outcomes. There is limited information about this relationship in pediatric CKD. Methods 879 participants of the Chronic Kidney Disease in Children (CKiD) study were studied. Self-reported appetite was assessed annually and categorized as very good, good, fair, or poor/very poor. The relationship between appetite and iohexol or estimated glomerular filtration rate (ieGFR), annual changes in anthropometrics z-scores, hospitalizations, emergency room visits, and quality of life were assessed. Results An ieGFR< 30 ml/min per 1.73m2 was associated with a 4.46 greater odds (95% confidence interval: 2.80, 7.09) of having a worse appetite than those with ieGFR >90. Appetite did not predict changes in height, weight, or BMI z-scores. Patients not reporting a very good appetite had more hospitalizations over the next year than those with a very good appetite. Worse appetite was significantly associated with lower parental and patient reported quality of life. Conclusions Self-reported appetite in children with CKD worsens with lower ieGFR and is correlated with clinical outcomes, including hospitalizations and quality of life. PMID:26857711
Perceived appetite and clinical outcomes in children with chronic kidney disease.
Ayestaran, Frank W; Schneider, Michael F; Kaskel, Frederick J; Srivaths, Poyyapakkam R; Seo-Mayer, Patricia W; Moxey-Mims, Marva; Furth, Susan L; Warady, Bradley A; Greenbaum, Larry A
2016-07-01
Children with chronic kidney disease (CKD) may have impaired caloric intake through a variety of mechanisms, with decreased appetite as a putative contributor. In adult CKD, decreased appetite has been associated with poor clinical outcomes. There is limited information about this relationship in pediatric CKD. A total of 879 participants of the Chronic Kidney Disease in Children (CKiD) study were studied. Self-reported appetite was assessed annually and categorized as very good, good, fair, or poor/very poor. The relationship between appetite and iohexol or estimated glomerular filtration rate (ieGFR), annual changes in anthropometrics z-scores, hospitalizations, emergency room visits, and quality of life were assessed. An ieGFR < 30 ml/min per 1.73 m(2) was associated with a 4.46 greater odds (95 % confidence interval: 2.80, 7.09) of having a worse appetite than those with ieGFR >90. Appetite did not predict changes in height, weight, or BMI z-scores. Patients not reporting a very good appetite had more hospitalizations over the next year than those with a very good appetite. Worse appetite was significantly associated with lower parental and patient reported quality of life. Self-reported appetite in children with CKD worsens with lower ieGFR and is correlated with clinical outcomes, including hospitalizations and quality of life.
Walla, Peter; Mayer, Dagmar; Deecke, Lüder; Lang, Wilfried
2005-01-01
Magnetic field changes related to face encoding were recorded in 20 healthy young participants. Faces had to be deeply encoded under four kinds of simultaneous nasal chemical stimulation. Neutral room air, phenyl ethyl alcohol (PEA, rose flavor), carbon dioxide (CO2, pain), and hydrogen sulfide (H2S, rotten eggs flavor) were used as chemical stimuli. PEA and H2S represented odor stimuli, whereas CO2 was used for trigeminal stimulation (pain sensation). After the encoding of faces, the respective recognition performances were tested focusing on recognition effects related to specific chemical stimulation during encoding. The number of correctly recognized faces (hits) varied between chemical conditions. PEA stimulation during face encoding significantly increased the number of hits compared to the control condition. H2S also led to an increased mean number of hits, whereas simultaneous CO2 administration during face encoding resulted in a reduction. Analysis of the physiological data revealed two latency regions of interest. Compared to the control condition, both olfactory stimulus conditions resulted in reduced activity components peaking at about 260 ms after stimulus onset, whereas CO2 produced a strongly pronounced enhanced activity component peaking at about 700 ms after stimulus onset. Both olfactory conditions elicited only weak enhanced activities at about 700 ms, and CO2 did not show any difference activity at 260 ms after stimulus onset compared to the control condition. It is concluded that the early activity differences represent subconscious olfactory information processing leading to enhanced memory performances irrespective of the hedonic value, at least if they are only subconsciously processed. The later activity is suggested to reflect conscious CO2 perception negatively affecting face encoding and therefore leading to reduced subsequent face recognition. We interpret that conscious processing of nasal chemical stimulation competes with deep face encoding with respect to cortical resources, whereas subconscious processing of nasal chemical stimulation does not.
Larsson, Maria; Hedner, Margareta; Papenberg, Goran; Seubert, Janina; Bäckman, Lars; Laukka, Erika J
2016-02-01
The neuroanatomical organization that underlies olfactory memory is different from that of other memory types. The present work examines olfactory memory in an elderly population-based sample (Swedish National Study on Aging and Care in Kungsholmen) aged 60-100 years (n = 2280). We used structural equation modeling to investigate whether olfactory memory in old age is best conceptualized as a distinct category, differentiated from episodic and semantic memory. Further, potential olfactory dedifferentiation and genetic associations (APOE) to olfactory function in late senescence were investigated. Results are in support of a 3-factor solution where olfactory memory, as indexed by episodic odor recognition and odor identification, is modeled separately from episodic and semantic memory for visual and verbal information. Increasing age was associated with poorer olfactory memory performance, and observed age-related deficits were further exacerbated for carriers of the APOE ε4 allele; these effects tended to be larger for olfactory memory compared to episodic and semantic memory pertaining to other sensory systems (vision, auditory). Finally, stronger correlations between olfactory and episodic memory, indicating dedifferentiation, were observed in the older age groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Olfactory discrimination predicts cognitive decline among community-dwelling older adults
Sohrabi, H R; Bates, K A; Weinborn, M G; Johnston, A N B; Bahramian, A; Taddei, K; Laws, S M; Rodrigues, M; Morici, M; Howard, M; Martins, G; Mackay-Sim, A; Gandy, S E; Martins, R N
2012-01-01
The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46–86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin' Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio=0.869; P<0.05; 95% confidence interval=0.764−0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia. PMID:22832962
Olfactory discrimination predicts cognitive decline among community-dwelling older adults.
Sohrabi, H R; Bates, K A; Weinborn, M G; Johnston, A N B; Bahramian, A; Taddei, K; Laws, S M; Rodrigues, M; Morici, M; Howard, M; Martins, G; Mackay-Sim, A; Gandy, S E; Martins, R N
2012-05-22
The presence of olfactory dysfunction in individuals at higher risk of Alzheimer's disease has significant diagnostic and screening implications for preventive and ameliorative drug trials. Olfactory threshold, discrimination and identification can be reliably recorded in the early stages of neurodegenerative diseases. The current study has examined the ability of various olfactory functions in predicting cognitive decline in a community-dwelling sample. A group of 308 participants, aged 46-86 years old, were recruited for this study. After 3 years of follow-up, participants were divided into cognitively declined and non-declined groups based on their performance on a neuropsychological battery. Assessment of olfactory functions using the Sniffin' Sticks battery indicated that, contrary to previous findings, olfactory discrimination, but not olfactory identification, significantly predicted subsequent cognitive decline (odds ratio = 0.869; P<0.05; 95% confidence interval = 0.764-0.988). The current study findings confirm previously reported associations between olfactory and cognitive functions, and indicate that impairment in olfactory discrimination can predict future cognitive decline. These findings further our current understanding of the association between cognition and olfaction, and support olfactory assessment in screening those at higher risk of dementia.
[How we smell and what it means to us: basic principles of the sense of smell].
Manzini, I; Frasnelli, J; Croy, I
2014-12-01
The origins of the sense of smell lie in the perception of environmental molecules and go back to unicellular organisms such as bacteria. Odors transmit a multitude of information about the chemical composition of our environment. The sense of smell helps people and animals with orientation in space, warns of potential threats, influences the choice of sexual partners, regulates food intake and influences feelings and social behavior in general. The perception of odors begins in sensory neurons residing in the olfactory epithelium that express G protein-coupled receptors, the so-called olfactory receptors. The binding of odor molecules to olfactory receptors initiates a signal transduction cascade that converts olfactory stimuli into electrical signals. These signals are then transmitted to the olfactory bulb, the first relay center in the olfactory pathway, via the axons of the sensory neurons. The olfactory information is processed in the bulb and then transferred to higher olfactory centers via axons of mitral cells, the bulbar projection neurons. This review describes the mechanisms involved in peripheral detection of odorants, outlines the further processing of olfactory information in higher olfactory centers and finally gives an overview of the overall significance of the ability to smell.
Disrupted Olfactory Integration in Schizophrenia: Functional Connectivity Study.
Kiparizoska, Sara; Ikuta, Toshikazu
2017-09-01
Evidence for olfactory dysfunction in schizophrenia has been firmly established. However, in the typical understanding of schizophrenia, olfaction is not recognized to contribute to or interact with the illness. Despite the solid presence of olfactory dysfunction in schizophrenia, its relation to the rest of the illness remains largely unclear. Here, we aimed to examine functional connectivity of the olfactory bulb, olfactory tract, and piriform cortices and isolate the network that would account for the altered olfaction in schizophrenia. We examined the functional connectivity of these specific olfactory regions in order to isolate other brain regions associated with olfactory processing in schizophrenia. Using the resting state functional MRI data from the Center for Biomedical Research Excellence in Brain Function and Mental Illness, we compared 84 patients of schizophrenia and 90 individuals without schizophrenia. The schizophrenia group showed disconnectivity between the anterior piriform cortex and the nucleus accumbens, between the posterior piriform cortex and the middle frontal gyrus, and between the olfactory tract and the visual cortices. The current results suggest functional disconnectivity of olfactory regions in schizophrenia, which may account for olfactory dysfunction and disrupted integration with other sensory modalities in schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Olfaction in the autism spectrum.
Galle, Sara A; Courchesne, Valérie; Mottron, Laurent; Frasnelli, Johannes
2013-01-01
The autism spectrum (AS) is characterised by enhanced perception in vision and audition, described by the enhanced perceptual functioning (EPF) model. This model predicts enhanced low-level (discrimination of psychophysical dimensions), and mid- and high-level (pattern detection and identification) perception. The EPF model is here tested for olfaction by investigating olfactory function in autistic and Asperger participants. Experiment 1 targeted higher-order olfactory processing by assessing olfactory identification in nine Asperger, ten autistic, and eleven typically developed individuals. Experiment 2 focused on low-level olfactory processing; we assessed odour detection thresholds and odour discrimination in five Asperger, five autistic, and five typically developed males. Olfactory identification was impaired in autistic participants relative to control and Asperger participants. Typical performance in low-level olfactory processing suggests that neural mechanisms involved in the perceptual phenotype of AS do not affect structures implicated in olfactory processing. Reduced olfactory identification is limited to autistic participants who displayed speech delay and may be due to a reduced facility to use verbal labels. The apparent absence of enhanced olfactory perception of AS participants distinguishes the olfactory system from the other sensory modalities and might be caused by the absence of an obligatory thalamic relay.
Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization
Polese, Gianluca; Bertapelle, Carla
2016-01-01
ABSTRACT The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP) and proliferating cell nuclear antigen (PCNA) we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens. PMID:27069253
Gao, Chong; Du, Qiaohui; Li, Wenting; Deng, Ruixia; Wang, Qi; Xu, Aimin; Shen, Jiangang
2018-04-19
Olfactory dysfunction is often accompanied with anxiety- and depressive-like behaviors in depressive patients. Impaired neurogenesis in hippocampus and subventricular zone (SVZ)-olfactory bulb (OB) contribute to anxiety- and depressive-like behaviors and olfactory dysfunctions. However, the underlying mechanisms of olfactory dysfunction remain unclear. Our previous study indicates that adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 2 (APPL2), could affect the activity and sensitivity of glucocorticoid receptor (GR) and mediate impaired hippocampal neurogenesis, which contribute the development of depression. In the present study, we further identified the roles of APPL2 in olfactory functions. APPL2 Tg mice displayed higher GR activity and less capacity of neurogenesis at olfactory system with less olfactory sensitivity than WT mice, indicating that APPL2 could be a potential therapeutic target for depression and olfactory deficits. We then studied the effects of baicalin, a medicinal herbal compound, on modulating APPL2/GR signaling pathway for promoting neurogenesis and antidepressant as well as improving olfactory functions. Baicalin treatment inhibited APPL2/GR signaling pathway and improved neurogenesis at SVZ, OB, and hippocampus in APPL2 Tg mice and chronic corticosterone-induced depression mouse model. Behavioral tests revealed that baicalin attenuated depressive- and anxiety-like behaviors and improve olfactory functions in the chronic depression mouse model and APPL2 Tg mice. Taken together, APPL2 could be a novel therapeutic target for improving depressant-related olfactory dysfunctions and baicalin could inhibit APPL2-mediated GR hyperactivity and promote adult neurogenesis, subsequently releasing depressive and anxiety symptoms and improving olfactory functions for antidepressant therapy.
Three Pillars for the Neural Control of Appetite.
Sternson, Scott M; Eiselt, Anne-Kathrin
2017-02-10
The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.
Exercise Is Associated with Lower Long-Term Risk of Olfactory Impairment in Older Adults
Schubert, Carla R.; Cruickshanks, Karen J.; Nondahl, David M.; Klein, Barbara EK; Klein, Ronald; Fischer, Mary E.
2013-01-01
Importance The prevalence of olfactory impairment is high in older adults and this decline in olfactory ability may pose health and safety risks, affect nutrition and decrease quality of life. It is important to identify modifiable risk factors to reduce the burden of olfactory impairment in aging populations. Objectives To determine if exercise is associated with the 10-year cumulative incidence of olfactory impairment. Design, Setting and Participants Observational longitudinal population-based Epidemiology of Hearing Loss Study. Participants without olfactory impairment (n=1611) were ages 53-97 years at baseline and were followed for up to ten years (1998-2010). Interventions None Main Outcome and Measures Olfaction was measured with the San Diego Odor Identification Test at three examinations (1998-2000, 2003-2005, 2009-2010) of the Epidemiology of Hearing Loss Study. The main outcome was the incidence of olfactory impairment five (2003-2005) or ten (2009-2010) years later and the association of baseline exercise with the long-term risk of developing olfactory impairment. Results The 10-year cumulative incidence of olfactory impairment was 27.6% (95% confidence interval =25.3, 29.9) and rates varied by age and sex; those who were older (Hazard Ratio =1.88, 95% Confidence Interval=1.74, 2.03, for every 5 years) or male (Hazard Ratio=1.27, 95% Confidence Interval=1.00, 1.61) had an increased risk of olfactory impairment. Participants who reported exercising at least once a week long enough to work up a sweat had a decreased risk of olfactory impairment (age and sex adjusted Hazard Ratio= 0.76, 95% CI= 0.60, 0.97). Increasing frequency of exercise was associated with decreasing risk of developing olfactory impairment (p for trend = 0.02). Conclusion and Relevance Regular exercise was associated with lower 10-year cumulative incidence of olfactory impairment. Older adults who exercise may be able to retain olfactory function with age. PMID:24135745
The role of olfaction throughout juvenile development: functional adaptations in elasmobranchs.
Schluessel, Vera; Bennett, Michael B; Bleckmann, Horst; Collin, Shaun P
2010-04-01
Seven elasmobranch species, a group known for their highly-developed sense of smell, were examined for developmental changes in the number of olfactory lamellae, the size of the surface area of the sensory olfactory epithelium and the mass of both the olfactory rosettes (primary input to the CNS), and the olfactory bulbs. Within each species, juveniles possessed miniature versions of the adult olfactory organs, visually not distinguishable from these and without any obvious structural differences (e.g., with respect to the number of lamellae and the extent of secondary folding) between differently sized individuals. The size of the olfactory organs was positively correlated with body length and body mass, although few species showed proportional size scaling. In Aetobatus narinari and Aptychotrema rostrata, olfactory structures increased in proportion to body size. With respect to the growth of the olfactory bulb, all species showed allometric but not proportional growth. Olfaction may be of particular importance to juveniles in general, which are often subjected to heavy predation rates and fierce inter/intraspecific competition. Accordingly, it would be advantageous to possess a fully functional olfactory system early on in development. Slow growth rates of olfactory structures could then be attributed to a greater reliance on other sensory systems with increasing age or simply be regarded as maintaining an already optimized olfactory system. (c) 2009 Wiley-Liss, Inc.
Garren, Madeleine V; Sexauer, Stephen B; Page, Terry L
2013-01-01
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.
Garren, Madeleine V.; Sexauer, Stephen B.; Page, Terry L.
2013-01-01
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning. PMID:23533587
High incidence of primary pulmonary hypertension associated with appetite suppressants in Belgium.
Delcroix, M; Kurz, X; Walckiers, D; Demedts, M; Naeije, R
1998-08-01
Primary pulmonary hypertension is a rare, progressive and incurable disease, which has been associated with the intake of appetite suppressant drugs. The importance of this association was evaluated in Belgium while this country still had no restriction on the prescription of appetite suppressants. Thirty-five patients with primary pulmonary hypertension and 85 matched controls were recruited over 32 months (1992-1994) in Belgium. Exposure to appetite-suppressants was assessed on the basis of hospital records and standardized interview. Twenty-three of the patients had previously taken appetite suppressants, mainly fenfluramines, as compared with only 5 of the controls (66 versus 6%, p<0.0001). Five patients died before the interview, all of them had taken appetite suppressants. In 8 patients the diagnosis of primary pulmonary hypertension was uncertain, 5 of them had taken appetite suppressants. The patients who had been exposed to appetite suppressants tended to be on average more severely ill, and to have a shorter median delay between onset of symptoms and diagnosis. A policy of unrestricted prescription of appetite suppressants may lead to a high incidence of associated primary pulmonary hypertension. Intake of appetite suppressants may accelerate the progression of the disease.
Olfactory receptor neuron profiling using sandalwood odorants.
Bieri, Stephan; Monastyrskaia, Katherine; Schilling, Boris
2004-07-01
The mammalian olfactory system can discriminate between volatile molecules with subtle differences in their molecular structures. Efforts in synthetic chemistry have delivered a myriad of smelling compounds of different qualities as well as many molecules with very similar olfactive properties. One important class of molecules in the fragrance industry are sandalwood odorants. Sandalwood oil and four synthetic sandalwood molecules were selected to study the activation profile of endogenous olfactory receptors when exposed to compounds from the same odorant family. Dissociated rat olfactory receptor neurons were exposed to the sandalwood molecules and the receptor activation studied by monitoring fluxes in the internal calcium concentration. Olfactory receptor neurons were identified that were specifically stimulated by sandalwood compounds. These neurons expressed olfactory receptors that can discriminate between sandalwood odorants with slight differences in their molecular structures. This is the first study in which an important class of perfume compounds was analyzed for its ability to activate endogenous olfactory receptors in olfactory receptor neurons.
Relationship between uninasal anatomy and uninasal olfactory ability.
Hornung, D E; Leopold, D A
1999-01-01
To examine the relationship between uninasal anatomy and olfactory ability. A stepwise analysis of variance was used to regress the logarithm of the percentage of correct responses on the Odorant Confusion Matrix (a measure of olfactory ability) against the logarithm of nasal volume measurements determined from computed tomographic scans. Nineteen patients with hyposmia whose olfactory losses were thought to be related to conductive disorders. After correcting for sex differences, a mathematical model was developed in which the volume of 6 regions of the nasal cavity, 6 first-order interactions, and 3 second-order interactions accounted for 97% of the variation in the measure of olfactory ability. Increases in the size of compartments of the nasal cavity around the olfactory cleft generally increase olfactory ability. Also, anatomical differences in the nasal cavities of men and women may account, in part, for sex differences in olfactory ability.
Modern psychophysical tests to assess olfactory function.
Eibenstein, A; Fioretti, A B; Lena, C; Rosati, N; Amabile, G; Fusetti, M
2005-07-01
The sense of smell significantly contributes to quality of life. In recent years much progress has been made in understanding the biochemistry, physiology and pathology of the human olfactory system. Olfactory disorders may arise not only from upper airway phlogosis but also from neurodegenerative disease. Hyposmia may precede motor signs in Parkinson's disease and cognitive deficit in Alzheimer's disease. These findings suggest the complementary role of olfactory tests in the diagnosis and management of neurodegenerative diseases. In this report we present a review of modern olfactory tests and their clinical applications. Although rarely employed in routine clinical practice, the olfactory test evaluates the ability of odour identification and is a useful diagnostic tool for olfaction evaluation. Olfactory screening tests are also available. In this work we strongly recommend the importance of an ENT evaluation before the test administration and dissuade from a self-administration of an olfactory test.
Poor Appetite and Dietary Intake in Community-Dwelling Older Adults.
van der Meij, Barbara S; Wijnhoven, Hanneke A H; Lee, Jung S; Houston, Denise K; Hue, Trisha; Harris, Tamara B; Kritchevsky, Stephen B; Newman, Anne B; Visser, Marjolein
2017-10-01
Poor appetite in older adults leads to sub-optimal food intake and increases the risk of undernutrition. The impact of poor appetite on food intake in older adults is unknown. The aim of this study was to examine the differences in food intake among older community-dwelling adults with different reported appetite levels. Cross-sectional analysis of data from a longitudinal prospective study. Health, aging, and body composition study performed in the USA. 2,597 community-dwelling adults aged 70-79. A semi-quantitative, interviewer-administered, 108-item food frequency questionnaire designed to estimate dietary intake. Poor appetite was defined as the report of a moderate, poor, or very poor appetite in the past month and was compared with good or very good appetite. The mean age of the study sample was 74.5 ± 2.8 years; 48.2% were men, 37.7% were black, and 21.8% reported a poor appetite. After adjustment for total energy intake and potential confounders (including biting/chewing problems), participants with a poor appetite had a significantly lower consumption of protein and dietary fiber, solid foods, protein rich foods, whole grains, fruits, and vegetables, but a higher consumption of dairy foods, fats, oils, sweets, and sodas compared to participants with very good appetite. In addition, they were less likely to report consumption of significant larger portion sizes. Older adults reporting a poor appetite showed a different dietary intake pattern compared to those with (very) good appetite. Better understanding of the specific dietary intake pattern related to a poor appetite in older adults can be used for nutrition interventions to enhance food intake, diet variety, and diet quality. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Abramson, Charles I.; Giray, Tugrul; Mixson, T. Andrew; Nolf, Sondra L.; Wells, Harrington; Kence, Aykut; Kence, Meral
2010-01-01
Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee. PMID:20879917
Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral
2010-01-01
Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.
Strowbridge, Ben W
2010-02-11
In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks. Copyright 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas
2004-01-01
Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…
Markopoulou, Katerina; Chase, Bruce A; Robowski, Piotr; Strongosky, Audrey; Narożańska, Ewa; Sitek, Emilia J; Berdynski, Mariusz; Barcikowska, Maria; Baker, Matt C; Rademakers, Rosa; Sławek, Jarosław; Klein, Christine; Hückelheim, Katja; Kasten, Meike; Wszolek, Zbigniew K
2016-01-01
Olfactory dysfunction is associated with normal aging, multiple neurodegenerative disorders, including Parkinson's disease, Lewy body disease and Alzheimer's disease, and other diseases such as diabetes, sleep apnea and the autoimmune disease myasthenia gravis. The wide spectrum of neurodegenerative disorders associated with olfactory dysfunction suggests different, potentially overlapping, underlying pathophysiologies. Studying olfactory dysfunction in presymptomatic carriers of mutations known to cause familial parkinsonism provides unique opportunities to understand the role of genetic factors, delineate the salient characteristics of the onset of olfactory dysfunction, and understand when it starts relative to motor and cognitive symptoms. We evaluated olfactory dysfunction in 28 carriers of two MAPT mutations (p.N279K, p.P301L), which cause frontotemporal dementia with parkinsonism, using the University of Pennsylvania Smell Identification Test. Olfactory dysfunction in carriers does not appear to be allele specific, but is strongly age-dependent and precedes symptomatic onset. Severe olfactory dysfunction, however, is not a fully penetrant trait at the time of symptom onset. Principal component analysis revealed that olfactory dysfunction is not odor-class specific, even though individual odor responses cluster kindred members according to genetic and disease status. Strikingly, carriers with incipient olfactory dysfunction show poor inter-test consistency among the sets of odors identified incorrectly in successive replicate tests, even before severe olfactory dysfunction appears. Furthermore, when 78 individuals without neurodegenerative disease and 14 individuals with sporadic Parkinson's disease were evaluated twice at a one-year interval using the Brief Smell Identification Test, the majority also showed inconsistency in the sets of odors they identified incorrectly, independent of age and cognitive status. While these findings may reflect the limitations of these tests used and the sample sizes, olfactory dysfunction appears to be associated with the inability to identify odors reliably and consistently, not with the loss of an ability to identify specific odors. Irreproducibility in odor identification appears to be a non-disease-specific, general feature of olfactory dysfunction that is accelerated or accentuated in neurodegenerative disease. It may reflect a fundamental organizational principle of the olfactory system, which is more "error-prone" than other sensory systems.
Crowell, Jenna; Wiley, James A.; Bessen, Richard A.
2015-01-01
Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718
The Prevalence of Olfactory Dysfunction in Chronic Rhinosinusitis
Kohli, Preeti; Naik, Akash N.; Harruff, E. Emily; Nguyen, Shaun A.; Schlosser, Rodney J.; Soler, Zachary M.
2016-01-01
Objective Many studies have reported that olfactory dysfunction frequently occurs in chronic rhinosinusitis (CRS) populations; however, the prevalence and degree of olfactory loss has not been systematically studied. The aims of this study are to use combined data to report the prevalence of olfactory dysfunction and to calculate weighted averages of olfactory test scores in CRS patients. Data Sources A search was conducted in PubMed and Scopus, following the methods of Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Review Methods Studies reporting the prevalence of olfactory dysfunction using objective measures or olfactory test scores using validated scales were included. Results A total of 47 articles were included in systematic review and 35 in the pooled data analysis. The prevalence of olfactory dysfunction in chronic rhinosinusitis was found to be 30.0% using the Brief Smell Identification Test, 67.0% using the 40-item Smell Identification Test, and 78.2% using the total Sniffin’ Sticks score. Weighted averages ± standard deviation of olfactory test scores were 25.96±7.11 using the 40-item Smell Identification Test, 8.60±2.81 using the Brief Smell Identification Test, 21.96±8.88 using total Sniffin’ sticks score, 5.65±1.51 using Sniffin’ Sticks threshold, 9.21±4.63 using Sniffin’ Sticks discrimination, 9.47±3.92 using Sniffin’ Sticks Identification, and 8.90±5.14 using the questionnaire for olfactory disorders-negative statements. Conclusion In chronic rhinosinusitis populations, a significant percentage of patients experience olfactory dysfunction and mean olfactory scores are within the dysosmic range. PMID:27873345
Magrassi, L; Graziadei, P P
1987-06-02
A cyclops Xenopus laevis tadpole with a single olfactory organ is described. At a stage comparable to 48, the telencephalon was severely atrophic and only the region where the olfactory fibres terminated appeared to have the cytoarchitecture of the olfactory bulb. In this animal the central nervous system (CNS) appeared normally developed only posterior to the preoptic area. The hypothesis of a diencephalic origin of the region where the olfactory fibres terminated is discussed in the light of our previous results of olfactory placode transplantation. By analogy between this case and other malformations (cyclopia, holoprosencephaly) in higher vertebrates and humans, the need is emphasized for a more precise anatomical description of the olfactory input in related malformations.
Olfactory gene expression in migrating adult sockeye salmon Oncorhynchus nerka.
Bett, N N; Hinch, S G; Kaukinen, K H; Li, S; Miller, K M
2018-04-16
Expression of 12 olfactory genes was analysed in adult sockeye salmon Oncorhynchus nerka nearing spawning grounds and O. nerka that had strayed from their natal migration route. Variation was found in six of these genes, all of which were olfc olfactory receptors and had lower expression levels in salmon nearing spawning grounds. The results may reflect decreased sensitivity to natal water olfactory cues as these fish are no longer seeking the correct migratory route. The expression of olfactory genes during the olfactory-mediated spawning migration of Pacific salmon Oncorhynchus spp. is largely unexplored and these findings demonstrate a link between migratory behaviours and olfactory plasticity that provides a basis for future molecular research on salmon homing. © 2018 The Fisheries Society of the British Isles.
Godefroy, V; Trinchera, L; Romo, L; Rigal, N
2016-04-01
Appetitive traits and general temperament traits have both been correlated with adiposity and obesity in children. However, very few studies have tested structural models to identify the links between temperament, appetitive traits and adiposity in children. A validated structural model would help suggesting mechanisms to explain the impact of temperament on body mass index (BMI). In this study, we used Rothbart's heuristic definition of temperament as a starting point to define four appetitive traits, including two appetite reactivity dimensions (Appetite Arousal and Appetite Persistence) and two dimensions of self-regulation in eating (Self-regulation In Eating Without Hunger and Self-regulation in Eating Speed). We conducted a cross-sectional study in young adolescents to validate a structural model including these four appetitive traits, Effortful Control (a general temperament trait) and adiposity. A questionnaire assessing the four appetitive trait dimensions and Effortful Control was completed by adolescents from 10 to 14 years old (n=475), and their BMI-for-age was calculated (n=441). In total, 74% of the study participants were normal weight, 26% were overweight and 8% were obese. We then used structural equation modelling to test the structural model. We identified a well-fitting structural model (Comparative Fit Index=0.91; Root Mean Square Error of Approximation=0.04) that supports the hypothesis that Effortful Control impacts both dimensions of self-regulation in eating, which in turn are linked with both appetite reactivity dimensions. Moreover, Appetite Persistence is the only appetitive trait that was significantly related to adiposity (B=0.12; P<0.05). Our model shows that Effortful Control is related to adiposity through the mediation of an individual's 'eating temperament' (appetite reactivity and self-regulation in eating). Results suggest that young adolescents who exhibit high appetite reactivity but a low level of self-regulation in eating are at higher risk for excess adiposity.
Extinction and Renewal of Conditioned Sexual Responses
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie
2014-01-01
Introduction Extinction involves an inhibitory form of new learning that is highly dependent on the context for expression. This is supported by phenomena such as renewal and spontaneous recovery, which may help explain the persistence of appetitive behavior, and related problems such as addictions. Research on these phenomena in the sexual domain is lacking, where it may help to explain the persistence of learned sexual responses. Method Men (n = 40) and women (n = 62) participated in a differential conditioning paradigm, with genital vibrotactile stimulation as US and neutral pictures as conditional stimuli (CSs). Dependent variables were genital and subjective sexual arousal, affect, US expectancy, and approach and avoid tendencies towards the CSs. Extinction and renewal of conditioned sexual responses were studied by context manipulation (AAA vs. ABA condition). Results No renewal effect of genital conditioned responding could be detected, but an obvious recovery of US expectancy following a context change after extinction (ABA) was demonstrated. Additionally, women demonstrated recovery of subjective affect and subjective sexual arousal. Participants in the ABA demonstrated more approach biases towards stimuli. Conclusions The findings support the context dependency of extinction and renewal of conditioned sexual responses in humans. This knowledge may have implications for the treatment of disturbances in sexual appetitive responses such as hypo- and hypersexuality. PMID:25170909
Extinction and renewal of conditioned sexual responses.
Brom, Mirte; Laan, Ellen; Everaerd, Walter; Spinhoven, Philip; Both, Stephanie
2014-01-01
Extinction involves an inhibitory form of new learning that is highly dependent on the context for expression. This is supported by phenomena such as renewal and spontaneous recovery, which may help explain the persistence of appetitive behavior, and related problems such as addictions. Research on these phenomena in the sexual domain is lacking, where it may help to explain the persistence of learned sexual responses. Men (n = 40) and women (n = 62) participated in a differential conditioning paradigm, with genital vibrotactile stimulation as US and neutral pictures as conditional stimuli (CSs). Dependent variables were genital and subjective sexual arousal, affect, US expectancy, and approach and avoid tendencies towards the CSs. Extinction and renewal of conditioned sexual responses were studied by context manipulation (AAA vs. ABA condition). No renewal effect of genital conditioned responding could be detected, but an obvious recovery of US expectancy following a context change after extinction (ABA) was demonstrated. Additionally, women demonstrated recovery of subjective affect and subjective sexual arousal. Participants in the ABA demonstrated more approach biases towards stimuli. The findings support the context dependency of extinction and renewal of conditioned sexual responses in humans. This knowledge may have implications for the treatment of disturbances in sexual appetitive responses such as hypo- and hypersexuality.
The role of ghrelin in anorexia-cachexia syndromes.
Guillory, Bobby; Splenser, Andres; Garcia, Jose
2013-01-01
Anorexia, sarcopenia, and cachexia are common complications of many chronic conditions including cancer, rheumatoid arthritis, HIV infection, aging, and chronic lung, heart, or kidney disease. Currently, there is no effective treatment for muscle atrophy or wasting conditions although they typically take a significant toll on the quality of life of patients and are associated with poor prognosis and decreased survival. Ghrelin affects multiple key pathways in the regulation of body weight, body composition, and appetite in the setting of cachexia that may lead to an increase in appetite and growth hormone secretion and a reduction in energy expenditure and inflammation. The net effect is increased lean body mass and fat mass preservation. In this chapter, we review the mechanisms of action of ghrelin and present the available data in animal models and human trials using ghrelin or ghrelin mimetics in different settings of cachexia. Copyright © 2013 Published by Elsevier Inc. Published by Elsevier Science & Technology.. All rights reserved.
Gut Hormones, Appetite Suppression and Cachexia in Patients with Pulmonary TB
Chang, Suzanne W.; Pan, William S.; Lozano Beltran, Daniel; Oleyda Baldelomar, Lizet; Solano, Marco Antonio; Tuero, Iskra; Friedland, Jon S.; Torrico, Faustino; Gilman, Robert H.
2013-01-01
Background Cachexia is a hallmark of pulmonary tuberculosis and is associated with poor prognosis. A better understanding of the mechanisms behind such weight loss could reveal targets for therapeutic intervention. The role of appetite-regulatory hormones in tuberculosis is unknown. Methods and Findings 41 subjects with newly-diagnosed pulmonary TB (cases) were compared to 82 healthy controls. We measured appetite, body mass index (BMI), % body fat (BF), plasma peptide YY (PYY), leptin, ghrelin, and resistin for all subjects. Measurements were taken at baseline for controls and at treatment days 0, 30, and 60 for cases. Baseline appetite, BMI, and BF were lower in cases than in controls and improved during treatment. PYY, ghrelin, and resistin were significantly elevated in cases and fell during treatment. Leptin was lower in cases and rose with treatment. Appetite was inversely related to PYY in cases. High pre-treatment PYY predicted reduced gains in appetite and BF. PYY was the strongest independent predictor of appetite in cases across all time points. Conclusions Appetite-regulatory hormones are altered in TB patients. As hormones normalize during treatment, appetite is restored and nutritional status improves. High baseline PYY is an indicator of poor prognosis for improvement in appetite and nutrition during treatment. Wasting in TB patients may partly be mediated by upregulation of PYY with resulting appetite suppression. PMID:23358528
Locus coeruleus degeneration exacerbates olfactory deficits in APP/PS1 transgenic mice.
Rey, Nolwen L; Jardanhazi-Kurutz, Daniel; Terwel, Dick; Kummer, Markus P; Jourdan, Francois; Didier, Anne; Heneka, Michael T
2012-02-01
Neuronal loss in the locus coeruleus (LC) is 1 of the early pathological events in Alzheimer's disease (AD). Projections of noradrenergic neurons of the LC innervate the olfactory bulb (OB). Because olfactory deficits have been reported in early AD, we investigated the effect of induced LC degeneration on olfactory memory and discrimination in an AD mouse model. LC degeneration was induced by treating APP/PS1 mice with N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP4) repeatedly between 3 and 12 months of age. Short term odor retention, ability for spontaneous habituation to an odor, and spontaneous odor discrimination were assessed by behavioral tests. DSP4 treatment in APP/PS1 mice resulted in an exacerbation of short term olfactory memory deficits and more discrete weakening of olfactory discrimination abilities, suggesting that LC degeneration contributes to olfactory deficits observed in AD. Importantly, DSP4 treatment also increased amyloid β (Aβ) deposition in the olfactory bulb of APP/PS1 mice, which correlated with olfactory memory, not with discrimination deficits. Copyright © 2012 Elsevier Inc. All rights reserved.
Olfactory epithelium changes in germfree mice
François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas
2016-01-01
Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944
Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer's disease mouse model.
Wesson, Daniel W; Levy, Efrat; Nixon, Ralph A; Wilson, Donald A
2010-01-13
Alzheimer's disease often results in impaired olfactory perceptual acuity-a potential biomarker of the disorder. However, the usefulness of olfactory screens to serve as informative indicators of Alzheimer's is precluded by a lack of knowledge regarding why the disease impacts olfaction. We addressed this question by assaying olfactory perception and amyloid-beta (Abeta) deposition throughout the olfactory system in mice that overexpress a mutated form of the human amyloid-beta precursor protein. Such mice displayed progressive olfactory deficits that mimic those observed clinically-some evident at 3 months of age. Also, at 3 months of age, we observed nonfibrillar Abeta deposition within the olfactory bulb-earlier than deposition within any other brain region. There was also a correlation between olfactory deficits and the spatial-temporal pattern of Abeta deposition. Therefore, nonfibrillar, versus fibrillar, Abeta-related mechanisms likely contribute to early olfactory perceptual loss in Alzheimer's disease. Furthermore, these results present the odor cross-habituation test as a powerful behavioral assay, which reflects Abeta deposition and thus may serve to monitor the efficacy of therapies aimed at reducing Abeta.
Parabrachial and hypothalamic interaction in sodium appetite
Dayawansa, S.; Peckins, S.; Ruch, S.
2011-01-01
Rats with bilateral lesions of the lateral hypothalamus (LH) fail to exhibit sodium appetite. Lesions of the parabrachial nuclei (PBN) also block salt appetite. The PBN projection to the LH is largely ipsilateral. If these deficits are functionally dependent, damaging the PBN on one side and the LH on the other should also block Na appetite. First, bilateral ibotenic acid lesions of the LH were needed because the electrolytic damage used previously destroyed both cells and axons. The ibotenic LH lesions produced substantial weight loss and eliminated Na appetite. Controls with ipsilateral PBN and LH lesions gained weight and displayed robust sodium appetite. The rats with asymmetric PBN-LH lesions also gained weight, but after sodium depletion consistently failed to increase intake of 0.5 M NaCl. These results dissociate loss of sodium appetite from the classic weight loss after LH damage and prove that Na appetite requires communication between neurons in the LH and the PBN. PMID:21270347
Vukovic, Jana; Blomster, Linda V; Chinnery, Holly R; Weninger, Wolfgang; Jung, Steffen; McMenamin, Paul G; Ruitenberg, Marc J
2010-10-01
Macrophages in the olfactory neuroepithelium are thought to play major roles in tissue homeostasis and repair. However, little information is available at present about possible heterogeneity of these monocyte-derived cells, their turnover rates, and the role of chemokine receptors in this process. To start addressing these issues, this study used Cx₃cr1(gfp) mice, in which the gene sequence for eGFP was knocked into the CX₃CR1 gene locus in the mutant allele. Using neuroepithelial whole-mounts from Cx₃cr1(gfp/+) mice, we show that eGFP(+) cells of monocytic origin are distributed in a loose network throughout this tissue and can be subdivided further into two immunophenotypically distinct subsets based on MHC-II glycoprotein expression. BM chimeric mice were created using Cx₃cr1(gfp/+) donors to investigate turnover of macrophages (and other monocyte-derived cells) in the olfactory neuroepithelium. Our data indicate that the monocyte-derived cell population in the olfactory neuroepithelium is actively replenished by circulating monocytes and under the experimental conditions, completely turned over within 6 months. Transplantation of Cx₃cr1(gfp/gfp) (i.e., CX₃CR1-deficient) BM partially impaired the replenishment process and resulted in an overall decline of the total monocyte-derived cell number in the olfactory epithelium. Interestingly, replenishment of the CD68(low)MHC-II(+) subset appeared minimally affected by CX₃CR1 deficiency. Taken together, the established baseline data about heterogeneity of monocyte-derived cells, their replenishment rates, and the role of CX₃CR1 provide a solid basis to further examine the importance of different monocyte subsets for neuroregeneration at this unique frontier with the external environment.
Role of olfactory reactions, nociception, and immunoendocrine shifts in addictive disorders.
Masterova, Elena; Nevidimova, Tatiana; Savochkina, Dariya; Nikitina, Valentina; Lobacheva, Olga; Vetlugina, Tamara; Bokhan, Nikolay
2017-09-01
Addictive pathology is associated with nervous, immune, and endocrine shifts. Meanwhile, the nature of intersystemic relationship lying beneath addictive disorders remains unclear. The purpose of the study was to identify neuroimmunoendocrine markers of addictive disorders in male subjects defining the nature of their interaction. The study enrolled 69 subjects aged 18-43 years: 59 males and 10 females divided into those with addictive disorders (n = 39) and conditionally healthy subjects (n = 30). EEG testing with olfactory stimulation, olfactometric, and pressure algometric examinations was carried out. Multiplex technique was applied to determine mitogen-induced production of cytokines IL-10, IL-1, IL-1RA, IL-2, IFN-gamma, TNF-alpha. ELISA method was applied to measure serum cortisol and testosterone levels. Olfactory responses to isopropanol with open eyes in addicted patients manifested as increase in alpha-rhythm and beta1-rhythm, with closed eyes presentation of this odorant was accompanied by increase of theta-rhythm in opioid-addicted patients. Male subjects with addictive disorders showed reduced alpha-rhythm in terms of olfactory stimulation with modified emotional evaluation of the odorant, deficient mitogen-induced production of IFN-gamma, and reduced pain sensitivity. Male subjects with opioid addiction had reduced beta1-rhythm in terms of olfactory stimulation, mitogen-induced production of IFN-gamma, and elevated testosterone level. The findings obtained verify potential involvement of nociception, olfaction, and cytokine production in addiction pathogenesis evidencing their various roles depending on the range of psychoactive substances (PAS) and pathology progression. The data obtained may provide background for unification of reward circuit and inhibitory control concepts in regulation of addictive behavior. (Am J Addict 2017;26:640-648). © 2017 American Academy of Addiction Psychiatry.
Gómez, C; Curto, G G; Baltanás, F C; Valero, J; O'Shea, E; Colado, M I; Díaz, D; Weruaga, E; Alonso, J R
2012-01-10
The serotonergic centrifugal system innervating the main olfactory bulb (MOB) plays a key role in the modulation of olfactory processing. We have previously demonstrated that this system suffers adaptive changes under conditions of a lack of olfactory input. The present work examines the response of this centrifugal system after mitral cell loss in the Purkinje cell degeneration (pcd) mutant mice. The distribution and density of serotonergic centrifugal axons were studied in the MOB of control and pcd mice, both before and after the loss of mitral cells, using serotonin (5-HT) and 5-HT transporter immunohistochemistry. Studies of the amount of 5-HT and its metabolite, 5-hydroxyindole acetic acid (5-HIAA), were performed by means of high-performance liquid chromatography (HPLC), and the relative amounts of brain-derived neurotrophin factor, BDNF, and its major receptor, tropomyosin-related kinase B (TrkB), were measured by Western blot. Our study revealed that the serotonergic system develops adaptive changes after, but not before, mitral cell loss. The lack of the main bulbar projection cells causes a decrease in the serotonergic input received by the MOB, whereas the number of serotonergic cells in the raphe nuclei remains constant. In addition, one of the molecules directly involved in serotonergic sprouting, the neurotrophin BDNF and its main receptor TrkB, underwent alterations in the MOBs of the pcd animals even before the loss of mitral cells. These data indicate that serotonergic function in the MOB is closely related to olfactory activity and that mitral cell loss induces serotonergic plastic responses. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Chaker, Zayna; Aïd, Saba; Berry, Hugues; Holzenberger, Martin
2015-10-01
Downregulation of insulin-like growth factor (IGF) pathways prolongs lifespan in various species, including mammals. Still, the cellular mechanisms by which IGF signaling controls the aging trajectory of individual organs are largely unknown. Here, we asked whether suppression of IGF-I receptor (IGF-1R) in adult stem cells preserves long-term cell replacement, and whether this may prevent age-related functional decline in a regenerating tissue. Using neurogenesis as a paradigm, we showed that conditional knockout of IGF-1R specifically in adult neural stem cells (NSC) maintained youthful characteristics of olfactory bulb neurogenesis within an aging brain. We found that blocking IGF-I signaling in neural precursors increased cumulative neuroblast production and enhanced neuronal integration into the olfactory bulb. This in turn resulted in neuro-anatomical changes that improved olfactory function. Interestingly, mutants also displayed long-term alterations in energy metabolism, possibly related to IGF-1R deletion in NSCs throughout lifespan. We explored Akt and ERK signaling cascades and revealed differential regulation downstream of IGF-1R, with Akt phosphorylation preferentially decreased in IGF-1R(-/-) NSCs within the niche, and ERK pathway downregulated in differentiated neurons of the OB. These challenging experimental results were sustained by data from mathematical modeling, predicting that diminished stimulation of growth is indeed optimal for tissue aging. Thus, inhibiting growth and longevity gene IGF-1R in adult NSCs induced a gain-of-function phenotype during aging, marked by optimized management of cell renewal, and enhanced olfactory sensory function. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
A controlled trial of aromatherapy for agitation in nursing home patients with dementia.
Snow, Lynn A; Hovanec, Linda; Brandt, Jason
2004-06-01
Two controlled trials of aromatherapy to decrease agitation in persons with dementia have recently produced promising results. However, both studies combined the use of essential oils with massage. Thus, it is unclear if the effect of the aromatherapy intervention was the result of smelling or the cutaneous absorption of the oils. The purpose of this study was to determine whether smelling lavender oil decreases the frequency of agitated behaviors in patients with dementia. The study design was within-subjects ABCBA (A = lavender oil, B = thyme oil, C = unscented grapeseed oil): 4 weeks of baseline measurement, 2 weeks for each of the five treatment conditions (10-week total intervention time), and 2 weeks of postintervention measurement. Oil was placed every 3 hours on an absorbent fabric sachet pinned near the collarbone of each participant's shirt. A long-term care facility specifically for persons with dementia. Seven agitated nursing home residents with advanced dementia. Agitation was assessed every 2 days using a modified Cohen-Mansfield Agitation Inventory. Olfactory functioning was assessed with structured olfactory identification and discrimination tasks, and with qualitative behavioral observation during those tasks. Split-middle analyses conducted separately for each patient revealed no treatment effects specific to lavender, no treatment effects nonspecific to pleasant smelling substances, and no treatment effects dependent on order of treatment administration. There were no differences between participants with more and less intact olfactory abilities. There is significant evidence in the neurologic and neuropsychologic literature that persons with dementia have impaired olfactory abilities. Concordant with this literature, this study found no support for the use of a purely olfactory form of aromatherapy to decrease agitation in severely demented patients. Cutaneous application of the essential oil may be necessary to achieve the effects reported in previous controlled studies. Copyright Mary Ann Liebert, Inc.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R; Doty, Richard L
2010-01-01
Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8+/-8.5 years were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC/25 controls 21.2+/-2.7 years. MC subjects had significantly lower UPSIT scores: 34.24+/-0.42 versus controls 35.76+/-0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE epsilon 4 carriers failed 2.4+/-0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36+/-0.16 items, p=0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid betaA(42) (29/35) and/or alpha-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. Copyright 2009 Elsevier GmbH. All rights reserved.
Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-01
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.
Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-01
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca2+ indicator in the MBs, we investigated synaptic transmission and plasticity at the AL–MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca2+ responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca2+ responses were mediated through Drosophila NMDA receptors (dNRs). AL–MB synaptic transmission was enhanced more than 2 h after the simultaneous ‘associative-stimulation’ of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL–MB synapses but not at the AFV–MB synapses. AL–MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL–MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL–MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL–MB LTE might be a relevant cellular model for olfactory memory. PMID:23027817
Olfactory Stimuli Increase Presence in Virtual Environments
Munyan, Benson G.; Neer, Sandra M.; Beidel, Deborah C.; Jentsch, Florian
2016-01-01
Background Exposure therapy (EXP) is the most empirically supported treatment for anxiety and trauma-related disorders. EXP consists of repeated exposure to a feared object or situation in the absence of the feared outcome in order to extinguish associated anxiety. Key to the success of EXP is the need to present the feared object/event/situation in as much detail and utilizing as many sensory modalities as possible, in order to augment the sense of presence during exposure sessions. Various technologies used to augment the exposure therapy process by presenting multi-sensory cues (e.g., sights, smells, sounds). Studies have shown that scents can elicit emotionally charged memories, but no prior research has examined the effect of olfactory stimuli upon the patient’s sense of presence during simulated exposure tasks. Methods 60 adult participants navigated a mildly anxiety-producing virtual environment (VE) similar to those used in the treatment of anxiety disorders. Participants had no autobiographical memory associated with the VE. State anxiety, Presence ratings, and electrodermal (EDA) activity were collected throughout the experiment. Results Utilizing a Bonferroni corrected Linear Mixed Model, our results showed statistically significant relationships between olfactory stimuli and presence as assessed by both the Igroup Presence Questionnaire (IPQ: R2 = 0.85, (F(3,52) = 6.625, p = 0.0007) and a single item visual-analogue scale (R2 = 0.85, (F(3,52) = 5.382, p = 0.0027). State anxiety was unaffected by the presence or absence of olfactory cues. EDA was unaffected by experimental condition. Conclusion Olfactory stimuli increase presence in virtual environments that approximate those typical in exposure therapy, but did not increase EDA. Additionally, once administered, the removal of scents resulted in a disproportionate decrease in presence. Implications for incorporating the use of scents to increase the efficacy of exposure therapy is discussed. PMID:27310253
Of pheromones and kairomones: what receptors mediate innate emotional responses?
Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando
2013-09-01
Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.
[The sense of smell in daily life].
Steinbach, S; Hundt, W; Zahnert, T
2008-09-01
An intact olfactory system affects all areas of life including the creation of new life, partner selection, daily hygiene, food intake, and the perception of danger from gas and smoke. The olfactory system is most effective from adolescence to middle age. With advancing age the regeneration of olfactory receptor cells decreases, often resulting in an increasing loss of smell. Functional anosmia affects 5% of the general population and 10% of those over 65. Therefore, olfactory dysfunctions are not uncommon. The following provides an overview of the physiology of smell, olfactory testing, special olfactory dysfunctions as well as treatment and general recommendations.
Ulex europaeus I and glycine max bind to the human olfactory bulb.
Nagao, M; Oka, N; Kamo, H; Akiguchi, I; Kimura, J
1993-12-24
The distribution of binding sites for the fucose-selective lectin Ulex europaeus I and the terminal N-acetylgalactosamine-selective lectin glycine max in the human olfactory bulb were studied. These lectins bound to primary olfactory axons in the olfactory nerve layer and the glomerular layer. They also bound to fibers located in the deeper layers such as the external plexiform layer and the granular layer. Furthermore they projected to the olfactory stalk but not in the cerebrum. The deeper projections of the lectin binding fibers may affect the function of the olfactory bulb in humans.
Food Avoidance Learning in Squirrel Monkeys and Common Marmosets
Laska, Matthias; Metzker, Karin
1998-01-01
Using a conditioned food avoidance learning paradigm, six squirrel monkeys (Saimiri sciureus) and six common marmosets (Callithrix jacchus) were tested for their ability to (1) reliably form associations between visual or olfactory cues of a potential food and its palatability and (2) remember such associations over prolonged periods of time. We found (1) that at the group level both species showed one-trial learning with the visual cues color and shape, whereas only the marmosets were able to do so with the olfactory cue, (2) that all individuals from both species learned to reliably avoid the unpalatable food items within 10 trials, (3) a tendency in both species for quicker acquisition of the association with the visual cues compared with the olfactory cue, (4) a tendency for quicker acquisition and higher reliability of the aversion by the marmosets compared with the squirrel monkeys, and (5) that all individuals from both species were able to reliably remember the significance of the visual cues, color and shape, even after 4 months, whereas only the marmosets showed retention of the significance of the olfactory cues for up to 4 weeks. Furthermore, the results suggest that in both species tested, illness is not a necessary prerequisite for food avoidance learning but that the presumably innate rejection responses toward highly concentrated but nontoxic bitter and sour tastants are sufficient to induce robust learning and retention. PMID:10454364
Dinh-Williams, Laurence; Mendrek, Adrianna; Bourque, Josiane; Potvin, Stéphane
2014-04-03
The addictive nature of smoking is characterized by responses to cigarette stimuli that significantly impede smoking cessation efforts. Studies have shown that smokers are roused by appetitive smoking-related stimuli, and their consumption tends to be unaffected by the negative value of smoking. Using functional magnetic resonance imaging, the goal of this study was two-fold: to examine the brain reactivity of chronic smokers when processing the negative value of smoking using aversive smoking-related cues; to further characterize this response by comparing the latter to the processing of aversive nonsmoking-related and appetitive smoking-related cues. Thirty chronic smokers passively viewed aversive smoking-related, aversive nonsmoking-related, appetitive smoking-related and neutral images presented in a block design while being scanned. Aversive smoking-related stimuli elicited significantly greater activation in the medial prefrontal cortex, amygdala, inferior frontal gyrus and lateral orbitofrontal cortex than neutral stimuli. Aversive smoking-related stimuli elicited lower activation in the parahippocampal gyrus, insula and inferior frontal gyrus compared to the aversive nonsmoking-related condition, as well as lower activation in the posterior cingulate, precuneus and medial prefrontal cortices compared to appetitive smoking-related cues. The brain activation pattern observed suggests that chronic smokers experience an aversive response when processing aversive smoking-related stimuli, however we argue that the latter triggers a weaker negative emotional and driving response than the aversive non-smoking-related and appetitive smoking-related cues respectively. These fMRI results highlight potentially important processes underlying the insensitivity to the negative value of smoking, an important characteristic of addiction. Copyright © 2013 Elsevier Inc. All rights reserved.
Allerton, Dean M.; Campbell, Matthew D.; Gonzalez, Javier T.; Rumbold, Penny L. S.; West, Daniel J.; Stevenson, Emma J.
2016-01-01
We aimed to assess postprandial metabolic and appetite responses to a mixed-macronutrient lunch following prior addition of whey protein to a carbohydrate-rich breakfast. Ten healthy males (age: 24 ± 1 years; body mass index (BMI): 24.5 ± 0.7 kg/m2) completed three trials in a non-isocaloric, crossover design. A carbohydrate-rich breakfast (93 g carbohydrate; 1799 kJ) was consumed with (CHO + WP) or without (CHO) 20 g whey protein isolate (373 kJ), or breakfast was omitted (NB). At 180 min, participants consumed a mixed-macronutrient lunch meal. Venous blood was sampled at 15 min intervals following each meal and every 30 min thereafter, while subjective appetite sensations were collected every 30 min throughout. Post-breakfast insulinemia was greater after CHO + WP (time-averaged area under the curve (AUC0–180 min): 193.1 ± 26.3 pmol/L), compared to CHO (154.7 ± 18.5 pmol/L) and NB (46.1 ± 8.0 pmol/L; p < 0.05), with no difference in post-breakfast (0–180 min) glycemia (CHO + WP, 3.8 ± 0.2 mmol/L; CHO, 4.2 ± 0.2 mmol/L; NB, 4.2 ± 0.1 mmol/L; p = 0.247). There were no post-lunch (0–180 min) effects of condition on glycemia (p = 0.492), insulinemia (p = 0.338) or subjective appetite (p > 0.05). Adding whey protein to a carbohydrate-rich breakfast enhanced the acute postprandial insulin response, without influencing metabolic or appetite responses following a subsequent mixed-macronutrient meal. PMID:26927166
Harrold, Joanne; Breslin, Leanne; Walsh, Jennifer; Halford, Jason; Pelkman, Christine
2014-10-01
The current study assesses the impact on appetite and food intake of a novel co-processed ingredient containing a viscous fibre and whole-grain high-amylose corn flour, a source of type 1 and type 2 resistant starch (HAM-RS). Ninety adults completed a crossover, placebo-controlled study comparing two doses of the ingredient (20 and 30 g) to a maltodextrin control in a fruit-based smoothie served with breakfast. Ad libitum food intake was measured over the day and visual analogue scales were used to assess subjective appetite sensations. Subjects consumed 7% less energy intake at dinner following the 30 g dose (p = 0.02) compared to control. In addition, a trend for lower lunch intake (5% less weight of food) was observed for the 20 g dose (p = 0.10). Reductions were also observed for the two meals combined, with 3% lower energy intake for the 20 g dose (p = 0.04) and 5% less weight of food consumed for the 30 g dose (p = 0.04). Lower ratings of hunger were reported at 3 h after breakfast for both doses and also at 2 and 3 h after lunch for the 30 g dose. With ratings combined to compute an overall appetite score, a trend for lower appetite scores at 3 h after breakfast was found for both doses. Consistent with this, significant reductions in AUC hunger and prospective consumption were identified in the 30 g condition. A similar pattern of results was observed for fullness and desire to eat. The results of this study show that a new composite satiety ingredient comprised of a viscous fibre and whole-grain corn flour can affect acute satiety responses in men and women.
ERIC Educational Resources Information Center
Jurado-Parras, M. Teresa; Gruart, Agnes; Delgado-Garcia, Jose M.
2012-01-01
The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by…
Immunohistochemical characterization of human olfactory tissue
Holbrook, Eric H.; Wu, Enming; Curry, William T.; Lin, Derrick T.; Schwob, James E.
2011-01-01
Objectives/Hypothesis The pathophysiology underlying human olfactory disorders is poorly understood because biopsying the olfactory epithelium (OE) can be unrepresentative and extensive immunohistochemical analysis is lacking. Autopsy tissue enriches our grasp of normal and abnormal olfactory immunohistology and guides the sampling of the OE by biopsy. Furthermore, a comparison of the molecular phenotype of olfactory epithelial cells between rodents and humans will improve our ability to correlate human histopathology with olfactory dysfunction. Study Design An immunohistochemical analysis of human olfactory tissue using a comprehensive battery of proven antibodies. Methods Human olfactory mucosa obtained from 21 autopsy specimens was analyzed with immunohistochemistry. The position and extent of olfactory mucosa was assayed by staining whole mounts with neuronal markers. Sections of the OE were analyzed with an extensive group of antibodies directed against cytoskeletal proteins and transcription factors, as were surgical specimens from an esthesioneuroblastoma. Results Neuron-rich epithelium is always found inferior to the cribriform plate, even at advanced age, despite the interruptions in the neuroepithelial sheet caused by patchy respiratory metaplasia. The pattern of immunostaining with our antibody panel identifies two distinct types of basal cell progenitors in human OE similar to rodents. The panel also clarifies the complex composition of the esthesioneuroblastoma. Conclusion The extent of human olfactory mucosa at autopsy can easily be delineated as a function of age and neurological disease. The similarities in human vs. rodent OE will enable us to translate knowledge from experimental animals to humans and will extend our understanding of human olfactory pathophysiology. PMID:21792956
Petit, Christophe; Le Ru, Bruno; Dupas, Stéphane; Frérot, Brigitte; Ahuya, Peter; Kaiser-Arnauld, Laure; Harry, Myriam; Calatayud, Paul-André
2015-01-01
In Lepidoptera, host plant selection is first conditioned by oviposition site preference of adult females followed by feeding site preference of larvae. Dietary experience to plant volatile cues can induce larval and adult host plant preference. We investigated how the parent’s and self-experience induce host preference in adult females and larvae of three lepidopteran stem borer species with different host plant ranges, namely the polyphagous Sesamia nonagrioides, the oligophagous Busseola fusca and the monophagous Busseola nairobica, and whether this induction can be linked to a neurophysiological phenotypic plasticity. The three species were conditioned to artificial diet enriched with vanillin from the neonate larvae to the adult stage during two generations. Thereafter, two-choice tests on both larvae and adults using a Y-tube olfactometer and electrophysiological (electroantennography [EAG] recordings) experiments on adults were carried out. In the polyphagous species, the induction of preference for a new olfactory cue (vanillin) by females and 3rd instar larvae was determined by parents’ and self-experiences, without any modification of the sensitivity of the females antennae. No preference induction was found in the oligophagous and monophagous species. Our results suggest that lepidopteran stem borers may acquire preferences for new olfactory cues from the larval to the adult stage as described by Hopkins’ host selection principle (HHSP), neo-Hopkins’ principle, and the concept of ‘chemical legacy.’ PMID:26288070
Nature and Nurture in Early Feeding Behavior.
Cooke, Lucy; Llewellyn, Clare
2016-01-01
Obesity has reached epidemic proportions and research into its prevention is increasingly focusing on the earliest stages of life. Avidity of appetite has been linked to a higher risk of obesity, but studies in infancy were scarce. The Gemini twin cohort was established to investigate genetic and environmental determinants of weight trajectories in early childhood with a focus on appetite and the home environment. Gemini families have been supplying questionnaire data at regular intervals, starting when the twins were 8 months old. Analyses of data on infant appetite and weight have provided a number of important findings. Firstly, a prospective study found that appetite in infancy drives weight gain more strongly than weight drives appetite, although the two processes do coexist. A further study using a subsample of twins discordant for appetite ruled out the possibility of familial confounding, suggesting a causal role for appetite in weight. Heritability estimates for appetitive traits were moderate to high (53-84%). Finally, multivariate analyses indicated that roughly one third of the genes related to weight are also related to appetite and vice versa. Environmental factors affecting appetite in infancy are understudied, but some potential strategies for minimizing over- or underconsumption by at-risk individuals are suggested. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.